3.2 第2课时 代数式的求值2
3.2代数式的值(第二课时)教学设计2024-2025学人教版(2024版)七年级数学上册
教学反思与改进
我发现一些学生在代数式求值时,仍然会犯一些基本的错误,比如忘记乘以字母的系数,或者在化简时忽略了一些基本的代数规则。这些问题让我意识到,尽管学生们在课堂上能够跟随我的讲解,但在实际操作时,他们可能并没有完全理解代数式的运算逻辑。
5.解答以下实际问题:
-某商店举行打折活动,原价为150元,打九折后的价格是150 * 90% = 135元。
-小明有30元,他想买一个价值25元的商品,他还剩30 - 25 = 5元。
解答:设打折后的价格为x元,根据题意可得原价的80%等于打折后的价格,即120 * 80% = x。化简得到x = 96。所以打折后的价格是96元。
6.总结与布置作业(5分钟)
同学们,通过本节课的学习,我们掌握了代数式的乘法和除法运算规则,并能够运用这些规则解决实际问题。希望大家能够课后复习本节课的内容,并完成课后作业,巩固所学知识。
3.2代数式的值(第二课时)教学设计2024-2025学人教版(2024版)七年级数学上册
授课内容
授课时数
授课班级
授课人数
授课地点
授课时间
课程基本信息
1.课程名称:3.2代数式的值(第二课时)教学设计
2.教学年级和班级:2024-2025学年人教版(2024版)七年级数学上册
3.授课时间:1课时
4.教学时数:45分钟
3.随堂测试:通过对学生的随堂测试情况进行分析,发现大部分学生能够掌握代数式的乘法和除法运算规则,并能够运用这些规则解决实际问题。但仍有部分学生在运算过程中出现错误,需要进一步加强对运算规则的掌握。
3.2第2课时代数式的值(教案)
-运算准确性:要求学生在进行代数式求值时,能够准确无误地进行计算,避免常见的运算错误。
2.教学难点
-代数式的抽象理解:学生可能难以理解代数式中字母所代表的抽象意义,如x、y等不具体指代的数值。教师需要通过具体的例子和图形辅助,帮助学生理解代数式的抽象性。
五、教学反思
今天我们在课堂上探讨了代数式的值,整体来说,我觉得这节课的效果还是不错的。学生们对于代数式求值的方法有了基本的掌握,通过实例和练习,他们能够理解并运用代入法来求解代数式。不过,我也注意到了一些需要改进的地方。
在讲授过程中,我发现有些学生对代数式的抽象理解还有一定难度,尤其是当涉及到复合代数式时,他们可能会感到困惑。这让我意识到,我需要花更多的时间去解释和演示这些概念,或许可以通过更多的图形和实际例子来帮助他们理解。
-代数式的复合运算:在代数式中,可能会出现复合运算,如(2x+3)×(x-1),学生在求值时可能会混淆运算顺序或遗漏步骤,这是教学的难点。
-字典型代入的掌握:字典型代入是代数式求值的一个难点,学生需要理解如何将一个已知的值代入到代数式的特定位置。例如,将x=5代入代数式2x^2-3x+1,求得的值是56代数式求值的方法:本节课的核心内容是使学生掌握代数式的求值方法,包括直接代入、字典型代入和整体代入等。例如,对于代数式2x+3,当给出x的值时,学生需要能够直接计算出代数式的值。
-代数式的符号意识:强调代数式中符号的作用,让学生理解不同的符号代表不同的运算关系,如加、减、乘、除等。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
3.2代数式求值(2)
一、情境引入
(3)试预测成年后你的身高.
二、探索发现 温度的换算
生活中,有两种表示温度的方法—— 摄氏和华氏. 如果用c表示摄氏温度,f表示 华氏温度,那么他们之间的关系是
5 c ( f 32) 9
二、探索发现
5 例1:已知 c ( f 32) ,分 9 别求出当 ƒ=68,98.6 时c的值.
