高中数学苏教版选修2-1学业分层测评:第2章 圆锥曲线与方程 2.2.1含解析

合集下载

2018版高中数学苏教版选修2-1学案:第二章 圆锥曲线与方程 2.1 圆锥曲线 Word版含答案

2018版高中数学苏教版选修2-1学案:第二章 圆锥曲线与方程 2.1 圆锥曲线 Word版含答案

[学习目标] 1.了解圆锥曲线的实际背景.2.经历从具体情境中抽象出圆锥曲线的过程.3.掌握椭圆、抛物线的定义和几何图形.4.了解双曲线的定义和几何图形.知识点一椭圆的定义平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点.两焦点间的距离叫做椭圆的焦距.知识点二双曲线的定义平面内到两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.知识点三抛物线的定义平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l叫做抛物线的准线.思考1.若动点M到两个定点F1、F2距离之和满足MF1+MF2=F1F2,则动点M轨迹是椭圆吗?答案不是,是线段F1F2.2.若动点M到两个定点F1、F2距离之差满足MF1-MF2=2a(2a<F1F2),则动点M轨迹是什么?答案是双曲线一支.题型一椭圆定义的应用例1在△ABC中,B(-6,0),C(0,8),且sin B,sin A,sin C成等差数列.(1)顶点A的轨迹是什么?(2)指出轨迹的焦点和焦距.解(1)由sin B,sin A,sin C成等差数列,得sin B+sin C=2sin A.由正弦定理可得AB+AC=2BC.又BC =10,所以AB +AC =20,且20>BC ,所以点A 的轨迹是椭圆(除去直线BC 与椭圆的交点).(2)椭圆的焦点为B 、C ,焦距为10.反思与感悟 本题求解的关键是把已知条件转化为三角形边的关系,找到点A 满足的条件.注意A 、B 、C 三点要构成三角形,轨迹要除去两点.跟踪训练1 已知圆A :(x +3)2+y 2=100,圆A 内一定点B (3,0),动圆M 过B 点且与圆A 内切,求证:圆心M 的轨迹是椭圆.证明 设MB =r .∵圆M 与圆A 内切,圆A 的半径为10,∴两圆的圆心距MA =10-r ,即MA +MB =10(大于AB ).∴圆心M 的轨迹是以A 、B 两点为焦点的椭圆.题型二 双曲线定义的应用例2 已知圆C 1:(x +2)2+y 2=1和圆C 2:(x -2)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹.解 由已知得,圆C 1的圆心C 1(-2,0),半径r 1=1,圆C 2的圆心C 2(2,0),半径r 2=3.设动圆M 的半径为r .因为动圆M 与圆C 1相外切,所以MC 1=r +1.①又因为动圆M 与圆C 2相外切,所以MC 2=r +3.②②-①得MC 2-MC 1=2,且2<C 1C 2=4.所以动圆圆心M 的轨迹为双曲线的左支,且除去点(-1,0).反思与感悟 设动圆半径为r ,利用动圆M 同时与圆C 1及圆C 2相外切得两个等式,相减后消去r ,得到点M 的关系式.注意到MC 2-MC 1=2中没有绝对值,所以轨迹是双曲线的一支,又圆C 1与圆C 2相切于点(-1,0),所以M 的轨迹不过(-1,0).跟踪训练2 在△ABC 中,BC 固定,顶点A 移动.设BC =m ,且|sin C -sin B |=12sin A ,则顶点A 的轨迹是什么?。

苏教版高中数学选修2-1第2章 圆锥曲线与方程.docx

苏教版高中数学选修2-1第2章 圆锥曲线与方程.docx

第2章 圆锥曲线与方程§2.1 圆锥曲线 课时目标 1.理解三种圆锥曲线的定义.2.能根据圆锥曲线的定义判断轨迹的形状.1.圆锥面可看成一条直线绕着与它相交的另一条直线l(两条直线不互相垂直)旋转一周所形成的曲面.其中直线l 叫做圆锥面的轴.2.圆锥面的截线的形状在两个对顶的圆锥面中,若圆锥面的母线与轴所成的角为θ,不过圆锥顶点的截面与轴所成的角为α,则α=π2时,截线的形状是圆;当θ<α<π2时,截线的形状是椭圆;0≤α≤θ时,截线的形状是双曲线;当α=θ时,截线的形状是抛物线.3.椭圆的定义平面内到______________________________等于常数(大于F 1F 2)的点的轨迹叫做椭圆,两个定点F 1,F 2叫做椭圆的________.两焦点间的距离叫做椭圆的________.4.双曲线的定义平面内到____________________________________________等于常数(小于F 1F 2的正数)的点的轨迹叫做双曲线,两个定点F 1,F 2叫做双曲线的________,两焦点间的距离叫做双曲线的________.5.抛物线的定义平面内__________________________________________________________的轨迹叫做抛物线,________叫做抛物线的焦点,__________叫做抛物线的准线.6.椭圆、双曲线、抛物线统称为____________.一、填空题1.已知A ⎝⎛⎭⎫-12,0,B 是圆F :⎝⎛⎭⎫x -122+y 2=4 (F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹为________.2.方程5(x +2)2+(y -1)2=|3x +4y -12|所表示的曲线是________.3.F 1、F 2是椭圆的两个焦点,M 是椭圆上任一点,从焦点F 2向△F 1MF 2顶点M 的外角平分线引垂线,垂足为P ,延长F 2P 交F 1M 的延长线于G ,则P 点的轨迹为__________(写出所有正确的序号).①圆;②椭圆;③双曲线;④抛物线.4.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ′,则线段PP ′的中点M 的轨迹是____________.5.一圆形纸片的圆心为O ,点Q 是圆内异于O 点的一定点,点A 是圆周上一点,把纸片折叠使点A 与点Q 重合,然后抹平纸片,折痕CD 与OA 交于P 点.当点A 运动时点P 的轨迹是________.6.若点P 到F(4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹表示的曲线是________.7.已知两点F 1(-5,0),F 2(5,0),到它们的距离的差的绝对值是6的点M 的轨迹是__________.8.一动圆与⊙C 1:x 2+y 2=1外切,与⊙C 2:x 2+y 2-8x +12=0内切,则动圆圆心的轨迹为______________.二、解答题9.已知圆A :(x +3)2+y 2=100,圆A 内一定点B(3,0),动圆P 过B 点且与圆A 内切,求证:圆心P 的轨迹是椭圆.10.已知△ABC 中,BC =2,且sin B -sin C =12sin A ,求△ABC 的顶点A 的轨迹.能力提升11.如图所示,在正方体ABCD—A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是________(写出正确的所有序号).①直线;②圆;③双曲线;④抛物线.12.如图所示,已知点P为圆R:(x+c)2+y2=4a2上一动点,Q(c,0)为定点(c>a>0,为常数),O为坐标原点,求线段PQ的垂直平分线与直线RP的交点M的轨迹.1.椭圆定义中,常数>F 1F 2不可忽视,若常数<F 1F 2,则这样的点不存在;若常数=F 1F 2,则动点的轨迹是线段F 1F 2.2.双曲线定义中,若常数>F 1F 2,则这样的点不存在;若常数=F 1F 2,则动点的轨迹是以F 1、F 2为端点的两条射线.3.抛物线定义中F ∉l ,若F ∈l ,则点的轨迹是经过点F ,且垂直于l 的直线. 第2章 圆锥曲线与方程§2.1 圆锥曲线知识梳理3.两个定点F 1,F 2的距离的和 焦点 焦距4.两个定点F 1,F 2距离的差的绝对值 焦点 焦距5.到一个定点F 和一条定直线l(F 不在l 上)的距离相等的点 定点F 定直线l6.圆锥曲线作业设计1.椭圆解析 由已知,得PA =PB ,PF +BP =2,∴PA +PF =2,且PA +PF>AF ,即动点P 的轨迹是以A 、F 为焦点的椭圆.2.抛物线解析 由题意知(x +2)2+(y -1)2=|3x +4y -12|5. 左侧表示(x ,y)到定点(-2,1)的距离,右侧表示(x ,y)到定直线3x +4y -12=0的距离,故动点轨迹为抛物线.3.①解析∵∠F 2MP =∠GMP ,且F 2P ⊥MP ,∴F 2P =GP ,MG =MF 2.取F 1F 2中点O ,连结OP ,则OP 为△GF 1F 2的中位线.∴OP =12F 1G =12(F 1M +MG) =12(F 1M +MF 2). 又M 在椭圆上,∴MF 1+MF 2=常数,设常数为2a ,则OP =a ,即P 在以F 1F 2的中点为圆心,a 为半径的圆上.4.椭圆5.椭圆6.抛物线解析 由题意知P 到F 的距离与到直线x =-4的距离相等,所以点P 的轨迹是抛物线.7.双曲线8.双曲线的一支9.证明 设PB =r.∵圆P 与圆A 内切,圆A 的半径为10,∴两圆的圆心距PA =10-r ,即PA +PB =10(大于AB).∴点P 的轨迹是以A 、B 两点为焦点的椭圆.10.解 由正弦定理得:sin A =a 2R ,sin B =b 2R ,sin C =c 2R. 代入sin B -sin C =12sin A 得:b -c =12a ,即b -c =1, 即AC -AB =1 (<BC)∴A 的轨迹是以B 、C 为焦点且靠近B 的双曲线的一支,并去掉与BC 的交点.11.④解析 ∵D 1C 1⊥面BCC 1B 1,C 1P ⊂平面BCC 1B 1,∴D 1C 1⊥C 1P ,∴点P 到直线C 1D 1的距离即为C 1P 的长度,由题意知,点P 到点C 1的距离与点P 到直线BC 的距离相等,这恰符合抛物线的定义.12.解 由题意,得MP =MQ ,RP =2a.MR -MQ =MR -MP =RP =2a<RQ =2c.∴点M 的轨迹是以R 、Q 为两焦点,实轴长为2a 的双曲线右支.。

数学选修2-1苏教版:第2章 圆锥曲线与方程 2.2.2(一)

数学选修2-1苏教版:第2章 圆锥曲线与方程 2.2.2(一)

