MAX5063BASA中文资料
MAX产品后缀说明
MAX 产品后缀说明MAX 产品后缀说明三位后缀例: MAX1675E U A温度范围封装形式管脚数四位后缀另有一些MAXIM 产品后缀用四位表示,第一位表示产品精度等级;第二位表示温度范围:精度,后三位同三位后缀的IC.第三位表示封装形式;第四位表示产品管脚数。
例如:MAX631ACPA 第一个”A”表示5%的输出温度范围C 0°C - 70°C A -40°C - +125°CI -20°C - +85°C M -55 °C - +125°CE -40°C - +85°C封装形式A SSOP(密脚表面贴装)B CERQUAD(陶瓷方形封装)C TO220,TQFP(薄的四方表贴封装)D 陶瓷SB 封装E QSOP(四方表面贴封装)F 陶瓷Flat 封装H 模块SBGA 5*5TQFP J 陶瓷双列直插K SOT L LCCM MQFP(公制四方扁平封装) N 窄体陶瓷双列直插P 塑封DIP(双列直插) Q PLCCR 窄体陶瓷DIP S SO 表面贴封装T TO5,TO99,TO100 U TSSOP,uMAX,SOTV TO39 W 宽体SOX SC70 Y 窄SBZ TO92,MQUAD /D DICE(裸片)/PR 硬塑料/W 晶原管脚数A 8 N 18B 10,64 O 42C 12,192 P 20D 14 Q 2,100E 16 R 3,84F 22,256 S 4,80G 24 T 6,160H 44 U 38,60I 28 V 8(圆脚,隔离型)J 32 W 10(圆脚,隔离型)K 5,68 X 8L 40 Y 8(圆脚,隔离型)M 7,48 Z 10(圆脚,隔离型)。
电动车交流控制器、驱动器
电动车交流控制器
概述
电动车异步电机驱动器采用先进DSP为核心的数字驱动控制,可广泛应用于电动三轮车、电动观光车、电动巡逻车等电动车辆。
该控制器采用了可靠大力矩的异步电机作为驱动设备,具有体积小、重量轻、高可靠性、速度反应快的特点,具备能量回馈功能,充电后续航里程远。
并有限流、过流、过温、堵转等保护功能。
福州欣联达是专业工业驱动电源厂家,其捕食者系列驱动器具有以下特点:
1、异步电机驱动,大力矩、高可靠、防水等级比永磁机高两个等级,可达IP65。
2、高转速:四极电机最高驱动转速8000转/分钟。
3、系统总体成本低。
4、能量利用率高,续航力强。
5、转矩大,爬坡能力强。
MAX705功能说明
功能说明MAX705/706/813L是一组CMOS*电路,能够*电源电压、电池故障和微处理器(MPU或mP)或微控制器(MCU或mC)的工作状态。
将常用的多项功能集成到一片8脚封装的小芯片内,与采用分立元件或单一功能芯片组合的电路相比,大大减小了系统电路的复杂性和元器件的数量,显著提高了系统可靠性和精确度。
MAX705/MAX706/MAX813L具有以下四种功能:1)上电,掉电及电压下降时复位信号输出2)提供一独立的看门狗.如果在1.6S内没有喟狗的话,将会输出一看门狗信号。
3)1.25V门限电压检测器,可实现电源故障告警,电池电压过低检测及*5V以外的电源电压。
4)提供手动复位输入,输出低电位有效复位信号。
MAX707/MAX708直接输出高电平有效复位脉冲,没有看门狗定时器功能。
其他功能与MAX705/MAX706/MAX813L一样.MAX831L与MAX705,MAX706的区别是MAX705,706输出与输入信号相反的复位脉冲信号,MAX831L输出的是与输入信号同相的复位脉冲信号。
MAX705/MAX706/MAX813L的门限电压是4.65V,当电源电压低于4.65V时会自动产生一个复位脉冲。
MAX707,MAX708的门限电压是4.40,即当电源电压低于4.40V时会产生一个复位脉冲信号。
主要特点:●低电平复位信号输出(MAX705,MAX706),当电源电压低到1V时仍能确保低电平复位信号有效。
●高精度电源电压*功能:●MAX705/MAX706/MAX707/MAX813L门限电压:4.65V●MAX706/MAX708门限电压:4.40V●复位脉冲宽度:200ms●具有手动复位输入接口●兼容TTL电平,CMOS电平●高电平复位信号输出(MAX707/MAX708/MAX813L)●电源电压*及电池低压告警●独立的看门狗定时器--1.6S超时(MAX705,MAX706)该系列产品采用3种不同的8脚封装形式:DIP、SO和mMAX。
W25Q64中文资料精编版
W25Q64BV出版日期:2010年7月8日- 1 - 版本E64M位与串行闪存双路和四路SPIW25Q64BV- 2 -目录1,一般DESCRIPTION (5)2。
FEATURES (5)3引脚配置SOIC208-MIL.......................................... .. (6)4,焊垫配置WSON8X6-MM.......................................... . (6)5,焊垫配置PDIP300-MIL.......................................... . (7)6引脚说明SOIC208密耳,PDIP300密耳和WSON8X6-MM................................ 7......7引脚配置SOIC300mil的.......................................... .. (8)8引脚SOIC封装说明300-MIL (8)8.1包装Types (9)8.2片选(/CS) (9)8.3串行数据输入,输出和IO(DI,DO和IO0,IO1,IO2,IO3)............................. 9.......8.4写保护(/WP) (9)8.5控股(/HOLD) (9)8.6串行时钟(CLK) (9)9座DIAGRAM (10)10功能DESCRIPTION (11)10.1 SPI OPERATIONS (11)10.1.1标准SPI Instructions (11)10.1.2双SPI Instructions (11)10.1.3四路SPI Instructions (11)10.1.4保持功能 (11)10.2写保护 (12)10.2.1写保护Features (12)11,控制和状态寄存器............................................ .. (13)11.1状态REGISTER (13)11.1.1 BUSY (13)11.1.2写使能锁存(WEL) (13)11.1.3块保护位(BP2,BP1,BP0)..................................... .. (13)11.1.4顶/底块保护(TB)....................................... .................................................. ..1311.1.5部门/块保护(SEC) (13)11.1.6状态寄存器保护(SRP,SRP0)....................................... . (14)11.1.7四路启用(QE) (14)11.1.8状态寄存器内存保护........................................... .. (16)11.2 INSTRUCTIONS (17)11.2.1制造商和设备标识........................................... .. (17)11.2.2指令集表1 (18)W25Q64BV11.2.3指令表2(阅读说明书)....................................... (19)出版日期:2010年7月8日- 3 - 修订版E11.2.4写使能(06h) (20)11.2.5写禁止(04h) (20)11.2.6读状态寄存器1(05H)和读状态寄存器2(35H).............................. (21)11.2.7写状态寄存器(01H)......................................... .................................................. .. (22)11.2.8读取数据(03h) (23)11.2.9快速阅读(0Bh) (24)11.2.10快速读双输出(3BH)........................................ .................................................. 0.25 11.2.11快速读四路输出(6BH)........................................ .. (26)11.2.12快速读双I / O (BBh) (27)11.2.13快速读取四I/ O (EBh) (29)11.2.14八进制字读取四I/ O(E3H)..................................... (31)11.2.15页编程(02h) (33)11.2.16四路输入页编程(32H)........................................ . (34)11.2.17扇区擦除(20H) (35)11.2.1832KB的块擦除(52H) (36)11.2.1964KB的块擦除(D8h) (37)20年2月11日芯片擦除(C7H/ 60h) (38)21年2月11日擦除挂起(75h) (39)22年2月11日擦除恢复(7Ah) (40)23年11月2日掉电(B9h) (41)24年2月11日高性能模式(A3H)......................................... (42)25年2月11日发布掉电或高性能模式/设备ID(ABH) (42)26年2月11日读制造商/设备ID(90H)....................................... . (44)27年2月11日阅读唯一的ID号(4BH)........................................ . (45)28年2月11日读JEDEC的ID (9Fh) (46)29年2月11日连续读取模式复位(FFH或FFFFH)...................................... .. (47)12,电气特性.............................................. (48)12.1绝对最大Ratings (48)12.2操作范围 (48)12.3上电时序和写抑制阈值......................................... (49)12.4直流电气Characteristics (50)12.5 AC测量条件.............................................. .. (51)12.6 AC电气Characteristics (52)12.7 AC电气特性(续)......................................... . (53)12.8串行输出Timing (54)12.9输入Timing (54)12.10持有Timing (54)13包装SPECIFICATION (55)W25Q64BV13.18引脚SOIC208密耳(包装代号SS)..................................... .. (55)- 4 -13.28引脚PDIP300密耳(封装代码DA)..................................... (56)13.38触点WSON8x6毫米(封装代码ZE)....................................... (57)13.416引脚SOIC300密耳(封装代码SF)..................................... . (58)14订货INFORMA TION (59)14.1有效的部件号和顶端标记.......................................... (60)15版本HISTORY (61)W25Q64BV出版日期:2010年7月8日- 5 - 修订版E1概述该W25Q64BV(64M位)串行Flash存储器提供了有限的系统存储解决方案空间,引脚和电源。
亚特诺新一代三相应用接触器产品介绍说明书
Motor control and protectionICON familyStart easily Protect preciselyIntroducing Eaton’s new contactor range for AC-3 applications to 170A. Perfectly suited for applications in the commercial and industrial segments for panel builders and machinery OEMs.The contactor has a smaller footprint than the existing xStart series and offers application adjusted ratings.Icon Contactors SeriesCoil voltages available are 24V50/60HZ, 110V50/60HZ, 230V50/60HZ, 400V50/60HZ, DC24V .Basic devices Rated operational current Max. motor rating for three-phase motors 50 - 60 Hz Conventional thermal current I th = I e AC-1at 40°C A Open Contact AC-3AC-3AC-4380 V 400 V I e220 V 230 V P 380 V 400 V P 660 V 690 V P 220 V 230 V P 380 V 400 V P 660 V 690 V P N/O = Normallyopened contact N/C = Normally 4 pole, 3 poleConnection type: Screw terminals9 2.5 4 4.5 1.5 2.5 3.6 20 – 1 N/C 12 3.5 5.5 6.5 2 3 4.4 20 1 N/O –12 3.5 5.5 6.5 2 3 4.4 20 – 1 N/C 15 4 7.5 7 2 3 4.4 20 1 N/O –154 7.5 7 2 3 4.4 20 – 1 N/C 3 poleConnection type: Screw terminals1857.511 2.5 4.56.5 401 N/O–18 5 7.511 2.5 4.5 6.5 40 – 1 N/C 257.51114 3.5 68.5 401 N/O–25 7.5 1114 3.5 6 8.5 40 – 1 N/C 32101515 4 710 451 N/O–32 10 1515 4 710 45 – 1 N/C 381118.515 4 710 451 N/O–3811 18.5 15 4 710 45 – 1 N/C 3 poleConnection type: Screw terminals40 12.5 18.523 5 912 60 1 N/O 1 N/C 50 15.5 2230 6 1014 80 1 N/O 1 N/C 65 20 3035 7 1217 98 1 N/O 1 N/C 7222 3735 7 1217 98 1 N/O 1 N/C 3 poleConnection type: Screw terminals80 25 3737112015110 1 N/O 1 N/C 95304545 1120151301 N/O1 N/C3 poleConnection type: Screw terminals115 37 5590 17 2843 160 ––150 48 75 96 20 3348 190 ––1705290140 20 3348 203––CMN00027DILM9-01N CMN00038DILM12-10N CMN00049DILM12-01N CMN00060DILM15-10N CMN00071DILM15-01N CMN00082DILM18-10N DILM18-01N CMN00104DILM25-10N DILM25-01N(CMN00126DILM32-10N DILM32-01N CMN00148DILM38-10N DILM38-01N CMN00170DILM40-11N DILM50-11N DILM65-11N DILM72-11N DILM80-11N DILM95-11N DILM115N DILM150N DILM170N (...)(...)(...)(...)(...)(...)(...)(...)(...)(...)(...)(...)(...)(...)(...)(...)(...)(...)(...)(...)(...)(...)• Phase failure sensitivity and temperature compensation • Reset pushbutton manual/auto • Test/off pushbutton• Auxiliary contact (1 N/O + 1 NC)•Fitted directly on the contactor of the maximum current to 175AIcon Overload relays ZB..N series0.1 – 0.16CMN00333CMN00335ZB12N-1,6CMN00336ZB12N-2,4CMN00337ZB12N-4CMN00338ZB12N-6CMN00339ZB12N-10CMN00340ZB12N-12CMN00341ZB12N-161 – 1.5CMN00352ZB32N-24CMN00353ZB32N-30CMN00354ZB32N-36CMN00355ZB32N-38CMN00356Setting range of overload releasesCircuit symbolAuxiliary contactFor use withI r AN/O = normally open contact N/C = normally closed contact0.4 – 0.6 1 N/O 1 N/C 0.6 – 1 1 N/O 1 N/C 1 – 1.6 1 N/O 1 N/C 1.6 – 2.4 1 N/O 1 N/C 2.4 – 4 1 N/O 1 N/C 4 – 6 1 N/O 1 N/C 6 – 10 1 N/O 1 N/C 9 – 12 1 N/O 1 N/C 12 –161 N/O1 N/C 17 – 24 1 N/O 1 N/C 22 – 30 1 N/O 1 N/C 29 – 36 1 N/O 1 N/C 33 – 381 N/O1 N/COverload relaysIcon Overloads ZB…N seriesSetting range of overload releasesCircuit symbolAuxiliary contactFor use withI r AN/O = normally open contact N/C = normally closed contact63 – 80 1 N/O 1 N/C 77 – 971 N/O1 N/C50 – 70 1 N/O 1 N/C 70 – 100 1 N/O 1 N/C 95 – 125 1 N/O 1 N/C 120 – 150 1 N/O 1 N/C 145 – 1751 N/O1 N/COverload relays Part no.Article no.– 25CMN00363– 50– 35– 25 – 50ZB95N-50 – 35ZB150N-35Icon Contactor Relays DILA…N seriesWiring method: Screw terminals Basic devices with interlocked opposing contacts ContactRated operational current AC – 15Conventional thermal current at 55°CN/O = Normally opened contact N/C = Normally closed contact220 V 230 V 240 V I e A380 V 400 V 415 V I e AI th A4 N/O – 4 416 3 N/O 1 N/C 4 4 16 2 N/O 2 N/C 4 4 16 1 N/O 3 N/C 4416–4 N/C4416DILA-40N DILA-31N DILA-22N DILA-13N DILA-04N(Coil voltages available are 24V50/60HZ, 110V50/60HZ, 230V50/60HZ, 400V50/60HZ, DC24V .• Varied 4-pole contact configurations • Conventional thermal current (Ith): 16A• Identical construction sizes for AC- and DC-operated contactor relays •Integrated surge suppressors for DC-operated contactor relaysA complete range of accessories are available for the Icon series, such as:• Auxiliary contacts (top mount)• Auxiliary contacts (side mount)• RC Suppressors• Varistor Suppressors• Pneumatic timer modules • Mechanical Interlocks • Sealable Shrouds•External Reset Button(...)(...)(...)(...)(...)E a t o n10 Kent RoadMascot NSW 2020Tel: 1300 332 866Fax: (02) 9693 1258Email: ************************ Eaton is a registered trademarkof Eaton Corporation.All trademarks are property of their respective owners.For more information about Eaton visit: Eaton’s mission is to improve the quality of life and the environment through the use of power management technologies and services. We provide sustainable solutions that help our customers effectively manage electrical, hydraulic, and mechanical power – more safely, more effi ciently, and more reliably. Eaton’s 2019 revenues were $21.4 billion, and we sell products to customers in more than 175 countries. We have approximately 95,000 employees.For more information about Eaton visit: 。
MAX6663AEE资料
General DescriptionThe MAX6653/MAX6663/MAX6664 are ACPI-compliant local and remote-junction temperature sensors and fan controllers. These devices measure their own die tem-perature, as well as the temperature of a remote-PN junction and control the speed of a DC cooling fan based on the measured temperature. Remote tempera-ture measurement accuracy is ±1°C from +60°C to +100°C. Temperature measurement resolution is 0.125°C for both local and remote temperatures.Internal watchdog set points are provided for both local and remote temperatures. There are two comparison set points for local temperatures and two for remote temperatures. When a set point is crossed, the MAX6653/MAX6663/MAX6664 assert either the INT or THERM outputs. These outputs can be used as inter-rupts, clock throttle signals, or overtemperature shut-down signals. Two pins on the MAX6653 control the power-up values of the comparison set points, provid-ing fail-safe protection even when the system is unable to program the trip temperatures. The MAX6653 has two additional shutdown outputs, SDR and SDL , that are triggered when the remote or local temperatures exceed the programmed shutdown set points. The INT output for the MAX6653/MAX6663 and THERM outputs for the MAX6653/MAX6663/MAX6664 can also function as inputs if either is pulled low to force the fan to full speed, unless this function is masked by the user.The MAX6653/MAX6663/MAX6664 are available in 16-pin QSOP packages and operate over the -40°C to +125°C temperature range.ApplicationsPersonal Computers Servers Workstations Telecom Equipment Networking Equipment Test Equipment Industrial ControlsFeatureso Remote-Junction Temperature Sensor Within ±1°C Accuracy (+60°C to +100°C)o ACPI-Compatible Programmable Temperature Alarms o 0.125°C Resolution Local and Remote-Junction Temperature Measurement o Programmable Temperature Offset for System Calibration o SMBus 2-Wire Serial Interface with Timeout o Automatic or Manual Fan-Speed Control o PWM Fan Control Outputo Fan-Speed Monitoring and Watchdog o Fan Fault and Failure Indicators o Compatible with 2-Wire or 3-Wire Fans (Tachometer Output)o +3V to +5.5V Supply Rangeo Additional Shutdown Set Point (MAX6653)o Controlled PWM Rise/Fall TimesMAX6653/MAX6663/MAX6664Temperature Monitors andPWM Fan Controllers________________________________________________________________Maxim Integrated Products1Pin Configurations19-2865; Rev 1; 12/03For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Ordering InformationTypical Operating Circuits appear at end of data sheet.Functional Diagram appears at end of data sheet.M A X 6653/M A X 6663/M A X 6664Temperature Monitors and PWM Fan Controllers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.All Voltages Are Referenced to GNDTACH/AIN..............................................................