七、布置作业
1、必做题 习题3.3:问题解决 第2、3题 数学理解 第1题 2、选做题 习题3.3:联系拓广 第1题
二、探索发现 输入 x
-3
×6
输出
6(x-3)
输入 -3 -2 -1 0 1 2 3
输出 -36 -30 -24
-18 -12 -6 0
三、例题解析
例2:填写下表,并观察下列两个 代数式的值的变化情况:
三、例题解析
(1)随着n的值逐渐变大,两个代数式的值 如何变化? 随着n的值的增大,每个代数式的值都是 增加的趋势。
二、探索发现
1、可先代入后计算,代入步骤必不可少. 2、在将数字代入字母的过程中,有时要适
当地加入运算符号或括号,如数字间相乘关系要
加入乘号,当代入负数时要添上括号,当幂的底
数是分数、负数时,它的底数一定要加括号.
二、探索发现
输入
输出
输入 -3 -2 -1 0 1 2 3
输出 -21 -15 -9 -3 3 9 15
球上自由下落所需的时间. 解:当h = 20米时,由表中的数据估计:
t (地球) ≈ 2 (秒) , t (月球) ≈ 5 (秒)
五、智力闯关
第一关
班里同学按4个同学一组进行分组,做 一个传数游戏. 第一个同学任意报一个数给 第二个同学,第二个同学把这个数加1传给 第三个同学,第三个同学再把听到的数平方 后传给第四个同学,第四个同学把听到的数 减去1报出答案.
3.2 代数式的值(第2课时)课件(共44张PPT) 七年级数学上册(人教版2024)
(1)用代数式表示甲比乙少用的时间;
形的面积是( A )
A. 64
B. 32
C. 40
D. 42
随堂练
3. 一段钢管的外部直径是 d cm,管壁的厚度为 a cm,长度为 l cm,则
这段钢管的底面积为
π
2
2
=1, l =5,则钢管的体积为
-π
2
15π
−
2
cm3.
cm2;若 d =4, a
随堂练
4. [立德树人 红色旅游]某学校组织七、八年级全体同学参观红色教
思考探究
(3)当h=20时,比较物体在地球上和月球上自由下落所需的时间.
物体在地球上时,4.9t²= 20,
∴=±
当t = −
20
10 2
=±
,
4.9
7
10 2
时,不符合题意,舍去,
7
10 2
s;
7
∴物体在地球上自由下落所需的时间为
物体在月球上时,0.8t²= 20,
∴=±
20
= ±5,
0.8
是h=4.9t2,在月球上大约是h=0.8t2.
(1)填写下表:
t
h=4.9t2
h=0.8t2
0
本节课我们来学
2
4
6
习代数式值的应
用,来解决此类
实际问题
8
10
(2)物体在哪儿下落得快?
(3)当h=20时,比较物体在地球上和月球上自由下落所需的时间.
新知探究
代数式值的应用
有些同类事物中的某种数量关系常常可以用公式来描述.
A. 12
B. 24
3.2代数式 第2课时 教案(北师大版七年级上)
(2)七年级女生小红的父亲身高是1.72米,母亲的身高是1.65米;七年级男生小明的父亲的身高是1.70,母亲的身高是1.62,试预测成年以后小明与小红谁个子高?(3)试预测成年后你的身高。
展示教材中的“数值转换机”.要求学生:⑴写出图1.的输出结果;⑵找出图
教
学
过
程
二、例题点拨,实践探究
2.的转换步骤。
讨论“议一议”.在讨论过程中,鼓励学生根据已有的信息作估计,判断变化特征和趋势,并给出适当的说理过程。
三、随堂练习,突破难点
班级同学按4个同学一组进行分组。第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1报出答案。如果第一个同学报给第二个同学的数是5,第四个同学报出的答案是35,这个结果对吗?
