线性系统理论-郑大钟(第二版)

合集下载

线性系统理论第二版教学大纲

线性系统理论第二版教学大纲

线性系统理论第二版教学大纲课程简介本课程是针对电子信息、自动化等专业开设的一门重要的专业必修课程,主要研究线性系统的基本概念、理论和方法。

在本课程中,学生将学习到线性系统的数学模型、传递函数、频率特性、稳定性等关键概念,并应用这些知识分析和设计系统。

教学目标1.掌握线性系统的基本概念、理论和方法。

2.熟练掌握线性系统数学模型、传递函数、频率特性、稳定性等基本概念。

3.理解线性系统的几何特性,包括极点、零点和步响应等。

4.能够利用传递函数和频率响应等方法分析和设计系统。

5.了解现代控制理论和应用。

教学内容第一章线性系统基本概念1.1 系统的概念1.2 系统的建模1.3 信号与系统的分类1.4 线性系统的定义第二章时域分析2.1 系统的时域响应2.2 系统的因果性和稳定性2.3 系统的冲击响应和阶跃响应2.4 系统的单位反馈响应和频率响应第三章频域分析3.1 傅里叶变换3.2 傅里叶反变换3.3 频域分析基本方法3.4 奇偶性和周期性3.5 Bode图和极点、零点第四章线性系统稳定性分析4.1 稳定性定义和判据4.2 极点位置和稳定性分析4.3 极点的稳定性分析4.4 稳定性判据5.1 系统的规范化5.2 系统的合成5.3 系统的简化第六章现代控制理论与应用6.1 状态空间法6.2 系统的观测与控制6.3 非线性系统控制6.4 自适应控制教学方法本课程采用讲授与实例讲解相结合的教学方法。

每个章节都将以概念讲述为主,结合例题进行讲解,力求让学生具有深刻的理论、推导能力和实际应用能力。

同时,课程中将引入现代控制理论及应用,为学生提供最新的学术发展动态。

教学评估1.平时考核(30%):包括课堂参与、作业和实验。

2.期中考试(30%):测试学生的对概念和基础知识的掌握程度。

3.期末考试(40%):测试学生对概念、基础知识和应用能力的综合掌握程度。

参考书目1.钱世光、戚传波等,《线性系统理论与设计》(第二版),科学出版社,2017。

线性系统理论(绪论)S2

线性系统理论(绪论)S2

1877年,E.J. Routh 稳定性分析 —— 代数判据。 年 代数判据。 1895年,A. Hurwitz 稳定性分析 —— 代数判据。 年 代数判据。
一般认为,Maxwell的代数稳定判据 代数稳定判据加上公元1922年N.米诺尔斯基的《关 代数稳定判据 《 于船舶自动操舵的稳定性》和1934年美国H.L.黑曾(Hazen)发表的《关于伺服 于船舶自动操舵的稳定性》 《 机构理论》 经典控制理论的诞生。 机构理论》论文,标志着经典控制理论 经典控制理论
课程基础 - 自动控制原理、线性代数、矩阵理论、(电路) 课程特点 - 线性多变量系统、新方法 学习方法 - 听课 + 自学 + 习题
学时与学分: 学时与学分:
学时, 学分。(13 学分。( 次课) 共54学时,3学分。( + 1次课) 学时 次课
参考书目: 参考书目:
《线性系统理论》(第2版)郑大钟,清华大学出版社 线性系统理论》 郑大钟, 《线性系统理论》史忠科著, 科学出版, 《现代控制理论》于长官著,哈尔滨工业大学出版社 《线性控制系统工程》 [美]德赖斯 (Driels M.) ,清华大学出版社 《线性系统 线性系统》 [美]T.凯拉斯著,科学出版社
绪论
从历史的角度: 从历史的角度:
控制技术和理论的发展表明了这样一个道理: 控制技术和理论的发展表明了这样一个道理 : 任何社会实践没 有理论就不能成为科学,实践也就难以深入和系统地发展。 有理论就不能成为科学,实践也就难以深入和系统地发展。 控制技术在中国和巴比伦已有数千年的历史, 控制技术在中国和巴比伦已有数千年的历史 , 但由于没有上升 为理论,只能在低级的(技艺层面上)水平上发展。 为理论,只能在低级的(技艺层面上)水平上发展。 1868年以来, 随着控制理论的建立 , 控制理论和控制技术同时 年以来,随着控制理论的建立, 年以来 开始飞速发展, 开始飞速发展,控制技术终于成为人们征服自然与改造自然的有力武 器。 由于我们中国几千年来只重技术不重理论,我们现在( 由于我们中国几千年来只重技术不重理论 , 我们现在 ( 值得称 的历史就是十六、十七世纪前“灿烂辉煌的古代文明” 道)的历史就是十六、十七世纪前“灿烂辉煌的古代文明”,自从十 十七世纪西方科学理论体系开始建立之后,就开始相对日趋末落, 六、十七世纪西方科学理论体系开始建立之后,就开始相对日趋末落, 终于到了“落后”的近代,挨打受欺,以至于“丧权辱国” 终于到了“落后”的近代,挨打受欺,以至于“丧权辱国”了。