-0.3V to +5.5V V CC ...........................................................................-0.3V to +6V DXP, ADD, CRIT0, CRIT1........................-0.3V to + (V CC + 0.3V)DXN.......................................................................-0.3V to +0.8V SMBDATA, SMBCLK, INT , THERM ,FAN_FAULT , SDL , SDR ............................................-0.3V to +6V SMBDATA, INT , THERM , FAN_FAULT ,PWM_OUT Current..............................................-1mA to +50mADXN Current .......................................................................±1mA ESD Protection (all pins, Human Body Model)..................2000V Continuous Power Dissipation (T A = +70°C)16-Pin QSOP (derate 8.3 mW/°C above +70°C)..........667mW Operating Temperature Range .........................-40°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +165°C Lead Temperature (soldering, 10s).................................+300°CELECTRICAL CHARACTERISTICSMAX6653/MAX6663/MAX6664Temperature Monitors andPWM Fan Controllers_______________________________________________________________________________________3Note 2:Not production tested, guaranteed by design.ELECTRICAL CHARACTERISTICS (continued)M A X 6653/M A X 6663/M A X 6664Temperature Monitors and PWM Fan Controllers 4_______________________________________________________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)REMOTE TEMPERATURE ERROR vs. REMOTE-DIODE TEMPERATUREREMOTE-DIODE TEMPERATURE (°C)T E M P E R A T U R E E R R O R (°C )110956580-105203550-25-40125-1.5-1.0-0.500.51.01.52.0-2.0LOCAL TEMPERATURE ERROR vs. DIE TEMPERATUREM A X 6653 t o c 04DIE TEMPERATURE (°C)L O C A L T E M P E R A T U R E E R R O R (°C )110956580-105203550-25-40125-1.5-1.0-0.500.51.01.52.0-2.01000.0010.010.1110100REMOTE TEMPERATURE ERROR vs. POWER-SUPPLY NOISE FREQUENCY2POWER-SUPPLY NOISE FREQUENCY (MHz)R E M O T E T E M P E R A T U R E E R R O R (°C )468135797-20.0010.010.1110100LOCAL TEMPERATURE ERROR vs. POWER-SUPPLY NOISE FREQUENCY-10POWER-SUPPLY NOISE FREQUENCY (MHz)R E M O T E T E M P E R A T U R E E R R O R (°C )215643TEMPERATURE ERRORvs. COMMON-MODE NOISE FREQUENCYCOMMON-MODE NOISE FREQUENCY (MHz)0.00010.11100.0010.01100T E M P E R A T U R E E R R O R (°C )12-22461088765432100.011100.1100TEMPERATURE ERRORvs. DIFFERENTIAL-MODE NOISE FREQUENCYDIFFERENTIAL-MODE NOISE FREQUENCY (MHz)T E M P E R A T U R E E R R O R (°C )TEMPERATURE ERROR vs. DXP-DXN CAPACITANCEDXP-DXN CAPACITANCE (nF)T E M P E R A T U R E E R R O R (°C )1-5-4-3-2-101101002.03.02.54.03.54.55.03.05.5STANDBY SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S T A N D B Y S U P P L Y C U R R E N T (µA )4.03.54.55.0AVERAGE OPERATING SUPPLY CURRENTvs. CONVERSION RATECONVERSION RATE (Hz)S U P P L Y C U R R E N T (µA )32150100150200250300350400450500004MAX6653/MAX6663/MAX6664Temperature Monitors and PWM Fan Controllers Array_______________________________________________________________________________________5M A X 6653/M A X 6663/M A X 6664Temperature Monitors and PWM Fan Controllers 6Detailed DescriptionThe MAX6653/MAX6663/MAX6664 are local/remote temperature monitors and fan controllers for micro-processor-based systems. These devices communi-cate with the system through a serial SMBus interface.The serial bus controller features a hard-wired address pin for device selection, an input line for a serial clock,and a serial line for reading and writing addresses and data (see Functional Diagram ).The MAX6653/MAX6663/MAX6664 fan control section can operate in three modes. In the automatic fan-control mode, the fan ’s power-supply voltage is automatically adjusted based on temperature. The control algorithm parameters are programmable to allow optimization to the characteristics of the fan and the system. RPM select mode forces the fan speed to a programmed tachome-ter value. PWM duty cycle select mode allows user selection of the PWM duty cycle. PWM rise and fall times are limited to maximize fan reliability.To ensure overall system reliability, the MAX6653/MAX6663/MAX6664 feature an SMBus timeout so that the MAX6653/MAX6663/MAX6664 can never “lock ” the SMBus. F urthermore, the availability of hard-wired default values for critical temperature set points ensures the MAX6653 controls critical temperature events properly even if the SMBus is “locked ” by some other device on the bus.SMBus Digital InterfaceF rom a software perspective, the MAX6653/MAX6663/MAX6664 appear as a set of byte-wide registers. These devices use a standard SMBus 2-wire/I 2C-compatible serial interface to access the internal registers. The MAX6653/MAX6663/MAX6664 slave address can be set to three different values by the input pin ADD(Table 2) and, therefore, a maximum of three MAX6653/MAX6663/MAX6664 devices can share the same bus.The MAX6653/MAX6663/MAX6664 employ four stan-dard SMBus protocols: Write Byte, Read Byte, Send Byte, and Receive Byte (Figures 1, 2, and 3). The short-er Receive Byte protocol allows quicker transfers, pro-vided that the correct data register was previously selected by a Read Byte instruction. Use caution with the shorter protocols in multimaster systems, since a second master could overwrite the command byte with-out informing the first master.Alert Response AddressThe MAX6653/MAX6663/MAX6664 respond to the SMBus alert response address, an event which typical-ly occurs after an SMBus host master detects an INT interrupt signal going active (referred to as ALERT in SMBus nomenclature). When the host master puts the alert response address (0001 1001) on the bus, all devices with an active INT output respond by putting their own address onto the bus. The alert response can activate several different slave devices simultaneously,similar to the I 2C general call. If more than one slave attempts to respond, bus arbitration rules apply, and the device with the lowest address code wins. The master then services the devices from the lowest address up.MAX6653/MAX6663/MAX6664Temperature Monitors and PWM Fan ControllersFigure 1. SMBus ProtocolsFigure 2. SMBus Write Timing Diagram_______________________________________________________________________________________7The MAX6663 resets its INT output and some of the status bits in the status register after responding to an alert response address; however, if the error condition that caused the interrupt is still present, INT is reassert-ed on the next monitoring cycle. INT is maskable to allow full control of ALERT conditions.Temperature MeasurementThe MAX6653/MAX6663/MAX6664 contain on-chip tem-perature sensors to sense their own die (local) tempera-tures. These devices can also measure remote temperatures such as the die temperature of CPUs or other ICs having on-chip temperature-sensing diodes, or discrete diode-connected transistors as shown in the Typical O perating Circuits . F or best accuracy, the dis-crete diode-connected transistor should be a small-signal device with its collector and base connected together.The on-chip ADC converts the sensed temperature and outputs the temperature data in the format shown in Tables 3 and 4. The temperature measurement resolution is 0.125°C for both local and remote temperatures. The temperature accuracy is within ±1°C for remote tempera-ture measurements from +60°C to +100°C.The Local Temperature Offset (0Dh) and Remote Temperature Offset (0Eh) registers allow the measured temperature to be increased or decreased by a fixed value to compensate for errors due to variations in diode resistance and ideality factor (see the Remote Diode Considerations section). The reported temperature is the measured temperature plus the correction value. Both the measured temperature and the reported value are limited by the sensor ’s temperature range. F or example, if a remote thermal diode is being measured and its tempera-ture is 135°C, the measured temperature is the maximumvalue of 127.875°C. If the remote offset value is set to -10°C, the reported value is 117.875°C, not 125°C.The temperature conversion rate is programmable using bits [4:2] of the fan filter register (23h) as shown in Table 5.The DXN input is biased at 0.65V above ground by an internal diode to set up the analog-to-digital inputs for a differential measurement. The worst-case DXP-DXN dif-ferential input voltage range is from 0.25V to 0.95V.Excess resistance in series with the remote diode caus-es about 0.5°C error per ohm. Likewise, a 200µV offset voltage forced on DXP-DXN causes about 1°C error.High-frequency EMI is best filtered at DXP and DXN with an external 2200pF capacitor. This value can be increased to about 3300pF, including cable capacitance.Capacitance higher than 3300pF introduces errors due to the rise time of the switched current source.M A X 6653/M A X 6663/M A X 6664Temperature Monitors and PWM Fan Controllers 8Temperature Comparisonand Interrupt System At the end of each conversion cycle, the converted temperature data are compared to various set-point thresholds to control the INT, THERM, SDL, and SDR outputs. All temperature threshold limits are stored in the threshold limit registers (Table 6) and can be changed through the SMBus digital interface.THERM is an active-low thermal-overload output indicat-ing that the THERM overtemperature set point is exceed-ed. With the THERM threshold set to an appropriate value, the THERM output can be used to control clock throttling. When this pin is pulled low by an external signal, a status bit (bit 7, status register 2) is set, and the fan speed is unconditionally forced to full-on speed. The only way to reset the status bit is to read status register 2. Connect a 10kΩpullup resistor between THERM and V CC.MAX6653/MAX6663/MAX6664Temperature Monitors and PWM Fan Controllers _______________________________________________________________________________________9M A X 6653/M A X 6663/M A X 6664Temperature Monitors and PWM Fan ControllersINT is an open-drain digital output that reports the sta-tus of temperature interrupt limits and fan out-of-limit conditions. Set bit 1 of configuration register 1 (00h) to 1 to enable INT output or reset this bit to zero to disable the INT output function. Status register 1 contains sta-tus information for the conditions that cause INT to assert. Reading status register 1 resets INT , but INT is reasserted if the fault condition still exists. Connect a 10k Ωpullup resistor between INT and V CC .SDL and SDR are open-drain digital outputs on the MAX6653 that can be used to shut the system down based on the local (die) temperature of the MAX6653 or the temperature of the remote sensor, respectively. The trip thresholds for SDL and SDR are normally set above the THERM and INT limits. Their power-up values are set by the CRIT1 and CRIT0 pins, as shown in Table 1.Fan-Speed ControlThe MAX6653/MAX6663/MAX6664 fan-control section can operate in one of three modes depending on the set-ting of bit 7 to bit 5 of configuration register 1 (00h).Regardless of the mode of operation, the PWM output fre-quency is programmable, and the fan speed is measured with the result stored in the fan-speed register (08h).PWM Output FrequencyThe PWM output frequency is programmed by bit 5, bit 4, and bit 3 of the fan characteristics register (20h),regardless of the mode of operation. See Table 7.Fan-Control ModeThe mode of fan-speed control operation is set by bit 7,bit 6, and bit 5 in configuration register 1 (00h), as shown in Table 8.PWM Duty-Cycle Fan-Control ModeBits [3:0] of the fan-speed configuration register set the PWM duty cycle. See Table 9 for more details.RPM Select Fan-Control ModeIn RPM select mode, the MAX6653/MAX6663/MAX6664adjust their PWM output duty cycle to match a selected fan speed measured by a tachometer count value. Before selecting this mode by setting bits [7:5] of configuration register 1 (00h) to 0x1, the desired tachometer count value should be written to the fan tachometer high-limit register (10h). In this mode, the MAX6653/MAX6663/MAX6664 are not able to detect underspeed fan faults because the fan tachometer high-limit register (10h) func-tions as the target tachometer count.The MAX6653/MAX6663/MAX6664 detect fan stall faults by comparing the fan-speed reading to the full-scale constant of 254 (F Eh). Therefore, the MAX6653/MAX6663/MAX6664 signal a fan fault when the fan-speed reading is 255 (FFh). Note that the RPM mode cannot be used for speeds below 10% of the fan ’s maximum speed. It is important to verify that a fan works properly at lower RPM values if a low-RPM oper-ation in this mode is desired.MAX6653/MAX6663/MAX6664Temperature Monitors andPWM Fan