四、师生交流,归纳小结
教师启发学生回顾本课学习内容,总结收获,布置作业。
布置作业
练习册代数式(2)
教学后记
本节课内容较为简单,学生掌握良好,课上反应热烈。
课时教案
第周星期第节年月日
课题
3.2代数式(第2课时)
教学
目标
知识与技能:会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法;会利用代数式求值推断代数式所反映的规律;能解释代数式值的实际意义。
过程与方法:经历观察、试验、猜想等数学活动过程,发展合情推理能力,能有条理地、清晰地阐述自己的观点,形成解决问题的一些基本策略。
情感与态度:通过“做数学”,体会数学活动充满着探索性、创造性,发展学生的实践能力与创新精神。
教
3.2.2代数式求值
x 2y2 2
3x 6 y 4
2
=3 x 2 y +4
2
(逆用乘法分配律)
3 2 4 10
挑战你自己
已知 y=ax³ +bx+3,当 x=3时,y= -7,试 求:当 x= -3时,y 的值。 解:当x=3, y = -7,时, 原式= a· 3³ +b· 3+3=-7 27a+3b+3=-7 27a+3b=-10 当 x= -3, 27a+3b=-10时 y = a· (-3)³ +b· (-3)+3 = -27a+(-3b)+3 = -(27a+3b)+3 = -(-10)+3 = 10+3 =13
2
练习: 2 ,则 x 1 4 x 1
16
;
x y 2 (7) 若 x y
x y x y 3 2 2 ,则 x y x y
。
2 2 3 x 6 y 4 的值。 x 2 y 5 若 的值为7,求代数式
解:由已知
x 2 y 5 7 ,则
2 2 当 x=时,求 2x +x的值; 3
中考 试题
例1
当x=-2时,代数式(x+2)2-x(x+1)的值等于(
A. 2 B. -2 C. 4 D. -4
B
).
分析
解
本题中,应将x = -2直接代入求值.
当x=-2时, 原式=(-2+2)2-(-2)(-2& 试题
例2
当x=3时,代数式px3+qx+1的值为2002,则当x=-3时,代数式
北师大版数学七年级上册3.2 第2课时 代数式的求值2教案与反思
3.2 代数式知人者智,自知者明。
《老子》棋辰学校陈慧兰第2课时代数式的求值知识技能目标1.了解代数式的值的概念;2.会求代数式的值.过程性目标1.经历求代数式的值的过程,初步体会到数学中抽象概括的思维方法和事物的特殊性与一般性可以相互转化的辩证关系;2.探索代数式求值的一般方法.教学过程一.创设情境现在,我们请四位同学来做一个传数游戏.游戏规则:第一位同学任意报一个数给第二位同学,第二位同学把这个数加上1传给第三位同学,第三位同学再把听到的数平方后传给第四位同学,第四位同学把听到的数减去1报出答案.活动过程:四位同学站到台前,面向全体学生,再请一位同学担任裁判,面向这四位同学.教师站到黑板前,当听到第一位同学报出数字时马上在黑板上写出答案,然后判断和第四位同学报出的数是否一致(可试3~4个数).师:为什么老师会很快地写出答案呢(根据学生的回答,教师启发学生归纳出计算的代数式:(x+1)2-1)?二.探究归纳1.引导学生得出游戏过程实际是一个计算程序(如下图):当第一个同学报出一个数时,老师就是在用这个具体的数代替了代数式(x+1)2-1中的字母x,把答案很快地算了出来.掌握了这个规律,我们每位同学只要知道第一位同学报出的数都可以很快的得出游戏的结果.2.代数式的值的概念像这样,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果称为代数式的值(value of algebraic expression).通过上面的游戏,我们知道,同一个代数式,由于字母的取值不同,代数式的值会有变化.三.实践应用例1当a=2,b=-1,c =-3时,求下列各代数式的值:(1)b2-4ac;(2)a2+b2+c2+2ab+2bc+2ac;(3)(a+b+c)2.解(1)当a=2,b =-1,c=-3时,b2-4ac=(-1)2-4×2×(-3)=1+24=25.2)当a=2,b=-1,c=-3时,a2+b2+c2+2ab+2bc+2ac=22+(-1)2+(-3)2+2×2×(-1)+2×(-1)×(-3)+2×2×(-3)=4+1+9-4+6-12=4.(3)当a =2,b=-1,c=-3时,(a+b+c)2=(2-1-3)2= 4.注:1.比较(2)、( 3 ) 两题的运算结果,你有什么想法?2.