MC145027
简易红外遥控系统实验报告
简易红外遥控系统实验报告2008211208班08211106号史永涛班内序号:01指导教师:***本次课程设计在实验室度过了两周时间,但接到实验任务却是暑假前的事了,由于已经有别班同学事先做过了相同的实验,所以我在暑假期间已经询问了一些实验中的注意事项和核心内容,为开学后的实验做好了充分的准备。
本次实验可分为三个步骤:1、实验前的准备工作,画出电路图,列出自己实验中需要用到的各个芯片,并得到各芯片的管脚图和功能表,对各个芯片应有自己的一定程度的理解。
2、搭建电路,电路分为发射和接收两部分,搭建的时候应有一定的整体意识,同时应注意好细节问题,比如各模块间应隔开一定的距离,方便后期的调试,使各模块间相互独立,而搭线时应注意VCC和地线的连接,有时前期细节的不注意需要后期调试花费大量的时间去弥补。
3、电路调试与改进。
这是本次实验中的核心问题,因为实验要求中要求发射与接收的距离大于两米,而发射端和接收端的调试对于接收距离的影响十分关键,尤其是接收端,由于使用的是CX20106芯片,必须较为全面的理解了CX20106的功能,才能正确调配CX20106周围的电阻、电容的值,从而使实验最终成功。
一、实验要求1、遥控对象8个,被控制设备用LED分别代替,LED发光表示工作。
接收机与发射机的距离不小于2米。
2、8 路设备中的一路为 LED 灯,用指令遥控 LED 灯亮度,亮度分为 8 级并用数码管显示级数。
在一定的发射功率下,尽量增大接收距离。
增加信道干扰措施。
二、选择芯片74ls147、MC145026、MC145027、按键开关、拨码开关、红外发射管、红外接收管、NE555、CD4069、LED灯、7段数码管、电阻、电容、CX20106、CD4514。
三、具体电路图1、发射部分(1)调制放大首先使用74ls147进行编码,八路开关控制高低电平接入74LS147优先编码,转换成三路信号,连接MC145026的数据端(D6~D8)。
简易无线电遥控系统设计报告
简易无线电遥控系统设计报告一、设计任务:设计并制作无线电遥控发射机和接收机。
一、无线电遥控发射机。
图1.1 无线电遥控发射机二、无线电遥控接收机。
图1.2 无线电遥控接收机3、要求。
(1)工作频率:fo=6~10MHz中任选一种频率。
(2)调制方式:AM、FM或FSK……任选一种。
(3)输出功率:不大于20mW(在标准75Ω假负载上)。
(4)遥控对象:8个。
(5)接收机距离发射机不小于10m。
(6)增加信道抗干扰方法。
(7)尽可能降低电源功耗。
二、系统方案设计。
整个系统由发射系统和接收操纵系统两部份组成。
发射系统和接收操纵系统组成结构框图如图1.1和1.2所示。
系统的工作原理是第一通过按键编址电路输入所需操纵电路的位号,同时启动编码电路产生带有地址编码信息和开关状态信息的编码脉冲信号,再通过无线电发射电路将该信号发射出去。
而无线电接收电路将接收到的编码脉冲信号通过解码电路进行编码地址确认,确认是不是为本遥控开关系统地址,然后通过驱动电路来驱动8个遥控对象。
1、发射机。
图2.1 无线电遥控发射机1.1 调制方式的选择。
依照要求,操纵对象是8盏灯,被控状态采纳二进制编码。
因设计对频带宽度没有限制,为了提高抗干扰能力,实现方式简单,载波传输采纳FSK调制方式。
图2.2 FSK示用意FSK(Frequency-shift keying)- 频移键控是利用载波的频率转变来传递数字信息,最多见的FSK是用两个频率承载二进制1和0的双频FSK系统,如图2.2所示。
产生FSK 信号最简单的方式是依照输入的数据比特是0仍是1,在两个独立的振荡器中切换,如图2.3所示。
采纳这种方式产生的波形在切换的时刻相位是不持续的,因此这种FSK 信号称为不持续FSK 信号。
图2.3 非持续相位FSK的调制方式由于相位的不持续会造频谱扩展,这种FSK 的调制方式在传统的通信设备中采纳较多。
随着数字处置技术的不断进展,愈来愈多地采纳连继相位FSK调制技术。
常用芯片型号大全
常用芯片型号大全4N35/4N36/4N37 "光电耦合器"AD7520/AD7521/AD7530/AD7521 "D/A转换器"AD7541 12位D/A转换器ADC0802/ADC0803/ADC0804 "8位A/D转换器"ADC0808/ADC0809 "8位A/D转换器"ADC0831/ADC0832/ADC0834/ADC0838 "8位A/D转换器" CA3080/CA3080A OTA跨导运算放大器CA3140/CA3140A "BiMOS运算放大器"DAC0830/DAC0832 "8位D/A转换器"ICL7106,ICL7107 "3位半A/D转换器"ICL7116,ICL7117 "3位半A/D转换器"ICL7650 "载波稳零运算放大器"ICL7660/MAX1044 "CMOS电源电压变换器"ICL8038 "单片函数发生器"ICM7216 "10MHz通用计数器"ICM7226 "带BCD输出10MHz通用计数器"ICM7555/7555 CMOS单/双通用定时器ISO2-CMOS MT8880C DTMF收发器LF351 "JFET输入运算放大器"LF353 "JFET输入宽带高速双运算放大器"LM117/LM317A/LM317 "三端可调电源"LM124/LM124/LM324 "低功耗四运算放大器"LM137/LM337 "三端可调负电压调整器"LM139/LM239/LM339 "低功耗四电压比较器"LM158/LM258/LM358 "低功耗双运算放大器" LM193/LM293/LM393 "低功耗双电压比较器" LM201/LM301 通用运算放大器LM231/LM331 "精密电压—频率转换器"LM285/LM385 微功耗基准电压二极管LM308A "精密运算放大器"LM386 "低压音频小功率放大器"LM399 "带温度稳定器精密电压基准电路"LM431 "可调电压基准电路"LM567/LM567C "锁相环音频译码器"LM741 "运算放大器"LM831 "双低噪声音频功率放大器"LM833 "双低噪声音频放大器"LM8365 "双定时LED电子钟电路"MAX038 0.1Hz-20MHz单片函数发生器MAX232 "5V电源多通道RS232驱动器/接收器" MC1403 "2.5V精密电压基准电路"MC1404 5.0v/6.25v/10v基准电压MC1413/MC1416 "七路达林顿驱动器"MC145026/MC145027/MC145028 "编码器/译码器" MC145403-5/8 "RS232驱动器/接收器"MC145406 "RS232驱动器/接收器"MC145407 "RS232驱动器/接收器"MC145583 "RS232驱动器/接收器"MC145740 DTMF接收器MC1488 "二输入与非四线路驱动器"MC1489 "四施密特可控线路驱动器"MC2833 "低功率调频发射系统"MC3362 "低功率调频窄频带接收器"MC4558 "双运算放大器"MC7800系列"1.0A三端正电压稳压器"MC78L00系列0.1A三端正电压稳压器MC78M00系列"0.5A三端正电压稳压器"MC78T00系列3.0A正电压稳压器MC7900系列1.0A三端负电压稳压器MC79L00系列0.1A三端负电压稳压器MC79M00系列0.5A三端负电压稳压器Microchip "PIC系列单片机RS232通讯应用"MM5369 3.579545MHz-60Hz 17级分频振荡器MOC3009/MOC3012 "双向可控硅输出光电耦合器"MOC3020/MOC3023 "双向可控硅输出光电耦合器"MOC3081/MOC3082/MOC3083 "过零双向可控硅输出光电耦合器" MOC8050 "无基极达林顿晶体管输出光电耦合器"MOC8111 "无基极晶体管输出光电耦合器"MT8870 "DTMF双音频接收器"MT8888C DTMF 收发器NE5532/NE5532A "双低噪声运算放大器" NE5534/SE5534 "低噪声运算放大器" NE555/SA555 "单时基电路"NE556/SA556/SE556 "双时基电路"NE570/NE571/SA571 "音频压缩扩展器" OP07 "低电压飘移运算放大器"OP27 "低噪音精密运算放大器"OP37 "低噪音高速精密运算放大器"OP77 "低电压飘移运算放大器"OP90 "精密低电压微功耗运算放大器" PC817/PC827/PC847 "高效光电耦合器" PT2262 "无线遥控发射编码器芯片"PT2272 "无线遥控接收解码器芯片"SG2524/SG3524 "脉宽调制PWM "ST7537 "电力线调制解调器电路"TDA1521 2×12W Hi-Fi 音频功率放大器TDA2030 14W Hi-Fi 音频功率放大器TDA2616 2×12W Hi-Fi 音频功率放大器TDA7000T FM 单片调频接收电路TDA7010T FM 单片调频接收电路TDA7021T FM MTS单片调频接收电路TDA7040T "低电压锁相环立体声解码器"TDA7050 "低电压单/双声道功率放大器"TL062/TL064 "低功耗JFET输入运算放大器"TL071/TL072/TL074 "低噪声JFET输入运算放大器"TL082/TL084 JFET 宽带高速运算放大器TL494 "脉宽调制PWM "TL594 "精密开关模式脉宽调制控制"TLP521/1-4 "光电耦合器"TOP100-4 TOPSwitch 三端PWM开关电源电路TOP200-4 TOPSwitch 三端PWM开关电源电路TOP209/TOP210 TOPSwitch 三端PWM开关电源电路TOP221-7 TOPSwitch-Ⅱ三端PWM开关电源电路TOP232-4 TOPSwitch-FX 五端柔韧设计开关电源电路TOP412/TOP414 TOPSwitch 三端PWM DC-DC 开关电源ULN2068 1.5A/50V 4路达林顿驱动电路ULN2803 500mA/50V 8路达林顿驱动电路ULN2803/ULN2804 线性八外围驱动器阵列VFC32 "电压—频率/频率—电压转换器"常用ic资料2AD711 高精度、底价格、高速BiFET 运放CA3130 15MHz, BiMOS 运放with MOSFET Input/CMOS Output LH0032 Ultra Fast FET-输入单运放LF351 Wide B与门width JFET 输入单运放LF411 Low Offset, Low Drift JFET 输入单运放LM108 高精度、单运放LM208 高精度、单运放LM308 高精度、单运放LM833 双音频运放, 低噪音LM358 双运放LM359 双, 高速, Programmable, Current Mode (Norton) Amplifier LM324 QUADRUPLE 运放LM391 音频Power DriverLM393 双Differential ComparatorNE5532 双音频运放, 低噪音NE5534 Single 音频运放, 低噪音OP27 低噪音、高精度、高速运放OP37 低噪音、高精度、高速运放TL071 Single JFET-输入运放, 低噪音TL072 双JFET-输入运放, 低噪音TL074 Quad JFET-输入运放, 低噪音TL081 Single JFET-输入运放TL082 双JFET-输入运放TL084 Quad JFET-输入运放TLC271 LinCMOS..PROGRAMMABLE LOW-POWER 运放TLC272 LinCMOS.... PRECISION 双运放TLC274 LinCMOS.... PRECISION QUAD 运放MN3004 512 STAGE 低噪音BBDL165 3A POWER 运放(20W)LM388 1.5W 音频功率放大LM1875 20W 音频功率放大TDA1516BQ 24 W BTL or 2 x 12 w 立体声汽车用功率放大器TDA1519C 22 W BTL or 2 X 