2.2.2 椭圆的几何性质(一)学习目标 1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形.2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质、图形.知识点一 椭圆的范围、对称性和顶点坐标思考 观察椭圆x 2a 2+y 2b 2=1(a >b >0)的形状(如图),你能从图中看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?答案 (1)范围:-a ≤x ≤a ,-b ≤y ≤b ; (2)对称性:椭圆关于x 轴、y 轴、原点都对称;(3)特殊点:顶点A 1(-a,0),A 2(a,0),B 1(0,-b ),B 2(0,b ). 梳理 椭圆的几何性质知识点二 椭圆的离心率 思考 如何刻画椭圆的扁圆程度?答案 用离心率刻画扁圆程度,e 越接近于0,椭圆越接近于圆,反之,越扁. 梳理 (1)焦距与长轴长的比ca 称为椭圆的离心率.记为:e =ca.(2)对于x 2a 2+y 2b 2=1,b 越小,对应的椭圆越扁,反之,e 越接近于0,c 就越接近于0,从而b越接近于a ,这时椭圆越接近于圆,于是,当且仅当a =b 时,c =0,两焦点重合,图形变成圆,方程变为x 2+y 2=a 2.(如图)1.椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴长是a .(×)2.椭圆的离心率e 越大,椭圆就越圆.(×)3.若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x 225+y 216=1.(×)4.设F 为椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点,M 为其上任一点,则MF 的最大值为a +c .(c为椭圆的半焦距)(√)类型一 由椭圆方程研究其几何性质例1 求椭圆9x 2+16y 2=144的长轴长、短轴长、离心率、焦点和顶点坐标. 解 已知方程化成标准方程为x 216+y 29=1,于是a =4,b =3,c =16-9=7,∴椭圆的长轴长和短轴长分别是2a =8和2b =6, 离心率e =c a =74,又知焦点在x 轴上,∴两个焦点坐标分别是(-7,0)和(7,0),四个顶点坐标分别是(-4,0),(4,0),(0,-3)和(0,3). 引申探究本例中若把椭圆方程改为“9x 2+16y 2=1”,求其长轴长、短轴长、离心率、焦点和顶点坐标.解 由已知得椭圆标准方程为x 219+y 2116=1,于是a =13,b =14,c =19-116=712. ∴长轴长2a =23,短轴长2b =12,离心率e =c a =74.焦点坐标为⎝⎛⎭⎫-712,0和⎝⎛⎭⎫712,0, 顶点坐标为⎝⎛⎭⎫±13,0,⎝⎛⎭⎫0,±14. 反思与感悟 解决由椭圆方程研究其几何性质的问题的方法是将所给方程先化为标准形式,然后根据方程判断出椭圆的焦点在哪个坐标轴上,再利用a ,b ,c 之间的关系和定义,求椭圆的基本量.跟踪训练1 求椭圆9x 2+y 2=81的长轴长、短轴长、焦点坐标、顶点坐标和离心率. 解 椭圆的标准方程为x 29+y 281=1,则a =9,b =3,c =a 2-b 2=62,长轴长2a =18,短轴长2b =6,焦点坐标为(0,62),(0,-62),顶点坐标为(0,9),(0,-9),(3,0),(-3,0). 离心率e =c a =223.类型二 椭圆几何性质的简单应用命题角度1 依据椭圆的几何性质求标准方程 例2 求满足下列各条件的椭圆的标准方程.(1)已知椭圆的中心在原点,焦点在y 轴上,其离心率为12,焦距为8;(2)已知椭圆的离心率为e =23,短轴长为8 5.解 (1)由题意知,2c =8,∴c =4, ∴e =c a =4a =12,∴a =8,从而b 2=a 2-c 2=48,∴椭圆的标准方程是y 264+x 248=1.(2)由e =c a =23得c =23a ,又2b =85,a 2=b 2+c 2,所以a 2=144,b 2=80, 所以椭圆的标准方程为x 2144+y 280=1或x 280+y 2144=1.反思与感悟 依据椭圆的几何性质求标准方程问题应由所给的几何性质充分找出a ,b ,c 所应满足的关系式,进而求出a ,b ,在求解时,需注意椭圆的焦点位置. 跟踪训练2 根据下列条件,求中心在原点,对称轴在坐标轴上的椭圆方程: (1)长轴长是短轴长的2倍,且过点(2,-6);(2)焦点在x 轴上,一个焦点与短轴的两端点连线互相垂直,且焦距为12. 解 (1)当焦点在x 轴上时,设椭圆方程为x 2a 2+y 2b 2=1(a >b >0).依题意有⎩⎪⎨⎪⎧2b =a ,4a 2+36b2=1,解得⎩⎨⎧a =237,b =37,∴椭圆方程为x 2148+y 237=1.同样地可求出当焦点在y 轴上时, 椭圆方程为x 213+y 252=1.故所求椭圆的方程为x 2148+y 237=1或x 213+y 252=1.(2)依题意有⎩⎪⎨⎪⎧b =c ,2c =12,∴b =c =6,∴a 2=b 2+c 2=72,∴所求的椭圆方程为x 272+y 236=1.命题角度2 最值问题例3 椭圆的中心是坐标原点,长轴在x 轴上,离心率e =32,已知点P ⎝⎛⎭⎫0,32到椭圆上的点的最远距离是7,求这个椭圆的方程. 解 设所求椭圆方程为x 2a 2+y 2b 2=1(a >b >0).∵b a=a 2-c 2a 2=1-e 2=12,∴a =2b . ∴椭圆方程为x 24b 2+y 2b2=1.设椭圆上点M (x ,y )到点P ⎝⎛⎭⎫0,32的距离为d , 则d 2=x 2+⎝⎛⎭⎫y -322=4b 2⎝⎛⎭⎫1-y 2b 2+y 2-3y +94=-3⎝⎛⎭⎫y +122+4b 2+3, 令f (y )=-3⎝⎛⎭⎫y +122+4b 2+3. 当-b ≤-12,即b ≥12时,d 2max=f ⎝⎛⎭⎫-12=4b 2+3=7, 解得b =1,∴椭圆方程为x 24+y 2=1.当-12<-b ,即0<b <12时,d 2max =f (-b )=7, 解得b =-32±7,与0<b <12矛盾.综上所述,所求椭圆方程为x 24+y 2=1.反思与感悟 求解椭圆的最值问题的基本方法有两种(1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.解题的关键是能够准确分析出最值问题所隐含的几何意义,并能借助相应曲线的定义及对称知识求解.(2)代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立起目标函数,再根据函数式的特征选用适当的方法求解目标函数的最值.常用方法有配方法、判别式法、重要不等式法及函数的单调性法等.跟踪训练3 已知点F 1,F 2是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是________. 答案 2解析 设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0), PF 2→=(1-x 0,-y 0),∴PF 1→+PF 2→=(-2x 0,-2y 0), ∴|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1, ∴当y 20=1时,|PF 1→+PF 2→|取最小值2.类型三 求椭圆的离心率例4 如图所示,F 1,F 2分别为椭圆的左,右焦点,椭圆上的点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率.解 设椭圆的长半轴长、短半轴长、半焦距长分别为a ,b ,c . 则焦点为F 1(-c,0),F 2(c,0),M 点的坐标为⎝⎛⎭⎫c ,23b , 且△MF 1F 2为直角三角形.在Rt △MF 1F 2中,F 1F 22+MF 22=MF 21,即4c 2+49b 2=MF 21. 而MF 1+MF 2=4c 2+49b 2+23b =2a ,整理得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a .所以b 2a 2=49.所以e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59,所以e =53.反思与感悟 求椭圆离心率的方法(1)直接求出a 和c ,再求e =ca,也可利用e =1-b 2a2求解. (2)若a 和c 不能直接求出,则看是否可利用条件得到a 和c 的齐次等式关系,然后整理成ca 的形式,并将其视为整体,就变成了关于离心率e 的方程,进而求解.跟踪训练4 已知椭圆C 以坐标轴为对称轴,长轴长是短轴长的5倍,且经过点A (5,0),求椭圆C 的离心率. 解 若焦点在x 轴上,得 ⎩⎪⎨⎪⎧2a =5×2b ,25a 2+0b2=1,解得⎩⎪⎨⎪⎧a =5,b =1,∴c =a 2-b 2=52-12=26, ∴e =c a =265;若焦点在y 轴上,得⎩⎪⎨⎪⎧2a =5×2b ,0a 2+25b2=1,得⎩⎪⎨⎪⎧a =25,b =5,∴c =a 2-b 2=252-52=106, ∴e =c a =10625=265.故椭圆C 的离心率为265.1.已知椭圆的方程为2x 2+3y 2=m (m >0),则此椭圆的离心率为________. 答案33解析 由2x 2+3y 2=m (m >0),得x 2m 2+y 2m 3=1,∴c 2=m 2-m 3=m 6,∴e 2=13,又∵0<e <1,∴e =33.2.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为2的椭圆的标准方程是________. 答案 x 2+y 26=1解析 由已知得c =5,b =1,所以a 2=b 2+c 2=6, 又椭圆的焦点在y 轴上, 故椭圆的标准方程为y 26+x 2=1.3.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是________. 答案 35解析 由题意有,2a +2c =2(2b ),即a +c =2b , 又c 2=a 2-b 2,消去b 整理得5c 2=3a 2-2ac , 即5e 2+2e -3=0,又∵0<e <1,∴e =35或e =-1(舍去).4.若焦点在y 轴上的椭圆x 2m +y 22=1的离心率为12,则m 的值为________.答案 32解析 ∵焦点在y 轴上,∴0<m <2, ∴a =2,b =m ,∴c =2-m , 又e =c a =12,∴2-m 2=12,解得m =32.5.已知点(m ,n )在椭圆8x 2+3y 2=24上,则2m +4的取值范围是________________. 答案 [4-23,4+23]解析 因为点(m ,n )在椭圆8x 2+3y 2=24上,即在椭圆x 23+y 28=1上,所以点(m ,n )满足椭圆的范围|x |≤3,|y |≤22,因此|m |≤3,即-3≤m ≤3,所以2m +4∈[4-23,4+23].1.椭圆的顶点、焦点、中心坐标等几何性质与坐标有关,它们反映了椭圆在平面内的位置. 2.椭圆的长轴长、短轴长、焦距、离心率等几何性质与坐标无关,它们反映了椭圆的形状. 3.讨论与坐标有关的几何性质应先由焦点确定出椭圆的类型,不能确定的应分焦点在x 轴上、y 轴上进行讨论.4.与椭圆x 2a 2+y 2b 2=1有相同焦点的椭圆可设为x 2a 2+m +y 2b 2+m=1.一、填空题1.椭圆4x 2+49y 2=196的长轴长、短轴长、离心率依次是________. 答案 14,4,357解析 先将椭圆方程化为标准形式,得x 249+y 24=1,其中b =2,a =7,c =3 5.2.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的标准方程为________. 答案 x 236+y 216=1解析 依题意得c =25,a +b =10, 又a 2=b 2+c 2从而解得a =6,b =4.3.若椭圆的焦距、短轴长、长轴长构成一个等比数列,则椭圆的离心率为________. 答案5-12解析 依题意得,4b 2=4ac ,∴b 2a 2=ca,即1-e 2=e .∴e 2+e -1=0,∴e =5-12(舍去负值). 4.已知椭圆的方程x 2a 2+y 2b 2=1(a >b >0)的焦点分别为F 1,F 2,F 1F 2=2,离心率e =12,则椭圆的标准方程为________________. 答案 x 24+y 23=1解析 因为F 1F 2=2,离心率e =12,所以c =1,a =2,所以b 2=3,椭圆方程为x 24+y 23=1.5.中心在原点,焦点在坐标轴上,离心率为32,且过点(2,0)的椭圆的标准方程是________. 答案 x 24+y 2=1或x 24+y 216=1解析 若焦点在x 轴上,则a =2. 又e =32,∴c = 3.∴b 2=a 2-c 2=1, ∴方程为x 24+y 2=1.若焦点在y 轴上,则b =2.又e =32,∴b 2a 2=1-34=14,∴a 2=4b 2=16,∴方程为x 24+y 216=1.6.椭圆x 212+y 23=1的左焦点为F 1,点P 在椭圆上,若线段PF 1的中点M 在y 轴上,则点P的纵坐标是________. 答案 ±32解析 设椭圆的右焦点为F 2,由题意知PF 2⊥x 轴, 因为a 2=12,b 2=3,所以c 2=a 2-b 2=9,c =3. 所以点P 和点F 2的横坐标都为3. 故将x =3代入椭圆方程,可得y =±32.7.椭圆(m +1)x 2+my 2=1的长轴长是________.答案2mm解析 椭圆方程可化简为x 211+m +y 21m =1,由题意知m >0,∴11+m <1m ,∴a =mm ,∴椭圆的长轴长2a =2mm.8.已知椭圆C 的上,下顶点分别为B 1,B 2,左,右焦点分别为F 1,F 2,若四边形B 1F 1B 2F 2是正方形,则此椭圆的离心率e =________. 答案22解析 因为四边形B 1F 1B 2F 2是正方形,所以b =c , 所以a 2=b 2+c 2=2c 2,所以e =c a =22.9.若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点⎝⎛⎭⎫1,12作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆的方程是____________. 答案 x 25+y 24=1解析 ∵x =1是圆x 2+y 2=1的一条切线. ∴椭圆的右焦点为A (1,0),即c =1.设P ⎝⎛⎭⎫1,12,则k OP =12,∵OP ⊥AB ,∴k AB =-2,则直线AB 的方程为y =-2(x -1),它与y 轴的交点为(0,2).∴b =2,a 2=b 2+c 2=5,故椭圆的方程为x 25+y 24=1.10.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________. 考点 椭圆的离心率问题 题点 求a ,b ,c 得离心率 答案33解析 由题意可设PF 2=m ,结合条件可知PF 1=2m ,F 1F 2=3m ,故离心率e =c a =2c2a =F 1F 2PF 1+PF 2=3m 2m +m =33.11.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为________.答案 34解析 设直线x =3a 2与x 轴交于点M ,则∠PF 2M =60°, 在Rt △PF 2M 中,PF 2=F 1F 2=2c ,F 2M =3a 2-c , 故cos60°=F 2M PF 2=3a 2-c 2c =12, 解得c a =34,故离心率e =34.二、解答题12.已知椭圆C 1:x 2100+y 264=1,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y 轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率;(2)写出椭圆C 2的方程,并研究其性质.解 (1)由椭圆C 1:x 2100+y 264=1可得其长半轴长为10, 短半轴长为8,焦点坐标(6,0),(-6,0),离心率e =35. (2)椭圆C 2:y 2100+x 264=1,性质:①范围:-8≤x ≤8,-10≤y ≤10;②对称性:关于x 轴、y 轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0),焦点坐标(0,6),(0,-6);④离心率:e =35. 13.分别求适合下列条件的椭圆的标准方程:(1)离心率是23,长轴长是6; (2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为6.解 (1)设椭圆的标准方程为x 2a 2+y 2b 2=1 (a >b >0)或y 2a 2+x 2b 2=1 (a >b >0). 由已知得2a =6,e =c a =23,∴a =3,c =2. ∴b 2=a 2-c 2=9-4=5.∴椭圆的标准方程为x 29+y 25=1或x 25+y 29=1. (2)设椭圆的标准方程为x 2a 2+y 2b 2=1 (a >b >0). 如图所示,△A 1F A 2为等腰直角三角形,OF 为斜边A 1A 2上的中线(高),且OF =c ,A 1A 2=2b , ∴c =b =3,∴a 2=b 2+c 2=18,故所求椭圆的标准方程为x 218+y 29=1. 三、探究与拓展14.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(-c,0),F 2(c,0)(c >0),过点E ⎝⎛⎭⎫a 2c ,0的直线与椭圆相交于点A ,B 两点,且F 1A ∥F 2B ,F 1A =2F 2B ,则椭圆的离心率为________. 答案 33 解析 由F 1A ∥F 2B ,F 1A =2F 2B ,得EF 2EF 1=F 2B F 1A =12, 从而a 2c -c a 2c +c =12,整理得a 2=3c 2.故离心率e =c a =33. 15.已知椭圆E 的中心为坐标原点O ,两个焦点分别为A (-1,0),B (1,0),一个顶点为H (2,0).(1)求椭圆E 的标准方程;(2)对于x 轴上的点P (t,0),椭圆E 上存在点M ,使得MP ⊥MH ,求实数t 的取值范围. 解 (1)由题意可得,c =1,a =2,∴b = 3.∴所求椭圆E 的标准方程为x 24+y 23=1. (2)设M (x 0,y 0)(x 0≠±2),则x 204+y 203=1.① MP →=(t -x 0,-y 0),MH →=(2-x 0,-y 0),由MP ⊥MH 可得MP →·MH →=0,即(t -x 0)(2-x 0)+y 20=0.②由①②消去y 0,整理得t (2-x 0)=-14x 20+2x 0-3.∵x 0≠2,∴t =14x 0-32. ∵-2<x 0<2,∴-2<t <-1.∴实数t 的取值范围为(-2,-1).。

苏教版高中数学(选修2-1)单元测试-第二章圆锥曲线与方程

苏教版高中数学(选修2-1)单元测试-第二章圆锥曲线与方程

圆锥曲线与方程综合练习一、选择题:1.已知A(-1,0),B(1,0),点C(x,y)12=,则=+BC AC ( )A .6B .4C .2D .不能确定2. 抛物线px y 22=与直线04=-+y ax 交于A 、B 两点,其中点A 的坐标为 (1,2),设抛物线的焦点为F ,则|FA|+|FB|等于( ) A .7 B .53 C .6 D .53.双曲线22221(,0)x y a b a b-=>的左、右焦点分别为F 1、F 2,过焦点F 2且垂直于x轴的弦为AB ,若︒=∠901B AF ,则双曲线的离心率为 ( )A .)22(21- B .12- C .12+ D .)22(21+4.若椭圆22221(0)x y a b a b +=>>和双曲线221(,0)x y m n m n-=>有相同的焦点F 1、F 2,P 是两曲线的交点,则21PF PF ⋅的值是( ) A .n b -B .m a - C . n b -D . 2a m -5.已知F 是抛物线241x y =的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹 方程是( ) A .122-=y x B .16122-=y x C .212-=y xD .222-=y x6. 给出下列结论,其中正确的是 ( )A .渐近线方程为()0,0>>±=b a x a b y 的双曲线的标准方程一定是12222=-b y a xB .抛物线221x y -=的准线方程是21=xC .等轴双曲线的离心率是2 D.椭圆()0,012222>>=+n m ny m x 的焦点坐标是()(),,0,222221n mF n m F ---7.已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p 为( ) A 、1 B 、2 C 、3 D 、48.一个椭圆中心在原点,焦点12,F F 在x 轴上,P (2)是椭圆上一点,且1122||||||PF F F PF 、、成等差数列,则椭圆方程为 ( )22222222.1.1.1.18616684164x y x y x y x y A B C D +=+=+=+=9.双曲线2214x y k +=的离心率(1,2)e ∈,则k 的取值范围是( ) .(,0).(12,0).(3,0).(60,12)A B C D -∞----10. 方程02=+ny mx 与)0(122>>=+n m ny mx 的曲线在同一坐标系中的示意图应11. 12,F F 是椭圆2214x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF 的最大值是 .12.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .13.在△ABC 中,AB=BC ,7cos 18B =-.若以A 、B 为焦点的椭圆经过点C ,则该椭圆的离心率e= .14.已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB>,则FA与FB的比值等于 .三、解答题:15.(1)已知双曲线的渐近线方程为12y x =±,焦距为10,求双曲线的标准方程。

