两圆的公共弦(新高二)

合集下载

圆公共弦定理证明

圆公共弦定理证明

圆公共弦定理证明圆的十八个定理1、圆心角定理:在同圆或等圆中,相等的圆心角所对弧相等,所对的弦相等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形3、垂径定理:垂直弦的直径平分该弦,并且平分这条弦所对的两条弧。

推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧推论2:圆的两条平行弦所夹的弧相等4、切线之判定定理:经过半径的外端并且垂直于该半径的直线是圆的切线。

5、切线长定理:从圆外一点引圆的两条切线,他们的切线长相等,这一点与圆心的连线平分这两条切线的夹角。

6、公切线长定理:如果两圆有两条外公切线或两条内公切线,那么这两条外公切线长相等,两条内公切线长也相等。

如果他们相交,那么交点一定在两圆的连心线上。

7、相交弦定理:圆内两条弦相交,被交点分成的两条线段长的乘积相等。

8、切割线定理:从圆外一点向圆引一条切线和一条割线,则切线长是这点到割线与圆的两个交点的两条线段长的比例中项。

9、割线长定理:从圆外一点向圆引两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

10、切线的性质定理:圆的切线垂直于经过切点的半径推论1:经过圆心且垂直于切线的直线必经过切点推论2:经过切点且垂直于切线的直线必经过圆心11、弦切角定理:弦切角等于它所夹的弧对的圆周角推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等12、定理:相交两圆的连心线垂直平分两圆的公共弦13、定理:把圆分成n(n≥3):(1)依次连结各分点所得的多边形是这个圆的内接正n边形2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形14、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆15、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆16、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形17、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

两圆的公共弦(新高二)

两圆的公共弦(新高二)

两圆的公共弦(新高二)如果两圆C1:x2+y2+D1x+E1y+F1=0与C2:x2+y2+D2x+E2y+F2=0相交,则对应一条公共弦AB,将这两圆的方程相减可以得到(D1−D2)x+(E1−E2)y+(F1−F2)=0,因为两圆相交,所以D1−D2与E1−E2不同时为零,从而得到的方程表示一条直线,且两圆的公共点A,B的坐标满足圆的方程,故必满足直线的方程,从而知A,B在此直线上,故此直线就是两圆的公共弦所在的直线.结论如果两圆C1:x2+y2+D1x+E1y+F1=0与C2:x2+y2+D2x+E2y+F2=0相交,则公共弦所在直线的方程为(D1−D2)x+(E1−E2)y+(F1−F2)=0.由这个结论我们可以给出“求圆外一点对应的切点弦方程”的另一个方法:过圆C:(x−a)2+(y−b)2=r2外一点P(x0,y)作圆的两条切线PA,PB,其中A,B为切点,求切点弦AB所在的直线方程.解因为∠PAC=∠PBC,所以P,A,C,B四点共圆,且PC为直径,所以这四点所在的圆的方程为(x−a)(x−x0)+(y−b)(y−y)=0,记此圆为圆M.则圆C与圆M的公共弦就是切点弦,两圆的方程相减即得切点弦所在直线的方程(x0−a)(x−a)+(y−b)(y−b)=r2.注上面的过程中用到:以(x1,y1),(x2,y2)为直径的圆的方程为(x−x1)(x−x2)+(y−y1)(y−y2)=0,这个结论也是圆中常见的结论,很容易证明.例题一(1)圆C1:x2+y2+4x+1=0及圆C2:x2+y2+2x+2y+1=0的公共弦长为_____,以公共弦为直径的圆的方程为______________;(2)若圆(x−a)2+(y−b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a,b满足的关系是__________________.分析与解(1)两圆相减得x−y=0,第二个圆的圆心(−1,−1)恰在公共弦上,所以公共弦为第二个圆的直径,从而知公共弦长为2,以公共弦为直径的圆的方程为x2+y2+2x+2y+1=0,(2)两圆相减得公共弦所在直线的方程为(2+2a)x+(2+2b)y−(a2+1)=0,由题意知,公共弦始终为第二个圆的直径,即第二个圆的圆心(−1,−1)始终在公共弦上,代入整理得a2+2a+2b+5=0.例题二圆O:x2+y2=4与圆C:x2+y2−8x+8=0的公共弦为AB,则四边形OACB的面积为_____.21AB=49-4=27, 故公共弦AB=7.又因为AB⊥OC ,所以所求四边形面积S=21⋅OC ⋅AB=27.注“将两个圆的方程相减得到的方程是公共弦方程”的前提是两圆相交.当两圆相切时,方程相减得到的直线为两圆的一条公切线;当两圆相离时,方程相减得到的直线仍然与圆心连线垂直,且两圆的公切线的中点均在直线上.事实上,这条直线是这两个圆的根轴,即这条直线是到两圆的圆幂相等的点的集合(点P对圆O的圆幂定义为PO2−r2,其中r为圆O的半径).。

2024年高中数学新高二暑期衔接讲义第12讲直线与圆、圆与圆的位置关系(十大题型)(学生版)

2024年高中数学新高二暑期衔接讲义第12讲直线与圆、圆与圆的位置关系(十大题型)(学生版)

第12讲直线与圆、圆与圆的位置关系【题型归纳目录】题型一:不含参数(含参数)的直线与圆的位置关系题型二:由直线与圆的位置关系求参数、求直线与圆的交点坐标题型三:切线与切线长问题题型四:弦长问题题型五:判断圆与圆的位置关系题型六:由圆的位置关系确定参数题型七:公共弦与切点弦问题题型八:公切线问题题型九:圆中范围与最值问题题型十:圆系问题【知识点梳理】知识点一:直线与圆的位置关系1、直线与圆的位置关系:(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点.2、直线与圆的位置关系的判定:(1)代数法:判断直线/与圆。

的方程组成的方程组是否有解.如果有解,直线/与圆。

有公共点.有两组实数解时,直线/与圆C相交;有一组实数解时,直线/与圆C相切;无实数解时,直线/与圆c相离.(2)几何法:由圆C的圆心到直线I的距离日与圆的半径尸的关系判断:当d<r时,直线/与圆。

相交;当d=r时,直线/与圆。

相切;当d>r时,直线/与圆。

相离.知识点诠释:(1)当直线和圆相切时,求切线方程,一般要用到圆心到直线的距离等于半径,记住常见切线方程,可提高解题速度;求切线长,一般要用到切线长、圆的半径、圆外点与圆心连线构成的直角三角形,由勾股定理解得.(2)当直线和圆相交时,有关弦长的问题,要用到弦心距、半径和半弦构成的直角三角形,也是通过勾股定理解得,有时还用到垂径定理.(3)当直线和圆相离时,常讨论圆上的点到直线的距离问题,通常画图,利用数形结合来解决.知识点二:圆的切线方程的求法1、点M在圆上,如图.M法一:利用切线的斜率%与圆心和该点连线的斜率幻肱的乘积等于-1,即k OM•吟=—L.法二:圆心。

到直线/的距离等于半径尸.2、点(Jr。

,%)在圆外,则设切线方程:y-y0=^(x-x0),变成一般式:kx-y+y Q-kx Q=O,因为与圆相切,利用圆心到直线的距离等于半径,解出奴知识点诠释:因为此时点在圆外,所以切线一定有两条,即方程一般是两个根,若方程只有一个根,则还有一条切线的斜率不存在,务必要把这条切线补上.常见圆的切线方程:(1)过圆f+,2二广上一点尸(柘为)的切线方程是x0x+y0y=r2;(2)过圆(x-。

两圆的“公共弦”——探究性教学案例

两圆的“公共弦”——探究性教学案例


。) = ;
I / ./z / l 0 /
\、 . LE ,
{,
生发言) 学生 5从学生 3 : 的解题过程中发现, 将两圆 的方程相减得 4 十3 y=3 , 0 恰好与最终解得的 直线 A B的方程一致. 老师: 这是巧合吗?能否说 明其中的理 由? 学生 5借助引例的结论 , : 由于 A 、B是两圆 的公 共点,则 A、 B两 点的坐 标一定满足方 程
比、 拓展, 进行大胆猜测, 这正是我们进行探究性 学习必需具备 的素质与意识, 我们如何来验证他 的猜想是否正确呢?
学生9设此直线上任一点 G(,) 则 b= : a6,
[ La - t

两圆的公切线( 经过两圆的切点) .
从 G向QC与 (D分别 引切线G G D 及 F,

[ 十3 +(+1 ) Y ) 3] ( )+(一 一10一【 一5 。 Y 5 一5] , ) 0 =0 即满足方程4 +3 y=3, 0 而此
方程表示直线, 因此, 它就是 直线 A B的方程, 这 不是巧合.
图1
学生 1由圆的几何性质可知: D .A 且 : C 1 B, _
自主学 习、探 究活动, 让学 生体验数学发现和创
造的历程, 发展他们的创新意识.因此, 我们在 老师: 若设(C: X )+( +1 =1 , D ( +3。 ) 3 2 0 教学中应充分挖掘教材中的问题背景, 为学生们 oD的方程不变, 如何求它们的公共弦长? 提供 自主学 习、 探索创新 的时间与空间, 从而有 学生 2此 时两 圆的半 径不相等,在三角形 : 效地培养起学生的数学 思维能力和创新意识. B D中,C = 1, B = 5 ,B I C IDI 0 I DI IC = 下面是本人以两圆的“ 公共弦” 为背景的一堂 、 3, / 0 通过解方程可得 I HI 7 则 lB = , 1 B = , A I 教学实录, 意在尝试如何引导学生进行 自主性学 2 HI 4 1 =1. B 习与探 究性活动. 学生3可 以先求出直线 A : B的方程, 再求出

高中数学两圆间的公共弦的应用

高中数学两圆间的公共弦的应用

当该圆心在直线x-y-4=0上时,即
∴ 所求圆方程为 x2+y2-x+7y-32=0
例题求证:两椭圆b²x²+a²y²=a²b², a²x²+b²y²=a²b²的交点在以原点为中心的圆周上,并求这个圆方程。
解:将已知的两椭圆方程相加,得
x2

y2

2a2b2 a2 b2
拓展
例题 : 求与圆x2 y2 - 4x - 2 y - 20 0切于A(-1,-3),且过B(2,0)的圆的方程. 解(一) : 视A(-1,-3)为圆(x 1)2 ( y 3)2 r 2 当r 0 时的极限圆(x 1)2 ( y 3)2 0,
2.若圆(x-a)²+(y-b)²=b²+1始终平分圆(x+1)²+(y+1)²=4的周长,则a,b满足的关系是_________________
例题:求经过两条曲线x²+y²+3x-y=0和3x²+3y²+2x+y=0交点的直线方程。
{ 常规解法:
3①-②可得7x-4y=0
由上题可知:如果两条曲线f1(x,y)=0和f2(x,y)=0,它们的交点P(x0,y0),则方程f1(x,y)+ f2(x,y)=0的曲 线也经过P(x0,y0)( 是任意数)。
构造圆系 x2 y2 - 4x - 2 y - 20 [(x 1)2 ( y 3)2 ] 0 代入(2,0)可得 4 , 所以所求方程为
3 7x2 7 y2 - 4x 18y - 20 0 解(二):过A(-1,-3)的圆的切线为3x 4 y 15 0。与已知圆构造圆系
02 拓展

弦长公式在相交两圆中的运用

弦长公式在相交两圆中的运用

弦长公式在相交两圆中的运用-CAL-FENGHAI.-(YICAI)-Company One1弦长公式在相交两圆中的运用重庆市永川区第六中学校 潘祥万(402182)问题:求两圆04026,010102222=-+++=--+y x y x y x y x 的公共弦的长。

(高二数学(上),人教版,P 88 24题)对于此题,我们很多时候都是把这两个方程联立组成方程组,求出其交点坐标,再根据两点间的距离公式求解,这是一种常规解法。

下面,我想就相交两圆公共弦长公式的推导及运用谈点个人看法。

一、弦长公式的推导在初中,我们就知道两圆相交时弦长的求法。

对于高中数学中的相交两圆弦长如何求,大部分学生感到不知所措,甚至解题的方向也把握不准,基于此,我在教学中,我在引领学生回忆初中知识的同时,让学生把所学的知识在头脑中重组、建构,形成一定的网络,更好地为教学服务。

推导:对于圆的一般方程:022=++++F Ey Dx y x (其中0422>-+F E D )和圆的标准方程:222)()(R b y a x =-+-。

这是我们应该熟悉的两个方程,要求学生必须能够互化。

如果两圆222)()(r b y a x =-+-和222)()(R b y a x ='-+'-相交,求公共弦长。

在这里必须引导学生对问题进行分析,看它圆心在弦的同旁,还是两旁。

(一)、两圆心在公共弦的两旁时,公共弦长AB 的求法如图1:设相交两圆的圆心分别为O ),(b a ,),(b a O ''',半径分别为R r ,,圆心距(O O ')为d ,则在Rt △ACO 与Rt △AC O '中有222222,AC O A C O OC AO AC -'='-=,又O O '=OC+C O '=d ,∴C O '=d -OC,∴222222)(,AC R OC d OC r AC -=--=,∴22222)(AC R AC r d -=--,其中22)()(b b a a d -'+-'=图1化简得:AB=2AC=[][]d r R d d r R 2222)()(---+ )(r R ≥ ① (二)、两圆心在公共弦的同旁时,公共弦长AB 的求法如右图,设相交两圆的圆心分别为O ),(b a ,),(b a O ''',半径分别为)(,r R R r ≥,圆心距(O O ')为d (22)()(b b a a d -'+-'=),则在Rt △ACO 与Rt △AC O '中,同理得: [][]d r d R R r d AB 2222)()(---+= ② 说明:内切、外切时上两式也成立,只不过AB=0。

两圆的公共弦方程的求法与应用

两圆的公共弦方程的求法与应用

两圆的公共弦方程的求法与应用【推导结论】求经过两条曲线x 2+y 2+3x -y=0和3x 2+3y 2+2x+y=0交点的直线方程.常规解法是: 联立方程⎪⎩⎪⎨⎧=+++=-++)2(0233)1(032222y x y x y x y x求方程组解 )3(047)2(3)1(=--⨯y x 得得代入即),1(,47x y =2212497430,0,16413x x x x x x ++-===-解得 211240133;.0713x x y y ⎧=-⎪=⎧⎪⎨⎨=⎩⎪=-⎪⎩分别代入(),得即两交点坐标为 A(0,0), ).137,134(--B 过两交点的直线方程为 7x -4y=0. (4)由上面(1),(2)得到(3),这是解方程的基本步骤,我们可得以下结论结论1: 如果两条曲线方程是 f 1(x,y)=0 和 f 2(x,y)=0, 它们的交点是P(x 0,y 0),则 方程 f 1(x,y)+λf 2(x,y)=0的曲线也经过P(x 0,y 0) (是任意常数).有了这个结论,有些题目可快速求解。

