2卷高中数学必修一第一章 (1)
(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)
(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};【答案解析】:{x |x=2k, k=1, 2, 3, 4, 5}.(2)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数;【答案解析】:{1, 2, 3, 12, 21, 13, 31, 23, 32, 123, 132, 213, 231, 312, 321}.(3) {x∈N|3<x<7};【答案解析】:{4, 5, 6}.(4)中国古代四大发明.【答案解析】:{指南针,活字印刷,造纸术,火药}.4.用适当的方法表示下列集合:(1)二次函数y=x²-4的函数值组成的集合;【答案解析】: {y | y≥-4}.(2)反比例函数y=2/x的自变量组成的集合;【答案解析】:{x | x≠0}.(3)不等式3x≥4- 2x的解集.【答案解析】:{x |x≥4/5}.三、拓广探索5.集合论是德国数学家康托尔于19 世纪末创立的.当时,康托尔在解决涉及无限量研究的数学问题时,越过“数集”限制,提出了一般性的“集合”概念.关于集合论,希尔伯特赞誉其为“数学思想的惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一”,罗素描述其为“可能是这个时代所能夸耀的最伟大的工作”.请你查阅相关资料,用简短的报告阐述你对这些评价的认识.【答案解析】:略.1.2 集合间的基本关系练习1.写出集合{a, b,c}的所有子集.【答案解析】由0个元素构成的子集: ∅;由1个元素构成的子集: {a}, {b}, {c};由2个元素构成的子集: {a, b}, {a,c}, {b, c};由3个元素构成的子集: {a, b, c};综上,可得集合{a,b, c}的所有子集有: 0, {a}, {b}, {c}, {a, b}, {a,c}, {b, c}, {a, b, c}.2.用适当的符号填空:(1) a__ {a,b,c}; (2) 0__ {x|x²=0};(3) B___ {x∈R|x²+1=0}; (4) {0,1}___N(5) {0}___ {x|x²=x}; (6) {2, 1}___{x|x²-3x+2=0}.【答案解析】:(1)∈;(2)=;(3)=;(4)⊆;(5)⊆;(6)=.3.判断下列两个集合之间的关系:(1) A={x|x<0}, B={x|x<l};(2) A={x|x=3k,k∈N},B={x|x=6z,z∈N};(3) A={x∈N₋|x是4与10的公倍数},B={x|x=20m, m∈N₊}.【答案解析】:⫋A B B A A=B习题1.2一、复习巩固1.选用适当的符号填空:(1)若集合A={x|2x-3<3x}, B={x|x≥2},则-4___B,-3___ A, {2}___B,B___ A;【答案解析】:∵集合A= {x|2x-3< 3x}= {x|x>-3},B = {x|x≥2},则∴-4∉B,-3∉A,{2}B,B A.故答案为:∉,∉,,。
高中数学必修一第一章第一节集合的概念基础题2
高中数学必修一1.1集合的概念基础题2第I 卷(选择题)一、单选题1.已知集合{}21,2,22A a a a =---,若1A -∈,则实数a 的值为( )A .1B .1或12-C .12-D .1-或12- 2.已知集合{}21,49,2021A a a a =++-,若4A -∈,则实数a 的值为( ).A .5- B .1 C .5或1- D .5-或1 3.若集合1{}4|,A x x x N ≤<-=∈,则集合A 中元素的个数为( )A .3B .4C .5D .6 4.下列集合表示正确的是( ).A .{}2,4B .{}2,3,3C .{}2,2,3D .{高个子男生}5.已知集合{}(,),,2M x y x y N x y *=∈+≤,则M 中元素的个数为( ) A .1 B .2 C .3 D .06.下列判断正确的个数为( )(1)所有的等腰三角形构成一个集合;(2)倒数等于它自身的实数构成一个集合;(3)质数的全体构成一个集合;(4)由2,3,4,3,6,2构成含有6个元素的集合.A .1B .2C .3D .47.设集合A ={1,2,3},B ={4,5},C ={x +y |x ∈A ,y ∈B },则C 中元素的个数为( )A .3B .4C .5D .6 8.已知{}{},14||A x x a B x x =<=<<,若R A B ⊆,则实数a 的取值范围为( )A .{}|1a a <B .{}4|a a ≤C .{}|1a a ≤D .{}|1a a ≥二、多选题9.(多选)已知集合{}220A x ax x a =-+=中至多含有一个元素,则实数a 可以取( )A .1a ≥B .0a =C .1a ≤-D .11a -≤≤ 10.下列说法正确的是( )A .我校爱好足球的同学组成一个集合B .{1,2,3}是不大于3的正整数组成的集合C .集合{1,2,3,4,5}和{5,4,3,2,1}表示同一集合D .数1,0,5,12,32,647个元素11.设集合{},,A x x m m n N *==∈,若1x A ∈,2x A ∈,12x x A ⊕∈,则运算⊕可能是( )A .加法B .减法C .乘法D .除法12.下列关系中,正确的是( )A .43Z -∉ B .R π∉ C .Q D .0N ∈第II 卷(非选择题)三、填空题13.若{}231,13a a ∈--,则=a ______.14.已知集合A ={1,2,3,4,5},直角坐标系xOy 中的点集B ={(,)x y |x ∈,,A y A ∈x y -∈A }.若用一张完整无破损的纸片去覆盖点集B 中的所有点,则这张纸片的面积至少是___________.15.已知集合32A x Z Z x ⎧⎫=∈∈⎨⎬-⎩⎭∣,用列举法表示集合A ,则A =__________. 16.对于非空数集M , 定义()f M 表示该集合中所有元素之和. 给定集合S ={}2,3,4,5, 定义集合(){},T f A A S A =⊆≠∅,则集合T 中的元素个数为__________.参考答案:1.C【解析】【分析】由题可知21a -=-或2221a a --=-,即求.【详解】∈1A -∈,∈21a -=-或2221a a --=-,∈1a =或12a =-, 经检验得12a =-. 故选:C.2.B【解析】【分析】根据元素与集合之间的关系,及集合元素的互异性即可求出a 的值.【详解】{}21,49,2021A a a a =++-,且4A -∈,4=1a ∴-+或24=49a a -+- ∈、当24=49a a -+-即=5-a 或=1a ,∈、当=5-a 时,1=4a +-,249=4a a +--,此时{}4,4,2021A =--,不满足集合元素的互异性,故舍去;∈、当=1a 时,1=2a +,249=4a a +--,此时{}2,4,2021A =-,符合题意;∈、当1=4a +-即=5-a 时,此时{}4,4,2021A =--,不满足集合元素的互异性,故舍去; 综上所述:实数a 的值为1.故选:B3.B【解析】【分析】化简A ={x |﹣1≤x <4,x ∈N }={0,1,2,3}即可.A ={x |﹣1≤x <4,x ∈N }={0,1,2,3},故集合A 中元素的个数为4,故选:B .4.A【解析】【分析】根据集合元素的特征选出答案即可.【详解】由题意可知,选项B 、C 不满足集合的互异性,选项D 不满足集合的确定性,故选:A .5.A【解析】【分析】由列举法表示M 即可求解【详解】集合{}(,),,2{(1,1)}M x y x y N x y *=∈+≤=∣, M 中只有1个元素.故选:A6.C【解析】利用集合的定义和特点逐一判断即可.【详解】在(1)中,所有的等腰三角形构成一个集合,故(1)正确;在(2)中,若1a a=,则a 2=1,∈a =±1,构成的集合为{1,﹣1},故(2)正确; 在(3)中,质数的全体构成一个集合,任何一个质数都在此集合中,不是质数的都不在,故(3)正确;在(4)中,集合中的元素具有互异性,构成的集合为{2,3,4,6},含4个元素,故(4)错误.、7.B【解析】【分析】直接求出集合C 即可.【详解】集合A ={1,2,3},B ={4,5},C ={x +y |x ∈A ,y ∈B },所以C ={5,6,7,8}.即C 中元素的个数为4.故选:B.8.C【解析】【分析】由题知|1{R B x x =≤或}4x ≥,在结合集合关系即可得答案.【详解】因为{}{},14||A x x a B x x =<=<<,所以|1{R B x x =≤或}4x ≥,因为R A B ⊆,所以1a ≤.故实数a 的取值范围为{}|1a a ≤故选:C9.ABC【解析】根据集合至多含有一个元素,得到方程220ax x a -+=至多有一个根,讨论0a =,0a ≠两种情况,分别求出对应的a 的范围,即可得出结果.【详解】 因为集合{}220A x ax x a =-+=中至多含有一个元素, 即方程220ax x a -+=至多有一个根,当0a =时,方程可化为方程20x -=,解得0x =,满足题意; 当0a ≠时,若方程无解,则()22224440a a ∆=--=-<,解得1a >或1a <-; 若方程220ax x a -+=只有一个根,则()22224440a a ∆=--=-=,解得1a =±, 综上实数a 的范围为1a ≥或0a =或1a ≤-;即ABC 都正确,D 错误. 故选:ABC.【点睛】本题主要考查集合中元素个数求参数的问题,属于基础题型.10.BC【解析】【分析】根据集合的元素的特征逐一判断即可.【详解】我校爱好足球的同学不能组成一个集合;{1,2,3}是不大于3的正整数组成的集合; 集合{1,2,3,4,5}和{5,4,3,2,1}表示同一集合; 由于3624=,所以数1,0,5,12,32,646个元素; 故选:BC11.AC【解析】【分析】先由题意设出111x m =,222x m =,然后分别计算12x x +,12x x -,12x x ,12x x ,即可得解.【详解】由题意可设111x m =,222x m =,其中1m ,2m ,1n ,2n N *∈, 则()1212x x m m +=+)12n n +,12x x A +∈,所以加法满足条件,A 正确;())121212x x m m n n -=--,当12n n =时,12x x A -∉,所以减法不满足条件,B 错误;)12121211213x x m m n n m n m n ==+,12x x A ∈,所以乘法满足条件,C 正确;12x x =()11220m n m n λλ==>时,12x A x ∉,所以出发不满足条件,D 错误. 故选:AC .12.AD【解析】【分析】根据元素与集合间的关系逐项判断即可.【详解】因为Z 是整数集,故43Z -∉,所以A 正确;因为R 是实数集,故R π∈,所以B 错误;因为Q是有理数集,故Q =,所以C 错误;因为N 是自然数集,故0N ∈,所以D 正确,故选:AD.13.4-【解析】【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解.【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-.故答案为:4-. 14.92【解析】【分析】由题意运用列举法求得集合B ,由此可求得答案.【详解】解:因为集合A ={1,2,3,4,5},点集B ={(,)x y |x ∈,,A y A ∈x y -∈A }.所以点集B =()()()()()()()()()(){}21314151324252435354,,,,,,,,,,,,,,,,,,,, 所以这张纸片的面积至少是193322⨯⨯=, 故答案为:92. 15.{1,1,3,5}-【解析】【分析】根据集合的描述法即可求解.【详解】32A x Z Z x ⎧⎫=∈∈⎨⎬-⎩⎭∣, {1,1,3,5}A ∴=-故答案为:{1,1,3,5}-16.12【解析】因为A ≠∅,所以()f A 的最小值为2,最大值是S 中所有元素之和为14,再将不可能的取值剔除即可【详解】解:因为A ≠∅,所以()f A 的最小值为2,()f A 的最大值是S 中所有元素之和为14,但是34512++=,234514+++=,也就是()f A 无法取到13,所以T 中的元素有2,3,4,5,6,7,8,9,10,11,12,14,共12个故答案为:12.。
人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前
第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=16. 3.【答案】D【解析】对于①,当=4a 为正整数;对于②,当=1x 时,为正整数;对于③,当=1y 时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()< ,C 错误;{}R =|0A B x x ()≠ ,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>,1011a a ⇒-⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a ⎧⇔⎨⎩>,>,,1a ∴>,故选B .8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2bx a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D【解析】{}=|1U B x x - > ,{}=|0U A B x x ∴ > .{}=|0U A x x ≤ ,{}=|1U B A x x ∴- ≤ .{=|0U U A B B A x x ∴ ()()> 或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇ ()(),U U A C A B∴⊆ ()() ,∴①为真命题.A C A B ⊆ ()(),U U A C A B∴⊇ ()() ,即U U U U A C A B ⊇ ()() ,∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件. 16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)18.【答案】(1){=|1U A x x - < 或1x ≥,{=|12U A B x x ∴()≤≤ .(6分) (2){}=|01A B x x <<,{=|0U A Bx x ∴ ()≤ 或}1x ≥.(12分) 19.【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<.(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分) 综上所述,p 的取值范围是{}|4p p ->.(12分) 20.【答案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----() 222000=444b abx a x ay ++-200=240b ax ay +-()>,∴方程=0y 有两个不等实数根.(6分)②必要性:若方程=0y 有两个不等实数根. 则240b ab ->,设0=2bx a-, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()() 2224==0424b b ac b ac --+<(10分) 由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”.(12分) 21.【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R =|1A x x < 或}7x >,{}R =|21A B x x - ()≤< .(6分)(2)=A B A ,A B ∴⊆.①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分)综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤.(12分)22.【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示.(2分)选甲、乙而不选丙的有2924=5-(人), 选甲、丙而不选乙的有2824=4-(人), 选乙、丙而不选甲的有2624=2-(人),(6分) 仅选甲的有382454=5---(人), 仅选乙的有352452=4---(人), 仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分) 所以三门均未选的人数为5045=5-.(12分)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a 为正整数;②存在一个实数x ,使为正整数;③存在一个实数y 为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( ) A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,)6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0A B x x ≥B .{}=12A B ,C .{}R =01A B (),D .{}R =|1A B x x()≥7.甲:“1a >”是乙:“a ”的( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U M N ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则U U A B B A ()() 等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆ ()(),A C A B ⊇ ()(),则下列命题中,正确的个数是( )①U U A C A B ⊆ ()() ; ②U U U U A C A B ⊇ ()() ;③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B () ;(2)求U A B() .19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=A x x ∅ >,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R(1)当=2a 时,求A B 和R A B () ;(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?。