11 W 立体声功率放大TDA1563Q 2 x 25 W high efficiency car radio 功率放大TDA2002 单声道、功率放大8W [NTE1232]TDA2005 双功率放大20WTDA2004 10 + 10W STEREO 立体声汽车用功率放大器TDA2030 Single 功率放大14WSTK4036 II 模块电路, AF PO, 双电源50WSTK4036 XI 模块电路, AF PO, 双电源50WSTK4038 II AF 功率放大60 WSTK4040 II AF 功率放大70 WSTK4040 XI AF 功率放大70 WSTK4042 II AF 功率放大80 WSTK4042 XI AF 功率放大80 WSTK4044 II 模块电路, AF 功率放大、单声道100WSTK4044 II 模块电路, AF 功率放大、单声道100WSTK4046 XI 模块电路, AF 功率放大、单声道120WSTK4048 XI 模块电路, AF 功率放大、单声道150WSTK4050 V 模块电路, AF 功率放大、单声道200WLM3914 10-Step Dot/Bar显示驱动器, Linear scaleLM3915 10-Step Dot/Bar显示驱动器, Logarithmic scaleLM3916 10-Step Dot/Bar显示驱动器UAA180 LED driver Light or light spot display operation for max. 12 emitting diodes CA3161E BCD to Seven Segment Decoder/DriverCA3162E A/D Converter for 3-Digit DisplayICL7136 3 1/2 Digit LCD, Low Power Display, A/D ConverterLM1800 PLL Stereo Decoder [NTE743]CA3090P Stereo Multiplex Decoder (Comp.to NTE789 From NTE)MC1310P FM Stereo Demodulator (Comp. to NTE801 From NTE)555 时钟556 双555MN3101 时钟/ 驱动XR2206 Monolithic Function Generator4N25 6-PIN 光电晶体管OPTOCOUPLERS4N264N274N284N35 6-PIN 光电晶体管OPTOCOUPLERS4N364N3778xx 系列3端稳压器+5V 到+24V1A78Lxx 系列3端稳压器+5V 到+24V 0.1A78Mxx 系列3端稳压器+5V 到+24V 0.5A78Sxx 系列3端稳压器+5V 到+24V 2A79xx 系列3端负电压稳压器-5V 到-24V 1A 79Lxx 系列3端负电压稳压器-5V 到-24V 0.1A LM117 +1.2V...+37V 1.5A 正电压可调稳压器LM217 +1.2V...+37V 1.5A 正电压可调稳压器LM317 +1.2V...+37V 1.5A 正电压可调稳压器LM137 -1.2V...-37V 1.5A 负电压可调稳压器LM237 -1.2V...-37V 1.5A 负电压可调稳压器LM337 -1.2V...-37V 1.5A 负电压可调稳压器LM138 +1.2V --32V 5-安培可调LM338 +1.2V -- 32V 5-安培可调LM723 高精度可调L200 2 A / 2.85 to 36 V.可调74LS00 Quad 2-Input 与非门74LS04 Hex 反相器74LS08 Quad 2 input 与门74LS10 Triple 3-Input 与非门74LS13 SCHMITT TRIGGERS 双门/HEX 反相器74LS14 SCHMITT TRIGGERS 双门/HEX 反相器74LS27 TRIPLE 3-INPUT NOR 门74LS30 8-Input 与非门74LS32 Quad 2 input OR74LS42 ONE-OF-TEN DECODER74LS45 BCD to Decimal Decoders/Drivers74LS47 BCD to 7 seg decoder/driver74LS90 Decade 与门Binary 记数器74LS92 Divide by 12 记数器74LS93Binary 记数器74LS121 Monostable multivibrator74LS154 4-Line to 16-Line Decoder/Demultiplexer74LS192 BCD up / down 记数器74LS193 4 bit binary up / down 记数器74HC237 3-to-8 line decoder/demultiplexer with address latches74LS374 3-STATE Octal D-Type Transparent Latches 与门Edge-Triggered Flip-Flops 74LS390 双DECADE 记数器双4-STAGE BINARY 记数器4001 Quad 2-input NOR 门4002 双4-input NOR 门4007 双Complementary Pair 与门反相器4011 Quad 2-Input NOR Buffered4013 双D-Type Flip-Flop4016 Quad Analog Switch/Quad Multiplexer4017 Decade 记数器/Divider4022 Divide-by-8 记数器/Divider with 8 Decoded Outputs4023 Triple 3-input 与非门4025 Triple 3-input NOR 门4026 DEC. COUN./DIVIDER WITH DECODED 7-SEG. DISPLAY OUTPUTS 4028 BCD to Decimal Decoder4029 Binary/Decade Up/Down 记数器4040 12-Stage Ripple-Carry Binary4046 Phase-Locked Loop4051 Single 8-Channel Analog4052 Differential 4-Channel Analog4053 Triple 2-Channel Multipl/Demul4054 显示驱动4055 显示驱动4056 显示驱动4060 14-Stage Ripple-Carry Binary C4066 Quad Bilateral Switch4067 Cmos Analog Multiplexer / Demultiplexer [266kb] 4068 8-input 与非门4069 Hex 反相器4071 Quad 2-input OR 门4072 双4-input OR 门4075 Triple 3-input OR 门4081 Quad 2-Input 与门门4082 双4-input 与门门4093 Quad 2-Input Schm.Trigger4511 BCD-to-7-Segment Latch Decade Driver4518 双BCD 记数器4583 双Schmitt Trigger4584 Hex Schmitt trigger如有侵权请联系告知删除,感谢你们的配合!。
极管及钽电容品牌的一些参数
极管及钽电容品牌的一些参数晶体二极管晶体二极管在电路中常常利用“D”加数字表示,如:D5表示编号为5的二极管。
1、作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。
正因为二极管具有上述特性,无绳电话机中常把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。
电话机里使用的晶体二极管按作用可分为:整流二极管(如1N4004)、隔离二极管(如1N4148)、肖特基二极管(如BAT85)、发光二极管、稳压二极管等。
2、识别方法:二极管的识别很简单,小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。
发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。
3、测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。
稳压二极管稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。
1、稳压二极管的稳压原理:稳压二极管的特点就是击穿后,其两端的电压基本保持不变。
这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。
2、故障特点:稳压二极管的故障主要表现在开路、短路和稳压值不稳定。
在这3种故障中,前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。
常用稳压二极管的型号及稳压值如下表:型号1N4728 1N4729 1N4730 1N4732 1N4733 1N4734 1N4735 1N4744 1N4750 1N47511N4761稳压值15V 27V 30V 75V电感电感在电路中常用“L”加数字表示,如:L6表示编号为6的电感。
自动循迹控制小车
自动循迹控制小车设计方案自动循迹控制小车设计方案小组成员班级学号严羽电子信息111 201105070316徐立波电子信息111 201105070312张有锋电子信息112 201105070330联系方式:18868801162013年06月18 日摘要本系统通过采集光电传感器和驻极体的数据来实现电动小车的自动循迹和声控行驶。
控制终端由C8051F020单片机最小系统构成,外围电路包括直流电机H桥驱动模块、光电传感器循迹模块、光电对管测速模块、声控模块、LCD 显示模块等。
运行中,系统通过采集光电传感器的数据并进行相应的比较计算来控制PWM波的输出,进而实现电机转速的实时调节;通过计数光电对管的输出脉冲来计算小车的行驶路程和实时速度;声控电路则将声音命令转换为相应的数字量并作放大处理后输出到CPU进而可以声控小车的启停;而显示模块则能在小车行驶中实时显示其速度与路程。
系统成本低,功耗低,小车调速平滑,过弯稳定,基本满足设计要求。
目录自动循迹控制小车设计方案 (1)摘要 (2)目录 (3)图索引 (4)第1章系统设计要求 (5)1.1 基本要求 (5)1.2 发挥要求 (5)第2章系统方案选择和论证 (6)2.1 题目解析 (6)2.2 方案选择及论证 (6)2.01 控制终端的选择 (6)2.02 电机及其驱动方式的选择 (7)2.03 循迹模块的选择 (8)2.04 测速模块的选择 (8)2.05 显示模块选择 (8)2.06 声控模块的选择 (9)2.07 遥控模块的选择 (9)第3章系统电路设计及原理分析 (11)3.1 核心模块 (12)3.2 电机驱动电路 (12)3.3 红外遥控模块的设计与参数计算: (13)3.4 光电传感器循迹电路 (16)3.5 光电对管测速电路 (17)3.6 显示电路 (17)3.7 声控电路 (18)第4章软件开发 (19)第5章系统主程序流程图 (20)参考文献 (21)附录一:程序清单 (21)附录二:系统电路图 (29)图索引图3-1系统总体框架图 (11)图3-2 C8051F020最小系统 (12)图3-3直流电机驱动电路 (13)图3-4光电传感器循迹电路 (16)图3-5测速电路原理图 (17)图3-6显示电路内部连接图 (18)图3-7声控电路原理图 (18)图5-1系统主程序流程图 (20)第1章系统设计要求第1章系统设计要求1.1基本要求1)小车可以自动寻迹:在设计好的线路上向前或向后跑,转弯等。
无线鼠标系统电路设计方案大全(三款电路设计原理详细)