苏教版高中数学选修2-1第2章圆锥曲线与方程2.1含答案

苏教版高中数学选修2-1第2章圆锥曲线与方程2.1含答案

§2.1圆锥曲线学习目标 1.了解当一个平面截一个圆锥面时,所截得的图形的各种情况.2.初步掌握椭圆、双曲线、抛物线的定义及其几何特征.3.通过平面截圆锥面的实验和对有关天体运动轨道的了解,知道圆锥曲线在我们身边广泛存在.知识点一椭圆的定义观察图形,思考下列问题:思考1如图,把细绳两端拉开一段距离,分别固定在图板上的两点F1,F2处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么图形?答案椭圆思考2图中移动的笔尖始终满足怎样的几何条件?答案PF1+PF2是常数(大于F1F2).梳理平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.知识点二双曲线的定义观察图示,若固定拉链上一点F1或F2,拉开或闭拢拉链,拉链头M经过的点可画出一条曲线,思考下列问题:思考1图中动点M的几何性质是什么?答案|MF1-MF2|为一个正常数.思考2若MF1-MF2=F1F2,则动点M的轨迹是什么?答案以F2为端点,向F2右边延伸的射线.梳理平面内到两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.知识点三抛物线的定义观察图形,思考下列问题:思考如图,定点C和定直线EF,用三角板画出到定点的距离等于到定直线的距离的动点D的轨迹.则动点D的轨迹是什么?其满足什么条件?答案抛物线,动点D到定点C和定直线EF距离相等,且C不在EF上.梳理平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.椭圆、双曲线、抛物线统称为圆锥曲线.1.平面内到两定点的距离之和为常数的点的轨迹是椭圆.(×)2.平面内到两定点的距离之差的绝对值为常数的点的轨迹是双曲线.(×)3.抛物线上的点到焦点的距离与到准线的距离相等.(√)类型一 圆锥曲线定义的理解例 1 平面内动点 M 到两点 F 1(-3,0),F 2(3,0)的距离之和为 3m ,问 m 取何值时 M 的轨迹 是椭圆?解 ∵MF 1+MF 2=3m ,∴M 到两定点的距离之和为常数,当 3m 大于 F 1F 2 时,由椭圆定义知,M 的轨迹为椭圆, ∴3m >F 1F 2=3-(-3)=6,∴m >2,∴当 m >2 时,M 的轨迹是椭圆.反思与感悟 在深刻理解圆锥曲线的定义的过程中,一定要注意定义中的约束条件(1)在椭圆中,和为定值且大于 F 1F 2.(2)在双曲线中,差的绝对值为定值且小于 F 1F 2. (3)在抛物线中,点 F 不在定直线上.跟踪训练 1 (1)命题甲:动点 P 到两定点 A ,B 的距离之和 P A +PB =2a (a >0,a 为常数);命题乙:P 点轨迹是椭圆,则命题甲是命题乙的________条件.(2)动点 P 到两个定点 A (-2,0),B(2,0)构成的三角形的周长是 10,则点 P 的轨迹是________. 答案 (1)必要不充分 (2)椭圆解析 (1)若 P 点轨迹是椭圆,则 PA +PB =2a (a >0,且为常数),∴甲是乙的必要条件.反之,若 P A +PB =2a (a >0,且是常数),不能推出 P 点轨迹是椭圆.因为仅当 2a >AB 时,P 点轨迹才是椭圆;而当 2a =AB 时,P 点轨迹是线段 AB ;当 2a <AB时,P 点无轨迹,∴甲不是乙的充分条件.综上,甲是乙的必要不充分条件.(2)由题意知 P A +PB +AB =10,又 AB =4,∴PA +PB =6>4.∴点 P 的轨迹是椭圆.类型二 圆锥曲线轨迹的探究例 2 如图,已知动圆 C 与圆 F 1,F 2 均外切(圆 F 1 与圆 F 2 相离),试问:动点 C 的轨迹是什 么曲线?解 设动圆 C 的半径为 R ,圆 F 1,F 2 的半径分别为 r 1,r 2,则 CF 1=R +r 1,CF 2=R +r 2. 所以 CF 1-CF 2=r 1-r 2.跟踪训练 3 在△ABC 中,BC 固定,顶点 A 移动.设 BC =m ,且|sin C -sin B |= sin A ,则解 因为|sin C -sin B |= sin A ,由正弦定理可得|AB -AC |= BC = m ,且 m <BC ,又 CF 1-CF 2=r 1-r 2<F 1F 2,故动圆圆心 C 的轨迹是以 F 1,F 2 为焦点的双曲线靠近 F 2 的一支. 引申探究若把原题中“外切”换成“内切”再求解,结论如何?解 动点 C 的轨迹是以 F 1,F 2 为焦点的双曲线靠近 F 1 的一支.反思与感悟 紧扣圆锥曲线的定义,写出动点满足的条件,然后得到相应的轨迹.跟踪训练 2 已知动点 P 到点 A (-3,0)的距离比它到直线 x =1 的距离大 2,试判断动点 P 的轨迹.解 因点 P 到 A 的距离比它到直线 x =1 的距离大 2,所以点 P 到点 A 的距离等于它到直线 x =3 的距离.因为点 A 不在直线 x =3 上,所以点 P 的轨迹是抛物线.类型三 圆锥曲线定义的应用例 3 在△ABC 中,B (-6,0),C (0,8),且 sin B ,sin A ,sin C 成等差数列.(1)顶点 A 的轨迹是什么? (2)指出轨迹的焦点和焦距.解 (1)由 sin B ,sin A ,sin C 成等差数列,得 sin B +sin C =2sin A .由正弦定理可得 AB +AC=2BC .又 BC =10,所以 AB +AC =20,且 20>BC ,所以点 A 的轨迹是椭圆(除去直线 BC 与椭圆的交点).(2)椭圆的焦点为 B ,C ,焦距为 10.反思与感悟 利用圆锥曲线的定义可以判定动点的轨迹,在判定时要注意定义本身的限制条件,如得到 MF 1+MF 2=2a (a 为大于零的常数)时,还需要看 2a 与 F 1F 2 的大小,只有 2a >F 1F 2 时,所求轨迹才是椭圆.若得到MF 1-MF 2=2a (0<2a <F 1F 2),轨迹仅为双曲线的一支.除了 圆锥曲线定义本身的限制条件外,还要注意题目中的隐含条件.12顶点 A 的轨迹是什么?121 1 12 2 2所以点 A 的轨迹是双曲线(除去双曲线与 BC 的两交点).F FF1.设F1,2是两个定点,1F2=6,动点M满足MF1+MF2=10,则动点M的轨迹是________.答案椭圆解析因MF1+MF2=10>F1F2=6,由椭圆的定义得动点的轨迹是椭圆.2.若F1,2是两个定点且动点P1满足PF1-PF2=1,又F1F2=3,则动点P的轨迹是________.答案双曲线靠近点F2的一支解析因PF1-PF2=1<F1F2=3,故由双曲线定义判断,动点P的轨迹是双曲线靠近点F2的一支.3.到定点(1,0)和定直线x=-1距离相等的点的轨迹是________.答案抛物线解析依据抛物线定义可得.4.到两定点F1(-3,0),F2(3,0)的距离之差的绝对值等于6的点M的轨迹是________.答案两条射线解析据题|MF1-MF2|=F1F2,得动点M的轨迹是两条射线.5.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若点P到直线BC与直线C1D1的距离相等,则动点P的轨迹是________.答案抛物线解析由正方体的性质可知,点P到C1D1的距离为PC1,故动点P到定点C1和到定直线BC的距离相等,且点C1不在直线BC上,符合抛物线的定义,所以动点P的轨迹是抛物线.1.若MF1+MF2=2a(2a>F1F2),则动点M的轨迹是椭圆.若点M在椭圆上,则MF1+MF2=2a.2.若|MF1-MF2|=2a(0<2a<F1F2),则动点M的轨迹为双曲线.若动点M在双曲线上,则|MF1-MF2|=2a.3.抛物线定义中包含三个定值,分别为一个定点,一条定直线及一个确定的比值.2”一、填空题1.平面内到两定点F1(-3,0),F2(3,0)的距离的和等于6的点P的轨迹是________.答案线段F1F2解析依题意得PF1+PF2=6=F1F2,故动点P的轨迹是线段F1F2.2.到定点(0,7)和到定直线y=7的距离相等的点的轨迹是________.答案直线解析因定点(0,7)在定直线y=7上,故符合条件的点的轨迹是直线.3.已知定点F1(-2,0),F2(2,0),在满足下列条件的平面内,动点P的轨迹为双曲线的是________.(填序号)①|PF1-PF2|=3;②|PF1-PF2|=4;③|PF1-PF2|=5;④PF1-PF2=±4.答案①解析根据双曲线定义知P到F1,F2的距离之差的绝对值要小于F1F2.4.到定点A(2,0)和B(4,0)的距离之差为2的点的轨迹是________.答案一条射线解析要注意两点:一是“差”而不是“差的绝对值;二是“常数”等于两定点间的距离.5.已知△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹是____________.答案以A,B为焦点的双曲线的右支(除去点(3,0))解析如图,AD=AE=8.BF=BE=2,CD=CF,所以CA-CB=8-2=6<AB=10.根据双曲线定义,所求轨迹是以A,B为焦点的双曲线的右支(除去点(3,0)).6.已知点M(x,y)的坐标满足(x-1)2+(y-1)2-(x+3)2+(y+3)2=±4,则动点M的轨迹是________.答案双曲线解析点(x,y)到(1,1)点及到(-3,-3)点的距离之差的绝对值为4,而(1,1)与(-3,-3)距3 10.已知点 A (-1,0),B (1,0).曲线 C 上任意一点 P 满足P A 2-PB 2=4(|P A |-|PB |)≠0.则曲线解析 由P A 2-PB 2=4(|P A |-|PB |)≠0,得|P A |+|PB |=4,且 4>AB .| 离为 4 2,由定义知动点 M 的轨迹是双曲线.7.下列说法中正确的有________.(填序号)①已知 F 1(-6,0),F 2(6,0),到 F 1,F 2 两点的距离之和等于 12 的点的轨迹是椭圆; ②已知 F 1(-6,0),F 2(6,0),到 F 1,F 2 两点的距离之和等于 8 的点的轨迹是椭圆;③到点 F 1(-6,0),F 2(6,0)两点的距离之和等于点 M (10,0)到 F 1,F 2 的距离之和的点的轨迹 是椭圆;④到点 F 1(-6,0),F 2(6,0)距离相等的点的轨迹是椭圆. 答案 ③解析 椭圆是到两个定点 F 1,F 2 的距离之和等于常数(大于 F 1F 2)的点的轨迹,应特别注意 椭圆的定义的应用.①中 F 1F 2=12,故到 F 1,F 2 两点的距离之和为常数 12 的点的轨迹是线段 F 1F 2. ②中点到 F 1,F 2 两点的距离之和 8 小于 F 1F 2,故这样的点不存在.③中点 M (10,0)到 F 1,F 2 两点的距离之和为 (10+6)2+02+ (10-6)2+02=20>F 1F 2=12, 故③中点的轨迹是椭圆.④中点的轨迹是线段 F 1F 2 的垂直平分线. 故正确的是③.8.若动点 P 到定点 F (1,1)和到直线 l :x +y -4=0 的距离相等,则动点 P 的轨迹是________. 答案 直线解析设动点 P 的坐标为(x ,y ),则 (x -1)2+(y -1)2=|3x +y -4|.整理,得 x -3y +2=0,10所以动点 P 的轨迹为直线.9.平面内有两个定点 F 1,F 2 及动点 P ,设命题甲:PF 1-PF 2|是非零常数,命题乙:动点P 的轨迹是以 F 1,F 2 为焦点的双曲线,则甲是乙的________条件.(“充分不必要”“必要不 充分”“充要”“既不充分又不必要”)答案 必要不充分解析 由双曲线的定义可知,若动点 P 的轨迹是以 F 1,F 2 为焦点的双曲线,则|PF 1-PF 2| 是非零常数,反之则不成立.→ → → →C 的轨迹是______.答案 椭圆→ → → →→ →故曲线 C 的轨迹是椭圆.(解析把轨迹方程5x2+y2=|3x+4y-12|写成x2+y2=,∴动点M到原点的=BD,MC=CE,于是MB+MC=BD+CE=(BD+CE)=×39=26>24=BC. 11.已知动圆M过定点A(-3,0),并且在定圆B:(x-3)2+y2=64的内部与其相内切,则动圆圆心M的轨迹为________.答案椭圆解析设动圆M的半径为r.因为动圆M与定圆B内切,所以MB=8-r.又动圆M过定点A,MA=r,所以MA+MB=8>AB=6,故动圆圆心M的轨迹是椭圆.二、解答题12.点M到点F(0,-2)的距离比它到直线l:y-3=0的距离小1,试确定点M的轨迹.解由题意得点M与点F的距离等于它到直线y-2=0的距离,且点F不在直线l上,所以点M的轨迹是抛物线.13.如图所示,已知点P为圆R:x+c)2+y2=4a2上一动点,Q(c,0)为定点(c>a>0,为常数),O为坐标原点,求线段PQ的垂直平分线与直线RP的交点M的轨迹.解由题意,得MP=MQ,RP=2a.MR-MQ=MR-MP=RP=2a<RQ=2c.∴点M的轨迹是以R,Q为两焦点,2a为实轴长的双曲线的右支.三、探究与拓展14.已知动点M的坐标满足方程5x2+y2=|3x+4y-12|,则动点M的轨迹是__________.答案抛物线|3x+4y-12|5距离与到直线3x+4y-12=0的距离相等.∵原点不在直线3x+4y-12=0上,∴点M的轨迹是以原点为焦点,直线3x+4y-12=0为准线的抛物线.△15.在ABC中,BC=24,AC,AB边上的中线长之和等于△39,求ABC的重心的轨迹.解如图所示,以BC的中点O为坐标原点,线段BC所在直线为x轴,线段BC的中垂线为y轴建立平面直角坐标系xOy.设M为△ABC的重心,BD是AC边上的中线,CE是AB边上的中线,由重心的性质知M B 222222333333根据椭圆的定义知,点M的轨迹是以B,C为两焦点,26为实轴长的椭圆去掉点(-13,0),(13,0).。

高中数学(苏教版 选修2-1)学业分层测评第2章 圆锥曲线与方程 2.3.1 Word版含答案

高中数学(苏教版 选修2-1)学业分层测评第2章 圆锥曲线与方程 2.3.1 Word版含答案

学业分层测评(建议用时:分钟)[学业达标]一、填空题.双曲线-=上一点到一个焦点的距离是,那么点到另一个焦点的距离是.【解析】据题意知-=-=,∴=或.【答案】或.双曲线-=的焦距是.【解析】由题意,得==,∴焦距为=.【答案】.已知双曲线-=的左焦点为,点为双曲线右支上的一点,且与圆+=相切于点,为线段的中点,为坐标原点,则-=.【解析】设′是双曲线的右焦点,连接′(图略),因为,分别是,′的中点,所以=′.又==,且由双曲线的定义知-′=,故-=--′=(-′)-=×-=-.【答案】-.焦点分别是(,-),(),且经过点(-)的双曲线的标准方程是.【解析】由题意,焦点在轴上,且=,可设双曲线方程为-=(<<),将(-)代入,解得=.因此所求双曲线标准方程为-=.【答案】-=.已知双曲线-=,点,为其两个焦点,点为双曲线上一点,若⊥,则+的值为.【解析】不妨设在双曲线的右支上,因为⊥,所以()=+,又因为-=,所以(-)=,可得·=,则(+)=++·=,所以+=.【答案】.已知双曲线-=上一点的横坐标为,则点到左焦点的距离是. 【导学号:】【解析】由于双曲线-=的右焦点为(),将=代入双曲线可得=,即双曲线上一点到右焦点的距离为,故利用双曲线的定义可求得点到左焦点的距离为+=+=.【答案】.已知,是双曲线-=的左,右焦点,是双曲线右支上一点,是的中点,若=,则的值为.【解析】因为是的中点,所以==,又由双曲线的定义知:-==,所以=.【答案】.若圆+--=与轴的两个交点,都在双曲线上,且,两点恰好将此双曲线的焦距三等分,则此双曲线的标准方程为. 【导学号:】【解析】解方程组(\\(+--=,=,))得(\\(=,=))或(\\(=,=-.))∵圆+--=与轴的两个交点,都在双曲线上,且,两点恰好将此双曲线的焦距三等分,∴(,-),(),且==,∴=-=,∴双曲线方程为-=.【答案】-=二、解答题.求适合下列条件的双曲线的标准方程.()=,经过点;()经过点(),(-,-).【解】()当焦点在轴上时,设所求标准方程为-=(>),把点的坐标代入,得=-×<,不符合题意;当焦点在轴上时,设所求标准方程为-=(>),把点的坐标代入,得=,∴所求双曲线的标准方程为-=.()设双曲线的方程为+=(<),∵双曲线经过点(),(-,-),。

苏教版高中数学选修2-1第二章 圆锥曲线与方程.docx

苏教版高中数学选修2-1第二章  圆锥曲线与方程.docx

高中数学学习材料鼎尚图文*整理制作第二章圆锥曲线与方程2.1圆锥曲线双基达标(限时15分钟)1.已知定点F1(-3,0)和F2(3,0),动点M满足MF1+MF2=10,则动点轨迹是________.解析因为MF1+MF2=10,且10>F1F2,所以动点M轨迹是椭圆.答案椭圆2.已知点M(x,y)的坐标满足(x-1)2+(y-1)2-(x+3)2+(y+3)2=±4,则动点M的轨迹是________.解析点(x,y)到(1,1)点及到(-3,-3)点的距离之差的绝对值为4,而(1,1)与(-3,-3)距离为42,由定义知动点M的轨迹是双曲线.答案双曲线3.到两定点F1(-3,0),F2(3,0)的距离之差的绝对值等于6的点M的轨迹是__________.解析MF1-MF2=±6,而F1F2=6,轨迹为两条射线.答案两条射线4.若点M到F(4,0)的距离比它到直线x+5=0的距离小1,则点M的轨迹表示的曲线是________.解析由题意知M到F的距离与到x=-4的距离相等,由抛物线定义知,M点的轨迹是抛物线.答案抛物线5.下列说法中正确的有________.(填序号)①已知F1(-6,0)、F2(6,0),到F1、F2两点的距离之和等于12的点的轨迹是椭圆②已知F1(-6,0)、F2(6,0),到F1、F2两点的距离之和等于8的点的轨迹是椭圆③到点F1(-6,0)、F2(6,0)两点的距离之和等于点M(10,0)到F1、F2的距离之和的点的轨迹是椭圆④到点F1(-6,0)、F2(6,0)距离相等的点的轨迹是椭圆解析椭圆是到两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹,应特别注意椭圆的定义的应用.①中|F1F2|=12,故到F1、F2两点的距离之和为常数12的点的轨迹是线段F1F2.②中点到F1、F2两点的距离之和8小于|F1F2|,故这样的点不存在.③中点(10,0)到F1、F1两点的距离之和为(10+6)2+02+(10-6)2+02=20>|F1F2|=12,故③中点的轨迹是椭圆.④中点的轨迹是线段F1F2的垂直平分线.故正确的是③.答案③6.已知动圆M过定点A(-3,0),并且在定圆B:(x-3)2+y2=64的内部与其相内切,判断动圆圆心M的轨迹.解设动圆M的半径为r.因为动圆M与定圆B内切,所以MB=8-r.又动圆M过定点A,MA=r,所以MA+MB=8,故动圆圆心M的轨迹是椭圆.综合提高(限时30分钟)7.△ABC中,若B、C的坐标分别是(-2,0),(2,0),中线AD的长度为3,则A点的轨迹方程是________________________________________________________.解析∵B(-2,0),C(2,0),∴BC的中点D(0,0)设A(x,y),又∵AD=3,∴x2+y2=3(y≠0)所以A点的轨迹方程x2+y2=9(y≠0).答案x2+y2=9(y≠0)8.已知动点M的坐标满足方程5x2+y2=|3x+4y-12|,则动点M的轨迹是__________.解析 把轨迹方程5x 2+y 2=|3x +4y -12|写成x 2+y 2=|3x +4y -12|5.∴动点M 到原点 的距离与到直线3x +4y -12=0的距离相等.∴点M 的轨迹是以原点为焦点,直线3x +4y -12=0为准线的抛物线.答案 抛物线9.在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点.若点P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹是__________.解析 点P 到直线C 1D 1的距离就是点P 到点C 1的距离,所以动点P 的轨迹就是动点到 直线BC 与到点C 1的距离相等的点的轨迹,是抛物线的一部分.答案 抛物线的一部分10.已知点A (-1,0)、B (1,0).曲线C 上任意一点P 满足P A →2-PB →2=4(|P A →|-|PB →|)≠0.则曲线C 的轨迹是______.解析 由P A →2-PB →2=4(|P A →|-|PB →|)≠0,得|P A →|+|PB →|=4,且4>AB .故曲线C 的轨迹是椭圆.答案 椭圆11.已知动圆与圆C :(x +2)2+y 2=2相内切,且过点A (2,0),求动圆圆心M 的轨迹. 解 设动圆M 的半径为r ,∵圆C 与圆M 内切,点A 在圆C 外,∴MC =r -2,MA =r ,∴MA -MC =2,又∵AC =4>2,∴点M 的轨迹是以C 、A 为焦点的双曲线的左支.12.如图所示,已知点P 为圆R :(x +c )2+y 2=4a 2上一动点,Q (c ,0)为定点(c >a >0,为常数),O 为坐标原点,求线段PQ 的垂直平分线与直线RP 的交点M 的轨迹.解 由题意,得MP =MQ ,RP =2a .MR -MQ =MR -MP =RP =2a <RQ =2c .∴点M 的轨迹是以R 、Q 为两焦点,实轴长为2a 的双曲线右支.13.(创新拓展)设Q是圆x2+y2=4上的动点,点A(3,0),线段AQ的垂直平分线交半径OQ于点P.当Q点在圆周上运动时,求点P的轨迹.解因为线段AQ的垂直平分线交半径OQ于点P,所以P A=PQ.而半径OQ=OP+PQ,所以OP+P A=2,且2>3=OA,故点P的轨迹为椭圆(除去与x轴相交的两点).。

