减法的简便算法

合集下载

两位数相减的简便方法

两位数相减的简便方法

两位数相减的简便方法相信大家小时候都曾经学过两位数相减的运算,但是很多人都觉得这个运算是比较困难的。

其实,在掌握一些简便的方法之后,两位数相减也可以变得非常简单。

今天,我将会向大家介绍两位数相减的简便方法。

1. 补数法补数法是一种将被减数和减数的关系转化为被减数和加数关系的方法。

简单地说,这种方法就是先找出一个与减数同位数的数字,然后加上这个数字之后,再用这个数去减被减数。

这个与减数同位数的数字称为减数的补数。

如果我们要做的是12减去7,那么我们可以找到一个补数——3。

在求解过程中,我们可以这样做:将3加到减数7上,得到10;然后,将10用于减被减数12,得到2,这就是我们想要的答案。

事实上,补数法的原理也是十分简单的:我们可以将减数的个位数从10中减去,然后把剩下的部分加上。

在上面的例子中,我们可以发现,我们将7的个位数3从10中减去,剩下的7,再加上剩下的减数,也就是5,我们得到了12-7=5,也就是正确的答案。

2. 借位减法借位减法是一种简单而又实用的两位数相减方法。

它的基本原理是,当我们不得不从减数中借位时,我们可以将借位的数添加到减数的个位数上,然后用这个新的数来减去被减数。

如果我们要计算35减去18,我们可以这样做:我们从减数中借1个十位,得到25;然后,我们将被减数18视为10加上8,即在25的基础上再减去18的个位数8,得到17,这就是我们的答案。

需要注意的是,当我们借位是,有时候我们需要不断借位才能完成减法。

比如说,如果我们要计算46减去39,我们就需要从减数中借1个十位,然后从减数的十位上再借1个数位。

我们就可以用15来减去被减数39,得到我们想要的答案6。

3. 逼近法逼近法是一种流行的近似两位数相减的方法。

其基本思想是根据差值的大小,找出距离被减数和减数最接近的数字来完成近似。

如果我们要计算79减去46,我们可以这样做:我们找到一组数字,这组数字的和等于减数,且距离被减数最近。

分数加减法简便算法

分数加减法简便算法

分数加减法简便算法在数学中,分数的加减法是基本运算之一、虽然在初等教育中,我们学习了分数的运算规则,但是有时候我们还是希望能够有一种简便的方法来进行分数的加减法运算。

下面我将介绍一些简便算法,帮助你更快地进行分数的加减法运算。

一、相同分母的分数的加减法运算当两个分数的分母相同时,我们可以直接在分子上进行加减运算,而保持分母不变。

例如,我们要计算以下分数的和:1/5+3/5由于分母相同,我们直接将分子相加,保持分母为5:1/5+3/5=(1+3)/5=4/5同样的方法,我们可以计算分数的差。

例如:3/4-1/4=(3-1)/4=2/4=1/2二、分母为公倍数的分数的加减法运算当两个分数的分母不同,但它们的分母存在一个公倍数时,我们可以通过找到一个公倍数,将两个分数的分母同时转化为这个公倍数的倍数,然后进行运算。

例如,我们要计算以下分数的和:3/4+2/5由于4和5的公倍数是20,我们可以将两个分数的分母都转换为20的倍数:3/4×5/5+2/5×4/4=15/20+8/20=23/20同样的方法,我们可以计算分数的差。

例如:3/4-2/5=15/20-8/20=7/20三、使用通分的方法进行分数的加减法运算当两个分数的分母不同且没有公倍数时,我们可以使用通分的方法进行运算。

通分就是将两个分数的分母都取相同的分数,然后按照相同分母的加减法运算进行计算。

例如,我们要计算以下分数的和:2/3+1/4由于3和4没有公倍数,我们可以通过将两个分数的分子和分母都乘以对方的分母来实现通分:2/3×4/4+1/4×3/3=8/12+3/12=11/12同样的方法,我们可以计算分数的差。

例如:2/3-1/4=8/12-3/12=5/12综上所述,对于分数的加减法运算,我们可以根据分母是否相同,分母是否存在公倍数,以及分母是否无公倍数来选择不同的简便算法。