人教版高中数学必修一第一章测试(含答案)
第3题图2021-2021学年度第一学期佛冈中学高一级 高中数学?必修一?第一章教学质量检测卷时间:120分钟。
总分:150分。
命题者:XJL班别: : 座号:一、选择题〔将选择题的答案填入下面的表格。
本大题共10小题,每题5分,共50分。
〕 题号 1 2 3 4 5 6 7 8 9 10 答案1、以下各组对象中不能构成集合的是〔 〕A 、佛冈中学高一〔20〕班的全体男生B 、佛冈中学全校学生家长的全体C 、李明的所有家人D 、王明的所有好朋友 2、集合{}{}5,1,A x R x B x R x =∈≤=∈>那么AB 等于〔 〕A.{1,2,3,4,5} B.{2,3,4,5} C.{2,3,4} D.{}15x R x ∈<≤ 3、设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,那么图中的阴影局部表示的集合为〔 〕A .{}2B .{}4,6C .{}1,3,5D .{}4,6,7,8 4、以下四组函数中表示同一函数的是〔 〕A.x x f =)(,2())g x x =B.()221)(,)(+==x x g x x fC.2()f x x =()g x x = D.()0f x =,()11g x x x=--5、函数2()21f x x ,(0,3)x。
()7,f a 若则a 的值是 〔 〕A 、1B 、1-C 、2D 、2±6、2,0()[(1)]1 0x x f x f f x ()设,则 ,()+≥⎧=-=⎨<⎩〔 〕 A 、3 B 、1 C. 0 D.-1题号 一 二 15 16 17 18 19 20 总分 得分7、()3f x x 函数的值域为〔 〕A 、[3,) B 、(,3] C 、[0),D 、R8、以下四个图像中,不可能是函数图像的是 ( )9、设f(x)是R 上的偶函数,且在[0,+∞)上单调递增,那么f(-2),f(3),f(-π)的大小顺序是:〔 〕 A 、 f(-π)>f(3)>f(-2) B 、f(-π) >f(-2)>f(3) C 、 f(-2)>f(3)> f(-π) D 、 f(3)>f(-2)> f(-π) 10、在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:那么b ⊗ ()a c ⊕=( )A .aB .bC .cD .d 二、填空题〔本大题共4小题,每题5分,共20分〕 11、函数0(3)2y x x =+--的定义域为12、函数2()610f x x x =-+-在区间[0,4]的最大值是13、假设}4,3,2,2{-=A ,},|{2A t t x xB ∈==,用列举法表示B 是 . 14、以下命题:①集合{},,,a b c d 的子集个数有16个;②定义在R 上的奇函数()f x 必满足(0)0f =;③()()2()21221f x x x =+--既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤1()f x x=在()(),00,-∞+∞上是减函数。
人教A版(2019)高中必修第一册数学第一章《集合与常用逻辑用语》训练卷 word版,含答案
人教A 版(2019)高中必修第一册数学第一章《集合与常用逻辑用语》训练卷一、选择题1.下列四组对象中能构成集合的是( ).A .本校学习好的学生B .在数轴上与原点非常近的点C .很小的实数D .倒数等于本身的数2.下列命题不是存在量词命题的是( )A .有的无理数的平方是有理数B .有的无理数的平方不是有理数C .对于任意x ∈Z ,21x +是奇数D .存在x ∈R ,21x +是奇数 3.集合A ={x |0≤x <3,x ∈N}的真子集的个数是( )A .7B .8C .16D .44.设,a b ∈R ,则“a b >”是“22a b >”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 5.已知集合{}2A x x x ==,那么 A .0∈A B .1∉A C .{}1∈A D .{0,1}≠A6.设集合{}2,1,2A a =-,{}2,4B =,则“2a =”是“{}4A B ⋂=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 7.若集合3,2,1,0,1,2A ,集合{}1,B y y x x A ==+∈,则B =( ) A .{}1,2,3 B .{}0,1,2 C .{}0,1,2,3 D .{}1,0,1,2,3- 8.设集合{|12},{|}A x x B x x a =-≤<=<,若A B ⋂≠∅,则a 的取值范围是( )A .(1,2]-B .(2,)+∞C .[1,)-+∞D .(1,)-+∞9.设集合A ={0,1,2},B ={m |m =x +y ,x ∈A ,y ∈A },则集合A 与B 的关系为( )A .AB ∈ B .A B =C .B A ⊆D .A B ⊆10.已知集合{0,1}A =,{|}B x x A =⊆,则下列关于集合A 与B 的关系正确的是( )A .AB ⊆B .A B ≠⊂C .B A ≠⊂D .A B ∈ 二、填空题11.用符号“∈”或“∉”填空:0______N ;3-______N ;0.5______Z Z ;13______Q ;π______R . 12.命题“对任意一个实数x ,221x x ++都不小于零”,用“∃”或“∀”符号表示为________________.13.满足{1,2}{1,2,3,4,5}M ≠⊂⊆的集合M 有______个. 14.若命题“存在x∈R ,使得2ax 2x a 0++≤”为假命题,则实数a 的取值范围为_____.15.已知:13p x ,:11q x m -<<+,若q 是p 的必要不充分条件,则实数m 的取值范围是_____.16.已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R =,则实数a 的取值范围是______________________ .17.若集合(){}22210A x k x kx =+++=有且仅有2个子集,则满足条件的实数k 的最小值是____. 三、解答题18.用列举法表示下列集合:(1)大于1且小于6的整数;(2){}(1)(2)0A x x x =-+=;(3){}3213B x Z x =∈-<-<.19.已知A ={|x x 满足条件p },B ={|x x 满足条件q },(1)如果A B ⊆,那么p 是q 的什么条件?(2)如果B A ⊆,那么p 是q 的什么条件?(3)如果A B =,那么p 是q 的什么条件?20.设集合{|116}A x x =-≤+≤,{|121}B x m x m =-<<+.(1)当x ∈Z 时,求A 的非空真子集的个数;(2)若A B ⊇,求m 的取值范围.21.设2{|450}A x x x =--=,2{|1}B x x ==,求A B ,A B .22.图中U 是全集,A ,B 是U 的两个子集,用阴影表示:(1)()()U U A B ; (2)()()UU A B ⋃.23.已知集合{}25A x x -≤≤=,{}121B x m x m +≤≤-=.(1)若B A ,求实数m 的取值范围;(2)若A B ⊆,求实数m 的取值范围.24.设集合{|12}A x x =-≤≤,集合{|21}B x m x =<<.(1)若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围;(2)若()R B C A ⋂中只有一个整数,求实数m 的取值范围.参考答案1.D【分析】根据集合中元素具有确定性判断选项即可得到结果.【详解】集合中的元素具有确定性,对于,,A B C ,学习好、非常近、很小都是模糊的概念,没有明确的标准,不符合确定性;对于D ,符合集合的定义,D 正确.故选:D .【点睛】本题考查集合的定义,关键是明确集合中的元素具有确定性,属于基础题.2.C【分析】直接根据全称量词与存在量词的概念,找出四个选项中的全称量词与存在量词得答案.【详解】A 、B 、D 中都有存在量词,是存在量词命题,C 中含有量词“任意”,为全称量词命题,故选:C .【点睛】本题考查存在量词与存在量词命题,是基础题.3.A【分析】首先用列举法表示集合A ,含有n 个元素的集合的真子集的个数是21n -个.【详解】{}0,1,2A =,集合含有3个元素,真子集的个数是3217-=,故选A.【点睛】本题考查集合的真子集个数的求解,属于基础题型,一个集合含有n 个元素,其子集个数是2n 个,真子集个数是21n -个.4.D【详解】若0,2a b ==-,则22a b <,故不充分;若2,0a b =-=,则22a b >,而a b <,故不必要,故选D.考点:本小题主要考查不等式的性质,熟练不等式的性质是解答好本类题目的关键.5.A【分析】解方程x 2=x ,化简集合A ,然后根据元素与集合的关系,以及集合之间的关系判断.【详解】已知A={x|x 2=x},解方程x 2=x ,即x 2-x=0,得x=0或x=1,∈A={0,1}.故选A【点睛】本题主要考查元素与集合的关系,以及集合之间的关系,这类题目通常需要先化简集合,再进行判断.6.A【分析】由2a =可以推出{}4A B ⋂=,由{}4A B ⋂=,推出2a =或2a =-,从而进行判断,得到答案.【详解】当“2a =”时,{}1,4,2A =-,{2,4}B =,所以可以推出“{}4A B ⋂=”.当“{}4A B ⋂=”时,得到24a =,所以2a =或2a =-,故不能推出“2a =”.由此可知“2a =”是“{4}A B ⋂=”的充分不必要条件.故选:A.【点睛】本题考查判断充分不必要条件,根据交集运算结果求参数,属于简单题.7.C【分析】将A 集合中元素逐个代入1y x =+中计算y 的值,然后根据元素的互异性得到B 集合的组成.【详解】 由1y x =+,x A ∈得,当3x =-,1时,2y =;当2x =-,0时,1y =;当1x =-时,0y =;当2x =时,3y =.故集合{}0,1,2,3B =,故选C.【点睛】本题考查对集合的两种表示方法的理解,难度较易.通过运算得到函数值的集合时,注意利用互异性对函数值进行取舍.8.D【分析】由A B ⋂≠∅知,集合A ,B 有公共元素,作出图示即可得到结论.【详解】因为A B ⋂≠∅,所以集合A ,B 有公共元素,作出数轴,如图所示,易知1a >-.故选:D.【点睛】本题考查集合的交集的运算,属于基础题.9.D【分析】先分别求出集合A 和B ,由此能求出结果.【详解】∈合A={0,1,2},B={m|m=x+y ,x∈A ,y∈A}={0,1,2,3,4},∈A∈B .故选D .【点睛】本题考查命题真假的判断,考查集合的包含关系等基础知识,考查运算求解能力,是基础题.10.D【分析】根据集合间的基本关系分析即可.【详解】因为x A ⊆,所以{,{0},{1},{0,1}}B =∅,集合{0,1}A =是集合B 中的元素,所以A B ∈.故选:D【点睛】本题主要考查了集合间的基本关系的理解,属于基础题型.11.∈ ∉ ∉ ∉ ∈ ∈【分析】根据自然数,整数,有理数,实数的定义即可判断.【详解】0是自然数,则0N ∈;3-不是自然数,则3N -∉;不是整数,则0.5Z Z ∉;13是有理数,则13Q ∈;π是无理数,则R π∈ 故答案为:(1)∈;(2)∉;(3)∉;(4)∉;(5)∈;(6)∈【点睛】本题主要考查了元素与集合间的关系,属于基础题.12.x ∀∈R ,2210x x ++≥【分析】根据全称量词命题:()x M p x ∀∈,,以及含有全称量词“任意一个”,用符号“∀”表示,“不小于零”就是“0≥”,据此即可表示出结果.【详解】含有全称量词“任意一个”,用符号“∀”表示,“不小于零”就是“0≥”,因此命题用符号表示为“x ∀∈R ,2210x x ++≥”,故填:x ∀∈R ,2210x x ++≥.【点睛】本题考查含有全称量词的命题就称为全称量词命题.一般形式为:全称量词命题:()x M p x ∀∈,.13.7【分析】利用枚举法直接求解即可.【详解】由{1,2}{1,2,3,4,5}M ≠⊂⊆,可以确定集合M 必含有元素1,2,且至少舍有元素3,4,5中的一个,因此依据集合M 的元素个数分类如下:含有三个元素:{1,2,3},{1,2,4},{1,2,5};含有四个元素:{1,2,3,4},{1,2,35},,{1,2,4,5};含有五个元素:{1,2,3,4,5},故满足题意的集合M 共有7个.故答案为:7【点睛】本题主要考查了集合间的基本关系与枚举法的运用,属于中等题型.14.()1,+∞【解析】【分析】由原命题为假命题,则其否定为真命题,得x R ∀∈,使得2ax 2x a 0++>恒成立,即可得a 的范围.【详解】命题“0x R ∃∈,使得a 2x 2x a 0++≤”是假命题,则命题“x R ∀∈,使得2ax 2x a 0++>”是真命题,∈∈a=0,x>0不恒成立;22a>024a 0⎧⇒⎨∆=-<⎩②a >1. 故答案为(1,+∞).【点睛】本题考查了存在命题的否定,不等式恒成立问题,考查转化思想以及计算能力,属于基础题.15.()2,+∞【分析】由题意,命题:13p x ,:11q x m -<<+,因为q 是p 的必要不充分条件,即p q ⊆,根据集合的包含关系,即可求解.【详解】由题意,命题:13p x ,:11q x m -<<+,因为q 是p 的必要不充分条件,即p q ⊆,则13m +>,解得2m >,即实数m 的取值范围是(2,)+∞.【点睛】本题主要考查了必要不充分条件的应用,以及集合包含关系的应用,其中解答中根据题意得出集合p 是集合q 的子集,根据集合的包含关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.16.1a ≤【分析】由并集的定义及数轴表示可得解.【详解】在数轴上表示出集合A 和集合B ,要使A B R =,只有1a ≤.【点睛】本题主要考查了集合的并集运算,利用数轴找关系是解题的关键,属于基础题.17.-2【分析】根据题意可知,集合A 只有一个元素,从而2k =-时,满足条件,而2k ≠-时,可得到()24420k k ∆=-+=,求出k ,找到最小的k 即可.【详解】 A 只有2个子集;A ∴只有一个元素;2k ①∴=-时,14A ⎧⎫=⎨⎬⎩⎭,满足条件; ∈2k ≠-时,()24420k k ∆=-+=; 解得1k =-或2;综上,满足条件的实数k 的最小值为﹣2.故答案为﹣2.【点睛】考查子集的概念,描述法和列举法表示集合的定义,以及一元二次方程实根个数和判别式∆的关系.18.(1){}2,3,4,5;(2){}1,2A =-;(3){}0,1B =【分析】根据题意,求出集合的元素,用列举法表示出来即可.【详解】解:用列举法表示下列集合(1)大于1且小于6的整数,{}2,3,4,5;(2){|(1)(2)0}A x x x =-+=;所以{}1,2A =-(3){|3213}B x Z x =∈-<-<,由3213x -<-<解得12x -<<,x ∈Z ,故表示为{}0,1B =,19.(1)充分条件;(2)必要条件;(3)充要条件.【分析】(1) 根据集合间的基本关系判断p 和Q 的包含关系再即可.(2) 根据集合间的基本关系判断p 和Q 的包含关系再即可.(3) 根据集合间的基本关系判断p 和Q 的包含关系再即可.【详解】(1)如果A B ⊆,则满足条件p 也满足条件q .故p 是q 的充分条件.(2)如果B A ⊆,则满足条件q 也满足条件p .故p 是q 的必要条件.(3)如果A B =,则满足条件p 满足条件q ,且满足条件q 也满足条件p .故p 是q 的充要条件.【点睛】本题主要考查了集合的关系与充分必要条件的关系,属于基础题型.20.(1)254;(2){|122}m m m -≤≤-或.【分析】对于(1),根据x 的取值范围,可确定集合A 中所含元素,根据其元素的个数可判断出其子集的个数,若集合含有n 个元素时,则有2n 的子集,当1n >时,其非空真子集的个数为22n -,即可得到答案;对于(2),由于空集是任何非空集合的子集,故对于B 集合是否为空集需分情况讨论:∈集合B 为空集,即121m m -≥+; ∈集合B 为非空集合,即121m m -<+.【详解】由题意得{|25}A x x =-≤≤.(1)∈x ∈Z ,∈{2,1,0,1,2,3,4,5}A =--,即A 中含有8个元素,∈A 的非空真子集的个数为822254-=.(2)∈当121m m -≥+,即2m ≤-时,B A =∅⊆;∈当121m m -<+,即2m >-时,{|121}B x m x m =-<<+,因此,要使B A ⊆,则12,12215m m m --⎧⇒-⎨+⎩. 综上所述,m 的取值范围{|12m m -≤≤或2}m -.【点睛】本题主要考查的是非空子集和真子集的定义,集合的包含关系及应用,考查不等式的解法,考查学生的计算能力,考查的核心素养是数学运算、逻辑推理,误区警示:(1)确定方程的解的集合或不等式的解集之间的关系时,当其含有参数时,注意要分类讨论,不讨论易导致误判.(2)()A B B ⊆≠∅包含三种可能,∈A 为∅;∈A 不为必∅,且A B ;∈A 不为∅,且A B =.只写其中一种是不全面的,如果A ,B 是确定的,就只有一种可能,此时只能写出一种形式.是基础题.21.{}1,1,5A B =-,{}1A B ⋂=-.【分析】根据一元二次方程的解法分别求得集合,A B ,由并集和交集的定义直接得到结果.【详解】{}()(){}{}24505101,5A x x x x x x =--==-+==-,{}{}211,1B x x ===- {}1,1,5A B ∴=-,{}1A B ⋂=-【点睛】本题考查集合运算中的交集和并集运算,涉及到一元二次方程的求解问题,属于基础题.22.(1)图象见解析;(2)图象见解析.【分析】根据补集、交集和并集的定义,利用Venn 图表示出来即可.【详解】 如下图阴影部分所示.【点睛】本题考查Venn 图表示集合,涉及到集合的交集、并集和补集运算,属于基础题.23.(1){}3m m ≤;(2)不存在实数m 使A B ⊆.【分析】(1) ∈当B ∅=时,由121m m +>-,得2m <,满足题意;∈当B ≠∅时,根据子集关系列式可解得;(2)根据两个集合的子集关系列式无解,故不存在实数m .【详解】(1)∈当B ∅=时,由121m m +>-,得2m <,满足题意;∈当B ≠∅时,如图所示,12215121m m m m +≥-⎧⎪∴-≤⎨⎪+≤-⎩且12m +=-与215m -=不能同时取等号,解得23m ≤≤. 综上可得,m 的取值范围是:{}3m m ≤.(2)当A B ⊆时,如图所示,此时B ≠∅,21112215m m m m ->+⎧⎪∴+≤-⎨⎪-≥⎩,即233m m m >⎧⎪≤-⎨⎪≥⎩,∈m 不存在,即不存在实数m 使A B ⊆.【点睛】本题考查了根据集合间的子集或真子集关系,容易漏掉空集情况,属于中档题.24.(1)1[,)2-+∞;(2)3[,1)2--. 【分析】(1)由“x A ∈”是“x B ∈”的必要条件,得B∈A ,然后分1122m m =<,,m >12三种情况讨论求解实数m 的取值范围;(2)把()R B C A ⋂中只有一个整数,分1122m m =<,,m >12时三种情况借助于两集合端点值间的关系列不等式求解实数m 的取值范围.【详解】(1)若“x A ∈”是“x B ∈”,则B∈A ,∈A={x|-1≤x≤2}, ∈当12m <时,B={x|2m <x <1},此时-1≤2m <1∈1122m -≤< ; ∈当12m = 时,B=∈,有B∈A 成立; ∈当12m >时B=∈,有B∈A 成立; 综上所述,所求m 的取值范围是1,2⎡⎫-+∞⎪⎢⎣⎭. (2)∈A={x|-1≤x≤2},∈∈R A={x|x <-1或x >2},∈当12m <时,B={x|2m <x <1}, 若(∈R A)∩B 中只有一个整数,则-3≤2m <-2,得312m -≤-<; ∈当m 当12m =时,不符合题意; ∈当12m >时,不符合题意;综上知,m的取值范围是3,12⎡⎫--⎪⎢⎣⎭.【点睛】在集合运算中,不等式的解集、函数的定义域、函数的值域问题,能解的先解出具体的实数范围,再结合数轴进行集合的运算,若端点位置不定时,要注意对端点的位置进行讨论求解,此题是中档题.。