过两圆交点的公共弦所在直线方程就是将两圆方程联立消去二次项所得方程。

【应用结论】例1 求经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点,并且圆心在直线x -y -4=0上的圆的方程.【解析】构造方程 x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0即 (1+λ)x 2+(1+λ)y 2+6x+6λy -(4+28λ)=0此方程的曲线是过已知两圆交点的圆,且圆心为)13,13(λλλ+-+-当该圆心在直线x -y -4=0上时,即 .7,041313-==-+++-λλλλ得 ∴所求圆方程为 x 2+y 2-x+7y -32=0例3 求证:两椭圆b 2x 2+a 2y 2=a 2b 2, a 2x 2+b 2y 2=a 2b 2的交点在以原点为中心的圆周上,并求这个圆方程.【解析】将已知的两椭圆方程相加,得 2222222b a b a y x +=+.此方程为以原点为圆心的圆的方程,由曲线系知识知该圆过已知两椭圆的交点。

高二数学复习考点知识与题型专题讲解13---圆与圆的位置关系

高二数学复习考点知识与题型专题讲解13---圆与圆的位置关系

高二数学复习考点知识与题型专题讲解2.5.2 圆与圆的位置关系【考点梳理】考点一:两圆的位置关系及其判定(1)几何法:若两圆的半径分别为r 1,r 2,两圆连心线的长为d ,则两圆的位置关系如下:位置关系外离外切相交内切内含图示d 与r 1,r 2的关系 d >r 1+r 2 d =r 1+r 2|r 1-r 2|< d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|(2)代数法:设两圆的一般方程为C 1:x 2+y 2+D 1x +E 1y +F 1=0(D 21+E 21-4F 1>0),C 2:x 2+y 2+D 2x +E 2y +F 2=0(D 22+E 22-4F 2>0),联立方程得⎩⎨⎧x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0,则方程组解的个数与两圆的位置关系如下:方程组解的个数 2组 1组 0组 两圆的公共点个2个1个0个【题型归纳】题型一:判断圆与圆的位置关系1.(2022·全国·高二课时练习)已知圆221:210()C x y x my m +-++=∈R 的面积被直线210x y ++=平分,圆222:(2)(3)25C x y ++-=,则圆1C 与圆2C 的位置关系是( )A .外离B .相交C .内切D .外切2.(2022·江苏·高二课时练习)已知圆221:()()4C x a y b -+-=(a ,b 为常数)与222:20C x y x +-=.若圆心1C 与圆心2C 关于直线0x y -=对称,则圆1C 与2C 的位置关系是( )A .内含B .相交C .内切D .相离3.(2022·天津市第九十五中学益中学校高二期末)圆222830x y x y +++-=与圆()()22225x y -+-=的位置关系为()A .外切B .内切C .相交D .相离题型二:求圆的交点坐标4.(2021·全国·高二课时练习)圆心在直线x ﹣y ﹣4=0上,且经过两圆x 2+y 2﹣4x ﹣3=0,x 2+y 2﹣4y ﹣3=0的交点的圆的方程为( ) A .x 2+y 2﹣6x +2y ﹣3=0B .x 2+y 2+6x +2y ﹣3=0C .x 2+y 2﹣6x ﹣2y ﹣3=0D .x 2+y 2+6x ﹣2y ﹣3=05.(2021·江苏·高二专题练习)若圆C 的圆心在直线40x y --=上,且经过两圆22460x y x +--=和22460x y y +--=的交点,则圆C 的圆心到直线3450x y ++=的距离为( ) A .0B .85C .2D .1856.(2022·山西·运城市景胜中学高二阶段练习(文))设点(1,0)A ,(4,0)B ,动点P 满足2||||PA PB =,设点P 的轨迹为1C ,圆2C :22((3)4x y +-=,1C 与2C 交于点,M N ,Q 为直线2OC 上一点(O 为坐标原点),则MN MQ ⋅=( )A .4B .C .2D题型三:圆与圆的位置关系求参数范围7.(2022·全国·高二课时练习)已知圆()()()22:140C x y m m ++-=>和两点()2,0A -,()10B ,,若圆C 上存在点P ,使得2PA PB =,则m 的取值范围是( )A .[8,64]B .[9,64]C .[8,49]D .[9,49]8.(2022·全国·高二课时练习)若圆()()2221:10C x y r r +-=>上存在点P ,且点P 关于直线y =x 的对称点Q 在圆()()222:211C x y -+-=上,则r 的取值范围是( )A .1⎤⎦B .C .⎡⎣D .(]0,19.(2022·江苏·高二课时练习)已知圆1O :2216x y +=和圆2O :22268240x y mx my m +--+=有且仅有4条公切线,则实数m 的取值范围是( )A .()(),11,-∞-⋃+∞B .()1,1-C .()(),23,-∞-⋃+∞D .()2,3- 题型四:圆与圆的位置求圆的方程10.(2022·全国·高二单元测试)若圆22210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点(,)C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程是()A .24480y x y -++=B .22220y x y +-+=C .24480y x y +-+=D .2210y x y ---=11.(2022·全国·高二课时练习)已知圆221:64120C x y x y +-++=与圆222:1420C x y x y a +--+=,若圆1C 与圆2C 有且仅有一个公共点,则实数a 等于A .14B .34C .14或45D .34或1412.(2019·安徽马鞍山·高二期中)已知半径为1的动圆与圆C :()()225316x y +++=相切,则动圆圆心的轨迹方程是( )A .()()225325x y +++=B .()()225325x y -+-=或()()22539x y -+-= C .()()22539x y -+-=D .()()225325x y +++=或()()22539x y +++=题型五:圆的公共弦长问题(参数、弦长问题)13.(2022·全国·高二专题练习)已知圆221:420C x y x y +-+=与圆222:240C x y y +--=相交于A 、B 两点,则圆()()22:331C x y ++-=上的动点P 到直线AB 距离的最大值为( )A1B .1C .12+D 1 14.(2022·四川资阳·高二期末(理))已知圆221:20C x y x ++=,圆222:60C x y y +-=相交于P ,Q 两点,其中1C ,2C 分别为圆1C 和圆2C 的圆心.则四边形12PC QC 的面积为( )A .3B .4C .6D .15.(2021·广东·人大附中深圳学校高二期中)若圆221:4C x y +=与圆()222:2600C x y ay a ++-=>的公共弦长为=a ( )A .1B .1.5C .2D .2.5题型六:圆的共切线问题16.(2022·全国·高二专题练习)已知圆()()22:211M x y -+-=,圆()()22:211N x y +++=,则下列不是M ,N 两圆公切线的直线方程为( ) A .0y =B .430x y -=C .20x y -=D .20x y +17.(2022·江苏·高二课时练习)若直线l 与圆()221:11C x y ++=,圆()222:14C x y -+=都相切,切点分别为A 、B ,则AB =( )A .1B.18.(2022·江苏·高二课时练习)在平面直角坐标系xOy 中,圆1C :222660x y x y ++-+=与圆2C :224240x y x y +-++=,则两圆的公切线的条数是( ) A .4条B .3条C .2条D .1条题型七:圆与圆位置关系的综合类问题19.(2022·陕西·武功县普集高级中学高二阶段练习(理))已知圆C :22240x y x y m +--+=.(1)若圆C 与圆D :22(2)(2)1x y +++=有三条外公切线,求m 的值;(2)若圆C 与直线20x y +-=交于两点M ,N ,且OM ON ⊥(O 为坐标原点),求m 的值.20.(2022·全国·高二单元测试)已知圆1C :²²4230x y x y +---=,圆2:?²20C x y x m +-+=,其中51m -<<.(1)若1m =-,判断圆1C 与2C 的位置关系,并求两圆公切线方程(2)设圆1C 与圆2C 的公共弦所在直线为l ,且圆2C 的圆心到直线l 的距离为2,求直线l 的方程以及公共弦长21.(2021·江苏·高二专题练习)已知圆221:(1)1C x y -+=与圆222:80C x y x m +-+=.(1)若圆1C 与圆2C 恰有3条公切线,求实数m 的值;(2)在(1)的条件下,若直线0x n +=被圆2C 所截得的弦长为2,求实数n 的值.【双基达标】一、单选题22.(2021·黑龙江·勃利县高级中学高二期中)两圆224210x y x y +-++=与224410x y x y ++--=的公切线有( )A .1条B .2条C .3条D .4条23.(2019·江西省大余县新城中学高二阶段练习)圆221:430C x y x +-+=与圆222:(1)(4)C x y a ++-=恰有三条公切线,则实数a 的值是( )A .4B .6C .16D .3624.(2022·全国·高二课时练习)圆1O 的方程为()()22231x y ++-=,圆2O 的圆心为()21,7O .(1)若圆2O 与圆1O 外切,求圆2O 的方程;(2)若圆2O 与圆1O 交于A 、B 两点,且AB =2O 的方程.25.(2022·全国·)已知圆1C 与y 轴相切于点(03),,圆心在经过点(21),与点(23)--,的直线l 上. (1)求圆1C 的方程;(2)若圆1C 与圆222:6350C x y x y +--+=相交于M ,N 两点,求两圆的公共弦长.【高分突破】一:单选题26.(2021·黑龙江·双鸭山一中高二阶段练习)以下四个命表述正确的是( )个①若点()1,2A ,圆的一般方程为222410x y x y ++-+=,则点A 在圆外 ②圆C :2228130+--+=x y x y 的圆心到直线4330x y -+=的距离为2 ③圆1C :2220x y x ++=与圆2C :224840x y x y +--+=恰有三条公切线④两圆22440x y x y ++-=与222120x y x ++-=的公共弦所在的线方程为:260x y ++= A .1B .2C .3D .427.(2021·江苏·高二专题练习)已知圆()221:24C x a y ++=与圆()22:1C x y b +-=有且仅有1条公切线,则2211a b +的最小值为( ) A .6B .7C .8D .928.(2017·江西南昌·高二阶段练习(文))与圆222212:26260,:4240C x y x y C x y x y ++--=+-++=都相切的直线有A .1条B .2条C .3条D .4条29.(2022·全国·高二课时练习)已知Rt PAB 的直角顶点P 在圆(()22:11C x y +-=上,若点(),0A t -,()(),00B t t >,则t 的取值范围为( ) A .(]0,2B .[]1,2C .[]2,3D .[]1,330.(2022·全国·高二)已知半径为1的动圆与圆()()225716x y -++=相切,则动圆圆心的轨迹方程是( ) A .()()225725x y -++=B .()()225717x y -+-=或()()225715x y -++=C .()()22579x y -+-=D .()()225725x y -++=或()()22579x y -++=二、多选题31.(2022·江苏·南京市中华中学高二开学考试)已知圆()()221:1311C x y -+-=与圆2222:2230C x y x my m ++-+-=,则下列说法正确的是( )A .若圆2C 与x 轴相切,则2m =B .若3m =-,则圆C 1与圆C 2相离C .若圆C 1与圆C 2有公共弦,则公共弦所在的直线方程为()246220x m y m +-++=D .直线210kx y k --+=与圆C 1始终有两个交点32.(2022·全国·高二专题练习)圆221:20+-=Q x y x 和圆222:240++-=Q x y x y 的交点为A ,B ,则( )A .公共弦AB 所在直线的方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦AB 的长为2D .P 为圆1Q 上一动点,则P 到直线AB 1+ 33.(2022·江苏·高二单元测试)设有一组圆()()()22:4R k C x k y k k -+-=∈,下列命题正确的是( )A .不论k 如何变化,圆心k C 始终在一条直线上B .存在圆kC 经过点(3,0) C .存在定直线始终与圆k C 相切D .若圆k C 上总存在两点到原点的距离为1,则k ⎛∈⋃ ⎝⎭⎝⎭34.(2022·重庆市实验中学高二期末)已知直线l :10kx y k --+=与圆C :()()222216x y -++=相交于A ,B 两点,O 为坐标原点,下列说法正确的是( )A .AB 的最小值为.若圆C 关于直线l 对称,则3k =C .若2ACB CAB ∠=∠,则1k =或17k =-D .若A ,B ,C ,O 四点共圆,则13k =-35.(2022·江苏南通·高二期末)已知圆1O :225x y +=和圆2O :22(4)13x y -+=相交于A ,B 两点,且点A 在x 轴上方,则( ) A .||4AB =B .过2O 作圆1O 的切线,切线长为C .过点A 且与圆2O 相切的直线方程为3210x y -+=D .圆1O 的弦AC 交圆2O 于点D ,D 为AC 的中点,则AC 的斜率为7236.(2022·广东·高二阶段练习)已知点(),P x y 是圆()22:14C x y -+=上的任意一点,直线()):1130l m x y m ++-=,则下列结论正确的是( ) A .直线l 与圆C 的位置关系只有相交和相切两种 B .圆C 的圆心到直线l C .点P 到直线43160++=x y 距离的最小值为2D .点P 可能在圆221x y +=上37.(2022·河北石家庄·高二期末)设m R ∈,直线310mx y m --+=与直线310x my m +--=相交于点(,)P x y ,线段AB 是圆22:(2)(1)9C x y +++=的一条动弦,Q 为弦AB 的中点,||AB = )A .点P 在定圆22(2)(2)8x y -+-=上B .点P 在圆C 外C .线段PQ 长的最大值为6D .PA PB ⋅的最小值为15-38.