Controllers11Automatic Fan-Control ModeAutomatic fan-speed control is selected by setting bits [7:5] of configuration register 1 (00h) to 100 (to control speed based on the remote temperature) or 101 (to control speed based on both remote and local temper-ature). Program a threshold, or starting temperature TMIN, and the desired temperature range, T RANGE , into the local temp T MIN /T RANGE register (24h) for local temperature and into the remote temp T MIN /T RANGE register (25h) for remote temperature (Tables 10 and 11). If the fan control responds to both local and remote temperatures, the higher PWM duty cycle has priority.When the temperature exceeds T MIN , the fan is enabled at a minimum duty cycle programmed in bits [3:0] of the fan-speed configuration register (22h). The duty cycle increases in proportion to the temperature difference and reaches 100% at a temperature equal to (T MIN + T RANGE ). A hysteresis of 5°C is built into the T MIN set point to prevent the fan from starting and stop-ping when the temperature is at the set point.Spin-UpTo ensure proper fan startup, the MAX6653/MAX6663/MAX6664 can be set to drive the fan to 100% duty cycle for a short period on startup, and then revert to the correct duty cycle. The spin-up time is programmed by bits [2:0] in the fan characteristics register (20h).The spin-up feature can be disabled by setting bit 7 of the fan-filter register (23h) to 1; POR value is zero.Table 12 shows programming of the spin-up time.Fan-Filter ModeWhen the MAX6653/MAX6663/MAX6664 are used for automatic fan-speed control, the fan-filter mode helps minimize the audible effects of varying fan speeds. The fan-filter mode limits the rate at which fan speed can change. Each time a new temperature measurement is made, the fan-filter mode allows the PWM duty cycle to increment by a selectable amount. The duty cycle can change by 1/240, 2/240, 4/240, or 8/240 (0.416%,0.833%, 1.667%, or 3.333%) of the PWM period after each temperature-monitoring cycle. This prevents sud-den changes in fan speed, even when temperature changes suddenly.The filter mode is set by bit 0 of the fan-filter register (23h). To enable the fan-filter mode, write a 1 to this bit.Bits [6:5] of the same register control the size of the PWM steps.Note that the rate of change depends on both the value selected by the fan-filter bits and on the temperatureM A X 6653/M A X 6663/M A X 6664Temperature Monitors and PWM Fan Controllersmeasurement rate, which is controlled by bits [4:2] of the fan-filter register (23h). Table 5 shows the effect of the temperature measurement rate control bits. As an example, assume that the temperature measurement rate is 2Hz, or 0.5s per monitoring cycle, and the fan-fil-ter rate is 0.416% per monitoring cycle. For the fan drive to change from 50% to 100% requires 50% / 0.416% =120 temperature monitoring cycles. Thus, for a tempera-ture-monitoring cycle of 0.5s, the time required for the drive to change from 50% to 100% is 60s.Fan-Speed MeasurementThe fan speed is measured by using the relatively slow tachometer signal from the fan to gate an 11.25kHzclock frequency into a fan-speed counter. The mea-surement is initialized on the starting edge of a PWM output if fan-speed measurement is enabled by setting bit 2 of configuration register 2 (01h) to 1. Counting begins on the leading edge of the second tachometer pulse and lasts for two tachometer periods or until the counter overranges (255). The measurement repeats unless monitoring is disabled by resetting bit 2 in the configuration register 2 (01h). The measured result is stored in the fan-speed reading register (08h).The fan-speed count is given by:where RPM = fan speed in RPM.N determines the speed range and is programmed by bits [7:6] in the fan characteristics register (20h) as shown in Table 14. When the speed falls below the value in the speed range column, a fan failure is detected.The TACH/AIN input can be either a digital signal (from the fan ’s tachometer output) or an analog signal,depending on the setting of bit 2 of the configuration register 1 (00h). The default setting is zero, which sets up TACH/AIN as a digital input. F or the analog input (Figure 4), the detected voltage threshold is typically at 250mV, which is appropriate for sensing the voltage of a sense resistor connected to the ground lead of a 2-wire fan. The AIN input only responds to pulse widths greater than 10µs.F igure 5 shows a schematic using a current-sensing resistor and a coupling capacitor to derive the tachometer information from the power-supply current of a 2-wire fan. This circuit allows the speed of a 2-wire fan to be measured even though the fan has no tachometer signal output. The sensing resistor, R SENSE, converts the fan commutation pulses into a voltage and this voltage is AC-coupled into the TACH/AIN input through coupling capacitor C1. The value of R SENSE is on the order of 1Ωto 5Ω, depending on the fan, and the value of the coupling capacitor C1 is 0.01µF. When using this method, set bit 2 of configu-ration register 1 to 1.Fan-Fault Detection The FAN_FAULT output is used to indicate fan slow down or failure. POR disables the FAN_FAULT output on the MAX6653/MAX6663. POR enables FAN_FAULT output on the MAX6664. If FAN_FAULT is not enabled, writing a logic 1 to bit 4 of configuration register 1 (00h) enables the FAN_FAULT output pin. Either under-speed or stalled fans are detected as fan faults. FAN_FAULT is asserted low only when five consecutive interrupts are generated by the MAX6653/MAX6663/ MAX6664s’INT due to fan faults. The MAX6653/ MAX6664 apply 100% duty cycle for the duration of the spin-up time once an INT is asserted. The MAX6663 goes to 100% duty cycle for the duration of the spin-up time once INT is asserted and status register 1 is read. Fan-fault detection works by comparing the value of the fan tachometer high-limit register (10h) with the value of the fan-speed reading register (08h), which contains the value of the most recent fan-speed measurement. Note that the value of the fan-speed reading register (08h) must exceed the value of the fan tachometer high limit (10h) by 1 in order to qualify as a fault. The fault gener-ates an interrupt signal by asserting the INT output, but does not cause the FAN_FAULT output to assert until five consecutive failures have been detected. The fan runs at 100% duty cycle when five consecutive failures have been detected, whether FAN_FAULT is enabled or not. As an example of the function of the fan-fault detection, assume a fan is stalled or under speed. The MAX6663 ini-tially indicates the failure by generating an interrupt on the INT pin. The fan fault bit (bit 1) of interrupt status register 1 (02h) is also set to 1. Once the processor has acknowl-edged the INT by reading status register 1, the INT is cleared. PWM_OUT is then brought high for a 2s (fan spin-up default, Table 12) spin-up period to restart the fan. Subsequent fan failures cause INT to be reasserted and PWM_OUT to be brought high (following a status register 1 read) for a spin-up period each time to restart the fan. Once the fifth tachometer failure occurs, the FAN_FAULT is asserted to indicate a critical fan failure.A MAX6653/MAX6664 example is somewhat simpler. Again assume the fan is stalled or under speed. The MAX6653/MAX6664 initially indicate the failure by gener-ating an interrupt on the INT pin. The fan fault bit of the interrupt status register is set to 1. PWM_OUT goes high for the programmed spin-up time (2s default) to restart the fan. Each subsequent fan failure causes another spin-up. Once the fifth tachometer failure occurs, the FAN_FAULT output is asserted (if enabled) and the PWM output is driven to 100%.When the FAN_FAULT output is disabled (register 00h, bit 4), spin-ups are still attempted whenever the tach count is greater than the value in the fan tachometer high-limit register (10h). If fan faults and their associat-ed spin-ups are not desired, the fan tachometer high-limit register (10h) to F F. This prevents the tach count from ever exceeding the limit and faults are not detect-ed. Simply disabling the tachometer input (register 01h, bit 2) leaves the fan fault function enabled and can result in fan faults.Figure 5. Using the MAX6653/MAX6663/MAX6664 with a2-Wire FanMAX6653/MAX6663/MAX6664Temperature Monitors and PWM Fan Controllers______________________________________________________________________________________13M A X 6653/M A X 6663/M A X 6664Temperature Monitors and PWM Fan Controllers 14______________________________________________________________________________________Alarm SpeedF or the MAX6663, the alarm speed bit, bit 0 of status register 1 (02h), indicates that the PWM duty cycle is 100%, excluding the case of fan spin-up. F or the MAX6653/MAX6664, this bit indicates that the THERM output is low. Once this bit is set, the only way to clear it is by reading status register 1. However, the bit does not reassert on the next monitoring cycle if the condi-tion still exists. It does assert if the condition is discon-tinued and then returns.Power-On Default ConditionsAt power-up, the MAX6653/MAX6663/MAX6664 are monitoring temperature to protect the system against thermal damage. The PWM outputs are in known states.Note that although the "Monitoring" bit (Configuration register 1, Bit 0) is enabled, automatic fan speed control does not begin until a 1 is rewritten to Bit 0.Other default conditions as listed in the Register Summary section.After applying power to the MAX6653/MAX6663/MAX6664, set the desired operating characteristics (fan configuration, alarm thresholds, etc.). Write to Configuration register 1 last. When a 1 is first written to Bit 0 of this register, fan control will commence as determined by the register contents.PC Board LayoutF ollow these guidelines to reduce the measurement error of the temperature sensors:1)Place the MAX6653/MAX6663/MAX6664 as closeas is practical to the remote diode. In noisy environ-ments, such as a computer motherboard, this dis-tance can be 4in to 8in (typ). This length can be increased if the worst noise sources are avoided.Noise sources include CRTs, clock generators,memory buses, and ISA/PCI buses.2)Do not route the DXP-DXN lines next to the deflec-tion coils of a CRT. Also, do not route the traces across fast digital signals, which can easily intro-duce 30°C error, even with good filtering.3)Route the DXP and DXN traces in parallel and inclose proximity to each other, away from any higher voltage traces, such as 12VDC. Leakage currents from PC board contamination must be dealt with carefully since a 20M Ωleakage path from DXP to ground causes about 1°C error. If high-voltage traces are unavoidable, connect guard traces to GND on either side of the DXP-DXN traces (Figure 6).4)The 10-mil widths and spacing recommended inFigure 6are not absolutely necessary, as they offer only a minor improvement in leakage and noise over narrow traces. Use wider traces when practical.5)Add a 200Ωresistor in series with VCC for bestnoise filtering (see Typical Operating Circuits).Figure 6. Recommended DXP/DXN PC Traces。
奥莎变频器参数表
35
C07
中速比例:P3
F1<运行频率≤F2时。
120.00
100
C08
中速积分:I3
F1<运行频率≤F2时。
15.00
20/25
C09
高速比例:P4
运行频率>F2时。
100.00
160/180
C10
高速积分:I4
运行频率>F2时。
10.00
5
C11
速度切换点1:
低速切换点F1
0.50
C12
D09
最高速度
电梯的额定速度
1.750
D10
曲线方式
0:一般,1:直接停靠。
0
D11
速度参考0
多段速度0
0.000
D12
速度参考1
多段速度1
0.145
D13
速度参考2
Байду номын сангаас多段速度2
0.030
D14
速度参考3
多段速度3
0.040
D15
速度参考4
多段速度4
0.290
D16
速度参考5
多段速度5
1.000
D17
80
C03
低速比例1:P1
运行频率≤F1,电机处于驱动状态时。
110.00
60/140
C04
低速积分1:I1
运行频率≤F1,
电机处于驱动状态时。
10.00
35/45
C05
低速比例2:P2
运行频率≤F1,
电机处于制动状态时。
100.00
60/90/100
C06
低速积分2:I2
MAX5062BASA+T中文资料
