负摩阻力计算实例
桩基础负摩阻计算表格V2.0
桩基础负摩阻计算表格V2.0
桩基础负摩阻⼒计算
桩直径D0.5m
桩⾯积A0.196m2
桩周长u 1.571m
地⾯超载p 5.00kpa
地下⽔标⾼-1.80m
注:中性点深度由《建筑桩基技术规范》(JGJ94-2008)表5.4.4-2确定。
本表格考虑地⾯超载和地下⽔共同作⽤下的负摩阻⼒。
负摩阻⼒系数ζn
对于⾮挤⼟桩,取表中较⼩值
2、填⼟按其组成取表中同类⼟的较⼤值
中性点深度ln
中性点深度ln应按桩周⼟层沉降与桩沉降相等的条件计算确定,也可参照表5.4.4-2 确定。
注: 1 、ln 、l0 ——分别为⾃桩顶算起的中性点深度和桩周软弱⼟层下限深度;
2、桩穿过⾃重湿陷性黄⼟层时,ln 可按表列值增⼤10%(持⼒层为基岩除外);
3 、当桩周⼟层固结与桩基固结沉降同时完成时,取ln= 0 ;
4 、当桩周⼟层计算沉降量⼩于20mm 时,ln应按表列值乘以0.4~0.8 折减。
桩侧摩阻力计算
桩侧摩阻力计算一、工程概况:本工程①杂填土、②淤泥均为欠固结软弱土应计算桩侧负摩阻力;根据岩土工程勘察报告ZK65揭示地基土分层如下:孔口标高5.07m,地下水位标高2.02m第①层杂填土底部标高2.77厚度2.30第②层淤泥底部标高-7.53厚度10.30第③层卵石底部标高-12.43厚度4.90第⑤层砂土状强风化凝灰岩底部标高-14.73厚度2.30第⑥层碎块状强风化凝灰岩…………该位置软弱土层较厚且土层分布具有代表性,所以计算该位置的桩侧负摩阻力值;二、计算过程(1)根据JGJ94-2008第5.4.4条桩侧负摩阻力标准值按下式计算:'n si ni i q ξσ=;1''112i i i e e i i e z z γσσγγ-===∆+∆∑ 根据地勘报告杂填土和淤泥的负摩阻力系数分别为0.4和0.25,素填土和淤泥的重度为16.0kN/m 3;1γ=16.0kN/m 3'2γ=16.0-10.0=6.0kN/m 31n s q =0.40.5×16×2.30=7.36kN/m 22n s q =0.2516×2.30+0.5×6×10.3=16.92kN/m 2(2)桩持力层为⑤砂土状强风化凝灰岩,根据持力层性质中性点深度比0/n l l 取值为1; 0n l l ==12.6m(3)计算桩下拉荷载标准值;根据JGJ94-2008第5.4.4-4条1nnn gn si i i Q u q l η==•∑不考虑群桩效应,n η取1.0,桩采用PHC500预制管桩; n g Q =1.0×2×3.14×0.25×7.36×2.3+16.92×10.3=300kN。
负摩阻力计算实例
负摩阻力计算实例本建筑场地为自重湿陷性黄土场地,湿陷等级为Ⅱ级(中等),依椐JGJ94-2008规范第5.4.2条规定,在计算基桩承载力时应计入桩侧负摩阻力。
首先,根据场地地质情况(以3#井处的地层为例)确定压缩4.2 桩基4.2.1 桩基类型及桩端持力层的选择依据勘察结果分析, 本建筑场地为自重湿陷性黄土场地,(自重湿陷量的计算值为120.5-151.6mm)湿陷等级为Ⅱ级(中等),湿陷性土层为②、③、④、⑤层,湿陷土层厚度为10-15m,湿陷最大深度17m(3#井)。
可采用钻孔灌注桩基础,第⑦层黄土状粉土属中密-密实状态,具低-中压缩性,不具湿陷性,平均层厚4.0m,可做为桩端持力层。
4.2.2 桩基参数的确定根据《建筑地基基础设计规范》(GB50007-2002)、《建筑桩基技术规范》(JGJ94-2008)、《湿陷性黄土地区建筑规范》(GB50025-2004)中的有关规定,结合地区经验,饱和状态下的桩侧阻力特征值qsia(或极限侧阻力标准值qsik)、桩端阻力特征值qpa(或极限端阻力标准值qpk¬)建议采用下列估算值:土层编号土层名称土的状态桩侧阻力特征值qsia(kPa) 极限侧阻力标准值qsik(kPa) 桩端阻力特征值qpa(kPa) 极限端阻力标准值qpk(kPa)②黄土状粉土稍密 11 23③黄土状粉土稍密 12 24④黄土状粉土稍密 12 24⑤黄土状粉土稍密 13 26⑥黄土状粉土中密 18 36⑦黄土状粉土中密 18 36 500 1000⑧黄土状粉土中密 20 40 600 12004.2.3 单桩承载力的估算依据JGJ94-2008规范,参照《建筑地基基础设计规范》GB50007-2002第8.5.5条,单桩竖向承载力特征值可按下式估算:Ra=qpaAp+up∑qsiaLi式中:Ra——单桩竖向承载力特征值;qpa 、qsia——桩端端阻力、桩侧阻力特征值;Ap——桩底端横截面面积= πd2(圆桩);up——桩身周边长度=πd;Li——第i层岩土的厚度;以3#孔处的地层为例,桩身直径取600mm,以第⑦层黄土状粉土做为桩端持力层,桩入土深度24.0m(桩端进入持力层的深度对于粘性土、粉土应不小于1.5d)。
基桩负摩阻力的计算过程及工程应用探讨
94-2008)5.4.4 条 第 1 款 规 定,
=
=70+0.5×
=70+0.5×(18-10)×8=102Kpa ;
=
=70+
+0.5×
×8+0.5×(20-10)×7=169Kpa ;
=70+(18-10)
由规范式 (5.4.4-1) 可知:
;故取
。
由规范式 (5.4.4-3),取
(单桩基础),