2018-2019学年高二数学苏教版选修2-1阶段质量检测 圆锥曲线与方程 Word版含解析

2018-2019学年高二数学苏教版选修2-1阶段质量检测 圆锥曲线与方程 Word版含解析

阶段质量检测(二) 圆锥曲线与方程 [考试时间:120分钟 试卷总分:160分]一、填空题(本大题共14小题,每小题5分,共70分.将答案填在题中的横线上)1.(江苏高考)双曲线x216-y29=1的两条渐近线的方程为________________________.2.抛物线y 2=4x 的焦点到双曲线x 2-y23=1的渐近线的距离是________.3.方程错误!+错误!=1表示焦点在x 轴上的椭圆,则a 的取值范围是_____________.4.(辽宁高考)已知F 为双曲线C :x29-y216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.5.设点P 是双曲线x2a2-y2b2=1(a >0,b >0)与圆x 2+y 2=2a 2的一个交点,F 1,F 2分别是双曲线的左、右焦点,且PF 1=3PF 2,则双曲线的离心率为________.6.已知动圆P 与定圆C :(x +2)2+y 2=1相外切,又与定直线l :x =1相切,那么动圆的圆心P 的轨迹方程是____________________________.7.已知双曲C 1=x2a2-y2b2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐进线的距离为2,则抛物线C2的方程为________________________.8.过抛物线x 2=8y 的焦点F 作直线交抛物线于P 1(x 1,y 1),P 2(x 2,y 2)两点,若y 1+y 2=8,则P 1P 2的值为________.9.椭圆x24+y23=1的右焦点到直线y =33x 的距离是________.10.已知椭圆C :x2a2+y2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若AB =10,BF =8,cos∠ABF =45,则C 的离心率为________.11.(新课标全国卷Ⅰ改编)已知椭圆E :x2a2+y2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为________________________.12.抛物线y 2=12x 截直线y =2x +1所得弦长等于__________________________.13.以椭圆的焦距为直径并过两焦点的圆,交椭圆于四个不同的点,顺次连结这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为________.14.给出如下四个命题:①方程x 2+y 2-2x +1=0表示的图形是圆;②椭圆x23+y22=1的离心率e =53;③抛物线x =2y 2的准线的方程是x =-18;④双曲线y249-x225=-1的渐近线方程是y =±57x .其中所有不正确命题的序号是________.二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)求与椭圆x2144+y2169=1有共同焦点,且过点(0,2)的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.16.(本小题满分14分)已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与C 相交于A ,B 两点,若|AB |=8,求直线l 的方程.17.(本小题满分14分)如图,F1,F 2分别是椭圆C :x2a2+y2b2=1(a >b >0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.18.(浙江高考)(本小题满分16分)如图,点P (0,-1)是椭圆C 1:x2a2+y2b2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D .(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程.9.(陕西高考)(本小题满分16分)已知动点M (x ,y )到直线l :x =4的距离是它到点N (1,0)的距离的2倍.(1)求动点M 的轨迹C 的方程;(2)过点P (0,3)的直线m 与轨迹C 交于A ,B 两点,若A 是PB 的中点,求直线m 的斜率.20.(湖南高考)(本小题满分16分)过抛物线E :x 2=2py (p >0)的焦点F 作斜率分别为k 1,k 2的两条不同直线l 1,l 2,且k 1+k2=2,l 1与E 相交于点A ,B ,l 2与E 相交于点C ,D ,以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在直线记为l .(1)若k 1>0,k 2>0,证明:· <2p 2;(2)若点M 到直线l 的距离的最小值为755,求抛物线E 的方程.答 案1.解析:令x216-y29=0,解得y =±34x .答案:y =±34x2.解析:因为抛物线的焦点坐标为(1,0),而双曲线的渐近线方程为y =±3x ,所以所求距离为|±3×1-0|1+3=32. 答案:323.解析:由题意得错误!解之得a <错误!,且a ≠0,即a 的取值范围是(-∞,0)∪⎝⎛⎭⎫0,12.答案:错误!4.解析:由题意因为PQ 过双曲线的右焦点(5,0),所以P ,Q 都在双曲线的右支上,则有FP -P A =6,FQ -QA =6,两式相加,利用双曲线的定义得FP +FQ =28,所以△PQF 的周长为FP +FQ +PQ =44.答案:445.解析:由⎩⎪⎨⎪⎧PF1-PF2=2a ,PF1=3PF2得PF 1=3a ,PF 2=a ,设∠F 1OP =α,则∠POF 2=180°-α,在△PF 1O 中,PF 21=OF 21+OP 2-2OF 1·OP ·cos α①,在△OPF 2中,PF 2=OF 2+OP 2-2OF 2·OP ·cos(180°-α) ②,由cos(180°-α)=-cos α与OP =2a , ①+②得c 2=3a 2,∴e =c a =3aa= 3.答案:36.解析:设P (x ,y ),动圆P 在直线x =1的左侧,其半径等于1-x ,则PC =1-x +1,即错误!=2-x .∴y 2=-8x .答案:y 2=-8x7.解析:∵双曲线C 1:x2a2-y2b2=1(a >0,b >0)的率心率为2.∴ca =a2+b2a=2,∴b =3a .∴双曲线的渐近线方程为3x ±y =0.∴抛物线C 2:x 2=2py (p >0)的焦点⎝⎛⎭⎫0,p2到双曲线的渐近线的距离为⎪⎪⎪⎪3×0±p 22=2.∴p =8.∴所求的抛物线方程为x 2=16y .答案:x 2=16y8.解析:由题意知p =4,由抛物线的定义得P 1P 2=P 1F +P 2F =⎝⎛⎭⎫y1+p 2+⎝⎛⎭⎫y2+p2=(y 1+y 2)+p =8+4=12.答案:129.解析:∵椭圆x24+y23=1的右焦点为(1,0),∴右焦点到直线3x -3y =0的距离d =33+9=12.答案:1210.解析:在△ABF 中,AF 2=AB 2+BF 2-2AB ·BF ·cos ∠ABF =102+82-2×10×8×45=36,则AF =6.由AB 2=AF 2+BF 2可知,△ABF 是直角三角形,OF 为斜边AB 的中线,c =OF =AB2=5.设椭圆的另一焦点为F 1,因为点O 平分AB ,且平分FF 1,所以四边形AFBF 1为平行四边形,所以BF =AF 1=8.由椭圆的性质可知AF +AF 1=14=2a ⇒a =7,则e =c a =57.答案:5711.解析:因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x2a2+y2b2=1消去y ,得⎝⎛⎭⎫a24+b2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a22⎝⎛⎭⎫a24+b2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3.所以E 的方程为x218+y29=1.答案:x218+y29=112.解析:令直线与抛物线交于点A (x 1,y 1),B (x 2,y 2)由⎩⎪⎨⎪⎧y =2x +1,y2=12x ,得4x 2-8x +1=0,∴x 1+x 2=2,x 1x 2=14,∴AB =错误!=错误!=错误!.答案:1513.解析:如图,设椭圆的方程为x2a2+y2b2=1(a >b >0),焦半径为c .由题意知∠F 1AF 2=90°, ∠AF 2F 1=60°.∴AF 2=c ,AF 1=2c ·sin 60°=3c .∴AF 1+AF 2=2a =(3+1)c .∴e =c a =23+1=3-1.答案:3-114.解析:①表示的图形是一个点(1,0);②e =33; ④渐近线的方程为y =±75x .答案:①②④15.解:椭圆x2144+y2169=1的焦点是(0,-5),(0,5),焦点在y 轴上,于是设双曲线方程是y2a2-x2b2=1(a >0,b >0),又双曲线过点(0,2),∴c =5,a =2,∴b 2=c 2-a 2=25-4=21,∴双曲线的标准方程是y24-x221=1,实轴长为4,焦距为10,离心率e =c a =52,渐近线方程是y =±22121x .16.解:抛物线y 2=4x 的焦点为F (1,0),当直线l 斜率不存在时,|AB |=4,不合题意.设直线l 的方程为y =k (x -1),代入y 2=4x ,整理得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),由题意知k ≠0,则x 1+x 2=2k2+4k2.由抛物线定义知,|AB |=|AF |+|BF |=x 1+1+x 2+1=x 1+x 2+2,∴x 1+x 2+2=8,即2k2+4k2+2=8.解得k =±1.所以直线l 的方程为y =±(x -1),即x -y -1=0,x +y -1=0.17.解:(1)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e =12.(2)法一:a 2=4c 2,b 2=3c 2,直线AB 的方程为y =-3(x -c ).代入椭圆方程3x 2+4y 2=12c 2,得B ⎝⎛⎭⎫85c ,-335c .所以|AB |=1+3·|85c -0|=165c .由S △AF 1B =12|AF 1|·|AB |sin ∠F 1AB =12a ·165c ·32=235a 2=403,解得a =10,b =5 3.法二:设AB =t .因为|AF 2|=a ,所以|BF 2|=t -a . 由椭圆定义BF 1+BF 2=2a 可知,BF 1=3a -t . 由余弦定理得(3a -t )2=a 2+t 2-2at cos 60°可得,t =85a .由S △AF 1B =12a ·85a ·32=235a 2=403知,a =10,b =5 3.18.解:(1)由题意得⎩⎪⎨⎪⎧b =1,a =2. 所以椭圆C 1的方程为x24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k ,则直线l 1的方程为y =kx -1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =1k2+1,所以AB =24-d2=24k2+3k2+1.又l 2⊥l 1,故直线l 2的方程为x +ky +k =0.由⎩⎪⎨⎪⎧x +ky +k =0,x2+4y2=4,消去y ,整理得(4+k 2)x 2+8kx =0,故x 0=-8k 4+k2,y 0=84+k2-1.所以PD =8k2+14+k2.设△ABD 的面积为S ,则S =12AB ·PD =84k2+34+k2,所以S =324k2+3+134k2+3≤3224k2+3·134k2+3=161313,当且仅当k =±102时取等号.所以所求直线l 1的方程为y =±102x -1.19.解:(1)设M 到直线l 的距离为d ,根据题意d =2|MN |.由此得|4-x |=2错误!,化简得x24+y23=1,所以,动点M 的轨迹方程为x24+y23=1.(2)法一:由题意,设直线m 的方程为y =kx +3,A (x 1,y 1),B (x 2,y 2).将y =kx +3代入x24+y23=1中,有(3+4k 2)x 2+24kx +24=0,其中Δ=(24k )2-4×24(3+4k 2)=96(2k 2-3)>0,故k 2>32.由根与系数的关系得, x 1+x 2=-24k3+4k2,①x 1x 2=243+4k2.②又因为A 是PB 的中点,故x 2=2x 1,③将③代入①,②,得x 1=-8k 3+4k2,x 21=123+4k2,可得⎝⎛⎭⎫-8k 3+4k22=123+4k2,且k 2>32,解得k =-32或k =32,所以直线m 的斜率为-32或32.法二:由题意,设直线m 的方程为y =kx +3,A (x 1,y 1),B (x 2,y 2).∵A 是PB 的中点,∴x 1=x22,①y 1=3+y22.②又x214+y213=1,③ x224+y223=1,④联立①,②,③,④解得⎩⎪⎨⎪⎧ x2=2,y2=0,或⎩⎪⎨⎪⎧x2=-2,y2=0.即点B 的坐标为(2,0)或(-2,0), 所以直线m 的斜率为-32或32.20.解:(1)证明:由题意,抛物线E 的焦点为F ⎝⎛⎭⎫0,p 2,直线l 1的方程为y =k 1x +p2.由⎩⎪⎨⎪⎧y =k1x +p 2,x2=2py ,得x 2-2pk 1x -p 2=0.设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1,x 2是上述方程的两个实数根.从而x 1+x 2=2pk 1,y 1+y 2=k 1(x 1+x 2)+p =2pk 21+p .所以点M 的坐标为⎝⎛⎭⎫pk1,pk21+p 2,=(pk 1,pk 21).同理可得点N 的坐标为⎝⎛⎭⎫pk2,pk22+p2,=(pk 2,pk 2).于是·=p 2(k 1k 2+k 21k 2).因为k 1+k 2=2,k 1>0,k 2>0,k 1≠k 2,所以0<k 1k 2<⎝⎛⎭⎫k1+k222=1.故·<p 2(1+12)=2p 2.(2)由抛物线的定义得F A =y 1+p 2,FB =y 2+p2,所以AB =y 1+y 2+p =2pk 21+2p ,从而圆M 的半径r 1=pk 21+p .故圆M 的方程为(x -pk 1)2+⎝⎛⎭⎫y -pk21-p 22=(pk 21+p )2, 化简得x 2+y 2-2pk 1x -p (2k 21+1)y -34p 2=0.同理可得圆N 的方程为x 2+y 2-2pk 2x -p (2k 2+1)y -34p 2=0.于是圆M ,圆N 的公共弦所在直线l 的方程为(k 2-k 1)x +(k 2-k 21)y =0.又k 2-k 1≠0,k 1+k 2=2,则l 的方程为x +2y =0.因为p >0,所以点M 到直线l 的距离 d =|2pk21+pk1+p|5=p|2k21+k1+1|5=p ⎣⎡⎦⎤2⎝⎛⎭⎫k1+142+785.故当k 1=-14时,d 取最小值7p85.由题设,7p 85=755,解得p =8.故所求的抛物线E 的方程为x 2=16y .。

高中数学(苏教版 选修2-1)学业分层测评第2章 圆锥曲线与方程 2.2.1 Word版含答案

高中数学(苏教版 选修2-1)学业分层测评第2章 圆锥曲线与方程 2.2.1 Word版含答案

学业分层测评(建议用时:分钟)[学业达标]一、填空题.椭圆+=的两个焦点为,,点在椭圆上,若=,则=.【解析】方程+=中,=,则+=,∴=-=-=.【答案】.椭圆+=的焦距为,则的值为.【解析】∵=,∴=,∴-=或-=,∴=或.【答案】或.设,是椭圆+=(>)的两个焦点,且=,弦过点,则△的周长为. 【导学号:】【解析】易知==,即=,∴=+=,∴=,因为弦过点,所以△的周长为++=+++==.【答案】.若方程-=表示焦点在轴上的椭圆,那么实数的取值范围是.【解析】∵方程-=表示焦点在轴上的椭圆,将方程改写为+=,∴有(\\(->,>,))解得<<.【答案】().设是椭圆+=上一点,点到两焦点,的距离之差为,则△是三角形(填“直角”“锐角”或“钝角”)【解析】不妨设>,由条件知-=,又+==,解得=,=.又∵===,∴+=,故△是直角三角形.【答案】直角.设,是椭圆+=的两个焦点,是椭圆上的点,且∶=∶,则△的面积为.【解析】根据椭圆定义有(\\(∶=∶,+=,))因此=,=.又因为=,因此△为直角三角形,△=××=.【答案】.过点(,-)且与椭圆+=有相同焦点的椭圆的标准方程为.【解析】椭圆+=的焦点为(,-),(),即=.由椭圆的定义知,=+,解得=.由=-,可得=,所以所求椭圆的标准方程为+=.【答案】+=.椭圆+=的一个焦点为,点在椭圆上,如果线段的中点在轴上,那么点的纵坐标是.【解析】设椭圆的另一焦点为,由条件可知∥,∴⊥轴.设点纵坐标为,则由+=,得=±,∴点的纵坐标为±.【答案】±二、解答题.已知,是椭圆:+=(>>)的两个焦点,为椭圆上的一点,且⊥,若△的面积为,求的值.【解】如图所示,⊥,=,根据椭圆的定义可知,+=,在△中,+=.又△=·=,即·=.∴(+)=++·=+=,∴-=,即-=,即=,∴=..求符合下列条件的参数的值或取值范围.。