(2022·浙江省杭州学军中学高二期中)过点(A 作圆221:4C x y +=的切线l ,P是圆222:40C x y x +-=上的动点,则下列说法中正确的是( )A .切线l 40y -+=B .圆1C 与圆2C 的公共弦所在直线方程为1x = C .点P 到直线l 的距离的最小值为1D .点O 为坐标原点,则AO OP ⋅的最大值为4 三、填空题39.(2022·江苏·徐州华顿学校高二阶段练习)设两圆22110C x y +-=:与圆222240C x y x y +-+=:的公共弦所在的直线方程为_______40.(2022·全国·高二课时练习)已知两圆O :224x y +=,C :22224510x ax y ay a -+-+-=,当两圆相交时,实数a 的取值范围是______.41.(2022·江苏·高二课时练习)已知圆221:(1)(2)4C x y -+-=和圆222:(2)(1)2C x y -+-=交于,A B 两点,直线l 与直线AB 平行,且与圆2C 相切,与圆1C 交于点,M N ,则MN =__________.42.(2022·全国·高二课时练习)已知圆1C 的标准方程是()()224425x y -+-=,圆222:430C x y x my +-++=关于直线10x +=对称,则圆1C 与圆2C 的位置关系为______.43.(2022·北京房山·高二期末)心脏线,也称心形线,是一个圆上的固定一点在该圆绕着与其相切且半径相同的另外一个圆周滚动时所形成的轨迹,因其形状像心形而得名.心脏线的平面直角坐标方程可以表示为22x y ay ++=0a >,则关于这条曲线的下列说法: ①曲线关于x 轴对称;②当1a =时,曲线上有4个整点(横纵坐标均为整数的点); ③a 越大,曲线围成的封闭图形的面积越大; ④与圆()222x a y a ++=始终有两个交点. 其中,所有正确结论的序号是___________.四、解答题44.(2022·全国·高二单元测试)已知圆()222:0O x y r r +=>,直线:40l kx y k --=,当k =l 与圆O 恰好相切. (1)求圆O 的方程;(2)若直线l 上存在距离为2的两点M ,N ,在圆O 上存在一点P ,使得0PM PN ⋅=,求实数k 的取值范围.45.(2022·江苏·高二阶段练习)已知圆22:(1)4C x y -+=. (1)若直线l 经过点(1,3)A -,且与圆C 相切,求直线l 的方程;(2)若圆2221:2280C x y mx y m +--+-=与圆C 相切,求实数m 的值.46.(2022·上海市行知中学高二期中)已知圆()()22:10C x y a a ++=>,定点()(),0,0,A m B n ,其中,m n 为正实数,(1)当9a =时,若对于圆C 上任意一点P 均有PA PO λ=成立(O 为坐标原点),求实数,m λ的值;(2)当2,4m n ==时,对于线段AB 上的任意一点P ,若在圆C 上都存在不同的两点,M N ,使得点M 是线段PN 的中点,求实数a 的取值范围47.(2022·江苏·高二课时练习)若圆221:C x y m +=与圆222:68160C x y x y +--+=相外切.(1)求m 的值;(2)若圆1C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,P 为第三象限内一点且在圆1C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.48.(2022·江苏·高二单元测试)已知圆()22:24M x y -+=,点()()1,R P t t -∈.(1)若1t =,半径为1的圆N 过点P ,且与圆M 相外切,求圆N 的方程;(2)若过点P 的两条直线被圆M 截得的弦长均为且与y 轴分别交于点S 、T ,34ST =,求t .49.(2022·广东揭阳·高二期末)过点()3,1P 作圆()22:11C x y -+=的两条切线,切点分别为A ,B ;(1)求直线AB 的方程;(2)若M 为圆上的一点,求MAB △面积的最大值.【答案详解】1.B【分析】由圆1C 的面积被直线210x y ++=平分,可得圆心在直线上,求出m ,进而利用圆心距与半径和以及半径差的关系可得圆1C 与圆2C 的位置关系.【详解】因为圆1C 的面积被直线210x y ++=平分,所以圆1C 的圆心1,2m ⎛⎫- ⎪⎝⎭在直线210x y ++=上,所以12102m ⎛⎫+⨯-+= ⎪⎝⎭,解得2m =,所以圆1C 的圆心为(1,1)-,半径为1.因为圆2C 的圆心为(2,3)-,半径为5,所以125C C ==, 故125151C C -<<+,所以圆1C 与圆2C 的位置关系是相交. 故选:B . 2.B【分析】由对称求出,a b ,再由圆心距与半径关系得圆与圆的位置关系.【详解】222:(1)1C x y -+=,2(1,0)C ,半径为1r =,2(1,0)C 关于直线0x y -=的对称点为(0,1),即(,)1C 01,所以0,1a b ==,圆1C 半径为2R =,12C C =13R r R r -=<<=+,所以两圆相交. 故选:B . 3.A【分析】根据两圆半径和、差、圆心距之间的大小关系进行判断即可. 【详解】由22222830(1)(4)20x y x y x y +++-=⇒+++=,该圆的圆心为(1,4)--,半径为圆()()22225x y -+-=的圆心为(2,2)= 所以两圆的半径和等于两圆的圆心距,因此两圆相外切, 故选:A 4.A【分析】求出两个圆的交点,再求出中垂线方程,然后求出圆心坐标,求出半径,即可得到圆的方程.【详解】由2222430,430x y x x y y +--=+--=解得两圆交点为M ⎝⎭与N ⎝⎭因为1MN k =,所以线段MN 的垂直平分线斜率21k =-;MN 中点P 坐标为(1,1) 所以垂直平分线为y =﹣x +2 由240y x x y =-+⎧⎨--=⎩解得x =3,y =﹣1,所以圆心O 点坐标为(3,﹣1)所以r 所以所求圆的方程为(x ﹣3)2+(y +1)2=13即:x 2+y 2﹣6x +2y ﹣3=0 故选:A 5.C【解析】求出过AB 两点的垂直平分线方程,再联立直线40x y --=,求得圆心,结合点到直线距离公式即可求解【详解】设两圆交点为,A B ,联立2222460460x y x x y y ⎧+--=⎨+--=⎩得1111x y =-⎧⎨=-⎩或2233x y =⎧⎨=⎩,1AB k =,则AB 中点为()1,1,过AB 两点的垂直平分线方程为()112y x x =--+=-+, 联立240y x x y =-+⎧⎨--=⎩得31x y =⎧⎨=-⎩,故圆心为()3,1-,由点到直线距离公式得334525d ⨯-+==故选:C【点睛】本题考查线段垂直平分线方程的求解,点到直线距离公式的应用,属于中档题 6.C【分析】由题意先求动点P 的轨迹1C 的方程,联立1C 和2C 求出M,N 的坐标,如图由平面几何知识和向量数量积的运算规则可求得MN MQ ⋅.【详解】设点P(,x y ),由()()A 1,0,B 4,0,2PA PB =可得()()2222214x y x y -+-+化简得动点P 的轨迹1C 的方程为:224x y +=,联立(()22224334x y x y ⎧+=⎪⎨+-=⎪⎩解得:()()M 3,1,N 0,2-,如图所示,有平面几何知识可得:()1cos 2MQ QMN MN ∠=,向量数量积的运算规则可得:()1cos 2MN MQ MN MQ QMN MN MN ⋅=⋅∠=⋅()(()22211021222MN ⎡⎤==+-=⎢⎥⎣⎦. 故选:C.【点睛】本题考查了由已知条件求动点轨迹的问题,考查了求两圆交点坐标的运算,借助于平面几何知识求向量的数量积的问题,考查了综合运算能力,属于中档题. 7.D【分析】设P 的坐标为(),x y ,由2PA PB =可得P 的轨迹为()2224x y -+=,又因为点P在圆C 上,所以两圆有公共点,从而求解即可.【详解】解:设P 的坐标为(),x y ,因为2PA PB =,()2,0A -,()10B ,,=()2224x y -+=,又因为点P 在圆()()()22:140C x y m m ++-=>上, 所以圆()2224x y -+=与圆C 有公共点,22≤且0m >, 解得949m ≤≤, 故选:D . 8.A【分析】利用对称圆,把问题转化为两圆的位置关系问题进行处理.【详解】根据题意,圆1C 的圆心坐标为(0,1),半径为r ,其关于直线y =x 的对称圆3C 的方程为()2221x y r -+=,根据题意,圆3C 与圆2C 有交点,既可以是外切,也可以是相交,也可以是内切.又圆()()222:211C x y -+-=,所以圆3C 与圆2C 的圆心距为23||C C =以只需11r r -+,解得1r ⎤∈⎦.故B ,C ,D 错误.故选:A. 9.A【分析】根据题意圆1O 、2O 相离,则1212O O r r >+,分别求圆心和半径代入计算. 【详解】圆1O :2216x y +=的圆心()10,0O ,半径14r =,圆2O :22268240x y mx my m +--+=的圆心()23,4O m m ,半径1r m =根据题意可得,圆1O 、2O 相离,则1212O O r r >+,即54m m >+ ∴,11,m故选:A . 10.C【分析】由圆与圆的对称性可得a ,再利用几何关系,求点P 的轨迹方程.【详解】由圆22210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,可知两圆半径相等且两圆圆心连线的中点在直线1y x =-上,可得2a =,即点C 的坐标为(2,2)-,所以圆P 的圆心的轨迹方程为222(2)(2)x y x ++-=,整理得24480y x y +-+=. 故选:C. 11.D【分析】先将两个圆的方程化为圆的标准方程,写出两个圆的圆心坐标和半径,然后计算两个圆的圆心之间的距离,圆心距等于两个圆的半径差的绝对值、和,得到关于a 的方程,即可解得a 的值.【详解】设圆1C 、圆2C 的半径分别为1r 、2r .圆1C 的方程可化为22(3)(2)1x y -++=,圆2C 的方程可化为22(7)(1)50x y a -+-=-. 由两圆相切得,1212C C r r =+或1212C C r r =-,∵125C C =,∴215r +=或22154r r -=⇒=或26=r 或24r =-(舍去). 因此,5016a -= 解得a =34 或5036a -= 解得14a = 故选:D.【点睛】本题考查了利用两个圆相切求解参数值的问题,属于中档题目,解题时需要准确将圆的一般方程化为圆的标准方程,利用圆心距与半径的关系建立关于参数的方程. 12.D【分析】根据动圆与圆C 相内切、相外切分类讨论进行求解即可.【详解】设动圆圆心为O ,圆C :()()225316x y +++=的圆心坐标为:(5,3)C --,半径为4.动圆与圆C 相内切时,413OC =-=,所以动圆圆心的轨迹方程()()22539x y +++=; 动圆与圆C 相外切时,415OC =+=,所以动圆圆心的轨迹方程()()225325x y +++=. 故选:D【点睛】本题考查了圆与圆的相切关系,考查了圆的定义,考查了圆的标准方程,属于基础题. 13.A【分析】判断圆1C 与2C 的位置并求出直线AB 方程,再求圆心C 到直线AB 距离即可计算作答.【详解】圆221:(2)(1)5C x y -++=的圆心1(2,1)C -,半径1r =222:(1)5C x y +-=的圆心2(0,1)C ,半径2r =,12||C C =121212||||||r r C C r r -<<+,即圆1C 与2C 相交,直线AB 方程为:10x y --=,圆()()22:331C x y ++-=的圆心(3,3)C -,半径1r =,点C 到直线AB 距离的距离2d ==,所以圆C 上的动点P 到直线AB 1. 故选:A 14.A【分析】求得12,C C PQ ,由此求得四边形12PC QC 的面积. 【详解】圆1C 的圆心为()1,0-,半径11r =; 圆2C 的圆心为()0,3,所以12C C =由2220x y x ++=、2260x y y +-=两式相减并化简得30x y +=, 即直线PQ 的方程为30x y +=,()1,0-到直线PQ,所以PQ ==,所以四边形12PC QC 的面积为1211322C C PQ ⨯⨯==. 故选:A15.A【分析】先求得公共弦所在直线方程,代入224x y +=,运算即得解【详解】由题意,圆221:4C x y +=的圆心11(0,0),2C r =;圆()222222:2600()6C x y ay a x y a a ++-=>⇔++=+,圆心22(0,),C a r -设圆心距为12C C d ,故12C C d a =由于两圆相交,故122112C C r r d r r -<<+2a <,解得12a >两圆方程作差得公共弦所在直线方程为1y a =,代入224x y +=,解得x == 解得1a =(负根舍去),满足12a > 故选:A 16.D【分析】计算两圆的圆心和半径,可得两圆相离,有四条公切线,两圆心坐标关于原点O 对称,则有两条切线过原点O ,另两条切线与直线MN 平行且相距为1,数形结合可计算四条切线方程,结合选项,即得解【详解】由题意,圆()()22:211M x y -+-=的圆心坐标为()2,1M ,半径为11r =圆()()22:211N x y +++=的圆心坐标为()2,1N --,半径为21r =如图所示,两圆相离,有四条公切线.两圆心坐标关于原点O 对称,则有两条切线过原点O , 设切线:l y kx =22111k k -=+,解得0k =或43k =, 另两条切线与直线MN 平行且相距为1,又由1:2MN l y x =,设切线1:2l y x b =+1114b=+,解得5b = 结合选项,可得D 不正确. 故选:D 17.C【分析】设直线l 交x 轴于点M ,推导出1C 为2MC 的中点,A 为BM 的中点,利用勾股定理可求得AB .【详解】如下图所示,设直线l 交x 轴于点M ,由于直线l 与圆()221:11C x y ++=,圆()222:14C x y -+=都相切,切点分别为A 、B , 则1AC l ⊥,2BC l ⊥,12//AC BC ∴,2122BC AC ==,1C ∴为2MC 的中点,A ∴为BM 的中点,1122MC C C ∴==,由勾股定理可得22113AB MA MC AC ==-故选:C.【点睛】关键点点睛:求解本题的关键在于推导出A 为M B 的中点,并利用勾股定理进行计算,此外,在直线与圆相切的问题时,要注意利用圆心与切点的连线与切线垂直这一几何性质. 18.A【分析】根据给定条件,求出两圆圆心距,再判断两圆位置关系即可作答. 【详解】圆1C :22(1)(3)4x y ++-=的圆心1(1,3)C -,半径12r =, 圆2C :22(2)(1)1x y -++=的圆心2(2,1)C -,半径21r =,2212||(12)[3(1)]5C C =--+--,显然1212||C C r r >+,即圆1C 与圆2C 外离,所以两圆的公切线的条数是4. 故选:A19.