一元一次方程解决实际问题
用一元一次方程解决实际问题比例问题
等量关系:旧工艺的废水排量-200=环保限制的最大量 新工艺的废水排量+100=环保限制的最大量
由得, 旧工艺的废水排量-200=新工艺的废水排量+100 列方程得:5x-200=2x+100 解方程得:x=100 所以2x=200,5x=500 答:新、旧工艺的废水排量分别是200吨、500吨。
举例: (1)已知一个三角形三条边的比是 ?
解析:设最短边为2xcm,中间边为4xcm ,
5x 2x
最长边为 5xcm。
4x
等量关系:最长边-短边=6
列方程为:5x-2x=6
解方程得:x=2 最短边=2×2=4cm,中间边 =4×2=8cm
列方程为:x+2x+14x=25500
解方程得:x=1500 A型为1500台,B型 =2×1500=3000台
C型=14×1500=21000台。
答: A型为1500台,B型为3000台,C型为21000台。
例:某制药厂制造一批药品,如用旧工艺,则废水排 量要比环保限制的最大量还多200吨;如用新工艺, 则废水排量比环保限制的最大量少100吨。新、旧工 艺的废水排量之比为2:5,两种工艺的废水排量各是 多少?
例:机械厂加工车间有85名工人,平均每人每天加 工大齿轮16个或小齿轮10个,已知2个大齿轮与3个 小齿轮配成一套,问需分别安排多少名工人加工大、 小齿轮,才能使每天加工的大小齿轮刚好配套?
解析:假设安排x名工人加工大齿轮,安排(85-x)名工人 加工小齿才能使每天加工的大小齿轮刚好配套。
等量关系:大齿轮数:小齿轮数=2:3
一元一次方程的应用解实际问题
一元一次方程的应用解实际问题一元一次方程是数学中最简单的代数方程之一,也是我们日常生活中常常遇到的问题的数学表示方式。
通过解一元一次方程,我们可以找到未知数的值,从而解决实际问题。
本文将以实际问题为例,探讨一元一次方程的应用。
一、购物费用问题假设小明去商场购买一件衬衫,衬衫原价为x元,商店打折后优惠了20%,小明最终花费了36元购买了该衬衫。
通过一元一次方程可以解决以下问题:设衬衫原价为x元,则打折后的价格为x - 0.2x = 0.8x。
根据题意可得:0.8x = 36。
解这个方程可以得到x = 45。
因此,原价为45元的衬衫通过打折最终花费36元。
二、速度问题小明骑自行车从A地到B地,他以每小时12公里的速度骑行。
后来他意识到自己赶不上预定的时间,于是加快了速度。
最终他以每小时15公里的速度骑行,用时比原计划少1小时。
通过一元一次方程可以解决以下问题:设原计划用时为t小时,则骑行的距离为12t。
加快速度后,骑行的距离为15(t-1)。
根据题意可得:15(t-1) = 12t。
解这个方程可以得到t = 5。
因此,原计划用时5小时,加快速度后用时4小时。
三、人数问题某班的男生人数和女生人数之比为3:4。
如果男生人数增加20人,女生人数也增加20人,那么两者之间的比例将变为4:5。
通过一元一次方程可以解决以下问题:设男生人数为3x,女生人数为4x。
增加20人后,男生人数为3x + 20,女生人数为4x + 20。
根据题意可得:(3x + 20)/(4x + 20) = 4/5。
解这个方程可以得到x = 10。
因此,原来的男生人数为3x = 3 * 10 = 30人,女生人数为4x = 4 * 10 = 40人。
结语通过以上实际问题的应用,我们可以看到一元一次方程在解决实际生活中的问题时的重要性。
使用一元一次方程,我们可以将问题抽象为数学模型,并通过求解方程得到问题的答案。
一元一次方程的应用不仅帮助我们解决了购物费用、速度、人数等问题,更培养了我们的数学思维和解决实际问题的能力。
一元一次方程解决问题
一元一次方程解决问题
一元一次方程可以解决许多实际问题,以下是一些例子:
1.工程问题:已知工作效率和工作时间,求工作总量。
例如:一个工人完成一项工作需要6小时,他的工作效率为每小时完成10个项目,问他一共能完成多少项目?
2.行程问题:已知速度和时间,求路程。
例如:一个人骑自行车每小时行驶15公里,他骑行3小时,问他骑行的总路程是多少?
3.分配问题:已知总量和份数,求每份的量。
例如:有24个苹果,要分给3个孩子,每人分几个?
4.盈亏问题:已知投入和利润,求收益。
例如:一个商店购进一批商品,每个进价为10元,售价为15元,售出40个商品,问他能赚多少钱?