高中数学必修一第一章单元测试卷及答案2套
高中数学必修一第一章单元测试卷及答案2套测试卷一(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( ) A .2个 B .4个 C .6个 D .8个2.下列各组函数表示相等函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1(x ∈Z )与y =2x -1(x ∈Z )3.设M ={1,2,3},N ={e ,g ,h },从M 至N 的四种对应方式如下图所示,其中是从M 到N 的映射的是( )4.已知全集U =R ,集合A ={x |2x 2-3x -2=0},集合B ={x |x >1},则A ∩(∁U B )=( ) A .{2}B .{x |x ≤1} C.⎩⎨⎧⎭⎬⎫-12 D .{x |x ≤1或x =2}5.函数f (x )=x|x |的图象是( )6.下列函数是偶函数的是( ) A .y =x B .y =2x 2-3 C .y =1xD .y =x 2,x ∈0,1]7.已知偶函数f (x )在(-∞,-2]上是增函数,则下列关系式中成立的是( )A .f ⎝ ⎛⎭⎪⎫-72<f (-3)<f (4)B .f (-3)<f ⎝ ⎛⎭⎪⎫-72<f (4)C .f (4)<f (-3)<f ⎝ ⎛⎭⎪⎫-72D .f (4)<f ⎝ ⎛⎭⎪⎫-72<f (-3) 8.已知反比例函数y =k x的图象如图所示,则二次函数y =2kx 2-4x +k 2的图象大致为( )9.函数f (x )是定义在0,+∞)上的增函数,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 10.若函数f (x )为奇函数,且当x >0时,f (x )=x -1,则当x <0时,有( )A .f (x )>0B .f (x )<0C .f (x )·f (-x )≤0D .f (x )-f (-x )>011.已知函数f (x )是定义在-5,5]上的偶函数,f (x )在0,5]上是单调函数,且f (-3)<f (1),则下列不等式中一定成立的是( )A .f (-1)<f (-3)B .f (2)<f (3)C .f (-3)<f (5)D .f (0)>f (1)12.函数f (x )=ax 2-x +a +1在(-∞,2)上单调递减,则a 的取值范围是( )A .0,4]B .2,+∞) C.⎣⎢⎡⎦⎥⎤0,14 D.⎝ ⎛⎦⎥⎤0,14 第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (f (3))的值等于________.14.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.15.若函数f (x )=x 2+a +1x +ax为奇函数,则实数a =________.16.老师给出一个函数,请三位同学各说出了这个函数的一条性质: ①此函数为偶函数; ②定义域为{x ∈R |x ≠0}; ③在(0,+∞)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个(或几个)这样的函数________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围.18.(本小题满分12分)已知函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧3x +5x ≤0,x +50<x ≤1,-2x +8x >1.(1)求f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫1π,f (-1)的值; (2)画出这个函数的图象; (3)求f (x )的最大值.19.(本小题满分12分)已知函数f (x )是偶函数,且x ≤0时,f (x )=1+x1-x ,求:(1)f (5)的值; (2)f (x )=0时x 的值; (3)当x >0时f (x )的解析式.20.(本小题满分12分)已知函数f (x )=x +a x,且f (1)=10. (1)求a 的值;(2)判断f (x )的奇偶性,并证明你的结论;(3)函数在(3,+∞)上是增函数,还是减函数?并证明你的结论.21.(本小题满分12分)已知函数y =f (x )是二次函数,且f (0)=8,f (x +1)-f (x )=-2x +1. (1)求f (x )的解析式;(2)求证:f (x )在区间1,+∞)上是减函数.22.(本小题满分12分) 已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)确定函数f (x )的解析式;(2)当x ∈(-1,1)时判断函数f (x )的单调性,并证明; (3)解不等式f (2x -1)+f (x )<0.答案1.B 解析:P =M ∩N ={1,3},故P 的子集有22=4个,故选B.2.C 解析:A 中两个函数定义域不同;B 中y =x 2-1=|x |-1,所以两函数解析式不同;D 中两个函数解析式不同,故选C.解题技巧:判定两个函数是否相同时,就看定义域和对应法则是否完全一致,完全一致的两个函数才算相同.3.C 解析:A 选项中,元素3在N 中有两个元素与之对应,故不正确;同样B ,D 选项中集合M 中也有一个元素与集合N 中两个元素对应,故不正确;只有C 选项符合映射的定义.4.C 解析:A =⎩⎨⎧⎭⎬⎫-12,2,∁U B ={x |x ≤1},则A ∩(∁U B )=⎩⎨⎧⎭⎬⎫-12,故选C.5.C 解析:由于f (x )=x |x |=⎩⎪⎨⎪⎧1,x >0,-1,x <0,所以其图象为C.6.B 解析:A 选项是奇函数;B 选项为偶函数;C ,D 选项的定义域不关于原点对称,故为非奇非偶函数.7.D 解析:∵f (x )在(-∞,-2]上是增函数,且-4<-72<-3,∴f (4)=f (-4)<f ⎝ ⎛⎭⎪⎫-72<f (-3),故选D. 8.D 解析:由反比例函数的图象知k <0,∴二次函数开口向下,排除A ,B ,又对称轴为x =1k<0,排除C.9.D 解析:根据题意,得⎩⎪⎨⎪⎧2x -1≥0,2x -1<13,解得12≤x <23,故选D.10.C 解析:f (x )为奇函数,当x <0时,-x >0, ∴f (x )=-f (-x )=-(-x -1)=x +1, ∴f (x )·f (-x )=-(x +1)2≤0.11.D 解析:易知f (x )在-5,0]上单调递增,在0,5]上单调递减,结合f (x )是偶函数可知,故选D.12.C 解析:由已知得,⎩⎪⎨⎪⎧a >0,12a≥2,∴0<a ≤14,当a =0时,f (x )=-x +1为减函数,符合题意,故选C.13.2 解析:由图可知f (3)=1,∴f (f (3))=f (1)=2. 14.2,+∞) 解析:∵A ∪B =A ,即B ⊆A , ∴实数m 的取值范围为2,+∞).15.-1 解析:由题意知,f (-x )=-f (x ),即x 2-a +1x +a -x =-x 2+a +1x +a x,∴(a +1)x =0对x ≠0恒成立, ∴a +1=0,a =-1. 16.y =x2或y =⎩⎪⎨⎪⎧1-x ,x >0,1+x ,x <0或y =-2x(答案不唯一)解析:可结合条件来列举,如:y =x2或y =⎩⎪⎨⎪⎧1-x ,x >01+x ,x <0或y =-2x.解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,如从基本初等函数中或分段函数中来找.17.解:∵B ⊆A ,①当B =∅时,m +1≤2m -1, 解得m ≥2;②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上得,m 的取值范围为{m |m ≥-1}. 18.解:(1)∵32>1,∴f ⎝ ⎛⎭⎪⎫32=-2×32+8=5, ∵0<1π<1,∴f ⎝ ⎛⎭⎪⎫1π=1π+5=5π+1π.∵-1<0,∴f (-1)=-3+5=2. (2)如图:在函数y =3x +5的图象上截取x ≤0的部分,在函数y =x +5的图象上截取0<x ≤1的部分,在函数y =-2x +8的图象上截取x >1的部分.图中实线组成的图形就是函数f (x )的图象.(3)由函数图象可知,当x =1时,f (x )的最大值为6. 19.解:(1)f (5)=f (-5)=1-51--5=-46=-23.(2)当x ≤0时,f (x )=0即为1+x1-x =0,∴x =-1,又f (1)=f (-1),∴f (x )=0时x =±1.(3)当x >0时,f (x )=f (-x )=1-x 1+x ,∴x >0时,f (x )=1-x1+x .20.解:(1)f (1)=1+a =10,∴a =9.(2)∵f (x )=x +9x ,∴f (-x )=-x +9-x =-⎝ ⎛⎭⎪⎫x +9x =-f (x ),∴f (x )是奇函数.(3)设x 2>x 1>3,f (x 2)-f (x 1)=x 2+9x 2-x 1-9x 1=(x 2-x 1)+⎝⎛⎭⎪⎫9x 2-9x1=(x 2-x 1)+9x 1-x 2x 1x 2=x 2-x 1x 1x 2-9x 1x 2,∵x 2>x 1>3,∴x 2-x 1>0,x 1x 2>9,∴f (x 2)-f (x 1)>0,∴f (x 2)>f (x 1),∴f (x )=x +9x在(3,+∞)上为增函数.21.(1)解:设f (x )=ax 2+bx +c ,∴f (0)=c ,又f (0)=8,∴c =8. 又f (x +1)=a (x +1)2+b (x +1)+c , ∴f (x +1)-f (x )=a (x +1)2+b (x +1)+c ]-(ax 2+bx +c ) =2ax +(a +b ).结合已知得2ax +(a +b )=-2x +1.∴⎩⎪⎨⎪⎧2a =-2,a +b =1.∴a =-1,b =2.∴f (x )=-x 2+2x +8. (2)证明:设任意的x 1,x 2∈1,+∞)且x 1<x 2, 则f (x 1)-f (x 2)=(-x 21+2x 1+8)-(-x 22+2x 2+8) =(x 22-x 21)+2(x 1-x 2) =(x 2-x 1)(x 2+x 1-2). 又由假设知x 2-x 1>0, 而x 2>x 1≥1, ∴x 2+x 1-2>0,∴(x 2-x 1)(x 2+x 1-2)>0,f (x 1)-f (x 2)>0,f (x 1)>f (x 2).∴f (x )在区间1,+∞)上是减函数. 22.解:(1)由题意可知f (-x )=-f (x ), ∴-ax +b 1+x 2=-ax +b 1+x 2,∴b =0.∴f (x )=ax1+x2.∵f ⎝ ⎛⎭⎪⎫12=25,∴a =1. ∴f (x )=x1+x2.(2)f (x )在(-1,1)上为增函数. 证明如下:设-1<x 1<x 2<1,则f (x 1)-f (x 2)=x 11+x21-x 21+x 22=x 1-x 21-x 1x 21+x 211+x 22, ∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0, 1+x 21>0,1+x 22>0, ∴x 1-x 21-x 1x 21+x 211+x 22<0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在(-1,1)上为增函数.(3)∵f (2x -1)+f (x )<0,∴f (2x -1)<-f (x ), 又f (x )是定义在(-1,1)上的奇函数, ∴f (2x -1)<f (-x ), ∴⎩⎪⎨⎪⎧-1<2x -1<1,-1<-x <1,2x -1<-x ,∴0<x <13.∴不等式f (2x -1)+f (x )<0的解集为⎝ ⎛⎭⎪⎫0,13. 解题技巧:在求解抽象函数中参数的范围时,往往是利用函数的奇偶性与单调性将“f ”符号脱掉,转化为解关于参数不等式(组).测试卷二(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数y =1-x 2x 2-3x -2的定义域为( )A .(-∞,1]B .(-∞,2]C.⎝⎛⎭⎪⎫-∞,-12∩⎝ ⎛⎦⎥⎤-12,1 D.⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎦⎥⎤-12,12.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},映射f :x →x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .43.已知f (x )=⎩⎪⎨⎪⎧2x -1x ≥2,-x 2+3x x <2,则f (-1)+f (4)的值为( )A .-7B .3C .-8D .44.已知集合A ={-1,1},B ={x |mx =1},且A ∪B =A ,则m 的值为( ) A .1 B .-1 C .1或-1D .1或-1或05.函数f (x )=cx 2x +3⎝ ⎛⎭⎪⎫x ≠-32,满足f (f (x ))=x ,则常数c 等于( ) A .3 B .-3 C .3或-3D .5或-36.若函数f (x )的定义域为R ,且在(0,+∞)上是减函数,则下列不等式成立的是( )A .f ⎝ ⎛⎭⎪⎫34>f (a 2-a +1)B .f ⎝ ⎛⎭⎪⎫34<f (a 2-a +1)C .f ⎝ ⎛⎭⎪⎫34≥f (a 2-a +1)D .f ⎝ ⎛⎭⎪⎫34≤f (a 2-a +1)7.函数y =x |x |,x ∈R ,满足( )A .既是奇函数又是减函数B .既是偶函数又是增函数C .既是奇函数又是增函数D .既是偶函数又是减函数8.若f (x )是偶函数且在(0,+∞)上是减函数,又f (-3)=1,则不等式f (x )<1的解集为( )A .{x |x >3或-3<x <0}B .{x |x <-3或0<x <3}C .{x |x <-3或x >3}D .{x |-3<x <0或0<x <3}9.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧gx ,若f x ≥g x ,f x ,若f x <g x .则F (x )的最值是( )A .最大值为3,最小值为-1B .最大值为7-27,无最小值C .最大值为3,无最小值D .既无最大值,又无最小值10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2) 11.已知y =f (x )与y =g (x )的图象如下图:则F (x )=f (x )·g (x )的图象可能是下图中的( )12.设f (x )是R 上的偶函数,且在(-∞,0)上为减函数.若x 1<0,且x 1+x 2>0,则( ) A .f (x 1)>f (x 2)B .f (x 1)=f (x 2)C .f (x 1)<f (x 2)D .无法比较f (x 1)与f (x 2)的大小第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,则满足条件的实数x 组成的集合为________.14.若函数f (x )=kx 2+(k -1)x +2是偶函数,则f (x )的递减区间是________. 15.已知函数f (x )满足f (x +y )=f (x )+f (y ),(x ,y ∈R ),则下列各式恒成立的是________.①f (0)=0;②f (3)=3f (1);③f ⎝ ⎛⎭⎪⎫12=12f (1);④f (-x )·f (x )<0.16.若函数f (x )=x 2-(2a -1)x +a +1是(1,2)上的单调函数,则实数a 的取值范围为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集. (1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10}, (1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分) 函数f (x )=2x -1x +1,x ∈3,5].(1)判断单调性并证明; (2)求最大值和最小值.20.(本小题满分12分)已知二次函数f (x )=-x 2+2ax -a 在区间0,1]上有最大值2,求实数a 的值.21.(本小题满分12分)已知函数f (x )的值满足f (x )>0(当x ≠0时),对任意实数x ,y 都有f (xy )=f (x )·f (y ),且f (-1)=1,f (27)=9,当0<x <1时,f (x )∈(0,1).(1)求f (1)的值,判断f (x )的奇偶性并证明; (2)判断f (x )在(0,+∞)上的单调性,并给出证明; (3)若a ≥0且f (a +1)≤39,求a 的取值范围.22.