通过运用这些算法,我们可以更快地进行分数的加减法运算。

加、减法的简便算法数学教案

加、减法的简便算法数学教案

加、减法的简便算法数学教案第一章:加法的交换律和结合律1.1 教学目标1. 理解加法的交换律和结合律的概念。

2. 学会运用交换律和结合律进行简便计算。

1.2 教学内容1. 加法的交换律:两个数相加,交换加数的位置,和不变。

2. 加法的结合律:三个数相加,可以先算任意两个数的和,再与第三个数相加,和不变。

1.3 教学活动1. 讲解加法的交换律和结合律的概念。

2. 举例说明并让学生练习运用交换律和结合律进行简便计算。

第二章:减法的性质2.1 教学目标1. 理解减法的性质。

2. 学会运用减法的性质进行简便计算。

2.2 教学内容1. 减法的性质:从一个数里连续减去两个数,可以减去这两个数的和,结果不变。

2. 减法的性质的应用:可以通过加法来简化减法运算。

2.3 教学活动1. 讲解减法的性质及其应用。

2. 举例说明并让学生练习运用减法的性质进行简便计算。

第三章:凑整法3.1 教学目标1. 理解凑整法的概念。

2. 学会运用凑整法进行简便计算。

3.2 教学内容1. 凑整法:通过加减法运算,将算式中的数凑成整数,从而简化计算。

2. 凑整法的应用:可以将复杂的算式转化为简单的整数运算。

3.3 教学活动1. 讲解凑整法的概念及其应用。

2. 举例说明并让学生练习运用凑整法进行简便计算。

第四章:拆分法4.1 教学目标1. 理解拆分法的概念。

2. 学会运用拆分法进行简便计算。

4.2 教学内容2. 拆分法的应用:可以将复杂的算式转化为简单的加减法运算。

4.3 教学活动1. 讲解拆分法的概念及其应用。

2. 举例说明并让学生练习运用拆分法进行简便计算。

第五章:逆向思维法5.1 教学目标1. 理解逆向思维法的概念。

2. 学会运用逆向思维法进行简便计算。

5.2 教学内容1. 逆向思维法:从结果出发,反向推导出计算过程。

2. 逆向思维法的应用:可以简化计算过程,提高计算速度。

5.3 教学活动1. 讲解逆向思维法的概念及其应用。

2. 举例说明并让学生练习运用逆向思维法进行简便计算。

加减法简便运算

加减法简便运算
小学四年级上册17337637639525113602761003007613697383142323493811589815810025815898在计算加法时有一个加数是接近整十整百的数可以把它们先看作整十整百的数来计算然后再看多加了几就减去几少加了几就加上几
加、减法的一些简便运算
例五 一共多少千克水果?
376-199 2744-601 =376-200+1 =2744-600-1 =177 =2143
巩固练习
用简便算法算下面各题
86+89
99+136
175+301
115-99
176-98 455-102
扩展练习:
下面各题有不同的解法吗?
197+98
98+299
小结
在计算加法时,有一个加数是接近整十、整百的数, 可以把它们先看作整十、整百的数来计算, 然后再看多加了几就减去几,少加了几就加上几。
717-502
717-502 =717-500-2 =215 717-500=217
在计算减法时,减数是接近整十、整百的数, 可以把它们先看作整十、整百的数来计算, 然后再看多减了几就加上几,少减了几就减去几。
练习二:
564-41 132-98 =132-100+2 =564-40-1 =34 =523
(2)25 + 5 - 25 + 5=0 ( ( ) )
(3)384 - (84 + 29)=384 - 84+ 29
( (4)78 + 19 - 22=78 + 22 - 19 )
( )
在计算减法时,减数是接近整十、整百的数, 可以把它们先看作整十、整百的数来计算, 然后再看多减了几就加上几,少减了几就减去几。

分子是1的异分母分数加减法的简便算法

分子是1的异分母分数加减法的简便算法

分子是1的异分母分数加减法的简便算法首先,我们来看一下分子是1的异分母分数的定义。

分子是1的异分母分数指的是分母不同但分子都为1的分数,例如1/2、1/3、1/4等等。

在这种分数中,分子始终为1,只有分母不同。

因此,我们可以将分母相同的分数直接相加或相减,然后再将结果的分数相加或相减,即可得到最终的结果。

下面,我将详细介绍分子是1的异分母分数加减法的简便算法。

加法算法:步骤1:寻找所有分母的最小公倍数,记为公倍数M。

步骤2:将所有分数的分子乘以各自的公倍数M,并且保持分数的值不变。

步骤3:将所有分数的分子相加,记为R。

步骤4:结果为R/M,即R除以公倍数M。

减法算法:步骤1:寻找所有分母的最小公倍数,记为公倍数M。

步骤2:将所有分数的分子乘以各自的公倍数M,并且保持分数的值不变。

步骤3:将所有分数的分子相减,记为R。

步骤4:结果为R/M,即R除以公倍数M。

接下来,我将通过一个例子来演示分子是1的异分母分数加减法的简便算法。

例子:计算1/2+1/3+1/4的结果。

步骤1:寻找最小公倍数。

2、3和4的最小公倍数为12步骤2:将分母为2的分数乘以6/6,分母为3的分数乘以4/4,分母为4的分数乘以3/3、得到6/12+4/12+3/12步骤3:将分子相加,得到13/12步骤4:结果为13/12,即1又1/12所以,1/2+1/3+1/4的结果为1又1/12同样地,我们可以使用相同的算法来计算分子是1的异分母分数的减法。