5.积分表问题:已知积分表中的数据,求某个特定的积分值。
6.电话计费问题:已知通话时间和通话费用,求每个月的电话费用。
7.数字问题:已知数字的倍数或比例,求这个数字本身。
用一元一次方程解决实际问题
用一元一次方程解决实际问题一、和差倍分问题地球绕太阳一周大约要用365天,比水星绕太阳一周所用时间的4倍多13 天,水星绕太阳一周大约要用多少天?一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,这个数是多少?一份试卷共有25道题,每道题答对得4分,不答或答错扣1分,如果一个学生得90分,那么他做对了多少道题?据统计,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍,求严重缺水城市有多少座?某校七年级去春游,共租5辆大客车,每辆车有座位60个,其中男生比女生多20人,且刚好每人都有座位,则该校七年级有男生、女生各多少人?哥哥比弟弟大3岁,弟弟是5月出生的,他的年龄的2倍加上9,正好是他出生那个月的总天数,求哥哥及弟弟的年龄.两个数的和为25,差为5,求这两个数.把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生有多少人?有5角和1元的硬币共50枚,总钱数为43元,问5角硬币和1元硬币各多少枚?一人用540卢布买了两种布料共138俄尺,其中蓝布料每俄尺3卢布,黑布料每俄尺5卢布,两种布料各买了多少俄尺?某文艺团体为“希望工程”募捐,组织一场义演,若售出的票为1000张,其中成人票每张8元,学生票每张5元,问能否筹得票款6930元,为什么?初一三班65名学生为学校建花坛搬砖,其中男生每人搬8块,女生每人搬6块.(1)若一共搬了400块,问女生有多少人?(2)他们能否一共搬509块,为什么?已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱有多少个产品?两个村共有834人,较大的村的人数比另一村人数的2倍少3,两个村各多少人?一辆汽车已行驶了12000km,计划每月再行驶800 km,几个月后这辆汽车将行驶20800km?圆环面积是200cm²,外沿大圆的半径是10cm,内沿小圆的半径是多少?某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?某班62名同学参加植树活动,其中有5名同学负责运送树苗,其余同学负责挖土坑和抬水,挖土坑的人数是抬水人数的2倍,求抬水有多少人?某造纸厂为节约木材,大力扩大再生纸的生产,这家工厂去年10月生产再生纸2050吨,这比前年10月产量的2倍还多150吨,它前年10月生产再生纸多少吨?某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度.这个工厂去年上半年每月平均用电多少度?比赛问题:任权是学校的篮球队员,在一场篮球比赛中,他一人得了23分,如果他投进的2分球比3分球多4个,那么他一共投进多少个3分球?足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,则这个队胜了多少场?周长面积问题:一个长方形周长为36cm,长比宽多4cm,求长与宽.用一根10m长的铁丝围成一个长方形,(1)若该长方形的长比宽多1.4m,则长、宽各为多少米?(2)若该长方形的长比宽多0.8,则长、宽各为多少米?它所围成的长方形与(1)中所围成的长方形相比,面积有何变化?用一根长60m的绳子围出一个矩形,使它的长是宽的1.5倍,则长和宽各是多少?把一根长100cm的木棍锯成两段,使其中一段的长比别一段的2倍少5cm,应在木棍的哪个位置锯?某人把236.4cm长的铁丝分成两段,分别做成一个正方形和一个圆形,已知正方形的边长和圆形半径的比是2:5,求正方形边长和圆形半径( 取3.14).一个梯形的面积是84cm²,高为8cm,上底比下底的2倍少3cm,求这个梯形的上底和下底的长度.百分比问题某种货物第一天运出20%,第二天又运出余下的34%,这时还有528kg的货物没有运走,问这批货物原来有多少?某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%,今年人均收入比去年的1.5倍少1200元,这个乡去年农民人均收入是多少元?2001年1――9月我国城镇居民平均可支配收入为5109元,比上年同期增长8.3%,上年同期这项收入为多少?喷灌和滴灌是比漫灌节水的灌溉方式,随着农业技术的现代化,节水灌溉得到逐步推广,灌溉三块同样大的试验田,第一块用漫灌方式,第二块用喷灌方式,第三块用滴灌方式,后两种方式用水量分别是漫灌的25%和15%,三块地共用水420吨,每块地各用水多少吨?现有两种铁矿石共200吨,甲种含铁45%,乙种含铁65%,用这两种矿石炼出106吨铁,求原来这两种矿石各多少吨?比例问题三个整数的比是2:3:7,最大数比最小数大10,这三个数分别是多少?一个三角形三条边的长度比是2:4:5,最长的边比最短的边长6cm,求这个三角形的周长.