(本小题满分12分) 已知函数f (x )=x 2+a x(x ≠0). (1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.答案1.D 解析:由题意知,⎩⎪⎨⎪⎧1-x ≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧x ≤1,x ≠-12且x ≠2.故选D.2.D 解析:∵集合M 中的元素-1不能映射到N 中为-2,∴⎩⎪⎨⎪⎧a 2-4a =-2,b 2-4b +1=-1.即⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0.∴a ,b 为方程x 2-4x +2=0的两根,∴a +b =4.3.B 解析:f (4)=2×4-1=7,f (-1)=-(-1)2+3×(-1)=-4,∴f (-1)+f (4)=3,故选B.4.D 解析:∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={-1}或B ={1}.则m =0或-1或1.解题技巧:涉及到B ⊆A 的问题,一定要分B =∅和B ≠∅两种情况进行讨论,其中B =∅的情况易被忽略,应引起足够的重视.5.B 解析:f (f (x ))=cf x 2fx +3=x ,f (x )=3x c -2x =cx2x +3,得c =-3. 6.C 解析:∵f (x )在(0,+∞)上是减函数,且a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34≥34>0,∴f (a2-a +1)≤f ⎝ ⎛⎭⎪⎫34. 解题技巧:根据函数的单调性,比较两个函数值的大小,转化为相应的两个自变量的大小比较.7.C 解析:由f (-x )=-f (x )可知,y =x |x |为奇函数.当x >0时,y =x 2为增函数,而奇函数在对称区间上单调性相同.8.C 解析:由于f (x )是偶函数,∴f (3)=f (-3)=1,f (x )在(-∞,0)上是增函数,∴当x >0时,f (x )<1即为f (x )<f (3),∴x >3,当x <0时,f (x )<1即f (x )<f (-3),∴x <-3.综上知,故选C.9.B 解析:作出F (x )的图象,如图实线部分,则函数有最大值而无最小值,且最大值不是3,故选B.10.A 解析:若x 2-x 1>0,则f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),∴f (x )在0,+∞)上是减函数,∵3>2>1,∴f (3)<f (2)<f (1). 又f (x )是偶函数,∴f (-2)=f (2), ∴f (3)<f (-2)<f (1),故选A.11.A 解析:由图象知y =f (x )与y =g (x )均为奇函数,∴F (x )=f (x )·g (x )为偶函数,其图象关于y 轴对称,故D 不正确.在x =0的左侧附近,∵f (x )>0,g (x )<0,∴F (x )<0, 在x =0的右侧附近,∵f (x )<0,g (x )>0,∴F (x )<0.故选A. 12.C 解析:∵x 1<0且x 1+x 2>0,∴-x 2<x 1<0. 又f (x )在(-∞,0)上为减函数, ∴f (-x 2)>f (x 1).而f (x )又是偶函数,∴f (-x 2)=f (x 2). ∴f (x 1)<f (x 2).13.{-3,2} 解析:∵2∈M ,∴3x 2+3x -4=2或x 2+x -4=2,解得x =-2,1,-3,2,经检验知,只有-3,2符合元素的互异性,故集合为{-3,2}.14.(-∞,0] 解析:∵f (x )是偶函数,∴f (-x )=kx 2-(k -1)x +2=kx 2+(k -1)x +2=f (x ). ∴k =1.∴f (x )=x 2+2,其递减区间为(-∞,0]. 15.①②③ 解析:令x =y =0得,f (0)=0; 令x =2,y =1得,f (3)=f (2)+f (1)=3f (1); 令x =y =12得,f (1)=2f ⎝ ⎛⎭⎪⎫12,∴f ⎝ ⎛⎭⎪⎫12=12f (1);令y =-x 得,f (0)=f (x )+f (-x ).即f (-x )=-f (x ), ∴f (-x )·f (x )=-f (x )]2≤0.16.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥52或a ≤32 解析:函数f (x )的对称轴为x =2a -12=a -12,∵函数在(1,2)上单调, ∴a -12≥2或a -12≤1,即a ≥52或a ≤32.解题技巧:注意分单调递增与单调递减两种情况讨论. 17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}. 当a =1时,B =(-∞,1]. ∴A ∩B ={}-4. (2)∵A ⊆B ,∴⎩⎪⎨⎪⎧-4a -1≤0,2a -1≤0,∴-14≤a ≤12,即实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,12.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10}, (∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴⎩⎪⎨⎪⎧a +4≥7,a -4≤3,解得3≤a ≤7,即a 的取值范围是3,7].19.解:(1)f (x )在3,5]上为增函数.证明如下: 任取x 1,x 2∈3,5]且x 1<x 2. ∵ f (x )=2x -1x +1=2x +1-3x +1=2-3x +1,∴ f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫2-3x 1+1-⎝ ⎛⎭⎪⎫2-3x 2+1 =3x 2+1-3x 1+1=3x 1-x 2x 1+1x 2+1,∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴ f (x )在3,5]上为增函数. (2)根据f (x )在3,5]上单调递增知,f (x )]最大值=f (5)=32, f (x )]最小值=f (3)=54.解题技巧:(1)若函数在闭区间a ,b ]上是增函数,则f (x )在a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间a ,b ]上是减函数,则f (x )在a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a . ①当a <0时,f (x )在0,1]上单调递减,∴f (0)=2, 即-a =2,∴a =-2.②当a >1时,f (x )在0,1]上单调递增,∴f (1)=2, 即a =3.③当0≤a ≤1时,f (x )在0,a ]上单调递增,在a,1]上单调递减, ∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾. 综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数. (2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x 1x 2<1,f (x 1)=f ⎝ ⎛⎭⎪⎫x 1x 2·x 2=f ⎝ ⎛⎭⎪⎫x 1x 2·f (x 2),Δy =f (x 2)-f (x 1)=f (x 2)-f ⎝ ⎛⎭⎪⎫x 1x 2f (x 2)=f (x 2)⎣⎢⎡⎦⎥⎤1-f ⎝ ⎛⎭⎪⎫x 1x 2.∵0<f ⎝ ⎛⎭⎪⎫x 1x 2<1,f (x 2)>0,∴Δy >0,∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数. (3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=f (3)]3, ∴9=f (3)]3,∴f (3)=39, ∵f (a +1)≤39,∴f (a +1)≤f (3), ∵a ≥0,∴a +1≤3,即a ≤2, 综上知,a 的取值范围是0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ). ∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+a x(x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1).∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+1x.任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 21+1x 1-⎝⎛⎭⎪⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎪⎫x 1+x 2-1x 1x 2,由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>1x 1x 2,f (x 1)<f (x 2),故f (x )在2,+∞)上单调递增.解题技巧:本题主要考查函数奇偶性的判断和函数单调性的判断.本题中由于函数解析式中含有参数,所以在判断函数奇偶性时需要根据参数的不同取值进行分类讨论;第(2)问中则需要根据f (1)=2先确定参数的值,再根据函数单调性的定义判断函数的单调性.。
高中数学必修一 第一章测试题(含答案)
必修一 第一章 集合与简易逻辑单元测试学校:___________姓名:___________班级:___________考号:___________一、单选题 1.已知全集U ={1,2,3,4,5,6,7},A ={2,3,5,7},B ={1,3,6,7},则∁U (A ∩B )=( ) A .{4}B .∅C .{1,2,4,5,6}D .{1,2,3,5,6}2.A ={2,3},B ={x ∈N|x 2−3x <0},则A ∪B =( ) A .{1,2,3}B .{0,1,2,}C .{0,2,3}D .{0,1,2,3}3.下列各组集合表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)} B .M ={(x,y)|x +y =1},N ={y |x +y =1} C .M ={4,5},N ={5,4}D .M ={1,2},N ={(1,2)}4.已知全集U =Z ,集合M ={x|−1<x <2,x ∈Z},N ={−1,0,1,2},则()C U M N ⋂=( ) A .{−1,2}B .{−1,0}C .{0,1}D .{1,2}5.设集合U ={1,2,3,4},M ={1,2,3},N ={2,3},则∁U (M ∩N )=( ) A .{4}B .{1,2}C .{}2,3D .{1,4}6.下列各式中:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}.正确的个数是( ) A .1B .2C .3D .47.命题“∃x ∈R ,x 2−2x +2≤0”的否定是( ) A .∃x ∈R ,x 2−2x +2≥0 B .∃x ∈R ,2220x x -+> C .∀x ∈R ,2220x x -+>D .∀x ∈R ,x 2−2x +2≤08.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件9.若命题:“∃x ∈R ,使x 2−x −m =0”是真命题,则实数m 的取值范围是( ) A .[−14,0]B .10,4⎡⎤⎢⎥⎣⎦C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎤-∞ ⎥⎝⎦10.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4B .a ≤4C .a ≥5D .a ≤511.已知集合A ={x|ax =x 2},B ={0,1,2},若A ⊆B ,则实数a 的值为( ) A .1或2B .0或1C .0或2D .0或1或212.已知集合A ={x|−2≤x ≤5},B ={x|m +1≤x ≤2m −1}.若B ⊆A ,则实数m 的取值范围为( ) A .m ≥3B .2≤m ≤3C .3m ≤D .m ≥2二、填空题 13.已知集合A ={−1,0,1},B ={0,a,a 2},若A =B ,则a =______.14.已知集合M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4},那么集合M ∩N= 15.“方程220x x a --=没有实数根”的充要条件是________.16.已知A ,B 是两个集合,定义A −B ={x|x ∈A,x ∉B},若A ={x|−1<x <4},B ={x|x >2},则A −B =_______________.三、解答题 17.已知A ={a −1,2a 2+5a +1,a 2+1}, −2∈A ,求实数a 的值.18.已知集合A ={x |−4<x <2},B ={x |x <−5或x >1}.求A ∪B ,A ∩(∁R B ); 19.已知集合U ={1,2,3,4,5,6,7,8,9},A ={x|3≤x ≤7且x ∈U},B ={x|x =3n,n ∈Z 且x ∈U}.(1)写出集合B 的所有子集; (2)求A ∩B ,A ∪∁U B .20.已知全集U =R ,集合A ={x|−1≤x ≤3}. (1)求C U A ;(2)若集合B ={x |2x −a >0},且B ⊆(C U A ),求实数a 的取值范围.21.已知集合{}|123A x a x a =-≤≤+,{}|14B x x =-≤≤,全集U =R .(1)当a=1时,求(C U A)∩B;(2)若“x∈B”是“x∈A”的必要条件,求实数a的取值范围.22.命题p:“∀x∈[1,2],x2+x−a≥0”,命题q:“∃x∈R,x2+3x+2−a=0”.(1)写出命题p的否定命题¬p,并求当命题¬p为真时,实数a的取值范围;(2)若p和q中有且只有一个是真命题,求实数a的取值范围.参考答案:1.C【分析】先求交集,再求补集,即得答案.【详解】因为A={2,3,5,7},B={1,3,6,7},所以A∩B={3,7},A B={1,2,4,5,6}.又全集U={1,2,3,4,5,6,7},所以()U故选:C2.A【分析】根据一元二次不等式的运算求出集合B,再根据并集运算即可求出结果.【详解】因为B={x∈N|x2−3x<0},所以B={1,2},所以A∪B={1,2,3}.故选:A.【点睛】本题主要考查了集合的并集运算,属于基础题.3.C【分析】根据集合的表示法一一判断即可;【详解】解:对于A:集合M={(3,2)}表示含有点(3,2)的集合,N={(2,3)}表示含有点(2,3)的集合,显然不是同一集合,故A错误;对于B:集合M表示的是直线x+y=1上的点组成的集合,集合N=R为数集,故B错误;对于C:集合M、N均表示含有4,5两个元素组成的集合,故是同一集合,故C正确;对于D:集合M表示的是数集,集合N为点集,故D错误;故选:C4.A【解析】根据集合M,求出C U M,然后再根据交集运算即可求出结果.【详解】M={x|−1<x<2,x∈Z}={0,1}∴()C {1,2}U M N ⋂=-. 故选:A.【点睛】本题主要考查集合的交集和补集运算,属于基础题. 5.D【分析】根据交集、补集的定义计算可得;【详解】解:∵集合U ={1,2,3,4},M ={1,2,3},N ={2,3} ∴M ∩N ={2,3}, 则∁U (M ∩N)={1,4}. 故选:D . 6.B【分析】根据相等集合的概念,元素与集合、集合与集合之间的关系,空集的性质判断各项的正误.【详解】∈集合之间只有包含、被包含关系,故错误;②两集合中元素完全相同,它们为同一集合,则{0,1,2}⊆{2,1,0},正确; ③空集是任意集合的子集,故∅⊆{0,1,2},正确; ④空集没有任何元素,故∅≠{0},错误;⑤两个集合所研究的对象不同,故{0,1},{(0,1)}为不同集合,错误; ⑥元素与集合之间只有属于、不属于关系,故错误; ∈∈∈正确. 故选:B. 7.C【分析】根据存在量词命题的否定为全称量词命题判断即可;【详解】解:命题“∃x ∈R ,2220x x -+”为存在量词命题,其否定为:∀x ∈R ,2220x x -+>;故选:C 8.B【分析】“返回家乡”的前提条件是“攻破楼兰”,即可判断出结论. 【详解】“返回家乡”的前提条件是“攻破楼兰”, 故“攻破楼兰”是“返回家乡”的必要不充分条件 故选:B9.C【分析】利用判别式即可得到结果.【详解】∵“∃x∈R,使x2−x−m=0”是真命题,∴Δ=(−1)2+4m≥0,解得m≥−14.故选:C10.C【分析】先要找出命题为真命题的充要条件{a|a≥4},从集合的角度充分不必要条件应为{a|a≥4}的真子集,由选择项不难得出答案【详解】命题“∀x∈[1,2],x2-a≤0”为真命题,可化为∀x∈[1,2],a≥x2恒成立即只需a ≥(x2)max,即命题“∀x∈[1,2],x2-a≤0”为真命题的的充要条件为a≥4,而要找的一个充分不必要条件即为集合{a|a≥4}的真子集,由选择项可知C 符合题意.故选:C11.D【解析】先求出集合A,再根据A⊆B,即可求解.【详解】解:当a=0时,A={0},满足A⊆B,当a≠0时,A{0,a},若A⊆B,∴a=1或a=2,综上所述:a=0,1或a=2.故选:D.12.C【分析】讨论B=∅,B≠∅两种情况,分别计算得到答案.【详解】当B=∅时:m+1>2m−1∴m<2成立;当B≠∅时:{m+1≤2m−1m+1≥−22m−1≤5解得:2≤m≤3.综上所述:3m 故选C【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误. 13.1-【分析】根据集合相等,元素相同,即可求得a 的值. 【详解】∵集合A ={−1,0,1},B ={0,a,a 2},A =B ,1a ∴=-,a 2=1.故答案是:1-. 14.{(3,1)}-【分析】确定集合中的元素,得出求交集就是由求得方程组的解所得. 【详解】因为M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4}, 所以M ∩N ={(x,y)|{x +y =2x −y =4}={(3,−1)}.故答案为:{(3,1)}-. 