换a = 3 , b=-2 , c=4 再试一试,检验你的猜想是否正确.3.对于这一猜想,我们过学习,将来有能力证实它的正确性.例2某企业去年的年产值为a亿元,今年比去年增长了10% .如果明年还能按这个速度增长,请你预测一下该企业明年的年产值将达到多少亿元?如果去年的年产值是2亿元,那么预计明年的年产值是多少亿元?解由题意可得,今年的年产值为a·(1+10%) 亿元,于是明年的年产值为a·(1+10%)·(1+10%)= 1.21a(元).若去年的年产值为2亿元,则明年的年产值为1.21a=1.21×2 = 2.42(亿元).答:该企业明的年产值将能达到1.21a亿元.由去年的年产值是2亿元,可以预计明年的年产值是2.42亿元.例3当x=-3时,多项式mx3+nx-81的值是10,当x= 3时,求该代数式的值.解当x=-3时,多项式mx3+nx-81=-27m-3n-81, 此时-27m-3n-1=10, 所以27m+3n=-91.则当x=3,mx3+nx-81=( 27m+3n )-81=-91-81=-172.注:本题采用了一种重要的数学思想——“整体思想”.即是考虑问题时不是着眼于他的局部特征,而是把注意力和着眼点放在问题的整体结构上,把一些彼此独,但实质上又相互紧密联系着的量作为整体来处理的思想方法.练习1.按下图所示的程序计算,若开始输入的n值为2,则最后输入的结果是____________.2.根据下列各组x、y的值,分别求出代数式x2+2xy+2y2 与x2-2xy+y2 的【素材积累】海明威和他的“硬汉形象”美国作家海明威是一个极具进取精神的硬汉子。
3.2 第2课时 代数式的求值 精品教案(大赛一等奖作品)
3.2 代数式 第2课时 代数式的求值1. 一个正方体边长为a ,则它的表面积是_______.2. 鸡,兔同笼,有鸡a 只,兔b 只,则共有头_______个,脚_______只.3. 当a =2,b =1,c =-3时,代数式2c b a c-+的值为___________4. 代数式21aa +有意义,则a 应取的值是_______.5. 代数式2x 2+3x+7的值为12,则代数式4x 2+6x -10=___________.6. 已知1x +1y=3,则33x xy yx xy y ++-+的值等于________.7.按这种方式排下去,(1)第5、6排各有多少个座位?(2)第n 排有多少个座位?请说出你的理由.8. (本题8分)某地区夏季高山上的温度从山脚处开始每升高100米降低0.7℃,如果山脚温度是28℃,那么山上500米处的温度为多少?想一想,山上x 米处的温度呢? 9. (本题8分)当a=5,b=-2时,求下列代数式的值: (1)(a+2b )(a -2b)(2)1a +1b; (3)a 2-2b 2 (4)a 2+2ab+b 2.10. (本题12分)20-(x+y )2是有最大值,还是有最小值?这个值是多少?这时x 与y 的关系如何?专题14 相交线与平行线、三角形及尺规作图学校:___________姓名:___________班级:___________一、选择题:(共4个小题)1.【2015凉山州】如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52° B.38° C.42° D.60°【答案】A.【解析】试题分析:如图:∵∠3=∠2=38°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.【考点定位】平行线的性质.2.【2015德阳】如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠D CB=()A.150° B.160° C.130° D.60°【答案】A.【解析】【考点定位】1.等腰三角形的性质;2.平行线的性质;3.多边形内角与外角.3.【2015德阳】如图,在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,若点A 关于CD 所在直线的对称点E 恰好为AB 的中点,则∠B 的度数是( )A.60° B.45° C.30° D.75° 【答案】C. 【解析】试题分析:∵在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,点A 关于CD 所在直线的对称点E 恰好为AB 的中点,∴∠CED =∠A ,CE =BE =AE ,∴∠ECA =∠A ,∠B =∠BCE ,∴△ACE 是等边三角形,∴∠CED =60°,∴∠B =12∠CED =30°.