无线鼠标系统电路设计方案大全(三款电路设计原理
详细)
无线鼠标系统电路设计方案(一)
设计的无线鼠标,以CC2430为控制芯片构成发射电路和接收电路。
发射电路负责采集与发送鼠标按键的移动信息,接收电路负责信息接收、处理并与计算机通信。
1、发射部分的电路设计
发射部分的硬件电路由鼠标移动光学传感器ADNS5030、鼠标按键、无线发射模块CC2430(软件设置为发送模式)构成。
由光学传感器ADNS5030检测鼠标的移动信息,将采集到的信息经过SPI 串行接口传递给CC2430处理并发送出去。
发射部分的电路图见图
2。
ADNS-5030光学传感器,功耗低且尺寸小,能高速检测鼠标运动。
它包含图像采集系统(IAS)、数字信号处理器(DSP)和串行总线端口。
IAS将采集的图像通过数字信号处理,计算鼠标在dx和dy方向的相对位移值,决定移动的方向及距离。
[整理]MC1450265027.
一、145026 和1450271、145026MC1450262、145027二、LS123的使用LS123的使用时,基本的输出脉冲宽度主要由外部电容和定时电阻来决定。
当C>1000pF 时,输出脉冲的宽度为T=0.45RC三、LM555LM555的使用前面有过介绍,这里对其的使用是,让它构成一个38KHz 的载频振荡器,其频率大小为:f=1.43/(R1+2R2)C1由于红外发射管的最大电流为200毫安,因此保护电阻最大值R3=5/200mA=25 通过实际的计算,这里选定的参数是:R1=1K ,R2=20K ,R3=5, C1=1000P ,C2=0.01u,四、GAL20V8用GAL20V8的编程来实现一个16—4线的编码器功能,编制程序如下:GAL20V8 ;infared吴庭玉23 aprilCLK I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 GNDI11 NC I12 I13 I14 I15 I16 A B C D VCC;D=I8+I9+I10+I11+I12+I13+I14+I15C=I4+I5+I6+I7+I12+I13+I14+I15B=I2+I3+I6+I7+I10+I11+I14+I15A=I1+I3+I5+I7+I9+I11+I13+I15A.OE=VCC;(输出允许必须写,否则会出现输出脚均为1-2v左右,就是因为没有输出的缘故)B.OE=VCCC.OE=VCCD.OE=VCCDESCRIPTION五、调试问题的原因及解决办法在经过分析以后发现:第一,我把编码芯片的串行发送频率通过Rs,R,C调到了30KH,载波的频率是38KH,即信号与载波的频率差距太小,在后边的接收滤波时原编码信号也将被被滤掉。
第二,编码频率与接收频率必须相同,都是30KH,属于比较高的频率,通过RC电路的实际给定值调配出来的频率由于电阻与电容因为没有完全满足相等的标称值,总会或多或少的有一些误差,而且又因为设定的频率太高,所以电阻与电容稍微有点不同,其结果导致编码与解码的频率相差甚远,所以不可能将发送的串行信号与MC145027的串行接收端进行耦合接收。
系列滚动码解码芯片
其它特征 外接元件极少 可作为单独的解码器使用 四位数据输出, 可定制最多达15种功能输出 14-pin的P/S封装 无需外接EEPROM
附:编码器HCS301接线图
Natrono Integrated Ciruit
6
Auguest 19.2004
2、数据输出格式
1.1 NT2174/NT2184为暂存脉冲输出,数据口输出脉冲后保持一时间段回到低电平。 图一
VT
NT2174/NT2184
1.2 NT2175/NT2185为锁存电平输出,输出电平保持到下次新数据输出为止。
NT2185IPD,NT2185ISD 注: 厂商代码,输出数据方式也可以按客户要求订做. 如: NT2174I P D : 工业级工作温度范围, 14PDIP 双列直插封装
①②③ 型号后面的三个字母依次为: ①---表示工作温度范围
C—表示民用级工作温度范围 0-70 度 I--表示工业级工作温度范围 –40-85 度 E--表示汽车级工作温度范围 –40-125 度
Natrono Integrated Ciruit
6
Auguest 19.2004
S -14SOIC 表贴封装 Small Outline(150mil)
Natrono Integrated Ciruit
6
Auguest 19.2004
典型应用 汽车中控系统 汽车,摩托车报警器 家庭门禁和车库门禁 电子锁 身份识别 防盗系统
配对使用编码器 HCS300,HCS301
Natrono Integrated Ciruit
有线鼠标改无线鼠标的电路
该装置利用编译码电路MC145026/MC145027和射频发射/接收模块TDA1808/TDA1809互相配合,可以在10~120m范围内灵活操纵鼠标,而且制作时无须对原有鼠标的外观及内部电路做任何改动,使用起来符合操作习惯,方便可靠,非常适合爱好者自制。
一般情况下,鼠标与电脑的连接线内部有4根电路连接线(该电路装置最多可以接受4条数据线输入,读者可根据自己鼠标的实际情况选择)分别是电源正极、电源地、数据线1、数据线2。
我们将鼠标连线割断,分别找出这4根线,利用MC145026编码电路的数据传送端D6和D7接受鼠标数据线1和数据线2传来的数据,并在芯片内部编码后经射频发射模块TDA1808发射出去。
射频发射模块TDA1809工作后,将接收到的编码信息输入MC145027译码电路,经其转换后在该芯片数据输出端D6和D7复原原鼠标数据线1和数据线2的信号,并通过原鼠标与电脑的连接线送入计算机。
可以看出,上述电路无须改动鼠标及计算机,无须安装额外的鼠标驱动软件,原有鼠标的所有功能亦能正常使用。
该电路(见图1、图2)只要所选元件正常,无须调试即可工作系统级RF收发芯片nRF24E1及其在无线键盘中的应用nRF24E1收发器是Nordic VLSI推出的系统级射频芯片。
采用先进的0.18μm CMOS工艺、6×6mm的36引脚 QFN封装,以nRF2 401 RF芯片结构为基础,将射频、8051MCU、9输入10位ADC、125通道、UART、SPI、PWM、RTC、WDT全部集成到单芯片中,内部有电压调整器(工作电压1.9~3.6V,推荐工作电压为3.3V)和VDD电压监视,通道开关时间小于200μs,数据速率1Mbps,最大射频输出分贝数0dB,不需要外接SAW(声表)滤波器。
nRF24E1是全球最早推出且全球通用的收发频段为2.4GHz的、完整的低成本射频系统级芯片。
适用于无线键盘和鼠标、无线手持终端、无线频率识别、数字视频、遥控和汽车电子及其他短距离无线高速方面的应用。
常用晶体管
M67749L400-430 8W 180元
M67749H 440-470 8W 180元
M67781L135-160 40W 336元
M67781H 150-175 40W 336元
M67785 300元
M68702L135-160 60W 384元
M68732L400-430 7W 156元
N1500V5A
TIP122
N100V8A
2SD1431
N1500V5A
TIP122
N100V5A
2SD1439
N1500V3A
TIP137
P100V8A
2SD1445
N40V10A
TIP142
N100V10A
2SD1453
N1500V3A
TIP147
N100V10A
2SD1884
N1500V5A
TIP2955
P60V15A
2SK30A
P50A6mA
TIP3055
N60V15A
2SK301
NFET55V
MJ862
N100V5A
BD235
N60V2A
MG2955
P60V15A
BD236
P60V2A
MG10005
N325V10A
BD237
N100V2A
MG10012
N400V10A
BD238
P100V2A
MJ10015
●
型号 电流(A) 功率(W) 工作频率(MHz) 价格(元)
C11622.5A10 37.00 1.2元
C1239 4 13 27.00 4.5元
MC145026中文资料
R1, C1Resistor 1, Capacitor 1 (Pins 6, 7)As shown in Figures 2 and 3, these pins accept a resistor and capacitor that are used to determine whether a narrow pulse or wide pulse has been received. The time constant R1 x C1 should be set to 1.72 encoder clock periods:R1 C1 = 3.95 R TC C TCR2/C2Resistor 2/Capacitor 2 (Pin 10)As shown in Figures 2 and 3, this pin accepts a resistor and capacitor that are used to detect both the end of a received word and the end of a transmission. The time constant R2 x C2 should be 33.5 encoder clock periods (four data periods per Figure 11): R2 C2 = 77 R TC C TC. This time constant is used to determine whether the D in pin has remained low for four data periods (end of transmission). A separate on–chip comparator looks at the voltage–equivalent two data periods (0.4 R2 C2) to detect the dead time between received words within a transmission.VTValid Transmission Output (Pin 11)This valid transmission output goes high after the second word of an encoding sequence when the following conditions are satisfied:1.the received addresses of both words match the local de-coder address, and2.the received data bits of both words match.VT remains high until either a mismatch is received or no input signal is received for four data periods.V SSNegative Power Supply (Pin 8)The most–negative supply potential. This pin is usually ground.V DDPositive Power Supply (Pin 16)The most–positive power supply pin.MC145026•MC145027•MC145028•SC41343•SC41344MOTOROLAMC145026•MC145027•MC145028•SC41343•SC41344MOTOROLA16APPLICATIONS INFORMATIONINFRARED TRANSMITTERIn Figure 18, the MC145026 encoder is set to run at an os-cillator frequency of about 4 to 9 kHz. Thus, the time required for a