15.a <−1【解析】利用判别式求出条件,再由充要条件的定义说明.【详解】解析因为方程220x x a --=没有实数根,所以有440a ∆=+<,解得a <−1,因此“方程220x x a --=没有实数根”的必要条件是a <−1.反之,若a <−1,则Δ<0,方程220x x a --=无实根,从而充分性成立.故“方程220x x a --=没有实数根”的充要条件是“a <−1”. 故答案为:a <−1【点睛】本题考查充要条件,掌握充要条件的定义是解题关键. 16.{x|−1<x ≤2}【分析】根据集合的新定义,结合集合A 、B 求A −B 即可.【详解】由题设,A −B ={x|x ∈A,x ∉B},又A ={x|−1<x <4},B ={x|x >2}, ∴A −B ={x|−1<x ≤2}. 故答案为:{x|−1<x ≤2} 17.−32【分析】由−2∈A ,有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2,解方程求出实数a 的值,但要注意集合元素的互异性.【详解】因为−2∈A ,所以有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2, 当a −1=−2时,a =−1,此时a −1=2a 2+5a +1=−2不符合集合元素的互异性,故舍去;当2a2+5a+1=−2时,解得a=−32,a=−1由上可知不符合集合元素的互异性,舍去,故a=−32.【点睛】本题考查了元素与集合之间的关系,考查了集合元素的互异性,考查了解方程、分类讨论思想.18.A∪B={x|x<−5或x>−4};A∩(∁R B)={x|−4<x≤1}【分析】由并集、补集和交集定义直接求解即可.【详解】由并集定义知:A∪B={x|x<−5或x>−4};∵∁R B={x|−5≤x≤1},∴A∩(∁R B)={x|−4<x≤1}.19.(1)∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【分析】(1)根据题意写出集合B,然后根据子集的定义写出集合B的子集;(2)求出集合A,利用交集的定义求出集合A∩B,利用补集和并集的定义求出集合A∪∁U B.【详解】(1)∵B={x|x=3n,n∈Z且x∈U},∴B={3,6,9},因此,B的子集有:∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)由(1)知B={3,6,9},则∁U B={1,2,4,5,7,8},∵A={x|3≤x≤7且x∈U}={3,4,5,6,7},因此,A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【点睛】本题考查有限集合的子集,以及补集、交集和并集的运算,考查计算能力,属于基础题.20.(1) {x|x>3或x<−1};(2) a≥6.【分析】(1)利用数轴,根据补集的定义直接求出C U A;(2)解不等式化简集合B的表示,利用数轴根据B⊆(C U A),可得到不等式,解这个不等式即可求出实数a的取值范围.【详解】(1)因为集合A={x|−1≤x≤3}.所以C U A={x|x>3或x<−1};(2) B={x|2x−a>0}={x|x>a2}.因为B⊆(C U A),所以有362aa≤⇒≥.【点睛】本题考查了补集的定义,考查了已知集合的关系求参数问题,运用数轴是解题的关键. 21.(1)(C U A)∩B={x|−1≤x<0}(2)a <−4或0≤a ≤12【分析】(1)根据补集与交集的运算性质运算即可得出答案.(2)若“x ∈B ”是“x ∈A ”的必要条件等价于A ⊆B .讨论A 是否为空集,即可求出实数a 的取值范围.(1)当a =1时,集合{}|05A x x =≤≤,C U A ={x|x <0或x >5}, (C U A)∩B ={x|−1≤x <0}.(2)若“x ∈B ”是“x ∈A ”的必要条件,则A ⊆B , ①当A =∅时,a −1>2a +3,∴a <−4;②A ≠∅,则a ≥−4且a −1≥−1,2a +3≤4,∴0≤a ≤12. 综上所述,a <−4或0≤a ≤12. 22.(1)a >2 (2)a >2或a <−14【分析】(1)根据全称命题的否定形式写出¬p ,当命题¬p 为真时,可转化为(x 2+x −a)min ,当x ∈[1,2],利用二次函数的性质求解即可;(2)由(1)可得p 为真命题时a 的取值范围,再求解q 为真命题时a 的取值范围,分p 真和q 假,p 假和q 真两种情况讨论,求解即可 (1)由题意,命题p :“∀x ∈[1,2],x 2+x −a ≥0”,根据全称命题的否定形式,¬p :“∃x ∈[1,2],x 2+x −a <0” 当命题¬p 为真时,(x 2+x −a)min ,当x ∈[1,2]二次函数y =x 2+x −a 为开口向上的二次函数,对称轴为x =−12 故当x =1时,函数取得最小值,即(x 2+x −a)min 故实数a 的取值范围是a >2 (2)由(1)若p 为真命题a ≤2,若p 为假命题a >2 若命题q :“∃x ∈R ,x 2+3x +2−a =0” 为真命题 则Δ=9−4(2−a)≥0,解得14a ≥-故若q 为假命题a <−14由题意,p 和q 中有且只有一个是真命题, 当p 真和q 假时,a ≤2且a <−14,故a <−14; 当p 假和q 真时,a >2且14a ≥-,故a >2;综上:实数a 的取值范围是a >2或a <−14。
2024年人教版高中数学必修第一册第一章集合与常用逻辑用语试卷
2024年人教版高中数学必修第一册第一章集合与常用逻辑用语试卷**一、选择题(每题5分,共50分)**1. 下列各组对象中,不能构成集合的是()A. 所有大于1的自然数B. 班级中身高超过1.8米的学生C. 接近1的数D. 所有正方形2. 集合A = {x | x²= 4},集合B = {2, 3},则A ∩B = ()A. {2}B. {3}C. ∅D. {2, 3}3. 已知集合A = {x | 2x - 1 < 5},B = {x | x²- 4 < 0},则A ∪B = ()A. ( -2, 3)B. ( -∞, 3)C. ( -∞, 2)D. ( -2, +∞)4. 若集合A = {x | x = 2k, k ∈ℤ},B = {x | x = 2k + 1, k ∈ℤ},则()A. A ∩B = ∅B. A ∪B = ℤC. A ⊆BD. B ⊆A5. 已知集合M = {x | x = a + b√2, a, b ∈ℤ},则下列元素中属于集合M 的是()A. 0B. 1/√2C. √2D. π6. 已知命题p:x > 1,命题q:x > 2,则p 是q 的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. 已知命题“若x = 2,则x²= 4”的否命题是()A. 若x = 2,则x²≠4B. 若x ≠2,则x²= 4C. 若x ≠2,则x²≠4D. 若x²= 4,则x = 28. 下列命题中,为真命题的是()A. 若p ∨q 为真命题,则p,q 均为真命题B. 命题“若x > 1,则x²> 1”的否命题为假命题C. “x = 1”是“x²- 3x + 2 = 0”的充分不必要条件D. “x ≠1 或y ≠2”是“x + y ≠3”的必要不充分条件9. 设p:x > 1,q:1/x < 1,则p 是¬q 的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件10. 已知p:x²- 2x - 3 < 0,q:x - 2 > 0,则p 是q 的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件**二、填空题(每题5分,共10分)**11. 已知集合A = {x | x = 2k + 1, k ∈ℤ},B = {x | -2 < x < 5},则A ∩B = _______。
高中数学必修一第一章第一节练习题
【解析】∵ , , ∴ ∴ ,
13.
【解析】
试题分析: ,而 ,因此
考点:集合的交运算;
14.{x | x≤-2}
【解析】 ,则
15.
【解析】
试题分析:由 知: ,则 ,解得 ,则 , ,由 又知: ,则 , ,所以 。
考点:集合的运算
点评:集合有三种运算:交集、并集和补集。有时在运算前,需对集合进行变化。
20.1
【解析】
试题分析:由两集合相等可得
考点:集合相等
21. , , .
【解析】
试题分析:全集 ,集合 , ,求出 ,由此能求出 , , .画数轴是最直观的方法.
试题解析:∵ , ,
∴ ,
∴ ,
, .
考点:集合的交并补的运算.
22.
【解析】解:(1) ……2分
4分 ……5分
……7分
(2)当 时, 在 上递增,
A.{1} B.{-1} C.{0,1} D.{-1,0,1}
10.
设集合 ,则A∪B=( )
A. B.
C. D.
二、填空题
11.集合 中任选两个不同元素作为点的坐标,共有________个不同的点.
12.集合 , ,若 ,则 的值为.
13.已知集合 ,则 .
14.若 ,则 。
15.设集合 ,集合 .若 ,则 .
集合 不合……10分
当 时,集合 ,……12分
由 符合题意……14分
23.
【解析】
试题分析:首先求集合A,根据条件 ,分集合 为空集和非空集两种情况讨论,若 ,那么 ,若 ,列不等式组表示子集关系,从而得到实数 的取值范围.
试题解析:集合A中的不等式组得:
高一数学必修一第一章测试题及答案[1]
高中数学必修 1 检测题一、选择题:1.已知全集U {1,2,3, 4,5,6. 7}, A { 2,4,6}, B {1,3,5,7}.则A ( C BU )等于()A.{2 ,4,6} B.{1 ,3,5} C.{2 ,4,5} D.{2 ,5}22.已知会合A { x | x 1 0} ,则以下式子表示正确的有()①1 A ②{ 1} A ③ A ④{1, 1} AA.1 个B.2 个C.3 个D.4 个3.若f : A B 能组成映照,以下说法正确的有()(1)A中的任一元素在B中一定有像且独一;(2)A中的多个元素能够在B中有同样的像;(3)B中的多个元素能够在A中有同样的原像;(4)像的会合就是会合B.A、1 个 B 、2 个 C 、3 个 D 、4 个4、假如函数 2f (x) x 2(a 1)x 2 在区间,4 上单一递减,那么实数 a 的取值范围是()A、a≤ 3 B 、a≥ 3 C 、a≤5 D 、a≥55、以下各组函数是同一函数的是()① 3f (x) 2x 与g(x) x 2x ;②f ( x) x 与2g(x) x ;③ f (x) x0 与g (x) 1x;④ 2f (x) x 2x 1与2g(t ) t 2t 1。
A、①② B 、①③ C 、③④ D 、①④6.依据表格中的数据,能够判定方程e x x 2 0的一个根所在的区间是()x -1 0 1 2 3xe 0.37 1 2.72 7.39 20.09x 2 1 2 3 4 5 A.(-1,0)B.(0,1)C.(1,2)D.(2,3)7.若lgx y3 ) 3x lg y a,则lg( ) lg( ()2 23 A.3a B. a2 C.a D.a2 - 1 -8、若定义运算 a b b a ba a b,则函数 f x log x log x 的值域是()2 12A 0,B 0,1C 1,D R9.函数y a x在[ 0,1] 上的最大值与最小值的和为3,则a ()A.12B.2 C.4 D.1410. 以下函数中,在0,2 上为增函数的是()A、y log (x 1) B 、122y log x 1 C 、y log 221xD、 2y log (x 4x 5)1211.下表显示出函数值y 随自变量x 变化的一组数据,判断它最可能的函数模型是()x 4 5 6 7 8 9 10y 15 17 19 21 23 25 27A.一次函数模型B.二次函数模型 C .指数函数模型D.对数函数模型12、以下所给 4 个图象中,与所给 3 件事符合最好的次序为()(1)我走开家不久,发现自己把作业本忘在家里了,于是马上返回家里取了作业本再上学;(2)我骑着车一路以常速行驶,不过在途中碰到一次交通拥塞,耽误了一些时间;(3)我出发后,心情轻松,慢慢前进,以后为了赶时间开始加快。
人教A版 新教材高中数学必修第一册 第一章 章末检测试卷(一)
二、多项选择题(本大题共 4 小题,每小题 5 分,共 20 分.全部选对的得 5 分,部分选对的
得 3 分,有选错的得 0 分)
9.已知 U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则( )
A.M∩N={4,6}
B.M∪N=U
C.(∁UN)∪M=M 答案 BCD
(2)∵B={x|x<1},∴∁RB={x|x≥1}. ∴A∩(∁RB)={x|1≤x≤2}. 15.已知集合 A={x|-1<x<2},B={x|-1<x<m+1},若 x∈A 是 x∈B 成立的一个充分不必
要条件,则实数 m 的取值范围是________.
答案 {m|m>1}
解析 由 x∈A 是 x∈B 成立的一个充分不必要条件,
解 (1)由 x-1>0 得 x>1,即 B={x|x>1}. 所以 A∩B={x|1<x<2},A∪B={x|x>-1}. (2)集合 A-B 如图中的阴影部分所示.
由于 A-B={x|x∈A,且 x∉B}, 又 A={x|-1<x<2},B={x|x>1}, 所以 A-B={x|-1<x≤1}. 21.(12 分)已知非空集合 P={x|a+1≤x≤2a+1},Q={x|-2≤x≤5}. (1)若 a=3,求(∁RP)∩Q; (2)若“x∈P”是“x∈Q”的充分不必要条件,求实数 a 的取值范围. 解 因为 P 是非空集合,所以 2a+1≥a+1,即 a≥0. (1)当 a=3 时,P={x|4≤x≤7},∁RP={x|x<4 或 x>7}, Q={x|-2≤x≤5}, 所以(∁RP)∩Q={x|-2≤x<4}. (2)若“x∈P”是“x∈Q”的充分不必要条件,即 PQ,
高一数学必修1第一章试卷
高一年级数学学科必修1第一章质量检测试题参赛试卷【命题意图】 集合章是学生进入高中的第一章。
而集合问题为每年高考的必考题型之一;特别是近几年高考试卷中出现了一些以集合为背景的试题;这些试题涉及的知识面广;灵活性较强.实际上;这方面问题的本质是以集合为载体;将一些数学问题的已知条件“嵌入”集合之中;只不过是在语言形式方面做了些变通罢了;而解决问题的理论依据、方法等仍类似于其他问题的求解.因此;在集合题型及解题数学思想方法上应引起我们的足够重视.本套试题基于此思想;重点考查学生的集合基础内容;所贯穿全卷的典型题型;数学思想、方法。
适应于本章学习后的阶段检测。
【命题结构】一、选择题(本题共10小题;每小题5分;共50分;将答案直接填在下表中)1.下列各组对象中不能..形成集合的是( )(A )高一数学课本中较难的题(B )高二(2)班学生家长全体(C )高三年级开设的所有课程(D )2. 已知全集U ={0;2;4;6;8;10};集合A ={2;4;6};B ={1};则U A ∪B 等于() (A ){0;1;8;10} (B ){1;2;4;6}(C ){0;8;10} (D )Φ3.下列关系中正确的个数为( )①0∈{0};②Φ{0};③{0;1}⊆{(0;1)};④{(a ;b )}={(b ;a )}(A )1 (B )2 (C )3 (D )44.下列集合中表示空集的是( )(A ){x ∈R |x +5=5}(B ){x ∈R |x +5>5}(C ){x ∈R |x 2=0}(D ){x ∈R |x 2+x +1=0}5.方程组⎩⎨⎧=-=+3242y x y x 的解集为( )(A ) {2;1} (B ) {1;2} (C ){(2;1)} (D )(2;1)6.设全集=U {1;2;3;4;5;7};集合=A {1;3;5;7};集合=B {3;5};则() (A )B A U = (B )B A C U U )(= (C ))(B C A U U = (D ))()(B C A C U U7.已知集合=A {2|-x ≤x ≤7};}121|{-<<+=m x m x B ;且∅≠B ;若A B A = ;则()(A )-3≤m ≤4 (B )-3<<m 4 (C )42<<m (D )m <2≤48.设P 、Q 为两个非空实数集合;定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ;则P+Q 中元素的个数是( ) (A )9 (B )8 (C )7 (D )69.若集合1A ;2A 满足A A A =21 ;则称(1A ;2A )为集合A 的一个分拆;并规定:当 且仅当1A =2A 时;(1A ;2A )与(2A ;1A )为集合A 的同一种分拆;则集合=A {1;2;3 }的不同分拆种数是( )(A )27 (B )26 (C )9 (D )810.已知全集=I {∈x x |R};集合=A {x x |≤1或x ≥3};集合=B {1|+≤≤k x k x ;∈k R};且∅=B A C I )(;则实数k 的取值范围是( )(A )0<k 或3>k (B )32<<k (C )30<<k (D )31<<-k二、填空题(本题共5小题;每小题5分;共25分.把答案填在题中横线上 )11.满足条件{1;3}∪M ={1;3;5}的所有集合M 的个数是 .12.设A = (){}6x 4y y ,x +-=;B =(){}3x 5y y ,x -=;则A ∩B =_______.13.若A={0;1;2;4;5;7;8};B={1;3;6;7;9};C={3;4;7;8};那么集合(A ∩B )∪C=____________________.14. 已知=B A {}3; {9)()(<∈=x N x B C A C U U 且}3≠x ;(){}8,6,4=B A C U ;(){}5,1=B C A U ;则A = ;()=B A C U 。
高中数学必修一第一章第一节练习题
【解析】
试题分析:由两集合相等可得
考点:集合相等
21. , , .
【解析】
试题分析:全集 ,集合 , ,求出 ,由此能求出 , , .画数轴是最直观的方法.
试题解析:∵ , ,
∴ ,
∴ ,
, .
考点:集合的交并补的运算.
22.
【解析】解:(1) ……2分
4分 ……5分
……7分
(2)当 时, 在 上递增,
16.
【解析】
试题分析:集合 ,因为集合 为整数集,所以 .
考点:集合的基本运算.
17.
【解析】
试题分析:由 知, = ,又因为 , 一奇一偶,所以 是偶数时, 的取值为 , , , , ,共有 种情形,交换顺序又得到 种情形,所以集合共有 个元素,所以答案应填: .
考点:1、等差数列求和公式;2、整数奇偶性质;3集合概念.
