几种胺的性质
胺的分类与性质
胺的分类与性质胺是一类具有重要化学性质和广泛应用的有机化合物。
根据分子中氮原子周围的取代基不同,胺可以分为三个主要类别:一级胺、二级胺和三级胺。
本文将对这三类胺的分类、性质和应用进行详细介绍。
一、一级胺一级胺是指胺分子中氮原子周围只有一个碳原子的化合物。
一级胺通常具有较强的氨基性,可以与酸发生中和反应形成相应的盐。
此外,一级胺还具有亲核取代、缩合反应和氧化反应等多种化学性质。
1. 亲核取代反应:一级胺具有亲核性,可以与电荷正电的化合物如卤代烷、酰卤等发生亲核取代反应。
该反应可以生成新的有机化合物,具有重要的合成应用。
2. 缩合反应:一级胺可以与酸醛或酮类发生缩合反应,形成相应的亚胺或酰胺。
这种反应常用于合成具有生物活性的药物分子。
3. 氧化反应:一级胺可以通过氧化反应转化为相应的亚胺、亚胺氧化物或者酰胺。
这些产物在药物合成和有机合成领域具有重要的应用。
二、二级胺二级胺是指胺分子中氮原子周围有两个碳原子的化合物。
与一级胺相比,二级胺的氨基性较弱,但仍然可以进行许多重要的反应和应用。
1. 应用于药物合成:二级胺可以作为药物分子的结构骨架,具有调节生物活性的作用。
常见的药物分子中常含有二级胺结构。
2. 作为溶剂:由于二级胺在水中溶解度较高,因此常用作各类溶剂的组成部分,如有机合成反应中的溶剂。
三、三级胺三级胺是指胺分子中氮原子周围有三个碳原子的化合物。
与一级胺和二级胺相比,三级胺的氨基性最弱。
1. 缓冲剂:由于三级胺具有较弱的酸性或碱性,可以作为缓冲剂使用。
在许多生物学和化学实验中,三级胺常常用于调节溶液的pH值。
2. 催化剂:一些特殊的三级胺化合物可以作为催化剂参与有机合成反应,促进反应的进行。
3. 表面活性剂:一些具有特殊结构的三级胺化合物可以作为表面活性剂使用,用于调节液体表面张力和增加分散性。
结论:胺是一类重要的有机化合物,根据氮原子周围的取代基不同,可分为一级胺、二级胺和三级胺。
每类胺都具有不同的化学性质和应用。
4、胺的分类、命名及物理性质
[R1
R2 N R3 ]X R4
季铵碱
二、胺的命名
(1)简单的胺的命名(采用习惯命名法)
一元胺的命名是以胺字表示官能团,再加上与氮原子相连的烃基的名称与数目。 烃基相同时,在前面用“二”或“三”表明相同烃基的数目; 烃基不同时,按照次序规则“较优”基团后列出,“基”字一般省略。
3、沸点 胺是极性分子,除叔胺外分子间可形成氢键,故沸点比分子量 相近的醚高。但由于N-H H氢键比O-H H氢键弱。所以沸点比相近的 醇和酸低。碳原子数相同的脂肪族胺中,沸点:伯胺>仲胺>叔胺。 4、胺能与CaCl2形成络合物,一般用无水KOH,NaOH干燥。 5、不溶性 由于能与水形成氢键,小分子的胺溶于水。
在取代基的前面加N-,是为了明确取代基的位置。
胺盐和季铵化合物可作为铵的衍生物来命名,胺盐亦可 直接称为某胺的某盐
三、胺的物理性质
1、气味 低级胺具有氨的气味,很多具有难闻的气味。如(CH3)3N具有腐烂鱼的恶 臭味;1,4-丁二胺和1,5-戊二胺具有肉腐烂的恶臭味。前者叫腐胺,后者 叫尸胺。 2、毒性 芳胺多是毒性较大的化合物。
THE END
Thank u
THE END thank u
甲胺
乙胺
苯胺
二甲胺
H3C N CH2 CH3 CH3
三甲胺
二苯胺
二甲乙胺
甲乙丙胺
ห้องสมุดไป่ตู้
(2)复杂的胺的命名(采用系统命名法)
复杂的胺的命名是以烃为母体,氨基作为取代基
NH2
CH3
CH3CHCH 2CHCH 2CH2CH3
五、胺的化学性质
CH3 SOCl2
白色 白色 不反应
NaOH/H2O
溶解 不溶
五、胺的化学性质
(三)氮上的酰基化反应
例如:
CH3 RNH2 R2NH R3 N + CH3 SOCl2 [CH3 SO2NHR
NaOH
(碱中溶解,加酸又不溶解)SO2Biblioteka R]-Na+ SO2NR2
CH3 不反应
(R3N可溶于酸)
CH3
KMnO4
COOH
NH2
OHH2O
NHCOCH3 COOH
NHCOCH3
NH2
五、胺的化学性质
(三)氮上的酰基化反应
例2:苯胺硝化时很容易被硝酸氧化。因此, 一般将苯胺酰化后再硝化,以保护其不被 氧化。硝化后,再水解,得到硝基取代的 苯胺衍生物。
五、胺的化学性质
(三)氮上的酰基化反应
例2:
NH2
CH3COOH
NHCOCH3
NHCOCH3
HNO3,H2SO4 <5℃ H+ ,H2O
NH2
NO2
HNO3,(CH3CO)2O 20℃
NO2 NH2
H+ ,H2O
NHCOCH3 NO2
NO2
练习
完成下列合成:
NH2 CH3 NH2
?