complete two–word encoding sequence is about 20 to 40 ms. The data output from the encoder gates an RC oscilla-tor running at 50 kHz; the oscillator shown starts rapidly enough to be used in this application. When the “send” button is not depressed, both the MC145026 and oscillator are in a low–power standby state. The RC oscillator has to be trimmed for 50 kHz and has some drawbacks for frequency stability. A superior system uses a ceramic resonator oscilla-tor running at 400 kHz. This oscillator feeds a divider as shown in Figure 19. The unused inputs of the MC14011UB must be grounded.The MLED81 IRED is driven with the 50 kHz square wave at about 200 to 300 mA to generate the carrier. If desired, two IREDs wired in series can be used (see Application Note AN1016 for more information). The bipolar IRED switch,shown in Figure 18, offers two advantages over a FET. First,a logic FET has too much gate capacitance for the MC14011UB to drive without waveform distortion. Second,the bipolar drive permits lower supply voltages, which are an advantage in portable battery–powered applications.The configuration shown in Figure 18 operates over a supply range of 4.5 to 18 V. A low–voltage system which operates down to 2.5 V could be realized if the oscillator sec-tion of a MC74HC4060 is used in place of the MC14011UB.The data output of the MC145026 is inverted and fed to the RESET pin of the MC74HC4060. Alternately, the MC74HCU04 could be used for the oscillator.Information on the MC14011UB is in book number DL131/D. The MC74HCU04 and MC74HC4060 are found in book number DL129/D.INFRARED RECEIVERThe receiver in Figure 20 couples an IR–sensitive diode to input preamp A1, followed by band–pass amplifier A2 with a gain of about 10. Limiting stage A3 follows, with an output of about 800 mV p–p. The limited 50 kHz burst is detected by comparator A4 that passes only positive pulses, and peak–detected and filtered by a diode/RC network to extract the data envelope from the burst. Comparator A5 boosts the sig-nal to logic levels compatible with the MC145027/28 data input. The D in pin of these decoders is a standard CMOS high–impedance input which must not be allowed to float.Therefore, direct coupling from A5 to the decoder input is utilized.Shielding should be used on at least A1 and A2, with good ground and high–sensitivity circuit layout techniques applied.For operation with supplies higher than + 5 V, limiter A4’s positive output swing needs to be limited to 3 to 5 V. This is accomplished via adding a zener diode in the negative feed-back path, thus avoiding excessive system noise. The bias-ing resistor stack should be adjusted such that V3 is 1.25 to 1.5 V.This system works up to a range of about 10 meters. The gains of the system may be adjusted to suit the individual design needs. The 100 Ω resistor in the emitter of the first 2N5088 and the 1 k Ω resistor feeding A2 may be altered if different gain is required. In general, more gain does not nec-essarily result in increased range. This is due to noise floor limitations. The designer should increase transmitter power and/or increase receiver aperature with Fresnal lensing to greatly improve range. See Application Note AN1016 for additional information.Information on the MC34074 is in data book DL128/D.TRINARY SWITCH MANUFACTURERS Midland Ross–Electronic Connector Div.GreyhillAugat/Alcoswitch Aries ElectronicsThe above companies may not have the switches in a DIP .For more information, call them or consult eem Electronic En-gineers Master Catalog or the Gold Book . Ask for SPDT with center OFF .Alternative: An SPST can be placed in series between a SPDT and the Encoder or Decoder to achieve trinary action.Motorola cannot recommend one supplier over another and in no way suggests that this is a complete listing of trinary switch manufacturers.。
MC145026
摘要:介绍了一种用三态编解码芯片MC145026/27实现的基于并口的多机线通信系统的组成原理和实现方法,给出了多台微型机之间的无线通信问题的解决方案等,阐述了系统的总体组成及通信方法。
关键词:并行接口无线通信编码器解码器MC145026/271 引言在遥测、遥控等领域中,往往使用微机与单片机组成多机通信系统来完成测控任务。
其中,常用的方法是使用微机的RS-232C串行接口进行串行数据通信。
由于受环境的影响以及RS-232C串行接口电气性能的限制,加上连接线长、接线麻烦等缺点,其通信的空间范围总是受到限制,并使人们感到不便。
因此,人们想到了无线传输。
常用的无线传输方式有无线短波传输和红外线传输,但这两种方式都有一定的局限性,如短波方式易受外界电磁场的干扰,线外线传输方式不能隔墙传输等等,本文将介绍采用最新的无线长波收发模块T630/T631,以及最新三态编解码芯片MC145026/MC145027来设计无线数据通信装置的方法。
该装置具有抗干扰性能好、穿透性强、传输距离远等特点。
由于串行接口传输速度慢,信号处理电路复杂,外接模块困难。
因此,本装置选用并行接口通信,从而使得电路简单易做、可靠性高。
2 系统组成如图1所示,本装置主要由数据编解码和发射接收两大模块组成。
其中,数据编解码模块用来完成数据信息的输入输出、地址编码、地址识别以及数据并/串转换等任务;发射接收模块是用来完成串行数据的调制发射及接收解调等任务。
2.1 编解码模块编解码模块由三态编解芯片MC145026和MC145027组成,此组芯片是摩托罗拉公司生产的用于通信配对使用的最新芯片。
编码芯片MC145026可对9位输入信息(地址位A1~A5,数据位D6~D9)进行编码,编码后每个数据位用两个脉冲表示:“1”编码为两个宽脉冲;“0”编码为两个窄脉冲;“开路”编码为一宽脉冲和一窄脉冲交叉。
当TE端输入脉冲上升沿时,编码后的数据流开始由D0串行输出。
红外遥控芯片资料
红外遥控芯片资料
1 74LS147
2 MC145026/27
mc145026与mc145027是一对编码解码集成电路,有几个地址码引脚,要紧作用是设置唯一的编码,进行识别用。
还有几个数据引脚,每个引脚都有三种状态,1,0与悬空。
mc145027
3 LM311 电压比较器
4 CD7480 8位的逻辑与与与非
Y=A+B+….+H W=!(A+B+C+…+H) MC14011
5 UA741中文资料pdf 应用电路(组图)
uA741M,uA741I,uA741C(单运放)是高增益运算放大器,用于军事,工业与商业应用.这类单片硅集成电路器件提供输出短路保护与闭锁自由运作。
这些类型还具有广泛的共同模式,差模信号范围与低失调电压调零能力与使用适当的电位。
uA741M,uA741I,uA741C芯片引脚与工作说明:
1与5为偏置(调零端),2为正向输入端,3为反向输入端,4接地,6为输出,7接电源8空
脚
6 LM357
7 LM324
LM324系列运算放大器是价格便宜的带差动输入功能的四运算放大器。
可工作在单电源下,电压范围是3.0V-32V或者+16V.