洗衣机厂今年计划生产洗衣机25500台,其中І型、П型、Ш型三种洗衣机的数量比为1:2:14,这三种洗衣机计划各生产多少台?初一年级甲、乙、丙三个班为希望小学捐书,已知三个班捐赠的图书册数比是5:8:9,如果他们共捐书374本,那么这三个班各捐书多少本?黑火药由硫磺、木炭、火硝三种原料配成,它们的比是2:3:15,在一次制造火药时,火硝的用量比木炭的用量多360kg,问三种原料各用了多少?小明、小华、小刚共有邮票80枚,每人有邮票的比是2:3:5,老师奖励他们100枚邮票,使他们每个人的邮票数一样多,问老师分别给他们多少枚邮票? 年龄问题父亲年龄50岁,儿子年龄20岁,问几年后父亲年龄是儿子年龄的2倍?妈妈40岁时,儿子10岁,则过多少年后妈妈的年龄是儿子年龄的3倍?现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,问多少年后父亲的年龄是儿子年龄的3倍?今年甜甜比爸爸小28岁,明年甜甜与爸爸的年龄之和是58,你知道甜甜今年多大吗?有父子俩,10年前父亲年龄是儿子年龄的6倍,现在父亲年龄比儿子年龄大25岁,求这父子俩现在的年龄.罗蒙诺索夫,俄国学者、诗人,俄国唯物主义哲学和自然科学的奠基人,他去世后,有人为他的生平撰写了一道趣题:罗蒙诺索夫生活在19世纪,他出生年份的四个数字之和等于10,且个位数字与十位数字相等;他去世年份的四个数字之和为19,且十位数字被个位数字除后,商为1余1.求他的生卒年份.古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的2倍.”乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了.”两个牧童各有多少只羊?某人工作一年的报酬是年终给他一件衣服和10枚银币.但他干满7个月就决定不再继续干了,结账时,给了他一件衣服和2枚银币.这件衣服值多少枚银币.我国明代数学家程大为曾提出过一个有趣的问题:有一人赶着一群羊在前面走,另一人牵着一只羊跟在后面,后面的人问赶羊的人:“你这群羊有一百只吗?”赶羊的人回答:“我再得这么一群羊,再得这群羊的一半,再得这群羊的14,把你牵的羊也给我,我才恰好有一百只羊。
(完整版)初一一元一次方程解决实际问题十种典型类型
一、普通列式1、一个梯形的下底比上底多2厘米,高是5厘米,面积是40平方厘米,求上底有多长?2、某校三年共购买计算机140台,去年购买数量是前年的两倍,今年购买数量又是去年的两倍,前年这个学校购买了多少台计算机?3、洗衣机厂今年计划生产洗衣机25500台,其中a型b型c型三种洗衣机的数量比为1:2:14,这三种洗衣机各计划生产多少台?4、一个人用540元买了两种布料,共138尺,其中蓝色布料每尺三元,黑色布料每尺5元,两种布料各买了多少尺?5、有两个无聊的牧童甲对乙说,把你的羊给我一只,我的羊就是你的两倍。
乙回答说,还是你把你的羊给我一只我们的杨树就一样了。
请问它们分别有几只羊?5、某人工作一年的报酬是年终给他一件衣服和10枚金币,但他干满7个月就决定不干了,结账时给了他一件衣服和两枚金币请问,这件衣服值多少枚金币?二、数字关系1、把12的两个数字对调得到21,一个两位数,个位上的数是a,10位上的数是b,把它们对调得到另一个数用式子分别表示这两个数及它们的差,这样的差能被九整除吗?为什么?一个两位数个位上的数是10位数上的数字是x 把一与x对调,新两位数比原两位数小18,x等于多少?2、一个三位数百位上的数字比10位上的数字大一个位上的数字比10位上的数字三倍少2,若将个位与百位数字调换位置后,所得的三位数与原三位数的和是1171,求这个三位数。
3、每年春节妈妈总要给小申压岁钱,但今年春节妈妈知道小申已经上七年级了,于是今年给小申的是一本银行存折,里面存有1000元。
她提示存折有一个6位数的密码有以下两个特征:A.这个6位数的最左端数字是1,B.如果把最左端的数字一移到最右端,则所得到的新6位数是原来6位数的三倍。
请问你能拿到压岁钱吗?四、剩缺问题1、有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余三只鸽子,无鸽笼住,如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只,原有多少只鸽子和多少个鸽笼?2、把一些图书分给某班学生阅读,如果每人分三本,则剩余20本,如果每人分4本则还缺25本,这个班有多少学生?3、铜仁市对城区主干道进行绿化,计划,把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽一棵,则树苗缺21棵,如果每隔6米栽一棵,则树苗正好用完,请问有多少棵树苗?五、火车问题1、一列火车匀速行驶,经过一条长300米的隧道需要20秒的时间,隧道的顶上有一盏灯垂直向下发光,灯光照在火车上的时间是10秒,求出火车的长度?2、某铁路桥长1200米,现在有一辆火车,从桥上通过,测得火车从上桥到完全过桥共用50秒,整个火车完全在桥上的时间是30秒,求火车的长度和速度。