A.{1} B.{-1} C.{0,1} D.{-1,0,1}
10.
设集合 ,则A∪B=( )
A. B.
C. D.
二、填空题
11.集合 中任选两个不同元素作为点的坐标,共有________个不同的点.
12.集合 , ,若 ,则 的值为.
13.已知集合 ,则 .
14.若 ,则 。
15.设集合 ,集合 .若 ,则 .
16.已知集合 ,集合 为整数集,则 ____.
17.集合 ,则集合 中的元素
个数为.
18.设集合 ,满足 , ,求实数 __________.
19.[2014·江西模拟]设全集U=[0,+∞),A={x|x2-2x-3≥0},B={x|x2+a<0},若(?UA)∪B=?UA,则a的取值范围________.
高中数学必修一第一章第一节集合的概念基础题3
高中数学必修一1.1集合的概念基础题3第I 卷(选择题)一、单选题1.对于正实数α,记M α是满足下列条件的函数()f x 构成的集合:对于任意的实数12,x x R ∈且12x x <,都有()()()()212121x x f x f x x x αα--<-<-成立.下列结论中正确的是 A .若()1f x M α∈,()2g x M α∈,则()()12f x g x M αα⋅⋅∈B .若()1f x M α∈,()2g x M α∈且()0g x ≠,则()()12M f x g x M αα∈ C .若()1f x M α∈,()2g x M α∈,则()()12f x g x M αα++∈D .若()1f x M α∈,()2g x M α∈()2g x M α∈且12αα>,则()()12f x g x M αα--∈2.设A 是整数集的一个非空子集,对于k ∈A ,如果1k A -∉且1k A +∉,那么称k 是集合A 的一个“好元素”.给定集合S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“好元素”的集合共有( ) A .2个B .4个C .6个D .8个3.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉4.若集合()22017*2,10,,2n mn n A m n m Z n Z ⎧⎫++⎪⎪==∈∈⎨⎬⎪⎪⎩⎭,则集合A 的元素个数为 A .4038 B .4036 C .22017 D .220185.已知x 、y 、z 为非零实数,代数式||||||||x y z xyz x y z xyz+++的值所组成的集合是M ,则下列判断正确的是( ) A .0M ∉B .2M ∈C .4M -∉D .4M6.当一个非空数集G 满足:如果,a b G ∈,则,,a b a b ab G +-∈,且0b ≠时,aG b∈时,我们称G 就是一个数域,以下关于数域的说法:∈0是任何数域的元素;∈若数域G 有非零元素,则2019G ∈;∈集合{}2P x x k k Z ==∈,是一个数域;∈有理数集是一个数域;∈任何一个有限数域的元素个数必为奇数,其中正确的选项是( )A .∈∈∈B .∈∈∈∈C .∈∈∈D .∈∈∈∈ 7.已知集合{}{}2|00,1x x ax +==,则实数a 的值为.A .1-B .0C .1D .28.定义集合A 与B 的运算“*”为:{|A B x x A *=∈或x B ∈,但}x A B ∉⋂.设X 是偶数集,{}1,2,3,4,5Y =,则()X Y Y **=( )A .XB .YC .X Y ⋂D .X Y ⋃二、多选题9.已知{}2A x x px q x =++=,()(){}2111B x x p x q x =-+-+=+,当{}2A =时,则集合B 中实数x 可能的取值为( )A.4B .3 C .3D .410.设集合{}22,,Z M a a x y x y ==-∈,则下列是集合M 中的元素的有( )A .4n ,Z n ∈B .41n +,Z n ∈C .42n +,Z n ∈D .43n +,Z n ∈11.(多选题)已知集合{}|4A x Z x =∈<,B N ⊆,则( ) A .集合B N N ⋃= B .集合A B 可能是{}1,2,3 C .集合A B 可能是{}1,1-D .0可能属于B12.已知集合{}{}1,2,|20P Q x ax ==+=,若P Q P =,则实数a 的值可以是( ) A .2-B .1-C .1D .0第II 卷(非选择题)三、填空题13.设集合A 是由1,k 2为元素构成的集合,则实数k 的取值范围是________.14.已知{}21,x x ∈-,则实数x 的值是________.15.已知()f x ax b =+,集合{}()0A x f x φ===(1)2,f =,则120182019a b -+=_____. 16.用列举法表示集合*6,5A aN a Z a ⎧⎫=∈∈=⎨⎬-⎩⎭__________.参考答案:1.C 【解析】 由题意知2121()()f x f x x x αα--<<-,从而求得.【详解】解:对于()()()()212121x x f x f x x x αα--<-<-, 即有()()()2121f x f x x x αα--<<-,令()()()2121f x f x k x x -=-, 则k αα-<<,若()1f x M α∈,()2g x M α∈, 即有11f k αα-<<,22g k αα-<<, 所以1212f g k k αααα--<+<+, 则有()()12f x g x M αα++∈, 故选:C . 【点睛】本题考查了函数的性质的判断与应用,属于中档题. 2.C 【解析】 【分析】根据“好元素”的定义用列举法列举出满足条件的所有集合,即可得到答案. 【详解】根据“好元素”定义,可知由S 中的3个元素构成的集合中,不含“好元素”,则这3个元素一定是相连的3个数,所以不含“好元素”的集合共有{}1,2,3,{}2,3,4,{}3,4,5,{}4,5,6,{}5,6,7,{}6,7,8,共6个.故选:C .3.B 【解析】分别讨论,x y 的符号,然后对||||||x y xy z x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题. 4.B 【解析】首先由题意方程变形为两个数相乘,即()201820172125n n m ++=⨯,依次讨论n 为奇数或偶数,得到满足条件的n ,从而得到集合A 的元素个数. 【详解】由题意可知220172210n mn n ++=⨯ 即()201820172125n n m ++=⨯,当n 是偶数时,21n m ++是奇数,当20182n =,此时2017215n m ++=,解得201720185122m Z --=∈,满足条件,依次类推,201825n =⨯,2018225⨯,2018325⨯......2018201725⨯,共2018个n ,每一个n 对应唯一的m ,当n 时奇数时,21n m ++是偶数,此时05n =,15,25…..20175共2018个n , 综上可知满足条件的n 有4036个数,每一个n 对应唯一的m , 所有集合A 的元素个数为4036个. 故选:B【点睛】本题考查由方程的整数解,确定集合的元素个数,意在考查分析问题和解决问题的能力,本题的关键是根据条件变形为()201820172125n n m ++=⨯,从而讨论n 是奇数或偶数,将2018201725⨯分成不同的两个数相乘,从而确定n 的个数即元素个数.5.D 【解析】 【分析】根据题意,分析可得代数式||||||||x y z xyz x y z xyz+++的值与x 、y 、z 的符号有关;按其符号的不同分4种情况讨论,分别求出代数式在各种情况下的值,即可得M ,分析选项可得答案. 【详解】根据题意,分4种情况讨论;∈x 、y 、z 全部为负数时,则xyz 也为负数,则||4||||||x y z xyz x y z xyz+++=-, ∈x 、y 、z 中有一个为负数时,则xyz 为负数,则||0||||||x y z xyz x y z xyz +++=, ∈x 、y 、z 中有两个为负数时,则xyz 为正数,则||0||||||x y z xyz x y z xyz+++=, ∈x 、y 、z 全部为正数时,则xyz 也正数,则||4||||||x y z xyz x y z xyz+++=; 则{4M =,4-,0}; 分析选项可得A 符合. 故选:D . 【点睛】本题考查集合与元素的关系,注意题意中x 、y 、z 的位置有对称性,即代数式的值只与x 、y 、z 中有几个为负数有关,与具体x 、y 、z 中谁为负无关.6.D 【解析】 【分析】直接根据数域的定义,采用赋值法依次判断各个选项即可得到结果. 【详解】对于∈,当a b =且,a b G ∈时,由数域定义知:0a b G -=∈,∴0是任何数域的元素,∈正确;对于∈,当0a b =≠且,a b G ∈时,由数域定义知:1aG b=∈, 112G ∴+=∈,123G +=∈,134G +=∈,…,120182019G +=∈,∈正确;对于∈,当2a =,4b =时,12a Gb =∉,∈错误; 对于∈,若,a b Q ∈,则,,a b a b ab Q +-∈,且当0b ≠时,aQ b∈,则有理数集是一个数域,∈正确;对于∈,0G ∈,若b G ∈且0b ≠,则b G -∈,则这个数不为0则必成对出现,∴数域的元素个数必为奇数,∈正确.故选:D. 7.A 【解析】 【详解】依题意,有{}{}0,0,1a -=,所以,1a =-.选A. 8.A 【解析】 【详解】试题分析:首先求出{}2,4X Y ⋂=,,X Y 的并集再去掉交集即得{}*1,3,5,6,8,10,X Y =.同理可得{}(*)*2,4,6,8,10,X Y Y X ==.考点:新定义及集合基本运算. 9.BC 【解析】由条件可知方程2x px q x ++=有两个相等的实根,并且2x =,列式求,p q 的值,再代入集合B ,求方程的实数根. 【详解】由{}2A =,得方程2x px q x ++=有两个相等的实根,且2x =. 从而有()2422140p q p q ++=⎧⎪⎨--=⎪⎩解得34p q =-⎧⎨=⎩从而()(){}213141B x x x x =---+=+.解方程()()213141x x x ---+=+,得3x =± 故选:BC 【点睛】本题考查集合元素与一元二次方程实数根的关系,重点考查计算能力,属于基础题型. 10.ABD 【解析】 【分析】分别对x ,y 取整数,1x n =+,1y n =-可判断A ;由21x n =+,2y n =可判断B ;令()()42n x y x y +=+-,通过验证不成立可判断C ;由22x n =+,21y n =+可判断D ,进而可得正确选项. 【详解】对于A :因为()()22411n n n =+--,Z n ∈,1Z n +∈,1Z n -∈,所以4n M ,故选项A 正确;对于B :因为()()2241212n n n +=+-,Z n ∈,21Z n +∈,2Z n ∈,所以41n M ,故选项B 正确;对于C :若()42Z n n M +∈∈,则存在x ,Z y ∈使得2242x y n,则()()42n x y x y +=+-,易知x y +和x y -同奇或同偶,若x y +和x y -都是奇数,则()()x y x y +-为奇数,而42n +是偶数,矛盾;若x y +和x y -都是偶数,则()()x y x y +-能被4整除,而42n +不能被4整除,矛盾,所以42nM ,故选项C 不正确;对于D :()()22432221n n n +=+-+,22Z n +∈,21Z n +∈,所以43n M ,故选项D 正确; 故选:ABD. 11.ABD 【解析】【分析】根据集合Z ,N 的定义,及集合元素的特点进行逐一判断即可. 【详解】∈B N ⊆,∈B N N ⋃=,故A 正确.∈集合{}4A x Z x =∈<,∈集合A 中一定包含元素1,2,3, ∈B N ⊆,∈集合A B 可能是{}1,2,3,故B 正确; ∈1-不是自然数,∈集合A B 不可能是{}1,1-,故C 错误; ∈0是最小的自然数,∈0可能属于集合B ,故D 正确. 故选:ABD. 【点睛】本题考查了集合Z ,N 的概念及集合元素的特点,属于基础题. 12.ABD 【解析】 【分析】由题得Q P ⊆,再对a 分两种情况讨论,结合集合的关系得解. 【详解】因为P Q P =,所以Q P ⊆. 由20ax +=得2ax =-,当0a =时,方程无实数解,所以Q =∅,满足已知; 当0a ≠时,2x a =-,令21a-=或2,所以2a =-或1-.综合得0a =或2a =-或1a =-. 故选:ABD 【点睛】易错点睛:本题容易漏掉0a =. 根据集合的关系和运算求参数的值时,一定要注意考虑空集的情况,以免漏解. 13.k ≠±1 【解析】 【详解】∈1∈A ,k 2∈A ,结合集合中元素的互异性可知k 2≠1,解得k ≠±1.点睛: 利用元素的性质求参数的方法(1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值.(2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验. 14.1 【解析】本题可分为1x -=、21x =两种情况进行讨论,得出实数x 的值后代入集合中判断是否成立,即可得出结果. 【详解】 因为{}21,x x ∈-,所以若1x -=,则1x =-,此时21x =,不满足;若21x =,则1x =或1-(舍去),1x =,此时集合为{}1,1-,满足, 故答案为:1. 【点睛】易错点睛:通过元素与集合的关系求参数时,要注意求出的集合中的元素需要满足互异性,考查计算能力,是中档题. 15.2020 【解析】由()f x ax b =+且集合{}()0A x f x φ===(1)2,f =,解得0a =,2b =,由此能求出120182019a b -+.【详解】 解:()f x ax b =+且集合{|()0}A x f x ===∅,0ax b ∴+=无解,0a ∴=,(1)2f =,2b ∴=,1020182019202a b -+=. 故答案为:2020. 【点睛】本题考查函数值的求法,是基础题.解题时要认真审题,仔细解答.16.{}1,2,3,4- 【解析】 【分析】对整数a 取值,并使65a-为正整数,这样即可找到所有满足条件的a 值,从而用列举法表示出集合A . 【详解】 因为a Z ∈且*65N a∈- 所以a 可以取1-,2,3,4. 所以{}1,2,3,4A =- 故答案为:{}1,2,3,4- 【点睛】考查描述法、列举法表示集合的定义,清楚Z 表示整数集,属于基础题.。
高中数学必修一第一、二章单元测试卷及答案2套
高中数学必修一第一、二章单元测试卷及答案2套测试卷一(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(-2)2] 12 等于( ) A .- 2 B. 2 C .-22 D.222.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N =( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅3.若0<m <n ,则下列结论正确的是( ) A .2m>2nB.⎝ ⎛⎭⎪⎫12m <⎝ ⎛⎭⎪⎫12nC .log 2m >log 2nD .log 12 m >log 12n4.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( )A.12B.45C .2D .9 5.函数f (x )=|log 2x |的图象是( )6.函数y =x +43-2x的定义域是( )A.⎝⎛⎦⎥⎤-∞,32B.⎝⎛⎭⎪⎫-∞,32 C.⎣⎢⎡⎭⎪⎫32,+∞D.⎝ ⎛⎭⎪⎫32,+∞7.已知U =R ,A ={x |x >0},B ={x |x ≤-1},则(A ∩∁U B )∪(B ∩∁U A )=( ) A .∅ B .{x |x ≤0} C .{x |x >-1}D .{x |x >0或x ≤-1}8.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞)当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)9.函数y =1-x 2+91+|x |( ) A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .是非奇非偶函数10.下列函数中,既是奇函数又是增函数的是( ) A .y =x +1 B .y =-x 2C .y =1xD .y =x |x |11.已知函数y =f (x )的图象与函数y =log 21x +1的图象关于y =x 对称,则f (1)的值为( )A .1B .-1 C.12 D .-1212.若函数f (x )=log a (x +1)(a >0,a ≠1)的定义域和值域都是0,1],则a 等于( ) A.13 B. 2 C.22D .2 第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.函数f (x )=lg(x -1)+5-x 的定义域为________. 14.若函数f (x )=ax -1-2(a >0,a ≠1),则此函数必过定点________.15.计算81- 14 +lg 0.01-ln e +3log 32=________.16.函数f (x )=ex 2+2x的增区间为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知a >0,且a ≠1,若函数f (x )=2a x-5在区间-1,2]的最大值为10,求a 的值.18.(本小题满分12分)设A ={x |-2≤x ≤5},B ={x |m -1≤x ≤2m +1}. (1)当x ∈N *时,求A 的子集的个数; (2)当x ∈R 且A ∩B =∅时,求m 的取值范围.19.(本小题满分12分)已知函数f (x )=m -22x +1是R 上的奇函数,(1)求m 的值;(2)先判断f (x )的单调性,再证明.20.(本小题满分12分)已知函数f (x )=log a (x -1),g (x )=log a (3-x )(a >0且a ≠1). (1)求函数h (x )=f (x )-g (x )的定义域;(2)利用对数函数的单调性,讨论不等式f (x )≥g (x )中x 的取值范围.21.(本小题满分12分) 设函数f (x )=ax -1x +1,其中a ∈R . (1)若a =1,f (x )的定义域为区间0,3],求f (x )的最大值和最小值;(2)若f (x )的定义域为区间(0,+∞),求a 的取值范围,使f (x )在定义域内是单调减函数.22.(本小题满分12分)已知13≤a ≤1,若函数f (x )=ax 2-2x +1在区间1,3]上的最大值为M (a ),最小值为N (a ),令g (a )=M (a )-N (a ).(1)求g (a )的函数表达式;(2)判断函数g (a )在区间⎣⎢⎡⎦⎥⎤13,1上的单调性,并求出g (a )的最小值.答案1.B 解析:(-2)2] 12 =(2)2] 12 = 2.2.C 解析:由1-x >0得x <1,∴M ={x |x <1}.∵1+x >0,∴x >-1.