8 CD4069
6个单元的集成反相器
9 cd4514 CD4512BMS 是一个16通道数据选择器。
10 七段数码管译码芯片。
简易红外遥控系统实验报告
简易红外遥控系统北京邮电大学电子信息科学与技术专业课题实验姓名:周渡学号:**********班级:2013211203组别: 第5组时间:2016.7.6目录一、设计要求.............................................................................................................................. - 1 -1.任务:设计并制作红外遥控发射机和接收机。
........................................................... - 1 -2.基本要求:....................................................................................................................... - 1 -二、实验原理.............................................................................................................................. - 1 -1.发射部分设计框图........................................................................................................... - 1 -2.接收部分设计框图........................................................................................................... - 2 -三、实验电路图设计与实现...................................................................................................... - 3 -1.信号的产生与编码........................................................................................................... - 3 -2.调制发送........................................................................................................................... - 8 -3.接收解调......................................................................................................................... - 12 -4.LED分别显示................................................................................................................ - 15 -5.LED8级亮度显示.......................................................................................................... - 17 -6.数码管显示..................................................................................................................... - 18 -四、发射和接收连接总图........................................................................................................ - 20 -1.发射端电路图................................................................................................................. - 20 -2.接收端电路图................................................................................................................ - 20 -五、遇到的问题及解决方法............................................................................................ - 21 -六、实验心得.................................................................................................................... - 21 -附录:器件选用与参数计算.................................................................................................... - 23 -一、设计要求1.任务:设计并制作红外遥控发射机和接收机。
集成电路中文名称大全
集成电路中文名称大全型号规格性能说明型号规格性能说明SN74LSOO 四2输入与非门SN74LSO1 四2输入与非门SN74LSO2 四2输入与非门SN74LS03 四2输入与非门SN74LS04 六反相器SN74LS05 六反相器SN74LS06 六反相缓冲器/驱动器SN74LS07 六缓冲器/驱动器SN74LS08 四2输入与非门SN74LS09 四2输入与非门SN74LS10 三3输入与非门SN74LS11 三3输入与非门SN74LS12 三3输入与非门SN74LS13 三3输入与非门SN74LS14 六反相器.斯密特触发SN74LS15 三3输入与非门SN74LS16 六反相缓冲器/驱动器SN74LS17 六反相缓冲器/驱动器SN74LS20 双4输入与门SN74LS21 双4输入与门SN74LS22 双4输入与门SN74LS25 双4输入与门SN74LS26 四2输入与非门SN74LS27 三3输入与非门SN74LS28 四输入端或非缓冲器SN74LS30 八输入端与非门SN74LS32 四2输入或门SN74LS33 四2输入或门SN74LS37 四输入端与非缓冲器SN74LS38 双2输入与非缓冲器SN74LS40 四输入端与非缓冲器SN74LS42 BCD-十进制译码器SN74LS47 BCD-七段译码驱动器SN74LS48 BCD-七段译码驱动器SN74LS49 BCD-七段译码驱动器SN74LS51 三3输入双与或非门SN74LS54 四输入与或非门SN74LS55 四4输入与或非门SN74LS63 六电流读出接口门SN74LS73 双J-K触发器SN74LS74 双D触发器SN74LS75 4位双稳锁存器SN74LS76 双J-K触发器SN74LS78 双J-K触发器SN74LS83 双J-K触发器SN74LS85 4位幅度比较器SN74LS86 四2输入异或门SN74LS88 4位全加器SN74LS90 4位十进制波动计数器SN74LS91 8位移位寄存器SN74LS92 12分频计数器SN74LS93 二进制计数器SN74LS96 5位移位寄存器SN74LS95 4位并入并出寄存器SN74LS109 正沿触发双J-K触发器SN74LS107 双J-K触发器SN74LS113 双J-K负沿触发器SN74LS112 双J-K负沿触发器SN74LS121 单稳态多谐振荡器SN74LS114 双J-K负沿触发器SN74LS123 双稳态多谐振荡器SN74LS122 单稳态多谐振荡器SN74LS125 三态缓冲器SN74LS124 双压控振荡器SN74LS131 3-8线译码器SN74LS126 四3态总线缓冲器SN74LS133 13输入与非门SN74LS132 二输入与非触发器SN74LS137 地址锁存3-8线译码器SN74LS136 四异或门SN74LS139 双2-4线译码-转换器SN74LS138 3-8线译码/转换器SN74LS147 10-4线优先编码器SN74LS145 BCD十进制译码/驱动器SN74LS153 双4选1数据选择器SN74LS148 8-3线优先编码器SN74LS155 双2-4线多路分配器SN74LS151 8选1数据选择器SN74LS157 四2选1数据选择器SN74LS154 4-16线多路分配器SN74LS160 同步BDC十进制计数器SN74LS156 双2-4线多路分配器SN74LS162 同步BDC十进制计数器SN74LS158 四2选1数据选择器SN74LS164 8位串入并出移位寄存SN74LS161 4位二进制计数器SN74LS166 8位移位寄存器SN74LS163 4位二进制计数器SN74LS169 4位可逆同步计数器SN74LS165 8位移位寄存器SN74LS172 16位多通道寄存器堆SN74LS168 4位可逆同步计数器SN74LS174 6D型触发器SN74LS170 4x4位寄存器堆SN74LS176 可预置十进制计数器SN74LS173 4D型寄存器SN74LS182 超前进位发生器SN74LS175 4D烯触发器SN74LS189 64位随机存储器SN74LS181 运算器/函数发生器SN74LS191 二进制同步可逆计数器SN74LS183 双进位保存全价器SN74LS193 二进制可逆计数器SN74LS190 同步BCD十进制计数器SN74LS195 并行存取移位寄存器SN74LS192 BCD-同步可逆计数器SN74LS197 可预置二进制计数器SN74LS194 双向通用移位寄存器SN74LS238 3-8线译码/多路转换器SN74LS196 可预置十进制计数器SN74LS241 八缓冲/驱动/接收器SN74LS221 双单稳态多谐振荡器SN74LS243 四总线收发器SN74LS240 八缓冲/驱动/接收器SN74LS245 