用一元一次方程解决问题
用一元一次方程解决问题一元一次方程,也称为一次方程,是指只有一个未知数的一次方程,其一般形式为ax + b = 0,其中a和b为已知常数,x为未知数。
一元一次方程是数学中最简单的方程之一,解决问题时常常用到它。
本文将以实际问题为例,详细介绍如何运用一元一次方程解决问题。
1. 商场促销问题假设某商场进行了一次促销活动,某商品原价为x元,根据促销活动的规定,打折后的价格为原价的80%,并且还额外返还20元的现金。
我们要求找出该商品的原价。
解题步骤:设原价为x元,则打折后的价格为0.8x元,根据题意可知:0.8x + 20 = x通过移项和合并同类项,得到:0.8x - x = -20-0.2x = -20将方程两边同时除以-0.2,得到:x = 100因此,该商品的原价为100元。
2. 速度问题假设小明骑自行车从家出发去公司,全程10公里,骑行时速为x km/h。
如果小明增加速度2 km/h,那么他将提前20分钟到达公司。
我们要求求解小明的骑行时速。
解题步骤:设小明的骑行时速为x km/h,则他骑行的时间为10/x小时。
根据题意可知:10/(x+2) = 10/x - 20/60通过通分和移项,得到:10x = (x+2)(10 - 20/60)10x = (x+2)(9)通过分配律展开右侧,得到:10x = 9x + 18将方程两边同时减去9x,得到:x = 18因此,小明的骑行时速为18 km/h。
3. 年龄问题假设小明今年的年龄为x岁,他的父亲今年年龄是他两倍,母亲今年年龄是他的1.5倍。
如果小明再过10年,他的年龄将是父亲年龄的一半,我们要求求解小明的年龄。
解题步骤:设小明今年的年龄为x岁,则父亲今年的年龄为2x岁,母亲今年的年龄为1.5x岁。
根据题意可知:x + 10 = 1/2 * (2x + 10)通过移项和合并同类项,得到:x + 10 = x + 5将方程左侧的x和右侧的x同时消去,得到:10 = 5由于等式无解,说明题目中存在矛盾条件,该问题无解。
一元一次方程与实际问题
一元一次方程与实际问题一元一次方程是数学中最基础、最常见的方程之一。
它由一个未知数和其他数构成,满足未知数的最高次数为一。
实际问题中,一元一次方程可以帮助我们解决很多实际情境中的数学难题。
例如,我们可以利用一元一次方程解决以下几类问题:1. 比例问题:假设一公斤苹果的价格为x元,那么y公斤苹果的价格可以表示为y * x元。
如果知道y=3公斤苹果的价格为6元,我们可以列出方程3x=6。
通过求解这个方程,我们可以得到每公斤苹果的价格x=2元。
2. 几何问题:假设一个长方形的长度为x米,宽度为2米。
如果知道长方形的面积为6平方米,我们可以列出方程x * 2 = 6。
通过求解这个方程,我们可以得到长方形的长度x=3米。
3. 配平化学方程:在化学反应中,我们常常需要配平化学方程以满足质量守恒定律和原子数守恒定律。
一元一次方程可以帮助我们解决配平化学方程的问题。
例如,对于化学反应Na + H2O → NaOH + H2,我们可以列出方程xNa + yH2O → zNaOH + wH2,其中x、y、z、w分别表示相应的系数。
通过求解这个方程系统,我们可以得到配平后的化学方程。
4. 商业问题:一元一次方程也常用于解决商业问题。
例如,假设某公司每个月固定的营业额为20000元,并且每卖出一件商品可以获利50元。
如果该公司希望达到每月利润6000元的目标,我们可以列出方程20000 + 50x = 26000。
通过求解这个方程,我们可以得知该公司需要卖出120件商品才能实现目标利润。
总之,一元一次方程是解决实际问题中的数学工具之一。
通过学习和应用一元一次方程,我们可以解决各种实际情况下的计算难题,并在日常生活中运用数学思维解决实际问题。
一元一次方程解决实际问题
一元一次方程解决实际问题一元一次方程是一种最简单的代数方程,它的解决方法可以应用于实际问题中。
在本文中,我们将探讨一元一次方程如何解决实际问题,并通过具体的例子来说明。
一元一次方程可以表示为ax + b = 0的形式,其中a和b是已知数,x是未知数。
解这个方程就是要找到使得等式成立的x的值。
在实际问题中,一元一次方程可以用来解决各种数学和物理相关的问题。
让我们来看一个简单的例子。
假设小明去超市买苹果,苹果的价格是每个2元,小明买了x个苹果,总共花了10元。
我们可以用一元一次方程来解决这个问题。
根据题意,我们可以列出方程2x = 10。
我们将方程化简为x = 10/2,得到x = 5。
因此,小明买了5个苹果。
除了解决购物问题,一元一次方程还可以应用于解决速度和距离的问题。
例如,假设一辆汽车以每小时60公里的速度行驶,已经行驶了x小时。
我们想要知道汽车行驶了多少公里。
根据题意,我们可以列出方程60x = 距离。
如果已知时间x为3小时,我们就可以解出距离为60 * 3 = 180公里。
通过一元一次方程,我们可以方便地计算出汽车行驶的距离。
除了购物和速度问题,一元一次方程还可以解决货币兑换问题。