(1)11m =- (2)2m =【分析】(1)两圆有三条公切线,说明两圆外切,根据两圆外切可以求出参数的值 (2)设()11,M x y ,()22,N x y ,则OM ON ⊥等价于12120x x y y +=,直线与圆联立方程,根据韦达定理,得到关于m 的等式,即可求解m 的值 (1)由2222240(1)(2)5x y x y m x y m +--+=⇒-+-=-,知圆C 的圆心(1,2)C由圆D :22(2)(2)1x y +++=,有圆心()2,2D --,半径为1,依题意有圆C 与圆D 相外切,故||1511CD m ==⇒=-; (2)设()11,M x y ,()22,N x y ,有112x y =-,222x y =-, 由OM ON ⊥,有()()121212120220x x y y y y y y +=⇒--+=, 整理得12122y y y y +=+………①由2222402602x y x y m y y m x y⎧+--+=⇒-+=⎨=-⎩,3680m ∆=->得:92m <,易知1y ,2y 是方程的根,故有123y y +=,122m y y =代入①,得3222mm =+⇒=,满足要求,故2m =20.(1)两圆内切,10x y ++=;(2)直线l 的方程为0x y +=【分析】(1)由1m =-,分别得到圆1C 和圆2C 的圆心,半径,然后利用圆圆的位置关系判断,再由两圆方程相减得到公切线;(2)先得到两圆公共弦所在直线l 的方程,再利用弦长公式求解. 【详解】(1)当1m =-时,圆1C 的圆心()12,1C ,半径1r =圆2C 的圆心()21,0C ,半径2r圆心距1212C C r r ==-,所以两圆内切; 因为两圆内切,所以公切线只有一条,两圆的公切线方程可由两圆方程相减得到:10x y ++=; (2)两圆公共弦所在直线l 的方程为:2230x y m +++=,圆2C 的圆心()21,0C 到直线l 2=, 于是52m +=,3m =-或7(-舍), 所以直线l 的方程为0x y +=;因为圆2C 半径22r =,弦心距d ==21.(1)12m =;(2)1n =-或7n =-.【分析】(1)由公切线条数知两圆外切,从而可得m 值;(2)求出圆2C 圆心坐标和半径,求得圆心到直线的距离,用勾股定理求得圆心到直线的距离从而得参数值.【详解】解:(1)圆221:(1)1C x y -+=,圆心1(1,0)C ,半径11r =;圆222:(4)16C x y m -+=-,圆心2(4,0)C ,半径2r因为圆1C 与圆2C 有3条公切线,所以圆1C 与圆2C 相外切,所以1212C C r r =+,即31=12m =.(2)由(1)可知,圆222:(4)4C x y -+=,圆心2(4,0)C ,半径22r =.因为直线0x n +=与圆2C 相交,弦长是2,所以圆心2C 到直线0x n ++=的距离d ===,解得1n =-或7n =-. 【点睛】结论点睛:本题实质考查圆与圆的位置关系,圆与圆的位置关系与公切线条数: 两圆圆心距离为d ,半径分别为,r R ,则相离d R r ⇔>+,公切线有4条;外切d R r ⇔=+,公切线有3条;相交R r d R r ⇔-<<+,公切线有2条;内切d R r ⇔=-,公切线有1条;内含d R r ⇔<-,无公切线. 22.C【详解】由题意,得两圆的标准方程分别为22(2)(1)4x y -++=和22(2)(2)9x y ++-=,则两圆的圆心距523d =+,即两圆外切,所以两圆有3条公切线;故选C .【点睛】本题考查圆与圆的位置关系和两圆公切线的判定;在处理两圆的公切线条数时,要把问题转化为两圆位置关系的判定:当两圆相离时,两圆有四条公切线;当两圆外切时,两圆有三条公切线;当两圆相交时,两圆有两条公切线;当两圆内切时,两圆有一条公切线;当两圆内含时,两圆没有公切线. 23.C【分析】两圆外切时,有三条公切线.【详解】圆1C 标准方程为22(2)1x y -+=, ∵两圆有三条公切线,∴两圆外切,116a =. 故选C .【点睛】本题考查圆与圆的位置关系,考查直线与圆的位置关系.两圆的公切线条数:两圆外离时,有4条公切线,两圆外切时,有3条公切线,两圆相交时,有2条公切线,两圆内切时,有1条公切线,两圆内含时,无无公切线. 24.(1)()()221716x y -+-=(2)()()221725x y -+-=或()()221727x y -+-=.【分析】(1)根据圆与圆的位置关系,求出圆2O 的半径即可写出圆2O 的方程; (2)由两圆的圆心距确定圆心到公共弦的的距离公式,从而求出圆2O 的半径即可求解. (1)圆1O 的方程为()()22231x y ++-=, 则圆心坐标为()2,3-,半径为1. 圆2O 的圆心()21,7O ,5=. 由圆2O 与圆1O 外切, 则所求圆2O 的半径为4,所以圆2O 的方程()()221716x y -+-=. (2)圆2O 与圆1O 交于A 、B 两点,且AB =所以圆1O 到AB 110=.5=,当圆2O 到AB 的距离为14951010-=时,2O 5=, 所以圆2O 的方程为()()221725x y -+-=.当圆2O 到AB 的距离为15151010+=时,圆2O = 所以圆2O 的方程为()()221727x y -+-=.综上所述,圆2O 的方程为()()221725x y -+-=或()()221727x y -+-=. 25.(1)()()224316x y -+-=(2)【分析】(1)利用两点求出直线方程l ,利用圆心在l 上又在3y =求出圆心坐标,进而求出圆的半径求出圆1C 的方程;(2)利用两圆的方程相减得到公共弦所在直线方程,求出圆心1C 到公共弦的距离,利用勾股定理求出两圆的公共弦长. (1)经过点(21),与点(23)--,的直线l 的方程为123122y x --=----,即1y x =-, 因为圆1C 与y 轴相切于点(03),,所以圆心在直线3y =上,联立31y y x =⎧⎨=-⎩解得43x y =⎧⎨=⎩可得圆心坐标为(43),, 又因为圆1C 与y 轴相切于点(03),,故圆1C 的半径为4, 故圆1C 的方程为()()224316x y -+-=. (2)圆1C 的方程为()()224316x y -+-=,即228690x y x y +--+=,圆222:6350C x y x y +--+=,两式作差可得两圆公共弦所在的直线方程为2340x y +-=,圆1C 的圆心(43),到直线2340x y +-=的距离d ==所以两圆的公共弦长为= 26.A【分析】①将点()1,2A 代入圆可判断;②将圆化为标准方程,得出圆心,利用点到直线距离公式可得;③求出两圆圆心和半径,判断位置关系可得;④两圆方程相减即可求出. 【详解】①点()1,2A 代入圆可得2212214210++⨯-⨯+=,所以点A 在圆上,故①错误; ②由2228130+--+=x y x y 可得()()22144x y -+-=,则圆心为()1,4,由点到直线的距离公式可得圆心到线4330x y -+=1=,故②错误;③圆1C 化为()2211x y ++=,圆心为()11,0C -,半径11r =,圆2C 化为()()222416x y -+-=,圆心为()22,4C ,半径24r =,则圆心距12125C C r r ==+,故两圆外切,公切线有3条,故③正确;④两圆方程相减可得260x y -+=,故公共弦所在方程为260x y -+=,故④错误,综上,正确的有1个. 故选:A. 27.D【解析】由题意可知,圆2C 内切于圆1C ,由题意可得出2241a b +=,然后将代数式2211a b +与224a b +相乘,展开后利用基本不等式可求得2211a b +的最小值. 【详解】圆()221:24C x a y ++=的圆心为()12,0C a -,半径为12r =,圆()22:1C x y b +-=的圆心为()20,C b ,半径为21r =,由于两圆有且仅有1条公切线,则圆2C 内切于圆1C ,所以12121C C r r =-=,可得2241a b +=,()2222222222111144559b a a b a b a b a b ⎛⎫+=++=∴++≥+= ⎪⎝⎭, 当且仅当222b a =时,等号成立, 因此,2211a b +的最小值为9. 故选:D.【点睛】结论点睛:圆与圆的位置关系:设圆1C 与圆2C 的半径长分别为1r 和2r . (1)若1212C C r r <-,则圆1C 与圆2C 内含; (2)若1212C C r r =-,则圆1C 与圆2C 内切; (3)若121212r r C C r r -<<+,则圆1C 与圆2C 相交; (4)若1212C C r r =+,则圆1C 与圆2C 外切; (5)若1212C C r r >+,则圆1C 与圆2C 外离.【分析】根据两圆的位置关系判断.【详解】解:圆1C 的标准方程:22(1)(3)36x y ++-=,圆心()11,3C -,半径16r =, 圆2C 的标准方程:22(2)(1)1x y -++=,圆心()22,1C -,21r =,因为圆心距12125C C r r ===-,所以两圆内切,所以与两圆都相切的直线有1条. 故选:A 29.D【分析】求出P 的轨迹方程,结合点P 为两圆交点且2CM,列出不等式,求出t 的取值范围.【详解】由题意得P 在以AB 为直径的圆222:M x y t +=上(去掉A ,B 两点).又因为点P 在圆(()22:11C x y +-=上,所以圆C 与圆M 有交点,因为2CM ,所以121t t -≤≤+,所以13t ≤≤.故选:D . 30.D【分析】设动圆圆心为(),x y ,两半径相加,内切两半径相减,即可求解【详解】设动圆圆心为(),x y 41=+,∴()()225725x y -++=;41=-,∴()()22579x y -++=.31.BD【分析】对A ,圆心到x 轴的距离等于半径判断即可;对B ,根据圆心间的距离与半径之和的关系判断即可;对C ,根据两圆有公共弦,两圆的方程相减可得公共弦所在直线方程求解即可;对D ,根据直线210kx y k --+=过定点()2,1以及()2,1在圆C 1内判断即可.【详解】因为221:(1)(3)11C x y -+-=,222:(1)()4C x y m ++-=,对A ,故若圆2C 与x 轴相切,则有||2m =,故A 错误;对B ,当3m =-时,1262C C =>>B 正确; 对C ,由两圆有公共弦,两圆的方程相减可得公共弦所在直线方程24(62)20x m y m +-+-=,故C 错误;对D ,直线210kx y k --+=过定点()2,1,而22(21)(13)511-+-=<,故点()2,1在圆221:(1)(3)11C x y -+-=内部,所以直线210kx y k --+=与圆1C 始终有两个交点,故D 正确.故选:BD 32.ABD【分析】两圆方程作差后可得公共弦方程,从而可判断A 的正误,求出圆1Q 的圆心坐标后求出垂直平分线的方程后可判断B 的正误,利用垂径定理计算弦长后可判断C 的正误,求出1Q 到直线的距离后可求动点到直线距离的最大值,从而可判断D 的正误.【详解】对于A ,因为圆221:20+-=Q x y x ,222:240++-=Q x y x y ,两式作差可得公共弦AB 所在直线的方程为440x y -=,即0x y -=,故A 正确;对于B ,圆221:20+-=Q x y x 的圆心为(1,0),1AB k =,则线段AB 中垂线的斜率为1-,即线段AB 中垂线方程为()011y x -=-⨯-,整理可得10x y +-=,故B 正确;对于C ,圆心()11,0Q 到0x y -=的距离为2d ==又圆1Q 的半径1r =,所以AB =C 不正确;对于D ,P 为圆1Q 上一动点,圆心()11,0Q 到0x y -=的距离为d =又圆1Q 的半径1r =,所以P 到直线AB 1,故D 正确.故选:ABD. 33.ACD【分析】对于A ,考查圆心k C 的横纵坐标关系即可判断;对于B ,把3x =,0y =代入圆k C 方程,由关于k 的方程根的情况作出判断;对于C ,判断圆心k C 到直线0x y -±=距离与半径的关系即可; 对于D ,圆k C 与以原点为圆心的单位圆相交即可判断作答.【详解】解:根据题意,圆22:()()4(R)k C x k y k k -+-=∈,其圆心为(,)k k ,半径为2, 依次分析选项:对于A ,圆心为(,)k k ,其圆心在直线y x =上,A 正确; 对于B ,圆22:()()4k C x k y k -+-=,将(3,0)代入圆的方程可得22(3)(0)4k k -+-=, 化简得22650k k -+=,364040∆=-=-<,方程无解, 所以不存在圆k C 经过点()3,0,B 错误;对于C ,存在直线y x =±,即0x y -+=或0x y --=,圆心(,)k k 到直线0x y -+=或0x y --=的距离2d =, 这两条直线始终与圆k C 相切,C 正确,对于D ,若圆k C 上总存在两点到原点的距离为1, 问题转化为圆221x y +=与圆k C 有两个交点,,则有1|3k <<,解可得:k <k <,D 正确.故选:ACD . 34.ACD【分析】判断出直线l 过定点()1,1D ,结合勾股定理、圆的对称性、点到直线的距离公式、四点共圆等知识对选项进行分析,从而确定正确答案. 【详解】直线():11l y k x =-+过点()1,1D ,圆()()22:2216C x y -++=,即224480x y x y +-+-=①, 圆心为()2,2C -,半径为4r =,由于()()22121216-++<,所以D 在圆C 内.CD =所以min AB =AB CD ⊥,所以A 选项正确.若圆C 关于直线l 对称,则直线l 过,C D 两点,斜率为21321--=--,所以B 选项错误. 设22ACB CAB θ∠=∠=,则π2π,4θθθθ++==,此时三角形ABC 是等腰直角三角形,C 到直线AB 的距离为42==解得1k =或17k =-,所以C 选项正确.对于D 选项,若,,,A B C O 四点共圆,设此圆为圆E ,圆E 的圆心为(),E a b ,,O C 的中点为()1,1-,1OC k =-,所以OC 的垂直平分线为:11,2l y x y x +=-=-,则2b a =-②, 圆E 的方程为()()2222x a y b a b -+-=+, 整理得22220x y ax by +--=③, 直线AB 是圆C 和圆E 的交线,由①-③并整理得()():422480AB a x b y --++=,将()1,1D 代入上式得()()422480a b --++=,40a b +-=④, 由②④解得3,1a b ==, 所以直线AB 即直线l 的斜率为42212463a b --==-+,D 选项正确. 故选:ACD【点睛】求解直线和圆位置关系有关题目,首先要注意的是圆和直线的位置,是相交、相切还是相离.可通过点到直线的距离来判断,也可以通过直线所过定点来进行判断. 35.ACD【分析】根据给定条件,求出点A ,B 的坐标,再结合圆的性质逐项分析、计算判断作答.【详解】依题意,由22225(4)13x y x y ⎧+=⎨-+=⎩解得12x y =⎧⎨=±⎩,则(1,2),(1,2)A B -,圆1O 的圆心1(0,0)O ,半径1r =2O 的圆心2(4,0)O ,半径2r||4AB =,A 正确;。