线性系统理论-郑大钟(第二版)

线性系统理论-郑大钟(第二版)
和t≥t0 各时刻的任意输入变量组 u 1(t)u ,2t, ,up(t)
那么系统的任何一个内部变量在t≥t0各时刻的运动行为也就随之而完全确定
(2).状态变量组最小性的物理特征 (3). 状态变量组最小性的数学特征 (4). 状态变量组的不唯一性 (5).系统任意两个状态变量组之间的关系 (6)有穷维系统和无穷维系统 (7)状态空间的属性
动态系统的分类
从机制的角度 1.连续变量动态系C统 VDS 从特性的角度 1.线性系统
2.离散事件动态系D统 EDS
2.非线性系统
从作用时间 1.连续时间系统 连续系统按其参数 1.集中参数系:属 统有穷维系统 类型的角度 2.离散时间系统 的空间分布类型 2分 . 布参数系:属 统于无穷维系统
本书中仅限于研究线性系统和集中参数系统
复频率域描述即传递函数描述
g(s)u y( (s s) )snb n a 1 n s n 1 s1 n 1 b 1s a 1sb 0a 0 (2)系统的内部描述
状态空间描述是系统内部描述的基本形式,需要由两个数学方程表征—— 状态方程和输出方程。
(3)外部描述和内部描述的比较 一般的说外部描述只是对系统的一种不完全描述,不能反映黑箱内部结构的不
线性系统
线性系统理论的研究对象为线性系统,其模型方程具有线性属性即满足叠加原理。
若表征系统的数学描述为L 系统模型
L ( c 1 u 1 c 2 u 2 ) c 1 L ( u 1 ) c 2 L ( u 2 )
系统模型是对系统或其部分属性的一个简化描述
①系统模型的作用:仿真、预测预报、综合和设计控制器 ②模型类型的多样性:用数学模型描述、用文字、图表、数据或计算机程序表示 ③数学模型的基本性:着重研究可用数学模型描述的一类系统 ④建立数学模型的途径:解析、辨识 ⑤系统建模的准则:折衷

线性系统理论(郑大钟第二版)第4章

线性系统理论(郑大钟第二版)第4章
第三章 线性系统的稳定性及李雅普诺夫 分析方法
§1 稳定性基本概念
一、外部稳定性与内部稳定性 1.外部稳定性 考虑一个线性因果系统,在零初始条件下,如果对应于任意有界输 入的输出均为有界,则称该系统是外部稳定的。
u(t ) k1
y(t ) k2
系统的外部稳定性也称有界输入-有界输出(BIBO)稳定性。 对于线性定常连续系统,外部稳定的充要条件是系统传递函数 的全部极点具有负实部。
n
it
i 1
i i
2.非线性系统情况 对于非本质性的非线性系统,可以在一定条件下用它的近似 线性化模型来研究它在平衡点的稳定性。
非线性自治系统: x f ( x)
f ( x )为n维非线性向量函数,并对各状态变量连续可微。
xe 0
是系统的一个平衡点。
将f ( x )在平衡点xe 邻域展成泰勒级数: f ( x ) f ( xe )
(t t0 )
则称平衡状态 xe 是稳定的。 可以将下式看成为状态空间中以 xe 为球心,以 为半径的一个超 球体,球域记为 S ( ) ;把上式视为以 xe为球心,以 为半径的一个 超球体,球域记为 S ( ) 。球域 S ( )依赖于给定的实数 和初始时间t 0 。
平衡状态 xe 是稳定的几何解释: 从球域 S ( )内任一点出发的运动 x(t; x0 , t0 )对所有的 t t0 都不超越球域 S ( ) 。 x2 一个二维状态空间中零平衡 S ( ) xe 0 是稳定的几何解释 状态 如右图 。 S ( ) 如果 与 t 0 无关,称为是 一致稳定,定常系统是一致 稳定的。 上述稳定保证了系统受扰运动的有 界性,通常将它称为李雅普诺夫意义 下的稳定,以区别于工程意义的稳定 (还应该具有对于平衡状态的渐进性)。

新编〈信息、控制与系统〉系列教材

新编〈信息、控制与系统〉系列教材

新编〈信息、控制与系统〉系列教材
《单片机原理及其应用》袁涛李月香杨胜利编著
《微弱信号检测》(第二版)高晋占编著
《模式识别》(第三版)张学工编著
《系统仿真导论》(第二版)肖田元范文慧编著
《光纤传感原理与应用技术》赵勇编著
《制造企业的产品生命周期管理》张和明熊光楞编著
《人工神经网络与模拟进化计算》(第二版)阎平凡张长水编著
《微弱信号检测》高晋占编著
《企业信息化总体设计》李清陈禹六编著
《工业数据通信与控制网络》阳宪惠编著
《模式识别》(第二版)边肇祺张学工等编著
《神经网络与模糊控制》张乃尧阎平凡编著
《面向控制的系统辨识导论》周彤著
《嵌入式系统的构建》慕春棣主编
《计算机控制系统》王锦标编著
《运动控制系统》尔桂花窦日轩编著
《现代信号处理》(第二版)张贤达著
《自动控制理论例题习题集》王诗宓杜继宏窦曰轩编著
《线性系统理论》(第二版)郑大钟
《线性系统理论习题与解答》(第二版)郑大钟编著。