例如,假设1美元可以兑换7人民币,小明去美国旅游,带了x美元。
我们想要知道他可以兑换多少人民币。
根据题意,我们可以列出方程7x = 人民币金额。
如果已知小明带了20美元,我们就可以解出人民币金额为7 * 20 = 140元。
通过一元一次方程,我们可以方便地计算出货币兑换的金额。
除了上述例子,一元一次方程还可以解决许多其他实际问题。
例如,解决物体的重量和密度问题,解决商品的成本和售价问题等等。
无论是在数学领域还是在物理领域,一元一次方程都是解决实际问题的基础工具之一。
在实际问题中,解一元一次方程时需要注意一些细节。
首先,方程的形式必须是ax + b = 0,如果不是,我们需要进行化简。
其次,解方程时需要进行运算,例如加法、减法、乘法和除法等。
一元一次方程解决实际问题的一般步骤
一元一次方程解决实际问题的一般步骤一元一次方程是数学中常见的一种形式,它能够描述许多实际问题并通过求解得出具体的答案。
一元一次方程解决实际问题一般分为以下步骤:1. 确定未知数我们需要明确实际问题中涉及到的未知数量及其代表的含义。
在确定未知数的过程中,需要仔细分析问题并准确理解问题所描述的情境,确保选取的未知数能够准确表达问题的实质。
2. 建立方程在确定未知数之后,需要根据实际问题建立一元一次方程。
建立方程的过程中,需要根据已知条件和问题描述,运用数学语言将问题转化为代数表达式,进而建立方程。
3. 解方程建立方程后,需要对方程进行求解。
通过运用一元一次方程的解法,例如分配律、合并同类项和移项等方法,求得未知数的具体数值。
4. 检验结果需要将得到的未知数代入原始问题中进行检验。
确保所得的解能够符合实际问题的要求,验证解的可行性和正确性。
通过以上一般步骤,我们能够利用一元一次方程解决各种实际问题,无论是物理问题、经济问题还是日常生活中的实际情境,都可以通过建立和求解一元一次方程得到准确的答案。
一元一次方程解决实际问题的一般步骤是确定未知数、建立方程、解方程和检验结果。
这一步骤能够帮助我们系统地分析和解决实际问题,提高数学运用能力,培养逻辑思维和解决问题的能力。
希望大家在平时的学习和实践中能够灵活应用这一方法,更好地解决各类实际问题。
当我们应用一元一次方程解决实际问题的一般步骤时,我们需要更深入地了解每个步骤的具体内容和实际运用方法。
确定未知数是解决问题的第一步,这一步至关重要,因为未知数的选择直接影响到后续建立方程和解方程的过程。
在确定未知数时,我们需要考虑问题的实际含义和情境,确保选取的未知数能够完整地表达问题的主题。
如果我们要解决一个描述速度、时间和距离的问题,我们可以选择车辆的速度作为未知数,并用V来表示。
这样,我们就清晰地确定了未知数,并为接下来建立方程奠定了基础。
建立方程是将实际问题转化为数学问题的关键一步。
一元一次方程解决实际问题(汇总)
一元一次方程解决实际问题1、配套问题1、在加固某段河坝时,需动用15台挖土运土机械,每台机械每小时能挖土3 m 3或运土2 m3,则为了使挖土和运土工作同时结束,需要安排几台机械挖土?2、工程问题1、有两只同样长的蜡烛,一支能燃烧4小时,另一支能燃烧3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一只剩余长度是另一支的一半,停电时间是几小时?3、结构相同的学生宿舍的修建,这些宿舍地板需要铺瓷砖,一天4名师傅去铺4个宿舍,结果还剩12 m2地面未铺瓷砖;同样时间内6名徒弟铺4个宿舍刚好完成.已知每名师傅比徒弟一天多铺3m2瓷砖。
(1)求每个宿舍需要铺瓷砖的地板面积。
(2)现该学校有20个宿舍的地板和36m2的走廊需要铺瓷砖.某工程队有4名师傅和6名徒弟,一开始有4名师傅来铺瓷砖,3天后,学校根据实际情况要求3天后必须完成剩余的任务,所以决定加入一批徒弟一起工作问:需要再安排多少名徒弟才能按时完成任务?3、销售问题1、某商场把一个双肩背的书包按进价提高60%标价,然后再按八折出售,这样商场每卖出一个书包就可以盈利14元,这种书包的进价是多少元?2、某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格,销售了400件,为了尽快销售完衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫应降价多少元?3、一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店是赚了还是亏了?赚赚多少?亏亏多少?4、若干人共同出资买羊,每人出五元,则差45元,每人出七元,则差三元,求人数和羊价各是多少?4、积分问题1、某足球比赛规定胜一场得3分,平一场得1分,负一场得0分,某队共踢了30场比赛,负了九场,共得47分,那么这个队胜了几场?2、答题比赛共25道题,答对一题得4分,答错一题倒扣1分,某同学做了全部试卷,得了70分,他一共做对了几道题?5、分段计费1、某市为提倡节约用水,采取分段收费,若每户每月用水不超过20立方米,每立方米收费2元,若用水超过20立方米,超过部分每立方米加收1元,小明家五月份交水费64元,则小明家五月份用水多少立方米?6、方案问题1、学校需要印刷厂印刷x份材料,甲印刷厂提出每份材料收0.2元印刷费另收500元制版费;乙印刷厂提出每份材料收0.4元印刷费,不收制版费。