第18讲 圆与圆的位置关系4种常见考法归类(解析版)-新高二数学暑假自学课讲义

第18讲 圆与圆的位置关系4种常见考法归类(解析版)-新高二数学暑假自学课讲义

第18讲圆与圆的位置关系4种常见考法归类1.能根据给定圆的方程,判断圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的问题,体会用代数方法处理几何问题的思想.知识点1圆与圆的位置关系1.种类:圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含.2.判定方法(1)几何法:若两圆的半径分别为r1,r2,两圆连心线的长为d,则两圆的位置关系的判断方法如下:|r-r|<d<C1:x2+y2+D1x+E1y+F1=0(D21+E21-4F1>0),C2:x2+y2+D2x+E2y+F2=0(D22+E22-4F2>0),2+y2+D1x+E1y+F1=0,2+y2+D2x+E2y+F2=0,则方程组解的个数与两圆的位置关系如下:方程组解的个数2组1组0组两圆的公共点个数2个1个0个两圆的位置关系相交内切或外切外离或内含注:(1)圆和圆相离,两圆无公共点,它包括外离和内含;(2)圆和圆相交,两圆有两个公共点;(3)圆和圆相切,两圆有且只有一个公共点,它包括内切和外切.(4)圆与圆的位置关系不能简单仿照直线与圆的位置关系的判断方法将两个方程联立起来消元后用判别式判断,因为当方程组有一组解时,两圆只有一个交点,两圆可能外切,也可能内切;当方程组无解时,两圆没有交点,两圆可能外离,也可能内含.知识点2圆与圆位置关系的应用设圆C 1:x 2+y 2+D 1x +E 1y +F 1=0,①圆C 2:x 2+y 2+D 2x +E 2y +F 2=0,②若两圆相交,则有一条公共弦,由①-②,得(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0.③方程③表示圆C 1与C 2的公共弦所在直线的方程.(1)当两圆相交时,两圆方程相减,所得的直线方程即两圆公共弦所在的直线方程,这一结论的前提是两圆相交,如果不确定两圆是否相交,两圆方程相减得到的方程不一定是两圆的公共弦所在的直线方程.(2)两圆公共弦的垂直平分线过两圆的圆心.(3)求公共弦长时,几何法比代数法简单易求.1、公切线的条数与两个圆都相切的直线叫做两圆的公切线,圆的公切线包括外公切线和内公切线两种.核心技巧:利用圆心到切线的距离d r =求解知识点4圆系方程(1)以(,)a b 为圆心的同心圆圆系方程:22()()(0)x a y b λλ-+-=>;(2)与圆220x y Dx Ey F ++++=同心圆的圆系方程为220x y Dx Ey λ++++=;(3)过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为22()0()x y Dx Ey F Ax By C R λλ+++++++=∈4过两圆1C 221110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=交点的圆系方程为2222111222()0x y D x E y F x y D x E y F λ+++++++++=(1λ≠-,此时圆系不含圆2C :222220x y D x E y F ++++=)特别地,当1λ=-时,上述方程为一次方程.两圆相交时,表示公共弦方程;两圆相切时,表示公切线方程.1、判断两圆的位置关系的两种方法(1)几何法:将两圆的圆心距d 与两圆的半径之差的绝对值,半径之和进行比较,进而判断出两圆的位置关系,这是在解析几何中主要使用的方法.(2)代数法:将两圆的方程组成方程组,通过解方程组,根据方程组解的个数进而判断两圆位置关系.2、圆系方程一般地过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0交点的圆的方程可设为:x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ≠-1),然后再由其他条件求出λ,即可得圆的方程.3、两圆相交时,公共弦所在的直线方程若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0.4、公共弦长的求法(1)代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长.(2)几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.5、求两圆的相交弦的垂直平分线的方程即为经过两圆的圆心的直线方程考点一:圆与圆位置关系的判断(一)判断圆与圆的位置关系例1.(2023秋·福建宁德·高二统考期中)圆()22(2)21x y -+-=与圆()()221225x y +++=的位置关系是()A .相切B .相交C .内含D .外离【答案】B【分析】根据给定条件,求出两圆的圆心和半径,并计算两圆的圆心距即可判断作答.【详解】圆()22(2)21x y -+-=的圆心1(2,2)C ,半径11r =,圆()()221225x y +++=的圆心2(1,2)C --,半径25r =,于是122121||5(,)C C r r r r ==∈-+,所以两圆相交.故选:B变式1.(2023春·江西萍乡·高二校联考阶段练习)圆O :221x y +=与圆C :22650x y y +++=的位置关系是()A .相交B .相离C .外切D .内切【答案】C【分析】利用两圆外切的定义判断即可.【详解】圆O 是以(0,0)O 为圆心,半径11r =的圆,圆C :22650x y y +++=改写成标准方程为()2234x y ++=,则圆C 是以(0,3)C -为圆心,半径22r =的圆,则3OC =,12r r +=3,所以两圆外切,故选:C .变式2.(2023·全国·高三专题练习)已知圆1C 的圆心在直线210x y +-=上,点()3,0与()1,2-都在圆1C 上,圆()()222:311C x y -++=,则1C 与2C 的位置关系是___________.【答案】相交【分析】利用待定系数法求得圆1C 的标准方程,求出圆心距12C C ,与两圆的半径和、差比较即可得出结论.【详解】设圆1C 的标准方程为()()2221x a y b r -+-=,因为圆心1C 在直线210x y +-=上,且该圆经过()3,0与()1,2-两点,列方程组22212221210(3)(0)(1)(2)a b a b r a b r +-=⎧⎪-+-=⎨⎪-+--=⎩,解得1102a b r =⎧⎪=⎨⎪=⎩,即圆1C 的标准方程为()2214x y -+=,圆心()11,0C ,半径12r =,又圆()()222:311C x y -++=,圆心()23,1C -,半径21r =,∴12C C =123r r +=,121r r-=,而13<<,∴1C 与2C 的位置关系是相交.故答案为:相交.变式3.【多选】(2023秋·江苏南通·高二统考期末)已知圆22:(3)(4)4C x y -+-=,则()A .点(5,5)在圆C内B .直线3)y x =-与圆C 相切C .圆229x y +=与圆C 相切D .圆2249x y +=与圆C 相切【答案】BCD【分析】根据点和圆的位置关系判断A 选项,根据圆心与直线距离判断B 选项,根据圆心间距离和半径和差比较判断圆圆位置关系判断C,D 选项.【详解】点(5,5)代入圆22:(3)(4)4C x y -+-=可得22(53)(54)414-+-=+>,点(5,5)在圆C 外,A 选项错误;圆22:(3)(4)4C x y -+-=,圆()3,4,2C r=,直线3)y x =-,圆心到直线距离2d =,B 选项正确;圆229x y +=,圆心()110,0,3C r=,11523CC r r ===+=+,圆229x y +=与圆C 相外切,C 选项正确;圆2249x y +=,圆心()220,0,7C r =,22572CC r r ==-=-,圆2249x y +=与圆C 相内切,D 选项正确.故选:BCD.变式4.(2023春·安徽阜阳·高三安徽省临泉第一中学校考专题练习)平面直角坐标系中,()2,0A -,()2,0B ,动点P满足PA =,则使PAB 为等腰三角形的点P 个数为()A .0B .2C .3D .4【答案】D【分析】设(),P x y,根据PA =可得动点P 的轨迹方程为圆22:(4)12M x y -+=,再结合PAB 为等腰三角形分析即可求解.【详解】设(),P x y ,由PA =,=整理得22(4)12x y -+=,记为圆.M又PA PB =>,PAB 为等腰三角形,则有4PA AB ==或4PB AB ==.因为圆22:(2)16A x y ++=与圆M 相交,故满足4PA AB ==点P 有2个;因为圆22:(2)16B x y -+=与圆M 相交,故满足4PB AB ==点P 有2个,故使PAB 为等腰三角形的点P 共有4个.故选:D.变式5.【多选】(2023·湖南娄底·统考模拟预测)已知圆M :22650x y y +-+=,圆N :22280x y y ++-=,直线l :340x y m -+=,则下列说法正确的是()A .圆N 的圆心为()0,1B .圆M 与圆N 相交C .当圆M 与直线l 相切时,则2m =D .当7m =时,圆M 与直线l 相交所得的弦长为【答案】BD【分析】写出圆,M N 的标准方程确定圆心坐标和半径,判断||MN 与两圆半径的关系判断A 、B ;再由点线距离及相交弦长公式判断C 、D.【详解】由题设,22:(3)4M x y +-=,则(0,3)M 且半径2r =,22:(1)9N x y ++=,则(0,1)N -且半径3R =,A 错;所以4R r MN R r -<=<+,即两圆相交,B 对;M 到直线l 的距离|012||12|55m m d -+-==,若圆M 与直线l 相切,则|12|25m -=,所以22m =或2m =,C 错;当7m =时1d r =<,即圆M 与直线l 相交,相交弦长为=D 对.故选:BD变式6.(2022·全国·高二专题练习)已知点P 在圆O :224x y +=上,点()30A -,,()0,4B ,满足AP BP ⊥的点P 的个数为()A .3B .2C .1D .0【答案】B【分析】设(,)P x y ,轨迹AP BP ⊥可得点P 的轨迹方程,即可判断该轨迹与圆的交点个数.【详解】设点(,)P x y ,则224x y +=,且(3,)(,4)AP x y BP x y =+=- ,,由AP BP ⊥,得22(3)(4)340AP BP x x y y x y x y ⋅=++-=++-=,即22325()(2)24x y ++-=,故点P 的轨迹为一个圆心为3(,2)2-、半径为52的圆,则两圆的圆心距为52,半径和为59222+=,半径差为51222-=,有159222<<,所以两圆相交,满足这样的点P 有2个.故选:B.(二)由圆的位置关系求参数例2.(2023秋·浙江丽水·高二统考期末)若圆221:4C x y +=与圆2222:20C x y mx m m +-+-=外切,则实数m =()A .-1B .1C .1或4D .4【答案】D【分析】由两圆的位置关系计算即可.【详解】由条件化简得()222:,0C x m y m m -+=∴>,即两圆圆心为()()120,0,,0C C m ,设其半径分别为12,r r ,122,r r ==121224C C m r r m ==+=+⇒=.故选:D变式1.(2023秋·高二课时练习)若两圆22(1)4x y ++=和圆22()1x a y -+=相交,则a 的取值范围是()A .02a <<B .02a <<或42a -<<-C .42a -<<-D .24a <<或20a -<<【答案】B【分析】圆()2214x y ++=与圆()221x a y -+=相交,则圆心距大于两圆的半径之差的绝对值且小于半径之和,解不等式.【详解】 圆()2214x y ++=与圆()221x a y -+=相交,∴两圆的圆心距大于两圆的半径之差的绝对值且小于半径之和,即2121-<<+,所以113a <+<.解得02a <<或42a -<<-.故选:B变式2.(2023秋·高二课时练习)当a 为何值时,两圆2222450x y ax y a +-++-=和2222230x y x ay a ++-+-=.(1)外切;(2)相交;(3)外离.【答案】(1)5a =-或2a =(2)52a -<<-或1a 2-<<(3)5a <-或2a >【分析】(1)化两圆的方程为标准方程,求得圆心坐标与半径,再求出两圆的圆心距d ,由1212||d C C r r ==+列式,即可求解.(2)由1212||r r d r r <+<-列不等式组,即可求出a 的范围.(3)由1212||d C C r r =>+列不等式,即可求出a 的范围.【详解】(1)设圆2221:2450C x y ax y a +-++-=,半径为1r ,得221:()(2)9C x a y -++=,圆心1(,2)C a -,13r =.2222:2230C x y x ay a ++-+-=,半径为2r ,得222:(1)()4C x y a ++-=,圆心1(1,)C a -,22r =.圆心距12||d C C ===因为两圆12,C C 外切,则1212||5d C C r r ==+=5=,解得5a =-或2a =.(2)因为两圆12,C C 相交,则121212||||r r C C r r -<<+,即121||5C C <<,所以15<,解得52a -<<-或1a 2-<<.(3)因为两圆12,C C 外离,则1212||d C C r r =>+,即12||5C C >,5>,解得5a <-或2a >.变式3.(2022秋·高二课时练习)若圆222x y r +=与圆222440x y x y ++-+=有公共点,则r 满足的条件是()A .1rB .1r >+C .1r ≤D .1r <【答案】C【分析】根据两圆之间的位置关系,由圆心距和半径之间的关系即可求解.【详解】由222440x y x y ++-+=得()()22121x y ++-=,∵两圆有公共点,∴11r r -≤+,1r -#1,即11r -≤,∴1r ≤,故选:C.变式4.(2023秋·浙江嘉兴·高二统考期末)已知圆1C :()()()222120x y r r -++=>与圆2C :()()224216x y -+-=有公共点,则r 的取值范围为()A .(]0,1B .[]1,5C .[]1,9D .[]5,9【答案】C【分析】根据题意得到1244r C C r -≤≤+,再解不等式即可.【详解】由题知:()11,2C -,1r r =,()24,2C ,24r =,125C C =.因为1C 和2C 有公共点,所以1244r C C r -≤≤+,解得19r ≤≤.故选:C变式5.(2023春·安徽·高二校联考期末)已知圆()()()222:3425C x y r r *-+-=+∈N ,()1,0M -,()1,0N ,若以线段MN 为直径的圆与圆C 有公共点,则r 的值可能为______.(写出一个即可)【答案】1(2,3均可)答案不唯一【分析】根据题意,由已知利用圆与圆的位置关系即可求解.【详解】由题意得,圆221x y +=与圆()()222:3425C x y r -+-=+有公共点,11≤≤,∴46≥≤,且0r >,解得0r <1r =,2,3均可.故答案为:1(2,3均可)变式6.(2022·湖南常德·常德市一中校考二模)已知圆22:(4)(3)4C x y -++=和两点(,0),(,0)(0)->A a B a a ,若圆C 上存在点P ,使得90APB ∠=︒,则a 的最小值为()A .6B .5C .4D .3【答案】C【分析】根据条件,将问题转化成圆222x y a +=与圆C 有公共交点,再利用圆与圆的位置关系即可求出结果.【详解】由90APB ∠=︒,得点P 在圆222x y a +=上,故点P 在圆222x y a +=上,又点P 在圆C 上,所以,两圆有交点,因为圆222x y a +=的圆心为原点O ,半径为a ,圆C 的圆心为(4,3)-,半径为1,所以|1|1a OC a -≤≤+,又5OC ==,所以|1|51a a -≤≤+,解得46a ≤≤,所以a 的最小值为4.故选:C.变式7.(2023秋·高一单元测试)已知圆221:()(2)9O x m y -++=与圆222:()(2)1O x n y +++=内切,则22m n +的最小值为_______【答案】2【分析】计算两圆的圆心距,令圆心距等于两圆半径之差,结合基本不等式求解最小值即可.【详解】圆1O 的圆心为(,2)m -,半径为13r =,圆2O 的圆心为(,2)n --,半径为21r =,∴两圆的圆心距||d m n =+,两圆内切,||2m n ∴+=,可得()2222222442m n mn m n mn m n ++=⇒-+=≤+,所以222m n +≥.当且仅当1m n ==时,取得最小值,22m n +的最小值为2.故答案为:2.变式8.(2023·浙江·校联考模拟预测)已知圆C 的方程为221x y +=,若直线()3y k x =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 相外切,则k 的取值范围为__________.【答案】,55⎡-⎢⎣⎦【分析】根据题意,由圆C 的圆心到直线()3y k x =-的距离不大于两半径之和求解.【详解】解:因为直线()3y k x =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 相外切,所以圆C 的圆心到直线()3y k x =-的距离不大于两半径之和,即2d =≤,化简得254k ≤,解得k ≤≤故答案为:⎡⎢⎣⎦考点二:与圆相交有关的问题(一)求两圆的交点坐标例3.(2022·高二课前预习)圆221x y +=与圆222210x y x y ++++=的交点坐标为()A .(1,0)和()0,1B .(1,0)和()0,1-C .(1,0)-和()0,1-D .()1,0-和()0,1【答案】C【分析】联立两圆的方程,解方程组,即可求得答案.【详解】由222212210x y x y x y ⎧+=⎨++++=⎩,可得10x y ++=,即=1y x --,代入221x y +=,解得=1x -或0x =,故得10x y =-⎧⎨=⎩或01x y =⎧⎨=-⎩,所以两圆的交点坐标为(1,0)-和()0,1-,故选:C变式1.(2022·高二课时练习)求圆22230x y x +--=与圆224230x y x y +-++=的交点的坐标.【答案】(1,2)-、(3,0)【分析】联立两圆方程可得3y x =-,将其代入其中一个圆的方程中求出点坐标.【详解】由题设,22224232300x y x y x y x +-⎧+--=++=⎪⎨⎪⎩,相减可得3y x =-,所以222(3)232860x x x x x +---=-+=,解得1x =或3x =,当1x =时,132y =-=-;当3x =时,330y =-=;所以交点坐标为(1,2)-、(3,0).变式2.(2022秋·贵州遵义·高二遵义一中校考阶段练习)圆1C :22640x y x y ++-=和圆2C :2260x y y +-=交于A ,B 两点,则线段AB 的垂直平分线的方程是______.【答案】390x y -+=【分析】由两圆的方程得两圆心坐标,两圆心所在直线的方程即为所求直线方程,【详解】圆1C 方程为22(3)(2)13x y ++-=,圆2C 方程为22(3)9x y +-=,则圆心分别为1(3,2)C -,2(0,3)C ,两圆相交于,A B 两点,则线段AB 的垂直平分线即为直线12C C ,123210(3)3C C k -==--,则直线12C C 的方程为133y x =+,即390x y -+=,故答案为:390x y -+=变式3.(2023秋·辽宁丹东·高二统考期末)已知圆22:16O x y +=与圆22:86160C x y x y ++++=交于A ,B 两点,则四边形OACB 的面积为()A .12B .6C .24D .245【答案】A【分析】由两圆标准方程得圆心坐标和半径,由()4,0A -和()4,3C --可知OA AC ⊥,则四边形OACB 的面积1222OAC S S OA AC ==⨯⋅⋅ ,计算即可.【详解】圆22:16O x y +=,圆心坐标为()0,0O ,半径14r =,圆22:86160C x y x y ++++=化成标准方程为()()22439x y +++=,圆心坐标为()4,3C --,半径23r =,圆O 与圆C 都过点()4,0-,则()4,0A -,如图所示,又()4,3C --,∴OA AC ⊥,由对称性可知,OB BC ⊥,4OA OB ==,3AC BC ==,则四边形OACB 的面积12243122OAC S S OA AC ==⨯⋅⋅=⨯= .故选:A(二)圆系方程的应用例4.(2023·全国·高三专题练习)经过点()1,1P 以及圆2240x y +-=与2244120x y x y +-+-=交点的圆的方程为______.【答案】2220x y x y ++--=【分析】求出两圆的交点坐标,设出所求圆的一般方程,将三点坐标代入,解出参数,可得答案.【详解】联立22224044120x y x y x y ⎧+-=⎨+-+-=⎩,整理得2y x =+,代入2240x y +-=,得220x x +=,解得0x =或2x =-,则圆2240x y +-=与2244120x y x y +-+-=交点坐标为(0,2),(2,0)-,设经过点()1,1P 以及(0,2),(2,0)-的圆的方程为220x y Dx Ey F ++++=,则20420420D E F E F D F +++=⎧⎪++=⎨⎪-+=⎩,解得112D E F =⎧⎪=-⎨⎪=-⎩,故经过点()1,1P 以及圆2240x y +-=与2244120x y x y +-+-=交点的圆的方程为2220x y x y ++--=,故答案为:2220x y x y ++--=变式1.(2022秋·高二单元测试)求过两圆221:240C x y y +--=和圆222:420C x y x y +-+=的交点,且圆心在直线:2410l x y +-=上的圆的方程.【答案】22310x y x y +-+-=【分析】根据过两圆交点的圆系方程设出所求圆的方程,并求出圆心坐标,把圆心坐标代入直线l 的方程,从而求出圆的方程.【详解】设圆的方程为()222242(1)240x y x y x y y λλ+-+++--=≠-,则()()()221412240x x y y λλλλ+-+++--=,即2242240111x y x y λλλλλ-+-+-=+++,所以圆心坐标为21,11λλλ-⎛⎫⎪++⎝⎭,把圆心坐标21,11λλλ-⎛⎫⎪++⎝⎭代入2410x y +-=得24102111λλλ-++⨯+⨯-=,解得13λ=,所以所求圆的方程为22310x y x y +-+-=.