只需将加法中的步骤3中的相加换成相减即可。

总结起来,分子是1的异分母分数加减法的算法可以将分母相同的分数直接相加或相减,然后再将结果的分数相加或相减,最终得到最简分数形式的结果。

这个算法简化了计算步骤,提高了计算效率。

连减的简便运算

连减的简便运算

连减的简便运算汇报人:2024-01-09•连减的运算规则•简便运算的方法•实际应用与例题解析目录•练习与巩固•总结与回顾01连减的运算规则连减运算是指连续进行减法的运算。

定义连减运算具有结合律和交换律,即a-b-c=a-(b+c)=b-(a+c),但不可结合减法。

性质定义与性质在连减运算中,如果有括号,应先计算括号内的减法。

没有括号的情况下,应从左到右依次进行连减运算。

运算顺序从左到右依次进行先进行括号内的运算计算100-50-30,按照连减的运算规则,应先进行100-50得到50,再从50中减去30得到20。

解析实例1解析实例2解析实例3计算(100-50)-30,按照运算顺序,应先计算括号内的100-50得到50,再从50中减去30得到20。

计算100-(50+30),按照运算顺序,应先计算括号内的50+30得到80,再从100中减去80得到20。

030201实例解析02简便运算的方法提取公因数法总结词提取公因数法是一种常用的简便运算方法,通过将多个减法表达式中的公因数提取出来,简化计算过程。

详细描述提取公因数法的基本思路是将多个减法表达式中的共同因子提取出来,将减法转化为加法,从而简化计算过程。

例如,计算$100 - 25 - 25 - 25$时,可以将表达式重写为$100 - (25 + 25 + 25)$,这样只需要进行一次加法运算和一次减法运算,大大简化了计算过程。

总结词连续减法转加法是一种简便运算方法,通过将多个连续的减法表达式转换为加法表达式,简化计算过程。

详细描述连续减法转加法的基本思路是将多个连续的减法表达式转换为加法表达式,从而简化计算过程。

例如,计算$100 - 20 - 30$时,可以将表达式重写为$100 + (-20 + -30)$,这样只需要进行一次加法运算和两次减法运算,简化了计算过程。

连续减法转加法总结词交换律和结合律是数学中的基本运算定律,通过应用交换律和结合律,可以重新排列和组合加减运算符,从而简化计算过程。

减法的简便运算公式

减法的简便运算公式

减法的简便运算公式减法是数学中最基本的运算之一,它用来计算两个数之间的差。

虽然减法的运算可以使用标准的逐位减法算法进行,但有时候我们需要使用一些简便的运算公式来加快计算速度。

以下是一些减法的简便运算公式:1.补数法补数法是减法中最常用的简便运算法则之一、它的基本思想是,减法问题可以通过加法问题来解决。

对于一个减法问题a-b,我们可以将b的补数加到a上,即a+补数(b),得到的结果即为a-b。

举个例子,计算37-19:首先,找到19的补数,即找到一个数使得19+补数=100。

我们可以得到补数为81然后,将37和81相加,得到37+81=118所以,37-19=1182.借位法借位法是一种在减法运算时进行借位的简便方法。

它的基本思想是,当我们需要从一个数中借位时,我们可以将该位的数值减去一个特定的值,从而得到借位后的结果。

举个例子,计算65-28:首先,我们将个位上的数字8进行借位。

我们可以用10来替代8,然后将10减去8得到2、得到借位后的结果是65-20。

然后,我们将十位上的数字2进行借位。

我们可以用10来替代2,然后将10减去2得到8、得到借位后的结果是60-20。

最后,我们可以计算60-20=40。

所以,65-28=40。

3.分解法分解法是一种通过分解减数来简化减法运算的方法。

它的基本思想是,我们可以将减数拆分成更简单的数,然后对这些数分别进行减法运算,并将得到的结果进行合并得到最终结果。

举个例子,计算387-99:首先,我们可以将99拆分成90和9、然后,我们将387减去90得到297,再减去9得到288所以,387-99=2884.平移法平移法是一种通过移动数位来简化减法运算的方法。