苏教版高中数学选修2-1章末综合测评(二) 圆锥曲线与方程.docx

苏教版高中数学选修2-1章末综合测评(二) 圆锥曲线与方程.docx

章末综合测评(二)圆锥曲线与方程(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填在题中横线上)1.抛物线y=-18x2的准线方程是________.【解析】把抛物线方程化为标准形式得x2=-8y,所以抛物线的准线方程为y=2.【答案】y=22.如果方程x2a2+y2a+6=1表示焦点在x轴上的椭圆,则实数a的取值范围是________.【解析】焦点在x轴上,则标准方程中a2>a+6,解得a>3或a<-2.又a2>0,a+6>0,所以a>3或-6<a<-2.【答案】a>3或-6<a<-23.双曲线x26-y23=1的渐近线与圆(x-3)2+y2=r2(r>0)相切,则r等于________.【解析】双曲线x26-y23=1的渐近线方程为y=±22x,与圆(x-3)2+y2=r2(r>0)相切,得r= 3.【答案】 34.若F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)与椭圆x 225+y 29=1的共同的左、右焦点,点P 是两曲线的一个交点,且△PF 1F 2为等腰三角形,则该双曲线的渐近线方程是________. 【导学号:09390068】【解析】 不妨设PF 1>PF 2,则PF 1=F 1F 2=8,由双曲线及椭圆的定义,可知⎩⎨⎧ PF 1-PF 2=2a ,PF 1+PF 2=10,即⎩⎨⎧ 8-PF 2=2a ,8+PF 2=10,得2a =6,a =3. 又a 2+b 2=16,所以b 2=7,故双曲线的渐近线方程为y =±73x .【答案】 y =±73x5.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是________.【解析】 易知抛物线y 2=8x 的准线x =-2与x 轴的交点为Q (-2,0),于是,可设过点Q (-2,0)的直线l 的方程为y =k (x +2)(由题可知k 是存在的),联立⎩⎨⎧y 2=8x ,y =k (x +2)⇒k 2x 2+(4k 2-8)x +4k 2=0.当k =0时,易知符合题意;当k ≠0时,其判别式为Δ=(4k 2-8)2-16k 4=-64k 2+64≥0,可解得-1≤k ≤1,且k ≠0,综上可知,-1≤k ≤1.【答案】 [-1,1]6.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线过点(2,3),且双曲线的一个焦点在抛物线y 2=47x 的准线上,则双曲线的方程为______________.【解析】 由双曲线的渐近线y =b a x 过点(2,3),可得3=b a ×2.①由双曲线的焦点(-a 2+b 2,0)在抛物线y 2=47x 的准线x =-7上,可得a 2+b 2=7.②由①②解得a =2,b =3,所以双曲线的方程为x 24-y 23=1.【答案】 x 24-y 23=17.设F 1,F 2为曲线C 1:x 26+y 22=1的焦点,P 是曲线C 2:x 23-y 2=1与C 1的一个交点,则△PF 1F 2的面积为________.【解析】 由题意知,|F 1F 2|=26-2=4,设P 点坐标为(x ,y ).由⎩⎪⎨⎪⎧ x 26+y 22=1,x 23-y 2=1,得⎩⎪⎨⎪⎧ x =±322,y =±22.则S △PF 1F 2=12|F 1F 2|·|y |=12×4×22= 2.【答案】 28.已知抛物线y 2=2px (p >0)与双曲线x 2a 2-y 2b 2=1有相同的焦点F ,点A 是两曲线的交点,且AF ⊥x 轴,则双曲线的离心率为________.【解析】 由抛物线的定义知,AF =2c ,∴b 2a =2c .∴c 2-a 2=2ac ,∴e 2-2e -1=0.又∵e >1,∴e =2+1.【答案】 2+19.直线l 过抛物线y 2=2px (p >0)的焦点,且与抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线方程是________.【解析】 如图,分别过点A ,B 作抛物线准线的垂线,垂足分别为点M ,N ,由抛物线的定义知,AM +BN =AF +BF =AB =8.又四边形AMNB 为直角梯形,故AB 中点到准线的距离即为梯形的中位线的长度4,而抛物线的准线方程为x=-p 2,所以4=2+p 2,即p =4,所以抛物线的方程是y 2=8x .【答案】 y 2=8x10.已知抛物线y =2px 2(p >0)的焦点为F ,点P ⎝ ⎛⎭⎪⎫1,14在抛物线上,过点P 作PQ 垂直抛物线的准线,垂足为点Q ,若抛物线的准线与对称轴相交于点M ,则四边形PQMF 的面积为________.【解析】 由点P ⎝ ⎛⎭⎪⎫1,14在抛物线上,得p =18,故抛物线的标准方程为x 2=4y ,点F (0,1),准线为y =-1,∴FM =2,PQ =1+14=54,MQ =1,则直角梯形PQMF 的面积为12×⎝ ⎛⎭⎪⎫54+2×1=138. 【答案】 13811.已知椭圆方程x 24+y 23=1,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为________.【解析】 因为双曲线 x 2a 2-y 2b 2=1(a >0,b >0)的焦点是椭圆的顶点,顶点是椭圆的焦点,所以c =2,a =1,所以双曲线的离心率为2.【答案】 212.已知长为1+2的线段AB 的两个端点A ,B 分别在x 轴、y 轴上滑动,P 是AB 上一点,且AP →=22PB →,则点P 的轨迹C 的方程为________. 【解析】 设A (x 0,0),B (0,y 0),P (x ,y ),AP →=22PB →,又AP →=(x -x 0,y ),PB →=(-x ,y 0-y ),所以x -x 0=-22x ,y =22(y 0-y ),得x 0=⎝⎛⎭⎪⎫1+22x ,y 0=(1+2)y ,因为|AB |=1+2,即x 20+y 20=(1+2)2,所以⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1+22x 2+[(1+2)y ]2=(1+2)2,化简得x 22+y 2=1. ∴点P 的轨迹方程为x 22+y 2=1.【答案】 x 22+y 2=113.过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点.若AF =3,则BF =________.【解析】 由题意知,抛物线的焦点F 的坐标为(1,0).又∵|AF |=3,由抛物线定义知,点A 到准线x =-1的距离为3,∴点A 的横坐标为2.将x =2代入y 2=4x ,得y 2=8,由图知,y =22,∴A (2,22),∴直线AF 的方程为y =22(x -1).由⎩⎨⎧ y =22(x -1),y 2=4x ,解得⎩⎪⎨⎪⎧ x =12,y =-2或⎩⎨⎧x =2,y =2 2. 知点B 的坐标为⎝ ⎛⎭⎪⎫12,-2, ∴BF =12-(-1)=32.【答案】 3214.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为________.【解析】 因为椭圆的离心率为32,所以e =c a =32,c 2=34a 2=a 2-b 2,所以b 2=14a 2,即a 2=4b 2.双曲线的渐近线方程为y =±x ,代入椭圆方程得x 2a 2+x 2b 2=1,即x 24b 2+x 2b 2=5x 24b 2=1,所以x 2=45b 2,x =±25b ,y =±25b ,则在第一象限双曲线的渐近线与椭圆C 的交点坐标为⎝ ⎛⎭⎪⎫25b ,25b ,所以四边形的面积为4×25b ×25b =165b 2=16,所以b 2=5,a 2=20,所以椭圆方程为x 220+y 25=1. 【答案】 x 220+y 25=1二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,一条渐近线方程为y =x ,且过点(4,-10).(1)求双曲线方程;(2)若点M (3,m )在此双曲线上,求MF 1→·MF 2→.【解】 (1)∵双曲线的一条渐近线方程为y =x ,∴设双曲线方程为x 2-y 2=λ(λ≠0).把(4,-10)代入双曲线方程得42-(-10)2=λ,∴λ=6,∴所求双曲线方程为x 2-y 2=6.(2)由(1)知双曲线方程为x 2-y 2=6,∴双曲线的焦点为F 1(-23,0),F 2(23,0).∵点M 在双曲线上,∴32-m 2=6,∴m 2=3.∴MF 1→·MF 2→=(-23-3,-m )·(23-3,-m ) =(-3)2-(23)2+m 2=-3+3=0.16.(本小题满分14分)已知一条曲线C 在y 轴右侧,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.(1)求曲线C 的方程;(2)设直线l 交曲线C 于A ,B 两点,线段AB 的中点为D (2,-1),求直线l 的一般式方程. 【导学号:09390069】【解】 (1)设P (x ,y )是曲线C 上任意一点,那么点P (x ,y )满足:(x -1)2+y 2-x =1(x >0),化简得y 2=4x (x >0).即曲线C 的方程为y 2=4x (x >0).(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y 21=4x 1, ①y 22=4x 2, ② ①-②得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),易知l 的斜率k 存在,故(y 1+y 2)y 1-y 2x 1-x 2=4,即-2k =4,所以k =-2,故l 的一般式方程为2x +y -3=0.17.(本小题满分14分)如图1,抛物线关于x 轴对称,它的顶点是坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.图1(1)写出该抛物线的方程及其准线方程;(2)当直线P A 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率.【解】 (1)由已知条件,可设抛物线的方程为y 2=2px (p >0).∵点P (1,2)在抛物线上,∴22=2p ×1,解得p =2.故所求抛物线的方程是y 2=4x ,准线方程是x =-1.(2)设直线P A 的斜率为k P A ,直线PB 的斜率为k PB ,则k P A =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 1-1(x 2≠1). ∵P A 与PB 的斜率存在且倾斜角互补,∴k P A =-k PB .由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得y 21=4x 1,①y 22=4x 2,② ∴y 1-214y 21-1=-y 2-214y 22-1,∴y 1+2=-(y 2+2),∴y 1+y 2=-4.②-①,得k AB =y 2-y 1x 2-x 1=4y 1+y 2=-1(x 1≠x 2). 18.(本小题满分16分)已知抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交于点P ⎝ ⎛⎭⎪⎫32,6,求抛物线的方程和双曲线的方程. 【解】 依题意,设抛物线的方程为y 2=2px (p >0),∵点P ⎝ ⎛⎭⎪⎫32,6在抛物线上, ∴6=2p ×32,解得2p =4,∴所求抛物线的方程为y 2=4x .∵双曲线的左焦点在抛物线的准线x =-1上,∴c =1,则a 2+b 2=1,又点P ⎝ ⎛⎭⎪⎫32,6在双曲线上, ∴94a 2-6b 2=1,解方程组⎩⎪⎨⎪⎧ a 2+b 2=1,94a 2-6b2=1, 得⎩⎪⎨⎪⎧ a 2=14,b 2=34或⎩⎨⎧a 2=9,b 2=-8(舍去). ∴所求双曲线的方程为4x 2-43y 2=1.19.(本小题满分16分)如图2所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA→+OB →=(-4,-12).图2(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从点A 到点B 运动时,求△ABP 面积的最大值.【解】 (1)由⎩⎨⎧ y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.因为OA →+OB →=(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12), 所以⎩⎨⎧ -2pk =-4,-2pk 2-4=-12,解得⎩⎨⎧p =1,k =2.所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设点P (x 0,y 0),依题意,抛物线过点P 的切线与直线l 平行时,△ABP 的面积最大.设切线方程是y =2x +t ,由⎩⎨⎧ y =2x +t ,x 2=-2y ,得x 2+4x +2t =0, ∴Δ=42-4×2t =0,∴t =2.此时,点P 到直线l 的距离为两平行线间的距离,d =|2+2|5=455.由⎩⎨⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0, AB =1+k 2·(x 1+x 2)2-4x 1x 2=1+22·(-4)2-4×(-4)=410.∴△ABP 面积的最大值为12×410×455=8 2.20.(本小题满分16分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,以原点为圆心,椭圆的短半轴长为半径的圆与直线x -y +2=0相切.(1)求椭圆C 的方程;(2)若过点M (2,0)的直线与椭圆C 相交于两点A ,B ,设P 为椭圆上一点,且满足OA →+OB →=tOP →(O 为坐标原点),当|P A →-PB →|<253时,求实数t 的取值范围. 【解】 (1)由题意知,e =c a =22,所以e 2=c 2a 2=a 2-b 2a 2=12,即a 2=2b 2. 又因为b =21+1=1,所以a 2=2,b 2=1. 故椭圆C 的方程为x 22+y 2=1.(2)由题意知,直线AB 的斜率存在.设AB :y =k (x -2),A (x 1,y 1),B (x 2,y 2),P (x ,y ),由⎩⎪⎨⎪⎧ y =k (x -2),x 22+y 2=1,得(1+2k 2)x 2-8k 2x +8k 2-2=0.Δ=64k 4-4(2k 2+1)(8k 2-2)>0,k 2<12,x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k 2.∵OA →+OB →=tOP →,∴(x 1+x 2,y 1+y 2)=t (x ,y ),x =x 1+x 2t =8k 2t (1+2k 2), y =y 1+y 2t =1t [k (x 1+x 2)-4k ]=-4k t (1+2k 2). ∵点P 在椭圆上,∴(8k 2)2t 2(1+2k 2)2+2(-4k )2t 2(1+2k 2)2=2, ∴16k 2=t 2(1+2k 2).∵|P A →-PB →|<253,∴1+k 2|x 1-x 2|<253, ∴(1+k 2)[(x 1+x 2)2-4x 1x 2]<209,∴(1+k 2)⎣⎢⎡⎦⎥⎤64k 4(1+2k 2)2-4·8k 2-21+2k 2<209, ∴(4k 2-1)(14k 2+13)>0,∴k 2>14,∴14<k 2<12.∵16k 2=t 2(1+2k 2),∴t 2=16k 21+2k 2=8-81+2k 2, ∴-2<t <-263或263<t <2,∴实数t 的取值范围为⎝⎛⎭⎪⎫-2,-263∪⎝ ⎛⎭⎪⎫263,2.。

2019-2020学年高中数学(苏教版 选修2-1)学业分层测评:第2章 圆锥曲线与方程 2.2.1 Word版含答案

2019-2020学年高中数学(苏教版 选修2-1)学业分层测评:第2章 圆锥曲线与方程 2.2.1 Word版含答案

学业分层测评(建议用时:45分钟)[学业达标]一、填空题1.椭圆x29+y216=1的两个焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=3,则PF 2=___________________________________________.【解析】 方程x29+y216=1中,a =4,则PF 1+PF 2=8,∴PF 2=2a -PF 1=8-3=5.【答案】 52.椭圆x2m +y24=1的焦距为2,则m 的值为________.【解析】 ∵2c =2,∴c =1,∴m -4=1或4-m =1,∴m =3或5.【答案】 3或53.设F 1,F 2是椭圆x2a2+y225=1(a >5)的两个焦点,且|F 1F 2|=8,弦AB 过点F 1,则△ABF 2的周长为________. 【导学号:09390023】【解析】 易知|F 1F 2|=8=2c ,即c =4,∴a 2=25+16=41,∴a =41,因为弦AB 过点F 1,所以△ABF 2的周长为AB +AF 2+BF 2=AF 1+AF 2+BF 1+BF 2=4a =441.【答案】 4414.若方程x2m -y2m2-2=1表示焦点在y 轴上的椭圆,那么实数m 的取值范围是________.【解析】 ∵方程x2m -y2m2-2=1表示焦点在y 轴上的椭圆,将方程改写为y22-m2+x2m=1,∴有⎩⎨⎧2-m2>m ,m>0,解得0<m <1.【答案】 (0,1)5.设P 是椭圆x216+y212=1上一点,点P 到两焦点F 1,F 2的距离之差为2,则△PF 1F 2是________三角形(填“直角”“锐角”或“钝角”)【解析】 不妨设PF 1>PF 2,由条件知PF 1-PF 2=2,又PF 1+PF 2=2a =8,解得PF 1=5,PF 2=3.又∵F 1F 2=2c =216-12=4,∴F 1F 2+PF 2=PF 21,故△PF 1F 2是直角三角形.【答案】 直角6.设F 1,F 2是椭圆4x249+y26=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=4∶3,则△PF 1F 2的面积为________.【解析】 根据椭圆定义有⎩⎨⎧|PF1|∶|PF2|=4∶3,|PF1|+|PF2|=7,因此|PF 1|=4,|PF 2|=3.又因为|F 1F 2|=5,因此△PF 1F 2为直角三角形,S △PF 1F 2=12×3×4=6.【答案】 67.过点(3,-5)且与椭圆y225+x29=1有相同焦点的椭圆的标准方程为________.【解析】 椭圆y225+x29=1的焦点为(0,-4),(0,4),即c =4.由椭圆的定义知,2a =错误!+错误!, 解得a =2 5.由c 2=a 2-b 2,可得b 2=4,所以所求椭圆的标准方程为y220+x24=1. 【答案】 y220+x24=18.椭圆x212+y23=1的一个焦点为F 1,点P 在椭圆上,如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是________.【解析】 设椭圆的另一焦点为F 2,由条件可知PF 2∥OM ,∴PF 2⊥x 轴.设P 点纵坐标为y ,则由x212+y23=1,得y =±32,∴点M 的纵坐标为±34.【答案】 ±34二、解答题9.已知F 1,F 2是椭圆C :x2a2+y2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF1→⊥PF2→,若△PF 1F 2的面积为9,求b 的值. 【解】 如图所示,PF 1⊥PF 2,F 1F 2=2c ,根据椭圆的定义可知,PF 1+PF 2=2a ,在Rt △F 1PF 2中,PF 21+PF 2=4c 2.又S △PF 1F 2=12PF 1·PF 2=9,即PF 1·PF 2=18.∴(PF 1+PF 2)2=PF 21+PF 2+2PF 1·PF 2=4c 2+36=4a 2,∴4a 2-4c 2=36,即a 2-c 2=9,即b 2=9,∴b =3.10.求符合下列条件的参数的值或取值范围.(1)若方程x 2+ky 2=2表示焦点在x 轴上的椭圆,求k 的取值范围;(2)若椭圆8k 2x 2-ky 2=8的一个焦点为(0,7),求k 的值.【解】 (1)原方程可化为x22+y22k=1.∵其表示焦点在x 轴上的椭圆,∴⎩⎪⎨⎪⎧ k>0,2k<2,解得k >1.故k 的取值范围是k >1. (2)原方程可化为x21k2+y28-k =1.由题意得⎩⎪⎨⎪⎧ -8k >0,-8k >1k2,-8k -1k2=7,即⎩⎪⎨⎪⎧ k<0,k<-18,k =-1或k =-17.故k 的值为-1或-17.[能力提升]1.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-4,0)和C (4,0),顶点B 在椭圆x225+y29=1上,则sin A +sin C sin B的值为________. 【导学号:09390024】 【解析】 由椭圆的标准方程可知,椭圆的焦点在x 轴上,且半焦距c =a2-b2=25-9=4,2a =10.∴A (-4,0)和C (4,0)是椭圆的左、右焦点.∵点B 在椭圆上,∴|BA |+|BC |=2a =10,∴sin A +sin C sin B =2Rsin A +2Rsin C 2Rsin B=|BC|+|BA||AC|=108=54(R 为△ABC 外接圆的半径).【答案】 542.已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3,过P 且与x 轴垂直的直线恰过椭圆的一个焦点,则椭圆的方程为________.【解析】 由题意知椭圆焦点在x 轴上,设所求的椭圆方程为x2a2+y2b2=1(a >b >0),由已知条件得错误!解得a =4,c =2,b 2=12.故所求方程为x216+y212=1.【答案】 x216+y212=13. “mn >0”是“方程mx 2+ny 2=1表示的曲线是椭圆”的________条件.【解析】 由方程mx 2+ny 2=1,得x21m +y21n=1,所以要使方程mx 2+ny 2=1表示的曲线是椭圆,则⎩⎪⎨⎪⎧ 1m >0,1n >0,m≠n ,即m >0,n >0且m ≠n .所以,“mn >0”是“方程mx 2+ny 2=1表示的曲线是椭圆”的必要不充分条件.【答案】必要不充分4.已知椭圆的标准方程为x225+y2m2=1(m>0),焦距为6,求实数m的值.【解】①当椭圆焦点在x轴上时,由2c=6,得c=3.由椭圆的标准方程为x225+y2m2=1(m>0),得a2=25,b2=m2,所以m2=25-9=16.因为m>0,所以m=4.②当椭圆焦点在y轴上时,由2c=6,得c=3.由椭圆的标准方程为x225+y2m2=1(m>0),得a2=m2,b2=25,所以m2=25+9=34.因为m>0,所以m=34.综上所述,实数m的值为4或34.。