线性系统理论(绪论)

线性系统理论(绪论)

008
绪论
5、线性系统理论的研究对象
p研究对象为线性系统:
实际系统理想化模型, 可用线性微分方程或差分方程来描述。 p研究动态系统,动力学系统:
用一组微分方程或差分方程来描述,
对系统的运动和各种性质给出严格和定量的数学描述。 数学方程具有线性属性时,则为线性系统,满足叠加性。
009
绪论
例:某系统的数学描述为L,任意两个输入变量 u1和
u2以及任意两个有限常数 c1和 c2,必有: L ( c1u1 + c 2 u 2 ) = c1 L (u1 ) + c 2 L (u 2 )
数学处理上的简便性,可使用的数学工具: 数学变换(傅里叶变换,拉普拉斯变换)、线性代数 实际系统——非线性的,有条件地线性化。
线性定常系统——方程中每个系数均为常数。
故设计方法为试行错误法,无法得到“最好的设计”。
给定传递函数
闭环特性分析
与给定指标比较
004
绪论
1950年代 , 是控制理论的“混乱时期”。
1960年代 , 产生了“现代控制理论”(状态空间法)。 庞特里亚金极大值原理 贝尔曼 动态规划法 可控、可观性理论
卡尔曼
极点配置
观测器
内模原理 至1970年代前半期,为状态空间法的全盛时期。
1895年,赫尔维茨稳定性分析——代数判据。
1945年, 波特频率法。 1948年,伊万思根轨迹法。
至此,古典控制理论(传递函数法)体系确定。
003



绪论
2、古典控制理论的局限性
①局限于线性定常系统:难以解决非线性、时变系统等问题。 ②采用输入/输出描述(传函),忽视了系统结构的内在特性, 难以解决多输入多输出系统(耦合)。 ③处理方法上,只提供分析方法,而不是综合方法。

博士生入学线性系统理论考试大纲

博士生入学线性系统理论考试大纲

博士生入学线性系统理论考试大纲第一部分 考试说明一、 考试性质线性系统理论是控制科学与控制工程学科的基础课。

本门考试的应考范围以基于状态空间描述和方法的近代控制理论为主,注重考察考生是否已经掌握控制学科最基本的理论知识。

它的评价标准是本学科或者相近学科的优秀硕士毕业生能达到及格或及格以上水平,以保证被录取者具有基本的控制学科基础知识,并有利于在专业上择优选拔。

二、 考试形式与试卷结构(一)答卷方式:闭卷,笔试。

(二)答卷时间:180分钟(三)题型比例:全部题型为计算、分析题,满分100分。

(四)主要参考书目:1.郑大钟编著,线性系统理论(第一部分),清华大学出版社,2002年第二版2.段广仁编著,线性系统理论,哈尔滨工业大学出版社,1997年第二部分 考查要点一、 线性系统的数学描述系统的传递函数描述,状态空间描述,两种描述形式的比较和相互转换。

线性系统在坐标变换下的特性。

组合系统的状态空间描述。

二、 线性系统的运动分析状态转移矩阵及其性质。

脉冲响应矩阵。

线性时变系统运动分析。

线性定常系统的运动分析。

线性连续系统的时间离散化。

线性离散系统的运动分析。

三、 线性系统的能控性和能观测性线性系统的能控性和能观测性的定义。

线性连续系统(含时变系统)的能控性、能观测性判据。

线性离散系统的能控性、能观性判据。

对偶原理。

能控、能观测与传递函数。

线性系统的能控性、能观性指数。

能控和能观测规范形。

线性系统的结构分解。

四、 系统运动的稳定性Lyapunov 意义下运动稳定性的定义。

Lyaounov 第二方法的主要定理。

线性系统稳定性判据。

离散系统的稳定性及其判据。

系统的外部稳定性和内部稳定性。

五、 线性反馈系统的综合状态反馈和输出反馈。

极点配置问题及其解的存在条件。

状态反馈极点配置问题的求解方法。

状态反馈可镇定条件和算法。

线性二次型最优控制问题。

全维和降维状态观测器。

引入观测器的状态反馈控制系统的特性。

第三部分 考试样题题一、(20分)已知时变系统的状态方程为⎥⎦⎤⎢⎣⎡=-⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡++=12)(,)(01)(00120)(002t X t t u t X t t t X其中)sin()(00t t t t u -=-是从0t 时刻开始的正弦信号,试求解该方程。

线性系统理论-郑大钟(3-4章)

线性系统理论-郑大钟(3-4章)