General DescriptionThe MAX5062/MAX5063/MAX5064 high-frequency,125V half-bridge, n-channel MOSFET drivers drive high-and low-side MOSFETs in high-voltage applications.These drivers are independently controlled and their 35ns typical propagation delay, from input to output, are matched to within 3ns (typ). The high-voltage operation with very low and matched propagation delay between drivers, and high source/sink current capabilities in a thermally enhanced package make these devices suit-able for the high-power, high-frequency telecom power converters. The 125V maximum input voltage range pro-vides plenty of margin over the 100V input transient requirement of telecom standards. A reliable on-chip bootstrap diode connected between V DD and BST elimi-nates the need for an external discrete diode.The MAX5062A/C and the MAX5063A/C offer both nonin-verting drivers (see the Selector Guide ). The MAX5062B/D and the MAX5063B/D offer a noninverting high-side driver and an inverting low-side driver. The MAX5064A/B offer two inputs per driver that can be either inverting or noninverting. The MAX5062A/B/C/D and the MAX5064A feature CMOS (V DD / 2) logic inputs.The MAX5063A/B/C/D and the MAX5064B feature TTL logic inputs. The MAX5064A/B include a break-before-make adjustment input that sets the dead time between drivers from 16ns to 95ns. The drivers are available in the industry-standard 8-pin SO footprint and pin configura-tion, and a thermally enhanced 8-pin SO and 12-pin (4mm x 4mm) thin QFN packages. All devices operate over the -40°C to +125°C automotive temperature range.ApplicationsTelecom Half-Bridge Power Supplies Two-Switch Forward Converters Full-Bridge ConvertersActive-Clamp Forward Converters Power-Supply Modules Motor ControlFeatures♦HIP2100/HIP2101 Pin Compatible (MAX5062A/MAX5063A)♦Up to 125V Input Operation♦8V to 12.6V V DD Input Voltage Range♦2A Peak Source and Sink Current Drive Capability ♦35ns Typical Propagation Delay♦Guaranteed 8ns Propagation Delay Matching Between Drivers♦Programmable Break-Before-Make Timing (MAX5064)♦Up to 1MHz Combined Switching Frequency while Driving 100nC Gate Charge (MAX5064)♦Available in CMOS (V DD / 2) or TTL Logic-Level Inputs with Hysteresis♦Up to 15V Logic Inputs Independent of Input Voltage♦Low 2.5pF Input Capacitance♦Instant Turn-Off of Drivers During Fault or PWM Start-Stop Synchronization (MAX5064)♦ Low 200µA Supply Current♦Versions Available With Combination ofNoninverting and Inverting Drivers (MAX5062B/D and MAX5063B/D)♦Available in 8-Pin SO, Thermally Enhanced SO,and 12-Pin Thin QFN PackagesMAX5062/MAX5063/MAX5064125V/2A, High-Speed,Half-Bridge MOSFET Drivers________________________________________________________________Maxim Integrated Products1Ordering InformationSelector Guide19-3502; Rev 5; 5/07For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Selector Guide continued at end of data sheet .*EP = Exposed paddle.Devices are available in both leaded and lead-free packaging.Specify lead-free by replacing “-T” with “+T” when ordering.Ordering Information continued at end of data sheet.M A X 5062/M A X 5063/M A X 5064125V/2A, High-Speed,Half-Bridge MOSFET Drivers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V DD = V BST = +8V to +12.6V, V HS = GND = 0V, BBM = open, T A = -40°C to +125°C, unless otherwise noted. Typical values are atStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(All voltages referenced to GND, unless otherwise noted.)V DD , IN_H, IN_L, IN_L+, IN_L-, IN_H+, IN_H-........-0.3V to +15V DL, BBM.....................................................-0.3V to (V DD + 0.3V)HS............................................................................-5V to +130V DH to HS.....................................................-0.3V to (V DD + 0.3V)BST to HS...............................................................-0.3V to +15V AGND to PGND (MAX5064)..................................-0.3V to +0.3V dV/dt at HS........................................................................50V/ns Continuous Power Dissipation (T A = +70°C)8-Pin SO (derate 5.9mW/°C above +70°C)...............470.6mW8-Pin SO with Exposed Pad (derate 19.2mW/°Cabove +70°C)*....................................................1538.5mW 12-Pin Thin QFN (derate 24.4mW/°Cabove +70°C)*....................................................1951.2mW Maximum Junction Temperature.....................................+150°C Operating Temperature Range .........................-40°C to +125°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°C *Per JEDEC 51 standard multilayer board.ELECTRICAL CHARACTERISTICS (continued)MAX5062/MAX5063/MAX5064125V/2A, High-Speed, Half-Bridge MOSFET DriversM A X 5062/M A X 5063/M A X 5064125V/2A, High-Speed,Half-Bridge MOSFET Drivers 4_______________________________________________________________________________________DD Note 3:Guaranteed by design, not production tested.Note 4:Break-before-make time is calculated by t BBM = 8ns x (1 + R BBM / 10k Ω).Note 5:See the Minimum Pulse Width section.ELECTRICAL CHARACTERISTICS (continued)(V DD = V BST = +8V to +12.6V, V HS = GND = 0V, BBM = open, T A = -40°C to +125°C, unless otherwise noted. Typical values are atMAX5062/MAX5063/MAX5064125V/2A, High-Speed,Half-Bridge MOSFET Drivers_______________________________________________________________________________________5UNDERVOLTAGE LOCKOUT(V DD AND V BST RISING) vs. TEMPERATURETEMPERATURE (°C)U V L O (V )110956580-105203550-256.66.76.86.97.07.17.27.37.47.56.5-40125V DD AND BST UNDERVOLTAGE LOCKOUTHYSTERESIS vs. TEMPERATURETEMPERATURE (°C)U VL O H Y ST E R E S I S (V )110956580-105203550-250.10.20.30.40.50.60.70.80.91.00-40125I DD vs. V DD40µs/divV DD2V/div500µA/div0A0V I DDI DDO + I BSTO vs. V DD (f SW = 250kHz)V DD (V)I D D O + I B S T O (m A )1210113456789121.00.80.60.40.21.21.41.61.82.02.22.42.62.83.00013604020801001201401601802000.50.70.60.80.9 1.0 1.1INTERNAL BST DIODE (I-V) CHARACTERISTICSV DD - V BST (V)I D I O D E (m A )604020801001201401600426810153791112131415V DD QUIESCENT CURRENT vs. V DD (NO SWITCHING)V DD (V)I D D (µA)639121518210426810153791112131415BST QUIESCENT CURRENTvs. BST VOLTAGEV BST (V)I B S T (µA )Typical Operating Characteristics(Typical values are at V DD = V BST = +12V and T A = +25°C, unless otherwise specified.)M A X 5062/M A X 5063/M A X 5064125V/2A, High-Speed,Half-Bridge MOSFET Drivers 6_______________________________________________________________________________________V DD AND BST OPERATING SUPPLYCURRENT vs. FREQUENCYFREQUENCY (kHz)I D D O + I B S T O (m A )9007008002003004005006001001234567891001000DH OR DL OUTPUT LOW VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L T A G E (V )110956580-105203550-250.120.140.160.180.200.240.280.320.340.220.260.300.10-40125DH OR DL FALL TIMEvs. TEMPERATURE (C LOAD = 10nF)TEMPERATURE (°C)t F (n s )110956580-105203550-251020304050701101009012060800-40125DH OR DL RISE PROPAGATION DELAYvs. TEMPERATURETEMPERATURE (°C)P RO P A G A T I O N D E L A Y (n s )110956580-105203550-25510152025355560304550400-40125PEAK DH AND DL SOURCE/SINK CURRENTMAX5062/3/4 toc101µs/divDH OR DL5V/divSINK AND SOURCE CURRENT2A/divC L = 100nFDH OR DL RISE TIMEvs. TEMPERATURE (C L = 10nF)TEMPERATURE (°C)t R (n s )110956580-105203550-251224364860841081207296-40125Typical Operating Characteristics (continued)(Typical values are at V DD = V BST = +12V and T A = +25°C, unless otherwise specified.)MAX5062/MAX5063/MAX5064125V/2A, High-Speed,Half-Bridge MOSFET Drivers_______________________________________________________________________________________7DH OR DL FALL PROPAGATION DELAYvs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )110956580-105203550-25510152025355560304550400-40125BREAK-BEFORE-MAKE DEAD TIME vs. R BBMR BBM(k Ω)t B B M (n s )2902102509013017050255075100125175250150200225010BREAK-BEFORE-MAKE DEAD TIMEvs. TEMPERATURETEMPERATURE (°C)t B B M (n s )110956580-105203550-251020304050701101009012060800-40125DELAY MATCHING (DH/DL RISING)MAX5062/3/4 toc1710ns/divINPUT5V/div 5V/divDH/DLC L = 0DELAY MATCHING (DH/DL FALLING)MAX5062/3/4 toc1810ns/div INPUT5V/div5V/divDH/DLC L = 0DH/DL RESPONSE TO V DD GLITCHMAX5062/3/4 toc1940µs/divDH DLV DD10V/div10V/div10V/div5V/divINPUTTypical Operating Characteristics (continued)(Typical values are at V DD = V BST = +12V and T A = +25°C, unless otherwise specified.)M A X 5062/M A X 5063/M A X 5064125V/2A, High-Speed,Half-Bridge MOSFET Drivers 8_______________________________________________________________________________________MAX5062/MAX5063/MAX5064125V/2A, High-Speed,Half-Bridge MOSFET Drivers_______________________________________________________________________________________9Detailed DescriptionThe MAX5062/MAX5063/MAX5064 are 125V/2A high-speed, half-bridge MOSFET drivers that operate from a supply voltage of +8V to +12.6V. The drivers are intended to drive a high-side switch without any isola-tion device like an optocoupler or drive transformer.The high-side driver is controlled by a TTL/CMOS logic signal referenced to ground. The 2A source and sink drive capability is achieved by using low R DS_ON p-and n-channel driver output stages. The BiCMOS process allows extremely fast rise/fall times and lowpropagation delays. The typical propagation delay from the logic-input signal to the drive output is 35ns with a matched propagation delay of 3ns typical. Matching these propagation delays is as important as the absolute value of the delay itself. The high 125V input voltage range allows plenty of margin above the 100V transient specification per telecom standards.The MAX5064 is available in a thermally enhanced TQFN package, which can dissipate up to 1.95W (at +70°C) and allow up to 1MHz switching frequency while driving 100nC combined gate-charge MOSFETs.Figure 1. Timing Characteristics for Noninverting and Inverting Logic InputsM A X 5062/M A X 5063/M A X 5064Undervoltage LockoutBoth the high- and low-side drivers feature undervolt-age lockout (UVLO). The low-side driver’s UVLO LOW threshold is referenced to GND and pulls both driver outputs low when V DD falls below 6.8V. The high-side driver has its own undervoltage lockout threshold (UVLO HIGH ), referenced to HS, and pulls DH low when BST falls below 6.4V with respect to HS.During turn-on, once V DD rises above its UVLO thresh-old, DL starts switching and follows the IN_L logic input.At this time, the bootstrap capacitor is not charged and the BST-to-HS voltage is below UVLO BST . For synchro-nous buck and half-bridge converter topologies, the bootstrap capacitor can charge up in one cycle and normal operation begins in a few microseconds after the BST-to-HS voltage exceeds UVLO BST . In the two-switch forward topology, the BST capacitor takes some time (a few hundred microseconds) to charge and increase its voltage above UVLO BST .The typical hysteresis for both UVLO thresholds is 0.5V.The bootstrap capacitor value should be selected care-fully to avoid unintentional oscillations during turn-on and turn-off at the DH output. Choose the capacitor value about 20 times higher than the total gate capaci-tance of the MOSFET. Use a low-ESR-type X7R dielec-tric ceramic capacitor at BST (typically a 0.1µF ceramic is adequate) and a parallel combination of 1µF and 0.1µF ceramic capacitors from V DD to GND (MAX5062_, MAX5063_) or to PGND (MAX5064_). The high-side MOSFET’s continuous on-time is limited due to the charge loss from the high-side driver’s quiescent current. The maximum on-time is dependent on the size of C BST , I BST (50µA max), and UVLO BST .Output DriverThe MAX5062/MAX5063/MAX5064 have low 2.5ΩR DS_ON p-channel and n-channel devices (totem pole)in the output stage. This allows for a fast turn-on and turn-off of the high gate-charge switching MOSFETs.The peak source and sink current is typically 2A.Propagation delays from the logic inputs to the driver outputs are matched to within 8ns. The internal p- and n-channel MOSFETs have a 1ns break-before-make logic to avoid any cross conduction between them. This internal break-before-make logic eliminates shoot-through currents reducing the operating supply current as well as the spikes at V DD . The DL voltage is approxi-mately equal to V DD and the DH-to-HS voltage, a diode drop below V DD , when they are in a high state and to zero when in a low state. The driver R DS_ON is lower at higher V DD . Lower R DS_ON means higher source and sink currents and faster switching speeds.Internal Bootstrap DiodeAn internal diode connects from V DD to BST and is used in conjunction with a bootstrap capacitor external-ly connected between BST and HS. The diode charges the capacitor from V DD when the DL low-side switch is on and isolates V DD when HS is pulled high as the high-side driver turns on (see the Typical Operating Circuit ).The internal bootstrap diode has a typical forward volt-age drop of 0.9V and has a 10ns typical turn-off/turn-on time. For lower voltage drops from V DD to BST, connect an external Schottky diode between V DD and BST.Programmable Break-Before-Make(MAX5064)Half-bridge and synchronous buck topologies require that the high- or low-side switch be turned off before the other switch is turned on to avoid shoot-through currents. Shoot-through occurs when both high- and low-side switches are on at the same time. This condi-tion is caused by the mismatch in the propagation delay from I N_H/I N_L to DH/DL, driver output imped-ance, and the MOSFET gate capacitance. Shoot-through currents increase power dissipation, radiate EMI , and can be catastrophic, especially with high input voltages.The MAX5064 offers a break-before-make (BBM) fea-ture that allows the adjustment of the delay from the input to the output of each driver. The propagation delay from the rising edges of IN_H and IN_L to the ris-ing edges of DH and DL, respectively, can be pro-grammed from 16ns to 95ns. Note that the BBM time (t BBM ) has a higher percentage error at lower value because of the fixed comparator delay in the BBM block. The propagation delay mismatch (t MATCH_)needs to be included when calculating the total t BBM error. The low 8ns (maximum) delay mismatch reduces the total t BBM variation. Use the following equations to calculate R BBM for the required BBM time