它的基本思想是,我们可以将减数与被减数进行对齐,然后将减数整体向左平移,直到与被减数对齐。

然后,我们对位对位进行减法运算,得到最终结果。

举个例子,计算324-68:首先,我们将减数68向左平移一位,得到680。

十六种简便算法口诀

十六种简便算法口诀

十六种简便算法口诀1.加法口诀:同进位,异不进位,即两数同位数相加,若有进位,则将进位数加到下一位。

2. 减法口诀:大减小不借,小减大要借,即两数相减,若被减数小于减数,则需向前一位借位。

3. 乘法口诀:竖式相乘,横加进位,即将两数的每一位相乘,将结果相加,并考虑进位。

4. 除法口诀:竖式除法,除数齐整,被除数要补,即将被除数按位补齐,再进行除法运算。

5. 平均数口诀:求和除以数,即将所有数相加,再除以数的个数,得到平均数。

6. 百分数口诀:百分数乘上数,即将数乘以百分数所表示的小数。

7. 小数口诀:小数相加减,位数要补齐,即将小数按位补齐,再进行加减运算。

8. 倍数口诀:加个零再乘,即将某数乘以10,再乘以倍数。

9. 开根号口诀:一分二,二分三,三分四……,即从1开始不断除以比原数大1的数,直到所得数与被开方数相等为止。

10. 幂口诀:底数乘积,指数相加,即将底数连乘指数次。

11. 对数口诀:原数等于底数的几次方,即将底数连乘几次等于原数。

12. 三角函数口诀:正弦对边比斜边,余弦邻边比斜边,正切对边比邻边,即正弦等于对边除以斜边,余弦等于邻边除以斜边,正切等于对边除以邻边。

13. 格式化口诀:对齐居中好看,字体颜色要清,即进行格式化时要注意对齐、居中、字体颜色等。

14. 替换口诀:找到替换对象,用新内容进行替换,即将所需替换的对象找到,并将其替换为新内容。

15. 排序口诀:按照大小排列,从小到大或从大到小,即将一组数字按照大小进行排列。

16. 查找口诀:有序查找二分法,无序查找遍历法,即在有序或无序的数据中查找特定的数据。

有序数据可使用二分法,无序数据需使用遍历法。

减法的四种计算方法

减法的四种计算方法

减法的四种计算方法
学术语。

四种筹算除法捷算之总称。

古筹算中当除数为多位数时的四种算法,又称除算减法四术。

(1)减一位。

当除数是二位数且首位为1时,用商除的方法求得商数后,在被除数的相应位上减去除数个位与商之积。

(2)减二位。

当除数是三位数且首位为1时,与减一位基本相同,其区别在于需在被除数的相应位上减去商数与除数后二位数之积。

(3)重减。

当除数可分解为若干个首位为1的二位数或三位数因数之积时,连续做若干次减一位或减二位算法。

(4)隔位减。

当除数为三位数且首位为1、次位为0时,此为减二位算法之特例,只需在具体立算时隔一位减去商数与除数个位数之积即可。

杨辉《乘除通变本末》对这四种算法作系统介绍。

一年级减法的三种计算方法

一年级减法的三种计算方法

一年级减法的三种计算方法
一年级减法的三种计算方法:
1. 直接减法法:
直接减法法是最简便的计算方法。

我们只需按照减法的定义,用被减数减去减数,即可得到差。

例如:5 - 3 = 2
直接减法法的优点是简单易学,适用于数字较小的计算。

但当数字较大时,可能会出现借位的情况,计算就会变得十分繁琐。

2. 借位减法法:
借位减法法是我们在学习减法时最常用的一种方法。

在这种方法中,被减数和减数的个位相减,如果被减数的个位小于减数的个位,则需要向十位借位。

例如:16 - 8 = 8,我们需要借一位,变为 15 - 8 = 7
借位减法法的优点是适用范围广,可用于数字较小和较大的计算。


它也有缺点,就是需要记住借位和还位的规则,一旦出错,计算就容易出现错误。

3. 补数减法法:
补数减法法是一种比较高级的计算方法,也是我们在初学数学时较少接触的一种方法。

在这种方法中,我们不仅计算被减数与减数的差,还要计算它们的补数的和。

例如:5 - 3,我们不仅计算 5 - 3 的差,还要计算 10 - 3 的差和 10 - 5 的差,即:
10 - 3 = 7,10 - 5 = 5,7 + 5 = 12,12 - 8 = 4
补数减法法的优点是计算准确度高,无需考虑借位情况。