五、基桩负摩阻力参考算例 某端承桩,采用泥浆护壁灌注桩,桩径 1000mm, 桩 长 16m, 桩 周 土 性 参 数 如 图 3 所 示, 已 知 黏 土 ξn=0.25,粉土 ξn=0.30,当地面大面积堆在为 70Kpa 时, 试算由于负摩阻力产生的下拉荷载为多少。 首先应确定计算中性点所在的位置,取 ln/l0=1.0, ln=1.0l0=1.0×(8+7)=15m。 其 次 确 定 :由《 建 筑 桩 基 技 术 规 范 》(JGJ
192
技术应用
图2 桩基负摩阻力示意图
图3 桩周土层参数示意图
四、减小桩基负摩阻力的措施 工程的质量以及安全储备是极其重要的。在实际工程 设计以及现场基础施工中,应当采取有效的措施,减小或 消除桩侧负摩阻力产生的不利影响。根据已知的工程经验, 本文总结了以下几种消除负摩阻力的典型方法 : (1)夯实法 :在工程桩施工之前,应先对新近的填 土进行地基处理,采用预压夯实,从而降低土的压缩性, 待实测土的沉降基本达到稳定,再进行后续桩基础的施工。 但是此种方法需要的时间周期比较长。 (2)地基处理法 :通过一系列的地基处理方式,对 产生负摩阻力的桩侧土层进行加固处理,消减其产生的负 摩阻力,从而提高桩基的承载力。主要的方式有深层搅拌 桩、强夯、挤密土桩等办法,降低浅层地基土压缩性,较 小其沉降量,从达到减少负摩阻力的效果。 (3)缩小桩径法 :在承载力满足设计要求的前提下, 尽量缩小桩的直径,从而减小每根桩所承受的负摩阻力。 (4)桩身处理法 :通过对桩身进行技术处理,如使 用套管桩,或者桩与套管之间涂满润滑油 ;从而降低桩土 之间的摩擦,使得桩侧负摩阻力变小,这种处理工艺操作 起来比较简单,而且效果比较显著,安全可靠,在目前的 应用也是最广泛的。
单桩承载力验算(计负摩阻力)
单桩承载力验算一、土层分布情况二、单桩竖向承载力特征值桩端持力层为全风化花岗岩,按《建筑桩基技术规范》(JGJ94-2008),中性点深度比l n /l 0=0.75,桩周软弱土层下限深度l 0=28.84m ,则自桩顶算起的中性点深度l n =21.63m 。
根据规范可知,该处承载力特征值只计中性点以下侧阻值及端阻值。
kN l q u A q Q i sik p pk 3976)613021.712(1141600uk =⨯+⨯⨯⨯+⨯⨯=+=∑ππkN Q K R uk a 19883894211=⨯== 三、单桩负摩阻力第一层路堤填土和杂填土自重引起的桩周平均竖向有效应力: 地下水以上部分:Pa k 93.6594.6192111=⨯⨯=σ; 地下水以下部分:Pa k 06.1396.1)1019(2194.61912=⨯-⨯+⨯=σ; 则kPa 20512111=+=σσσ;第二层淤泥自重引起的桩周平均竖向有效应力:kPa 26.182)54.863.21()105.15(216.1)1019(94.6192=-⨯-⨯+⨯-+⨯=σ; ;,故取kPa q kPa kPa q n s n n s 24245.612053.01111=>=⨯==σξ ;,故取kPa q kPa kPa q n s n n s 121245.3626.1822.01222=>=⨯==σξ 对于单桩基础,不考虑群桩效应则1n =η;基桩下拉荷载:kN l q u Q n i i n si n ng1137))54.863.21(1254.824(10.11=-⨯+⨯⨯⨯⨯==∑=πη 四、单桩分担面积上的荷载kN N 720)2520(44k =+⨯⨯=五、验算N R N Q N a n k 1988k 185********g k =<=+=+故单桩承载力满足要求。
按照摩擦性桩验算: kN l q u A q Q i sik p pk 2752)313021.712(1141600uk =⨯+⨯⨯⨯+⨯⨯=+=∑ππkN Q K R uk a 137********=⨯== kN N 720)2520(44k =+⨯⨯= a R N <k故单桩承载力满足要求。
负摩阻力计算
5#栋车间基桩负摩阻力计算一、土层信息选取最不利钻孔ZK595计算,钻孔岩土层分布如下:(1)、土层编号1:填土层土层厚度h1= 15.8m;负摩阻力系数ζn=0.30(2)、土层编号2:粉质黏土层土层厚度h2=5.0m;极限侧摩阻力标准值qsk=53Kpa;负摩阻力系数ζn=0.25(3)、土层编号3:全风化花岗岩土层厚度h3=0.5m;极限侧摩阻力标准值qsk=140Kpa;极限端阻力标准值qpk=5000Kpa;(4)、土层编号4:强风化花岗岩土层厚度h4=11m;极限侧摩阻力标准值qsk=220Kpa;极限端阻力标准值qpk=7000Kpa;二、单桩竖向承载力特征值计算桩采用直径为400的预应力混凝土管桩(型号为PHC-500-A-100-H),设计净桩长为9m。
根据《建筑地基基础设计规范》GB 50007-2011第8.5.6.4条,单桩竖向承载力特征值按下式估算:R a=q pa A p+u pΣq sia l i=7000X3.14X0.4²/4+3.14X0.4X220X9=879.2+2486.08=3366.08KN三、基桩负摩阻力计算根据《建筑桩基技术规范》JGJ94-2008第5.4.2条,桩穿越较厚松散填土,计算桩承载力时应计入桩侧负摩阻力。
桩端持力层为强风化花岗岩,按表5.4.4-2,l n/l0=1.0,桩周软弱土层下限深度l0=20.8m,则自桩顶算起的中性点深度为l n=20.8m.桩侧负摩阻力根据勘察报告取值,已知素填土负摩阻力系数ζn=0.30,粉质黏土负摩阻力系数ζn=0.25。