故选C. 【考点定位】1.直角三角形斜边上的中线;2.轴对称的性质.4.【2015眉山】如图,在Rt △ABC 中,∠B =900,∠A =300,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD .若BD =l ,则AC 的长是( )A .32B .2C .34D .4【答案】A. 【解析】【考点定位】1.含30度角的直角三角形;2.线段垂直平分线的性质;3.勾股定理. 二、填空题:(共4个小题)5.【2015绵阳】如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .【答案】9.5°.【解析】试题分析:∵AB∥CD,∠CDE=119°,∴∠AED=180°﹣119°=61°,∠DEB=119°.∵GF交∠DEB的平分线EF于点F,∴∠GEF=12×119°=59.5°,∴∠GEF=61°+59.5°=120.5°.∵∠AGF=130°,∴∠F=∠AGF﹣∠GEF=130°﹣120.5°=9.5°.故答案为:9.5°.【考点定位】平行线的性质.6.【2015乐山】如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC= °.【答案】15.【解析】试题分析:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=12(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.【考点定位】1.线段垂直平分线的性质;2.等腰三角形的性质.7.【2015巴中】如图,在△ABC中,AB=5,AC=3,AD、AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连结DH,则线段DH的长为.【答案】1.【解析】【考点定位】1.三角形中位线定理;2.等腰三角形的判定与性质.8.【2015攀枝花】如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE +DE的最小值为.【解析】试题分析:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D ,根据两点之间线段最短可知B′D就是BE+ED的最小值,∵B、B′关于AC的对称,∴AC、BB ′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC是边长为2,∵D为BC的中点,∴AD⊥BC,∴AD=BD=CD=1,BB′=2AD=B′G⊥BC的延长线于G,∴B′G=AD在Rt△B′BG中,BG DG=BG﹣BD=3﹣1=2,在Rt△B′DG中,BD BE+ED【考点定位】1.轴对称-最短路线问题;2.等边三角形的性质;3.最值问题;4.综合题.三、解答题:(共2个小题)9.【2015广安】手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)【答案】答案见试题解析.【解析】(2)正方形A BCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;试题解析:根据分析,可得:.(1)第一种情况下,分割后得到的最小等腰直角三角形是△AEH、△BEF、△CFG、△DHG,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2);(2)第二种情况下,分割后得到的最小等腰直角三角形是△AEO、△BEO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2);(3)第三种情况下,分割后得到的最小等腰直角三角形是△AHO、△DHO、△BFO、△CFO ,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2);(4)第四种情况下,分割后得到的最小等腰直角三角形是△AEI、△OEI,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2÷2=2×2÷2÷2=1(cm2).【考点定位】1.作图—应用与设计作图;2.操作型.10.【2015重庆市】如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,说明理由.