但它的缺点是需要记住补数的计算方法,而且计算时可能需要多次借位和补位,比较繁琐。

总的来说,这三种计算方法各有优缺点,我们可以根据具体情况选用适合自己的方法进行减法计算。

小数加减法简便计算方法

小数加减法简便计算方法

一、加法中的巧算1. “凑整法”如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。

又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,巧算下面各题:①36+87+64 ②99+136+101 ③ 1361+972+639+28二、减法中的巧算1.减法的性质:a-b-c=a-(b+c)巧算下面各题:① 300-73-27 ② 7.42-(3.42+1.5) ③4723-(723+189)三、加减混合式的巧算1.去括号和添括号的法则在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a+(b+c+d)=a+b+c+da-(b+a+d)=a-b-c-da-(b-c)=a-b+c一、加法中的巧算1. “凑整法”如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。

又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,巧算下面各题:①36+87+64 ②99+136+101 ③ 1361+972+639+28二、减法中的巧算1.减法的性质:a-b-c=a-(b+c)巧算下面各题:① 300-73-27 ② 7.42-(3.42+1.5) ③4723-(723+189)三、加减混合式的巧算1.去括号和添括号的法则在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a+(b+c+d)=a+b+c+da-(b+a+d)=a-b-c-da-(b-c)=a-b+c2.带符号“搬家”325+46-125+54=325-125+46+54=(325-125)+(46+54)=200+100=300注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54.而325前面虽然没有符号,应看作是+325。

十以内加减法的小算法

十以内加减法的小算法

十以内加减法的小算法在学习数学的早期阶段,孩子们通常会接触到十以内的加减法运算。

为了帮助孩子们更好地掌握这些基础运算,本文将介绍一些简单而有效的小算法。

1. 加法小算法1.1. 求和法求和法是最基本的加法算法。

对于两个十以内的数字相加,只需将个位数相加,然后再将十位数相加,最后将个位数和十位数的结果合并即可。

例如,计算7 + 4:7+ 4-----111.2. 进位法进位法是当个位数相加结果大于9时的一种处理方法。

在十以内相加时,如果个位数相加结果大于9,需要进位。

将个位数的结果保留在个位上,将十位数加上进位的1。

例如,计算8 + 6:8+ 6142. 减法小算法2.1. 求差法求差法是最基本的减法算法。

对于十以内的减法,只需将被减数减去减数即可找出差。

例如,计算9 - 3:9- 3-----6如果被减数的个位小于减数的个位,需要借位。

例如,计算8 - 9: 18- 9-----92.2. 借位法借位法是当个位相减结果小于0时的一种处理方法。

在十以内相减时,如果个位相减的结果小于0,需要向十位借1,并加上10,再进行减法运算。

例如,计算6 - 8:- 8-----8常见的十以内加减法小算法就是这么简单。

通过这些小算法,孩子们可以更好地理解和掌握基本的加减法运算。

当然,这些小算法只是为了帮助孩子们初步掌握计算方法,随着学习的深入,孩子们还需要逐渐掌握快速计算的技巧。

除此之外,还可以通过一些趣味的游戏和练习来帮助孩子们巩固加减法运算的能力。

比如,在日常生活中找一些计算的机会,让孩子们亲自参与,并通过游戏化的方式激发他们的兴趣。

总结起来,十以内加减法的小算法包括求和法、进位法、求差法和借位法。

通过这些小算法,孩子们可以逐步掌握基础的加减法运算,并在日常生活中运用。

同时,通过趣味游戏和练习,可以帮助孩子们巩固所学知识,提高他们的数学能力。

加、减法的一些简便算法

加、减法的一些简便算法
ห้องสมุดไป่ตู้
例2: 276+98=276+100-2= 374 想: 把98看作100,因为加 100就多加了( 2 ),所以要 再( 减去2 ).
小结: 在计算加法时,如果加 数是一个接近整十、整 百的数,把它们先看作 整十、整百的数,然后多 加了几就要减去几。
做一做: 156+87=156+90 - 3 = 243 74+198= 74+200-2= 272
例3: 165-97=165-100+ 3 = 68 想: 把97看作100,因为减 100就多减了( 3 ),所以要 再加上( 3 ).
思考: 198+99你能用几种不同 的简便方法计算出来? 198+99=198+100-1=297 198+99=200+99-2=297 198+99=200+100-2-1=297
下面两题有不同的简便 算法吗? (1) 197+98 (2) 98+299
用简便算法算下面各题: 86+89 = 86+90-1=175 99+136 = 100+136-1=235 175+197 = 175+200-3=372 115-99 = 115-100+1=16 176-98 = 176-100+2=78 439-197 = 439-200+3=242
1、以下各数接近哪个 整百或整十数? 59 299 199 195 198 101 78 203 97
2、在
里填上适当的数。
78=80- 2 99=100- 1 87=90- 3 101=100+ 1 574+200= 774 453-300= 153