已知地面无堆载(即P=0),地下水位标高为-10.93m(绝对标高265.27)。
第一层素填土自重引起的桩周平均竖向有效应力:地下水位以上:σr10=0.5X18X10.93=98.37Kpa;地下水以下至第二层粉质黏土顶面:σr11=10.93X18+0.5X(18-10)X4.87=216.22Kpa;则σ1=98.37+216.22=314.59Kpa;第二层粉质黏土自重引起的桩周平均竖向有效应力:Σr2=10.93X18+4.87X(18-10)+0.5X(16.8-10)X5.0=252.70Kpa;q s1=ζn1σ1=0.30X314.59=94.38Kpa;q s2=ζn2σ2=0.25X216.22=54.06Kpa;本工程为两桩承台计算,不考虑群桩效应,则ηn=1.0;对于不考虑群桩效应作用,基桩下拉荷载:Qg=ηn uΣq sia l i=1.0X3.14X0.4X(94.38X15.8+54.06X5)=2212.45KN 则估算单桩竖向承载力特征值R a=3366.08 KN-2212.45 KN=1153.63KN 可取R a=900 KN。
液化土层中的桩基负摩阻力计算
液化土层中的桩基负摩阻力计算液化土层中的桩基负摩阻力计算随着现代城市建设的不断发展,遇到的地质问题越来越复杂。
其中之一就是液化土层,它是由于自然灾害或人工工程施工等原因引起的土层稳定性恶化,导致土层失去抗剪切能力而发生流态化的一种地质现象。
液化土层在地震烈度较大的地区比较常见。
因此,在桥梁、隧道、大型建筑物等工程建设中涉及到液化土层,就需要考虑桩基负摩阻力的计算和加固方案。
桩基负摩阻力指的是桩基在土层内作用时,由于土层流动导致和桩基摩擦阻力相反的一种阻力。
桩基负摩阻力的大小和液化层的本宽度和桩基直径有关。
随着本宽度的增加和桩直径的增加,桩基负摩阻力逐渐增加。
当桩基负摩阻力超过桩身摩擦阻力时,桩基开始发生破坏。
因此,准确地计算桩基负摩阻力对于保护工程结构的安全和稳定具有至关重要的意义。
一般来说,液化土层的桩基负摩阻力与桩的长细比和桩的长度有关。
长细比越大,阻力越大;桩的长度越长,负摩阻力越大。
而桩基的直径对负摩阻力的影响则相对较小。
因此,针对不同的设计条件,可以采用不同的方法来计算液化土层中的桩基负摩阻力。
第一种计算方法是基于土-桩相互作用理论,利用桩基和固结土之间的相互作用关系来计算桩基负摩阻力。
这种方法适合于单桩和桩林的设计。
具体计算公式如下:Qr=f(1+0.4β)(cNc+qNq+0.2γBNγ+0.5αBαNα)A 其中,Qr表示桩基负摩阻力;f为土-桩摩擦系数;β为桩的长细比;c为固结土的上覆土层的无粘性剪切强度;Nc,Nq,Nγ,Nα分别为对应的皮托挖掘系数;A为桩截面积;γ为固结土重度;α为地震力系数;B为基础横截面积。
第二种计算方法是基于相似模型试验,根据桩基在液化土层中的受力特点建立试验模型,通过模拟实际工程中桩基负摩阻力的大小和大小来进行计算。
这种方法可以更加准确地考虑桩基在液化土层中的复杂受力状态,但需要进行大量试验才能达到准确性。
总之,在液化土层中设计桩基时,需要根据实际情况选择合适的计算方法,以确保工程的结构安全和稳定。
负摩阻力
可能做勘察的接触的比较少,这是注册岩土考试必备技能。
根据建筑桩基规范公式5.4.4-1,负摩阻力标准值=负摩阻力系数*土层平均竖向有效应力。
然而,作为填土,并不一定整层都存在负摩阻力,这就涉及到一个中性点的问题。
根据表5.5.4-2可以查到中性点深度比。
可能这么说,你会云里雾里,我举个例子验算一下。
1、假设填土成分主要为黏性土,负摩阻力系数取0.3;
2、填土厚度为10米,桩端持力层为基岩,则中性点深度比为1。
所以中性点深度为10米,填土整层都存在负摩阻力;
3、填土的重度假设为17,地下水深度为4米;
4、不考虑地面存在堆载的情况,则土层平均竖向有效应力=填土层中点的有效自重应力,层中点为5米,这里地下水深度为4米,则4-5米应为浮重力。
则填土层平均竖向有效应力=17*4+(17-10)*1=75;
5、则负摩阻力=0.3*75=22.5kpa;
6、最后,你跟你报告中提供的填土的正摩阻力对比下,如果负摩阻力大于正摩阻力,则负摩阻力数值取正摩阻力,就是说负摩阻力不大于正摩阻力,这是硬性规定。
至此,负摩阻力计算完毕。
但是,一般这一步应该设计很容易完成,到底需不需要勘察提供,值得商榷。
四、关于桩的负摩阻
分析计算法
2.分析计算法
根据某些假定(后述)而建立的理论(弹性地基梁理论),计算桩在横向荷 载作用下,桩对土的作用力和桩身截面应力,验算桩侧土和材料的强度与稳定 性,从而确定桩的横向容许承载力。
侧向容许土抗力验算
分析计算法
桩与材料截面验算
三、按桩身材料强度确定单桩承载力
– 验算桩身截面强度 。
– 进行桩身压屈稳定的验算 。
基桩的横向容许承载力将由桩
身材料的抗弯强度或侧向变形条
件决定。
(二)单桩横向容许承载力的确定方法 1.水平静载试验法
获得单桩承载力最可靠的方法
(1)试验装置 (2)试验方法
单向多循环加卸载法 慢速连续加载法 基准柱
静载试验法
百分表:测水平位移
(a)试验装置
千斤顶:加载装置
(1)单轴水平静载试验
荷载的确定
静载试验法
(b) 测试方法的具体步骤
①循环加载法
在某级荷载下持荷10min, 读数,记录水平位移,然后 卸荷至0
10min后,读回弹位移,然后 再加上原数荷载,即为一个 循环。
每级荷载按上述步骤循环5~ 6次,然后加下一级荷载,然 后再循环。直到桩达极限荷载 为止。