1

2 n
n 1 n
t e n
1

0 1
21
n 1 2
(n 1)1 (n 1)(n 2) n 3 1 2! n2 (n 1)1 n 1 1 1
矩阵指数函数的算法 1:定义法
e At I At
1 2 2 A t 2!
只能得到eAt的数值结果,难以获得eAt解析表达式,但用计算机计算,具 有编程简单和算法迭代的优点。 2:特征值法
A P 1 AP
A PA P 1
e At Pe A t P 1
P为变换A为约当规范型的变换矩阵 1)若A的特征值为两两互异
如果系统矩阵A(t),B(t)的所有元在时间定义区间[t0,tα]上为时间t的连续实函数,输 入u(t)的所有元为时间t的连续实函数,那么状态方程的解x(t)存在且唯一。 从数学观点,上述条件可减弱为: ①系统矩阵A(t)的各个元aij(t)在时间区间[t0,tα]上为绝对可积,即:

t
t0
| aij (t ) | dt ,
-1
te1t 1t e e3t
0 2tet e 2t 1 3tet 2et 2e 2t 2 tet et e 2t
e At 0 I 1 A 2 A2 (2tet e 2t ) I (3tet 2et 2e 2t ) A (tet et e 2t ) A2 2et e 2t 0 e t e 2t 0 et 0 2et 2e 2t 0 et 2e 2t
s3 ( s 1)( s 2) 2 ( s 1)( s 2)

线性系统理论PPT-郑大钟(第二版)

线性系统理论PPT-郑大钟(第二版)

系统具有如下3个基本特征:
(1)整体性
1.结构上的整体性 2.系统行为和功能由整体 所决定
(2)抽象性
作为系统控制理论的研 究对象,系统常常抽去 了具体系统的物理,自 然和社会含义,而把它 抽象为一个一般意义下 的系统而加以研究。
(3)相对性
在系统的定义 中, 所谓“系统” 和“部分”这 种称谓具有相 对属性。
u1 u2

up
x1 x2
动力学部件

xn
输出部件
y1 y2

yq
连续时间线性系统的状态空间描述
线性时不变系统
x Ax Bu

y

Cx

Du
线性时变系统
x A(t)x B(t)u

y

C (t ) x

D(t
)u
连续时间线性系统的方块图
x A(t)x B(t)u
对于单输入,单输出线性时不变系统,其微分方程描述
y (n) an1 y (n1) a1 y (1) a0 y bmu (m) bm1u (m1) b1u (1) b0u

H (k )
单位延迟
C(k)
y(k)
u(k)


G(k)
2.3.连续变量动态系统按状态空间描述的分类
线性系统和非线性系统
设系统的状态空间描述为 x f ( x,u, t) y g( x,u, t)
向量函数
f1(x,u,t)
g1(x,u,t)
f
(
x,u,
t
)


f
2
(
x,u,
e

(已阅)线性系统理论-1b

(已阅)线性系统理论-1b

第一章 线性连续系统的 状态空间描述
§1-1 系统的状态空间描述
建模实例
建立图示电路的数学模型。 1 uc ( t ) i ( t )dt c
L di( t ) uc ( t ) Ri ( t ) ur ( t ) dt
i(t) R L
ur(t)
C
uc(t)
duc ( t ) 1 i(t ) dt C di( t ) 1 u R i ( t ) 1 u ( t ) c r L L L dt
β u 2

2 x

x2

1 x

-3
x1

y
-2
1 3 1 x1 x u x 2 2 0 x 2 2 x1 y 1 1 x2
§1-3 化输入—输出描述为状态变量描述
1 s 1
情况1:
u
1 x

G f s
x1
2
2 x
-

x2
y
Gc s
0 1 ( 其 中A ) 2 1
1 1 0 x1 1 x u x2 2 1 x2 0
状态空间的描述方程
u1 ( t ) u p (t )

x1 (t ) , , xn (t )

y1 ( t ) yq (t )
(t ) f ( x(t ), u(t ), t ) ——状态方程 x y(t ) g( x(t ), u(t ), t ) ——输出方程
其中,
x1 ( t ) , x(t ) x n ( t )

清华线性系统控制理论作业一参考解答

清华线性系统控制理论作业一参考解答

2.(根据框图写出状态空间描述) 图2.2中描述了列车悬浮系统的工作原理,其中,1、2、3、 4为电磁装置,车辆通过电磁力的作用,悬浮于轨道上。磁悬浮控制系统的目的是通过调整 电磁作用力的输入,保证列车在运行过程中的平稳。这里我们考虑车辆运行过程中产在x和y 轴两个方向的位移,给出其线形化系统框图如图2.1所示
描述,其中g 是重力加速度常数,如图3所示,h 是自行车质心距地面高度,w 是两个轮子 与地面接触点的距离, b 是自行车质心投影与后轮和地面接触点的距离。 试给出该线性系统 的一个状态空间描述。
图3 参考文献: [3.1] Bicycles, motorcycles, and models-single-track vechicle modeling and control, IEEE Control Systems Magazine, October, 2006. 参考解答:
作业一
1.(线性化)已知倒立摆系统满足如下非线性状态方程
1 (t ) x2 (t ) x 2 (t ) ( g / l ) sin x1 (t ) u (t ) x
通过线性化给出系统在平衡解 [ x1 (), x2 ()] [0,0] , u () 0 的邻域内的线性模型。 参考解答:
图 2.2
参考解答:
注意状态变量的维数. 3. (从传递函数得到状态方程描述)图3中给出了解释自行车姿态动态平衡的原理图示。在 前进速度保持为定常v 的假设下,车把转角 对车身姿态角 的作用在平衡点( =0, =0)附近范围内可用微分方程