NO2
CH3
练习
解:
NH2 CH3 NH2
H+,H2O
NHCOCH3
+3Br2
H2 O
五、胺的化学性质
(三)氮上的酰基化反应
例3: 若制备一取代苯胺,可先将氨基酰化,降 低它的反应活性,再卤化,然后再水解。
NH2
CH3COOH
胺的化学性质
胺的化学性质(1)碱性 胺和氨相似,分子中氮原子上具有未共用的电子对,能接受一个质子形成铵离子,故胺具有碱性,能与大多数酸作用成盐。
胺的碱性较弱,其盐与氢氧化钠溶液作用时,释放出游离胺。
胺的碱性强弱,可用Kb 或pKb 表示:如果胺的K b 值愈大或pK b 愈小,则此胺的碱性愈强。
胺的碱性强度往往可用它的共轭酸RNH 3+的强度来表示。
胺的碱越强,它的共轭酸越弱,Ka 越小,pKa 越大。
碱性: 脂肪胺 > 氨 > 芳香胺脂肪胺:在气态时和在溶液中所显示的酸碱性不同。
在气态时碱性为: (CH 3)3N > (CH 3)2NH > CH 3NH 2 > NH 3 在水溶液中碱性为: (CH 3)2NH > CH 3NH 2 > (CH 3)3N > NH 3 气态时,仅有烷基的供电子效应,烷基越多,供电子效应越大,碱性越强。
在水溶液中,是电子效应与溶剂化共同影响的结果。
从伯胺到仲胺,增加了一个甲基,由于电子效应,使碱性增加。
但三甲胺的碱性反而比甲胺弱,这是因为一种胺在水中的碱度不仅要看取代基的电子效应,还要看它接受质子后形成正离子的溶剂化程度。
氮原子上连有氢越多(体积也越小),它与水通过氢键溶剂化的可能性就越大,胺的碱性越强。
在伯胺到叔胺之间,溶剂化效应占主导地位,使叔胺碱性比甲胺还弱。
(2)酸性 伯胺和仲胺的氮原子上还有氢,能失去一个质子而显酸性。
若碱金属的烷基氨基化合物,其烷基是叔烷基或仲烷基,如N,N-二异丙氨基锂,氮原子的空间位阻大,它只能与质子作用但不能发生其他的亲核反应,这种能夺取活泼氢而又不起亲核反应的强碱性试剂,称为不亲核碱。
这种试剂在有机合成上特别有用。
R NH 2+ HCl R NH 3ClR NH 2+ HOSO 3HR NH 3 OSO 3HR NH 3Cl + NaOHRNH 2 + Cl + H 2OR NH 2+ H 2O R NH 3 + OHK b =R NH 3 OHRNH 2pK b = lgK b(3)烷基化 和氨一样,胺与卤代烷、醇、硫酸酯、芳磺酸酯等试剂反应,氨基上的氢被烷基取代,这种反应称胺的烷基化反应。
几种常见胺概况
甲胺:CH3NH2性质:又称一甲胺,在常温下为无色有氨臭的气体、或液体。
易燃烧,其蒸气能与空气形成爆炸性混合物,爆炸极限5%-21%(4.95%-20.75%)。
相对密度0.662,熔点为-93.5℃,沸点为-6.3~-6.7℃,-19.7℃(53.3kPa),-32.4℃(26.7kPa),-43.7℃(13.3kPa),-73.8℃(1.33kPa),分解温度250℃,闪点(闭杯)0℃,自燃点430℃,蒸气压(25℃)202.65Pa,临界温度156.9℃,临界压力4.073kPa,折射率1.351。
液化后发烟体,比氨具有更强的碱性。
易溶于水、乙醇和乙醚。
乙胺:CH3CH2NH2无色有强烈氨味的液体或气体;蒸汽压53.32kPa/20℃;闪点:<-17.8℃;熔点-80.9℃;沸点16.6℃;溶解性:溶于水、乙醇、乙醚等;密度:相对密度(水=1)0.70;相对密度(空气=1)1.56;稳定性:稳定;危险标记4(易燃气体),14(有毒品);主要用途:用于染料合成及作萃取剂、乳化剂、医药原料、试剂等。
一、健康危害侵入途径:吸入、食入、经皮吸收。
健康危害:接触乙胺蒸气可产生眼部刺激、角膜损伤和上呼吸道刺激。
液体溅入眼内,可致严重低度伤;污染皮肤可致灼伤。
二、应急处理处置方法:1、泄漏应急处理迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。
切断火源。
建议应急处理人员戴自给正压式呼吸器,穿消防防护服。
尽可能切断泄漏源。
若是气体,用工业覆盖层或吸附/吸收剂盖住泄漏点附近的下水道等地方,防止气体进入。
合理通风,加速扩散。
喷雾状水稀释、溶解。
构筑围堤或挖坑收容产生的大量废水。
如有可能,将残暴余气或是漏出气用排风机送至水洗塔或与塔相连的通风橱内。
漏气容器要妥善处理,修复、检验后再用。
若是液体,用砂土、蛭石或其它惰性材料吸收。
若大量泄漏,构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。
用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。
胺的化学性质与应用
胺的化学性质与应用胺是一类重要的有机化合物,由于其特殊的化学性质和广泛的应用领域,对其进行深入了解和研究具有很高的实际意义。
本文将介绍胺的化学性质以及在不同领域的应用。
一、胺的化学性质胺是由氨基基团(NH2)取代烃基而来,根据氨基基团的取代位置和数量,胺可以分为原胺、仲胺和叔胺。
胺具有以下几个重要的化学性质:1. 亲核性由于氨基基团的氮原子可以提供孤对电子,胺具有很强的亲核性。
它可以与电子不足的化合物发生亲核取代反应,如与酰氯反应生成胺的酰胺。
2. 碱性氨基基团的氮原子带有孤对电子,在水溶液中可以接受质子,表现出碱性。
胺可以与强酸反应生成盐,如与盐酸反应生成胺盐。