初一数学上册 一元一次方程实际问题归纳
【初一数学上册一元一次方程实际问题归纳】一元一次方程是初中数学学习的重要内容之一,它不仅是数学知识的重要组成部分,也是理解和解决实际问题的有力工具。
在初一数学上册中,我们学习了一元一次方程,并通过实际问题的归纳,来更深入地理解这一概念。
在本文中,我将从简单到复杂的角度,逐步展开对一元一次方程实际问题的归纳,并结合个人观点和理解进行阐述。
一、小明买苹果问题1. 问题描述:小明买了苹果,每斤3元,他花了15元钱,请问他买了多少斤苹果?2. 解题过程:设小明买了x斤苹果,根据题意可得出方程3x=15。
3. 解答:通过解方程得知,小明买了5斤苹果。
这个问题很简单,但它展示了一元一次方程在实际问题中的应用。
通过建立方程和解方程的过程,我们可以轻松地得出结果,解决实际问题。
二、甲乙两地的距离问题1. 问题描述:甲地到乙地有320公里,甲地比乙地离原点远80公里,求甲地到原点的距离。
2. 解题过程:设甲地到原点的距离为x公里,根据题意可得出方程x+80=320。
3. 解答:通过解方程得知,甲地到原点的距离为240公里。
这个问题稍微复杂一些,但同样可以通过一元一次方程来解决。
通过建立方程和解方程的过程,我们可以清晰地得出结果,解决实际问题。
三、小明和小红的芳龄问题1. 问题描述:小明比小红大5岁,两年后小明的芳龄是小红的两倍,求他们现在的芳龄。
2. 解题过程:设小红的芳龄为x岁,根据题意可得出方程(x+5+2)*2=x+2。
3. 解答:通过解方程得知,小红现在的芳龄为7岁,小明现在的芳龄为12岁。
这个问题更加复杂,但依然可以通过一元一次方程来解决。
通过建立方程和解方程的过程,我们可以准确地得出结果,解决实际问题。
总结回顾:通过以上实际问题的归纳,我们可以看到一元一次方程在解决实际问题中的重要作用。
通过建立方程和解方程的过程,我们可以清晰地得出结果,解决各种复杂的实际问题。
在学习初一数学上册一元一次方程时,我们应该注重实际问题的应用,这样可以更好地理解和掌握这一知识点。
一元一次方程解决实际问题(分类)
一元一次方程解决实际问题(分类)实用文档:一元一次方程解决实际问题一、行程问题一)一般行程问题在行程问题中,需要找到三个基本量:路程、速度和时间,并且它们之间有着明确的关系。
具体来说,路程等于速度乘以时间,时间等于路程除以速度,速度等于路程除以时间。
我们也可以通过变形得到速度等于路程除以时间,时间等于路程除以速度。
二)相遇问题(相向而行)在相遇问题中,需要注意以下三个关键点:快行距加慢行距等于原距,快行距减慢行距等于路程差,快行距加慢行距减路程差等于原距。
举例来说,如果甲、乙两车同时从A、B两地相向而行,两车相遇点距A、B两地中点处8km,已知甲车速度是已车的1.2倍,求A、B两地的路程,我们可以利用方法一找出甲乙两车的路程差,也可以利用方法二将甲乙的速度看成是1和1.2.例2中,XXX、XXX从相距50千米的两地相向而行,XXX下午2时出发步行,每小时行4.5千米。
XXX下午3时半骑自行车出发,经过2.5小时两人相遇。
我们需要求出XXX骑自行车每小时行多少千米。
例3中,XXX的小王同时分别从甲、乙两村出发,相向而行。
步行1小时15分后,XXX走了两村间路程的一半还多0.75千米,此时恰好与XXX相遇。
已知小王的速度是每小时3.7千米,需要求出XXX每小时行多少千米。
例4中,一辆公共汽车和一辆面包车同时从相距255千米的两地相向而行,公共汽车每小时行33千米,面包车每小时行35千米。
需要求出行了几小时后两车相距51千米,以及再行几小时两车又相距51千米。
三)追及问题(同向而行)在追及问题中,需要注意以下三个关键点:快行距减慢行距等于原距(从不同点出发),追及路程除以速度差等于追及时间,速度差乘以追及时间等于追及路程。
例1中,A、B两地相距28千米,甲乙两车同时分别从A、B两地同一方向开出,甲车每小时行32千米,乙车每小时行25千米,乙车在前,甲车在后,需要求出几小时后甲车能追上乙车。
我们可以根据题意得知要追及的路程是28千米,每行1小时,甲车可追上32-25=7千米,即速度差。
初一一元一次方程解决实际问题十种典型类型
一、普通列式1、一个梯形的下底比上底多2厘米,高是5厘米,面积是40平方厘米,求上底有多长?2、某校三年共购买计算机140台,去年购买数量是前年的两倍,今年购买数量又是去年的两倍,前年这个学校购买了多少台计算机?3、洗衣机厂今年计划生产洗衣机25500台,其中a型b型c型三种洗衣机的数量比为1:2:14,这三种洗衣机各计划生产多少台?4、一个人用540元买了两种布料,共138尺,其中蓝色布料每尺三元,黑色布料每尺5元,两种布料各买了多少尺?5、有两个无聊的牧童甲对乙说,把你的羊给我一只,我的羊就是你的两倍。
乙回答说,还是你把你的羊给我一只我们的杨树就一样了。