八总线收发器SN74LS242 四总线收发器SN74LS248 BCD-七段译码驱动器SN74LS244 八缓冲/驱动/接收器SN74LS251 三态8-1数据选择器SN74LS247 BCD-七段译码驱动器SN74LS256 双四位选址锁存器SN74LS249 BCD-七段译码驱动SN74LS258 四2选1数据选择器SN74LS253 双三态4-1数据选择器SN74LS260 双5输入或非门SN74LS257 四3态2-1数据选择器SN74LS266 四2输入异或非门SN74LS259 8位可寻址锁存器SN74LS275 七位树型乘法器SN74LS261 2x4位二进制乘发器SN74LS279 四R-S触发器SN74LS273 八进制D型触发器SN74LS283 4位二进制全加器SN74LS276 四J-K触发器SN74LS293 4位二进制计数器SN74LS280 9位奇偶数发生校检器SN74LS365 六缓冲器带公用启动器SN74LS290 十进制计数器SN74LS367 六总线三态输出缓冲器SN74LS295 4位双向通用移位寄存器SN74LS373 8D锁存器SN74LS366 六缓冲器带公用启动器SN74LS375 4位双稳锁存器SN74LS368 六总线三态输出反相器SN74LS386 四2输入异或门SN74LS374 8D触发器SN74LS393 双4位二进制计数器SN74LS377 8位单输出D型触发器SN74LS574 8位D型触发器SN74LS390 双十进制计数器SN74LS684 8位数字比较器SN74LS573 8位三态输出D型锁存器SN74HC11 三3输入与门SN74LS670 8位数字比较器SN7404 六反相器SN74HC00 四2输入与非门SN7406 六反相缓冲器/驱动器SN74HC02 四2输入或非门SN7407 六缓冲器/驱动器SN74HC03 四2输入或非门SN7414 六缓冲器/驱动器SN74HC04 六反相器SN7416 六反相缓冲器/驱动器SN74HC05 六反相器SN7440 六反相缓冲器/驱动器SN74HC08 四2输入与门SN7497 六反相缓冲器/驱动器SN74HC10 三3输入与非门74F00 高速四2输入与非门SN74HC14 六反相器/斯密特触发74F02 高速四2输入或非门SN74HC20 双四输入与门74F04 高速六反相器SN74HC21 双四输入与非门74F08 高速四2输入与门SN74HC27 三3输入与非门74F10 高速三3输入与门SN74HC30 八输入端与非门74F14 高速六反相斯密特触发SN74HC32 四2输入或门74F32 高速四2输入或门SN74HC42 BCD十进制译码器74F38 高速四2输入或门SN74HC73 双J-K触的器74F74 高速双D型触发器SN74HC74 双D型触发器74F86 高速四2输入异或门SN74HC76 双J-K触的器74F139 高速双2-4线译码/驱动器SN74HC86 四2输入异或门74F151 高速双2-4线译码/驱动器SN74HC107 双J-K触发器74F153 高速双4选1数据选择器SN74HC113 双J-K负沿触发器74F157 高速双4选1数据选择器SN74HC123 双稳态多谐振荡器74F161 高速6D型触发器SN74HC125 三态缓冲器74F174 高速6D型触发器SN74HC126 四三态总线缓冲器74F175 高速4D型触发器SN74HC132 二输入与非缓冲器74F244 高速八总线3态缓冲器SN74HC137 二输入与非缓冲器74F245 高速八总线收发器SN74HC138 3-8线译码/解调器74F373 高速8D锁存器SN74HC139 双2-4线译码/解调器SN74HCT04 六反相器SN74HC148 8选1数据选择器CD4001 4二输入或非门SN74HC151 双4选1数据选择器CD4002 双4输入或非门SN74HC154 4-16线多路分配器CD4006 18位静态移位寄存器SN74HC157 四2选1数据选择器CD4007 双互补对加反相器SN74HC161 4位二进制计数器CD4009 六缓冲器/转换-倒相SN74HC163 4位二进制计数器CD4010 六缓冲器/转换-正相SN74HC164 8位串入并出移位寄存器CD4011 四2输入与非门SN74HC165 8位移位寄存器CD4012 双4输入与非门SN74HC173 4D型触发器CD4013 置/复位双D型触发器SN74HC174 6D触发器CD4014 8位静态同步移位寄存SN74HC175 4D型触发器CD4015 双4位静态移位寄存器SN74HC191 二进制同步可逆计数器CD4016 四双向模拟数字开关SN74HC221 双单稳态多谐振荡器CD4017 10译码输出十进制计数器SN74HC238 3-8线译码器CD4018 可预置1/N计数器SN74HC240 八缓冲器CD4019 四与或选择门SN74HC244 八总线3态输出缓冲器CD4020 14位二进制计数器SN74HC245 八总线收发器CD4021 8位静态移位寄存器SN74HC251 三态8-1数据选择器CD4022 8译码输出8进制计数器SN74HC259 8位可寻址锁存器CD4023 三3输入与非门SN74HC266 四2输入异或非门CD4024 7位二进制脉冲计数器SN74HC273 8D型触发器CD4025 三3输入与非门SN74HC367 六缓冲器/总线驱动器CD4026 十进制/7段译码/驱动SN74HC368 六缓冲器/总线驱动器CD4027 置位/复位主从触发器SN74HC373 8D锁存器CD4028 BCD十进制译码器SN74HC374 8D触发器CD4029 4位可预置可逆计数器SN74HC393 双4位二进制计数器CD4030 四异或门SN74HC541 8位三态输出缓冲器CD4031 64位静态移位寄存器SN74HC573 8位三态输出D型锁存器CD4032 三串行加法器SN74HC574 8D型触发器CD4033 十进制计数器/7段显示SN74HC595 8位移位寄存器/锁存器CD4034 8位静态移位寄存器SN74HC4028 7级二进制串行加数器CD4035 4位并入/并出移位寄存器SN74HC4046 锁相环CD4038 3位串行加法器SN74HC4050 六同相缓冲器CD4040 12位二进制计数器SN74HC4051 8选1模拟开关CD4041 四原码/补码缓冲器SN74HC4053 三2选1模拟开关CD4042 四时钟D型锁存器SN74HC4060 14位计数/分频/振荡器CD4043 四或非R/S锁存器SN74HC4066 四双相模拟开关CD4044 四与非R/S锁存器SN74HC4078 3输入端三或门CD4046 锁相环SN74HC4511 7段锁存/译码驱动器CD4047 单非稳态多谐振荡器SN74HC4520 双二进制加法计数器CD4048 可扩充八输入门CD4502 可选通六反相缓冲器CD4049 六反相缓冲/转换器CD4503 六同相缓冲器CD4050 六正相缓冲/转换器CD4504 六电平转换器CD4051 单8通道多路转换/分配CD4508 双4位锁存器CD4052 双4通道多路转换/分配CD4510 BCD可预置可逆计数器CD4053 三2通道多路转换/分配CD4511 BCD7段锁存/译码/驱动CD4056 7段液晶显示译码/驱动CD4512 8通道数据选择器CD4060 二进制计数/分频/振荡CD4513 BCD7段锁存/译码/驱动CD4063 四位数值比较器CD4514 4-16线译码器CD4066 四双相模拟开管CD4515 4-16线译码器CD4067 16选1模拟开关CD4518 双BCD加法计数器CD4068 8输入端与非/与门CD4520 双二进制加法计数器CD4069 六反相器CD4521 24位分频器CD4070 四异或门CD4522 可预置BCD1/N计数CD4071 四2输入或门CD4526 可预置二进制1/N计数CD4072 双四输入或门CD4527 BCD系数乘发器CD4073 三3输入与门CD4528 双单稳态触发器CD4075 三3输入与门CD4531 12位奇偶校验电路CD4076 4位D型寄存器CD4532 8位优先编码器CD4077 四异或非门CD4538 双精密单稳态触发器CD4078 八输入或/或非门CD4539 双四路输据选择器CD4081 四输入与门CD4541 可编程振荡/计时器CD4082 双4输入与门CD4543 7段锁存/译码/驱动CD4085 双2组2输入与或非门CD4553 3位BCD计数器CD4086 可扩展2输入与或非门CD4555 双4选1译码器CD4093 四与非斯密特触发器CD4556 双4选1译码器CD4094 8位移位/贮存总线寄存CD4557 1-64位可变长度寄存器CD4096 3输入J-K触发器CD4558 BCD-7段译码器CD4098 双单稳态触发器CD4560 BCD码加法器CD4099 8位可寻址锁存器CD4561 BCD转换成9的补码输出CD40103 同步可预置减法器CD4566 工业定时基准发生器CD40106 六斯密特触发器CD4569 双4位可编程1/NBCDCD40107 双2输入与非缓冲/驱动CD4583 双斯密特触发器CD40110 计数/译码/锁存/驱动CD4584 4斯密特触发器CD40174 6D触发器CD4585 4位数值比较器CD40175 4D触发器CD4599 8位总线相容寻址锁存器CD40192 BCD可预置可逆计数器MC145106 频率合成器CD40193 二进制可预置可逆计数器MC145026 遥控编码器CD40194 4位双相移位寄存器MC145027 译码器4N25 晶体管输出LM24J 四运放(军用级)4N25MC 晶体管输出LM148J 通用四运放4N26 晶体管输出LM1875T 无线电控制/接收器4N27 晶体管输出LM224J 四运放(工业级)4N28 晶体管输出258N 分离式双电源双运放4N29 达林顿输出LM2901N 四电压比较器4N30 达林顿输出LM2904N 四运放4N31 达林顿输出LM301AN 通用运算放大器4N32 达林顿输出LM308N 单比较器4N33 达林顿输出LM311P 单比较器4N33MC 达林顿输出LM317L 可调三端稳压器/100mA4N35 达林顿输出LM317T 可调三端稳压器/1.5A4N36 晶体管输出LM317K 可调三端稳压器/3A4N37 晶体管输出LM318 高速宽带运放4N38 晶体管输出LM324K 通用四运放4N39 可控硅输出LM331N V-F/F-V转换器6N135 高速光耦晶体管输出LM336-2.5V 基准电压电路6N136 高速光耦晶体管输出LM336 5V 基准电压电路6N137 高速光耦晶体管输出LM337T 