g v2 bv h hw wh
图2.1 这里A11=[100 0;0 200] B21=[10 -3;-5 16] C22=[1 1;1 -1]。 这里输入向量u是控制的作用力, 也就是车辆的加速度量, 输出向量y是车辆在两个轴方向的 位移量,通过间隙传感器测量。试列写出系统的状态空间模型。 参考文献: [2.1] H2 and H∞ control for MagLev vehicles,IEEE Control System Magazine, 1998 [2.2] Experimental comparison of linear and nonlinear controllers for a magnetic suspension, Proceedings of the 2000 IEEE International Conference on Control Applications,2000 [2.3] 广义线性磁悬浮对象的H∞控制问题,西安交通大学学报,Feb,2000

线性系统理论第二版课程设计

线性系统理论第二版课程设计

线性系统理论第二版课程设计前言线性系统理论作为控制理论的重要基础学科,对于理解和应用控制理论具有不可替代的作用。

本文主要介绍了线性系统理论第二版的课程设计,包括设计背景、设计目标、设计内容、设计步骤以及相关注意事项等方面的内容。

希望能够对正在学习线性系统理论的同学们提供帮助。

设计背景线性系统理论是控制理论的重要基础学科,其研究的对象是线性系统,包括状态空间描述、传递函数描述、稳定性分析和控制器设计等方面的内容。

随着控制理论在现代工程中的广泛应用,线性系统理论也成为了控制工程专业的必修课程。

线性系统理论第二版是基于第一版的基础上进行更新和完善的版本。

新版本主要对一些重要概念和方法进行了详细阐述,增加了一些实例以及应用案例,力求让学生更加深入地理解线性系统理论的相关内容。

为了使学生有效地掌握线性系统理论的知识和技能,需要进行相关的课程设计。

本设计旨在帮助学生深入理解课程内容,掌握相关技能,并且为未来的研究和实践打下扎实的基础。

设计目标本课程设计的目标是通过实践教学的方式,帮助学生深入理解线性系统理论的相关知识和技能,并能够灵活应用到实际问题中。

具体的设计目标包括:1.熟练掌握线性系统的状态空间描述方式和传递函数描述方式,能够进行状态空间和传递函数之间的转化;2.掌握线性系统的稳定性分析方法,能够理解极点和极点分布的概念,并能够进行稳定性判断;3.学习控制器的设计方法,并能够灵活应用到实际问题中;4.通过案例分析的方式,将理论知识与工程实践相结合,提高学生的综合素质和创新能力。

设计内容本课程设计包括三部分内容:任务一、任务二和任务三。

其中,任务一和任务二为必修任务,任务三为选修任务,可以根据学生情况进行选择。

任务一:线性系统的状态空间描述与传递函数描述的转化任务一旨在帮助学生掌握线性系统的状态空间描述方式和传递函数描述方式,并能够进行状态空间和传递函数之间的转化。

具体的任务要求如下:1.给定一个线性系统,分别用状态空间描述方式和传递函数描述方式表示;2.对于给定的状态空间描述和传递函数描述,进行状态空间和传递函数之间的转化;3.对于转化后的状态空间描述和传递函数描述,进行参数调整,并比较两种描述方式的优缺点。

线性系统理论(郑大忠)第2章

线性系统理论(郑大忠)第2章
基此,选取电容端电压uc和流经电感的电流iL作 为电路状态变量组。 显然,uc和iL必满足状态变量定义中所指出的线 性无关极大组属性。
2013/11/22
线性系统理论
23
第2章 线性系统的状态空间描述
广东工业大学 自动化学院 自动控制系 陈玮
1、电路系统状态空间描述的列写示例
R1 C + uC iL R2 iC + -
由此,得 和,
X QX
X PX PQX
X QX QPX
显然, PQ QP I
即矩阵P和Q互逆。
结论:系统的任意选取的两个状态X和 X 之间 为线性非奇异变换的关系。
2013/11/22
线性系统理论
18
第2章 线性系统的状态空间描述
广东工业大学 自动化学院 自动控制系 陈玮
2013/11/22
线性系统理论
2
第2章 线性系统的状态空间描述
广东工业大学 自动化学院 自动控制系 陈玮
一、状态和状态空间
1、系统动态过程的两类数学描述 2、状态和状态空间的定义
2013/11/22
线性系统理论
3
第2章 线性系统的状态空间描述
广东工业大学 自动化学院 自动控制系 陈玮
1、系统动态过程的两类数学描述
线性系统理论
21
第2章 线性系统的状态空间描述
广东工业大学 自动化学院 自动控制系 陈玮
1、电路系统状态空间描述的列写示例
电路系统如图所示,设各组元件的参数值为已 知,取电压源e(t)为输入变量,电阻R2端电压uR2为输 出变量。 C
R1 iC + e (t ) -
L
+ uC iL R2