and t BBM_ERROR :where t BBM is in nanoseconds.The voltage at BBM is regulated to 1.3V. The BBM circuit adjusts t BBM depending on the current drawn by R BBM .Bypass BBM to AGND with a 1nF or smaller ceramic capacitor (C BBM ) to avoid any effect of ground bounce caused during switching. The charging time of C BBM does not affect t BBM at turn-on because the BBM voltageis stabilized before the UVLO clears the device turn-on.125V/2A, High-Speed,Half-Bridge MOSFET Drivers 10______________________________________________________________________________________Topologies like the two-switch forward converter, where both high- and low-side switches are turned on and off simultaneously, can have the BBM function disabled by leaving BBM unconnected. When disabled, t BBM is typi-cally 1ns.Driver Logic Inputs (IN_H, IN_L, IN_H+,IN_H-, IN_L+, IN_L-)The MAX5062_/MAX5064A are CMOS (V DD / 2) logic-input drivers while the MAX5063_/MAX5064B have TTL-compatible logic inputs. The logic-input signals are independent of V DD . For example, the IC can be pow-ered by a 10V supply while the logic inputs are provid-ed from a 12V CMOS logic. Also, the logic inputs are protected against voltage spikes up to 15V, regardless of the V DD voltage. The TTL and CMOS logic inputs have 400mV and 1.6V hysteresis, respectively, to avoid double pulsing during transition. The logic inputs are high-impedance pins and should not be left floating.The low 2.5pF input capacitance reduces loading and increases switching speed. The noninverting inputs are pulled down to GND and the inverting inputs are pulled up to V DD internally using a 1M Ωresistor. The PWM output from the controller must assume a proper state while powering up the device. With the logic inputs floating, the DH and DL outputs pull low as V DD rises up above the UVLO threshold.The MAX5064_ has two logic inputs per driver, which provide greater flexibility in controlling the e I N_H+/I N_L+ for noninverting logic and I N_H-/I N_L- for inverting logic operation. Connect I N_H+/I N_L+ to V DD and I N_H-/I N_L- to GND if not used. Alternatively, the unused input can be used as an ON/OFF function. Use IN_+ for active-low and IN_- for active-high shutdown logic.The MAX5062/MAX5063/MAX5064 uses a single-shot level shifter architecture to achieve low propagation delay. Typical level shifter architecture causes a mini-mum (high or low) pulse width (t DMIN ) at the output that may be higher than the logic-input pulse width. For MAX5062/MAX5063/MAX5064 devices, the DH mini-mum high pulse width (t DMIN-DH-H ) is lower than the DL minimum low pulse width (t DMIN-DL-L ) to avoid anyshoot-through in the absence of external BBM delay during the narrow pulse at low duty cycle (see Figure 2).At high duty cycle (close to 100%) the DH minimum low pulse width (t DMIN-DH-L ) must be higher than the DL minimum low pulse width (t DMIN-DL-L ) to avoid overlap and shoot-through (see Figure 3). I n the case of MAX5062/MAX5063/MAX5064, there is a possibility of about 40ns overlap if an external BBM delay is not pro-vided. We recommend adding external delay in the INH path so that the minimum low pulse width seen at INH is always longer than t PW-MIN . See the Electrical Characteristics table for the typical values of t PW-MIN .MAX5062/MAX5063/MAX5064Half-Bridge MOSFET Drivers______________________________________________________________________________________11Figure 2. Minimum Pulse-Width Behavior for Narrow Duty-Cycle Input (On-Time < t PW-MIN)M A X 5062/M A X 5063/M A X 5064Applications InformationSupply Bypassing and GroundingPay extra attention to bypassing and grounding the MAX5062/MAX5063/MAX5064. Peak supply and output currents may exceed 4A when both drivers are driving large external capacitive loads in-phase. Supply drops and ground shifts create forms of negative feedback for inverters and may degrade the delay and transition times. Ground shifts due to insufficient device ground-ing may also disturb other circuits sharing the same AC ground return path. Any series inductance in the V DD ,DH, DL, and/or GND paths can cause oscillations due to the very high di/dt when switching the MAX5062/MAX5063/MAX5064 with any capacitive load. Place one or more 0.1µF ceramic capacitors in parallel as close to the device as possible to bypass V DD to GND (MAX5062/MAX5063) or PGND (MAX5064). Use a ground plane to minimize ground return resistance andseries inductance. Place the external MOSFET as close as possible to the MAX5062/MAX5063/MAX5064 to fur-ther minimize board inductance and AC path resis-tance. For the MAX5064_ the low-power logic ground (AGND) is separated from the high-power driver return (PGND). Apply the logic-input signal between I N_ to AGND and connect the load (MOSFET gate) between DL and PGND.Power DissipationPower dissipation in the MAX5062/MAX5063/MAX5064is primarily due to power loss in the internal boost diode and the nMOS and pMOS FETS.For capacitive loads, the total power dissipation for the device is:P C V f I I V D L DD SW DDO BSTO DD=××⎛⎝⎞⎠++()×2 Half-Bridge MOSFET Drivers 12______________________________________________________________________________________Figure 3. Minimum Pulse-Width Behavior for High Duty-Cycle Input (Off-Time < t PW-MIN )MAX5062/MAX5063/MAX5064Half-Bridge MOSFET Drivers______________________________________________________________________________________13where C L is the combined capacitive load at DH and DL. V DD is the supply voltage and f SW is the switching frequency of the converter. P D includes the power dis-sipated in the internal bootstrap diode. The internal power dissipation reduces by P DIODE , if an external bootstrap Schottky diode is used. The power dissipa-tion in the internal boost diode (when driving a capaci-tive load) will be the charge through the diode per switching period multiplied by the maximum diode for-ward voltage drop (V f = 1V).The total power dissipation when using the internal boost diode will be P D and, when using an external Schottky diode, will be P D - P DIODE . The total power dissipated in the device must be kept below the maxi-mum of 1.951W for the 12-pin TQFN package, 1.5W for the 8-pin SO with exposed pad, and 0.471W for the regular 8-pin SO package at T A = +70°C ambient.Layout InformationThe MAX5062/MAX5063/MAX5064 drivers source and sink large currents to create very fast rise and fall edges at the gates of the switching MOSFETs. The high di/dt can cause unacceptable ringing if the trace lengths and impedances are not well controlled. Use the following PC board layout guidelines when design-ing with the MAX5062/MAX5063/MAX5064:•It is important that the V DD voltage (with respect to ground) or BST voltage (with respect to HS) does not exceed 13.2V. Voltage spikes higher than 13.2Vfrom V DD to GND or BST to HS can damage the device. Place one or more low ESL 0.1µF decou-pling ceramic capacitors from V DD to GND (MAX5062/MAX5063) or to PGND (MAX5064), and from BST to HS as close as possible to the part. The ceramic decoupling capacitors should be at least 20 times the gate capacitance being driven.•There are two AC current loops formed between the device and the gate of the MOSFET being driven.The MOSFET looks like a large capacitance from gate to source when the gate is being pulled low. The active current loop is from the MOSFET driver output (DL or DH) to the MOSFET gate, to the MOSFET source, and to the return terminal of the MOSFET dri-ver (either GND or HS). When the gate of the MOS-FET is being pulled high, the active current loop is from the MOSFET driver output, (DL or DH), to the MOSFET gate, to the MOSFET source, to the return terminal of the drivers decoupling capacitor, to the positive terminal of the decoupling capacitor, and to the supply connection of the MOSFET driver. The decoupling capacitor will be either the flying capaci-tor connected between BST and HS or the decou-pling capacitor for V DD . Care must be taken to minimize the physical distance and the impedance of these AC current paths.•Solder the exposed pad of the TQFN (MAX5064) or SO (MAX5062C/D and MAX5063C/D) package to a large copper plane to achieve the rated power dissi-pation. Connect AGND and PGND at one point near V DD ’s decoupling capacitor return.P C V f V DIODE DH DD SW f=×()××− 1M A X 5062/M A X 5063/M A X 5064Half-Bridge MOSFET Drivers 14______________________________________________________________________________________Typical Application CircuitsFigure 4. MAX5062 Half-Bridge ConversionFigure 5. Synchronous Buck ConverterMAX5062/MAX5063/MAX5064Half-Bridge MOSFET Drivers______________________________________________________________________________________15Typical Application Circuits (continued)Figure 6. Two-Switch Forward ConversionFigure 7. MAX5064 Half-Bridge ConverterM A X 5062/M A X 5063/M A X 5064Half-Bridge MOSFET DriversPin ConfigurationsFunctional DiagramsMAX5062/MAX5063/MAX5064Half-Bridge MOSFET Drivers______________________________________________________________________________________17Typical Operating CircuitOrdering Information (continued)Chip InformationTRANSISTOR COUNT: 790PROCESS: HV BiCMOSDevices are available in both leaded and lead-free packaging.Specify lead-free by replacing “-T” with “+T” when ordering.M A X 5062/M A X 5063/M A X 5064Half-Bridge MOSFET Drivers 18______________________________________________________________________________________Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)MAX5062/MAX5063/MAX5064Half-Bridge MOSFET Drivers______________________________________________________________________________________19Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)M A X 5062/M A X 5063/M A X 5064Half-Bridge MOSFET Drivers Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. N o circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.20____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2007 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)Revision HistoryPages changed at Rev 5: 1, 2, 4, 5, 11–15, 19, 20。
日本松下伺服常用型号介绍及维修技术
日本松下伺服常用型号介绍及维修技术驱动维修2009-06-26 17:59:18 阅读8 评论0 字号:大中小订阅松下伺服电机马达驱动器维修、松下伺服维修|松下伺服电机维修|松下伺服马达维修|松下伺服驱动器维修|Panasonic伺服驱动器维修|Panasonic伺服控制器维修|Panasonic伺服维修|Panasonic伺服马达维修|Panasonic伺服电机维修。
这些都是松下A系列的型号,或者是配套产品,已经停产了,只能维修,松下伺服电机马达驱动器维修、松下伺服维修|松下伺服电机维修|松下伺服马达维修|松下伺服驱动器维修|Panasonic伺服驱动器维修|Panasonic伺服控制器维修|Panasonic伺服维修|Panasonic伺服马达维修|Panasonic伺服电机维修。
MINAS A系列松下伺服产品MSMA(小惯量)3000prm 2500p/r增量式型号简称具体型号30W MSMA3A2A1G MSDA3A3A1A 50W MSMA5A2A1G MSDA35A3A1A100W MSMA012A1G MSDA013A1A 200W MSMA022A1G MSDA023A1A400W MSMA042A1G MSDA043A1A 750W MSMA082A1G MSDA083A1A1000W MSMA102A1G MSDA103A1A 1500W MSMA152A1G MSDA153A1A2000W MSMA202A1G MSDA203A1A 2500W MSMA252A1G MSDA253A1A3000W MSMA302A1G MSDA303A1A 3500W MSMA352A1G MSDA353A1A4000W MSMA402A1G MSDA403A1A 4500W MSMA452A1G MSDA453A1A5000W MSMA502A1G MSDA503A1AMDMA(中惯量)2000prm 2500p/r增量式型号简称具体型号750W MDMA082A1G MDDA083A1A 1000W MDMA102A1G MDDA103A1A1500W MDMA152A1G MDDA153A1A 2000W MDMA202A1G MDDA203A1A2500W MDMA252A1G MDDA253A1A 3000W MDMA302A1G MDDA303A1A3500W MDMA352A1G MDDA353A1A 4000W MDMA402A1G MDDA403A1A4500W MDMA452A1G MDDA453A1A 5000W MDMA502A1G MDDA503A1AMHMA(大惯量)2000prm 2500p/r增量式型号简称具体型号500W MHMA052A1G MHDA053A1A 1000W MHMA102A1G MHDA103A1A1500W MHMA152A1G MHDA153A1A 2000W MHMA202A1G MHDA203A1A3000W MHMA302A1G MHDA303A1A 4000W MHMA402A1G MHDA403A1A5000W MHMA502A1G MHDA503A1A如加制动器另加小型MINAS(≤750W)MHMA、MDMA、MSMA(500W-2000W)MHMA、MDMA、MSMA(≥2500W)绝对值型乘以1.33倍MSMA(小惯量)100W MSMA012A1C 200W MSMA022A1C 400W MSMA042A1C750W MSMA082A1C 1000W MSMA102A1C 1500W MSMA152A1C2000W MSMA202A1C 2500W MSMA252A1C 3000W MSMA302A1C3500W MSMA352A1C 4000W MSMA402A1C 4500W MSMA452A1C5000W MSMA502A1CMDMA(中惯量)750W MDMA082A1C 1000W MDMA102A1C 1500W MDMA152A1C2000W MDMA202A1C 2500W MDMA252A1C 3000W MDMA302A1C3500W MDMA352A1C 4000W MDMA402A1C4500W MDMA452A1C 5000W MDMA502A1CMHMA(大惯量)500W MHMA052A1C 1000W MHMA102A1C 1500W MHMA152A1C2000W MHMA202A1C3000W MHMA302A1C 4000W MHMA402A1C 5000W MHMA502A1CMSDA3A1A1A MSMA2AZA1G MSDA203A1A MSMA202A1G MSDA5A1A1A MSMA5AZAIGMSDA253A1A MSMA252A1G MSDA011A1A MSMA011AIG MDDA203A1A MDMA202A1GMSDA3A3A1A MSMA3AZA1G MDDA253A1A MDMA252A1G MSDA5A3A1A MSMA5AZA1GMFDA253A1A MFMA252A1G MSDA013A1A MSMA012A1G MGDA123A1A MGMA122A1GMSDA023A1A MSMA022A1G MHDA203A1A MHMA202A1G MSDA021A1A MSMA021A1GMSDA303A1A MSMA302A1G MSDA043A1A MSMA042A1G MSDA353A1A MSMA352A1GMQDA021AIA MQMA021A1G MSDA403A1A MSMA402A1G MQDA043A1A MQMA042A1GMSDA453A1A MSMA452A1G MSDA503A1A MSMA502A1G MDDA303A1A MDMA302A1GMSDA041A1A MSMA041A1G MDDA353A1A MDMA352A1G MSDA083A1A MSMA082A1GMDDA403A1A MDMA402A1GMQDA041A1A MQMA041A1G MDDA453A1A MDMA452A1GMFDA043A1A MFMA042A1G MDDA503A1A MDMA502A1G MGDA033A1A MGMA032A1GMFDA353A1A MFMA352A1G MFDA453A1A MFMA452A1G MGDA203A1A MGMA202A1GMSDA103A1A MSMA102A1G MGDA303A1A MGMA302A1G MSDA153A1A MSMA152A1GMGDA453A1A MGMA452A1GMDDA083A1A MDMA082A1G MHDA303A1A MHMA302A1GMDDA103A1A MDMA102A1G MHDA403A1A MHMA402A1G MDDA153A1A MDMA152A1GMHDA503A1A MHMA502A1G MHDA053A1A