3. 缔合性胺具有良好的配位能力,可以与过渡金属形成络合物。
胺的缔合性使其在催化剂和染料等领域得到广泛应用。
二、胺的应用1. 药物合成胺在药物合成中扮演着重要的角色。
许多药物中都含有胺的结构基团,胺的亲核性和碱性使其成为合成活性药物的重要原料。
例如,抗生素、抗癌药物和神经递质等都含有胺基团。
2. 去除污染物胺可用于环境保护领域,如氨基甲酸盐可作为二氧化碳的吸收剂用于煤电厂的烟气脱硫处理。
另外,胺也可用于废水处理,通过与废水中的有机物发生化学反应,将有机污染物转化为无毒的化合物。
3. 表面活性剂由于胺具有亲油基团和亲水氨基基团,因此它可以用于表面活性剂的制备。
胺的表面活性剂应用广泛,例如用于润湿剂、去垢剂和柔软剂等。
4. 高分子材料胺也广泛应用于高分子材料的合成中。
通过与环氧树脂等反应,可以得到具有良好性能的聚胺树脂。
聚胺树脂在涂料、粘合剂和复合材料中具有重要的应用价值。
5. 植物生长调节剂某些胺类化合物具有植物生长调节剂的特性,可以促进植物的生长和发育。
例如,氮代胺类生长调节剂可以增加作物的光合作用效率,提高光合产物的积累。
结论总的来说,胺是一类具有特殊化学性质和广泛应用的有机化合物。
它的亲核性、碱性和缔合性使其在许多领域发挥着重要作用,如药物合成、环境保护、高分子材料以及植物生长调节剂等。
胺的结构和化学性质
胺的结构和化学性质胺是一类重要的有机化合物,具有多种结构和化学性质。
它们在生物体内发挥着重要的作用,也广泛应用于工业和科学研究中。
本文将从胺的结构、性质以及应用领域等方面进行探讨。
胺是由氮原子与碳原子通过共价键连接而成的化合物。
根据氮原子周围的碳原子数目,胺可以分为三类:一级胺、二级胺和三级胺。
一级胺中,氮原子与一个碳原子相连;二级胺中,氮原子与两个碳原子相连;三级胺中,氮原子与三个碳原子相连。
胺的结构决定了它们的性质和反应方式。
胺具有碱性,可以与酸反应生成盐类。
这是因为胺中的氮原子可以接受质子,形成胺盐。
胺盐在水中离解产生氨和相应的酸根离子。
这种性质使得胺在化学合成中常被用作碱催化剂。
例如,乙二胺在聚酰胺合成中起到了重要的催化作用。
另外,胺还具有亲核性和碱性氮原子的孤对电子。
这使得胺可以与电子不足的化合物发生亲核取代反应。
例如,胺可以与酰氯反应生成酰胺,与醛或酮反应生成亚胺,与卤代烃反应生成胺盐等。
这些反应为有机合成提供了重要的手段。
除了在有机合成中的应用,胺还广泛应用于生物化学和医药领域。
胺在生物体内起着重要的作用,如神经递质、荷尔蒙、维生素等的合成和传递过程中都离不开胺。
在医药领域,胺类化合物常被用作药物的活性部分。
例如,抗抑郁药物常采用胺类结构,如帕罗西汀和舍曲林等。
此外,胺还在染料、塑料、橡胶等工业中起到重要的作用。
胺类化合物可以作为染料的前体,通过取代反应或偶联反应生成具有特定颜色的染料。
胺也可以用于改性塑料和橡胶的生产过程中,通过与聚合物反应改变其性质和性能。
总之,胺是一类具有多样化结构和化学性质的有机化合物。
它们在有机合成、生物化学和工业领域中发挥着重要的作用。
对胺的结构和性质的深入理解,有助于我们更好地掌握其应用和开发新的应用领域。
有机化学中的胺类化合物
有机化学中的胺类化合物胺类化合物是有机化学中一类重要的化合物,其分子中含有氮原子和碳氢键。
胺类化合物广泛存在于自然界中,也是许多生物活性分子和药物的重要组成部分。
本文将详细介绍胺类化合物的分类、性质以及在实际应用中的重要作用。
一、胺类化合物的分类胺类化合物根据氮原子的取代情况可以分为三类:一级胺、二级胺和三级胺。
1. 一级胺:在一级胺中,氮原子连接着一个碳原子和两个氢原子,它们的一般分子结构可以表示为R-NH₂,其中R代表有机基团。
一级胺可进一步细分为脂肪胺、芳香胺和脂肪芳香胺。
2. 二级胺:二级胺中,氮原子连接着两个碳原子,它们的一般分子结构可以表示为R₂NH。
与一级胺类似,二级胺也可以分为脂肪二胺、芳香二胺和脂肪芳香二胺。
3. 三级胺:三级胺中,氮原子连接着三个碳原子,它们的一般分子结构可以表示为R₃N。
同样地,三级胺也可以分为脂肪三胺、芳香三胺和脂肪芳香三胺。
二、胺类化合物的性质胺类化合物具有许多独特的性质和化学反应。
1. 亲碱性:由于氮原子上的孤电子对,胺类化合物表现出亲碱性。
它们可以与酸反应,形成胺盐,并释放出质子。
2. 氢键形成:胺类化合物中的氮原子可以与氢原子形成氢键。
这种氢键对于化合物的结构和性质具有重要的影响。
3. 氧化性和还原性:胺类化合物可以发生氧化和还原反应。
一级胺可以氧化为亚硝胺和亚胺,而二级胺可以氧化为亚胺。
而对于一些具有还原性的试剂,胺类化合物也可以被还原成相应的胺。
三、胺类化合物的应用由于胺类化合物具有多样的结构和性质,它们在各个领域中都有广泛的应用。
1. 药物化学:许多重要的药物中含有胺类结构。
如肌肉松弛剂中的氨曲南、抗生素中的青霉素以及抗抑郁药物中的丙咪嗪等等。
通过合理设计和合成胺类结构,可以开发出更安全和更有效的药物。
2. 高分子化学:胺类化合物在高分子材料的合成中扮演着重要的角色。
例如,聚胺和多胺可以与多酸反应形成聚离子复合物,从而改变材料的性质和用途。
3. 农业化学:胺类化合物在农业领域中也有广泛的应用。
有机化学基础知识点整理胺的分类与性质
有机化学基础知识点整理胺的分类与性质胺是一类含有氨基(-NH2)基团的有机化合物,在有机化学中有着重要的地位。