线性系统理论(郑大钟第二版)第3章

线性系统理论(郑大钟第二版)第3章
x (t ) = e At x (0) = diag (e λ1t , eλ2t ,L , e λnt ) x (0)
x (t ) = Px = [ν 1 ν 2 L ν n ]diag (e λ1t , e λ2t ,L , eλnt ) x (0) = [ν 1eλ1t ν 2 eλ2t L ν n eλn t ] x (0)
3. Φ (t1 ± t2 ) = Φ (t1 ) ⋅Φ (±t2 ) = Φ (±t2 ) ⋅Φ (t1 )
(Φ (t )) k = Φ (kt )
1 2 2 Ak k 1 2 2 Ak k t1 + L)( I + At2 + A t2 + L + t2 + L) Φ (t1 ) ⋅Φ (t2 ) = ( I + At1 + A t1 + L + k! k! 2 2 2 3 t2 2 1 2 1 2 t2 3 2 t1 3 t1 = I + A(t1 + t2 ) + A ( + t1t2 + ) + A ( + t1 t2 + t1t2 + ) + L 2! 2! 3! 2! 2! 3! 1 1 = I + A(t1 + t2 ) + A2 (t1 + t2 ) 2 + A3 (t1 + t2 )3 + L = Φ (t1 + t2 ) 2! 3!
= ( I + At + L +
Ak −1 k −1 t + L) A = Φ (t ) ⋅ A (k − 1)!
k
2. Φ (0) = I
将 t = 0代入 Φ (t ) = I + At + 1 A2t 2 + L + A t k + L 即可证。

北京工业大学博士研究生考试参考书目

北京工业大学博士研究生考试参考书目
1030
俄语
详见俄语考试大纲(登陆北京工业大学研招网首页查询)
1040
德语
详见德语考试大纲(登陆北京工业大学研招网首页查询)
2020
建筑设计与构造
教材编写组.《建筑构造》(一、二).中国建筑工业出版社,2008.11
2030
数值分析
李庆扬.《数值分析》.华中工学院出版社,2008
2040
流体力学
1、吴望一.《流体力学》.北京大学出版社,2004 2、张也影.《流体力学》.高等教育出版社,2007
3130
检测理论与应用
孙传友.《感测技术基础》.电子工业出版社,2006
3140
人工智能
蔡自兴、徐光佑.《人工智能及其应用》(第三版).清华大学出版社,2003
3170
信息论基础
周荫清.《信息理论基础》.北京航空航天大学出版社,2002
3180
数字语音信号处理
鲍长春.《数字语音编码原理》.西安电子科技大学出版社,2007
3231
高等岩石力学
黄醒春.《岩石力学》.高等教育出版社,2005
3240
地震工程学
1、沈聚敏,周锡元等.《抗震工程学》.中国建筑工程出版社,2000 2、胡聿贤.《地震工程学》.地震出版社,2006
3241
城乡规划防灾理论与实践
1、翟宝辉 等.《城市综合防灾》.中国发展出版社,2007 2、马东辉 等.《城市抗震防灾规划标准实施指南》.中国建筑工业出版社,2008
2390
高等有机化学
荣国斌.《高等有机化学基础》(第三版).化学工业出版社,2009
2400
环境微生物学
周群英.《环境工程微生物学》(第三版).高等教育出版社,2008

线性系统理论

线性系统理论

自主控制系统的应用迅速增长
The use of autonomous systems is rapidly increasing
居家自动化
CD播放器控制
•激光头定位控制 •驱动器速度控制
过程控制
电力控制
制造自动化
汽车自动控制
自适应巡行控制
智能车辆高速公路系统
空中交通控制
未来空战系统
集成控制技术 资源共享 因特网 信息集成 信息技术 控制技术 网络控制技术
工厂自动化 计算机集成制造系统(CIMS) 计算机集成过程系统(CIPS)
三、现代控制理论发展的主要标志
卡尔曼:
状态空间法 卡尔曼: 能控性与能观性 庞特里雅金:极大值原理
学出版社, 2002 Kailath T. Linear Systems. Prentice-Hall, 1980
九、作业与成绩
通常,每两周布置一次作业
最终考试成绩占总成绩的70% 平时成绩占总成绩的30%

现代控制理论诞生
目前状况
控制已经成为一个具有坚实理论基础和广泛
应用的领域. 几乎所有实用的控制器是由数字计算机实现 的.
教育: 自动控制课程象野火般迅速传播,已经 成为工程师教育的重要组成部分. 应用: 控制概念已经很好地应用于很多领域.
应用
Full automatic flight
including take off and landing is a development that naturally follows autopilots. Autonomous flight is a challenging problem because it requires automatic handling of a wide variety of tasks--hybrid control New York Times, 1947

线性系统理论(2013日历)

线性系统理论(2013日历)