减法的计算方法

减法的计算方法

减法的计算方法嘿,咱今儿个就来唠唠这减法的计算方法!你可别小瞧这减法啊,它就像咱生活里的一把小剪刀,能帮咱裁掉一些不必要的东西呢。

你看啊,减法在数学里那就是个简单的运算,可在生活中,那意义可大了去了。

就好比说,你衣柜里满满当当的衣服,每次找件想穿的都跟大海捞针似的,这时候就得做做减法啦!把那些不常穿的、过时的、不合身的都清理掉,留下的不就是精华嘛!这就像减法计算,减去那些不需要的,留下最重要的。

再想想时间管理,一天就 24 个小时,咱要是啥都想干,那最后可能啥都干不好。

这时候就得给咱的生活做做减法,减去那些没意义的社交活动,减去那些浪费时间的琐事,把时间多留给自己真正喜欢的事情,读书啊、锻炼啊、陪陪家人啥的。

还有咱的欲望,人的欲望那可真是无穷无尽啊!看到别人有这个有那个,自己也想要。

但咱得明白,不是所有的都适合自己呀。

这时候就得给欲望做做减法,别啥都想要,只留下那些真正对自己有价值的。

不然,就像背着个大包袱,累都累死了。

减法计算方法还能用到情绪上呢!咱每天都会遇到各种各样的烦心事,要是都往心里去,那心里还不得堵得慌啊!这时候就得把那些负面的情绪减掉,别让它们影响咱的心情。

就像擦掉黑板上的字一样,把那些不开心的都擦掉,让自己的心情时刻保持清爽。

就说工作吧,有时候任务多得像山一样压过来,别急,咱用减法呀!先把不重要的、不紧急的减去,集中精力去做最重要的事情,这样效率不就高了嘛!你想想,要是生活里没有减法,那会变成啥样?到处都是乱糟糟的,心里也乱糟糟的,那得多难受啊!所以说,减法可真是个宝啊!减法不是让咱啥都不要,而是让咱更清楚地知道自己真正需要的是什么。

就像一棵树,减去那些多余的枝叶,才能长得更挺拔、更茂盛。

咱的生活也是一样,减去那些不必要的,才能过得更精彩、更有质量。

咱可得学会这减法的计算方法,让它在咱的生活里发挥大作用。

别再啥都往自己身上揽啦,该减就减,给自己的生活做做减法,让自己轻装上阵,去迎接更美好的未来!你说是不是这个理儿呢?。

四年级下册数学简便算法技巧

四年级下册数学简便算法技巧

四年级下册数学简便算法技巧四年级下册数学简便算法技巧一、快速加法计算技巧1. 调整加数,加数中的数位和被加数的数位和相等时,计算更容易,例如:26+37=63,31+48=79。

2. 进位加法,当个位相加等于或大于10时,应将进位的数写在十位上,例如:9+5=14,写成1十4。

3. 留位加法,当“满十进一”时,应保留末位,进到前一位上,例如:18+17=35,写成3十5。

二、快速减法计算技巧1. 借位减法,当被减数的某一位没有足够的数减去减数时,要向高位借位,例如:45-19=26。

2. 靠近转化减法,将一个大减数拆成小的减数相加,例如:64-28=36,可以拆成60-20=40和4-8=-4,再相加得到36。

三、快速乘法计算技巧1. 数位交错法,将两个数各位分开,两数的每一位相乘,再将乘积相加,例如:32×45=(30+2)×(40+5)=1200+150+80+10= 1340。

2. 单位相同法,将两个乘数的其中一个数等于它所在的单位的10倍,即可以写成10、100、1000……的倍数,例如:35×40=(35×4)×10=140×10=1400。

四、快速除法计算技巧1. 整除的简便方法,当一个数能被2、3、4、5、6、8、9、10这些数中的一个整除时,就可以用简便的方法进行计算,例如:600÷6=100,300÷8=37.5。

2. 分子分母同时乘或除,当一个分式的分子和分母的各因数相同时,可以分别乘或除以一个合适的数,使分子或分母的因数消去,例如:48÷72=(48÷8)÷(72÷8)=6÷9=2÷3。