MHMA052A1G MHDA103A1A MHMA102A1GMHDA153A1A MHMA152A1G MFDA083A1A MFMA082A1G MFDA153A1A MFMA152A1G MGDA063A1A MGMA062A1GMGDA093A1A MGMA092A1G AMKC060B AMKA080B MSM022Q8V MSMA202DIH MSM012A2UE MSM042H1B MSM5AZJ2QX MSMQ12QBV MSM042A2UEMSMA022A2W MSMK042BLN MSM021A1F MSM022A2UE MSM022A1BE MSMK021BLAMHM502A1C MFA020LB2NSB MSM012A6A MSM5AZA1A MQMA022P1B MBMK082BLNMQMS042A65E MSM041A1C MSM021P1N MSM5AZP1P MBMK042BLEU MSMA042A1FMSMA012A1F MSMA042A84 MSMA022C1F MBMK011BLA MSM3AAD1E MSM3AAD1GMSM8AAD1G MSM5AAD1F MSM8AAD1F AMKC060B10KFG MSM011ABE MSM012A1A MSMA3AZA1N MSM042F2G MSM-12F2G MSMA102A1G MUMA022P1S MUMA012P1T MDM402A1H MFA0204D2BSH MDM402A1G MSM302A1H MSM302A1G MBMK021BLA MSM3AZA1NMSMZ041Q2G MSM022A1A MQMA042P1A MUMA042A3E MSM011A1A MFA024LA2NS MSM021A2NE MSM012F2G MSM022F2G MSM5AZP1C MSM012P1B MSM022P1A MSM042A1A MSM021AJB MSM011A3E MDM202Q2V MDM102Q2V MSMD082P1S MSM012QBV MSM022A1E MSMA022A1E MSM011D1B MSM012A1F MSMA5AZP1B MSMA012P1A MSD021P1E MSD021A1A MSDA013A1A MQDA013A1A MSD013P1E MSD023P1E MSD043P1E MSD023P1EA MSD103A1V06 MSD083A1X MSD043D1E DV88010LDM04 DV88010LDM01 DV85010LDMBS DV88010LDMS2 MSD083A1XG MSD011AX08 MSD013A1XXV MSD013A1X MSD011A1X MKDET131OP MSDA011A1A MSDA043A1A02 MQDA023D1A MHD503A1V MSD041A4XX MSD021P4E MSD5A1P4E MSD011P4E MSD3A3A1X MDD103AIVE MDD253AIVE MDD153AIVE MDD103A1VE MDD253A1VEMDD153A1VE MQDA013A1A MQDA022A1A MQDA023A1A MQDA043A1A MQMA012A1AMQMA012A1B MQMA022A1A MQMA022A1B MQMA022A1E MQMA022A1G MQMA042A1A MQMA042A1B MQMA042A1C MQMA042A1C-IP MS-220 MS-24 MSD013A1XXV MSD013P1EA MSD021A1X MSD023A1XXV MSD043A1XXE MSD083A1XXV MSD083M1XX35 MSD153A1VE MSD203A1VE MSD2A321E MSD3A3A1XXV MSD5A3A1XXV MSD5A3P1EA MSD5B321EMSDA011A1A MSDA013A1A MSDA013D1A MSDA021A1A MSDA023A1A MSDA023D1AMSDA043A1A MSDA043D1A MSDA083A1A MSDA083D1A MSDA103A1A MSDA104A1AMSDA104D1A MSDA153A1A MSDA154A1A MSDA154D1A MSDA203A1A MSDA204A1AMSDA204D1A MSDA253A1A MSDA254A1A MSDA254D1A MSDA303A1A MSDA304A1AMSDA304D1A MSDA353A1A MSDA354A1A MSDA354D1A MSDA3A3A1A MSDA3A3D1AMSDA403A1A MSDA404A1A MSDA404D1A MSDA453A1A MSDA454A1A MSDA454D1AMSDA503A1A MSDA504A1A MSDA504D1A MSDA5A3A1A MSDA5A3D1A MSDB015A1DMSDB015D1D MSDB025A1D MSDB025D1D MSDB045A1A12 MSDB045A1D MSDB045D1D MSDB083A1A12 MSDB083A1D MSDB083D1D MSDB3A5A1D MSDB3A5D1D MSDB5B4A1DMSDB5B5D1D MSDC025D1AF MSDZ043A1A MSDZ043A1A MSM011A1P MSM011A3EMSM012AXAE MSM012AXAE MSM012AXBE MSM012AXEE MSM012P1E MSM021A1A MSM021A4E MSM022A2UE MSM022AXAE MSM022AXBE MSM022AXEE MSM022P1G MSM042A1AMSM042AXAE MSM042AXAE MSM042AXAE MSM042AXBE MSM042AXEE MSM082AXAE MSM082AXBE MSM082AXEE MSM152A1C MSM152A1G MSM202A1C MSM202A1C MSM202A1G MSM2AZ21A MSM3AZA2Q MSM3AZAXAE MSM3AZAXBE MSM3AZAXEE MSM3AZP1EMSM5AZA1A MSM5AZA1EE MSM5AZAXAE MSM5AZAXBE MSM5AZAXEE MSM5AZP1AMSM5AZP1B MSM5AZP1E MSM5BZ21A MSMA011A1A MSMA012A1A MSMA012A1A MSMA012A1A-IP MSMA012A1B MSMA012A1B MSMA012A1B-IP MSMA012A1C MSMA012A1D MSMA012A1D-IP MSMA012A1E MSMA012A1F MSMA012C1A MSMA012C1B MSMA021A1A MSMA022A1A MSMA022A1A-IP MSMA022A1B MSMA022A1B-IP MSMA022A1C MSMA022A1E MSMA022A3A MSMA022C1A MSMA022C1B MSMA042A1A MSMA042A1A-IP MSMA042A1B MSMA042A1B-IP MSMA042A1C MSMA042A1C-IP MSMA042A1D MSMA042A1E MSMA042A1F MSMA042A3E MSMA042C1A MSMA042C1B MSMA042C1H MSMA082A1A MSMA082A1A-IP MSMA082A1B MSMA082A1B-IP MSMA082A1C MSMA082A1C-IP MSMA082A1D MSMA082A1E MSMA082A1E-IP MSMA082A1H MSMA082C1A MSMA082C1B MSMA102A1C MSMA102A1G MSMA104A1C MSMA104A1D MSMA104D1C MSMA104D1D MSMA152A1C MSMA152A1DMSMA152A1G MSMA152A1H MSMA154A1C MSMA154A1D MSMA154A1G MSMA154D1CMSMA154D1D MSMA202A1C MSMA202A1D MSMA202A1G MSMA204A1C MSMA204A1DMSMA204D1C MSMA204D1D MSMA252A1C MSMA252A1D MSMA252A1G MSMA254A1CMSMA254A1D MSMA254D1C MSMA254D1D MSMA302A1C MSMA302A1D MSMA304A1CMSMA304A1D MSMA304D1C MSMA304D1D MSMA352A1G MSMA354A1C MSMA354A1D MSMA354D1C MSMA354D1D MSMA3AZA1A MSMA3AZA1B MSMA3AZC1A MSMA3AZC1B MSMA402A1C MSMA402A1D MSMA402A1G MSMA402A1H MSMA404A1C MSMA404A1DMSMA404D1C MSMA404D1D MSMA452A1C MSMA452A1G MSMA452A1H MSMA454A1CMSMA454A1D MSMA454D1C MSMA454D1D MSMA502A1C MSMA502A1G MSMA504A1C MSMA504A1D MSMA504D1C MSMA504D1D MSMA5AZA1A MSMA5AZA1A-IP MSMA5AZA1B MSMA5AZA1C MSMA5AZA1C-IP MSMA5AZA1D MSMA5AZA1D-IP MSMA5AZC1A MSMA5AZC1B MSMZ012A1A MSMZ012A1B MSMZ012A1C MSMZ012A1D MSMZ012A1E MSMZ012A1FMSMZ022A1A MSMZ022A1A-IP MSMZ022A1B MSMZ022A1C MSMZ022A1D MSMZ022A1EMSMZ042A1A MSMZ042A1A-IP MSMZ042A1B MSMZ042A1C MSMZ042A1E MSMZ042A1FMSMZ082A1A MSMZ082A1B MSMZ082A1E MSMZ3AZA1A MSMZ5AZA1A MSMZ5AZA1BMSMZ5AZA1E MSS013A1XP MSS023A1XP MSS043A1XP MSS083A1XP MSS3A3A1XPMSS5A3A1XP松下电机型号MHD503A1VE MSDA043A2A26 MSD043A1XXV MDD203A1VV MDD103A1VV dv49s040lb2cadv87a020msg MSDC5A5A3A06 MQDB045D1A04A DV88010LDMS2 MUDS5A5A1A MSDB045A1A11 MBMK042BLS0 MFA040LD2NPB DV40P MSMA5AZA5A MSM042n2n AMKA080B AMKC060B MBHK041BLE MBMC1E2CSA MBMC9A2AZA MBMK042BLF MBMK082BL MDM202A1DMEA020CB2BSF MFA020LD2NPC MFA030LDRNSF MFA04LDRNSA MFA150LB5NP MOM2022A1E MSM082H1A MSMA042C3T MSMA402D1C MSW-08-K18-E-C MSM08206V MSM622T4V MBMK042B MBMK021BLE MSM052N1T MSM012A2UE MBMK5ABL MBMK012BL MBMK01BLE1 MBMK042BLE MBMK021BE MSMA04263T MBMK041BLE MSM082H1A MSD021P1E MSD021A1A MSDA013A1A MQDA013A1A MSD013P1E MSD023P1E MSD043P1E MSD023P1EA MSD103A1V06 MSD083A1X MSD043D1E DV88010LDM04 DV88010LDM01 DV85010LDMBS DV88010LDMS2 MSD083A1XG MSD011AX08 MSD013A1XXV MSD013A1X MSD011A1X MKDET131OP MSDA011A1A MSDA043A1A02 MQDA023D1A MHD503A1V MSD041A4XX MSD021P4E MSD5A1P4E MSD011P4E MSD3A3A1X MDD103AIVE MDD253AIVE MDD153AIVE MSD103A1A MHDA153A1A MSDA023A1A M42006-01A-591 MC139 MC13S 400W M1140 MC17HR0025 MC19PR0204M256D-0-NF40 M404D-00101-0000-0 M406D-00101-7000-0 M504F-00101-7000-10 M714F-00 201-00008PL M425-002 M540-402 M71A15G4L M9RC90GB4L1M7CB1A15G4L1 M9GA75B MAC090A-0-ZD-4-C/110-B-0/WI518LV/S005 MAC090B-0-PD-4-C/110-A-0/WI518LX/S001MAC092B-0-QD-1-B/095-B-0/101000 MAC112A-0-LD-2HC/B0-A-1 MAC112B-0-GD-2HC/B0-A-D MKD090B-058-KG0-KN MHD093B-035-NP0-BA MEM-25-MA11 MDSKSRS036-13 MDSKSBS0 36-23 MDMA102AIG MDMA152AIC MDM202AID MDM252AID MDMA302AIG MFA003LC5NS MFA005LA2NSC MFA005LA2NSE MFA006LC2NSA MFA006LC2NSJMFA010LA2NSA MFA010LA5NSJMFA010LD5NS MFA010LD5NSJ MFA015LD2NSD MFA020LA2BSJ MFA020LA2BSKMFA020LD2NPJ MFA024LA2NS MFA030LA2NS(J) MFA0302A2NSJ MFA040LA2NSA MFA040LD2NV MFA075LB2NP MFA075LD5NSJ MFA092LB2NRA MFA150LB5NPJ MFA150 BBNP MFA190LB2NS MFA250LB2NL MFA250LB2NSJ MFA250LE4NSJ MFA250LE4NSE MFA500LB2BSA MFA500LB2BSJ MFA500LB2NS MFG10DAL10BJMHMA102AIG MHMA152MIC MHMA202AG MFG10DALM5BC MFGDWGZ653238 MH401E-12S MQMA042A1F SA2311-14.1MSM012AJA MSM020AKT MSM021AJB MSM022A1F MSM022ADA MSM041AJB MSM041 DJB MSM042AJA MSM082A1F MSM082A4B MSM082AJA MSM082MYA MSM10KA4D M SM13KA2C MSM152020 MSM15202C MSM15205C MSM152A2A MSM20202D MSM302R1 C MSMA302A1D. MSMA304A1C. MSMA304A1D. MSMA304D1C. MSMA304D1D. MSMA352A1G.MSMA354A1C. MSMA354A1D. MSMA354D1C. MSMA354D1D. MSMA3AZA1A. MSMA3AZA1B.MSMA3AZC1A MSMA3AZA1A MSMA3AZA1B MSMA3AZA1C MSMA3AZA1D MSMA3AZA1E MSMA3AZA1F MSMA3AZA1G MSMA3AZA1H MSMA3AZA1N MSMA3AZA1P MSMA3AZA1Q MSMA3AZA1R MSDA3A1A1A MSDA3A3A1A MSMA3AZC1A MSMA3AZC1B MSMA3AZC1CMSMA3AZC1D MSMA3AZC1E MSMA3AZC1F MSMA3AZC1G MSMA3AZC1H MSMA3AZC1N MSMA3AZC1P MSMA3AZC1Q MSMA3AZC1R MSDA3A1D1A MSDA3A3D1A MSMA5AZA1A MSMA5AZA1B MSMA5AZA1C MSMA5AZA1D MSMA5AZA1E MSMA5AZA1F MSMA5AZA1G MSMA5AZA1H MSMA5AZA1N MSMA5AZA1P MSMA5AZA1Q MSMA5AZA1R MSDA5A1A1A MQDA013A1A MQDA022A1A MQDA023A1A MQDA043A1A MQMA012A1A MQMA012A1BMQMA022A1A MQMA022A1B MQMA022A1E MQMA022A1G MQMA042A1A MQMA042A1B MQMA042A1C MQMA042A1C MSD013A1XXV MSD013P1EA MSD021A1X MSD023A1XXV MSD043A1XXE MSD083A1XXV MSD083M1XX35 MSD153A1VE MSD203A1VE MSD2A321E MSD3A3A1XXV MSD5A3A1XXV MSD5A3P1EA MSD5B321E MSDA011A1A MSDA013A1AMSDA013D1A MSDA021A1A MSDA023A1A MSDA023D1A MSDA043D1A MSDA083D1AMSDA104A1A MSDA104D1A MSDA154A1A MSDA154D1A MSDA204A1A MSDA204D1AMSDA254A1A MSDA254D1A MSDA304A1A MSDA304D1A MSDA354A1A MSDA354D1AMSDA3A3A1A MSDA3A3D1A MSDA404A1A MSDA404D1A MSDA454A1A MSDA454D1AMSDA504A1A MSDA504D1A MSDA5A3A1A MSDA5A3D1A MSDB015A1D MSDB015D1D MSDB025A1D MSDB025D1D MSDB045A1A12 MSDB045A1D MSDB045D1D MSDB083A1A12 MSDB083A1D MSDB083D1D MSDB3A5A1D MSDB3A5D1D MSDB5B4A1D MSDB5B5D1DMSDC025D1AF MSDZ043A1A MSDZ043A1A MSM011A1P MSM011A3E MSM012AXAEMSM012AXAE MSM012AXBE MSM012AXEE MSM012P1E MSM021A1A MSM021A4E MSM022A2UE MSM022AXAE MSM022AXBE MSM022AXEE MSM022P1G MSM042A1A MSM042AXAEMSM042AXAE MSM042AXAE MSM042AXBE MSM042AXEE MSM082AXAE MSM082AXBE MSM082AXEE MSM152A1C MSM152A1G MSM202A1C MSM202A1C MSM202A1G MSM2AZ21A MSM3AZA2Q MSM3AZAXAE MSM3AZAXBE MSM3AZAXEE MSM3AZP1E MSM5AZA1AMSM5AZA1EE MSM5AZAXAE MSM5AZAXBE MSM5AZAXEE MSM5AZP1A MSM5AZP1BMSM5AZP1E MSM5BZ21A MSMA011A1A MSMA012A1A MSMA012A1A MSMA012A1A-IP MSMA012A1B MSMA012A1B MSMA012A1B-IP MSMA012A1C MSMA012A1D MSMA012A1D-IP MSMA012A1E MSMA012A1F MSMA012C1A MSMA012C1B MSMA021A1A MSMA022A1A MSMA022A1A-IP MSMA022A1B MSMA022A1B-IP MSMA022A1C MSMA022A1E MSMA022A3A MSMA022C1A MSMA022C1B MSMA042A1A MSMA042A1A-IP MSMA042A1B MSMA042A1B-IP MSMA042A1C MSMA042A1C-IP MSMA042A1D MSMA042A1E MSMA042A1F MSMA042A3E MSMA042C1A MSMA042C1B MSMA042C1H MSMA082A1A MSMA082A1A-IP MSMA082A1B MSMA082A1B-IP MSMA082A1C MSMA082A1C-IP MSMA082A1D MSMA082A1E MSMA082A1E-IP MSMA082A1H MSMA082C1A MSMA082C1B MSMA102A1C MSMA102A1G MSMA104A1CMSMA104A1D MSMA104D1C MSMA104D1D MSMA152A1C MSMA152A1D MSMA152A1GMSMA152A1H MSMA154A1C MSMA154A1D MSMA154A1G MSMA154D1C MSMA154D1DMSMA202A1C MSMA202A1D MSMA202A1G MSMA204A1C MSMA204A1D MSMA204D1CMSMA204D1D MSMA252A1C MSMA252A1D MSMA252A1G MSMA254A1C MSMA254A1DMSMA254D1C MSMA254D1D MSMA302A1C MSMA302A1D MSMA304A1C MSMA304A1DMSMA304D1C MSMA304D1D MSMA352A1G MSMA354A1C MSMA354A1D MSMA354D1C MSMA354D1D MSMA3AZA1A MSMA3AZA1B MSMA3AZC1A MSMA3AZC1B MSMA402A1C MSMA402A1D MSMA402A1G MSMA402A1H MSMA404A1C MSMA404A1D MSMA404D1CMSMA404D1D MSMA452A1C MSMA452A1G MSMA452A1H MSMA454A1C MSMA454A1DMSMA454D1C MSMA454D1D MSMA502A1C MSMA502A1G MSMA504A1C MSMA504A1D MSMA504D1C MSMA504D1D MSMA5AZA1A MSMA5AZA1A-IP MSMA5AZA1B MSMA5AZA1C MSMA5AZA1C-IP MSMA5AZA1D MSMA5AZA1D-IP MSMA5AZC1A MSMA5AZC1B MSMZ012A1AMSMZ012A1B MSMZ012A1C MSMZ012A1D MSMZ012A1E MSMZ012A1F MSMZ022A1A MSMZ022A1A-IP MSMZ022A1B MSMZ022A1C MSMZ022A1D MSMZ022A1E MSMZ042A1A MSMZ042A1A-IP MSMZ042A1B MSMZ042A1C MSMZ042A1E MSMZ042A1F MSMZ082A1A MSMZ082A1B MSMZ082A1E MSMZ3AZA1A MSMZ5AZA1A MSMZ5AZA1B MSMZ5AZA1E松下AMKC060B AMKA080B MSM022Q8V MSMA202D1HMSM012A2UE MSM042H1B MSM5AZJ2QX MSMQ12QBVMSM042A2UE MSMA022A2W MSMK042BLNMSM021A1F MSM022A2UE MSM022A1BE MSMK021BLAMHM502A1C MFA020LB2NSB MSM012A6A MSM5AZA1AMQMA022P1B MBMK082BLN MQMS042A65EMSM041A1C MSM021P1NMSM5AZP1P MBMK042BLEUMSMA042A1F MSMA012A1F MSMA042A84 MSMA022C1F, MBMK011BLAMSM3AAD1E MSM3AAD1G MSM8AAD1G MSM5AAD1F MSM8AAD1FAMKC060B10KFG MSM011ABE MSM012A1A MSMA3AZA1N MSM042F2G MSM-12F2G MSMA102A1G MUMA022P1S MUMA012P1T MDM402A1H MFA0204D2BSH MDM402A1G MSM302A1H MSM302AIG MBMK021BLA MSM3AZA1N MSMZ041Q2G MSM022A1A MQMA042P1A MUMA042A3E MSM011A1A MFA024LA2NS MSM021A2NEMSM012F2G MSM022F2G MSM5AZP1C MSM012P1BMSM022P1A MSM042A1A MSM021AJB MSM011A3E MDM202Q2VMDM102Q2V MSMD082P1S MSM012QBV MSM022A1E MSMA022A1EMSM011D1B MSM012A1F MSMA5AZP1B MSMA012P1AMDM352Q5V MSM082H4V MSM021A1HMQMA042A1E MSM042A3H MSMD092S2UMSMD062S2U MSMD06262V MSMD042S2VMSM042A5F MHMA152A1C MFM082A1CMQM041C1F MSM082A6A MSM022P1PMSM022A1P MSMD022S1T MSM5AZA1BMSMA5A2S1E MUMS082A1A0S MSMA022C43MSM012P1A MSMA011A1N MSM021A1AMQMA022P2B MFA024LA2NSJ MFA010LA2NSKPANADAC 321-1010卡03A-AG-100-4-53RPM040M2A-55WPANASONIC 321-1-5APANASONIC 321-1-7APANASONIC 321-1-8321-1A-C驱动箱321-1A-E驱动箱H轴PANASONIC 321-2PANADAC 321-2D-11PANASONIC 321-4321-4(240W-100,50,30)321-4电源卡PANASONIC 321-6321-6电源卡321-6驱动箱PANASONIC 322PANASONIC 337E337L 步进马达驱动箱PANASONIC AMKB100B10NAK PANASONIC AMKB200B20KAHPANASONIC AMKB300B20KAH PANASONIC AMKB400B20KAHAZ8469TRANSFORMER BOXCACR-ACB03A11 PANASONIC CACR-PR03BC3ES PANASONIC CACR-PR44BC3CSY13B PANASONIC CACR-SR03AC2ER-Y84 PANASONIC CACR-SR03BC1ES-Y299PANASONIC CACR-SR05AC2ER PANASONIC CACR-SR05BC1ESCACR-SRO3BC1ES-Y299PANADC KH-400PANASONIC LA321002 5 100W 2500P/RLA321-002-3LA321-002-5LA-M00010F-1(板卡)LA-M00205F(板卡)LA-M87101D 2B034S2BPK(板卡)LA-M87102D(板卡)LA-MOO1O3E(板卡)PANASONIC M41A3G2L PANASONIC M6GBM6RA6G40/M6GB PANASONIC M6RA6G4LPANASONIC M6RA6G4Y-M6GA180B PANASONIC M6RA6GB4LM6RA6GB4L/M6GBM8GBIWAKI MD-1D-N2MDA0K-2D10-E100AL-SPSANYO MES-1000MTL MES-23PANASONIC MFA005LA2NP PANASONIC MFA005LA2NSCPANASONIC MFA006LB2NSA PANASONIC MFA006LBRNSEPANASONIC MFA006LDRNSE PANASONIC MFA008LAONNPANASONIC MFA010LA2NS PANASONIC MFA010LA2NSAPANASONIC MFA010LA2NSJPANASONIC MFA010LA5NS PANASONIC MFA010LASNSPANASONIC MFA010LB2NSA PANASONIC MFA010LD2BSHPANASONIC MFA010LDMNSA PANASONIC MFA010LDRBSEMFA01OLA5NPANASONIC MFA020DA2NS PANASONIC MFA020LA2BSBPANASONIC MFA020LB2BP PANASONIC MFA020LB2BSDPANASONIC MFA020LB2NP PANASONIC MFA020LB2NSBPANASONIC MFA020LB2NSD PANASONIC MFA020LB2NSJPANASONIC MFA020LD2NS PANASONIC MFA020LD2NSAPANASONIC MFA024LA2NS MFA024LALNSPANASONIC MFA030LA2NS PANASONIC MFA030LA2NSJPANASONIC MFA030LB2NSB PANASONIC MFA040LA2NSAPANASONIC MFA040LA2NSJPANASONIC MFA040LD2NSA PANASONIC MFA040LDRNSA PANASONIC MFA050LB3NS PANASONIC MFA075B2NSC PANASONIC MFA075LD2BSA