基准电压电路1A6N138 达林顿输出LM338K 可调三端稳压器5A6N139 达林顿输出LM339N 四比较器MOC3020 可控硅驱动输出LM348N 四741运放MOC3021 可控硅驱动输出LM358N 低功耗双运放MOC3023 可控硅驱动输出LM361N 高速差动比较器MOC3030 可控硅驱动输出LM386N 声频功率放大器MOC3040 过零触发可控硅输出LM3914N 十段点线显示驱动MOC3041 过零触发可控硅输出LM393N 低功耗低失调双比较器MOC3061 过零触发可控硅输出LM399H 精密基准源(6.9) MOC3081 过零触发可控硅输出LM723CN 可调正式负稳压器TLP521-1 单光耦LM733CN 视频放大器TLP521-2 双光耦LM741J 单运放TLP521-4 四光耦LM741CN 双运放TLP621 四光耦OP07 低噪声运放TIL113 达林顿输出OP27 超低噪声精密运放TIL117 TLL逻辑输出OP37 超低噪声精密运放PC814 单光耦TL062 低功耗JEFT输入双运放PC817 单光耦TL072 低噪声JEFTH11A2 晶体管输出ULN2003 周边七段驱动陈列H11D1 高压晶体管输出ULN2004 周边七段驱动陈列H11G2 电阻达林顿输出ULN2803 周边八段驱动陈列LF347N 宽带JFET输入四运放ULN2804 周边八段驱动陈列LF351N 宽带JFET输入运放ICL7106 3位ADC/驱动LCDLF353N JFET输入宽带运放ICL7107 3位半ADC/驱动LEDLF355N JFET输入运放ICL7109 4位半ADC/驱动LEDLF357N JFET宽带非全裣运放ICL7129 4位半ADC/LCD驱动LF398N 采样/保持电路ICL7135 ADC/LCD驱动BCD输出LF412N 低偏差飘移输入运放ICL7136 3位半CMOSADC/LCD驱动MC1377 彩色电视编码器ICL7218 CMOS低功耗运算放大器MC1403 精密电压基准源(2.5) ICL7650 整零运放斩波MC1413 周边七段驱动阵列ICL7652 整零运放斩波MC1416 周边七段驱动陈列ICL7660 CMOS直流-直流转换器MC14409 二进制脉冲拨号器ICL8038 函数信号发生器MC14433 3位半A/D转换器ICL8049 反对数放大器MC14489 多字符LED显示驱动器CA3140 单BIMOS运行MC145026 编码器CA3240 单BIMOS运行VD5026 编码器UC3842 WM电流型控制器MC145027 译码器UC3845 PWM电流型控制器VD5027 译码器DS12887 非易失实时时钟芯片MC145028 译码器L3845 中继接口电路MC145030 编码译码器SG3524 PWM解调调制器MC145106 频率合成器SG3525 PWM解调调制器MC145146 4位数据总线20106 前置放大器NE521 高速双差分比较器TCM5087 双音调发生器NE5532 双运放MM5832 实时钟电路NE5534 双运放TC14433 3位半A/D转换器NE555N 单运放TC232 并行/串行接口电路NE555J 时基电路军品极TC7106 3位半ADC/LCD驱动NE556 双级型双时基电路TC7107 3位半ADC/LED驱动NE564 锁相环TC7116 3位半ADC/LCD驱动带保NE565 锁相环TC7129 4位半ADC/LCDNE567 音调译码器TC7135 4位半ADC/LCD,BCD输出NE592 视频放大器TC7650 整零运放斩波MT8814 8x12模拟交换矩阵75107 四差分线驱动器MT8816 8x模拟交换矩阵75174 四差分线驱动器MT8870 综合DTMF接收器75175 三态四差分接收器MT8870 综合DTMF接收器75176 差分总线接收器MT8880 综合DTMF发生接收器75188 四线驱动器24LC01 128x8串行EEPROM 75189 四线驱动器24LC02 256x8串行EEPROM 75451 双外围驱动器24LC04 512x8串行EEPROM 75452 双外围驱动器93LC46 64x16串行EEPROM PAL16L8 FLASH200门93LC56 256x16串行EEPROM PALCE16V8-25 FLASH200门93LC66 512x8 256x16 EEPROM PALCE16V8-25JC FLASH200门(贴片)PIC16C52 384x12 单片机ATF16V8-25PC FLASH200门PIC16C54 512x12 单片机GAL16V8-25LP FLASH200门PCI16C56 512x12 单片机GAL16V8-25LPI 工业级FLASH200门PIC16C57 2048x12 单片机GALV8-20LD 军品级FLASH200门AT24C01 128x8串行EEPROM GAL16V8-15LP 军品级FLASH200门AT24C02 256x8串行EEPROM GAL16V8-15LPI 工业级FLASH200门AT24C04 512x8串行EEPROM PALCF20V8-25PC FLASH300门AT24C16 2Kx8串行EEPROM A TF20V8-25PC FLASH300门AT93C46 64x16串行EEPROM GAL20V8-25LP FLASH300门AT93C56 256x16串行EEPROM GAL20V8-25LPI 工业级FLASH门ATF16V8 FLASH200门GAL20V8-20LD 军品级门ATF20V8 FLASH300门高速GAL20V8-15LP 军品级门ATF22V10 FLASH500门高速低电流GAL20V8-15LPI 工业级FLASH门AT28C16 2Kx8CMOS并行EEPROM ATF22C10-25PC FLASH500门高速低电流AT28C17 2Kx8CMOS并行EEPROM ATF22C10-25PC FLASH500门高速低电流AT28C64 8Kx8并行EEPROM GAI22V10-25LP FLASH500门高速低电流AT28C256 32Kx8并行EEPROM PALCE22V10-15JC FLASH500门高速低电流AT28F010 128Kx8并行EEPROM 2716 8Kx8 NMOS EPROMA29C040 512Kx8 FLASH EEPROM 27C16 2Kx8 NMOS EPROMHM6116 2Kx8 CMOS 静态PAM 2732 4Kx8 NMOS EPROMHY6264 8Kx8 CMOS 静态RAM 27C32 4Kx8 NMOS EPROMHM6264 8Kx8 CMOS 静态RAM 2764F 8Kx8 NMOS EPROMIS62C64 8Kx8 高速CMOS 静态RAM 27C64F 8Kx8 NMOS EPROMHY62256 32Kx8 CMOS 静态RAM 2764ST 8Kx8 NMOS EPROMHM62256 32Kx8 CMOS 静态RAM 27C64ST 8Kx8 NMOS EPROMHM628128 128Kx8 CMOS 静态RAM 27C64NS 8Kx8 NMOS EPROMHM628256 256Kx8 CMOS 静态RAM 27128 16Kx8 NMOS EPROMHM628512 512Kx8 CMOS 静态RAM 27C128 16Kx8 NMOS EPROMHM628512 512Kx8 CMOS 静态RAM 27256 32Kx8 NMOS EPROMZ80 CP CTC PIO S10 27C256 32Kx8 NMOS EPROMLD8031AH 8位微处理器工业级MD27C256 16Kx8 CMOS EPROM8031 8位微处理器27HC256-45 16Kx8 高速CMOS EPROM80C31 8位CMOST微处理器27512 64Kx8 NMOS EPROM80C31NT 8位CMOST微处理器27C512 64Kx8 NMOS EPROMN80C31BH 8位CMOST微处理器贴片MD27C512 64Kx8 NMOS EPROMLD80C31BH 8位CMOST微处理器27HC512-45 64Kx 高速CMOS EPROM MD80C31BH 8位CMOST微处理器27C010 128Kx8 CMOS EPROM8032 8位微处理器27HC010-30 128Kx8 CMOS EPROMLD8032AH 8位CMOST微处理器27C020 256Kx8 CMOS EPROM80C32 8位CMOS微控制器27C040 512Kx8 CMOS EPROM8039 8位微控制器27HC040-30 512Kx8 CMOS EPROM80C39 8位微控制器27C080 1024Kx8 CMOS EPROM8051 8位微控制器2816 2Kx8 并行EEPROM80C51 8位CMOS微控制器28C16 2Kx8 CMOS 并行EEPROM80C552 8位微控制器2817 2Kx8 并行EEPROM80C552新8位微控制器28C17 2Kx8 CMOS 并行EEPROM8080 8位微处理器2864 8Kx8 并行EEPROM8085 8位NMOS微处理器28C64 8Kx8 CMOS 并行EEPROM80C85 8位NMOS微处理器28C64B15JC 8Kx8 CMOS 并行EEPROM 8086 16位NMOS微处理器28C256 32Kx8 CMOS 并行EEPROM80C86 CMOS 16位微处理器28F010 128Kx 高速并行EEPROM8087 数值协处理器2810 128Kx 高速并行EEPROM8088 8位HMOS微处理器28F020 256Kx 高速并行EEPROM80C88 CMOS 8位HMOS微处理器28F020-150 256Kx 高速并行EEPROM 8097 16位单片机28F256 32Kx 高速并行EEPROM8098 准16位微控制器28F256 32Kx 高速并行EEPROM8155 通用接口电路29C010 128Kx8 FLASH EEPROM81C55 CMOS通用接口电路29C040 512Kx8 FLASH EEPROM8212 时钟发生器和驱动器29F040-90 512Kx8 FLASH EEPROM8228 系统控制和总线驱动器AD1674KN 12位2KHZ带采保ADC8237 DMA控制器AD202JY 小型2KHZ隔离放大器82C37 CMOS DMA 控制器AD232JN 线路驱动接收器8243 扩展器AD521JD 电阻设置精密仪放器82C43 CMOS I/O扩展器AD574AJD 