高中数学苏教版选修1-1学业分层测评:第2章 圆锥曲线与方程 2.2.1含解析

高中数学苏教版选修1-1学业分层测评:第2章 圆锥曲线与方程 2.2.1含解析

学业分层测评(六) 椭圆的标准方程(建议用时:45分钟)学业达标]一、填空题1.圆x225+y216=1上一点M到一个焦点的距离为4,则M到另一个焦点的距离为________.【解析】设椭圆x225+y216=1的左、右焦点分别为F1、F2,不妨令MF1=4,由MF1+MF2=2a=10,得MF2=10-MF1=10-4=6.【答案】 62.若a=6,b=35,则椭圆的标准方程是________.【解析】椭圆的焦点在x轴上时,方程为x236+y235=1,在y轴上时,方程为y236+x235=1.【答案】x236+y235=1或y236+x235=13.(2016·汉中高二检测)已知椭圆的两焦点为F1(-2,0),F2(2,0),P为椭圆上的一点,且F1F2是PF1与PF2的等差中项.该椭圆的方程是________.【解析】∵PF1+PF2=2F1F2=2×4=8,∴2a=8,∴a=4,∴b2=a2-c2=16-4=12,∴椭圆方程是x216+y212=1.【答案】x216+y212=14.过(-3,2)点且与x29+y24=1有相同焦点的椭圆方程为________.【解析】与x29+y24=1有相同焦点的椭圆可设为x29-k+y24-k=1且k<4,将(-3,2)代入得:k=-6.【答案】x215+y210=15.把椭圆x 216+y 29=1的每个点的横坐标缩短到原来的14,纵坐标缩短到原来的13,则所得曲线方程为________. 【24830028】【解析】 原方程化为⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫y 32=1,所得曲线为x 2+y 2=1.【答案】 x 2+y 2=16.椭圆4x 2+9y 2=1的焦点坐标是________.【解析】 椭圆化为标准形式为x 214+y 219=1,∴a 2=14,b 2=19,∴c 2=a 2-b 2=14-19=536, 且焦点在x 轴上,故为⎝ ⎛⎭⎪⎫±56,0.【答案】 ⎝ ⎛⎭⎪⎫±56,07.方程x 22m -y 2m -1=1表示焦点在x 轴上的椭圆,则m 的取值范围是________.【解析】将方程化为x 22m +y21-m=1,由题意得⎩⎨⎧2m>0,1-m>0,2m>1-m ,解之得13<m<1.【答案】13<m<1 8.椭圆x 225+y 29=1的焦点为F 1,F 2,P 为椭圆上的一点,已知PF 1→·PF 2→=0,则△F 1PF 2的面积为________.【解析】 ∵PF 1→·PF 2→=0,∴PF 1⊥PF 2.∴PF 21+PF 22=F 1F 22且PF 1+PF 2=2a. 又a =5,b =3,∴c =4,∴⎩⎨⎧PF 21+PF 22=64 ①PF 1+PF 2=10 ②②2-①,得2PF 1·PF 2=102-64,∴PF 1·PF 2=18,∴△F 1PF 2的面积为9. 【答案】 9 二、解答题9.求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,且经过点(2,0)和点(0,1);(2)焦点在y 轴上,与y 轴的一个交点为P(0,-10),P 到它较近的一个焦点的距离等于2.【解】 (1)因为椭圆的焦点在x 轴上,所以可设它的标准方程为x 2a 2+y 2b 2=1(a>b>0),∵椭圆经过点(2,0)和(0,1),∴⎩⎪⎨⎪⎧22a 2+0b 2=1,0a 2+1b 2=1,∴⎩⎨⎧a 2=4,b 2=1,故所求椭圆的标准方程为x24+y 2=1.(2)∵椭圆的焦点在y 轴上,所以可设它的标准方程为y 2a 2+x 2b 2=1(a>b>0),∵P(0,-10)在椭圆上,∴a =10.又∵P 到它较近的一个焦点的距离等于2,∴-c -(-10)=2,故c =8,∴b 2=a 2-c 2=36. ∴所求椭圆的标准方程是y 2100+x 236=1.10.已知椭圆8x 281+y 236=1上一点M 的纵坐标为2.(1)求M 的横坐标;(2)求过M 且与x 29+y 24=1共焦点的椭圆的方程.【解】 (1)把M 的纵坐标代入8x 281+y 236=1,得8x 281+436=1,即x 2=9.∴x =±3.即M 的横坐标为3或-3.。

高中数学(苏教版 选修2-1)第2章 圆锥曲线与方程 曲线与方程2

高中数学(苏教版 选修2-1)第2章 圆锥曲线与方程 曲线与方程2

一、填空题1.如图2-6-2所示,方程y =|x |x2表示的曲线是________.图2-6-2【解析】 y =|x |x2=⎩⎨⎧1x,x >0,-1x ,x <0,所以图②满足题意.【答案】 ②2.方程(x +y -1)x -y -3=0表示的曲线是________.【解析】 方程(x +y -1)x -y -3=0等价于⎩⎪⎨⎪⎧x -y -3≥0,x +y -1=0,或x -y -3=0.即x +y -1=0(x ≥2)或x -y -3=0,故方程(x +y -1)x -y -3=0表示射线x +y -1=0(x ≥2)和直线x -y -3=0.【答案】 射线x +y -1=0(x ≥2)和直线x -y -3=03.条件甲“曲线C 上的点的坐标都是方程f (x ,y )=0的解”,条件乙“曲线C 是方程f (x ,y )=0的图形”,则甲是乙的________条件.【解析】 在曲线的方程和方程的曲线定义中,下面两个条件缺一不可:(1)曲线上点的坐标都是方程的解,(2)以方程的解为坐标的点都在曲线上.很显然,条件甲满足(1)而不一定满足(2).所以甲是乙的必要不充分条件.【答案】 必要不充分4.在平面直角坐标系中,方程|x 2-4|+|y 2-4|=0表示的图形是________.【解析】 易知|x 2-4|≥0,|y 2-4|≥0,由|x 2-4|+|y 2-4|=0,得⎩⎪⎨⎪⎧ x 2-4=0,y 2-4=0,解得⎩⎪⎨⎪⎧x =±2,y =±2,表示的图形为(2,2),(2,-2),(-2,2),(-2,-2)四个点.【答案】 (2,2),(2,-2),(-2,2),(-2,-2)四个点 5.下列命题正确的是________(填序号).①方程xy -2=1表示斜率为1,在y 轴上的截距是2的直线;②△ABC 的顶点坐标分别为A (0,3),B (-2,0),C (2,0),则中线AO 的方程是x =0; ③到x 轴距离为5的点的轨迹方程是y =5;④曲线2x 2-3y 2-2x +m =0通过原点的充要条件是m =0.【解析】 对照曲线和方程的概念,①中的方程需满足y ≠2;②中“中线AO 的方程是x =0(0≤y ≤3)”;而③中动点的轨迹方程为|y |=5,从而只有④是正确的.【答案】 ④6.下列各组方程中,表示相同曲线的一组方程是________________(填序号).【导学号:09390057】①y =x 与y 2=x ;②y =x 与xy=1;③y 2-x 2=0与|y |=|x |;④y =lg x 2与y =2lg x .【解析】 ①中y =x 时,y ≥0,x ≥0,而y 2=x 时,x ≥0,y ∈R ,故不表示同一曲线;②中xy =1时,y ≠0,而y =x 中y =0成立,故不表示同一曲线;④中定义域不同,故只有③正确.【答案】 ③7.点A (1,-2)在曲线x 2-2xy +ay +5=0上,则a =________.【解析】 由题意可知点(1,-2)是方程x 2-2xy +ay +5=0的一组解,即1+4-2a +5=0,解得a =5.【答案】 58.已知定点P (x 0,y 0)不在直线l :f (x ,y )=0上,则方程f (x ,y )-f (x 0,y 0)=0表示的直线是________(填序号).①过点P 且垂直于l 的直线; ②过点P 且平行于l 的直线; ③不过点P 但垂直于l 的直线; ④不过点P 但平行于l 的直线.【解析】 点P 的坐标(x 0,y 0)满足方程f (x ,y )-f (x 0,y 0)=0,因此方程表示的直线过点P .又∵f (x 0,y 0)为非零常数,∴方程可化为f (x ,y )=f (x 0,y 0),方程表示的直线与直线l 平行.【答案】 ② 二、解答题9.分析下列曲线上的点与方程的关系.(1)求第一、三象限两轴夹角平分线上点的坐标满足的关系; (2)作出函数y =x 2的图象,指出图象上的点与方程y =x 2的关系;(3)说明过点A(2,0)平行于y轴的直线l与方程|x|=2之间的关系.【解】(1)第一、三象限两轴夹角平分线l上点的横坐标x与纵坐标y相等,即y=x.①l上点的坐标都是方程x-y=0的解;②以方程x-y=0的解为坐标的点都在l上.(2)函数y=x2的图象如图所示是一条抛物线,这条抛物线上的点的坐标都满足方程y=x2,即方程y=x2对应的曲线是如图所示的抛物线,抛物线的方程是y=x2.(3)如图所示,直线l上点的坐标都是方程|x|=2的解,然而坐标满足方程|x|=2的点不一定在直线l上,因此|x|=2不是直线l的方程.10.证明圆心为坐标原点,半径等于5的圆的方程是x2+y2=25,并判断点M1(3,-4),M2(-25,2)是否在这个圆上.【解】①设M(x0,y0)是圆上任意一点,因为点M到原点的距离等于5,所以x20+y20=5,也就是x20+y20=25,即(x0,y0)是方程x2+y2=25的解.②设(x0,y0)是方程x2+y2=25的解,那么x20+y20=25,两边开方取算术平方根,得x20+y20=5,即点M(x0,y0)到原点的距离等于5,点M(x0,y0)是这个圆上的点.由①②可知,x2+y2=25是圆心为坐标原点,半径等于5的圆的方程.把点M1(3,-4)代入方程x2+y2=25,左右两边相等,(3,-4)是方程的解,所以点M1在这个圆上;把点M2(-25,2)代入方程x2+y2=25,左右两边不相等,(-25,2)不是方程的解,所以点M2不在这个圆上.[能力提升]1.已知0≤α<2π,点P(cos α,sin α)在曲线(x-2)2+y2=3上,则α的值为________.【解析】 由(cos α-2)2+sin 2α=3,得cos α=12.又0≤α<2π,∴α=π3或5π3.【答案】 π3或5π32.方程(x 2+y 2-4)x +y +1=0的曲线形状是____________(填序号).图2-6-3【解析】 由题意可得x +y +1=0或⎩⎪⎨⎪⎧x 2+y 2-4=0,x +y +1≥0,它表示直线x +y +1=0和圆x 2+y 2-4=0在直线x +y +1=0右上方的部分. 【答案】 ③3.由方程(|x |+|y |-1)(x 2+4)=0表示的曲线所围成的封闭图形的面积是________. 【解析】 表示的曲线为|x |+|y |=1,其图形如图所示,为一正方形,S =(2)2=2.【答案】 24.已知点P (x 0,y 0)是曲线f (x ,y )=0和曲线g (x ,y )=0的交点,求证:点P 在曲线f (x ,y )+λg (x ,y )=0(λ∈R )上.【证明】 因为P 是曲线f (x ,y )=0和曲线g (x ,y )=0的交点,所以P 在曲线f (x ,y )=0上,即f (x 0,y 0)=0,P 在曲线g (x ,y )=0上,即g (x 0,y 0)=0,所以f (x 0,y 0)+λg (x 0,y 0)=0+λ0=0,故点P 在曲线f (x ,y )+λg (x ,y )=0(λ∈R )上.。

2017-2018学年高二数学苏教版选修2-1学业分层测评:第2章 圆锥曲线与方程 2.2.2

2017-2018学年高二数学苏教版选修2-1学业分层测评:第2章 圆锥曲线与方程 2.2.2

学业分层测评(建议用时:45分钟)学业达标]一、填空题1.若椭圆+=1(0<a <36)的焦距为4,则a =________.x 236y 2a 【解析】 ∵0<a <36,∴36-a =22,∴a =32.【答案】 322.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是________.【解析】 方程可化为+=1,易知a =5,b =3,c =4,y 225x 29∴长轴长为10,短轴长为6,离心率为.45【答案】 10,6,453.已知椭圆+=1与椭圆+=1有相同的长轴,椭圆+=1x 2a 2y 2b 2x 225y 216x 2a 2y 2b 2的短轴长与椭圆+=1的短轴长相等,则a 2=________,b 2=________.y 221x 29【解析】 因为椭圆+=1的长轴长为10,焦点在x 轴上,椭圆+x 225y 216y 221=1的短轴长为6,所以a 2=25,b 2=9.x 29【答案】 25 94.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为,且G 上32一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为________.【解析】 由题意得2a =12,=,所以a =6,c =3,b =3.ca 323故椭圆方程为+=1.x 236y 29【答案】 +=1x 236y 295.椭圆+=1的离心率为,则实数m 的值为________.x 2m y 2412【导学号:09390028】【解析】 当椭圆的焦点在x 轴上时,a 2=m ,b 2=4,且m >4,则e 2==1-=1-=,∴m =;c 2a 2b 2a 24m 14163当椭圆的焦点在y 轴上时,a 2=4,b 2=m ,且0<m <4,则e 2==1-=1-=,∴m =3.c 2a 2b 2a 2m414【答案】 3或1636.椭圆+=1(a >b >0)的左焦点F 到过顶点A (-a ,0),B (0,b )的直线x 2a 2y 2b 2,则椭圆的离心率为________.b7【解析】 由题意知直线AB 的方程为+=1,即bx -ay +ab =0.x-a yb 左焦点为F (-c,0),则=.|-cb +ab |a 2+b 2b7∴(a -c )=,7a 2+b 2∴7(a -c )2=a 2+b 2=a 2+a 2-c 2=2a 2-c 2,即5a 2-14ac +8c 2=0,∴8e 2-14e +5=0,解得e =或e =.1254又∵0<e <1,∴e =.12【答案】 127.某航天飞行控制中心对某卫星成功实施了第二次近月制动,卫星顺利进入周期为3.5 h 的环月小椭圆轨道(以月球球心为焦点).卫星远月点(距离月球表面最远的点)高度降至1 700km ,近月点(距离月球表面最近的点)高度是200km ,月球的半径约是1 800 km ,且近月点、远月点及月球的球心在同一直线上,此时小椭圆轨道的离心率是________.图2­2­4【解析】 可设小椭圆的长轴长为2a ,焦距为2c ,由已知得2a =1 700+2×1 800+200,∴a =2 750.又a +2c =1 700+1 800,∴c =375.∴e ===.ca 3752 750322【答案】 3228.过椭圆x 2+2y 2=4的左焦点作倾斜角为30°的直线,交椭圆于A ,B 两点,则弦长AB =________.【解析】 椭圆左焦点为(-,0),2∴直线方程为y =(x +),332由Error!得5x 2+4x -8=0,2∴x 1+x 2=-,x 1x 2=-,42585∴弦长AB ==.(1+13)[(-425)2-4×(-85)]165【答案】 165二、解答题9.若椭圆的中心在原点,焦点在x 轴上,点P 是椭圆上的一点,P 在x 轴上的射影恰为椭圆的左焦点,P 与中心O 的连线平行于右顶点与上顶点的连线,-,试求椭圆的离心率及其方程.105【解】 令x =-c ,代入+=1(a >b >0),x 2a 2y 2b 2得y 2=b 2=,∴y =±.(1-c 2a 2)b 4a 2b 2a 设P,椭圆的右顶点A (a,0),上顶点B (0,b ).(-c ,b 2a )∵OP ∥AB ,∴k OP =k AB ,∴-=-,b 2ac ba ∴b =c .而a 2=b 2+c 2=2c 2,∴a =c ,∴e ==.2ca 22又∵a -c =-,解得a =,c =,∴b =,1051055∴所求椭圆的标准方程为+=1.x 210y 2510.设直线y =x +b 与椭圆+y 2=1相交于A ,B 两个不同的点.x 22(1)求实数b 的取值范围;(2)当b =1时,求|AB |.【解】 (1)将y =x +b 代入+y 2=1,x 22消去y ,整理得3x 2+4bx +2b 2-2=0.①因为直线y =x +b 与椭圆+y 2=1相交于A ,B 两个不同的点,x 22所以Δ=16b 2-12(2b 2-2)=24-8b 2>0,<b <.33所以b 的取值范围为(-,).33(2)设A (x 1,y 1),B (x 2,y 2).当b =1时,方程①为3x 2+4x =0.解得x 1=0,x 2=-.43所以y 1=1,y 2=-.13所以|AB |==.(x 1-x 2)2+(y 1-y 2)2423能力提升]1.已知椭圆C :+=1(a >b >0)的左、右焦点为F 1,F 2,离心率为,x 2a 2y 2b 233过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为4,则C 的方程为3________.【解析】 根据题意,因为△AF 1B 的周长为4,所以3AF 1+AB +BF 1=AF 1+AF 2+BF 1+BF 2=4a =4,所以a =.又因为椭圆的离33心率e ==,所以c =1,b 2=a 2-c 2=3-1=2,所以椭圆C 的方程为ca 33+=1.x 23y 22【答案】 +=1x 23y 222.若A 为椭圆x 2+4y 2=4的右顶点,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,则该三角形的面积为________. 【导学号:09390029】【解析】 由题意得,该三角形的两直角边关于x 轴对称,且其中一边在过点A (2,0),斜率为1的直线上,且此直线的方程为y =x -2,代入x 2+4y 2=4,得5x 2-16x +12=0,解得x 1=2,x 2=.把x =代入椭圆方程,得6565y =±,∴三角形的面积S =××=.451285(2-65)1625【答案】 16253.过椭圆C :+=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于x 2a 2y 2b 2另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若<k <,则椭圆离心率1312的取值范围是________.【解析】 因为<k <,所以点B 在第一象限.由题意可知点B 的坐标为1312.因为点A 的坐标为(-a ,0),所以k =,所以<<.(c ,b 2a )b 2a -0c +a 13b 2a-0c +a 12又因为b 2=a 2-c 2,所以====1-e ,所以b 2a -0c +a b 2ac +a 2a 2-c 2a 2+ac a -ca <1-e <,解得<e <,故椭圆离心率的取值范围是.13121223(12,23)【答案】 (12,23)4.(2016·绍兴高二检测)如图2­2­5,F 1,F 2分别是椭圆C :+=1(a >b >0)的左、右焦点,A 是椭圆C 的上顶点,B 是直线AF 2与椭x 2a 2y 2b 2圆C 的另一个交点,∠F 1AF 2=60°.图2­2­5(1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为40,求a ,b 的值.3【解】 (1)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e = .12(2)法一:a 2=4c 2,b 2=3c 2,直线AB 的方程为y =-(x -c ),3将其代入椭圆方程3x 2+4y 2=12c 2,得B ,(85c ,-335c)所以|AB |=·=c .1+3|85c -0|165由S △AF 1B =|AF 1|·|AB |·sin ∠F 1AB =a ·c ·=a 2=40,1212165322353解得a =10,b =5.3 法二:设|AB |=t .因为|AF 2|=a ,所以|BF 2|=t -a .由椭圆定义|BF 1|+|BF 2|=2a 可知,|BF 1|=3a -t ,再由余弦定理(3a -t )2=a 2+t 2-2at cos 60°,可得t =a .85由S △AF 1B =a ·a ·=a 2=40知,a =10,b =5.12853223533。