本文将对胺的分类和性质进行整理,以帮助读者更好地理解和应用有机化学中的胺类化合物。
一、胺的分类胺可以分为三类:一级胺、二级胺和三级胺。
分类根据胺分子中氨基的数量来进行区分。
1. 一级胺:一级胺分子中含有一个氨基(-NH2)基团。
例如,乙胺(CH3CH2NH2)就是一级胺的例子。
2. 二级胺:二级胺分子中含有两个氨基(-NH2)基团。
例如,二甲胺(CH3NHCH3)就是一个典型的二级胺。
3. 三级胺:三级胺分子中含有三个氨基(-NH2)基团。
例如,三乙胺((CH3CH2)3N)就是一种常见的三级胺。
二、胺的性质1. 碱性:胺是碱性物质,因为它们可以接受质子(H+),生成相应的盐(如胺盐)。
这是由于胺分子中的氨基具有碱性,并且能够与酸反应形成盐类。
2. 水溶性:较短的一级和二级胺在水中具有较好的溶解性。
但是,随着分子量的增加,水溶性会降低。
3. 气味:一些低分子量的一级和二级胺具有刺激性的氨臭味。
例如,甲胺(CH3NH2)的气味类似于氨水。
4. 反应性:胺具有与其他化合物发生多种反应的特性,如取代反应、酰化反应、胺化反应等。
这些反应使得胺在有机合成中具有广泛的应用。
三、应用举例1. 生物学应用:胺在生物学中有重要的应用,例如作为生物碱、神经递质和抗组胺药物等。
2. 有机合成:胺在有机合成中广泛应用,可用于合成氨基酸、药物、染料等有机化合物。
3. 金属提取剂:一些胺类化合物在金属提取过程中具有重要的作用。
总结:通过对有机化学基础知识点整理的胺的分类与性质的讨论,我们了解到胺是有机化学中的重要化合物,具有碱性、水溶性和多种反应性。
其在生物学、有机合成和金属提取等领域都有广泛应用。
对于有机化学学习者来说,掌握胺的分类和性质是理解和应用胺类化合物的基础。
胺的结构与性质
胺的结构与性质一、胺的结构胺是一类有机化合物,其分子结构中有一个或多个氨基(NH2)基团。
根据氨基基团所连接的碳原子数目和位置不同,胺可以分为三类:一级胺、二级胺和三级胺。
1. 一级胺:一级胺的分子中有一个氨基基团与一个烷基或芳香族基团相连。
常见的一级胺有甲胺(CH3NH2)、乙胺(C2H5NH2)等。
2. 二级胺:二级胺的分子中有两个氨基基团与一个烷基或芳香族基团相连。
常见的二级胺有二甲胺(CH3)2NH)、二乙胺(C2H5)2NH)等。
3. 三级胺:三级胺的分子中有三个氨基基团与一个烷基或芳香族基团相连。
常见的三级胺有三甲胺((CH3)3N)、三乙胺((C2H5)3N)等。
二、胺的性质胺具有一些独特的性质,使其在生物、医药、化工等领域具有广泛的应用。
1. 氨基性:由于胺分子中含有氨基基团,胺对酸有强烈的中和作用。
胺能与酸反应生成盐类化合物,这种氨基性使胺成为许多碱性药物的重要组成部分。
2. 溶解性:由于胺分子中含有极性的氨基基团,胺在水中具有良好的溶解性。
一般来说,一级胺和二级胺的溶解性较高,而三级胺的溶解性较差。
3. 氢键作用:胺分子中的氢原子与氮原子之间可以发生氢键作用。
这种氢键作用使得胺的沸点较相应的醇类和醚类高,也使胺分子之间具有较强的相互吸引力。
4. 氧化性:胺具有一定的氧化性,可以与氧气反应生成亚胺、亚醨酸等产物。
此外,一些二级胺和三级胺还具有还原性,可以作为有效的还原剂。
5. 毒性:胺虽然在许多方面具有良好的应用,但有些胺类化合物对人体有一定的毒性。
如苯胺(C6H5NH2)和叔丁胺((CH3)3CNH2)等,长期暴露于这些物质中可能对健康造成负面影响。
三、应用领域胺作为一类重要的有机化合物,在各个领域都有广泛的应用。
1. 药物合成:许多药物中含有胺类结构,如抗生素、镇静剂、利尿剂等。
胺的氨基性使其在药物合成中具有独特的作用,能够与其他药物分子发生相应的化学反应。
2. 高分子材料:胺类化合物常用于合成各种高分子材料,如聚酰胺、聚醚、聚氨酯等。
有机化学中的胺性质和反应
有机化学中的胺性质和反应胺是有机化合物中含有氮原子的一类化合物。
它们的结构形式为R-NH2,其中R代表一个有机基团。
胺分为三类:一级胺、二级胺和三级胺,根据氮原子与有机基团的连接数量不同进行分类。
胺具有多种性质和反应,对于化学研究和应用具有重要意义。
一、胺的性质1. 氨基特性:胺分子中的氮原子可供给电子对给予亲电试剂。
由于氮原子上的空轨道与孤对电子共振,形成一个带正电的亲电中心,使胺表现出亲电性质。
2. 氢键形成:胺分子中的氢与氮之间形成氢键。
氮原子上的孤对电子可与溶剂中的质子结合形成氢键,使胺分子在溶液中形成聚集态。
3. 碱性:胺分子中的氮原子带有孤对电子,使其具有碱性。
一级胺、二级胺和三级胺的碱性依次降低。
4. 氧化性:胺分子中的氮原子可被氧气氧化为氮氧化物,如N2O、NO等。
氧化性随着胺分子中氮原子上孤对电子的减少而减弱。
二、胺的反应1. 氨基取代反应:一级胺可通过与亲电试剂发生氨基取代反应。
亲电试剂将胺分子中的氨基取代为其他基团,形成新的有机化合物。
例如,一级胺与酸酐反应生成酰胺,与卤代烷反应生成胺盐。
2. 胺氧化反应:胺分子的氮原子能够被氧气或氧化剂氧化,生成相应的氮氧化物。
例如,一级胺与氧气反应生成亚硝胺,进一步氧化可生成互作用较强的亚硝酸。
此外,一氧化氮、二氧化氮等氮氧化物也可通过胺的氧化反应制备。
3. 烷基化反应:二级胺和三级胺可发生烷基化反应。
烷基卤化物与胺反应,发生亲电取代,生成相应的烷基胺。