PANASONIC MFA210LB2NS MFA250LB2NS MFA250LB2NS(编码器)MFA250LE4NSE MFAO1OLA5NSJFUJI MGM1940T-75ZORIENTAL MLD42-05MP-002MPAV2 24M飞达MPA视觉头(大小)MPA真空板MSH(贴片头)PANASONIC MSH1 MSH1照相系统PANASONIC MSH MSH贴片头PANASONIC MSM011A1P PANASONIC MSM011D1APANASONIC MSM011D1G PANASONIC MSM011PINPANASONIC MSM011PJA PANASONIC MSM012A1BPANASONIC MSM012P1A PANASONIC MSM021A1APANASONIC MSM021A1F PANASONIC MSM021B1APANASONIC MSM021D1G PANASONIC MSM021PN PANASONIC MSM022A1AMSM022G26PANASONIC MSM022G2G PANASONIC MSM022Q6UPANASONIC MSM041A2A PANASONIC MSM041A2UMSM041A2UV PANASONIC MSM042AJA PANASONIC MSM08A2Q2SPANASONIC MSM3AAD1GMSM3AAP1G PANASONIC MSM3AZQ2NMSM3AZQZN PANASONIC MSM5A2A3GPANASONIC MSM5A2D1C MSM5AZA3G MSM5AZD1CMSM5AZD1G PANASONIC MSM8AAD1G PANASONIC MSMO22A1AMV150相机(CCD头)PANASONIC MV150 MV150照相系统FUJI MV9D40Y50BROTARY MXE252C-100U01ROTARY MXE302C-250URH AE JV N4 N5 X-Y轴电机AE JV RH N4 N5 X-Y轴电机+B302 JV RH AE N4 N5 X-Y轴电机.TAMAGAWA N6040IK3GKB3N604E1481354带切纸刀N604E148B54(切刀)NCXYZ卡NCZWPANASONIC NM-4721APANASONIC NP001NP-001PANASONIC NP002NP-002NP-002-1PANASONIC NP002-1PANASONIC NP-002-2PANASONIC NP-002KE-2NP022相机放大器OBC10OBC2TOKYO OSS-01-1TOKYO OSS-01-1-H1TOKYO OSS-01-1-H2PANADAC PANADAC-730-231-PANADAC PANADAC-730-31DPANADAC PANADAC-730-31EPANADAC PANADAC-730-32E PANADAC PANADAC-730-4-AC-OUT PANADAC PANADAC-730-4D-AC-OUT PANADAC PANADAC-730-4E-AC-OUT PANADAC PANADAC-7830-4E-AC-OUT PANADAC PANADAC-783-065APANADAC PANADAC-783-066A-2PANADAC PANADAC-931打印机PCS242-NBKURODA PCS244VEXTA PH265M-31VEXTA PH266-01VEXTA PH266-01BVEXTA PH266-02BVEXTA PH266-E1.2VEXTA PH268-21B-A28VEXTA PH268-21-C3VEXTA PH533HG1-NAVEXTA PH566-AVEXTA PH566-BVEXTA PH566-B-A3VEXTA PH569-AVEXTA PH599-AMPH-8-6006-E100D0-SPVEXTA PK569AUHAPANASONIC PS599H-APANASONIC RH-8-6006-E050AO-SPRH-8-6006-E100A2RH8920-46HI-TDRIVE RH-8B-6006-E020D0RH RH照相头RH RH主电源箱SAYAMA SCL-16G-3502-FT2PANASONIC WV-MF200X006-121(RH上下轨道汽缸)MFA010LA2NC MFA010LA5NS MFA024LA2NS MFA030LB2NSMFA030LB2NSBMFA006LB2NSA MSM102A1A MSM022Q6URB2566CT2O4 38V2A RM-H6A6ZMR039 RM-H7A15ZMPR2462GN7.5K 3GN7.5K 6GHA7.5-Y-1 2IK6RGK-A2 2IK6RGN-A3IK15RGN-A 41K25GK-A2 2GK15KMF930-BC 2IK6RGN-A 6RH-DZ7 5R039612H-DZ 5R039 3IK15RGN-APB425-401 R404-011EL27NA20-3AF-011 NA20-3F2-G23AP-2M020B1C1AMKB100B10MAK PANASONIC P/R,16 AC100V 0.319N.M 3000r/min 100W 3 伺服AMKB200B20KAH PANASONIC P/R,16 AC100V 0.637N.M 3000r/min 200W 1 伺服AMKB300B20KAH PANASONIC P/R,16 AC100V 0.95N.M 3000r/min 300W 1 伺服AMKB400B20KAH PANASONIC P/R,16 AC100V 1.27N.M 3000r/min 400W 1 伺服MFA006LDRNSE PANASONIC 1000P/R 60W 1 伺服MFA005LA2NSC PANASONIC 1000P/R,14 AC 1.46kg.cm 3000r/min 45W 1 伺服MFA010LA2NSA PANASONIC 1000P/R,14 AC 0.32N.M 3000r/min 100W 1 伺服MFA010LD2BSH PANASONIC 1000P/R,14 AC200V 0.32N.M 3000r/min 100W 1 伺服MFA020LB2NSJ PANASONIC,NIPPON 1000P/R,14 AC 0.64N.M 3000r/min 200W 2 伺服MFA020LB2NP PANASONIC 1000P/R 200W 1 伺服MFA024LA2NS PANASONIC 1000P/R,14 AC 0.65N.M 3500r/min 240W 1 伺服MFA040LD2NSA PANASONIC 1000P/R 400W 1 伺服MFA075LD2BSA PANASONIC 1000P/R 750W 1 伺服MGM1940T-75Z FUJI 0.3A/AC200V 0.4N.m 1500 40W 2 感应TS1980N100E12 PANASONIC 200C/T,8 DC 200W 2 伺服TS1981N110E8 PANASONIC 500C/T,8 DC 80W 1 伺服TS1982N106E6 TAMAGAWA 500C/T,8 DC 60W 1 伺服TS1982N111E6 PANASONIC 500C/T,8 DC 60W 1 伺服MDMA252P1U + MFDDTA390 MSMD042PIU + MBDDT2210MDMA102P1G + MDDDT3530 MSMD042P1U + MBDDT2210MHMA102P1G + MDDDT3530003 MSMD082P1U + MCDDT3520MDMA302P1G + MFDDTA390 MHMA302P1G + MFDDTA390003 MHMA152P1G + MDDDT5440003MHMA152P1G + MDDDT5440003,MdMD082P1U + MdDDT3530003 MdMD082P1U + MdDDT3530003,MSMD042P1C + MBDDT2210003MBDDT2210 , MCDDT3520 , MDDDT3530 , MDDDT5540 , MADDT1207 , MSMD012P1G , MSMD012P1C , MADDT1205 , MHMD022P1U , MHMD022P1V , MHMD042P1U , MHMD042P1V , MBDDT2210 , MHMD082P1U , MHMD082P1V , MDMA082P1G , MDMA082P1C , MDMA102P1G , MDMA102P1C ,MDMA152P1C , MDDDT5540 , MDMA202P1G , MDMA202P1C , MEDDT7364 , MHMA052P1G , MHMA052P1C , MCDDT3520 , MHMA102P1G , MHMA102P1C , MDDDT3530 , MHMA152P1G , MHMA152P1C , MDDDT5540 , MHMA202P1G , MHMA202P1C , MEDDT7364 , MHMA302P1G , MHMA302P1C , MFDDTA390 , MHMA402P1G , MHMA402P1C , MFDDTB3A2 , MHMA502P1G , MHMA502P1C型号简称具体型号30W MSMA3A2A1G MSDA3A3A1A 50W MSMA5A2A1G MSDA35A3A1A100W MSMA012A1G MSDA013A1A 200W MSMA022A1G MSDA023A1A400W MSMA042A1G MSDA043A1A 750W MSMA082A1G MSDA083A1A1000W MSMA102A1G MSDA103A1A 1500W MSMA152A1G MSDA153A1A2000W MSMA202A1G MSDA203A1A 2500W MSMA252A1G MSDA253A1A3000W MSMA302A1G MSDA303A1A 3500W MSMA352A1G MSDA353A1A4000W MSMA402A1G MSDA403A1A 4500W MSMA452A1G MSDA453A1A5000W MSMA502A1G MSDA503A1AMDMA(中惯量)2000prm 2500p/r增量式型号简称具体型号750W MDMA082A1G MDDA083A1A 1000W MDMA102A1G MDDA103A1A1500W MDMA152A1G MDDA153A1A 2000W MDMA202A1G MDDA203A1A2500W MDMA252A1G MDDA253A1A 3000W MDMA302A1G MDDA303A1A3500W MDMA352A1G MDDA353A1A 4000W MDMA402A1G MDDA403A1A4500W MDMA452A1G MDDA453A1A 5000W MDMA502A1G MDDA503A1AMHMA(大惯量)2000prm 2500p/r增量式型号简称具体型号500W MHMA052A1G MHDA053A1A 1000W MHMA102A1G MHDA103A1A1500W MHMA152A1G MHDA153A1A 2000W MHMA202A1G MHDA203A1A3000W MHMA302A1G MHDA303A1A 4000W MHMA402A1G MHDA403A1A5000W MHMA502A1G MHDA503A1A如加制动器另加小型MINAS(≤750W)MHMA、MDMA、MSMA(500W-2000W)MHMA、MDMA、MSMA(≥2500W)绝对值型乘以1.33倍MSMA(小惯量)100W MSMA012A1C 200W MSMA022A1C 400W MSMA042A1C750W MSMA082A1C 1000W MSMA102A1C 1500W MSMA152A1C2000W MSMA202A1C 2500W MSMA252A1C 3000W MSMA302A1C3500W MSMA352A1C 4000W MSMA402A1C 4500W MSMA452A1C5000W MSMA502A1CMDMA(中惯量)750W MDMA082A1C 1000W MDMA102A1C 1500W MDMA152A1C2000W MDMA202A1C 2500W MDMA252A1C 3000W MDMA302A1C3500W MDMA352A1C 4000W MDMA402A1C4500W MDMA452A1C 5000W MDMA502A1CMHMA(大惯量)500W MHMA052A1C 1000W MHMA102A1C 1500W MHMA152A1C2000W MHMA202A1C3000W MHMA302A1C 4000W MHMA402A1C 5000W MHMA502A1CMSDA3A1A1A MSMA2AZA1G MSDA203A1A MSMA202A1G MSDA5A1A1A MSMA5AZAIGMSDA253A1A MSMA252A1G MSDA011A1A MSMA011AIG MDDA203A1A MDMA202A1GMSDA3A3A1A MSMA3AZA1G MDDA253A1A MDMA252A1G MSDA5A3A1A MSMA5AZA1GMFDA253A1A MFMA252A1G MSDA013A1A MSMA012A1G MGDA123A1A MGMA122A1GMSDA023A1A MSMA022A1G MHDA203A1A MHMA202A1G MSDA021A1A MSMA021A1GMSDA303A1A MSMA302A1G MSDA043A1A MSMA042A1G MSDA353A1A MSMA352A1GMQDA021AIA MQMA021A1G MSDA403A1A MSMA402A1G MQDA043A1A MQMA042A1GMSDA453A1A MSMA452A1G MSDA503A1A MSMA502A1G MDDA303A1A MDMA302A1GMSDA041A1A MSMA041A1G MDDA353A1A MDMA352A1G MSDA083A1A MSMA082A1GMDDA403A1A MDMA402A1GMQDA041A1A MQMA041A1G MDDA453A1A MDMA452A1GMFDA043A1A MFMA042A1G MDDA503A1A MDMA502A1G MGDA033A1A MGMA032A1GMFDA353A1A MFMA352A1G MFDA453A1A MFMA452A1G MGDA203A1A MGMA202A1GMSDA103A1A MSMA102A1G MGDA303A1A MGMA302A1G MSDA153A1A MSMA152A1GMGDA453A1A MGMA452A1GMDDA083A1A MDMA082A1G MHDA303A1A MHMA302A1GMDDA103A1A MDMA102A1G MHDA403A1A MHMA402A1G MDDA153A1A MDMA152A1GMHDA503A1A MHMA502A1G MHDA053A1A MHMA052A1G MHDA103A1A MHMA102A1GMHDA153A1A MHMA152A1G MFDA083A1A MFMA082A1G MFDA153A1A MFMA152A1G MGDA063A1A MGMA062A1GMGDA093A1A MGMA092A1G AMKC060B AMKA080B MSM022Q8V MSMA202DIH MSM012A2UE MSM042H1B MSM5AZJ2QX MSMQ12QBV MSM042A2UEMSMA022A2W MSMK042BLN MSM021A1F MSM022A2UE MSM022A1BE MSMK021BLAMHM502A1C MFA020LB2NSB MSM012A6A MSM5AZA1A MQMA022P1B MBMK082BLNMQMS042A65E MSM041A1C MSM021P1N MSM5AZP1P MBMK042BLEU MSMA042A1FMSMA012A1F MSMA042A84 MSMA022C1F MBMK011BLA MSM3AAD1E MSM3AAD1GMSM8AAD1G MSM5AAD1F MSM8AAD1F AMKC060B10KFG MSM011ABE MSM012A1A MSMA3AZA1N MSM042F2G MSM-12F2G MSMA102A1G MUMA022P1S MUMA012P1T MDM402A1H MFA0204D2BSH MDM402A1G MSM302A1H MSM302A1G MBMK021BLA MSM3AZA1NMSMZ041Q2G MSM022A1A MQMA042P1A MUMA042A3E MSM011A1A MFA024LA2NS MSM021A2NE MSM012F2G MSM022F2G MSM5AZP1C MSM012P1B MSM022P1A MSM042A1A MSM021AJB MSM011A3E MDM202Q2V MDM102Q2V MSMD082P1S MSM012QBV MSM022A1E MSMA022A1E MSM011D1B MSM012A1F MSMA5AZP1B MSMA012P1A MSD021P1E MSD021A1A MSDA013A1A MQDA013A1A MSD013P1E MSD023P1E MSD043P1E MSD023P1EA MSD103A1V06 MSD083A1X MSD043D1E DV88010LDM04 DV88010LDM01 DV85010LDMBS DV88010LDMS2 MSD083A1XG MSD011AX08 MSD013A1XXV MSD013A1X MSD011A1X MKDET131OP MSDA011A1AMSDA043A1A02 MQDA023D1A MHD503A1V MSD041A4XX MSD021P4E MSD5A1P4E MSD011P4E MSD3A3A1X MDD103AIVE MDD253AIVE MDD153AIVE MDD103A1VE MDD253A1VEMDD153A1VE MQDA013A1A MQDA022A1A MQDA023A1A MQDA043A1A MQMA012A1AMQMA012A1B MQMA022A1A MQMA022A1B MQMA022A1E MQMA022A1G MQMA042A1A MQMA042A1B MQMA042A1C MQMA042A1C-IP MS-220 MS-24 MSD013A1XXV MSD013P1EA MSD021A1X MSD023A1XXV MSD043A1XXE MSD083A1XXV MSD083M1XX35 MSD153A1VE MSD203A1VE MSD2A321E MSD3A3A1XXV MSD5A3A1XXV MSD5A3P1EA MSD5B321EMSDA011A1A MSDA013A1A MSDA013D1A MSDA021A1A MSDA023A1A MSDA023D1AMSDA043A1A MSDA043D1A MSDA083A1A MSDA083D1A MSDA103A1A MSDA104A1AMSDA104D1A MSDA153A1A MSDA154A1A MSDA154D1A MSDA203A1A MSDA204A1AMSDA204D1A MSDA253A1A MSDA254A1A MSDA254D1A MSDA303A1A MSDA304A1AMSDA304D1A MSDA353A1A MSDA354A1A MSDA354D1A MSDA3A3A1A MSDA3A3D1AMSDA403A1A MSDA404A1A MSDA404D1A MSDA453A1A MSDA454A1A MSDA454D1AMSDA503A1A MSDA504A1A MSDA504D1A MSDA5A3A1A MSDA5A3D1A MSDB015A1DMSDB015D1D MSDB025A1D MSDB025D1D MSDB045A1A12 MSDB045A1D MSDB045D1D MSDB083A1A12 MSDB083A1D MSDB083D1D MSDB3A5A1D MSDB3A5D1D MSDB5B4A1DMSDB5B5D1D MSDC025D1AF MSDZ043A1A MSDZ043A1A MSM011A1P MSM011A3EMSM012AXAE MSM012AXAE MSM012AXBE MSM012AXEE MSM012P1E MSM021A1A MSM021A4E MSM022A2UE MSM022AXAE MSM022AXBE MSM022AXEE MSM022P1G MSM042A1AMSM042AXAE MSM042AXAE MSM042AXAE MSM042AXBE MSM042AXEE MSM082AXAE MSM082AXBE MSM082AXEE MSM152A1C MSM152A1G MSM202A1C MSM202A1C MSM202A1G MSM2AZ21A MSM3AZA2Q MSM3AZAXAE MSM3AZAXBE MSM3AZAXEE MSM3AZP1EMSM5AZA1A MSM5AZA1EE MSM5AZAXAE MSM5AZAXBE MSM5AZAXEE MSM5AZP1AMSM5AZP1B MSM5AZP1E MSM5BZ21A MSMA011A1A MSMA012A1A MSMA012A1A MSMA012A1A-IP MSMA012A1B MSMA012A1B MSMA012A1B-IP MSMA012A1C MSMA012A1D MSMA012A1D-IP MSMA012A1E MSMA012A1F MSMA012C1A MSMA012C1B MSMA021A1A MSMA022A1A MSMA022A1A-IP MSMA022A1B MSMA022A1B-IP MSMA022A1C MSMA022A1E MSMA022A3A MSMA022C1A MSMA022C1B MSMA042A1A MSMA042A1A-IP MSMA042A1B MSMA042A1B-IP MSMA042A1C MSMA042A1C-IP MSMA042A1D MSMA042A1E MSMA042A1F MSMA042A3E MSMA042C1A MSMA042C1B MSMA042C1H MSMA082A1A MSMA082A1A-IP MSMA082A1B MSMA082A1B-IP MSMA082A1C MSMA082A1C-IP MSMA082A1D MSMA082A1E MSMA082A1E-IP MSMA082A1H MSMA082C1A MSMA082C1B MSMA102A1C MSMA102A1G MSMA104A1C MSMA104A1D MSMA104D1C MSMA104D1D MSMA152A1C MSMA152A1DMSMA152A1G MSMA152A1H MSMA154A1C MSMA154A1D MSMA154A1G MSMA154D1CMSMA154D1D MSMA202A1C MSMA202A1D MSMA202A1G MSMA204A1C MSMA204A1DMSMA204D1C MSMA204D1D MSMA252A1C MSMA252A1D MSMA252A1G MSMA254A1CMSMA254A1D MSMA254D1C MSMA254D1D MSMA302A1C MSMA302A1D MSMA304A1CMSMA304A1D MSMA304D1C MSMA304D1D MSMA352A1G MSMA354A1C MSMA354A1D MSMA354D1C MSMA354D1D MSMA3AZA1A MSMA3AZA1B MSMA3AZC1A MSMA3AZC1B MSMA402A1C MSMA402A1D MSMA402A1G MSMA402A1H MSMA404A1C MSMA404A1DMSMA404D1C MSMA404D1D MSMA452A1C MSMA452A1G MSMA452A1H MSMA454A1CMSMA454A1D MSMA454D1C MSMA454D1D MSMA502A1C MSMA502A1G MSMA504A1C MSMA504A1D MSMA504D1C MSMA504D1D MSMA5AZA1A MSMA5AZA1A-IP MSMA5AZA1B MSMA5AZA1C MSMA5AZA1C-IP MSMA5AZA1D MSMA5AZA1D-IP MSMA5AZC1A MSMA5AZC1B。
海宝powermax1650等离子改装割炬总成说明书
2010 年 9 月
质量保证
专利侵权损失补偿
如果有人针对您提起诉讼,指控您使 用 Hypertherm 产品(单独使用或未与非 Hypertherm 提供的产品一起使用)侵犯了第 三方的专利,则 Hypertherm 将有权自费提 出辩护或和解,但不包括以下情况:产品并非 Hypertherm 制造的,或者是由 Hypertherm 以 外的第三方未严格按照 Hypertherm 规格制造 的;产品的设计、流程、配方或组装方法并非 或据称并非 Hypertherm 开发的。当您了解到 有人提出与此类指控的侵权行为相关的诉讼或 威胁提出此类诉讼时,应(在了解到有人提出 诉讼或威胁提出诉讼之后的 14 天内)立即通 知 Hypertherm;Hypertherm 的赔偿责任有一 个先决条件,即 Hypertherm 须单方面掌控针 对该侵权指控的辩护,并且获得免赔偿方在这 方面的合作与协助。
Hypertherm Brasil Ltda. Avenida Doutor Renato de
Andrade Maia 350 Parque Renato Maia CEP 07114-000 Guarulhos, SP Brasil 55 11 2409 2636 Tel 55 11 2408 0462 Fax
根据设计,本切割设备仅用于工业环境。
安装和使如果发现有电磁干扰,则用户有责任 在制造商的技术协助下消除该情况。在某些情 况下,纠正措施很简单,例如将切割用电路接 地(见工件接地)。在另一些情况下,可能需 要建立电磁屏障,将电源和工件以及相关的输 入过滤器罩住。在所有情况下,都必须将电磁 干扰减少到不产生扰乱作用的程度。
此保修条款不适用于与相转换器一起使用的 Powermax 品牌的电源。此外,如果系统因电 源质量不佳而受损(不论其原因是相转换器还 是输入电力),Hypertherm 均不提供保修。 此保修不适用于由于安装不正确、被修改或其 他原因而受损的产品。
SmartAX MA5603T 产品描述(V800R005C03_01)
修改记录
修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内 容。
文档版本 01 (2009-05-08)
针对 MA5603T V800R005C03,手册初次发行。
vi
华为所有和机密
文档版本 01 (2009-05-08)
版权所有 © 华为技术有限公司
SmartAX MA5603T 多业务接入设备 产品描述
目录
目录
前 言...................................................................................................................................................iii
1 产品定位与特点............................................................................................................................1-1
1.1 产品定位.........................................................................................................................................................1-2 1.2 产品特点.........................................................................................................................................................1-3
SIM SAM 6 8Pin 机械插槽卡插座说明书
CCM03-3003LFT R102 Sim card connector 8 inlay contacts with hinged cover
CCM03-3004LFT R102 Sim card connector 8 inlay conatcts with hinged cover with plastic peg
Fixed cover: 3N max
Card extraction force
Hinged cover: 1N max Fixed cover: 0,80N min / 3N max
Contact force
0,25N min / 0,50N max
Slide locking force
Soldering Process
Compatible with lead free SMT soldering process
SIM/SAM
How To Order Part number list is shown below. For individual part details, please refer to the following pages.