(三)求两圆公共弦方程例5.(2022秋·黑龙江大庆·高二大庆实验中学校考期末)圆221:130O x y +-=与圆222:650O x y x +-+=的公共弦所在直线方程为___________.【答案】30x -=【分析】判断两圆相交,将两圆方程相减即可求得答案.【详解】圆221:130O x y +-=的圆心为(0,0),半径为1r =圆222:650O x y x +-+=的圆心为(3,0),半径为22r =,则121212||3r r O O r r -<=<+,则两圆相交,故将两圆方程相减可得:6180x -=,即30x -=,即圆221:130O x y +-=与圆222:650O x y x +-+=的公共弦所在直线方程为30x -=,故答案为:30x -=变式1.(2022秋·高二课时练习)已知圆2212610C x y x y ++-+=:与圆22242110C x y x y +-+-=:,求两圆的公共弦所在的直线方程()A .3460x y ++=B .3460x y +-=C .3460x y --=D .3460x y -+=【答案】D【分析】由两圆方程相减即可得公共弦的方程.【详解】将两个圆的方程相减,得3x -4y +6=0.故选:D.变式2.(2023春·全国·高二卫辉一中校联考阶段练习)已知圆1C :222(1)x y r ++=过圆2C :22(4)(1)4x y -+-=的圆心,则两圆相交弦的方程为______.【答案】5190x y +-=【分析】求出2r ,得到圆1C ,两圆相减得到相交弦方程.【详解】圆2C :22(4)(1)4x y -+-=的圆心坐标为()4,1,因为圆1C 过圆2C 的圆心,所以222(41)1r ++=,所以226r =,所以1C :22(1)26x y ++=,两圆的方程相减可得相交弦方程为5190x y +-=.故答案为:5190x y +-=.变式3.(2022秋·高二课时练习)已知过圆224x y +=外一点()3,4P 做圆的两条切线,切点为,A B 两点,求,A B 所在的直线方程为()A .3440x y +-=B .3440x y ++=C .3440x y --=D .3440x y -+=【答案】A【分析】根据切线的特征可知,A B 所在的直线为圆224x y +=和以OP 的中点3,22M ⎛⎫⎪⎝⎭为圆心,以OP 为直径的圆的公共弦所在的直线方程,【详解】根据题意得,A B 所在的直线为圆224x y +=和以OP 的中点3,22M ⎛⎫⎪⎝⎭为圆心,以OP 为直径的圆的公共弦所在的直线方程,因为5OP =,所以圆()2222325234024M x y x y x y :+骣琪--=Þ+--=琪桫,两圆相减得,A B 所在的直线方程为3440x y +-=.故选:A.(四)求两圆公共弦长例6.(2022·高二课时练习)已知圆221:(1)5C x y +-=,圆222:420C x y x y +-+=.(1)求圆1C 与圆2C 的公共弦长;(2)求过两圆的交点且圆心在直线241x y +=上的圆的方程.【答案】(1)(2)22317222x y ⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭【分析】(1)将两圆方程作差可求出公共弦的方程,然后求出圆心1C 到公共弦的距离,再利用弦心距,半径和弦的关系可求得答案,(2)解法一:设过两圆的交点的圆为()()222242240,1x y x y x y y λλ+-+++--=≠-,求出圆心坐标代入241x y +=中可求出λ,从而可求出圆的方程,解法二:将公共弦方程代入圆方程中求出两圆的交点坐标,设所求圆的圆心坐标为(),a b ,然后列方程组可求出,a b ,再求出圆的半径,从而可求出圆的方程.【详解】(1)将两圆的方程作差即可得出两圆的公共弦所在的直线方程,即()()222242240x y x y x y y +-+-+--=,化简得10x y --=,所以圆1C 的圆心()0,1到直线10x y --=的距离为d =则22215232AB r d ⎛⎫=-=-= ⎪⎝⎭,解得AB =,所以公共弦长为(2)解法一:设过两圆的交点的圆为()()222242240,1x y x y x y y λλ+-+++--=≠-,则2242240,1111x y x y λλλλλλ-+-+-=≠-+++;由圆心21,11λλλ-⎛⎫- ⎪++⎝⎭在直线241x y +=上,则()414111λλλ--=++,解得13λ=,所求圆的方程为22310x y x y +-+-=,即22317222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.解法二:由(1)得1y x =-,代入圆222:420C x y x y +-+=,化简可得22410x x --=,解得22x =;当22x =时,2y =;当22x =时,2y =-;设所求圆的圆心坐标为(),a b ,则2222222222241a b a b a b ⎧⎛⎫⎛⎫⎛⎫⎛⎫⎪-+=-++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎝⎭⎝⎭⎪+=⎩,解得3212a b ⎧=⎪⎪⎨⎪=-⎪⎩;所以222317222r ⎛⎛=+--= ⎝⎭⎝⎭;所以过两圆的交点且圆心在直线241x y +=上的圆的方程为22317222x y ⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭变式1.(2023·河南·统考二模)若圆221:1C x y +=与圆222:()()1C x a y b -+-=的公共弦AB 的长为1,则直线AB 的方程为()A .210ax by +-=B .230ax by +-=C .2210ax by +-=D .2230ax by +-=【答案】D【分析】将两圆方程相减得到直线AB 的方程为22220a b ax by +--=,然后再根据公共弦AB 的长为1即可求解.【详解】将两圆方程相减可得直线AB 的方程为22220a b ax by +--=,即22220ax by a b +--=,因为圆1C 的圆心为(0,0),半径为1,且公共弦AB 的长为1,则1(0,0)C 到直线22220ax by a b +--=的距离为2,223a b +=,所以直线AB 的方程为2230ax by +-=,故选:D.变式2.(2021秋·广东深圳·高二深圳中学校考期中)已知圆C 的圆心为()2,2-,且与直线0x y ++相切.(1)求圆C 的方程;(2)求圆C 与圆224x y +=的公共弦的长.【答案】(1)22(2)(2)20x y -++=(2)【分析】(1)由题意求得圆的半径,即可求得答案;(2)将两圆方程相减,求出两圆的公共弦方程,根据弦长、弦心距以及圆的半径之间的关系即可求得答案.【详解】(1)由题意得圆C 的半径为r =故圆C 的方程为22(2)(2)20x y -++=;(2)圆224x y +=和22(2)(2)20x y -++=的圆心距为而22<<+,即两圆相交,将224x y +=和22(2)(2)20x y -++=相减得20x y -+=,圆224x y +=的圆心到20x y -+=的距离为d ==故两圆的公共弦长为=变式3.(2021秋·高二课时练习)若圆O :x 2+y 2=5与圆O 1:(x -m )2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则直线AB 的方程为________;线段AB 的长为________.【答案】x =±14【分析】连接OO 1,记AB 与OO 1的交点为C ,利用勾股定理和等面积法,求出AC ,进而求出AB ,根据1OO ,求出m ,进而联立求出直线AB 的方程.【详解】连接OO 1,记AB 与OO 1的交点为C ,如图所示,在Rt △OO 1A 中,|OA ||O 1A |=∴|OO 1|=5,∴|AC |2,∴|AB |=4.由|OO 1|=5,得5m =±,所以,联立可得2222(5)520x y x y +-±-=-,解得直线AB 的方程为x =±1.故答案为:①1x =±;②4.变式4.(2023·安徽滁州·安徽省定远中学校考模拟预测)已知圆221:1O x y +=与圆()2222201:O x y x y F F +-++=<2O 的半径r =()A .1BC 1D【答案】D【分析】两圆方程相减可得公共弦所在直线方程,后由垂径定理结合圆2O 圆心与半径表达式可得答案.【详解】221x y+=与()2222201:O x y x y F F +-++=<两式相减得2210:l x y F ---=,即公共弦所在直线方程.圆2O 方程可化为()()22211:O x y -++2F =-,可得圆心()21,1O -,2O 半径r =则圆心2O 到l 的距离为d ==半弦长为2,则有2222r F +==-⎝⎭,解得3F =-或1F =(舍),此时r =.故选:D .变式5.(2021秋·高二课时练习)圆2221:22210C x y ax ay a ++++-=与圆2222:22220C x y bx by b ++++-=的公共弦长的最大值是()A .12B .1C .32D .2【答案】D【分析】将两圆转化成标准方程,根据标准方程得出两圆圆心均在直线y x =上,再利用几何关系即可求出结果.【详解】由222x y 2ax 2ay 2a 10++++-=,得()()22x a y a 1+++=,圆心1(,)C a a --,半径11r =;由2222:22220C x y bx by b ++++-=,得()()22x b y b 2+++=,圆心2(,)C b b --,半径2r =所以两圆圆心均在直线y x =上,半径分别为1,如图,当两圆相交且相交弦经过小圆圆心,也即大圆圆心在小圆上时,两圆公共弦长最大,最大值为小圆的直径,即最大值为2.故选:D.考点三:两圆的公切线问题(一)圆的公切线条数例7.(2022秋·贵州遵义·高二习水县第五中学校联考期末)圆221:(2)(4)25C x y +++=与圆222:(1)9C x y ++=的公切线的条数为()A .1B .2C .3D .4【答案】B【分析】先判断圆与圆的位置关系,从而可确定两圆的公切线条数.【详解】圆221:(2)(4)25C x y +++=的圆心坐标为(2,4)--,半径为5;圆222:(1)9C x y ++=的圆心坐标为(1,0)-,半径为3,所以两圆的圆心距为d因为5353-<+,所以两圆相交,所以两圆的公切线有2条.故选:B.变式1.【多选】(2023秋·高一单元测试)已知圆221:9C x y +=与圆222:(3)(4)16C x y -+-=,下列说法正确的是()A .1C 与2C 的公切线恰有4条B .1C 与2C 相交弦的方程为3490x y +-=C .1C 与2C 相交弦的弦长为125D .若,P Q 分别是圆12,C C 上的动点,则max ||12PQ =【答案】BD【分析】由根据两圆之间的位置关系确定公切线个数;如果两圆相交,进行两圆方程的做差可以得到相交弦的直线方程;通过垂径定理可以求弦长;两圆上的点的最长距离为圆心距和两半径之和,逐项分析判断即可.【详解】由已知得圆1C 的圆心()10,0C ,半径13r =,圆2C 的圆心()23,4C ,半径24r =,1221125,C C r r d r r ==-<<+,故两圆相交,所以1C 与2C 的公切线恰有2条,故A 错误;做差可得1C 与2C 相交弦的方程为3490,x y +-=1C 到相交弦的距离为95,故相交弦的弦长为245=,故C 错误;若,P Q 分别是圆12,C C 上的动点,则max 1212||12PQ C C r r =++=,故D 正确.故选:BD变式2.(2023·黑龙江大庆·统考三模)已知直线l 是圆:C ()()22211x y -+-=的切线,并且点()3,4B 到直线l的距离是2,这样的直线l 有()A .1条B .2条C .3条D .4条【答案】D【分析】由已知可推得,直线l 是圆C 与圆B 的公切线.根据两圆的圆心、半径,推得两圆的位置关系,即可得出答案.【详解】由已知可得,圆心()2,1C ,半径11r =.由点()3,4B 到直线l 的距离是2,所以直线l 是以()3,4B 为圆心,22r =为半径的圆的切线,又直线l 是圆:C ()()22211x y -+-=的切线,所以,直线l 是圆C 与圆B 的公切线.因为123BC r r ==>=+,所以,两圆外离,所以两圆的公切线有4条,即满足条件的直线l 有4条.故选:D.变式3.(2023·河北衡水·衡水市第二中学校考三模)若圆221:1Cx y +=和2221:2502C x y ay a a ⎛⎫+---=> ⎪⎝⎭有且仅有一条公切线,则=a______;此公切线的方程为______【答案】120y ++=【分析】根据两圆内切由圆心距与半径关系列出方程求a ,联立圆的方程求出切点,根据圆的切线性质得出斜率即可求解.【详解】如图,由题意得1C 与2C 相内切,又22221:()()452C x y a a a a ⎛⎫+-=+> ⎪⎝⎭,所以121C C ==,所以21a +=1a =,所以)2C,12C C k==联立(()2222119x y x y ⎧+=⎪⎨+-=⎪⎩,解得1,2x y ⎧=⎪⎪⎨⎪=-⎪⎩所以切点的坐标为122⎛⎫-- ⎪ ⎪⎝⎭,故所求公切线的方程为12y +=2x +⎭20y ++=.故答案为:120y ++=变式4.(2022秋·高二课时练习)已知两圆2211C x y +=:,()()()2222120C x y r r -+-=>:,当圆1C 与圆2C 有且仅有两条公切线时,则r 的取值范围________.22r <<【分析】根据两圆相交即可利用圆心距与半径的关系求解.【详解】若圆C 1与圆C 2有且仅有两条公切线时,则两圆相交,圆心C 1()0,0,半径R =2,圆C 2()1,2,半径r ,则12C C ==若两圆相交,则满足12<<r R C C R r -+,即22r r -<+,22r <+,22r <+变式5.(2023秋·陕西西安·高二长安一中校考期末)已知两圆2226940x y ax a +++-=和222290x y by b ++--=恰有三条公切线,若R a ∈,R b ∈,且0ab ≠,则2211a b +的最小值为()A .1625B .3225C .169D .329【答案】A【分析】确定两圆圆心和半径,根据公切线得到两圆外切,得到22925a b +=,变换得到()22222219111125b a b a b a ⎛⎫+= ⎪⎭++⎝,展开利用均值不等式计算得到答案.【详解】2226940x y ax a +++-=,即()2234x a y +=+,圆心()13,0O a -,12R =;222290x y by b ++--=,即()229x y b +-=,圆心()20,O b ,半径23R =;两圆恰有三条公切线,即两圆外切,故12125O O R R =+=,即22925a b +=,()222222222211111111610102525252599a b a b a b b a a b ⎛⎫⎛⎫⎛⎫+=+=++≥+= ⎪ ⎪ ⎪ ⎪⎝⎝⎭⎝⎭+⎭.当且仅当22229b a a b=,即22512a =,2254b =时等号成立.故选:A(二)圆的公切线方程例8.(2023·湖北黄冈·浠水县第一中学校考模拟预测)写出与圆()()224316x y -++=和圆221x y +=都相切的一条直线的方程___________.【答案】1y =(答案不唯一,247250x y ++=或4350x y --=均可以)【分析】先判断两圆位置关系,再分情况依次求解可得.【详解】圆221x y +=的圆心为()0,0O ,半径为1;圆()()224316x y -++=的圆心为()4,3C -,半径为4,圆心距为5OC =,所以两圆外切,如图,有三条切线123l l l ,,,易得切线1l 的方程为1y =;因为3l OC ⊥,且34OC k =-,所以343l k =,设34:3l y x b =+,即4330x y b -+=,则()0,0O 到3l 的距离315b =,解得53b =(舍去)或53-,所以343:50x y l --=;可知1l 和2l 关于3:4OC y x =-对称,联立341y x y ⎧=-⎪⎨⎪=⎩,解得4,13⎛⎫- ⎪⎝⎭在2l 上,在1l 上取点()0,1,设其关于OC 的对称点为()00,x y ,则0000132421314y x y x +⎧=-⨯⎪⎪⎨-⎛⎫⎪⨯-=- ⎪⎪⎝⎭⎩,解得002425725x y ⎧=-⎪⎪⎨⎪=-⎪⎩,则27124252447253l k --==--+,所以直线2244:173l y x ⎛⎫-=-+ ⎪⎝⎭,即247250x y ++=,综上,切线方程为1y =或247250x y ++=或4350x y --=.故答案为:1y =(答案不唯一,247250x y ++=或4350x y --=均可以)变式1.(2023·江西南昌·校联考模拟预测)已知圆()22:11C x y -+=与圆(22:1E x y +=,写出圆C和圆E 的一条公切线的方程______.【答案】10x +=20y +-=20y +=.【分析】设切线方程为y kx b =+,根据圆心到直线的距离均为1求解方程.【详解】设圆的公切线为y kx b =+,11==|||k b b ⇒+=,k =2k b-代入求解得:2k b ⎧=⎪⎨=⎪⎩或b k ⎧=⎪⎪⎨⎪=⎪⎩所以切线为:2,y =+或2y =+或10x +=故答案为:10x -+=20y +-=20y +=.变式2.(2023·湖南岳阳·统考三模)写出与圆221:1O x y +=和222:(3)1O x y -+=都相切的一条直线方程____________.【答案】3)52y x =±-或1y =±中任何一个答案均可【分析】先判断两圆的位置关系,可知公切线斜率存在,方程可设为y kx b =+,根据圆心到直线的距离等于半径列出方程组,解之即可得出答案.【详解】圆221x y +=的圆心为()10,0C ,半径为11r =,圆222:(3)1O x y -+=的圆心为()23,0C ,半径为21r =,则12123C C r r =>+,所以两圆外离,由两圆的圆心都在x 轴上,则公切线的斜率一定存在,设公切线方程为y kx b =+,即0kx y b -+=,则有11==,解得k b ⎧=⎪⎪⎨⎪=⎪⎩k b ⎧=⎪⎪⎨⎪=⎪⎩或01k b =⎧⎨=⎩或01k b =⎧⎨=-⎩所以公切线方程为3)2y x =-或1y =±.故答案为:1y =.(答案不唯一,写其它三条均可)变式3.【多选】(2022秋·高二单元测试)已知圆()()221:211C x y -+-=,圆()()222:211C x y +++=,则下列是圆1C 与圆2C 的公切线的直线方程为()A .0y =B .430x y -=C.20x y -=D.20x y +=【答案】ABC【分析】在同一坐标系内画出两圆图象,由两圆相离可知共有4条切线,再利用对称性设出直线方程,由点到直线距离公式即可求得切线方程.【详解】根据题意可知,两圆心()()122,1,2,1C C --关于原点对称,在同一坐标系内画出两圆图象,如下图所示:显然,圆心距1211C C =+,即两圆外离,共有4条切线;又两圆心到x 轴的距离都等于其半径,所以x 轴是其中一条公切线,即A 正确;利用对称性可知,其中一条切线1l 过原点,设其方程为y kx =,又()12,1C 到切线1l 的距离为11=,解得0k =或43k =;当0k =时,切线即为x 轴,当43k =时,切线方程为43y x =,即430x y -=,B 正确;由对称性可知,切线23,l l 与直线12C C 平行,易知12111222C C k +==+,所以直线12C C 的方程为12y x =,可设23,l l 的方程分别为12y x c =+,()1,02y x c c =->1=,解得2c =,即切线23,l l的方程分别为122y x =+,122y x =-;整理可得两切线方程为20x y -=和20x y -=,故C 正确,D 错误;故选:ABC(二)圆的公切线长例9.【多选】(2023春·山东青岛·高二统考开学考试)已知圆221:1C x y +=,圆222:2210C x x y y -+-+=,则()A .圆1C 与圆2C 相切B .圆1C 与圆2CC .圆1C 与圆2C 公共弦所在直线的方程为1x y +=D .圆1C 与圆2C 公共部分的面积为π12-【答案】BCD【分析】求出两圆圆心坐标与半径,求出圆心距,即可判断A ,B ,两圆方程作差即可得到公共弦方程,从而判断C ,求出两圆圆心到公共弦的距离,从而取出公共部分的面积,从而判断D.【详解】解:因为圆221:1C x y +=,圆222:2210C x y x y +--+=,所以圆1C 的圆心为1(0,0)C ,半径11r =,圆2C 的圆心为2(1,1)C ,半径21r =,所以121212r r C C r r -<=+,故圆1C 与圆2C 相交,即A 错误;因为两圆半径相等,则两圆公切线的长度为12C C =B 正确将两圆方程作差得10x y +-=,所以两圆公共弦所在直线l 的方程为10x y +-=,故C 正确;因为1C 的圆心为1(0,0)C ,半径11r =,所以1(0,0)C 到直线10x y +-=的距离为1d所以公共弦长为又圆心2(1,1)C 到直线10x y +-=的距离为2d ==所以圆1C 与圆2C 公共部分的面积为11π2π14222⎛⎫-=- ⎪ ⎪⎝⎭,故D 正确.故选:BCD变式1.【多选】(2022秋·广东惠州·高二惠州市惠阳高级中学实验学校校考期中)圆221:2660C x y x y ++-+=与圆222:2210C x y x y +--+=相交于A ,B 两点,则()A .AB 的直线方程为4450x y -+=B .公共弦AB 的长为8C .圆1C 与圆2C D .线段AB 的中垂线方程为20x y +-=【答案】ACD【分析】对于A ,两圆方程相减可求出直线AB 的方程,对于B ,利用弦心距、弦和半径的关系可求公共弦AB 的长,对于C ,求出12C C ,对于D ,线段AB 的中垂线就是直线12C C ,求出直线12C C 的方程即可.【详解】由222660x y x y ++-+=,得22(1)(3)4x y ++-=,则1(1,3)C -,半径12r =,由222210x y x y +--+=,得22(1)(1)1x y -+-=,则2(1,1)C ,半径21r =,对于A ,公共弦AB 所在的直线方程为2222266(221)0x y x y x y x y ++-+-+--+=,即4450x y -+=,所以A 正确,对于B ,2(1,1)C 到直线AB 的距离d =,所以公共弦AB 的长为4AB ==,所以B 错误,对于C ,因为12C C ==,12r =,21r =,。