此反应在有机合成中常用于引入烷基基团。
4. 脱水反应:胺分子中的氢可以与酸类或醛酮类化合物中的氧发生脱水反应,生成亲水胺。
脱水反应常用于制备二胺、脲、胺酮等有机化合物。
总结:胺在有机化学中具有重要的性质和反应。
它们既可以表现出亲电性质,参与氨基取代反应,也可以通过氧化反应生成氮氧化物。
此外,胺还可发生烷基化和脱水等反应。
了解胺的性质和反应有助于理解和应用于有机化学的领域中。
通过进一步的研究和发展,有机化学家们可以利用这些性质和反应来合成新颖的化合物,推动有机化学的发展和应用。
胺的性质
第三节 胺的性质一、物理性质在常温下,低级和中级脂肪胺为无色气体或液体,高级胺为固体。
低级脂肪胺有难闻的臭味。
例如,二甲胺和三甲胺有鱼腥味,肉和尸体腐烂后产生的1,4-丁二胺(腐胺)和1,5-戊二胺(尸胺)有恶臭。
芳香胺多为高沸点的油状液体或低熔点固体,具有特殊气味,并有较大的毒性。
例如,食入0.25mL 苯胺就可能引起严重中毒。
许多芳香胺,如β-萘胺和联苯胺都具有致癌作用。
由于胺是极性分子,且伯、仲胺分子间N —H 可以通过氢键合,所以它们的沸点比相对分子质量相近的非极性化合物高,但比相对分子质量相近的醇和羧低。
由于氨基形成氢键的能力与氮上所连氢原子数成正比,所以碳原子数相同的脂肪胺中,伯胺沸点最高,仲胺次之,叔胺最低。
伯、仲、叔胺都能与水形成氢键,所以低级脂肪胺可溶于水,随着烃基在分子中的比例增大,形成氢键的能力减弱,因此中级和高级脂肪胺以及芳香胺微溶或难溶于水。
胺大都能溶于有机溶剂。
表10-1列出了一些胺的物理常数。
表10-1 一些胺的物理常数名称熔点/℃沸点/℃溶解度g ·(100g 水)‐¹p K b甲胺 二甲胺 三甲胺 乙胺 二乙胺 三乙胺 正丙胺 正丁胺 苯胺N-价基苯胺N ,N-二甲基苯胺 邻甲苯胺 间甲苯胺 对甲苯胺 二苯胺 三苯胺-92.5 -92.2 -117.1 -80.6 -50 -114.7 -83 -50 -6.1 -57 2.5 -16.4 -31.3 43.8 52.9 126.5-6.7 6.9 9.9 16.6 55.5 89.4 49~50 77.8 184.4 196.3 194.2 200.4 203.4 200.6 302 365易溶 易溶 4119℃ ∞ 易溶 ∞ ∞ ∞3.618℃ 难溶 不溶1.525℃ 微溶0.7421℃不溶 不溶3.38 3.234.20 3.37 3.07 3.28 3.29 3.23 9.38 9.15 8.93 9.56 9.28 8.92 13.1(一)官能团的反应1、碱性和成盐反应 当胺溶于水时,发生下列解离:因此,胺的水溶液显碱性。
生物胺的基本性质
1、腐胺腐胺(丁二胺)putrescine H2N(CH2)4NH2。
相当于四甲叉二胺(tetrame -thylenediamine)。
是利用鸟氨酸脱羧而产生的。
作为一种腐毒碱(ptomaine)也存在于腐败物中,可是也作为生物体的正常成分而广泛存在着。
是多胺(polyamine)的一种,含于核蛋白体(riboso-me)中。
是顶风臭出几里地的超级臭弹,空气中浓度达到几十个ppm就能把人给熏晕,剧毒腐胺是一种有机化合物,它在每一个细胞中都可以找到.人们认为这种化合物通过升高或降低它的含量水平来控制细胞的PH值.2、尸胺即1,5-二氨基戊烷,结构简式NH2(CH2)5NH2。
为蛋白质腐败时赖氨酸在脱羧酶的作用下发生脱羧反应生成。
与精氨酸、鸟氨酸的脱羧产物——腐胺都是尸体腐败产生气味中的成分。
尸胺H2N(CH2)5NH2亦称戊二胺。
由赖氨酸脱羧生成。
是广泛存在于生物体中的正常成分,但也作为一种肉毒胺存在于腐败物中。
3、精胺Spermine,精素,白色针状结晶。
易吸湿。
呈强碱性反应。
能从空气中吸收二氧化碳。
溶于水、低级醇类和氯仿,几乎不溶于乙醚,苯和石油醚。
,生化研究。
,该产品价格为参考价格,购买时以当日牌价为准。
名称:OS-二甲基胺基硫代磷酸酯(O,O二甲基硫化磷酰胺)分子式:(CH3O)2SPNH2结构式:产品状况:无色透明或浅白色液体包装:250KG塑桶装产品用途:本产品主要用于产生农药的中间体,(甲胺磷,乙酰甲胺磷)中间体含量:90%-94%三甲酯<1%精胺是含有两个氨基和两个亚氨基的多胺类物质,在生物体内由腐胺(丁二胺)和S-腺苷蛋氨酸经多种酶催化后生成。
它与亚精胺都存在于细菌和大多数动物细胞中,是促进细胞增殖的重要物质。
在酸性条件下,它呈现出多阳离子多胺类特性,并能与病毒与细菌中DNA结合。
使DNA分子具有更大的稳定性与柔韧性,也是细胞培养液中必要组分之一。
4、亚精胺亚精胺spermidine H2N(CH2)3NH(CH2)4NH2,一种多胺。
实验十九胺的性质
实验十九胺的性质
胺是一类含有氮原子的有机化合物,具有一定的碱性和还原性。
下面是胺的主要性质。
1. 溶解性:一般而言,一元胺(如甲胺、乙胺)比较易溶于水,二元胺(如乙二胺)和三元胺(如三甲胺)则不易溶于水,但可与一些有机溶剂相溶。
2. 嗅觉:胺有较强的氨味,且能使液体或固体变黄变棕。
3. 碱性:胺是一种弱碱,可以与酸反应,生成盐和水。
如乙胺和盐酸反应,生成乙胺盐酸盐(C2H5NH3+Cl-)和水。
4. 还原性:胺有一定的还原性,能还原一些含氧化合物。
且胺与硝酸银反应能生成相应的亚胺银盐沉淀。