【答案】(1)AB =BD = 【解析】试题解析:(1)∵∠ACB =90°,∠BAC =60°,∴∠ABC =30°,∴AB =2AC =2×∵AD ⊥AB ,∠CAB =60°,∴∠DAC =30°,∵AH =12AC =,∴AD =cos30AH=2,∴BD =(2)如图1,连接AF ,∵AE 是∠BAC 角平分线,∴∠HAE =30°,∴∠ADE =∠DAH =30°,在△DAE 与△ADH 中,∵∠AHD =∠DEA =90°,∠ADE =∠DAH ,AD =A D ,∴△DAE ≌△ADH ,∴DH =AE,∵点F 是BD 的中点,∴DF =AF ,∵∠EAF =∠EAB ﹣∠FAB =30°﹣∠FAB ,∠FDH =∠FDA ﹣∠HDA =∠FDA ﹣60°=(90°﹣∠FBA )﹣60°=30°﹣∠FBA ,∴∠EAF =∠FDH ,在△DHF 与△AEF中,∵DH =AE ,∠HDF =∠EAH ,DF =AF ,∴△DHF ≌△AEF ,∴HF =EF ;(3)如图2,取A B 的中点M ,连接CM ,FM ,在R t △ADE 中,AD =2AE ,∵DF =BF ,AM =BM ,∴AD =2FM ,∴FM =AE ,∵∠ABC =30°,∴AC =CM =12AB =AM ,∵∠CAE =12∠CAB =30°∠CMF =∠AMF ﹣∠AMC =30°,在△ACE 与△MCF 中,∵AC =CM ,∠CAE =∠CMF ,AE =MF ,∴△ACE ≌△MCF ,∴CE =CF ,∠ACE =∠MCF ,∵∠ACM =60°,∴∠ECF =60°,∴△CEF 是等边三角形.【考点定位】1.全等三角形的判定与性质;2.等边三角形的判定与性质;3.三角形中位线定理;4.探究型.。
3.2代数式第2课时代数式求值(教案)
-代数式求值的步骤:明确求解过程中每一步的操作要领,如先进行括号内的运算,再进行乘除运算,最后进行加减运算。
-生活实例的引入:结合实际情境,让学生体会代数式求值在生活中的应用,如购物打折、行程计算等。
举例:在讲解代入法时,以代数式2x+3为例,当x=4时,代数式的值是多少?强调将x=4代入式子中,得到2*4+3=11。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了代数式求值的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对代数式求值的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解代数式求值的基本概念。代数式求值是指将具体的数值代入含有变量的代数式中,计算出代数式的结果。它是解决生活中各种计算问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。假设你有3个苹果,每个苹果的价格是5元,我们要计算你买苹果一共花了多少钱。这个案例展示了代数式求值在实际中的应用,以及它如何帮助我们解决问题。
4.培养学生的数学应用意识,将代数式求值应用于生活实际问题,体会数学在生活中的价值;
5.培养学生的团队合作意识,通过小组讨论与合作,共同解决代数式求值问题,提高沟通与协作能力。
三、教学难点与重点
1.教学重点
-代数式求值的基本概念:强调代数式求值的意义和实际应用,使学生理解代数式的值是随着其中变量的取值而变化的。
3.2.2 代数式的求值上课课件
整体带入法 例2:已知 x2 2x 3 0, 则 2x2 4x 的值是多少? 解: 由 x2 2x 3 0, 可得 x2 2x 3. 2x2 4x (2 x2 2x) 将 x2 2x 3 代入上式: 2x2 4x 23 6.
第三章 整式及其加减
2 代数式
第2课时 代数式的求值
学习目标
1.会求代数式的值并解释代数式值的实际意义. (重点) 2.利用代数式求值推断代数式所反应的规律. (难点)
据报纸记载,一位医生研究得出由父母身高预测子女成年后身 高的公式:儿子身高是由父母身高的和的一半,再乘以1.08;女儿 的身高是父亲身高的0.923倍加上母亲身高的和再除以2.
3.已知a+b=5,ab=6 ,则ab-(a+b)=__1_.
4.如图所示是一数值转换机,若输入的 x为-5,则输出的结果为___4_9___.
5.当x=-3,y=2时,求下列代数式的值:
(1) x2 y2 ; (2)( x y)2 ;
解: 当x=-3,y=2时
(1)x2 y2 (3)2 22 9 4 5. (2)(x y)2 (3 2)2 (5)2 25.