以上是四年级下册数学的简便算法技巧,希望同学们能够掌握并灵活运用,提高数学计算效率。

五年级简便计算及答案

五年级简便计算及答案

五年级简便计算及答案第一节:加法和减法的简便计算及答案在五年级的数学学习中,加法和减法是最基础的运算,而简便的加法和减法算法可以帮助学生更快、更准确地解决问题。

本文将介绍一些简便的加法和减法计算方法,并提供相应的解答。

1. 两位数的加法当我们需要计算两个两位数的加法时,可以采用逐位相加的方法。

先将个位数相加,然后将十位数相加,最后将两个结果合并。

例如:67 + 35个位数相加:7 + 5 = 12(个位数为2)十位数相加:6 + 3 = 9将个位数和十位数合并:92所以,67 + 35 = 92。

2. 两位数的减法类似于加法,当我们需要计算两个两位数的减法时,可以采用逐位相减的方法。

同样先将个位数相减,然后将十位数相减。

例如:83 - 42个位数相减:3 - 2 = 1十位数相减:8 - 4 = 4所以,83 - 42 = 41。

3. 带有进位或借位的加法和减法当进行加法或减法时,如果个位数相加超过了10,就需要进位;如果个位数相减小于0,就需要借位。

处理进位或借位的方法如下:- 进位:将个位数的进位加到十位数上例如:67 + 58个位数相加:7 + 8 = 15(个位数为5,十位数的进位为1)十位数相加并加上进位:6 + 5 + 1 = 12(十位数为2,个位数的进位为1)将个位数和十位数合并:125所以,67 + 58 = 125。

- 借位:从十位数借1,加到个位数上例如:83 - 29个位数相减:3 - 9 = -6(需要借位)十位数相减并借位:8 - 2 - 1 = 5所以,83 - 29 = 54。

第二节:乘法和除法的简便计算及答案除了加法和减法,乘法和除法也是五年级数学学习中的重点内容。

同样,简便计算方法可以帮助学生更快地解决乘法和除法问题。

本节将介绍一些简便的乘法和除法算法,并提供相应的解答。

1. 乘法的简便计算当我们需要计算两个两位数的乘法时,可以采用列竖式的方法。

将两个数都按照个位数和十位数进行划分,然后依次进行相乘并相加。

人教版小学四年级下册数学同步教学课件3-3减法的简便运算(课件)

人教版小学四年级下册数学同步教学课件3-3减法的简便运算(课件)

课堂练习
4.
25
325-276-24=25(票)
课堂练习
5.
2255+(355+245)=2855(元) 答:这台彩电原价2855元。
6.
107 104 106 38
课堂小结
1.一个数连续减去几个数,等于这个数减去 这几个减数的和。即a-b-c=a-(b+c) 2.一个数连续减去几个数,如果一个减数 与被减数有相同部分,把它先减去比较简 便。即a-b-c=a-c-b
减去和
234-66-34 =234-34-66 =200-66 =134 (页)
找相同
新课讲解
1.一个数连续减去几个数,等于这个数减去这 几个减数的和。
a-b-c=a-(b+c) 2.一个数连续减去几个数,如果一个减数与 被减数有相同部分,把它先减去比较简便。
a-b,怎样简便就怎样计算。
234 −(66 + 34) = 234 − 100 = 134(页) 答:还剩134页没看。
☆将连续减去的两个数先相加,刚好得到 100, 再用 234 减去 100,得到 134。
新课讲解
这本书一共 234 页,还剩多少页 没看?
方法三
总页数 −今天的页数 − 昨天的页数 = 剩下的页数
234 − 34 − 66 = 200 − 66 = 134(页) 答:还剩 134 页没看。
情境导入
在计算几个数连加的算式时,可以利用加法交 换律和结合律把能凑成整百,整十的数先加起 来,使计算简便。
新课讲解
这本书一共 234 页,还剩多少页没看? 图中告诉我们哪些信息?要我们解决的问
题是什么?
新课讲解
已知:昨天看的页数