5. 能与酰氯反应:胺能与酰氯发生缩合反应生成酰胺。
6. 能与卤代烃反应:胺能与卤代烃发生取代反应生成胺基化有机化合物。
7. 不稳定性:一些高级胺如三甲胺、四甲胺在空气中不能长期保存,易发生氧化分解,产生刺激性的气味和腐蚀性的气体。
因此,应在密封的容器中保存。
有机化学基础知识点整理胺和胺类化合物的结构和性质
有机化学基础知识点整理胺和胺类化合物的结构和性质胺和胺类化合物是有机化学中重要的一类化合物,具有广泛的应用和重要的生物活性。
本文将对胺和胺类化合物的结构和性质进行整理,以加深对其基础知识的理解。
一、胺的结构胺是由一个或多个氨基(-NH2)取代烃基而成的化合物。
根据氨基取代基的不同,胺可分为三类:一级胺、二级胺和三级胺。
1. 一级胺:一级胺的结构中有一个碳原子与一个氢原子相连,另一个键连接一个氨基。
示例:甲胺(CH3NH2)2. 二级胺:二级胺的结构中有一个碳原子与两个烃基相连,另一个键连接一个氨基。
示例:乙胺(CH3CH2NHCH3)3. 三级胺:三级胺的结构中有一个碳原子与三个烃基相连,另一个键连接一个氨基。
示例:三甲胺((CH3)3N)二、胺类化合物的性质胺和胺类化合物在物理性质和化学性质上都有一些共性,同时也有一些特殊性质。
1. 物理性质(1)气味:一些低分子量的胺具有刺激性、恶臭的气味,例如甲胺、乙胺等;而中、高分子量的胺则具有氨水的气味。
(2)溶解性:胺类化合物通常可溶于水和许多有机溶剂中,其中低分子量的胺较易溶于水,而高分子量的胺则较难溶于水。
(3)氢键:胺的氨基具有带负电的孤对电子,可与水分子形成氢键。
2. 碱性由于胺分子中的氨基具有可供给质子(H+)的孤对电子,胺属于碱性物质。
一级胺、二级胺和三级胺的碱性强弱依次递减,三级胺的碱性最弱。
3. 还原性胺和胺类化合物的氨基可以与氧化剂发生还原反应,将氧化剂还原为相应的还原产物。
例如,一级胺可以与酸性高锰酸钾溶液发生反应,生成褐色沉淀,表明一级胺具有还原性。
4. 胺的取代反应胺可与卤代烃等反应,发生取代反应生成胺类衍生物。
例如,一级胺与卤代烃反应生成二级、三级胺;二级胺与卤代烃反应生成三级胺。
5. 胺的缩合反应胺和醛/酮等化合物可以通过缩合反应生成胺类缩合物。
缩合反应是胺类化合物广泛应用于有机合成的重要反应之一。
总结:胺和胺类化合物在有机化学中具有重要地位,其结构和性质的研究对于深入理解有机化学的基础知识具有重要意义。
有机化学基础知识点整理胺的性质与应用
有机化学基础知识点整理胺的性质与应用胺是有机化合物中常见的一类化合物,其性质和应用十分广泛。
本文将从胺的定义、命名规则、物理性质、化学性质以及常见的应用等方面对有机化学中的胺进行整理和概述。
一、胺的定义和命名规则胺是由氨基(-NH2)取代有机或无机化合物中的一个或多个氢原子而得的化合物。
根据氨基取代的数量和位置,胺可以分为一级胺、二级胺和三级胺。
一级胺中一个氨基取代在氮原子上,二级胺中两个氨基取代在氮原子上,三级胺则有三个氨基取代在氮原子上。
胺类化合物的命名规则是以氨作为1个碳原子的取代物,以“-amine”结尾。
根据取代基的不同,可以在胺的名称前面加上取代基的名称,如甲胺(methylamine)、乙胺(ethylamine)等。
当有多个氨基团取代在氮原子上时,可以用前缀“di-”、“tri-”等来表示。
二、胺的物理性质1. 臭气:很多胺具有刺激性气味,如腐鱼臭味的胺。
2. 溶解性:胺可以与水混溶,一般来说,碳链较短的胺可以与水形成氢键而溶解性较好,而长碳链的胺则溶解性较差。
3. 沸点和熔点:胺的沸点和熔点一般较低,随着碳链长度的增加,沸点和熔点都会升高。
三、胺的化学性质1. 酸碱性:由于胺分子中含有孤对电子,因此它可以与酸反应,形成胺盐。
例如:甲胺和盐酸反应生成甲胺盐酸盐。
2. 同样由于孤对电子的存在,胺可以与电子不足的物质发生亲核取代反应,例如与酰氯反应生成酰胺。
3. 胺也可以发生氧化反应,形成亚胺、亚醨等化合物。
4. 胺也可通过与羧酸反应生成酰胺,从而参与酰胺的合成。
四、胺的应用1. 医药领域:胺类化合物广泛用于制药工业,例如许多药物中含有胺基结构。
胺类化合物还可用于合成抗生素、镇痛药、抗肿瘤药等。
2. 染料工业:胺类化合物是染料分子的重要组成部分,可以赋予染料颜色,并且对染料的亲水性和亲油性起着调节作用。
3. 金属萃取:胺类化合物可以用于从矿石中提取金属离子,广泛应用于冶金行业。
4. 有机合成:胺类化合物在有机合成中起着重要的作用,例如用作催化剂、溶剂和取代基等。
有机化学基础知识点整理胺与胺类化合物的化学性质与反应
有机化学基础知识点整理胺与胺类化合物的化学性质与反应胺是指含有氨基(-NH2)的有机化合物,是有机化学中重要的功能团。
胺类化合物根据氨基的位置和数量可以分为三类:一级胺、二级胺和三级胺。
本文将整理胺与胺类化合物的化学性质与反应,包括它们的物理性质、酸碱性质、氧化还原性和其它重要反应。
1. 胺类化合物的物理性质胺类化合物通常呈无色至黄色液体或固体,具有刺激性气味。
一级胺和二级胺能形成氢键,使它们的沸点和溶解度高于相应的烃。
2. 胺类化合物的酸碱性质胺类化合物可看作是替代了一个或多个氢原子的氨分子。
它们可以接受质子而表现出碱性,通常可以与酸反应生成相应的胺盐。
3. 胺类化合物的氧化还原性胺类化合物在氧化剂存在下能够发生氧化反应。
一级胺可被氧化为相应的亚硝基化合物(亚硝胺)和亚硝酰化合物。