请问它们分别有几只羊?5、某人工作一年的报酬是年终给他一件衣服和10枚金币,但他干满7个月就决定不干了,结账时给了他一件衣服和两枚金币请问,这件衣服值多少枚金币?二、数字关系1、把12的两个数字对调得到21,一个两位数,个位上的数是a,10位上的数是b,把它们对调得到另一个数用式子分别表示这两个数及它们的差,这样的差能被九整除吗?为什么?一个两位数个位上的数是10位数上的数字是x 把一与x对调,新两位数比原两位数小18,x等于多少?2、一个三位数百位上的数字比10位上的数字大一个位上的数字比10位上的数字三倍少2,若将个位与百位数字调换位置后,所得的三位数与原三位数的和是1171,求这个三位数。
3、每年春节妈妈总要给小申压岁钱,但今年春节妈妈知道小申已经上七年级了,于是今年给小申的是一本银行存折,里面存有1000元。
她提示存折有一个6位数的密码有以下两个特征:A.这个6位数的最左端数字是1,B.如果把最左端的数字一移到最右端,则所得到的新6位数是原来6位数的三倍。
请问你能拿到压岁钱吗?四、剩缺问题1、有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余三只鸽子,无鸽笼住,如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只,原有多少只鸽子和多少个鸽笼?2、把一些图书分给某班学生阅读,如果每人分三本,则剩余20本,如果每人分4本则还缺25本,这个班有多少学生?3、铜仁市对城区主干道进行绿化,计划,把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽一棵,则树苗缺21棵,如果每隔6米栽一棵,则树苗正好用完,请问有多少棵树苗?五、火车问题1、一列火车匀速行驶,经过一条长300米的隧道需要20秒的时间,隧道的顶上有一盏灯垂直向下发光,灯光照在火车上的时间是10秒,求出火车的长度?2、某铁路桥长1200米,现在有一辆火车,从桥上通过,测得火车从上桥到完全过桥共用50秒,整个火车完全在桥上的时间是30秒,求火车的长度和速度。
实际问题与一元一次方程
实际问题与一元一次方程一元一次方程是数学中最基本的方程之一,它在我们的日常生活中也有着广泛的应用。
通过一元一次方程,我们可以解决许多实际问题,比如物品的购买、时间的计算、距离的推导等等。
在本文中,我们将通过一些实际问题来展示一元一次方程的应用,并探讨如何通过方程来解决这些问题。
问题一,小明去年的年龄是他父亲今年的3/5,今年他父亲的年龄是42岁,求小明去年的年龄。
解析,假设小明去年的年龄为x岁,根据题意可以列出方程,x = 3/5 (x + 1)。
通过解方程可以得出小明去年的年龄为30岁。
问题二,某商场正在进行打折促销活动,原价100元的商品现在打8折出售,求打折后的价格。
解析,设打折后的价格为x元,根据题意可以列出方程,x = 100 0.8。
通过解方程可以得出打折后的价格为80元。
问题三,某地到另一地有120公里,甲乙两车同时出发,甲车的速度是每小时40公里,乙车的速度是每小时60公里,问多长时间后两车相遇?解析,设相遇时间为t小时,根据题意可以列出方程,40t + 60t = 120。
通过解方程可以得出相遇时间为1小时。
通过以上三个实际问题的解答,我们可以看到一元一次方程在解决实际问题时的重要性和应用价值。
通过建立方程,我们可以清晰地描述问题,找到问题的解决方法。
在日常生活中,我们也经常会遇到类似的问题,比如购物打折、交通运输等等,这时我们就可以运用一元一次方程来解决这些问题。
除了以上列举的实际问题外,一元一次方程还有许多其他的应用,比如工程中的距离、速度、时间问题,物理中的力学问题等等。
通过建立方程,我们可以将复杂的实际问题转化为简单的数学问题,从而更好地理解和解决问题。
总之,一元一次方程是数学中的基础知识,也是我们解决实际问题的有力工具。
通过学习和掌握一元一次方程的方法和技巧,我们可以更好地理解和应用数学知识,提高解决实际问题的能力。
希望通过本文的介绍,读者们能对一元一次方程有更深入的了解,也能在日常生活中更好地运用这一知识。
初一一元一次方程解决实际问题十种典型类型
初一一元一次方程解决实际问题十种典型类型2米栽一棵桂花树,这段公路需要栽多少棵桂花树?4、XXX家有一些苹果,他把它们分给他的三个朋友,每人分了8个,还剩下4个苹果。
后来他又从家里拿来10个苹果,他的四个朋友一起分享这些苹果,每人分到相同的数量,最后每人分到了几个苹果?5、某班同学去旅游,每辆大巴车可以坐60人,但是这次只报名了55人,所以需要再加一辆小巴士。
最后每辆车坐了多少人?最后在距离终点10千米的地方相遇,XXX的速度是每小时60千米,求小亮的速度。
3、甲乙两人相距100千米,甲先出发,以每小时40千米的速度前进,乙以每小时60千米的速度出发,当乙追上甲时,甲已经走了多长时间?他们相遇时离甲的起点还有多远?十、其他问题1、某人去买鸡蛋,他有10元钱,鸡蛋每个0.1元,鸭蛋每个0.2元,如果他买了100个蛋,问他买了多少个鸡蛋?多少个鸭蛋?2、某人去买水果,他有100元钱,XXX每斤2元。