(1)已知父亲身高是a米,母亲身高是b米,试用代数式表示儿子 和女儿的身高;
(2)五年级女生小红的父亲身高是1.75米,母亲的身高是1.62米; 六年级男生小明的父亲的身高是1.70,母亲的身高是1.62,试预测 成年以后小明与小红谁个子高?
求代数式的值
数值转换机
输入x
输入x
北师大版七年级上册数学 3.2 第2课时 代数式的求值 优秀教案
第2课时 代数式的求值1.会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法.2.会利用代数式求值推断代数式反映的规律.3.能解释代数式求值的实际应用.一、情境导入谁说数学学不好,这不,先前数学成绩很差的小胡,经过不断努力,不但成绩直线上升,而且现在还能设计程序计算呢!如图就是小胡设计的一个程序.当输入x 的值为3时,你能求出输出的值吗?二、合作探究探究点一:直接代入法求代数式的值当a =12,b =3时,求代数式2a 2+6b -3ab 的值. 解析:直接将a =12,b =3代入2a 2+6b -3ab 中即可求得. 解:原式=2×(12)2+6×3-3×12×3=12+18-92=14. 方法总结:(1)代入时要“对号入座”,避免代错字母;(2)代入后要恢复省略的乘号;(3)分数的立方、平方运算,要用括号括起来.探究点二:利用程序图求代数式的值有一数值转换器,原理如图所示.若开始输入的x 的值是5,则发现第1次输出的结果是8,第2次输出的结果是4,…,则第2016次输出的结果是 W.解析:按如图所示的程序,当输入x =5时,第1次输出5+3=8;当输入x =8时,第2次输出12×8=4;当输入x =4时,第3次输出12×4=2;当输入x =2时,第4次输出12×2=1;当输入x =1时,第5次输出1+3=4;则第6次输出12×4=2,第7次输出12×2=1,……,不难看出,从第2次开始,其运算结果按4,2,1三个数为一周期循环出现.因为(2016-1)÷3=671…2,所以第2016次输出的结果为2.方法总结:这种程序运算的特点是程序有多个分支,要先对输入的数据进行判断,再选择适当的某个分支按照指明的程序进行运算.探究点三:整体代入法求值(湘西州中考)已知x -2y =3,则代数式6-2x +4y 的值为( )A.0B.-1C.-3D.3解析:此题无法直接求出x 、y 的值,这时,我们就要考虑特殊的求值方法.根据已知x -2y =3及所求6-2x +4y ,只要把6-2x +4y 变形后,再整体代入即可求解.因为x -2y =3,所以6-2x +4y =6-2(x -2y )=6-2×3=0.故选A.方法总结:整体代入法是数学中一种重要的方法,同学们应加以关注.探究点四:代数式在实际问题中的应用如图所示,某水渠的横断面为梯形,如果水渠的上口宽为a m ,水渠的下口宽和深都为b m.(1)请你用代数式表示水渠的横断面面积;(2)计算当a =3,b =1时,水渠的横断面面积.解析:(1)根据梯形面积=12(上底+下底)×高,即可用含有a 、b 的代数式表示水渠横断面面积;(2)把a =3、b =1带入到(1)中求出的代数式中,其结果即为水渠的横断面面积.解:(1)∵梯形面积=12(上底+下底)×高,∴水渠的横断面面积为:12(a +b )b (m 2); (2)当a =3,b =1时水渠的横断面面积为12(3+1)×1=2(m 2). 方法总结:解答本题时需搞清下列几个问题:(1)题目中给出的是什么图形?(2)这种图形的面积公式是什么?(3)根据公式求图形的面积需要知道哪几个量?(4)这些量是否已知或能求出?搞清楚了这些问题,求解就水到渠成.三、板书设计教学过程中,应通过活动使学生感知代数式运算在判断和推理上的意义,增强学生学习数学的兴趣,培养学生积极的情感和态度,为进一步学习奠定坚实的基础.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 代数式
第2课时代数式的求值
知识技能目标
1.了解代数式的值的概念;
2.会求代数式的值.