40
学时
30 10
学时 学时 学时 学时 学时
课堂练习及课堂讨论 实验 现场教学 课程设计及作业 4. 课程学分:2
出版单位
版本及出版时间 2002.10 第二版

郑大钟 清华大学出版社
现代控制理论导论
参 考 书

戴冠中 国防工业出版社
1989.11
日 周 期 次 1
课内时数分配 教学内容(教学大纲分章和题目的名称) 习题课 课程设计 讲课 实验 及讨论 及作业 课外作业
自 学
备注
第一章:绪论 研究对象 线性系统理论概貌
2 2 1 2 2 2 2 2 1
2
第二章:线性系统的状态空间描述 第三章:线性系统的运动分析
3
第四章:线性系统能控性和能观测性 第五章:线性系统的稳定性
4
第六章:线性反馈系统的时间域综合
反馈与极点配置
2 2 2 2 2 2
第七章:数学基础:多项式矩阵理论
5
一些基本概念 公因子与互质性
第 1 页
日 周 期 次 教学内容(教学大纲分章和题目的名称) 6
课内时数分配 习题课 课程设计 讲课 实验 及讨论 及作业 课外作业
自 学
备注
第八章:传递函数矩阵的矩阵分式描 述
矩阵分式描述 MFD
2
2 2
2 1
7
规范形MFD
第九章:传递函数矩阵的结构特性
零极点的定义
8 2 2 2 1
零极点的性质 第十章:传递函数矩阵的状态空间实 9 现 实现的基本概念和属性 典型实现
2 2 2 2 2
主管院长:
说明: 1、任课教师于开学前填写好教学日历一式三份,并完成审批手续。 2、任课教师、教研室、二级学院(部)各留存一份。 3、教师上课必须携带教学日历。 第 2 页

郑大钟线性控制理论

郑大钟线性控制理论



无限时间LQ问题是指末时间 t = ∞ 的一类LQ问题。 有限时间LQ问题只是考虑系统在过度过程中的最优运 行; 无限时间LQ问题则还需考虑系统趋于平衡状态时的渐 进行为。 无限时间的LQ问题的研究通常更有意义,具 有最小能量的控制方式更具实际意义。 无限时间LQ问题的最优解: Ax Bu (6.11.1) x
6.11.2)最小化的最优控制器具有以下线性状态 反馈形式:
u Kx
当且仅当 K R 1 B T P 方程 PA AT P PBR1BT P Q 0
T J x 0 Px0 此时

3、对无限时间LQ调节问题,最优控制具有状态反馈的 形式。状态反馈矩阵为
KR B P
第一项反映控制性能,这一项越小,状态衰减到0的速 度越快,振荡越小,控制性能越好;第二项反映对控 制能量的限制。通常状态 衰减速度越快,控制能量越 大,这是一个矛盾,最优控制的目的就是寻找Q 、 R, 调和上述矛盾,问题归结为,对给定系统(6.11.1) 和保证一定性能指标(6.11.2)的前提下,设计一个 控制器 u,使J 最小。
其中,n*n正定对称矩阵P为如下矩阵黎卡提方程的解阵 : T 1 T
P( A I ) ( A I ) P Q PBR B P 0
导出指定指数衰减度的无限时间时不变LQ问题的最优控制为
u * (t ) R1BT Px * (t )
考虑到最优闭环系统
x ( A BR B P) x *


解阵P为n*n正定矩阵。进而,最优控制u*()为
u * (t ) K * x * (t ), K* R 1 BT P
最优调节系统为
* ( A BR1 BT P) x*, x * (0) x0 , t 0 x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