绘制位移时间曲线。(U-t)
–产生原因
(1)在桩基础附近地面有大面积堆载,引起地面沉
降,对桩产生负摩阻力,对于桥头路堤高填土的 桥台桩基础,地坪大面积堆放重物的车间、仓库 建筑桩基础,均要特别注意负摩阻力问题;
(2)土层中抽取地下水或其他原因,地下水位下降,
使土层产生自重固结下沉;
(3)桩穿过欠固结土层(如填土)进入硬持力
循环加载法 (b)测试方法 逐级连环加载法 (c)极限荷载和横轴向容许承载力的确定
桩基础负摩阻计算
桩直径 D 桩面积 A 桩周长 u 地面超载 p 地下水标 高
0.5 m 0.196 m2 1.571 m
5.00 kpa -1.80 m
钻孔 编号
土层
1 填土
2 淤泥质粉质粘土
中性点
层顶标高
厚度(m)
正摩阻力标准 值(Kpa)
2.05 -1.95
4.00 21.30
0.00 7.00
ζn 0.15~0.25 0.25~0.40 0.35~0.50 0.20~0.35
中性点深度ln
表5.4.4-2
持力层性质 黏性土、粉土 中密以上砂 砾石、卵石
中性点深度比 ln/l0
0.5~0.6
0.7~0.8
0.9
基岩 1
中性点深度ln应按桩周 土层沉降与桩沉降相等 的条件计算确定,也可 参照表5.4.4-2 确定。
中性 点深 度由 《建 筑桩 基技 术规 范》 (JGJ9 42008) 表 5.4.4 -2确 定。
本表 格考 虑地 面超 载和 地下 水共 同作 用下 的负 摩阻 力。
负摩阻力系数ζn
表5.4.4-1 土类
饱和软土
黏性土、粉土 砂土
自重湿陷性黄土
注:1、在同一类土 中,对于挤土桩,取表 中较大值 对于非挤土桩,取表中 较小值 2、填土按其组成取表 中同类土的较大值
注: 1 、ln 、l0 — —分别为自桩顶算起的 中性点深度和桩周软弱 土层下限深度; 2、 桩穿过自重湿陷性 黄土层时,ln 可按表 列值增大10%(持力层 为基岩除外);
3 、当桩周土层固结与 桩基固结沉降同时完成 时,取ln= 0 ; 4 、当桩周土层计算沉 降量小于20mm 时,ln 应按表列值乘以 0.4~0.8 折减。
基于抛物线法的桩基负摩阻力估算公式
基于抛物线法的桩基负摩阻力估算公式
抛物线法是利用抛物线形状来近似描述桩基负摩阻力分布的方法。
在桩基设计中,负摩阻力是指桩身在施工过程中邻近土层对其下端的阻力。
该阻力是由土体的侧向压缩引起的,通常会对桩基的承载力产生一定的影响。
准确估算负摩阻力是桩基设计的关键之一。
抛物线法通过将土体对桩身的负摩阻力分布近似为一条抛物线来进行估算。
其基本思想是假设土体对桩身的负摩阻力随深度变化呈抛物线分布,即负摩阻力
f = a*z^2 + b*z + c
f为负摩阻力,z为深度,a、b、c为用来描述抛物线形状的参数,需要通过实测数据或经验公式进行确定。
在实际应用中,估算土体对桩身的负摩阻力时,可以采用以下步骤:
1. 确定桩身的下端深度z1和上端深度z2,即需要估算负摩阻力的深度范围。
2. 利用实测数据或经验公式确定抛物线参数a、b、c的值。
这些值可以根据类似工程案例的实测数据进行拟合,或者根据地质情况和经验公式进行估算。
3. 计算负摩阻力。
根据抛物线法的公式,代入深度z的值,计算得到相应的负摩阻力。
需要注意的是,抛物线法只是一种近似估算方法,其准确性取决于参数的确定和实测数据的可靠性。
在工程实践中,建议结合其他地质资料和现场观测数据,综合分析进行桩基负摩阻力的估算。
【doc】负摩阻力的概念与案例分析
负摩阻力的概念与案例分析第23卷第2期磅他鹭GEOLOGYOFSHAANXI2005年12月文章编号:1001--6996(2005)02--0101--07负摩阻力的概念与案例分析王建勋(1.中国地质大学资源学院,武汉430074;2.陕西省地矿局第三地质队,宝鸡721300)摘要:负摩阻力在岩土工程领域中占有重要的地位,在工程实践中特别是桩基工程中,负摩阻力日益受到重视.近几年全国注册土木工程师专业案例考试中不断有关于负摩阻力的试题出现,只有正确地理解负摩阻力的概念,深刻领会《建筑桩基技术规范》(JGJ94—94)的相关规定,明确负摩阻力产生的条件,掌握负摩阻力及下拉荷载的计算步骤,在注册考试中合理应用计算公式得到正确的结果.通过对三个关于负摩阻力案例的分析,明确了各种类型习题的关键所在,为以后的应试和工程实践打下良好的基础.关键词:负摩阻力;岩土工程;案例分析中图分类号:TU473.12文献标识码:B前言随着岩土工程的不断发展,负摩阻力在工程特别是桩基工程中受到广泛关注.近年来的注册土木工程师专业案例考试中不断有负摩阻力的试题出现,那么如何去理解负摩阻力,从而在工程实践和应试中加以应用呢?1负摩阻力的概念及理解1.1负摩阻力的概念《建筑桩基技术规范》(JGJ94—94)(以下简称《桩基规范》)定义如下:是指当桩周土体产生的沉降超过基桩的沉降,即桩周土体相对于基桩有向下的位移时,将产生负摩阻力.1.2负摩阻力的产生条件大体分为三种情况:第一种情况是指土体在自重或水的作用下产生竖向的固结压缩时,例如桩穿越厚度较大的松散填土(未固结或欠固结),自重湿陷性黄土(浸水饱和),欠固结土层进入相对硬土层时,将产生负摩阻力;第二种情况是指桩周存在软弱土层,且同时承受外部荷载(如地面大面积堆载)时,产生负摩阻力;第三种情况是指由于地下水位降低导致收稿日期:2OO5一O9一l2作者简介:王建勋,男,34岁,1995年毕业于西安地质学院水工系,主要从事岩土工程勘察工作.102陕西地质第23卷土体中有效应力增大,土体产生显着的附加沉降而产生负摩阻力. 