∴N ={x |x >-1}.∴M ∩N ={x |-1<x <1}.3.D 解析:∵y =2x 是增函数,又0<m <n ,∴2m <2n;∵y =⎝ ⎛⎭⎪⎫12x 是减函数,又0<m <n ,∴⎝ ⎛⎭⎪⎫12m >⎝ ⎛⎭⎪⎫12n; ∵y =log 2x 在(0,+∞)上是增函数,又0<m <n , ∴log 2m <log 2n .4.C 解析:∵f (0)=20+1=2,∴f (f (0))=f (2)=22+2a =4a , ∴2a =4,∴a =2.5.A 解析:结合y =log 2x 可知,f (x )=|log 2x |的图象可由函数y =log 2x 的图象上不动下翻得到,故A 正确.解题技巧:函数图象的对称变换规律: 函数y =f x 的图象―――――――――――――――――→y 轴左侧图象去掉,右侧保留并“复制”一份翻到y 轴左侧函数y =f |x |的图象函数y =f x 的图象――――――――――――――――――→x 轴上方图象不变,下方图象翻到上方函数y =|f x |的图象6.B 解析:由3-2x >0得x <32.7.D 解析:∁U B ={x |x >-1},∁U A ={x |x ≤0},∴A ∩∁U B ={x |x >0},B ∩∁U A ={x |x ≤-1},∴(A ∩∁U B )∪(B ∩∁U A )={x |x >0或x ≤-1}.8.A 解析:由题意知需f (x )在(0,+∞)上为减函数. 9.B 解析:f (-x )=1--x 2+91+|x |=1-x 2+91+|x |=f (x ),故f (x )是偶函数,故选B.10.D 解析:函数y =x +1为非奇非偶函数,函数y =-x 2为偶函数,y =1x和y =x |x |是奇函数,但y =1x不是增函数,故选D.11.D 解析:(m ,n )关于y =x 的对称点(n ,m ),要求f (1),即求满足1=log 21x +1的x 的值,解得x =-12.12.D 解析:∵x ∈0,1],∴x +1∈1,2].当a >1时,log a 1≤log a (x +1)≤log a 2=1,∴a =2;当0<a <1时,log a 2≤log a (x +1)≤log a 1=0与值域0,1]矛盾.13.(1,5] 解析:由⎩⎪⎨⎪⎧x -1>0,5-x ≤0,解得1<x ≤5.14.(1,-1) 解:当x =1时,f (1)=a 1-1-2=a 0-2=-1,∴过定点(1,-1).解题技巧:运用整体思想和方程思想求解. 15.-16 解析:原式=13-2-12+2=-16.16.-1,+∞) 解析:设f (x )=e t ,t =x 2+2x ,由复合函数性质得,f (x )=e x 2+2x的增区间就是t =x 2+2x 的增区间-1,+∞).17.解:当0<a <1时,f (x )在-1,2]上是减函数,当x =-1时,函数f (x )取得最大值,则由2a -1-5=10,得a =215,当a >1时,f (x )在-1,2]上是增函数,当x =2时,函数取得最大值,则由2a 2-5=10,得a =302或a =-302(舍). 综上所述,a =215或302.18.解:(1)由题意知A 中元素为{1,2,3,4,5}, ∴A 的子集的个数为25=32.(2)∵x ∈R 且A ∩B =∅,∴B 可分为两个情况. ①当B =∅时,即m -1>2m +1,解得m <-2;②当B ≠∅时,可得⎩⎪⎨⎪⎧2m +1<-2,m -1≤2m +1或⎩⎪⎨⎪⎧m -1>5,m -1≤2m +1,解得-2≤m <-32或m >6.综上知,m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <-32或m >6.19.解:(1)据题意有f (0)=0,则m =1. (2)f (x )在R 上单调递增,以下给出证明: 任取x 1,x 2∈R ,且x 1<x 2,f (x 2)-f (x 1)=-22x 2+1+22x 1+1=22x 2-2x 12x 2+12x 1+1. ∵x 2>x 1,∴2x 2>2x 1,∴f (x 2)-f (x 1)>0,则f (x 2)>f (x 1), 故f (x )在R 上单调递增.解题技巧:若函数f (x )的定义域内含有0且为奇函数时,则必有f (0)=0.20.解:(1)由⎩⎪⎨⎪⎧x -1>0,3-x >0,得1<x <3.∴函数h (x )的定义域为(1,3). (2)不等式f (x )≥g (x ),即为log a (x -1)≥log a (3-x ).(*)①当0<a <1时,不等式(*)等价于⎩⎪⎨⎪⎧1<x <3,x -1≤3-x ,解得1<x ≤2;②当a >1时,不等式(*)等价于⎩⎪⎨⎪⎧1<x <3,x -1≥3-x ,解得2≤x <3.综上,当0<a <1时,原不等式的解集为(1,2]; 当a >1时,原不等式的解集为2,3). 21.解:f (x )=ax -1x +1=a x +1-a -1x +1=a -a +1x +1, 设x 1,x 2∈R ,则f (x 1)-f (x 2)=a +1x 2+1-a +1x 1+1=a +1x 1-x 2x 1+1x 2+1.(1)当a =1时,f (x )=1-2x +1,设0≤x 1<x 2≤3, 则f (x 1)-f (x 2)=2x 1-x 2x 1+1x 2+1,又x 1-x 2<0,x 1+1>0,x 2+1>0, ∴f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2). ∴f (x )在0,3]上是增函数,∴f (x )max =f (3)=1-24=12,f (x )min =f (0)=1-21=-1.(2)设x 1>x 2>0,则x 1-x 2>0,x 1+1>0,x 2+1>0.若使f (x )在(0,+∞)上是减函数,只要f (x 1)-f (x 2)<0,而f (x 1)-f (x 2)=a +1x 1-x 2x 1+1x 2+1,∴当a +1<0,即a <-1时,有f (x 1)-f (x 2)<0, ∴f (x 1)<f (x 2).∴当a ∈(-∞,-1)时,f (x )在定义域(0,+∞)内是单调减函数.22.解:(1)∵13≤a ≤1,∴f (x )的图象为开口向上的抛物线,且对称轴为x =1a ∈1,3].∴f (x )有最小值N (a )=1-1a.当2≤1a ≤3,a ∈⎣⎢⎡⎦⎥⎤13,12时, f (x )有最大值M (a )=f (1)=a -1;当1≤1a <2,a ∈⎝ ⎛⎦⎥⎤12,1时, f (x )有最大值M (a )=f (3)=9a -5;∴g (a )=⎩⎪⎨⎪⎧a -2+1a ⎝ ⎛⎭⎪⎫13≤a ≤12,9a -6+1a ⎝ ⎛⎭⎪⎫12<a ≤1.(2)设13≤a 1<a 2≤12,则g (a 1)-g (a 2)=(a 1-a 2)⎝⎛⎭⎪⎫1-1a 1a 2>0,∴g (a 1)>g (a 2),∴g (a )在⎣⎢⎡⎦⎥⎤13,12上是减函数. 设12<a 1<a 2≤1,则g (a 1)-g (a 2)=(a 1-a 2)⎝ ⎛⎭⎪⎫9-1a 1a 2<0,∴g (a 1)<g (a 2),∴g (a )在⎝ ⎛⎦⎥⎤12,1上是增函数.∴当a =12时,g (a )有最小值12.测试卷二(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.80-lg 100的值为( )A .2B .-2C .-1 D.122.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1bB .f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1b <f (b )<f (a )C .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1b <f ⎝ ⎛⎭⎪⎫1aD .f ⎝ ⎛⎭⎪⎫1a <f (a )<f ⎝ ⎛⎭⎪⎫1b<f (b )3.下列不等式成立的是(其中a >0且a ≠1)( ) A .log a 5.1<log a 5.9 B .a 0.8<a 0.9C .1.70.3>0.93.1D .log 32.9<log 0.52.24.函数f (x )=log a (4x -3)过定点( )A .(1,0) B.⎝ ⎛⎭⎪⎫34,0 C .(1,1) D.⎝ ⎛⎭⎪⎫34,15.在同一坐标系中,当0<a <1时,函数y =a -x与y =log a x 的图象是( )6.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤0,log 2x ,x >0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12的值是( )A .-3B .3 C.13 D .-137.用固定的速度向如图形状的瓶子中注水,则水面的高度h 和时间t 之间的关系可用图象大致表示为( )8.已知f (x 6)=log 2x ,那么f (8)等于( ) A.43 B .8 C .18 D.12 9.函数y =xlg 2-x的定义域是( )A .0,2)B .0,1)∪(1,2)C .(1,2)D .0,1)10.函数f (x )=ln x 的图象与函数g (x )=x 2-4x +4的图象的交点个数为( ) A .0 B .1 C .2 D .311.已知函数f (x )在0,+∞)上是增函数,g (x )=-f (|x |),若g (lg x )>g (1),则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫110,10 B .(0,10) C .(10,+∞)D.⎝⎛⎭⎪⎫110,10∪(10,+∞)12.设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x+2x +b (b 为常数),则f (-1)=( )A .-3B .-1C .1D .3第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.若x log 23=1,则3x=________.14.若点(2,2)在幂函数y =f (x )的图象上,则f (x )=________.15.已知函数y =log a ⎝ ⎛⎭⎪⎫14x +b (a ,b 为常数,其中a >0,a ≠1)的图象如图所示,则a+b 的值为__________.16.下列说法中,正确的是________.(填序号)①任取x>0,均有3x>2x;②当a>0且a≠1时,有a3>a2;③y=(3)-x是增函数;④y=2|x|的最小值为1;⑤在同一坐标系中,y=2x与y=2-x的图象关于y轴对称.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)计算下列各式的值:(1)(32×3)6+(2×2)43-(-2 012)0;(2)lg 5×lg 20+(lg 2)2. 18.(本小题满分12分)设f(x)=a-22x+1,x∈R.(其中a为常数)(1)若f(x)为奇函数,求a的值;(2)若不等式f(x)+a>0恒成立,求实数a的取值范围.19.(本小题满分12分)已知函数f(x)=lg(2+x),g(x)=lg(2-x),设h(x)=f(x)+g(x).(1)求函数h(x)的定义域;(2)判断函数h(x)的奇偶性,并说明理由.20.(本小题满分14分)已知函数f(x)=log2|x|.(1)求函数f(x)的定义域及f(-2)的值;(2)判断函数f(x)的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.21.某种产品的成本f 1(x )与年产量x 之间的函数关系的图象是顶点在原点的抛物线的一部分(如图1),该产品的销售单价f 2(x )与年销售量之间的函数关系图象(如图2),若生产出的产品都能在当年销售完.(1)求f 1(x ),f 2(x )的解析式;(2)当年产量多少吨时,所获利润最大,并求出最大值.22.(本小题满分12分) 设f (x )=-2x+m2x +1+n(m >0,n >0).(1)当m =n =1时,证明:f (x )不是奇函数; (2)设f (x )是奇函数,求m 与n 的值;(3)在(2)的条件下,求不等式f (f (x ))+f ⎝ ⎛⎭⎪⎫14<0的解集.答案 创优单元测评 (第一章 第二章) 名校好题·能力卷]1.C 解析:80-lg 100=1-2=-1.2.C 解析:∵0<a <b <1,∴1<1b <1a .∴0<a <b <1b <1a.又∵f (x )=x 12在(0,+∞)单调递增,∴f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1b <f ⎝ ⎛⎭⎪⎫1a. 3.C 解析:选项A ,B 均与0<a <1还是a >1有关,排除;选项C 既不同底数又不同指数,故取“1”比较,1.70.3>1.70=1,0.93.1<0.90=1,所以1.70.3>0.93.1正确.选项D 中,log 32.9>0,log 0.52.2<0,D 不正确.解题技巧:比较几个数的大小问题是指数函数、对数函数和幂函数的重要应用,其基本方法是:将需要比较大小的几个数视为某类函数的函数值,其主要方法可分以下三种:(1)根据函数的单调性(如根据一次函数、二次函数、指数函数、对数函数、幂函数的单调性),利用单调性的定义求解;(2)采用中间量的方法(实际上也要用到函数的单调性),常用的中间量如0,1,-1等; (3)采用数形结合的方法,通过函数的图象解决.4.A 解析:令4x -3=1可得x =1,故函数f (x )=log a (4x -3)过定点(1,0).5.C 解析:当0<a <1时,y =a -x=⎝ ⎛⎭⎪⎫1a x 是过(0,1)点的增函数,y =log a x 是过(1,0)点的减函数.故选C.6.C 解析:f ⎝ ⎛⎭⎪⎫12=log 212=-1,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (-1)=3-1=13.7.B 解析:由题图可知,当t 越来越大时,h 的增长速度越来越快,而A ,D 是匀速增长的,瓶子应为直筒状,C 表示的瓶子应是口大于底,故选B.8.D 解析:令x 6=8可知x =± 2.又∵x >0,∴x =2,∴f (8)=log 22=log 2212 =12.9.B 解析:由题意可知,要使函数有意义,只需⎩⎪⎨⎪⎧x ≥0,2-x >0且2-x ≠1,解得0≤x <2且x ≠1.∴函数y =xlg2-x的定义域为0,1)∪(1,2).10.C 解析:g (x )=x 2-4x +4=(x -2)2,在同一平面直角坐标系内画出函数f (x )=lnx 与g (x )=(x -2)2的图象(如图).由图可得两个函数的图象有2个交点.11.A 解析:因为g (lg x )>g (1),所以f (|lg x |)<f (1),又f (x )在0,+∞)单调递增,所以0≤|lg x |<1,解得110<x <10.12.A 解析:∵f (x )是R 上的奇函数,∴f (0)=0. 又x ≥0时,f (x )=2x +2x +b ,∴20+b =0,b =-1. ∴当x ≥0时,f (x )=2x+2x -1. ∴f (1)=21+2×1-1=3.∵f (x )是R 上的奇函数,∴f (-1)=-f (1)=-3. 13.2 解析:∵x log 23=1,∴x =log 32, ∴3x=3log 32=2.解题技巧:注意换底公式与对数恒等式的应用.14.x 12 解析:设f (x )=x α(α为常数),由题意可知f (2)=2α=2, ∴α=12,∴f (x )=x 12 .15.34 解析:将图象和两坐标轴的交点代入得log a b =2,log a ⎝ ⎛⎭⎪⎫34+b =0,34+b =1,a 2=b ,从图象看出,0<a <1,b >0,解得a =12,b =14,a +b =34.16.①④⑤ 解析:对于①,可知任取x >0,3x >2x一定成立. 对于②,当0<a <1时,a 3<a 2,故②不一定正确. 对于③,y =(3)-x=⎝⎛⎭⎪⎫33x ,因为0<33<1,故y =(3)-x是减函数,故③不正确. 对于④,因为|x |≥0,∴y =2|x |的最小值为1,正确. 对于⑤,y =2x与y =2-x的图象关于y 轴对称,是正确的.(2)原式=lg 5×lg(5×4)+(lg 2)2=lg 5×(lg 5+lg 4)+(lg 2)2=(lg 5)2+lg 5lg 4+(lg 2)2 =(lg 5)2+2lg 5lg 2+(lg 2)2=(lg 5+lg 2)2=1.18.解:(1)因为x ∈R ,所以f (0)=0得a =1. (2)f (x )=a -22x +1,因为f (x )+a >0恒成立, 即2a >22x +1恒成立.因为2x+1>1,所以0<22x +1<2,所以2a ≥2,即a ≥1. 故a 的取值范围是1,+∞).19.解:(1)∵h (x )=f (x )+g (x )=lg(x +2)+lg(2-x ),要使函数h (x )有意义,则有⎩⎪⎨⎪⎧x +2>0,2-x >0,解得-2<x <2.所以,h (x )的定义域是(-2,2).(2)由(1)知,h (x )的定义域是(-2,2),定义域关于原点对称, 又∵ h (-x )=f (-x )+g (-x )=lg(2-x )+lg(2+x ) =g (x )+f (x )=h (x ),∴ h (-x )=h (x ),∴ h (x )为偶函数. 20.解:(1)依题意得|x |>0,解得x ≠0, 所以函数f (x )的定义域为(-∞,0)∪(0,+∞). f (-2)=log 2|-2|=log 2212 =12.(2)设x ∈(-∞,0)∪(0,+∞),则-x ∈(-∞,0)∪(0,+∞).f (-x )=log 2|-x |=log 2|x |=f (x ),所以f (-x )=f (x ),所以函数f (x )是偶函数.(3)f (x )在(0,+∞)上是单调增函数.证明如下: 设x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=log 2|x 1|-log 2|x 2|=log 2x 1x 2. 因为0<x 1<x 2,所以x 1x 2<1,所以log 2x 1x 2<0,即f (x 1)<f (x 2),所以f (x )在(0,+∞)上是单调增函数. 21.解:(1)设f 1(x )=ax 2,将(1 000,1 000)代入可得1 000=a ×1 0002, 所以a =0.001,所以f 1(x )=0.001x 2.设f 2(x )=kx +b ,将(0,3),(1 000,2)代入可得k =-0.001,b =3, 所以f 2(x )=-0.001x +3. (2)设利润为f (x ),则f (x )=xf 2(x )-f 1(x )=(-0.001x +3)x -0.001x 2=-0.002x 2+3x =-0.002(x 2-1500x +7502)+1 125,所以当x =750时,f (x )max =1 125.解题技巧:解应用题的一般思路可表示如下:22.(1)证明:当m =n =1时,f (x )=-2x+12x +1+1.由于f (1)=-2+122+1=-15,f (-1)=-12+12=14,所以f (-1)≠-f (1),f (x )不是奇函数. (2)解:f (x )是奇函数时,f (-x )=-f (x ), 即-2-x+m 2-x +1+n =--2x+m2x +1+n对定义域内任意实数x 成立. 化简整理得(2m -n )·22x+(2mn -4)·2x+(2m -n )=0,这是关于x 的恒等式,所以⎩⎪⎨⎪⎧2m -n =0,2mn -4=0,解得⎩⎪⎨⎪⎧m =-1,n =-2或⎩⎪⎨⎪⎧m =1,n =2.经检验⎩⎪⎨⎪⎧m =1,n =2符合题意.(3)解:由(2)可知,f (x )=-2x+12x +1+2=12⎝⎛⎭⎪⎫-1+22x +1,易判断f (x )是R 上单调减函数.由f (f (x ))+f ⎝ ⎛⎭⎪⎫14<0,得f (f (x ))<f ⎝ ⎛⎭⎪⎫-14,f (x )>-14,2x <3,得x <log 23,即f (x )>0的解集为(-∞,log 23).。