二级胺可以被强氧化剂氧化为相应的亚硝胺。
4. 胺类化合物的重要反应4.1 胺的烷基化反应胺可以与烷基卤化物(例如溴烷)反应,生成N-烷基胺。
反应一般在碱的存在下进行。
4.2 胺的酰化反应胺与酸酐反应,生成相应的胺酯。
该反应是通过胺的氮原子与酸酐的羰基发生亲电加成而进行。
4.3 Hofmann 消解反应一级胺与次氯酸盐(或次氯酸)反应,生成相应的氨。
这个反应通常用于检验胺的存在或从胺类化合物中有选择地制备氨。
4.4 Gabriel 合成一级胺与次氯酸钠和碳酸钾反应,生成相应的无机胺盐。
该盐再与酰卤反应,生成相应的一级胺。
4.5 Diazotization 反应胺与亚硝基酸反应生成相应的亚硝基胺,这是一种重要的反应,也常用于有机合成中。
除了上述的反应,胺类化合物还可以进行亲电取代反应、亲核取代反应、加成反应等等。
综上所述,胺与胺类化合物是有机化学中重要的功能团,具有丰富的化学性质和反应。
了解胺的性质和反应有助于理解有机化学的基础知识,并为有机合成提供重要的反应途径。
胺的物理性质
再如:
O
CH 3C CH 2CH 2N(C3)H 2
OH
CH 2CH 2CH 2CH 3 O
CH 3CCHCH 2 +CH 3(C2H)3N(C3)H 2
霍夫曼消除反应可用来推测未知胺的结构。
过量CH3I N
N I AgOH N OH
H
H3C CH3 H3C CH3
N H3C CH3
CH3I
N I AgOH
用于鉴别。 3、被MnO2酸性溶液氧化生成醌。
N 2M H 2 n 2 + S 4 O O O H O H 2N H i O O
六、芳环上的亲电取代反应
在苯胺中,-NH2是邻、对位定位基,并且是一个强的供电子 基,其供电子能力与酚羟基相似,故苯胺很容易发生亲电取代 反应。
1、卤代
NH2 +
Br2(水)
C3 C H 2 C HH C2H +C3 C HH CH 3 C 主 要 产 物 次 要 产 物
但是,当烃基上带有吸电子基时,则主要方向是消除酸性较强 的-H。
C3C H2N H(3)C 2 HOH C2C H2B Hr
C2H C2H +C2H CHB 次 要 产 物 主 要 产 物
霍夫曼消除反应
SO2NR2 不溶于碱,为固体
R3N
不发生磺酰化反应,无现象
RNH2
成盐溶于水 滤液 OH R2NH
R2NH
SO2Cl NaOH
成固体沉淀过滤固体
蒸馏 残液OH RNH2
R3N
不反应,沸点低 滤液
得R3N
这 种 分 离 、 鉴 别 伯 、 仲 、 叔 胺 的 方 法 称 为 兴 斯 堡 ( H i n s b e r g ) 法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三乙胺
CAS号:121-44-8
外观与性状:淡黄色油状液体,有强烈氨臭。
熔点(℃):-114.8 相对密度(水=1):0.726 沸点(℃):89.5 折射率:1.4010 黏度(30℃):0.32mPa·s 相对蒸气密度(空气=1):3.48 饱和蒸气压(kPa):8.80(20℃) 燃烧热(kJ/mol):4333.8 临界温度(℃):259 临界压力(MPa):3.04 辛醇/水分配系数的对数值:1.45 闪点(℃):<0 爆炸上限%(V/V):8.0 引燃温度(℃):249 爆炸下限%(V/V):1.2 溶解性:微溶于水,溶于乙醇、乙醚等多数有机溶剂。
[1] 毒性:有毒,对皮肤和黏膜有刺激性,LD50 460mg/kg。
空气中最高容许浓度30mg/m3。
化学性质
有碱性,与无机酸生成可溶的盐类。
[2]易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。
与氧化剂能发生强烈反应。
其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。
具有腐蚀性。
[1]
二乙基乙醇胺
1.物质的理化常数:
国标编号33626
CAS号100-37-8
英文名称N,N-diethyl ethanolamine;2-diethylaminoethanol
别名2-(二乙氨基)乙醇
分子式C6H15NO;(CH3CH2)2NCH2CH2OH 外观与性状无色有氨味的液体
分子量117.19 蒸汽压10.66kPa/100℃闪点:46~54℃
熔点:-71 ℃
沸点163℃溶解性与水混溶,溶于乙醇、乙醚、苯、丙酮等多数有机溶剂
密度相对密度(水=1)0.89 稳定性稳定
危险标记7(易燃液体) 主要用途用于有机合成,用作织物软化剂
用途:
1.咳嗽药
2.保鲜剂(水果、蔬菜)
3.助焊剂
4.其酯作为乳化剂广泛用于纺织工业
5.氨纶助剂SAS DMF溶液
6.涂料:
7.缓蚀剂
8.可作为锅炉水缓蚀添加剂,防腐。
二乙基乙醇胺毒理学资料及环境行为
急性毒性:LD501300mg/kg(大鼠经口);1260mg/kg(兔经皮)
危险特性:易燃,遇高热、明火有引起燃烧爆炸的危险。
与氧化剂接触会猛烈反应。
能腐蚀轻金属和铜。
燃烧(分解)产物:一氧化碳、二氧化碳、氧化氮。
3.现场应急监测方法:
4.实验室监测方法:
空气中:样品用硅胶吸附后,经甲酸洗脱,苯甲醛衍生化后,再用气相色谱法分析
5.环境标准:
前苏联车间空气中有害物质的最高容许浓度5mg/m3
空气中嗅觉阈浓度0.04ppm