1.3负摩阻力的计算与验算负摩阻力不但与桩身穿越的土体性质有关,还与桩型有密切的关系.摩擦型基桩由于基桩的竖向承载力主要由桩周土体的侧阻力来承担,而且只有当桩身有一定的位移时,土体的摩擦力才显现出来,因此土体相对于基桩有明显位移的可能性较小,桩侧土体移动,桩身亦随之向下移动,故《桩基规范》规定,对于摩擦型桩,当缺乏工程经验时,不用考虑负摩阻力产生的下拉荷载,仅把桩身计算中性点以上的土体侧阻力按零处理,然后进行基桩承载力验算;对于端承型基桩进行验算时,既要满足摩擦型基桩的验算条件,同时还应考虑负摩阻力引起的下拉荷载.1.4负摩阻力及下拉荷载标准值的计算公式单桩负摩阻力标准值:一?;降低地下水位时:=?地面有满布荷载时:一+?群桩中任一基桩的下拉荷载标准值:“一?U三?Z(5.2.16—5)一?/[\/q~’1-d)]公式及各符号意义见《桩基规范》.2负摩阻力及下拉荷载的计算步骤2.1确定桩周沉降变形土层下限深度首先要弄清楚的一件事就是桩周沉降变形土层下限深度,由于土层变形下限深度有深有浅,有时超过桩端深度,有时与桩端深度一致,较浅的还达不到桩端深度,但我们关心的是与桩身有关的下限深度,无论土层变形下限深度有多深,桩端深度以下的部分,不用去可虑它,所以就有三种情况,两种结果,第一种:桩周土层变形下限深度比桩端深度浅时,即<z(其中z.为桩周变形土层下限深度,z为桩长),此时取实际的变形下限深度;第二种:二者一致时,取z.一z;第三种:当桩周变形土层下限深度比桩端深度深时,仍然取z.一z.2.2确定桩身计算中心点深度(1).有实测数据时,以实测数据为准,一般情况下,可参照《桩基规范》表5.2.16—2取值.表5.2.16—2中性点深度表Tab.5.2.16—2Neutralpointdepth持力层性质粘性土,粉土中密以上砂砾石,卵石基岩中性点深度比0.5~O.60.7~O.8O.91.Ol/第2期王建勋:负摩阻力的概念与案例分析1032.3对桩周土体进行分层桩周土体分层是按土体性质变化处进行分层,为自然层,水位是当然的分层界线,分层时最重要的依据是重度,若重度变化不大,可笼统地按同一层处理. 2.4分层计算负摩阻力标准值这一步是计算的关键环节,按《桩基规范》给出的计算公式可知,是一个平均竖向有效应力,是按厚度计算的加权平均有效重度,而且仅是针对桩周土而言,也就是说,当桩顶距地表有一定距离时,计算平均有效重度不需要计算至地表,至桩项即可,而是从地表起算至第i层中点的深度.计算负摩阻力标准值时,很多参考书给出的计算方法也不尽相同,有些计算时从地表开始,有些计算时不进行平均,有些在该分层时不进行分层,对自重湿陷性黄土的负摩阻力标准值计算时,),;取天然重度,而未取饱和重度等等,这些算法都不够正确,需引起注意.2.5计算负摩阻力引起的下拉荷载标准值下拉荷载标准值的计算分两种情况,一是不用考虑群桩效应系数的情况,较简单,取珏一1即可;二是考虑群桩效应系数时,通过公式计算可得群桩效应系数rb,当计算的rb>1时,取=1.3案例分析3.1案例1计算过程及分析案例1:已知钢筋混凝土预制方桩边长为300mm,桩长为22IT1,桩顶人土深度为2IT1,桩端人土深度24IT1,场地地层条件见下表,当地下水位由0.5IT1下降至5IT1时,按《建筑桩基技术规范》计算单桩基础基桩由于负摩阻力引起的下拉荷载.(2002年度全国注册土木(岩土)工程师执业资格考试专业案例试卷下午卷第5题)表5.2.16—2场地地层条件表Tab.5.2.16-2Stratigraphyofthesite层序土层名称层底深度(m)厚度(m)天然重度7.(kN/m3)①填土l_2Ol_2Ol8.O②粉质粘土2.OOO.8Ol8.O④淤泥质粘土l2.OOlO.OOl7.O⑤一l粘土22.7010.70l8.O⑤一2粉砂28.8O6.1Ol9.O⑤一3粉质粘土35.3O6.5Ol8.5⑦一2粉砂40.004.702O.O(注:中性点深度比/f0粘性土为0.5,中密砂土为0.7.负摩阻力系数:饱和软土为0.2粘性土为0.3,砂土为0.4.)案例1计算过程陕西地质第23卷3.1.1确定桩周变形土体下限深度由地质条件可知,桩周土体为第④,⑤一1,⑤一2层,其中第⑤一2层为粉砂,其孔隙比较小,不产生负摩阻力,桩周变形土体下限深度为第⑤一1层层底深度,即为22.70m,桩周土体压缩层厚度即为z.一22.7O一2.0=20.70m.3.1.2确定中性点深度持力层为中密粉砂,中性点深度比取较小值0.7,即z/z.一0.7,则z一14.5m,中性点深度(从地表起算)为16.5m.3.1.3对桩周土体进行分层由于水位由0.5m降至5m,故5m深度为一个分层界线.第④层淤泥质粘土与第⑤一1层粘土分层深度12m为一个分层界线,即计算时可分为三层,2~5m,5~12m,12~16.5m.3.1.4分层计算负摩阻力标准值,亡r),深度2~5m:曲一?),i?Zl一0.2×17×(+2)一11.9kPa深度5~12m:_o.2X髯(+5)一18.19kPa深度12~16.5m:盛一嘶z3=0.3X盐×(+12)=41.55kPa3.1.5计算下拉荷载标准值因为是单桩,故取T)一1,则一?”,一1×0.3×4×(11.9×3+18.19×7+41.55×4.5)----420kN.3.1.6案例1计算结果分析整个计算过程中,关键还是负摩阻力标准值的计算,有些参考书在计算这一步时,重度的平均值是从地表开始起算的,即一士一17.4kN/m.