2019-2020学年高中数学(苏教版 选修2-1)学业分层测评:第2章 圆锥曲线与方程 2.3.1 Word版含答案

2019-2020学年高中数学(苏教版 选修2-1)学业分层测评:第2章 圆锥曲线与方程 2.3.1 Word版含答案

学业分层测评(建议用时:45分钟)[学业达标]一、填空题1.双曲线y216-x29=1上一点P到一个焦点的距离是10,那么点P到另一个焦点的距离是________.【解析】据题意知|PF1-PF2|=|PF1-10|=8,∴PF1=18或2.【答案】18或22.双曲线x2m2+12-y24-m2=1的焦距是________.【解析】由题意,得c=错误!=4,∴焦距为2c=8. 【答案】83.已知双曲线x216-y225=1的左焦点为F,点P为双曲线右支上的一点,且PF与圆x2+y2=16相切于点N,M为线段PF 的中点,O为坐标原点,则|MN|-|MO|=________.【解析】设F′是双曲线的右焦点,连接PF′(图略),因为M,O分别是FP,FF′的中点,所以|MO|=12|PF′|.又|FN|=|OF|2-|ON|2=5,且由双曲线的定义知|PF|-|PF′|=8,故|MN|-|MO|=|MF|-|FN|-12|PF′|=12(|PF|-|PF′|)-|FN|=12×8-5=-1.【答案】-14.焦点分别是(0,-2),(0,2),且经过点P(-3,2)的双曲线的标准方程是________.【解析】由题意,焦点在y轴上,且c=2,可设双曲线方程为y2m-x24-m=1(0<m<4),将P(-3,2)代入,解得m=1.因此所求双曲线标准方程为y2-x23=1.【答案】y2-x23=15.已知双曲线x2-y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则PF1+PF2的值为________.【解析】 不妨设P 在双曲线的右支上,因为PF 1⊥PF 2,所以(22)2=PF 21+PF 2,又因为|PF 1-PF 2|=2,所以(PF 1-PF 2)2=4,可得2PF 1·PF 2=4,则(PF 1+PF 2)2=PF 21+PF 2+2PF 1·PF 2=12,所以PF 1+PF 2=2 3.【答案】 2 36.已知双曲线x29-y216=1上一点M 的横坐标为5,则点M 到左焦点的距离是________. 【导学号:09390032】【解析】 由于双曲线x29-y216=1的右焦点为F (5,0),将x M =5代入双曲线可得|y M |=163,即双曲线上一点M 到右焦点的距离为163,故利用双曲线的定义可求得点M 到左焦点的距离为2a +|y M |=6+163=343.【答案】 3437.已知F 1,F 2是双曲线x216-y29=1的左,右焦点,P 是双曲线右支上一点,M 是PF 1的中点,若OM =1,则PF 1的值为________.【解析】 因为M 是PF 1的中点,所以PF 2=2OM =2,又由双曲线的定义知:PF 1-PF 2=2a =8,所以PF 1=10.【答案】 108.若圆x 2+y 2-4x -9=0与y 轴的两个交点A ,B 都在双曲线上,且A ,B 两点恰好将此双曲线的焦距三等分,则此双曲线的标准方程为________. 【导学号:09390033】【解析】 解方程组⎩⎨⎧ x2+y2-4x -9=0,x =0,得⎩⎨⎧ x =0,y =3或⎩⎨⎧x =0,y =-3.∵圆x 2+y 2-4x -9=0与y 轴的两个交点A ,B 都在双曲线上,且A ,B 两点恰好将此双曲线的焦距三等分,∴A (0,-3),B (0,3),且a =3,2c =18, ∴b 2=⎝ ⎛⎭⎪⎫1822-32=72,∴双曲线方程为y29-x272=1. 【答案】 y29-x272=1二、解答题9.求适合下列条件的双曲线的标准方程. (1)a =4,经过点A ⎝ ⎛⎭⎪⎫1,-4103; (2)经过点(3,0),(-6,-3). 【解】 (1)当焦点在x 轴上时, 设所求标准方程为x216-y2b2=1(b >0),把A 点的坐标代入,得b 2=-1615×1609<0,不符合题意; 当焦点在y 轴上时,设所求标准方程为y216-x2b2=1(b >0), 把A 点的坐标代入,得b 2=9, ∴所求双曲线的标准方程为y216-x29=1. (2)设双曲线的方程为mx 2+ny 2=1(mn <0), ∵双曲线经过点(3,0),(-6,-3), ∴⎩⎨⎧9m +0=1,36m +9n =1,解得⎩⎪⎨⎪⎧m =19,n =-13,∴所求双曲线的标准方程为x29-y23=1. 10.已知F 1,F 2是双曲线x29-y216=1的两个焦点,P 是双曲线左支上的点,且PF 1·PF 2=32,试求△F 1PF 2的面积.【解】 双曲线的标准方程为x29-y216=1,可知a =3,b =4,c =a2+b2=5.由双曲线的定义,得|PF 2-PF 1|=2a =6,将此式两边平方,得PF 21+PF 2-2PF 1·PF 2=36, ∴PF 21+PF 2=36+2PF 1·PF 2=36+2×32=100. 在△F 1PF 2中,由余弦定理,得cos ∠F 1PF 2=PF21+PF22-F1F222PF1·PF2=100-1002PF1·PF2=0, ∴∠F 1PF 2=90°,∴S △F 1PF 2=12PF 1·PF 2=12×32=16.[能力提升]1.设F 1,F 2是双曲线x 2-y224=1的两个焦点,P 是双曲线上一点,且3PF 1=4PF 2,则△PF 1F 2的面积为________.【解析】 由题意知PF 1-PF 2=2a =2, ∴43PF 2-PF 2=2, ∴PF 2=6,PF 1=8. 又F 1F 2=10,∴△PF 1F 2为直角三角形,且∠F 1PF 2=90°, ∴S △PF 1F 2=12×6×8=24. 【答案】 242.设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为_____.【解析】 对于椭圆C 1,∵长轴长2a 1=26,∴a 1=13, 又离心率e 1=c1a1=513,∴c 1=5.由题意知曲线C 2为双曲线,且与椭圆C 1共焦点, ∴c 2=5.又2a 2=8,∴a 2=4,b 2=c22-a22=3,又焦点在x 轴上, 故曲线C 2的标准方程为x216-y29=1. 【答案】 x216-y29=13.已知双曲线的两个焦点F 1(-5,0),F 2(5,0),P 是双曲线上一点,且PF1→·PF2→=0,PF 1·PF 2=2,则双曲线的标准方程为________.【解析】 由题意可设双曲线方程为x2a2-y2b2=1(a >0,b >0). 由PF1→·PF2→=0,得PF 1⊥PF 2. 根据勾股定理得PF 21+PF 2=(2c )2,即PF 21+PF 2=20.根据双曲线定义,有PF 1-PF 2=±2a . 两边平方并代入PF 1·PF 2=2,得20-2×2=4a 2,解得a 2=4,从而b 2=5-4=1. 故双曲线的标准方程是x24-y 2=1. 【答案】 x24-y 2=14.2008年5月12日,四川汶川发生里氏8.0级地震,为了援救灾民,某部队在如图2-3-1所示的P 处空降了一批救灾药品,今要把这批药品沿道路P A ,PB 送到矩形灾民区ABCD 中去,已知P A =100km ,PB =150km ,BC =60km ,∠APB =60°,试在灾民区中确定一条界线,使位于界线一侧的点沿道路P A 送药较近,而另一侧的点沿道路PB 送药较近,请说明这一界线是一条什么曲线?并求出其方程.图2-3-1【解】 矩形灾民区ABCD 中的点可分为三类,第一类沿道路P A 送药较近,第二类沿道路PB 送药较近,第三类沿道路P A 和PB 送药一样远近.依题意,界线是第三类点的轨迹.设M 为界线上的任一点,则P A +MA =PB +MB ,MA -MB =PB -P A=50(定值),∴界线是以A ,B 为焦点的双曲线的右支的一部分. 如图,以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴,建立平面直角坐标系,设所求双曲线方程的标准形式为x2a2-y2b2=1(a >0,b >0),∵a =25,2c =|AB |=1002+1502-2×100×150×cos 60°=507, ∴c =257,b 2=c 2-a 2=3 750, 故双曲线的标准方程为x2625-y23 750=1.注意到点C 的坐标为(257,60),故y 的最大值为60,此时x =35,故界线的曲线方程为x2625-y23 750=1(25≤x ≤35,y >0).。

高中数学苏教版高二选修2-1学业分层测评:第2章_圆锥曲线与方程_2.3.2

高中数学苏教版高二选修2-1学业分层测评:第2章_圆锥曲线与方程_2.3.2

学业分层测评(建议用时:45分钟)学业达标]一、填空题1.设双曲线C 的两个焦点为(-2,0),(2,0),一个顶点是(1,0),则C 的方程为________.【解析】 由题意可知,双曲线的焦点在x 轴上,且c =2,a =1,则b 2=c 2-a 2=1,所以双曲线C 的方程为x 2-y 2=1.【答案】 x 2-y 2=12.双曲线的渐近线方程为y =±34x ,则双曲线的离心率为________.【解析】 e =c a =1+⎝ ⎛⎭⎪⎫b a 2, 当b a =34时,e =54;当b a =43时,e =53.【答案】 53或543.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 的值为________. 【解析】 方程可化为y 2-x 2-1m =1.由条件知2-1m =2×2,解得m =-14.【答案】 -144.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的实轴长、虚轴长、焦距成等差数列,则双曲线的离心率为________.【解析】 由2a +2c =4b ,得a +c =2b =2c 2-a 2,即a 2+2ac +c 2=4c 2-4a 2,得5a 2+2ac -3c 2=0,(5a -3c )·(a +c )=0,即5a =3c ,e =c a =53.【答案】 535.已知双曲线中心在原点,一个顶点的坐标为(3,0),且焦距与虚轴长之比为5∶4,则双曲线的标准方程是________.【解析】 双曲线中心在原点,一个顶点的坐标为(3,0),则焦点在x 轴上,且a =3,焦距与虚轴长之比为5∶4,即c ∶b =5∶4,解得c =5,b =4,则双曲线的标准方程是x 29-y 216=1.【答案】 x 29-y 216=16.已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为________. 【导学号:09390037】【解析】 由题意知e 1=c 1a ,e 2=c 2a ,∴e 1·e 2=c 1a ·c 2a =c 1c 2a 2=32.又∵a 2=b 2+c 21,c 22=a 2+b 2,∴c 21=a 2-b 2,∴c 21c 22a 4=a 4-b 4a 4=1-⎝ ⎛⎭⎪⎫b a 4,即1-⎝ ⎛⎭⎪⎫b a 4=34, 解得b a =±22,∴b a =22.令x 2a 2-y 2b 2=0,解得bx ±ay =0,∴x ±2y =0.【答案】 x ±2y =07.双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于________.【解析】 双曲线的一条渐近线方程为x a -y b =0,即bx -ay =0,焦点(c,0)到该渐近线的距离为bc a 2+b 2=bc c =3,故b =3,结合c a =2,c 2=a 2+b 2得c =2,则双曲线C 的焦距为2c =4.【答案】 48.y =kx +2与双曲线x 29-4y 29=1右支交于不同的两点,则实数k 的取值范围是________.【解析】 由⎩⎪⎨⎪⎧ y =kx +2,x 29-49y 2=1,消去y 得(1-4k 2)x 2-16kx -25=0,∴⎩⎪⎨⎪⎧ 1-4k 2≠0,Δ=4(25-36k 2)>0,16k 1-4k 2>0,-251-4k 2>0,∴-56<k <-12.【答案】 ⎝ ⎛⎭⎪⎫-56,-12 二、解答题9.已知双曲线的中心在原点,对称轴为坐标轴,过点P (3,-1),一条渐近线与直线3x -y =2平行,求双曲线的标准方程.【解】 ①若双曲线的焦点在x 轴上,则由渐近线方程y =3x 得b a =3,∴b =3a .故可设双曲线的标准方程为x 2a 2-y 2(3a )2=1,又双曲线过点P (3,-1), ∴9a 2-19a 2=1,解得a 2=809,∴b 2=80,∴所求双曲线的标准方程为x 2809-y 280=1.②若双曲线的焦点在y 轴上,则由渐近线方程y =3x 得a b =3,∴a =3b .故可设双曲线的标准方程为y 2(3b )2-x 2b 2=1. ∵点P (3,-1)在双曲线上,∴(-1)29b 2-32b 2=1,解得9b 2=-80,不合题意.综上所述,所求双曲线的标准方程是x 2809-y 280=1.10.直线l 在双曲线x 23-y 22=1上截得的弦长为4,其斜率为2,求l 的方程.【解】 设直线l 的方程为y =2x +m ,由⎩⎪⎨⎪⎧ y =2x +m ,x 23-y 22=1,得10x 2+12mx +3(m 2+2)=0.(*)设直线l 与双曲线交于A (x 1,y 1),B (x 2,y 2)两点,由根与系数的关系,得x 1+x 2=-65m ,x 1x 2=310(m 2+2).又y 1=2x 1+m ,y 2=2x 2+m ,∴y 1-y 2=2(x 1-x 2),∴AB 2=(x 1-x 2)2+(y 1-y 2)2=5(x 1-x 2)2=5(x 1+x 2)2-4x 1x 2]=5⎣⎢⎡⎦⎥⎤3625m 2-4×310(m 2+2). ∵AB =4,∴365m 2-6(m 2+2)=16.∴3m 2=70,m =±2103. 由(*)式得Δ=24m 2-240,把m =±2103代入上式,得Δ>0,∴m 的值为±2103.∴所求l 的方程为y =2x ±2103.能力提升]1.如图2-3-2,F 1和F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,A 和B 是以O 为圆心,以|OF 1|长为半径的圆与该双曲线左支的两个交点,且△F 2AB 是等边三角形,则双曲线的离心率为________. 【导学号:09390038】图2-3-2【解析】 连接AF 1,∵|F 1F 2|=2c ,且△AF 2B 为等边三角形,又|OF 1|=|OA |=|OF 2|,∴△AF 1F 2为直角三角形,又∵∠AF 2F 1=12×60°=30°,∴|AF 2|=3c ,|AF 1|=c .由双曲线的定义知3c -c =2a ,∴e =c a =23-1=3+1. 【答案】 3+1 2.过双曲线C :x 2a 2-y 2b 2=1的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为________.【解析】 由直线方程x =a 和渐近线方程y =b a x 联立解得A (a ,b ).由以C 的右焦点为圆心,4为半径的圆过原点O ,可得c =4,即右焦点F (4,0).由该圆过A 点,可得|F A |2=(a -4)2+b 2=a 2+b 2-8a +16=c 2-8a +16=c 2,所以8a =16,则a =2,所以b 2=c 2-a 2=16-4=12.故双曲线C 的方程为x 24-y 212=1.【答案】 x 24-y 212=13.已知F 1,F 2为双曲线x 25-y 24=1的左、右焦点,P (3,1)为双曲线内一点,点A 在双曲线上,则AP +AF 2的最小值为________.【解析】 首先根据定义,得AF 2=AF 1-2a .∵AP +AF 2=AP +AF 1-2a =AP +AF 1-25,∴要求AP +AF 2的最小值,只需求AP +AF 1的最小值.由图可知,当F 1,A ,P 三点共线时,AP +AF 1=PF 1取得最小值,最小值为37,∴AP +AF 2的最小值为37-2 5.【答案】 37-2 54.已知双曲线C :x 2-y 2=1及直线l :y =kx -1.(1)若直线l 与双曲线C 有两个不同的交点,求实数k 的取值范围;(2)若直线l 与双曲线C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值.【解】 (1)联立方程组⎩⎨⎧y =kx -1,x 2-y 2=1, 消去y 并整理得,(1-k 2)x 2+2kx -2=0.∵直线与双曲线有两个不同的交点,则⎩⎨⎧1-k 2≠0,Δ=4k 2+8(1-k 2)>0, 解得-2<k <2且k ≠±1.∴若l 与C 有两个不同交点,实数k 的取值范围为 (-2,-1)∪(-1,1)∪(1,2).(2)法一 设A (x 1,y 1),B (x 2,y 2),对于(1)中的方程(1-k 2)x 2+2kx -2=0,由根与系数的关系,得x 1+x 2=-2k 1-k 2,x 1x 2=-21-k 2, ∴AB =1+k 2|x 1-x 2| =1+k 2·⎝ ⎛⎭⎪⎫-2k 1-k 22+81-k 2 =(1+k 2)(8-4k 2)(1-k 2)2. 又∵点O (0,0)到直线y =kx -1的距离d =11+k 2, ∴S △AOB =12·AB ·d =128-4k 2(1-k 2)2=2, 即2k 4-3k 2=0,解得k =0或k =±62.∴实数k 的值为±62或0.法二 设A (x 1,y 1),B (x 2,y 2),由(1)得x 1+x 2=-2k 1-k 2,x 1x 2=-21-k 2.又直线l 过点D (0,-1), ∴S △OAB =S △OAD +S △OBD =12|x 1|+12|x 2|=12|x 1-x 2|=2,∴(x 1-x 2)2=(22)2,即⎝ ⎛⎭⎪⎫-2k 1-k 22+81-k 2=8, 解得k =0或k =±62.由(1)知上述k 的值符合题意,6∴实数k的值为0或±2.。