g(s b0 an1sn1 a1s a0
(2)系统的内部描述
状态空间描述是系统内部描述的基本形式,需要由两个数学方程表征—— 状态方程和输出方程。
(3)外部描述和内部描述的比较 一般的说外部描述只是对系统的一种不完全描述,不能反映黑箱内部结构的不
线性系统理论研究对象是 (线性的)模型系统,不是 物理系统。
1.2 线性系统理论的基本概貌
线性系统理论是一门以研究线性系统的分析与综合的理论和方法为基本任 务的学科。
线性系统理论着重研究线性系统状态的运动规律和改变这种规律的可能性 和方法,以建立和揭示系统结构、参数、行为和性能间确定的和定量的关系。
能控或不能观测的部分。
内部描述则是系统的一种完全的描述,能够完全反映系统的所有动力学特性。
状态和状态空间的定义
u1
yq
状态变量组: 一个动力学系统的状态变量组定义为 u2 能完全表征其时间域行为的一个最小
x1, x2,, xn
y2
内部变量组
up
yq
状态: 一个动力学系统的状态定义为由其状态变量组 x1(t), x2 t,, xn (t)
动态系统: 所谓动态系统,就是运动状态按确定规律或确定统计规律随时间演化 的一类系统——动力学系统。
动态系统是系统控制理论所研究的主体,其行为有各类变量间的关系来表征。
1.输入变量组
u
系统变量可区分为三类形式 2.内部状态变量组
3.输出变量组
y x
系统动态过程的数学描述 1.白箱描述:内部描述(状态方程和输出方程) 2.黑箱描述: 外部描述(输入, 输出变量组的关系)
线性系统
线性系统理论的研究对象为线性系统,其模型方程具有线性属性即满足叠加原理。
若表征系统的数学描述为L 系统模型
L (c1u1 c2u 2 ) c1L (u1) c2L (u 2 )
系统模型是对系统或其部分属性的一个简化描述
①系统模型的作用:仿真、预测预报、综合和设计控制器 ②模型类型的多样性:用数学模型描述、用文字、图表、数据或计算机程序表示 ③数学模型的基本性:着重研究可用数学模型描述的一类系统 ④建立数学模型的途径:解析、辨识 ⑤系统建模的准则:折衷
2.2 线性系统的状态空间描述
描述系统输入、输出和状态变量之间关系的方程组称为系统的状态空间描述
(动态方程或运动方程),包括状态方程(描述输入和状态变量之间的关系)和 输出方程(描述输出和输入、状态变量之间的关系)。
线性系统理论
郑大钟 清华大学出版社
第一章 绪 论
第一部分 线性系统的时间域理论
第二部分 线性系统的复频率域理论
第二章 线性系统的状态空间描述 第三章 线性系统的运动分析 第四章 线性系统的能控性和能观测性 第五章 系统运动的稳定性 第六章 线性反馈系统的时间域综合
第一章 绪论
控制理论发展概况: 第一阶段 20世纪40—60年代 经典控制理论 第二阶段 20世纪60—70年代 现代控制理论 第三阶段 20世纪70—
多变量频域方法
一是频域方法
二是多项式矩阵方法
第一部分: 线性系统时间域理论
线性系统时间域理论是以时间域数学模型为系统描述,直接在时间域内分析 和综合线性系统的运动和特性的一种理论和方法
第二章 线性系统的状态空间描述
2.1 状态和状态空间
系统动态过程的两类数学描述
u1
y1
u2
x1, x2,, xn
大系统理论 (广度) 智能控制理论 (深度)
线性系统理论是系统控制理论的一个最为基础和最为成熟的分支。它以 线性代数和微分方程为主要数学工具,以状态空间法为基础分析和设计控制 系统。
第一章 绪论
1.1系统控制理论的研究对象
系统是系统控制理论的研究对象 系统:是由相互关联和相互制约的若干“部分”所组成的具有特定功能的一个“整体
y2
up
yq
(1) 系统的外部描述
u1
y1
外部描述常被称作为输出—输入描述
u2
x1, x2 ,, xn
y2
例如.对SISO线性定常系统:时间域的外部描述: u p
yq
y(n) an1 y(n1) a1 y(1) a0 y bn1u(n1) b1u (1) b0u
复频率域描述即传递函数描述
主要内容: 数学模型 → 分析理论 → 综合理论 发展过程: 经典线性系统理论→现代线性系统理论 主要学派: 状态空间法
几何理论 把对线性系统的研究转化为状态空间中的相应几何问题, 并采用几何语言来对系统进行描述,分析和综合
代数理论 把系统各组变量间的关系看作为是某些代数结构之间的 映射关系,从而可以实现对线性系统描述和分析的完全的 形式化和抽象化,使之转化为纯粹的一些抽象代数问题
系统具有如下3个基本特征:
(1)整体性
1.结构上的整体性 2.系统行为和功能由整体 所决定
(2)抽象性
作为系统控制理论的研 究对象,系统常常抽去 了具体系统的物理,自 然和社会含义,而把它 抽象为一个一般意义下 的系统而加以研究。
(3)相对性
在系统的定义 中, 所谓“系统” 和“部分”这 种称谓具有相 对属性。
那么系统的任何一个内部变量在t≥t0各时刻的运动行为也就随之而完全确定
(2).状态变量组最小性的物理特征 (3). 状态变量组最小性的数学特征 (4). 状态变量组的不唯一性 (5).系统任意两个状态变量组之间的关系 (6)有穷维系统和无穷维系统 (7)状态空间的属性
状态空间为建立在实数域R上的一个向量空间R n
动态系统的分类
从机制的角度 1.连续变量动态系统CVDS 从特性的角度 1.线性系统
2.离散事件动态系统DEDS
2.非线性系统
从作用时间 1.连续时间系统 连续系统按其参数 1.集中参数系统: 属有穷维系统 类型的角度 2.离散时间系统 的空间分布类型 2.分布参数系统: 属于无穷维系统
本书中仅限于研究线性系统和集中参数系统
所组成的一个列向量
x1 (t)
x(t)
x2 (t)
xn
(t
)
状态空间: 状态空间定义为状态向量的一个集合,状态空间的维数等同于状态 的维数
几点解释 (1)状态变量组对系统行为的完全表征性
只要给定初始时刻 t0 的任意初始状态变量组 x1(t0 ), x2 t0 ,, xn (t0 )
和t≥t0 各时刻的任意输入变量组 u1 (t), u2 t ,, u p (t)
相关文档
最新文档