两个圆相交的公共弦方程推导过程

两个圆相交的公共弦方程推导过程

两个圆相交的公共弦方程推导过程1.假设有两个相交的圆。

Assume there are two intersecting circles.2.圆的方程式为(x - h1)^2 + (y - k1)^2 = r1^2和(x - h2)^2 + (y - k2)^2 = r2^2。

The equations of the circles are (x - h1)^2 + (y - k1)^2 = r1^2 and (x - h2)^2 + (y - k2)^2 = r2^2.3.假设两个圆相交于点A和点B。

Suppose the two circles intersect at points A and B.4.点A和点B有相同的坐标(x, y)。

Points A and B have the same coordinates (x, y).5.因此,点A和点B的坐标都满足圆的方程式。

Therefore, the coordinates of points A and B satisfy the equations of the circles.6.将点A的坐标代入两个圆的方程式,得到以下方程式:(x -h1)^2 + (y - k1)^2 = r1^2和(x - h2)^2 + (y - k2)^2 = r2^2。

Substituting the coordinates of point A into the equations of the circles, we get the following equations: (x - h1)^2 + (y - k1)^2 = r1^2 and (x - h2)^2 + (y - k2)^2 =r2^2.7.将点B的坐标代入两个圆的方程式,得到以下方程式:(x -h1)^2 + (y - k1)^2 = r1^2和(x - h2)^2 + (y - k2)^2 = r2^2。

两个圆的公共弦方程推导

两个圆的公共弦方程推导

两个圆的公共弦方程推导## English Answer: ##。

Let $(x h_1)^2 + (y k_1)^2 = r_1^2$ and $(x h_2)^2 + (y k_2)^2 = r_2^2$ be the equations of two circles with centers $(h_1, k_1)$ and $(h_2, k_2)$, respectively, and radii $r_1$ and $r_2$, respectively. Let the circles intersect at points $A$ and $B$.The distance between the centers of the circles is given by.$$d = \sqrt{(h_1 h_2)^2 + (k_1 k_2)^2}.$$。

The length of the common chord $AB$ is given by.$$|AB| = 2\sqrt{r_1^2 \left(\frac{d}{2}\right)^2} =2\sqrt{r_2^2 \left(\frac{d}{2}\right)^2}.$$。

The midpoint of the common chord $AB$ is the point.$$\left(\frac{h_1 + h_2}{2}, \frac{k_1 +k_2}{2}\right).$$。

The slope of the common chord $AB$ is given by.$$m = \frac{k_1 k_2}{h_1 h_2}.$$。

The equation of the common chord $AB$ can be written in point-slope form as.$$y \frac{k_1 + k_2}{2} = m\left(x \frac{h_1 +h_2}{2}\right).$$。

高二春季数学:圆的弦、切线、与最值问题【讲师版】

高二春季数学:圆的弦、切线、与最值问题【讲师版】

高二春季 数学“圆的弦、切线、与最值问题”学生姓名 授课日期 教师姓名授课时长圆是数学中优美的图形,具有丰富的性质.由于其图形的对称性和完美性,很多与圆有关的最值问题都可以运用圆的图形性质,利用数形结合求解.当然,根据《教学要求》的说明,“平面解析几何的重要内容,教学重点是让学生从中感受运用代数方法处理几何问题的思想”,因此在此类问题的求解中,有时也会用到函数思想和基本不等式思想等.本文将就与圆的弦、切线、与最值问题有关的题目进行归纳总结,希望能为学生在处理此类问题时提供帮助。

1、在标准方程222)()r b y a x =-+-(下过圆上一点),00y x P (的切线方程为:200))(())r b y b y a x a x =--+--(( ;在一般方程022=++++F Ey Dx y x (0422>-+F E D ) 下过圆上一点),00y x P (的切线方程为:0220000=++++++F y y E x x Dyy xx 。

2、两相交圆011122=++++F y E x D y x (0412121>-+F E D )与022222=++++F y E x D y x(0422222>-+F E D ) 的公共弦所在的直线方程为:0)()()(212121=-+-+-F F y E E x D D 。

3、过圆022=++++F Ey Dx y x (0422>-+F E D )外一点),11y x P (作圆的切线,其切线长公式为:F Ey Dx y x PA ++++=112121||。

4、过圆022=++++F Ey Dx y x (0422>-+F E D )外一点),11y x P (作圆的切线,切点弦AB所在直线的方程为:211))(())r b y b y a x a x =--+--(((在圆的标准方程下的形式); 0221111=++++++F y y E x x D yy xx (在圆的一般方程下的形式)。

圆和圆的公共弦

圆和圆的公共弦

圆和圆的公共弦
关于圆和圆的公共弦这一话题,我们可以从多种视角来论述。

首先涉及的是圆的定义,圆是一种独特的图形,它由一条曲线构成,其曲线具
有一定的规律性和对称性,圆是由椭圆的视觉形象转化而来,两个圆的距离要小于两个圆的半径之和,其曲线的半径都相等,不存在拋物线,这也是它独具一格的原因。

其次是涉及到公共弦,公共弦也称共同弦,它是由不相邻的任意两个圆交于
一点,把其所形成的线段构成的弦,即称为两个圆的公共弦,公共弦具有如下特点:首先,公共弦的长度由两个圆的半径决定,二是它限定了两个圆的距离,即两个圆至少与公共弦相交,且相交点不在内轴线上。