苏教版高中数学选修2-1第2章圆锥曲线与方程本章练测.docx

苏教版高中数学选修2-1第2章圆锥曲线与方程本章练测.docx

高中数学学习材料鼎尚图文*整理制作第2章 圆锥曲线与方程(苏教版选修2-1)建议用时 实际用时满分 实际得分120分钟160分一、填空题(每小题5分,共70分)1.若椭圆22221(0)x y a b a b +=>>的离心率是32,则曲线22221x y a b -=的离心率是 . 2.方程213x y =-表示的曲线是 .①双曲线; ②椭圆;③双曲线的一部分; ④椭圆的一部分.3.已知对k ∈R ,直线y =kx +1与椭圆恒有公共点,则实数m 的取值范围是 .4.以椭圆的左焦点为焦点的抛物线的标准方程是 .5. 直线y =kx -2与抛物线y 2=8x 交于不同的两点P 、Q ,若线段PQ 中点的横坐标为2,则PQ = .6.已知点A (3,2),B (-4,0),P 是椭圆 上一点,则P A +PB 的最大值为 .7. 直线y =2k 与曲线(k ∈R 且k ≠0)的公共点的个数是 .8.以椭圆的右焦点为圆心的圆恰好过椭圆的中心,交椭圆于点,椭圆的左焦点为,且直线与此圆相切,则椭圆的离心率为 .9.若点O 和点F 分别为椭圆的中心和左焦点,点P 为椭圆上的任意一点,则的最大值为 . 10.已知方程22ax by ab +=和0ax by c ++=,其中0,,0ab a b c 构>,它们所表示的曲线可能是下列图象中的 .① ②③ ④11.已知抛物线上一点0到其焦点的距离为5,双曲线的左顶点为,若双曲线的一条渐近线与直线平行,则实数的值是 .12.椭圆的左、右焦点分别为,为椭圆上任一点,且的最大值的取值范围是,其中,则椭圆的离心率的取值范围是 .13.已知椭圆221x y m n+=与双曲线2x p -2y q 有共同的焦点,是椭圆和双曲线的一个交点,则 .14.双曲线的一条准线是,则的值为 . 二、解答题(共90分)15.(14分)已知抛物线方程为y px p 22(0)=>,直线l x y m +=:过抛物线的焦点且被抛物线截得的弦长为3,求的值16.(14分)已知椭圆22221x y a b +=(0)a b >>的离心率63e =,过点和的直线与原点的距离为32. (1)求椭圆的方程.(2)已知定点,若直线 与椭圆交于两点.问:是否存在,使以为直径的圆过点?请说明理由.17.(14分)设双曲线22221x ya b-=的离心率为,若右准线与两条渐近线相交于两点,为右焦点,△为等边三角形.(1)求双曲线的离心率的值;(2)若双曲线被直线截得的弦长为22b ea,求双曲线的方程18.(16分)已知椭圆的离心率,短轴长为2.设是椭圆上的两点,向量m=,n= ,且m·n=0,O为坐标原点.(1)求椭圆的方程.(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.19.(16分)已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.(1)求椭圆C的方程.(2)点P(2,3),Q(2,-3)在椭圆上,A,B是椭圆上位于直线PQ两侧的动点.(ⅰ)若直线AB的斜率为,求四边形APBQ面积的最大值;(ⅱ)当A,B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值?并说明理由.20.(16分)设分别为椭圆:22221x ya b+=(0)a b>>的左、右两个焦点.(1)若椭圆上的点到两点的距离之和等于,写出椭圆的方程和焦点坐标.(2)设点是(1)中所得椭圆上的动点,求线段的中点的轨迹方程.(3)已知椭圆具有性质:若是椭圆上关于原点对称的两个点,点是椭圆上任意一点,当直线、的斜率都存在,并记为、时,那么与之积是与点位置无关的定值.试对双曲线22221x ya b-=写出类似的性质,并加以证明一、填空题1.52 解析:由椭圆22221(0)x y a b a b +=>>的离心率为,得.设,则,.又双曲线中,.2.④ 解析:方程可化为.3.m 1且m ≠5 解析:∵直线y =kx +1过定点(0,1),则∴ m ≥1且m ≠5.4. 解析:由椭圆的方程知,,∴,∴ 抛物线的焦点为(-2,0),∴ 抛物线的标准方程是.5. 215 解析:将y =kx -2代入y 2=8x 得k 2x 2-4(k +2)x +4=0,(*)易知k ≠0,Δ=16(k +2)2-16k 2=64(k +1)>0,∴ k >-1,且k ≠0. 由根与系数的关系,得22(2)k k +=2,∴ k 2-k -2=0,即(k -2)(k +1)=0,∴ k =2或k =-1(舍).此时方程(*)化为x 2-4x +1=0,∴ x 1+x 2=4,x 1·x 2=1,∴ PQ =21k +∙|x 1-x 2|=2212121()4k x x x x +∙+-=5·16-4=215.6. 10+ 解析:易知B 为椭圆的左焦点,因为 <1,所以点A 在椭圆内. 设椭圆的右焦点为E (4,0),根据椭圆的定义可得,PB +PE =2a =10, 故有PA +PB =PA +10-PE =10+(PA -PE ). 当P 、A 、E 三点不共线时,有PA -PE <AE ;当P 位于射线AE 与椭圆的交点处时,有PA -PE =AE ; 当P 位于射线EA 与椭圆的交点处时,有PA -PE =-AE ; 故有-AE ≤PA -PE ≤AE . 而AE = = ,所以PA +PB =10+(PA -PE )∈[10- ,10+ ]. 7. 4 解析:由题意得 k ∈R 且 k ≠0, 消去y 得解得|x |=1± >0,故有4个解. 8.3-1 解析:由题意得,,. 在直角三角形中,,即,整理得.等式两边同除以,得,即,解得或(舍去). 故9.6 解析:由题意,得F (-1,0), 设点,,则有 =1,解得. 因为=,,=,, 所以此二次函数对应的抛物线的对称轴为直线=-2, 因为-2≤≤2,所以当=2时,取得最大值 +2+3=6. 10.② 解析:方程化成,可化成.对于①:由双曲线图象可知:,,∴,即直线的斜率应大于0,故错; 对于②:由双曲线图象可知:,,∴ ,即直线的斜率应大于0, 又,即直线在轴上的截距为正,故②正确;对于③④:由椭圆图象可知:,,∴,即直线的斜率应小于0,故③④错. 11. 解析:依题意知,所以,所以,所以,点的坐标为. 又,所以直线的斜率为.由题意得,解得.12. ⎣⎡⎦⎤12,22 解析:设,,,则,,.又可看做点到原点的距离的平方,所以,所以=. 由题意知,即,则.13. 解析:因为椭圆221x y m n+=与双曲线221x y p q -=有共同的焦点, 所以其焦点位于轴上,由其对称性可设在双曲线的右支上,左、右焦点分别为, 由椭圆以及双曲线的定义可得, , 由①②得,.所以.14. 解析:由题意可知双曲线的焦点在轴上,所以.双曲线方程可化为, 因此,,.因为准线是直线,所以,即, 解得. 二、解答题15. 解:由直线l 过抛物线的焦点,得直线l 的方程为由消去,得2220y py p +-=.由题意得22(2)40p p D =+> ,212122,y y p y y p +=-=-.设直线与抛物线交于A x y B x y ,1122(,),(,)则AB 3=. ,解得.16.解:(1)直线的方程为.依题意得解得所以椭圆方程为2213x y +=.(2)假若存在这样的值,由得22(13)1290k x kx +++=,所以22(12)36(13)0k k D =-+>. ① 设11()C x y ,、22()D x y ,,则 ②而212121212(2)(2)2()4y y kx kx k x x k x x =++=+++×.当且仅当时,以为直径的圆过点,则1212111y y x x =-++×, 即1212(1)(1)0y y x x +++=,所以21212(1)(21)()50k x x k x x +++++=. ③将②式代入③式整理解得76k =.经验证,76k =使①成立. 综上可知,存在76k =,使得以为直径的圆过点.17.解:(1)双曲线的右准线的方程为2a c ,两条渐近线方程为by x a=?.所以两交点坐标为2a ab P c c 骣÷ç÷ç÷ç÷ç桫,、2a ab Q c c 骣÷ç÷ç-÷ç÷ç桫,. 设直线与轴的交点为,因为△为等边三角形,则有MF PQ 32=, 所以232a ab ab c c c c 骣÷ç÷-=+ç÷ç÷桫×,即223c a abc c-=, 解得3b a =,.所以2ce a==. (2)由(1)得双曲线的方程为222213x y a a -=.把3y ax a =+代入得2222(3)2360a x a x a -++=.设直线与双曲线的交点坐标为(x 1,y 1)、(x 2,y 2), 依题意所以26a <,且23a ¹. 所以双曲线被直线截得的弦长为x x y y a x x a x x x x 2222221212121212()()(1)()(1)[()4]=-+-=+-=++-d4222221224(3)(1)(3)a a a a a --=+-g . 因为b e a a 2212==d ,所以2422227212144(1)(3)a a a a a -=+-×, 整理得4213771020a a -+=, 所以22a =或25113a =. 所以双曲线的方程为22126x y -=或221313151153x y -=. 18.解:(1)由题意知解得 ∴椭圆的方程为=1. (2)∵≠,设AB 所在直线的方程为y =kx +b .由即=0, ∴∴∵,.∵ m ·n =0,∴=0, ∴)=0,代入整理得=4, ∴ S = =1.∴△AOB 的面积为定值1.19. 解:(1)设椭圆C 的方程为=1(a >b >0), 由椭圆的一个顶点为抛物线=8 y 的焦点,则b =2 . 由 = ,,得a =4,∴椭圆C 的方程为 =1. (2)(ⅰ)设,,,,直线AB 的方程为y = x +t ,代入 =1,得 由解得-4<t <4.由根与系数的关系得=-t ,.四边形APBQ 的面积S = ×6×||=3 , ∴当t =0时,=12 .(ⅱ)若∠APQ =∠BPQ ,则PA ,PB 的斜率之和为0,设直线PA 的斜率为k ,则直线PB 的斜率为-k ,PA 的直线方程为y -3=k (x -2), 由将代入②整理得,同理PB 的直线方程为y -3=-k (x -2),可得==, ∴,, = = = ,∴直线 AB 的斜率为定值 .20.解:(1)椭圆的焦点在轴上,由椭圆上的点到两点的距离之和是4,得,即.又点312A 骣÷ç÷ç÷ç÷桫,在椭圆上,因此22232112b 骣÷ç÷ç÷ç÷桫+=,得,于是. 所以椭圆的方程为22143x y +=,焦点,. (2)设椭圆上的动点,线段的中点为,则其满足111,22x y x y -+==,即,,因此=22(21)(2)143x y ++,即2214123y x 骣÷ç÷++=ç÷ç÷桫为所求的轨迹方程. (3)类似的性质为:若是双曲线22221x y a b -=上关于原点对称的两个点,点是双曲线上任意一点,当直线的斜率都存在,并记为时,那么与之积是与点位置无关的定值. 证明如下:设点的坐标为,则点的坐标为,其中22221m n a b -=.又设点的坐标为,由,PM PN y n y n k k x m x m -+==-+,得2222y n y ny n x m x mx m-+-?-+-.将22222222,b b y x b n a a =-=代入得22b a .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学业分层测评
(建议用时:45分钟) 学业达标]
一、填空题
1.(2016·聊城高二检测)椭圆x2
9

y2
16
=1的两个焦点为F
1
,F
2
,点P在椭圆上,
若| PF
1|=3,则PF
2
=___________________________________________.
【解析】方程x2
9

y2
16
=1中,a=4,则PF
1
+PF
2
=8,
∴PF
2=2a-PF
1
=8-3=5.
【答案】 5
2.椭圆x2
m

y2
4
=1的焦距为2,则m的值为________.
【解析】∵2c=2,∴c=1,∴m-4=1或4-m=1,∴m=3或5.
【答案】3或5
3.(2016·无锡高二检测)设F
1,F
2
是椭圆
x2
a2

y2
25
=1(a>5)的两个焦点,且|F
1
F
2
|
=8,弦AB过点F
1,则△ABF
2
的周长为________. 【09390023】
【解析】易知|F
1F
2
|=8=2c,即c=4,∴a2=25+16=41,∴a=41,
因为弦AB过点F
1,所以△ABF
2
的周长为AB+AF
2
+BF
2
=AF
1
+AF
2
+BF
1
+BF
2
=4a
=441.
【答案】441
4.若方程x2
m

y2
m2-2
=1表示焦点在y轴上的椭圆,那么实数m的取值范围
是________.
【解析】∵方程x2
m

y2
m2-2
=1表示焦点在y轴上的椭圆,将方程改写为
y2 2-m2+
x2
m
=1,∴有


⎧2-m2>m,
m>0,
解得0<m<1.
【答案】 (0,1)
5.设P 是椭圆x 216+y 2
12=1上一点,点P 到两焦点F 1,F 2的距离之差为2,则
△PF 1F 2是________三角形(填“直角”“锐角”或“钝角”)
【解析】 不妨设PF 1>PF 2,由条件知PF 1-PF 2=2,又PF 1+PF 2=2a =8,解得PF 1=5,PF 2=3.
又∵F 1F 2=2c =216-12=4,∴F 1F 22+PF 22=PF 2
1,
故△PF 1F 2是直角三角形. 【答案】 直角
6.设F 1,F 2是椭圆4x 249+y 2
6=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|
=4∶3,则△PF 1F 2的面积为________.
【解析】 根据椭圆定义有 ⎩⎨

|PF 1|∶|PF 2|=4∶3,|PF 1|+|PF 2|=7,
因此|PF 1|=4,|PF 2|=3.又因为|F 1F 2|=5,因此
△PF 1F 2为直角三角形,S △PF 1F 2=1
2
×3×4=6.
【答案】 6
7.过点(3,-5)且与椭圆y 225+x 2
9=1有相同焦点的椭圆的标准方程为
________.
【解析】 椭圆y 225+x 2
9=1的焦点为(0,-4),(0,4),即c =4.由椭圆的定
义知,2a =
(3-0)2+(-5+4)2+(3-0)2+(-5-4)2, 解得a =2 5.
由c 2
=a 2
-b 2
,可得b 2
=4,所以所求椭圆的标准方程为y 220+x 2
4
=1.
【答案】 y 220+x 2
4
=1
8.椭圆x 212+y 2
3
=1的一个焦点为F 1,点P 在椭圆上,如果线段PF 1的中点M
在y 轴上,那么点M 的纵坐标是________.
【解析】 设椭圆的另一焦点为F 2,由条件可知PF 2∥OM ,∴PF 2⊥x 轴.设P 点纵坐标为y ,则由x 212+y 23=1,得y =±3
2

∴点M 的纵坐标为±34
. 【答案】 ±3
4
二、解答题
9.已知F 1,F 2是椭圆C :x 2a 2+y 2
b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的
一点,且PF 1→⊥PF 2→,若△PF 1F 2
的面积为9,求b 的值.
【解】 如图所示,PF 1⊥PF 2,F 1F 2=
2c ,
根据椭圆的定义可知,PF 1+PF 2=2a ,
在Rt △F 1PF 2中,PF 21+PF 22=4c 2
.
又S △PF 1F 2=1
2
PF 1·PF 2=9,即PF 1·PF 2=18.
∴(PF 1+PF 2)2=PF 21+PF 2
2+2PF 1·
PF 2=4c 2+36=4a 2, ∴4a 2-4c 2=36,即a 2-c 2=9,即b 2=9,∴b =3. 10.求符合下列条件的参数的值或取值范围.
(1)若方程x 2+ky 2=2表示焦点在x 轴上的椭圆,求k 的取值范围; (2)若椭圆8k 2x 2-ky 2=8的一个焦点为(0,7),求k 的值. 【解】 (1)原方程可化为x 22+y 2
2
k
=1.
∵其表示焦点在x 轴上的椭圆,∴⎩⎨⎧
k>0,
2
k <2,
解得k>1.故k 的取值范围是。

相关文档
最新文档