六年级数学简便算法大全

六年级数学简便算法大全

简便算法分类试题一、常见分数、小数和百分数的互化。

21=0。

5=50% 41=0.25=25% 43=0.75=75% 51=0。

2=20%52=0。

4=40% 53=0.6=60% 54=0.8=80% 81=0.125=12。

5% 83=0。

375=37。

5% 85=0.625=62。

5% 87=0。

875=87。

5%二、四则运算中的简便计算. (一)、加法简便计算。

1、加法交换律:a +b = b +a2、加法结合律:a +b +c = a +(b +c)1。

96+4.7+1.3 0.375+43+85+25% 75.8+3。

7+24。

2+6.3(二)、减法简便计算1、a -b -c = a -(b +c )12.5-4。

84-5。

16 157-18。

9-1.1 2-73-742、a -(b +c ) = a -b -c21.38-(1。

38+0.46) 2986-(700+986) 12。

25-(4.84+5.25)2、a -(b -c) = a -b +c27。

64-(5.8-4。

36) 4.28-(3.99-5.72)754-(3.7-721)(三)、加减混合简便计算。

(同级,连同数字前运算符号一起搬家)。

4.27-3。

35+5。

73-2。

65 7。

25-错误!+2.75-错误!1613-72+163-75(四)、乘法简便计算。

1、乘法交换律:ab = ba2、乘法结合律:a ×b ×c = a ×(b ×c ) 12.5×3。

2×0。

25 137×43×3526×16 1.25×74×4×1573、乘法分配律: a (b +c ) = ab +ac(87-41)×12 (25+245)×4 56×(85+73-145)4、乘法分配律的特殊情况 (1)、一个因数接近整数。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、试一试、想一想、填一填
156+87=156+90 ○ □=□
74+198=74+200 ○ □=□
5、减法中能用简便算法吗?
(二)教学减法的验算方法
出示例3: 165-97
(1)这个算式中哪个数接近整十或整百?看作多少计算比较简便?(97看作100)
(2)想看作100后,是多减了,还是少减了?多减了几?多减了应怎样?(师板书:多减3要加3)
1、出示填空:
例:+89看作(加90减1)
+198看作( )
-97看作( )
+299看作( )
-299看作( )
2、判断下列简便算法是否正确:
a:126+68=126+70-2
b:98+67=67+100-2
c:253-99=253-100-1
d:142-89=142-100-11
3、想一想、填一填
揭题:加、减法的一些简便算法
二、呈现新课
(一)教学加法的简算方法
1、教学加数接近整十的简算方法
出示例1: 113+59
(1)找算式中哪个加数是接近整十或整百数?
(2)想可把59看作多少计算比较简便?加60后结果怎样?为什么会多1?多加1后应怎样?师板书:多加1要减1
(3)请一名学生把简算过程叙述一遍。
课题:三位数减三位数简便算法
备课时间
上课时间
备课人
冶 琴
课型
新授课




知识目标
用多种方法解决问题
能力目标
提倡算法的多样性,激发学生对数学学习的兴趣。
情感态度与价值观
提高学生的计算能力,培养学生的良好的学习习惯。
教学时间
1课时
教学重点
培养学生的发散思维。
教学难点
培养学生的发散思维。
教具、学具的准备
113+59= 113+60-1 =172 强调:中间一步思考过程一定要写出。
(4)如果加79应看作多少?加89呢?加99呢?师:下面我们就学习加数是接近整百数的简便算法。
2、教学加数接近整百的简算方法
出示例2: 276 + 98
(1)让学生自学并讨论这题的简便算法,并完成下列填空:
276+98
= 276+( )-( )
276+( )=276+200-3
435-( )=435-300+2
( )+267=267+100-3
534-( )=534-300+2
4、比一比,谁找的简便算法最多
197+98 98+299
四、本课小结
总结:
1、今天我们学习了什么内容?
2、在计算加、减法时,如果加数或减数是接近整十、整百的数怎样计算比较简便? 法简便计算的规律是什么?
教法、学法
拜拜
教学过程
一、导入新课
1、复旧引新
(1)填空:
78=80-( ) 87=( )-( ) 99=( )-( )
198=( )-( ) 297=( )-( )
提问:78接近哪个整十数?
87等于几十减几?99接近多少?99等于一百减几?
仿照前三题,想后两题怎样做?
(2)挑选两组学生比赛:男女生分别选出6名同学参加接力赛,谁先算好,即可得到“优胜小红旗”(课前已准备)
3、便计算的规律是什么?
4、加法与减法简便算法的相同点、不同点是什么?
五、作业布置
练习册。
六、板书设计
=( )
(2)为什么加上100又减2?
(启发学生回答多加2要减2,师板书)
(3)如果把98改成97应怎样计算,让学生试一试:
276+97 = 276+100-3 = 373
(4)为什么减去3?板书:多加3要减3。
3、小结:当加数是接近整十、整百数时怎样计算比较简便?概括出加法简便算法规律:多加几要减几(师板书)
男生组:
574+200 453-300 456+198
725&
574+200 453-300 456+200-2
725+80-1 748-100+3 356-300+1
比赛结果一定女生组快,男生不服气,说他们题目难,师抓住时机,让学生观察男生组题目特点。(板书:加数或减数是接近整十、整百两数)再让学生比较两组题的不同点,强调:在计算加减法时,如果加数或减数是接近整十,整百的数,把它们先看作整十、整百的数,计算起来比较简便。
(3)完整地把思考和计算过程说一遍。
165-97=165-100+3=68
(4)如果多减2,应怎样?多减1呢?
师板书:多减2要加2 ,多减1要加1
(5)想:165-100+1=165-( )
(6)小结:减数是接近整十、整百的数怎样计算比较简便?概括出减法简便计算规律:多减几要加几(师板书)
三、巩固提高
相关文档
最新文档