此外公共弦也可以用来解决一些数学问题,圆是点之间连续的一种凸图形,所
以可以通过求解其公共弦来解决其中的一些问题,比如求解弧长等,这些都是由算法求解,但是有一点需要注意的是,当解决问题中出现两个圆的公共弦时,就需要将共同弦进行一定的缩减,因为共同弦的存在可能会影响求解的正确性。

总的来说,圆和圆的公共弦是一个常见的话题,它涉及到许多数学知识,但是
在一定的视角上还是有一定的含义的。

通过对它的深入理解,也可以在解决一些数学问题中提供一定的帮助。

两两相交的圆的三公弦共点

两两相交的圆的三公弦共点

两两相交的圆的三公弦共点1.引言1.1 概述在几何学中,圆是一种基本的几何图形,它具有许多独特的性质和特点。

当两个圆相交时,我们可以发现一些有趣的几何特征。

其中之一就是两两相交的圆的三公弦共点的性质。

所谓两两相交的圆,指的是存在两个圆,它们的边界相交于两个不同的点。

这种情况在几何中非常常见,许多几何问题和现实世界中的场景都与两个相交的圆有关。

当我们构造这两个圆的公切线时,我们会发现一条有趣的线段——三公弦。

三公弦是指通过两个相交圆的公共切点,并且与圆相交的线段。

这条线段有一个特殊的性质,即两两相交的圆的三公弦共点。

也就是说,不论两个相交的圆的位置如何变化,它们的三公弦都会交于同一个点。

对于这个特殊的现象,我们需要进行一定的证明来确保其正确性。

通过几何证明,我们可以得出结论:两两相交的圆的三公弦确实共点。

这个结论在几何学中具有重要的意义。

首先,它可以帮助我们解决一些与圆有关的问题,例如圆的切线构造、圆的内切和外切等。

其次,它也能够拓展我们的几何思维,让我们对圆的性质有更深入的理解。

在接下来的正文中,我们将探讨两两相交的圆的基本性质以及三公弦的定义和性质。

并通过几何证明,确认两两相交的圆的三公弦确实共点。

最后,我们将探讨这个结论的应用和意义,展示它在几何学中的重要作用。

1.2文章结构文章结构部分的内容应包括本文的主要内容和各个部分的简要介绍。

下面是一个可能的内容编写示例:在本文中,将探讨"两两相交的圆的三公弦共点"的现象和相关性质。

文章结构如下:第一部分:引言1.1 概述1.2 文章结构1.3 目的第二部分:正文2.1 两两相交的圆的基本性质2.2 三公弦的定义和性质第三部分:结论3.1 两两相交的圆的三公弦共点的证明3.2 应用和意义在正文部分,我们将首先介绍两两相交的圆的基本性质,包括相交的位置关系和相交点的性质。

随后,我们将详细讨论三公弦的定义和性质,探究这种特殊的弦与圆的关系。

两圆公共弦所在直线方程与切线长相等.doc

两圆公共弦所在直线方程与切线长相等.doc

两圆公共弦所在直线方程与切线长相等四川省筠连县中学邓敬过圆和圆交点的圆系方程:(为参数,且).当时,上式可化为过两圆公共弦所在直线方程:【实质】:将两圆方程相减可得两圆公共弦所在直线方程.下面介绍几个有关公共弦所在直线方程的重要结论,并举例运用,以加深学生对其该知识点的理解和掌握.1.若两圆相交,则方程为它们公共弦所在直线方程.【例1】:(新课标人教版A必修二,P133,习题4.2,A组9题)求圆与圆的公共弦长.【解析】:设两圆交于两点,将两圆方程相减可得公共弦所在直线方程:.再由再由弦长公式得:.当然,此题解法很多,该解法重点体现两圆公共弦所在直线方程的应用,其他解法在这里就不再遨述.同题型还有(新课标人教版A必修二,P144,复习参考题A组4题)求圆与圆的公共弦长.此题解答可参照例1.2.两圆外一动点P,向两相交圆所引切线长相等,则方程是P点的轨迹方程.【例2-1】:圆与圆外一动点P,向两圆所引切线长相等,则动点P的轨迹方程为【解析】:由切线长定理可知:所以P在两圆的公共弦所在直线上.即P点的轨迹为(P在两圆外).【例2-2】:已知和,在平面上找一点P,过P点引两圆切线并使他们的长都等于.【说明】:圆外一点,则向圆引切线长满足:.【解析】:如图所示,P点是两圆公共弦所在直线与以(或)为圆心,以(或)为半径的圆的交点.∴设,依题意可得:或∴P的坐标是或.【例2-3】:(新课标人教版A必修二,P144,复习参考题,A组6题),已知圆和圆关于直线对称,求直线方程.【解析】:由题意可知两圆相交,对称轴是两圆的中垂线.将两圆方程相减可得到其对称轴方程:.3.一动点P,向两相外切的圆所引切线长相等,则方程是P点的轨迹方程.【例3】:已知与相外切,两圆外一动点P,向两圆所引切线长相等,则P点的轨迹方程.【解析】:如图所示,,∴P点的轨迹方程仍为两圆方程之差,即为:.4.一动点P,向两相外离的圆所引切线长相等,则方程是P点的轨迹方程.两圆外离是将相交两圆的圆心距扩大所致,所以可以进行类比推理.【例4-1】:(07四川理15)、已知的方程是,的方程是,由动点向和所引的切线长相等,则动点的轨迹方程是【解析】::圆心,半径;:圆心,半径.两圆外离.动点的轨迹由两圆方程相减可得:.【例4-2】:(新课标人教版A必修二,P144,复习参考题A组7题)求与圆关于直线对称的圆的方程.【注意】:圆C和直线是相外离,所以对称后的两圆位置关系是外离,但是由于与已知圆共弦的圆不能唯一确定,所以通过类比此题不能用公共弦所在直线方程的思路来处理.【解析】:圆C圆心(),,设所求圆方程为,直线是两圆连心线的垂直平分线.∴∴所求圆的方程为.同类型的题还有(新课标人教版A必修二,P133,习题4.2,A组7题),求与圆C:关于直线L:对称的圆的方程.同学们可以参照例题4-2求解.。

圆与圆的公共弦方程

圆与圆的公共弦方程

圆与圆的公共弦方程1. 嘿,你知道圆与圆的公共弦方程吗?这可是个挺有意思的数学知识呢!就像两个好朋友,它们之间有一条特殊的“纽带”,那就是公共弦。

我记得有一次和同学一起讨论数学作业,就碰到了关于圆与圆公共弦方程的问题。

同学一脸疑惑地问我:“这公共弦方程到底咋找呀?”我笑着说:“别急,咱们一起来探索探索。

”你有没有过这样和同学一起研究难题的经历呢?2. 咱来说说圆与圆的公共弦方程哈。

它就像是一座神秘的桥梁,连接着两个圆。

有一次上数学课,老师讲到这个知识点的时候,打了个比方:“同学们,你们看,这两个圆就像两个独立的小岛,公共弦方程就是那座把它们连接起来的桥,让它们有了联系。

”我一下子就明白了,你觉得这个比喻形象不?后来我和同桌在做练习题的时候,还互相提醒要注意找到这座“桥”呢。

你在学习的时候有没有遇到过让你一下子恍然大悟的比喻呀?3. 圆与圆的公共弦方程啊,我觉得它真的很神奇呢!它就像一个隐藏的宝藏,等待我们去挖掘。

有一回我参加数学小组讨论,大家都在为如何快速准确地求出公共弦方程而发愁。

这时,有个同学灵机一动说:“我们可以把两个圆的方程相减呀,说不定就能找到宝藏(公共弦方程)了。

”大家一试,还真的是这样!那种感觉就像发现了新大陆一样兴奋。

你有没有在学习中体验过这种突然找到解题方法的喜悦呢?4. 你瞧,圆与圆的公共弦方程可不容小觑哦。

它就像是一把钥匙,能打开很多数学问题的大门。

我曾经和好朋友一起准备数学考试,复习到这个知识点的时候,我们互相出题考对方。

我出了一道关于两个相交圆的题目,让他求公共弦方程。

他想了一会儿,就用我们学的方法顺利地解出来了,还得意地说:“这钥匙(公共弦方程)还真好用,一下子就把门(题目)打开了。

”你在考试中有没有遇到过用这个知识点解决问题的情况呢?5. 说说圆与圆的公共弦方程吧。

它真的像一个魔法公式,有着神奇的力量。

我和小组同学们在做一个数学项目的时候,就用到了公共弦方程。

一开始大家都觉得有点复杂,但是当我们深入理解了这个公式后,就发现它能帮我们解决很多关于圆的位置关系的问题。

高中圆的公共弦长公式

高中圆的公共弦长公式

高中圆的公共弦长公式首先,我们需要了解圆的定义和性质。

在平面几何中,圆是由平面上的一组点构成的,这组点到一个固定点的距离都相等。

这个固定的点叫做圆心,距离圆心且相等的任意两点叫做圆上的点。

圆上的两点和圆心之间的线段叫做弦。

圆的直径是通过圆心并且两端点都在圆上的弦。

圆的半径是圆心到圆上的任意一点的距离。

接下来,我们需要了解两个圆相交的性质。

如果两个圆的圆心之间的距离小于两个圆的半径之和,那么这两个圆相交;如果两个圆的圆心之间的距离等于两个圆的半径之和,那么这两个圆相切;如果两个圆的圆心之间的距离大于两个圆的半径之和,那么这两个圆相离。

接着,我们来探讨两个相交圆的公共弦长公式。

假设有两个相交圆,它们的圆心分别为O₁和O₂,半径分别为r₁和r₂。

假设它们的公共弦为AB,其中A在圆O₁上,B在圆O₂上,且AB的中点为M。

我们需要求解的是弦长AB。

首先,我们可以将两个圆的半径和弦的长度相连,形成一个三角形O₁O₂B。

由于圆的性质,OB和两个半径r₁和r₂共面,且OB与AB以及O₁O₂的垂线相交于同一个点M。

因此,三角形O₁O₂B是一个直角三角形。

根据勾股定理,我们可以得到以下关系:O₁M²+O₂M²=O₁O₂²(1)由于O₁M=O₂M,所以我们可以将上述关系简化为:2O₁M²=O₁O₂²(2)另外,根据正弦定理,我们可以得到以下关系:sin(∠O₁BM) = BM / O₁Bsin(∠O₂BM) = BM / O₂B由于∠O₁BM = ∠O₂BM(夹角O₁BM和夹角O₂BM都是弦AB和两个半径的夹角),所以sin(∠O₁BM) = sin(∠O₂BM)。

因此,BM / O₁B = BM / O₂B。

由于BM是常数,所以O₁B = O₂B。

将上述结果代入公式(2)中,可以得到:2O₁M²=O₁B²+O₂B²由于O₁B=O₂B,所以上述公式可以进一步简化为:2O₁M²=2O₁B²化简得:O₁M²=O₁B²由于O₁M和O₁B之间的关系是垂直关系,所以O₁M就是弦AB的半长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两圆的公共弦(新高二)
如果两圆C
1:x2+y2+D
1
x+E
1
y+F
1
=0与C2:x2+y2+D2x+E2y+F2=0
相交,则对应一条公共弦AB,将这两圆的方程相减可以得到
(D
1−D
2
)x+(E
1
−E
2
)y+(F
1
−F
2
)=0,
因为两圆相交,所以D
1−D
2
与E
1
−E
2
不同时为零,从而得到的方程表示一条直线,
且两圆的公共点A,B的坐标满足圆的方程,故必满足直线的方程,从而知A,B在此直线上,故此直线就是两圆的公共弦所在的直线.
结论如果两圆C
1:x2+y2+D
1
x+E
1
y+F
1
=0与C2:x2+y2+D2x+E2
y+F
2
=0相交,则公共弦所在直线的方程为
(D
1−D
2
)x+(E
1
−E
2
)y+(F
1
−F
2
)=0.
由这个结论我们可以给出“求圆外一点对应的切点弦方程”的另一个方法:
过圆C:(x−a)2+(y−b)2=r2外一点P(x
0,y
)作圆的两条切线PA,PB,其
中A,B为切点,求切点弦AB所在的直线方程.
解因为∠PAC=∠PBC,所以P,A,C,B四点共圆,且PC为直径,所以这四点所在的圆的方程为
(x−a)(x−x
0)+(y−b)(y−y
)=0,
记此圆为圆M.则圆C与圆M的公共弦就是切点弦,两圆的方程相减即得切点弦所在直线的方程
(x
0−a)(x−a)+(y
−b)(y−b)=r2.
注上面的过程中用到:以(x
1,y
1
),(x
2
,y
2
)为直径的圆的方程为
(x−x
1)(x−x
2
)+(y−y
1
)(y−y
2
)=0,
这个结论也是圆中常见的结论,很容易证明.
例题一(1)圆C
1
:x2+y2+4x+1=0及圆C2:x2+y2+2x+2y+1=0的公共弦长为_____,以公共弦为直径的圆的方程为
______________;
(2)若圆(x−a)2+(y−b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周
长,则a,b满足的关系是__________________.
分析与解(1)两圆相减得x−y=0,第二个圆的圆心(−1,−1)恰在公共弦上,所以公共弦为第二个圆的直径,从而知公共弦长为2,以公共弦为直径的圆的方程为x2+y2+2x+2y+1=0,
(2)两圆相减得公共弦所在直线的方程为
(2+2a)x+(2+2b)y−(a2+1)=0,
由题意知,公共弦始终为第二个圆的直径,即第二个圆的圆心(−1,−1)始终在公共弦上,代入整理得
a2+2a+2b+5=0.
例题二圆O:x2+y2=4与圆C:x2+y2−8x+8=0的公共弦为AB,则四边形OACB的面积为_____.
分析与解 将两圆的方程相减得公共弦所在直线的方程为x=23.于是圆心O 到公共弦AB 的距离d=23,从而知 21AB=49-4=27, 故公共弦AB=7.又因为AB⊥OC ,所以所求四边形面积 S=21⋅OC ⋅AB=27.
最后给出两道练习:
练习一 已知两圆x 2+y 2=50和x 2+y 2−12x −6y+40=0相交于A,B 两点,则直线AB 的方程是_______,弦AB 的长度是_______. 答案 2x+y −15=0,25.
提示 第二个圆的圆心(6,3)在公共弦上,故AB 是此圆的直径. 练习二 若圆x 2+y 2=4与圆x 2+y 2+2ay −6=0(a>0)的公共弦长为2,则a=____.
答案
33.
注 “将两个圆的方程相减得到的方程是公共弦方程”的前提是两圆相交.当两圆相切时,方程相减得到的直线为两圆的一条公切线;
当两圆相离时,方程相减得到的直线仍然与圆心连线垂直,且两圆的公切线的中点均在直线上.事实上,这条直线是这两个圆的根轴,即这条直线是到两圆的圆幂相等的点的集合(点P对圆O的圆幂定义为PO2−r2,其中r为圆O的半径).。

相关文档
最新文档