过程性目标
1.经历求代数式的值的过程,初步体会到数学中抽象概括的思维方法和事物的特殊性与一般性可以相互转化的辩证关系;
2.探索代数式求值的一般方法.
教学过程
一.创设情境
现在,我们请四位同学来做一个传数游戏.
游戏规则:第一位同学任意报一个数给第二位同学,第二位同学把这个数加上1传给第三位同学,第三位同学再把听到的数平方后传给第四位同学,第四位同学把听到的数减去1报出答案.
活动过程:四位同学站到台前,面向全体学生,再请一位同学担任裁判,面向这四位同学.教师站到黑板前,当听到第一位同学报出数字时马上在黑板上写出答案,然后判断和第四位同学报出的数是否一致(可试3~4个数).师:为什么老师会很快地写出答案呢(根据学生的回答,教师启发学生归纳出计算的代数式:(x+1)2-1)?
二.探究归纳
1.引导学生得出游戏过程实际是一个计算程序(如下图):
当第一个同学报出一个数时,老师就是在用这个具体的数代替了代数式(x +1)2-1中的字母x,把答案很快地算了出来.掌握了这个规律,我们每位同学只要知道第一位同学报出的数都可以很快的得出游戏的结果.
2.代数式的值的概念
像这样,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果称为代数式的值(value of algebraic expression).
通过上面的游戏,我们知道,同一个代数式,由于字母的取值不同,代数式的值会有变化.
三.实践应用
例1当a=2,b=-1,c =-3时,求下列各代数式的值:
(1)b2-4ac;
(2)a2+b2+c2+2ab+2bc+2ac;
(3)(a+b+c)2.
解(1)当a=2,b =-1,c=-3时,
b2-4ac=(-1)2-4×2×(-3)
=1+24
=25.
(2)当a=2,b=-1,c=-3时,
a2+b2+c2+2ab+2bc+2ac
=22+(-1)2+(-3)2+2×2×(-1)+2×(-1)×(-3)+2×2×(-3)
=4+1+9-4+6-12
=4.
(3)当a =2,b=-1,c=-3时,
(a+b+c)2
=(2-1-3)2
=4.
注:1.比较(2)、( 3 ) 两题的运算结果,你有什么想法?
2.换a =3 , b=-2 , c=4 再试一试,检验你的猜想是否正确.3.对于这一猜想,我们通过学习,将来有能力证实它的正确性.
例2某企业去年的年产值为a亿元,今年比去年增长了10% .如果明年还能按这个速度增长,请你预测一下该企业明年的年产值将达到多少亿元?如果去年的年产值是2亿元,那么预计明年的年产值是多少亿元?
解由题意可得,今年的年产值为a·(1+10%) 亿元,于是明年的年产值为a·(1+10%)·(1+10%)
=1.21a(亿元).
若去年的年产值为2亿元,则明年的年产值为
1.21a=1.21×2 =2.42(亿元).
答:该企业明年的年产值将能达到1.21a亿元.由去年的年产值是2亿元,可以预计明年的年产值是2.42亿元.
例3当x=-3时,多项式mx3+nx-81的值是10,当x=3时,求该代数式的值.
解当x=-3时,多项式mx3+nx-81=-27m-3n-81,
此时-27m-3n-81=10, 所以27m+3n=-91.
则当x=3,mx3+nx-81
=( 27m+3n )-81
=-91-81
=-172.
注:本题采用了一种重要的数学思想——“整体思想”.即是考虑问题时不是着眼于他的局部特征,而是把注意力和着眼点放在问题的整体结构上,把一些彼此独立,但实质上又相互紧密联系着的量作为整体来处理的思想方法.练习
1.按下图所示的程序计算,若开始输入的n值为2,则最后输入的结果是____________.
2.根据下列各组x、y的值,分别求出代数式x2+2xy+2y2 与x2-2xy+y2 的。