一上星7_一11.33kN/m3一一10.42kN/m.这样计算结果为446kN,相差26kN,对结果影响还是比较大的,作为考试来说,选择的肯定是不同的结果,以本人的理解,前一种算法符合《桩基规范》规定,是比较合理的.3.2案例2计算过程及分析案例2:一钻孔灌注桩,桩径d一0.8m,l一10m.穿过软土层,桩端持力层为砾石.第2期王建勋:负摩阻力的概念与案例分析105地下水位在地面下1.5m,地下水位以上软粘土的天然重度,地下水位以下它的浮重度y一17.1kn/m..现在桩顶四周地面大面积填土,填土荷重P—i0kn/m,要求按《建筑桩基技术规范》(JGJ94—94)计算因填土对该单桩造成的负摩擦下拉荷载标准值(计算中负摩阻力系数取0.2).(2003年全国注册土木工程师(岩土)执业资格考试专业案例试卷上午卷第15题).案例2计算过程3.2.1确定桩周土体变形下限深度本题较简单,即为桩长z.一z—i0.3.2.2确定中性点深度由于桩端为砾石层,取z,./l.一O.9,则中性点深度为一9.0m.3.2.3对桩周土体进行分层由于水位为1.5m,故可分为两层,即O~1.5m,1.5~9.0m段.3.2.4分层计算负摩阻力标准值由于有地面堆载,选择式5.2.16—3进行计算,即:i—P+?深度O~1.5m:i—i0+17.1×一22.825kPa深度1.5~9.0m:一1o+卫星±l二巡×(+1.5)一66.525是Pa贝0:q一.?i一0.2×22.825—4.565kPa’q一?2—0.2×66.525—13.305kPa3.2.5计算下拉荷载标准值单桩取一1,则一’”q?z一1×2×3.14×0.4×(4.565×1.5+13.305×7.5)一268是N3.2.6案例2计算结果分析此题的关键和分歧在于要不要分层,水位要不要作为分层标志,若不分层还可这样计算:啦一.?:一?(户+7?)一0.2×(i0+×4.5)一ii.69kPn一3.14×0.8×11.69×9—264kN这也是一些参考书给出的计算过程,分层与不分层计算出的结果相差约4kN左右,之所以较小,是因为水位较浅的缘故,若水位较深时,结果相差就比较大,此题假设水位为5,桩长为20时,则两者计算结果相差为35kN,就是不可忽略的差别了,因为水位上下的土体有效重度相差较大,最好分层来计算比较切合实际.3.3案例3计算过程及分析案例3:在一自重湿陷性黄土场地上,采用人工挖孔端承型桩基础.考虑到黄土浸水后产生自重湿陷,对桩身会产生负摩阻力,已知桩顶位于地下 3.0,计算中性点位于桩顶下3.0陕西地质第23卷黄土的天然重度为l5.5kN/m.,含水量l2.5,孔隙比1.O6,在没有实测资料时,按现行《建筑桩基技术规范》(94—94)估算黄土对桩的负摩阻力标准值.(2003年全国注册土木工程师专业案例下午卷第3O题)3.3.1已知条件分析计算的关键是黄土的重度,自重湿陷性黄土产生负摩阻力的必要条件是浸水饱和,当浸水饱和时,才会湿陷,才会产生负摩阻力,故计算中使用的重度应该是饱和状态下的重度,而已知条件未直接给出饱和重度,需要计算.3.3.2饱和重度的计算黄土的饱和重度由两部分组成,即由土体的干重度和饱和状态下土体孑L隙中水的重度组成.土的干重度:)’d--一—13?78kN/m.土体孑L隙中水的重度,其中饱和度按S一O.85考虑,则:e7m一r’雨’p.q一0?85×xl×10:4?37kN/m.则:一13.78+4.37—18.15kN/m.3.3.3计算负摩阻力标准值由于是灌注桩,所以1:取小值0.2.q一.?;一??一0.2×l8.15×4.5—16.33kPa3.3.4案例3计算结果分析该题计算的关键是公式中的重度要用饱和重度,而非天然重度,很多人都忽略了计算饱和重度,得到了错误的结果.对于自重湿陷性黄土,这一点特别重要,天然状态下的黄土自重固结已经完成,只有当浸水饱和时才又发生附加固结下沉.这就是为什么在湿陷性黄土地区进行地基处理时,把防水放在重要位置的原因.4结束语正确理解负摩阻力的概念,才能在工程实践中合理估算负摩阻力产生的下拉荷载,在案例分析中通过正确的计算步骤才能得出正确的结果.全国注册土木工程师执业资格考试,O2--04年每年都有关于负摩阻力的试题出现,相信以后每年的考试还会有,这就要求每一位从事岩土工程的技术人员能全面地掌握它,当然考试并不是目的,重要的是我们在以后的工程实践中加以应用,避免由于事前未考虑负摩阻力而导致的不良后果,为社会为企业节约经费,减少损失.第2期王建勋:负摩阻力的概念与案例分析107[1]《建筑桩基技术规范》JGJIs].94~94[参考文献]NEGA TIVEFRICTIONANDANALYSISOFEXERCISESWANGJian-xunI,2(1?chinaUniVersity.fGeosciences,wuhan,Hubei430072;2.Geol0gica1TeamN..3,ShaanxiBureauofGeologyandMineralResources,Baoji72130OO)Abstract:NegatiV efrictionplacesanimporta ntroleingeotechnicsandithasbeenpaidatten—t:onncreasngyngeotechnicalengineering,especiallyinpilefoundationproje