12位数模转换器8250 异步通信接口电路AD590JH 宽温度范围传感器82C50 CMOS 异步通信接口电路AD624AD 精密仪表放大器8251 串行通信接口电路AD650JN 低线性误差压频转换器MD8251A 异步通信接口电路ADC0804 8位A/D转换器82C51 CMOS 异步通信接口电路ADC0808 8位A/D转换器8253 可编程区间计数器ADC0809 8位A/D转换器82C53 CMOS 可编程区间计数器ADC0820 8位A/D转换器8254 可编程间隔定时器DAC0808 8位A/D转换器83C54 CMOS 可编程间隔定时器DAC0832 8位A/D转换器LP82C54 CMOS 可编程间隔定时器DAC1210 12位A/D转换器8255 可编程外围并行接口电路MAX1487CPA ESD保护RS-485MD8255A 可编程外围并行接口电路MAX1202CPE RS-232接口电路82C55 CMOS 可编程外围并行接口MAX232CPA RS-232接口电路8257 可编程DMA控制器MAX485CPA RS-485接口电路8259 可编程中段控制器MAX488CPA RS-485接口电路82C59 CMOS 可编程中段控制器MAX706CPA UP监控电路8279 可编程键盘显示器接口电路MAX7219CNA 8位显示驱动器82C79 CMOS 8279 MAX756CPA UP监控电路8282 8位锁存器MAX483 UP监控电路8283 8位锁存器TDA1521 低电平检测宽带放大器8284 时钟发生器和驱动器TDA2003A 单功率放大器5-10W 8286 8位总线收发器TDA2030A 单功率放大器>10W8287 8位总线收发器TDA2822 桑苗双功率放大器8288 总线控制器87C552 8位微控制器82C88 CMOS 总线控制器89C1051PC 1K8位FLASH单片机8748 8位微控制器89C2051PC 2K8位FLASH单片机8749 8位微控制器89C2051PI 2K8位FLASH单片机8751 8位微控制器89C51PC 4K8位FLASH单片机87C51 CMOS 8位控制器89C51PI 4K8位FLASH单片机87C51FA CMOS 8位微控制器89C52PC 2K8位FLASH单片机87C52 87C51加强型89C52PI 2K8位FLASH单片机89C55PC 20Kx8位89C52JC 2K8位FLASH单片机。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一种基于MC145027的群模拟信号检测系统作者:杭州商学院信息与电子工程系朱金刚李挺姜田华来源:《国外电子元器件》
摘要:介绍一种基于MC145027的群模拟信号检测系统,该系统可通过单信号线将各探头和主机连接起来,其探头的路数最多可达242路;MC145027特殊的设码方式可使数据在传输过程中具有极高的可靠性,这在强电磁干扰的工业现场具有较高的应用价值。
关键词:多点检测;单信号线;可靠性;MC145026;MC145027
在工业自动化控制系统中,往往需要对多点模拟量进行检测,传统的方法是在各检测点设置传感器 ,并以三线或二线连接到主机,通过多路模拟开关和模数转换器件对各个模拟量进行模数转换,取得相应的数据以供主机处理。
这种方法存
在如下缺陷:
·模拟电压在通过电缆传到主机的过程中容易受
到干扰;
·主机要通过模拟开关选择传感器,这使探头的
路数受到限制,主机的接口电路比较复杂;
·主机无法向各检测点传送控制指令;
·如果在检测点增加一个传感器,就必须增加一根电缆连至主机,因而增加了布线的复杂程度;
针对上述问题,笔者设计了一套基于MC145027的群模拟信号检测系统,使主机和各个探头之间只通过三根线即可进行双向的数据传输(如图1所示)。
由于MC145027特殊的译码方式能够消除瞬间的强电磁干扰,因而数据在传输过程中具有很高的可
靠性。
1. MC145027的解码方式
MC145027通常用作解码器,与之搭配使用的编码器为
MC145026。
为了说明MC145027的解码方式,这里首先介绍一下
MC145026的编码方式。
1.1MC145026的编码
集成编码器CM145026的
引脚功能和外部电路如图2
所示。
A1~A9是地址或数
据输入端,当作地址使用时有
三个状态 (高电平、开路、
低电平),当作数据使用时
有两种状态(高电平、低电平);、的数值决定MC145026内部时钟振荡器的工作频率;TE是内部时钟振荡器的工作控制端,当TE为低电平时,振荡器工
作;的输出编码信号如图3所示,两个连续的宽脉冲(占空比7:1)表示“1”,两个连续的窄脉冲(占空比1:7)表示“0”,一宽一窄两个脉冲表示“开路”。
发送时,先发送17.5个时钟周期的低电平, 接着依次发送A1~A2的状态编码,如果A1~A9的状态编码发送完毕后TE 依然是低电平,经过24个时钟周期后再依次发送 A1~A9的状态编码。
其编码的发送工作不管TE在何时由低电平变为高电平,均必须等到当前发送周期结束以后才能停止[1]。
1.2MC145027的解码方式
MC145027是与MC145026配套使用的解码器(MC145027/145028)
的一种,具有4位数据输出和5位地址编码,根据其地址的不同组合
可以产生种不同的地址编码。
根据其地址的不同组合可以产
生种不同的地址编码。
MC145027的引脚功能和外部电路如
图4所示,其功能框图如图5所示。
MC145027通过RC积分电路来完成宽窄脉冲的识别,图5中,定时
元件R1、C1决定对宽窄脉冲的识别。
R2、
C2是整个发送周期的辨别定时元件,用以确定各个有效单字,。
当编码信号从数据输入端(9脚)输入时,6 脚将出现与9脚相同的信号,该信号经R1、C1积分电路积分后由7脚送至数据提取电路,数据提取电路在输入信号的每一个上升沿通过检测 7脚的状态来判断输入的是宽脉冲还是窄脉冲。
图6给出了6脚和7脚信号的波形,假定数据输入端输入的是“开路”编码(即一个宽脉冲和一个窄脉冲),宽脉冲开始于t0时刻,结束于t1时刻,窄脉冲开始于t2时刻,结束于t3时刻,整个编码于t4时刻结束。
那么,在t1时刻,7
脚的电压为:
在
此时刻,数据提取电路检测到的7脚电平为高
电平,说明上一个脉冲为宽脉冲;此后窄脉冲
通过 R1给C1充电,在窄脉冲结束时的t3时
刻,7脚的电压为0.74Vcc,在此后的一段时间
里C1通过R1放电,在编码结束的t4时刻,7
脚的电压为0.1Vcc。
此时数据提取电路检测到
7脚的电平为低电平,说明上一个脉冲为窄脉
冲。
由此可见MC145027并不是对接收到的脉
冲信号直接进行解码,而是将输入信号积分后
进行解码,由于积分电路能滤除瞬间的尖脉冲干扰,因此MC145027接收的编码信号即使受到某种程序的干扰,MC145027依然能够进行正确的解码,这一点对于环境复杂的工业现场特别重要。
2. 系统硬件电路的设计
该检测系统的硬件电路包括探头电
路和主机接口电路两部分,主机和探
头之间传输的格式遵循MC145026的
编码格式。
2.1探头电路
探头电路的原理框图如图7所示。
主机发送至探头的编码信号线经过信号传至各个探头,经放大整形电路处理后送到
MC145027进行解码,当地址判断一致后,VT由低变高向单片机申请中断,由单片机读取解
码后的数据, MC145027能够解出4位数据码,4位二进制的数据码可以表示种命令,单片机根据命令的要求将采集到的数据(温度、压力、湿度等)按照 MC145026的编码格式由P1.7输出,再经过驱动电路回送至主机。
2.2主机接口电路
以486或586微机作为主机,通过并行打印口与探头交换数据的主机接口电路如图8所示。
MC145027 的A1~A5引脚的状态决定主机的地址码(00000),D6~D9分别和主机打印口的引脚13、12、10、11相连,上述4个引脚为打印机的状态输入口,口地址为 379H(279H),分别对应于主机数据总线的D4~D7。
主机通过打印口的14脚(口地址37AH/27AH,对应于数据位D1)向各个探头发送命令,探头接到命令后向主机回传所要求的数据,并通过
MC145027解码后由主机读取。
MC145027的VT引脚接至打印口的1脚(口地址
37AH/27AH,对应于数据位D0),主机通过定时检测VT脚的状态来判断是否有应答数据到来。
3. 软件的设计
3.1数据格式的定义
根据MC145026的编码格式,在一个发送周期里可以发送9位数据信息,我们定义A1~A5为探头和主机的地址信息,由于总共可表示243个地址码,而主机的地址码定义为00000,因而其余242个地址码可供探头使用; 在主机发至探头的编码里,除了A1~A5表示探头的地址之外,尚
有A6~A9共4位可以表示控制命令,共可组成个命令码,设计时可以根据系统的要求将这16个命令码一一定义,以供系统使用。
在探头发往主机的编码里,前五位A1~A5是固定格式00000 ,表示主机的地址号,后四位A6~A9表示发往主机的数据,一个字节分两次发送,先发高半字节(高四位),再发低半字节(低四位)。
3.2探头地址码的设置
MC145027的地址输入脚(A1~A5)有三个状态(高电平、平路、低电平)也就是说地址线是三进制数据,而单片机的 I/O口是二进制状态(二进制数据格式),在探头电路中,为了使单片机发送的地址码与 MC145027的地址码相对应,单片机必须能自动检测自身的地址。
在图7所示的电路中,P1.0~P1.6作为地址设定脚,它们所表示的地址信息应与 MC145027的地址(A1~A5)相同,这涉及到二进制到三进制转换的问题。
由于表示243个地址需要8 位二进制数据,而单片机只有7位地址设定脚,另外的一位(最高位)只能由程序设定。
这样探头的地址就可以比较灵活地设置,因而具有一定的通用性。
3.3单片机的软件设计
探头电路中的单片机主要用来完成以下几个功能:(1)完成探头电路的自检;(2)接收并执行主机发来的控制命令;(3)根据主机的命令完成相应的动作;(4)按照MC145026 的编码格式向主机发送数据。
3.4主机软件的设计
主机软件是整个控制系统的核心,在这里我们只讨论和探头通信有关的内容。
在主控软件中设置一个定时中断程序,以定时检测 MC145027的VT脚的状态,当VT脚由低电平变为高电平时,通过读取379H/279H口的内容来接收探头发来的数据。
当主机向各探头发送命令时,就可通过并行打印口的 14脚发送控制命令编码。
主机命令码的发送格式也应遵循MC145026的编码格式。
4. 结束语
利用MC145027独特的解码方式能有效地克服工业现场的强电磁干扰,保证数据的可靠传输,利用单片机(或 486/586主机)模仿MC145026发送编码数据可有效地利用系统资源,节药成本,提高整个系统的可靠性。