6.应急处理处置方法:
一、泄漏应急处理
迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。
切断火源。
建议应急处理人员戴自给正压式呼吸器,穿消防防护服。
不要直接接触泄漏物。
尽可能切断泄漏源。
防止进入下水道、排洪沟等限制性空间。
小量泄漏:用砂土或其它不燃材料吸附或吸收。
也可以用大量水冲洗,洗水稀释后放入废水系统。
大量泄漏:构筑围堤或挖坑收容;用泡沫覆盖,降低蒸气灾害。
用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。
废弃物处置方法:用焚烧法。
焚烧炉排气中的氮氧化物要通过洗涤器或高温装置除去。
甲基二乙醇胺
【英文名称】methyldiethanolamine
【相对密度(水=1)】1.042(25oC)
【沸点】247oC
【黏度】101mPa·s(20ºC)
【折射率】1.4642(20ºC)
【性状】无色或微黄色油状液体。
【溶解情况】能与水、醇互溶,微溶于醚。
广泛应用于油田气和煤气的脱硫净化乳化剂和酸性气体吸收剂、酸碱控制剂、聚氨酯泡沫催化剂。
可在活化剂参与下脱除合成氨中的二氧化碳。
另外,还可以作为杀虫剂、乳化剂、织物助剂的半成品、抗肿瘤药物盐酸氮芥的中间体、胺基甲酸酯涂料的催化剂、纤维助剂等,同时,也是油漆的一种促干剂。
中文名称:氨基三乙醇
英文别名:Trolamine,Tris(2-hydroxyethyl)amine,Triethylolamine,Trolamine,TEA
别名名称:2,2',2''-次氮基三乙醇2',2''-三羟基三乙胺氨基三乙醇
更多别名:2,2',2''-Nitrilotriethanol ,2,2',2''-Trihydroxytriethylamine 化学式
结构简式:(HOCH2CH2)3N
三乙醇胺结构式
分子式:C6H15NO3
相对分子质量
149.19
CAS登记号:102-71-6
性状
无色黏稠液体。
微有氨的气味。
极易吸湿。
露置空气中或在光线下变成棕色。
能吸收空气中二氧化碳。
能与水、甲醇和丙酮混溶,25℃时的溶解度:苯4.2%、乙醚1.6%、四氯化碳0.4%、正庚烷小于0.1%。
呈强碱性,0.1mol/L的水溶液pH为10.5。
有刺激性。
物性数据
1. 性状:无色油状液体或白色固体,稍有氨的气味。
2. 沸点(ºC,101.3kPa):360
3. 熔点(ºC):21.2
4. 相对密度(g/mL,20/4ºC):1.1242
5. 相对密度(g/mL,20/20ºC):1.1258
6. 相对蒸汽密度(g/mL,空气=1):5.14
7.折射率(20ºC):1.482~1.485
8. 黏度(mPa·s,35ºC):280
9. 黏度(mPa·s,100ºC):15
10. 闪点(ºC,开口):179
11. 蒸发热(KJ/mol,b.p.):67.520
12. 熔化热(KJ/mol):27.214
13. 临界温度(ºC):514.3
14. 临界压力(MPa):2.45
15. 蒸气压(kPa,20ºC):0.0013
16. 蒸气压(kPa,210ºC):5.333
17. 蒸气压(kPa,252.7ºC):8.707
18. 蒸气压(kPa,305.6ºC):46.064
19. 溶解性:溶于水,甲醇、丙酮、氯仿等。
在非极性溶剂中几乎不溶解。
微溶于乙醚和苯
二甲基苯胺
无色至淡黄色油状液体,有刺激性臭味,在空气中或阳光下易氧化使用泽变深。
相对密度(20℃/4℃)0.9555,凝固点2.0℃,沸点193℃,闪点(开口)77℃,燃点317℃,粘度(25℃)1.528mpa·s,折射率(n20D)1.5584。
溶于乙醇、乙醚、氯仿、
苯等多种有机溶剂。
能溶解多种有机合成物。
微溶于水。
可燃,遇明火会燃烧,蒸气与空气形成爆炸性混合物,爆炸极限1.2%~7.0%(vol)。
高毒,高热能分解放出有毒的苯胺气体。
能通过皮肤吸收而中毒,LD501410mg/kg,空气中最高容许浓度5mg/m3。
N,N-二甲基苄胺
英文名称:N,N-dimethylbenzylamine
英文别名:BDMA;N-Benzyldimethylamine
CAS号:103-83-3
分子式:C9H13N
线性分子式:C6H5CH2N(CH3)2
分子量:135.21
纯度:≥98%
MDL号:MFCD00008329
Beilstein号:1099620
EC号:203-149-1
性状描述:
无色至淡黄色液体,溶于乙醇、乙醚,难溶于水
物理参数:
密度:0.9g/mL(25℃)(lit.)
熔点:−75℃(lit.)
沸点:183-184℃/765mmHg(lit.)
闪点:53℃
折射率(n20/D):1.501(lit.)
编辑本段用途说明:
用于合成季铵盐;用于脱氢催化剂、防腐剂、酸的中和剂
编辑本段危险说明:
危险代码:C
危险等级:10-20/21/22-34-52/53
安全等级:26-36-45-61
联合国编号:UN2619
国内危险化学品编码:82023
编辑本段毒性防护
有毒。
比苯胺毒性大。
家兔MLD250mg/kg。
对交感神经呈较弱的兴奋作用,但不能抑制结核病菌。
对皮肤和粘膜有强烈刺激性和腐蚀性。
其致敏性也很强。
防护方法参见“苯胺”。