梨子每斤1元,如果他买了60斤水果,问他买了多少斤苹果?多少斤梨子?3、某人的年龄是一个两位数,如果把他的年龄的十位数和个位数互换,他的年龄会变成原来的3/5,求他的年龄。
4、有一只小猴子从一棵树上掉下来,第一次掉到离树顶1/3的地方,然后又掉下来离树顶1/4的地方,以后每次掉下来的高度都是前一次的1/3。
求它第10次掉落时离树顶多远?1.XXX和销量同时出发,XXX的速度是8千米每小时,销量的速度是6千米每小时。
问XXX出发后几小时追上XXX?改写:XXX和销量同时出发,XXX的速度为每小时8千米,销量的速度为每小时6千米。
求XXX出发后几小时能追上XXX?2.电气车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气车速度的5倍,还快20千米每小时,半小时后两车相遇,两车的速度各是多少?改写:电气车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度是电气车速度的5倍,再加上20千米每小时。
一元一次方程的实际问题应用
一元一次方程的实际问题应用一元一次方程是初中数学中的基本知识之一,它在解决实际问题中起着重要的作用。
本文将从几个典型的实际问题入手,展示一元一次方程的应用。
问题一:购买水果小明去市场购买了苹果和橙子,苹果每斤3元,橙子每斤2元,他总共购买了7斤水果,并支付了15元。
求小明购买的苹果和橙子的重量。
解析:设小明购买的苹果重量为x斤,橙子重量为y斤。
根据题意,我们可以得到以下两个方程:x + y = 7 (式1)3x + 2y = 15 (式2)通过解方程组(式1)和(式2),可以求得x和y的值。
可以通过倍加消元法解这个方程组,具体步骤如下:首先将(式1)的两边乘以2,得到2x + 2y = 14。
然后将上述方程和(式2)相减,得到3x - 2x = 15 - 14,即x = 1。
将求得的x值代入(式1),可得1 + y = 7,解得y = 6。
所以小明购买的苹果重量为1斤,橙子重量为6斤。
问题二:汽车行驶一辆汽车以每小时60千米的速度行驶,行驶了t小时后行程达到了120千米。
求汽车行驶了多少时间。
解析:设汽车行驶的时间为t小时。
根据题意,我们可以得到以下方程:60t = 120解这个方程,可以求得t的值。
将方程两边除以60,得到t = 2。
所以汽车行驶了2小时。
问题三:人口增长某城市的人口每年以2%的速度增长,现有人口为100万人,求n 年后该城市的人口。
解析:设n年后该城市的人口为P万人。
根据题意,我们可以得到以下方程:P = 100 × (1 + 0.02)^n解这个方程,可以求得n的值。
假设n=10,则可以计算得到P ≈ 121.9。
所以10年后该城市的人口约为121.9万人。
通过以上三个实际问题的例子,我们可以看到一元一次方程在解决实际问题中的应用。
它能够帮助我们建立数学模型,根据已知条件推导出未知量的值。
在生活中,我们常常会遇到类似的实际问题,通过运用一元一次方程的解法,我们能够更好地解决这些问题,提高问题解决能力。
代数方程式一元一次方程实际问题
代数方程式一元一次方程实际问题一元一次方程是高中代数学中最基础的概念之一,它涉及到实际问题的解决方法。
本文将介绍一些应用于实际问题中的一元一次方程,并通过实例来说明其解题过程。
一、购物实例假设小明去商场购买商品,每件商品的价格都是固定的。
他买了几件商品后,想知道他总共花费了多少钱。
假设商品的单价为x元,购买数量为n件,则我们可以建立以下一元一次方程:总花费 = 单价 ×购买数量代入具体数值后,该方程可以进一步简化为:总花费 = x × n比如,如果商品单价为100元,购买了5件商品,那么总花费 = 100 × 5 = 500元。
二、运动实例假设一个人以匀速在公路上行驶,我们想知道他行驶一段距离需要多长时间。
假设这个人的速度为v千米/小时,行驶的距离为d千米,则可以建立以下一元一次方程:时间 = 距离 ÷速度代入具体数值后,该方程可以进一步简化为:时间 = d ÷ v比如,如果行驶的距离为100千米,速度为50千米/小时,那么所需时间 = 100 ÷ 50 = 2小时。
三、比例实例假设我们需要将一种液化气装在瓶子里,现在已知每瓶液化气可以使用n天,我们想知道x瓶液化气可以使用多少天。
假设液化气的使用天数和瓶数成比例关系,则可以建立以下一元一次方程:使用天数 = 每瓶使用天数 ×瓶数代入具体数值后,该方程可以进一步简化为:使用天数 = n × x比如,每瓶液化气使用30天,那么10瓶液化气可以使用的天数 =30 × 10 = 300天。
四、几何实例假设我们有一个长方形花坛,长度为L米,宽度为W米。
我们想知道该花坛的面积是多少。
由于长方形的面积公式为长 ×宽,我们可以建立以下一元一次方程:花坛面积 = 长 ×宽代入具体数值后,该方程可以进一步简化为:花坛面积 = L × W比如,花坛长度为10米,宽度为5米,那么花坛的面积 = 10 × 5 = 50平方米。