高中数学必修1第一章测试卷及答案
高中数学必修一第一章检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间90分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1 、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2、下列集合中表示同一集合的是( )A .M={(3,2)},N={(2,3)}B .M={4,5},N={5,4}C .M={(x ,y )|x+y=1},N={y|x+y=1}D .M={1,2},N={(1,2)}3 、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A .{1,2,3} B. {2} C. {1,3,4} D. {4}4、方程组 11x y x y +=-=- 的解集是 ( )A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1}5 、集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( )x y 0-2 2x y 0 -2 22 xy 0 -2 22 xy 0 -2 2 26 、已知函数()f x 的定义域为()1,0-,则函数()21f x -的定义域为( )(A)()1,1- (B))21,0( (C)()-1,0 (D)1,12⎛⎫⎪⎝⎭7 、函数y =4x -x 2,x ∈[0,3]的最大值、最小值分别为( )(A)4,0(B)2,0(C)3,0(D)4,38 、 下列函数中,在区间(0,2)上为增函数的是 ( )A.13+-=x yB. 3x y =C.342+-=x x yD.x y 4=9、 定义在R 上的函数f (x )对任意不相等实数a ,b 总有()()ba b f a f -->0成立,则必有( )A 、函数f (x )是先增加后减小B 、函数f (x )是先减小后增加C 、f (x )在R 上是增函数D 、f (x )在R 上是减函数10、如右图是偶函数)(x f y =的局部图像,根据图像所给信息,下列结论正确的是( ) A .0)6()2(=--f f B.0)6()2(<--f f C.0)6()2(<+-f f D.0)6()2(>--f f11 、设f(x)为定义在R 上的奇函数,当x ≥0时,f(x)=2x +2x+b(b 为常数),则f(-1)= (A) 3 (B) 1 (C)-1 (D)-312 、函数b x k y ++=)12(在实数集上是增函数,则( )A .21->kB .21-<kC .0>bD .0>b第Ⅱ卷(非选择题 共90分)二、填空题:本大题4小题,每小题4分,共16分. 把正确答案填在题中横线上.62xoy13 、已知22()21x xa a f x ⋅+-=+是R 上的奇函数,则a = 14、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ⊂A ,则a=__________15、已知某二次函数的图像的顶点坐标为()1,1,且图像经过点()2,0,该二次函数的解析式为____________16、已知函数f(x)在R 上是增函数,若f(3x+1)<f(x-2),则x 的取值范围为 三、解答题:本大题共6题,共74分,解答应写出文字说明,证明过程或演算步骤. 17、(12分)若 ,求实数的值。
高中数学必修一第一章复习参考题及解答
高中数学必修一第一章复习参考题及解答(人教A 版)A 组1.用列举法表示下列集合: (1)2{|9}A x x ==; (2){|12}B x N x =∈≤≤; (3)2{|320}C x x x =-+=.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.设P 表示平面内的动点,属于下列集合的点组成什么图形? (1){|}P PA PB =(,)A B 是两个定点; (2){|3}P PO cm =()O 是定点.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线; (2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆.3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合{|}{|}P PA PB P PA PC ==的点是什么.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值. 解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1.5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求AB ,AC ,()()A B B C .解:集合20(,)|{(0,0)}30x y AB x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y BC x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.求下列函数的定义域: (1)25y x x =-⋅+;(2)4||5x y x -=-.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.已知函数1()1xf x x-=+,求: (1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-.解:(1)因为1()1xf x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.设221()1x f x x +=-,求证:(1)()()f x f x -=; (2)1()()f f x x=-. 证明:(1)因为221()1x f x x+=-,所以22221()1()()1()1x x f x f x x x +-+-===---, 即()()f x f x -=; (2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x =-.9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围. 解:该二次函数的对称轴为8k x =,函数2()48f x x kx =--在[5,20]上具有单调性, 则208k ≥,或58k≤,得160k ≥,或40k ≤,即实数k 的取值范围为160k ≥,或40k ≤.10.已知函数2y x -=,(1)它是奇函数还是偶函数? (2)它的图象具有怎样的对称性? (3)它在(0,)+∞上是增函数还是减函数?(4)它在(,0)-∞上是增函数还是减函数? 解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==, 即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人?解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围. 解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.设全集{1,2,3,4,5,6,7,8,9}U =,}{3,1)(=B A C U ,}{4,2)(=B C A U ,求集合B . 解:由}{3,1)(=B A C U ,得{2,4,5,6,7,8,9}A B =,又}{4,2)(=B C A U ,所以集合{5,6,7,8,9}B =.4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=;当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤. 证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++,所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤.6.(1)已知奇函数()f x 在[,]a b 上是减函数,试问:它在[,]b a --上是增函数还是减函数? (2)已知偶函数()g x 在[,]a b 上是增函数,试问:它在[,]b a --上是增函数还是减函数? 解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >,所以函数()f x 在[,]b a --上也是减函数; (2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-,又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >,所以函数()g x 在[,]b a --上是减函数. 7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额.此项税款按下表分段累计计算:某人一月份应交纳此项税款为303元,那么他当月的工资、薪金所得是多少? 解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则⎪⎪⎩⎪⎪⎨⎧≤<⨯-+≤<⨯-+≤<⨯-≤≤=)125008000(%,20)8000(345)80005000(%,10)5000(45)50003500(%,3)3500()35000(,0x x x x x x x y由该人一月份应交纳此项税款为303元,得80005000≤<x , 303%10)5000(45=⨯-+x ,得7580=x ,全月应纳税所得额税率00()不超过1500元的部分 5 超过1500元至4500元的部分 10 超过4500元至9000元的部分 20所以该人当月的工资、薪金所得是7580元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
息县一高高一第一次阶段性测试
数学试题(27-40班)
命题人:刘高洁 审题人:陈东升
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)
1.集合{1,2,3}的真子集共有( )
A 、5个
B 、6个
C 、7个
D 、8个 2.已知集合A ={0,1,2,3,4,5},B ={1,3,6,9},C ={3,7,8},则(A ∩B )∪C 等于( ) A .{1,3,7,8} B .{3,7,8} C .{0,1,2,6,8}
D .{1,3,6,7,8}
3.已知f (x ),g (x )对应值如表.
则f (g (1))的值为( )
A .-1
B .0
C .1
D .不存在
4.已知函数f (x +1)=3x +2,则f (x )的解析式是( ) A .3x +2
B .3x -1
C .3x +1
D .3x +4
5.已知f (x )=⎩⎨⎧
2x -1 (x ≥2)-x 2+3x (x <2),则f (-1)+f (4)的值为 ( )
A .-7
B .3
C .-8
D .4
6.若函数()y f x =的定义域是[0,2],则函数(2)
()1
f x
g x x =
-的定义域是 A .[0,1] B .(0,1) C . [0,1)(1,4] D .[0,1) 7.下列各组函数表示同一函数的是( )
A .2(),()f x g x ==
B .0()1,()f x g x x ==
C .()()()
()t t g x x x x x f =⎩⎨⎧<-≥=,00
D .21
()1,()1x f x x g x x -=+=- 8.定义集合A 、B 的运算A *B ={x |x ∈A ,或x ∈B ,且x ∉A ∩B },则(A *B )*A 等于( )
A .A ∩
B B .A ∪B
C .A
D .B
9.已知函数f (x )=⎩⎨⎧
x +2, x ≤0,
-x +2, x >0,则不等式f (x )≥x 2的解集为( )
A .[-1,1]
B .[-2,2]
C .[-2,1]
D .[-1,2]
10.定义运算:a
b =a 2-b 2,a ⊗b =(a -b )2,则函数f (x )=
为
A .非奇函数且非偶函数
B .偶函数
C .奇函数且为偶函数
D .奇函数
11.设函数f (x )(x ∈R )为奇函数,f (1)=1
2,f (x +2)=f (x )+f (2),则f (5)=( ) A .0 B .1 C.5
2
D .5
12.已知f (x )=3-2|x |,g (x )=x 2
-2x ,F (x )=⎩⎨⎧
g (x ),若f (x )≥g (x ),
f (x ),若f (x )<
g (x ).则F (x )的
最值是( )
A .最大值为3,最小值-1
B .最大值为7-27,无最小值
C .最大值为3,无最小值
D .既无最大值,又无最小值
第Ⅱ卷(非选择题 共90分)
二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在答题卡中的横线上)
13.(2010·江苏,1)设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________.
14.已知函数y =f (n )满足f (n )=⎩⎨⎧
2 (n =1)3f (n -1) (n ≥2),则f (3)=________.
15.函数y =的定义域为
16.已知函数f (x )=2-ax (a ≠0)在区间[0,1]上是减函数,则实数a 的取值范围是________.
三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.(本题10分)
{}|24,A x x =≤<{}|3782,B x x x A B =-≥-求,,.R A B A B C
18.(本题满分12分)二次函数f (x )的最小值为1,且f (0)=f (2)=3.
(1)求f (x )的解析式;
(2)若f (x )在区间[2a ,a +1]上不单调,求a 的取值范围.
19、(本题满分12分)已知A=}32|{+≤≤a x a x ,B =}065|{2>-+x x x . (Ⅰ)若=B A {}31≤<x x ,求a 的取值;
(Ⅱ)若B B A ,求a 的取值范围.
20.已知函数f (x )的定义域为(-2,2),函数g (x )=f (x -1)+f (3-2x ). (1)求函数g (x )的定义域;
(2)若f (x )是奇函数,且在定义域上单调递减,求不等式g (x )≤0的解集.
21.(本题满分12分)一块形状为直角三角形的铁皮,直角边长分别为40cm 与60cm 现将它剪成一个矩形,并以此三角形的直角为矩形的一个角,问怎样剪法,才能使剩下的残料最少?
22.(本题满分12分)
(1)若a <0,讨论函数f (x )=x +a
x ,在其定义域上的单调性; (2)若a >0,判断并证明f (x )=x +a
x 在(0,a ]上的单调性.
息县一高高一第一次阶段性测试数学试题参考答案
1-5 CACBB 6-10 DCDAD 11-12 CB
13、1 14、18 15、{}10|≥=x x x ,或 16、(0,2] 17.解:{}|2A B x x =≥, {}|34A
B x x =≤<
18[解析] (1)∵f (x )为二次函数且f (0)=f (2), ∴对称轴为x =1.
又∵f (x )最小值为1,∴可设f (x )=a (x -1)2+1 (a >0) ∵f (0)=3,∴a =2,∴f (x )=2(x -1)2+1, 即f (x )=2x 2-4x +3.
(2)由条件知2a <1<a +1,∴0<a <12.
19【解】:B =}16|{>-<x x x 或------------------2分
(Ⅰ)数形结合得⎩⎨⎧≤≤-=+16332a a ∴0=a ---------------5分
(Ⅱ)由B B A = 得B A ⊆-----------------------------6分 1)当Φ=A 时满足题意,此时,332-<⇒+>a a a -----------9分
2)当Φ≠A 时,⎩
⎨⎧>⇒-<+>+≤163213
2a a a a a 或
终上,a 的取值范围为:13>-<a a 或------------------------12分
20. 解:(1)由题意可知:2521.25
213
12232212<<<<<<<<<<x x x x x ∴⎪⎩⎪
⎨⎧-⇒⎩⎨⎧----,∴函数g (x )的定义域为⎪⎭
⎫
⎝⎛2521,.
(2)由g (x )≤0得f (x -1)+f (3-2x )≤0,∴f (x -1)≤-f (3-2x ).又∵f (x )是奇函数,
∴f (x -1)≤f (2x -3),又∵f (x )在(-2,2)上单调递减,∴212
12232 2.2123
x x x x x --⎧⎪
--⇒⎨⎪--⎩<<<<<≤≥.
∴g (x )≤0的解集为⎥⎦
⎤
⎝⎛2,21.
21[解析] 如图,剪出的矩形为CDEF ,设CD =x ,CF =y ,则AF =40-y . ∵△AFE ∽△ACB . ∴AF AC =FE
BC 即∴40-y 40=x 60 ∴y =40-2
3x .剩下的残料面积为:
S =12×60×40-x ·y =23x 2-40x +1 200=23(x -30)2+600 ∵0<x <60∴当x =30时,S 取最小值为600,这时y =20.
∴在边长60cm 的直角边CB 上截CD =30cm ,在边长为40cm 的直角边AC 上截CF =20cm 时,能使所剩残料最少.
22[解析] (1)∵a <0,∴y =a
x 在(-∞,0)和(0,+∞)上都是增函数, 又y =x 为增函数,∴f (x )=x +a
x 在(-∞,0)和(0,+∞)上都是增函数. (2)f (x )=x +a
x 在(0,a ]上单调减, 设0<x 1<x 2≤a ,则f (x 1)-f (x 2)
=(x 1+a x 1
)-(x 2+a
x 2
)=(x 1-x 2)+a (x 2-x 1)x 1x 2
=(x 1-x 2)(1-a
x 1x 2
)>0,
∴f (x 1)>f (x 2),∴f (x )在(0,a ]上单调减.。