ct.Questionsautnegat1vefrictionareoftenpresentinthecasetestoftheregi strationtestforengineers ocIengmeermgUnlYcorrectunderstandingtheconceptionsofneg ativefrictionandreIe一anegulaionstohe”TechnicalCriterionsofArchitecturalPileFoundatt(JGJ94—94). makingclearoftheconditionsofnegativefrictionoccurre nceandthewaystocalculatenega—V erctonandpollingroads,couldthecorrectresultsbeobtainedb yproperusingcalculat—mgtormulaemtheregistrationtests. ThreeanalyticalsamplesofnegativefrictioninthisDa—perhavedemonstratedthekeystoanswervariousquestions.Keywords:negatiV efriction;geotechnica1engineering;exercises。
4.5桩的负摩阻力4.6桩的水平
x kx x
此时忽略桩土间的摩阻力对水平抗力的影响以及临桩的影响。
4.桩基础
4.6 单桩水平承载力
4.6.2 水平荷载作用下弹性桩的计算
多采用线弹性地基反力法。假设σx与桩的水平位 移x成正比。关键在于确定土体抗力系数沿深度的 分布,分为: (a)常数法;(b)k法;(c)m法;(d) c法
中性点
定义:桩土相对位移为零处桩侧摩阻力为零处。
• • •
在某深度处桩周土与桩截面沉降相等;
或两者无相对位移发生;
或其摩阻力为零。
特点:在中性点处桩身轴力达到最大值。
6
4.桩基础
4.5 桩侧负摩阻力
Ⅰ 桩侧土下 沉曲线 摩阻力分 桩下沉 布曲线 Ⅱ 曲线
4.5.2 负摩擦力的计算(不成熟)
中性点位置的确定
中性点的位置取决于桩-
土间的相对位移: •当桩侧压缩变形大,桩地 下土层坚硬,抗下沉量小, →下移; •反之,中性点位置上移。
桩底下沉
图4.19 有负摩阻力时的荷载传递
中性点位置还与时间因素、环境因素、地质条件等有关,
精确计算有困难,目前采用经验估算法:(0.5~1.0l0) l0—桩周变形土层下限深度,即软弱压缩层厚度。
16
4.桩基础
4.6 单桩水平承载力
破坏模式 刚性桩(h≤2.5):桩身刚体转动
H0 H0
破坏,承载力主要由桩的水平位移
和倾斜控制
柔性桩(h≥2.5):桩身发生扰曲
变形,破坏时桩身某点弯矩超过截 面抵抗矩或土体屈服失稳,承载力 由桩身水平位移及最大弯矩值控制
(a)
(b)
桩水平受荷示意
荷载与土的自重应力之和。当地面堆载增加或地下水位降低,
石侧负摩阻力的计算
石侧负摩阻力的计算
引言
石侧负摩阻力是指在石侧面的摩擦力产生的阻力。
在某些工程项目中,特别是在土石工程中,计算石侧负摩阻力的准确性至关重要。
本文将介绍计算石侧负摩阻力的方法和公式。
计算方法
石侧负摩阻力的计算可以使用以下公式:
\[R = \mu \cdot W\]
其中,\(R\)是石侧负摩阻力,\(\mu\)是石与侧面的摩擦系数,\(W\)是石的重量。
摩擦系数的确定
确定石与侧面的摩擦系数是计算石侧负摩阻力的关键。
摩擦系数可以通过实验或地质勘探得出。
在实验中,可以使用倾斜面试验或剪切试验来测定摩擦系数。
通过地质勘探,可以根据石的性质和侧面的情况来估计摩擦系数。
示例计算
假设一个石块的重量为10N,摩擦系数为0.5,代入公式可以计算出石侧负摩阻力:
\[R = 0.5 \cdot 10 = 5N\]
因此,该石块在侧面产生的负摩阻力为5N。
结论
石侧负摩阻力的计算对于土石工程项目非常重要。
通过合适的计算方法和正确确定摩擦系数,可以得出准确的结果。
在实际应用中,应根据具体情况进行合理的摩擦系数选择,并进行反复验证和修正,以确保工程的安全性和可靠性。
以上是关于石侧负摩阻力计算的文档。
希望对您有所帮助。
参考文献:
- 参考文献1
- 参考文献2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
负摩阻力计算实例
本建筑场地为自重湿陷性黄土场地,湿陷等级为Ⅱ级(中等),依椐JGJ94-2008规范第5.4.2条规定,在计算基桩承载力时应计入桩侧负摩阻力。
首先,根据场地地质情况(以3#井处的地层为例)确定压缩
4.2 桩基
4.2.1 桩基类型及桩端持力层的选择
依据勘察结果分析, 本建筑场地为自重湿陷性黄土场地,(自重湿陷量的计算值为120.5-151.6mm)湿陷等级为Ⅱ级(中等),湿陷性土层为②、③、④、⑤层,湿陷土层厚度为10-15m,湿陷最大深度17m(3#井)。
可采用钻孔灌注桩基础,第⑦层黄土状粉土属中密-密实状态,具低-中压缩性,不具湿陷性,平均层厚4.0m,可做为桩端持力层。
4.2.2 桩基参数的确定
根据《建筑地基基础设计规范》(GB50007-2002)、《建筑桩基技术规范》(JGJ94-2008)、《湿陷性黄土地区建筑规范》(GB50025-2004)中的有关规定,结合地区经验,饱和状态下的桩侧阻力特征值qsia(或极限侧阻力标准值qsik)、桩端阻力特征值qpa(或极限端阻力标准值qpk¬)建议采用下列估算值:
土层
编号土层名称土的
状态桩侧阻力特征值qsia(kPa) 极限侧阻力标准值
qsik(kPa) 桩端阻力特征值
qpa(kPa) 极限端阻力标准值
qpk(kPa)
②黄土状粉土稍密 11 23
③黄土状粉土稍密 12 24
④黄土状粉土稍密 12 24
⑤黄土状粉土稍密 13 26
⑥黄土状粉土中密 18 36
⑦黄土状粉土中密 18 36 500 1000
⑧黄土状粉土中密 20 40 600 1200
4.2.3 单桩承载力的估算
依据JGJ94-2008规范,参照《建筑地基基础设计规范》GB50007-2002第8.5.5条,单桩竖向承载力特征值可按下式估算:
Ra=qpaAp+up∑qsiaLi
式中:Ra——单桩竖向承载力特征值;
qpa 、qsia——桩端端阻力、桩侧阻力特征值;
Ap——桩底端横截面面积= πd2(圆桩);
up——桩身周边长度=πd;
Li——第i层岩土的厚度;
以3#孔处的地层为例,桩身直径取600mm,以第⑦层黄土状粉土做为桩端持力层,桩入土深度24.0m(桩端进入持力层的深度对于粘性土、粉土应不小于1.5d)。
本建筑场地为自重湿陷性黄土场地,湿陷等级为Ⅱ级(中等),依椐JGJ94-2008规范第5.4.2条规定,在计算基桩承载力时应计入桩侧负摩阻力。
首先,根据场地地质情况(以3#井处的地层为例)确定压缩土层厚度,求出中性点深度Ln:
压缩土层深度L0(厚度)-自地面算起:
②层0-4.2m 厚度(Z2)=4.2m 重度r=15.5(kN/m3) 湿陷层
③层4.2-7.5m 厚度(Z3)=3.3m 重度r=15.6(kN/m3) 湿陷层
④层7.5-12.0m 厚度(Z4)=4.5m 重度r=15.8(kN/m3) 湿陷层
⑤层12.0-17.0m 厚度(Z5)=5.0m 重度r=16.2(kN/m3) 湿陷层
⑥层17.0-22.5m 厚度(Z6)=5.5m
⑦层22.5-25.0m 厚度(Z7)=2.5m
⑧层25.0-30.0m 厚度(Z8)=5.0mm
L0=4.2+3.3+4.5+5.0=17.0m
桩端持力层第⑦层为中密-密实状态,具低-中压缩性的黄土状粉土,根据JGJ94-2008规范表5.4.4-2取中性点深度: 取0.66。
(桩身穿过自重湿陷性黄土层时,Ln应增大10%)
Ln=0.66 L0=0.66*17.0m=11.3m
第二,依据JGJ94-2008规范第5.4.4条中由5.4.4-1式:
qsin=ξniσi
求出第i层土桩侧负摩阻力标准值。
第三,依据JGJ94-2008规范表5.4.4-1求出负摩阻力系数ξn(采用非挤土桩)取0.20
第四,依据JGJ94-2008规范5.4.4-2式:
σ,ri =Σγe△ze+1/2γi△zi
求出由土自重引起的桩周第i层土平均竖向有效应力σ,ri。
具体计算如下:
0-4.2m 深度内:σ,r2 =4.2/2*15.5=32.6Kpa
qs2n =ξniσi =0.2*32.6=6.5Kpa
4.2-7.5m深度内:σ,r3=4.2*1
5.5+3.3/2*15.6=90.8Kpa
qs3n=ξniσi=0.2*90.8=18.2Kpa
7.5-11.3m深度内:σ,r4 =4.2*15.5+3.3*15.6+3.8/2*15.8=146.6Kpa
qs4n=ξniσi=0.2*146.6=29.3 Kpa
第五,依据JGJ94-2008规范5.4.4-3式:
Qgn=ηn*uΣqsinli
计算基桩的下拉荷载为:Qgn=ηn*uΣqsinli (注:单桩基础ηn取1.0)
=1*3.14*0.6*(6.5*4.2+18.2*3.3+29.3*3.8)=374.5Kpa
单桩竖向承载力特征值Ra按下式估算:
Ra=qpaAp+up∑qsiaLi- Qgn
=500*1/4*3.14*0.36+3.14*0.6*(3.6*13+5.5*18+1.5*18)-374.5
=92.6KN
又依据《湿陷性黄土地区建筑规范》(GB50025-2004)第5.7.5条规定:在自重湿陷性黄土场地,除不计湿陷性黄土层内的桩长按饱和状态下的正侧阻力外,尚应扣除桩侧的负摩擦力。
本场地②-⑤层为湿陷性黄土,自重湿陷量的计算值为120.5-151.6mm,由表5.7.5桩侧平均负摩擦力特征值(钻孔灌注桩)可取10 Kpa。
由5.7.4-1式,计算单桩竖向承载力特征值Ra:
Ra=qpaAp+uqsa(L-Z)-u(-qsa)Z
式中:Ra——单桩竖向承载力特征值(kN)
qpa ——桩端土的承载力(端阻力)特征值(kpa)
-qsa----桩周土的平均负摩擦力特征值(kpa)
qsa-----桩侧阻力特征值(kpa)
Ap——桩底端横截面面积= πd2(圆桩);
u——桩身周边长度=πd;
L——桩身长度(m)
Z----桩在自重湿陷性黄土层的长度(m)
仍以3#井处的地层为例:
桩身长度: L=24.0m(自地面算起)
桩端土的承载力(端阻力)特征值: qpa=500kpa
桩周土的平均负摩擦力特征值:-qs=10kpa
桩侧阻力特征值: qsa=18.0kpa
桩在自重湿陷性黄土层的长度: Z=17.0m
桩身周边长度u=πd=3.14*0.6=1.884m
桩底端横截面面积Ap = πd2=0.2827
代入:Ra=qpaAp+uqsa(L-Z)-u(-qsa)Z
=500*0.2827+1.884*18.0*(24.0-17.0)-1.884*10*17.0 =58.5kN。