5,08 3,7 9,65
10,16 20,32
6x
1,3
0,7 25˚
S 3,5
Slider locked
29,65 13,8
2,45 R 1,9
1,25 0,7
ø1±0,05 DETAIL A Scale 5
1,25
11,25 17,2
Normally open 100 mΩ max 250 Vrms min 1 mA min / 10m A max 0.2 VA
Environment Data
MAX 10嵌入式存储器用户指南说明书
MAX 10嵌入式存储器用户指南订阅反馈UG-M10MEMORY2015.11.02101 Innovation Drive San Jose, CA 内容MAX® 10嵌入式存储器概述..............................................................................1-1 MAX 10嵌入式存储器体系结构和功能............................................................2-1 MAX 10嵌入式存储器一般特性............................................................................................................2-1控制信号...........................................................................................................................................2-1奇偶校验位......................................................................................................................................2-2读使能...............................................................................................................................................2-2Read-During-Write..........................................................................................................................2-3字节使能...........................................................................................................................................2-3Packed模式支持.............................................................................................................................2-4地址时钟使能支持.........................................................................................................................2-5异步清零...........................................................................................................................................2-6 MAX 10嵌入式存储器操作模式............................................................................................................2-7支持的存储器操作模式.................................................................................................................2-8 MAX 10嵌入式存储器时钟模式............................................................................................................2-9时钟模式中的异步清零..............................................................................................................2-10同时的读和写中的输出读数据.................................................................................................2-10时钟模式的独立时钟使能..........................................................................................................2-10 MAX 10嵌入式存储器配置...................................................................................................................2-11端口宽度配置................................................................................................................................2-11双端口模式的存储器配置..........................................................................................................2-11最大模块深度配置.......................................................................................................................2-12 MAX 10嵌入式存储器设计考量........................................................................3-1实现外部冲突解决.....................................................................................................................................3-1定制Read-During-Write行为..................................................................................................................3-1相同端口Read-During-Write模式.............................................................................................3-2混合端口Read-During-Write模式.............................................................................................3-3考虑上电状态和存储器初始化...............................................................................................................3-4控制时钟以降低功耗.................................................................................................................................3-5选择Read-During-Write输出..................................................................................................................3-6 RAM:1-Port IP内核参考.................................................................................4-1 RAM:MAX 10器件的1-Port IP 内核信号.........................................................................................4-2MAX 10器件的RAM: 1-Port IP内核参数............................................................................................4-3RAM: 2-PORT IP内核参考................................................................................5-1 MAX 10器件的RAM: 2-Port IP内核信号(简单双端口RAM)........................................................5-5 MAX 10器件的RAM: 2-Port IP内核信号(真双端口RAM) ...........................................................5-7 MAX 10器件的RAM: 2-Port IP内核参数............................................................................................5-9 ROM:1-PORT IP内核参考..............................................................................6-1 MAX 10器件的ROM:1-PORT IP内核信号......................................................................................6-2 MAX 10器件的ROM:1-PORT IP内核参数......................................................................................6-4 ROM: 2-PORT IP内核参考................................................................................7-1 ROM: MAX 10器件的2-PORT IP内核信号........................................................................................7-3 MAX 10器件的ROM:2-Port IP内核参数 ...........................................................................................7-4移位寄存器(基于RAM)IP内核参考............................................................8-1 MAX 10器件的移位寄存器(基于RAM)IP内核信号........................................................................8-1 MAX 10器件的移位寄存器(基于RAM) IP内核参数.......................................................................8-2 FIFO IP内核参考................................................................................................9-1 MAX 10器件的FIFO IP内核信号 ........................................................................................................9-2 MAX 10器件的FIFO IP内核参数 ........................................................................................................9-4ALTMEMMULT IP内核参考...........................................................................10-1 MAX 10器件的ALTMEMMULT IP内核信号..................................................................................10-1 MAX 10器件的ALTMEMMULT IP内核参数..................................................................................10-2 MAX 10嵌入式存储器用户指南的附加信息...................................................A-1 MAX 10嵌入式存储器用户指南的文档修订历史.............................................................................A-1MAX® 10嵌入式存储器模块已被优化,以用于诸如高吞吐量数据包处理、嵌入式处理器编程和嵌入式数据存储的应用程序。
MAX038中文Data Sheet
高频信号发生器_______________概述MAX038是一种只需极少外围电路就能实现高 频、高精度输出三角波、锯齿波、正弦波、方波 和脉冲波的精密高频函数发生器芯片。
内部提供 的2.5V 基准电压和一个外接电阻和电容可以控制 输出频率范围在0.1Hz 到20MHz 。
占空比可在较大 的范围内由一个±2.3V的线性信号控制变化,便 于进行脉冲宽度调制和产生锯齿波。
频率调整和 频率扫描可以用同样的方式实现。
占空比和频率 控制是独立的。
通过设置2个TTL 逻辑地址引脚合适的逻辑电 平,能设定正弦波,方波或三角波的输出。
所有 波形的输出都是峰-峰值为±2VP -P 的信号。
低阻 抗输出能力可以达到±20mA。
____________________________性能o 频率调节范围:0.1Hz 到20MHzo 三角波, 锯齿波, 正弦波, 方波和脉冲波 o 频率和占空比独立可调 o 频率扫描范围:350:1 o 可控占空比:15%到85% o 低阻抗输出缓冲器: 0.1Ω o 低失真正弦波: 0.75% o 低温度漂移: 200ppm/°C______________型号信息TTL 逻辑地址引脚SYNC 从内部振荡器输出占 空比固定为50%的信号,不受其它波占空比的影 响,从而同步系统中其它振荡器。
内部振荡器 允许被连接着相位检波器输入端(PDI )的外部 TTL 时钟同步。
型号 MAX038CPP MAX038CWP MAX038C/D MAX038EPP MAX038EWP工作温度 0°C 到 +70°C 0°C 到 +70°C 0°C 到 +70°C -40°C 到 +85°C -40°C 到 +85°C引脚--封装 20 Plastic DIP 20 SO Dice* 20 Plastic DIP 20 SO.__________________应用精密函数信号发生器 压控振荡器 频率调制器*Contact factory for dice specifications.__________________引脚图脉宽调制器 锁相环 频率合成器FSK 发生器(正弦波和方波)________________________________________________________________ Maxim Integrated Products1For free samples & the latest literature: , or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468MAX038高频信号发生器图1. 内部结构及基本工作电路_______________ 详细说明MAX038是一种高频函数信号发生器,它可以使 用最少的外部元件而产生低失真正弦波,三角波, 锯齿波,方波(脉冲波)。
MAX306中文资料
_______________General DescriptionThe MAX306/MAX307 precision, monolithic, CMOS analog multiplexers (muxes) offer low on-resistance (less than 100Ω), which is matched to within 5Ωbetween channels and remains flat over the specified analog signal range (7Ωmax). They also offer low leak-age over temperature (I NO(OFF)less than 2.5nA at +85°C) and fast switching speeds (t TRANS less than 250ns). The MAX306 is a single-ended 1-of-16 device,and the MAX307 is a differential 2-of-8 device.The MAX306/MAX307 are fabricated with Maxim’s improved 44V silicon-gate process. Design improve-ments yield extremely low charge injection (less than 10pC) and guarantee electrostatic discharge (ESD)protection greater than 2000V.These muxes operate with a single +4.5V to +30V sup-ply, or bipolar ±4.5V to ±20V supplies, while retaining TTL/CMOS-logic input compatibility and fast switching.CMOS inputs provide reduced input loading. These improved parts are plug-in upgrades for the industry-standard DG406, DG407, DG506A, and DG507A.________________________ApplicationsSample-and-Hold Circuits Test Equipment Heads-Up DisplaysGuidance and Control Systems Military RadiosCommunications Systems Battery-Operated Systems PBX, PABXAudio Signal Routing____________________________Featureso Guaranteed On-Resistance Match Between Channels, <5ΩMaxo Low On-Resistance, <100ΩMaxo Guaranteed Flat On-Resistance over Specified Signal Range, 7ΩMaxo Guaranteed Charge Injection, <10pC o I NO(OFF)Leakage <2.5nA at +85°C o I COM(OFF)Leakage <20nA at +85°C o ESD Protection >2000Vo Plug-In Upgrade for Industry-Standard DG406/DG407/DG506A/DG507Ao Single-Supply Operation (+4.5V to +30V)Bipolar-Supply Operation (±4.5V to ±20V)o Low Power Consumption, <1.25mW o Rail-to-Rail Signal Handling o TTL/CMOS-Logic CompatibleMAX306/MAX307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers________________________________________________________________Maxim Integrated Products 1_____________________Pin Configurations/Functional Diagrams/Truth TablesCall toll free 1-800-998-8800 for free samples or literature.19-0270; Rev 0; 8/94Ordering Information continued at end of data sheet.* Contact factory for dice specifications.M A X 306/M A X 307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS—Dual Supplies(V+ = +15V, V- = -15V, GND = 0V, V AH = +2.4V, V AL = +0.8V, T A = T MIN to T MAX , unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Voltage Referenced to V-V+............................................................................-0.3V, 44V GND.........................................................................-0.3V, 25V Digital Inputs, NO, COM (Note 1)...........(V- - 2V) to (V+ + 2V) or30mA (whichever occurs first)Continuous Current (any terminal)......................................30mA Peak Current, NO or COM(pulsed at 1ms, 10% duty cycle max)..........................100mA Continuous Power Dissipation (T A = +70°C)Plastic DIP (derate 9.09mW/°C above +70°C)............727mW Wide SO (derate 12.50mW/°C above +70°C)............1000mW PLCC (derate 10.53mW/°C above +70°C)..................842mW CERDIP (derate 16.67mW/°C above +70°C).............1333mW Operating Temperature RangesMAX30_C_ _.......................................................0°C to +70°C MAX30_E_ _.....................................................-40°C to +85°C MAX30_MJI....................................................-55°C to +125°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10sec).............................+300°CNote 1:Signals on NO, COM, A0, A1, A2, A3, or EN exceeding V+ or V- are clamped by internal diodes. Limit forward current to maximum current ratings.MAX306/MAX307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)(V+ = +15V, V- = -15V, GND = 0V, V= +2.4V, V = +0.8V, T = T to T , unless otherwise noted.)M A X 306/M A X 307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers 4_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS—Single Supply(V+ = +12V, V- = 0V, GND = 0V, V AH = +2.4V, V AL = +0.8V, T A = T MIN to T MAX , unless otherwise noted.)Note 2:The algebraic convention where the most negative value is a minimum and the most positive value a maximum is used inthis data sheet.Note 3:Guaranteed by design.Note 4:∆R ON = R ON(MAX)- R ON(MIN).On-resistance match between channels and flatness are guaranteed only with specifiedvoltages. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured at the extremes of the specified analog signal range.Note 5:Leakage parameters are 100% tested at the maximum rated hot temperature and guaranteed by correlation at +25°C.Note 6:Off isolation = 20log V COM /V NO , where V COM = output and V NO = input to off switch.MAX306/MAX307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers_______________________________________________________________________________________5120140160ON-RESISTANCE vs. V COM(DUAL SUPPLIES)1000204060-2020-1515-1010-5580V COM (V)R O N (Ω)120ON-RESISTANCE vs. V COM AND TEMPERATURE (DUAL SUPPLIES)1000204060-1515-1010-55080V COM (V)R O N (Ω)280320360400ON-RESISTANCE vs. V COM (SINGLE SUPPLY)24040801201601520105200V COM (V)R O N (Ω)120140160ON-RESISTANCE vs. V COM AND TEMPERATURE (SINGLE SUPPLY)10002040601510580V COM (V)R O N (Ω)30CHARGE INJECTION vs. V COM20-30-20-100-1515-1010-55010V COM (V)Q j (p C )100.0001-55125OFF LEAKAGE vs. TEMPERATURE1TEMPERATURE (°C)O F F L E A K A G E (n A )250.010.001-35-15650.1100100045851055100.0001-55125ON LEAKAGE vs. TEMPERATURE1TEMPERATURE (°C)O N L E A K A G E (n A )250.010.001-35-15650.11001000458510551000.001-55125SUPPLY CURRENT vs. TEMPERATURE10TEMPERATURE (°C)I +, I - (µA )250.10.01-35-1565145851055__________________________________________Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)__________Applications InformationOperation with Supply VoltagesOther than ±15VUsing supply voltages other than ±15V will reduce the analog signal range. The MAX306/MAX307 switches operate with ±4.5V to ±20V bipolar supplies or with a +4.5V to +30V single supply; connect V- to GND when operating with a single supply. Also, both device types can operate with unbalanced supplies such as +24V and -5V. The Typical Operating Characteristics graphs show typical on-resistance with 20V, 15V, 10V, and 5V supplies. (Switching times increase by a factor of two or more for operation at 5V.)Overvoltage ProtectionProper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maxi-mum ratings because stresses beyond the listed rat-ings may cause permanent damage to the devices.Always sequence V+ on first, then V-, followed by either the logic inputs, NO, or COM. If power-supply sequencing is not possible, add two small signal diodes in series with supply pins for overvoltage pro-tection (Figure 1). Adding diodes reduces the analogsignal range to 1V above V+ and 1V below V-, but low switch resistance and low leakage characteristics are unaffected. Device operation is unchanged, and the difference between V+ and V- should not exceed +44V.M A X 306/M A X 307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers 6_______________________________________________________________________________________Output–bidirectionalCOM28Address Inputs A3–A014–17Enable InputsEN 18Analog Inputs–bidirectional NO1–NO819–26Negative Supply Voltage Input V-27Ground GND 12Analog Inputs–bidirectional NO16–NO94–11MAX306PINNo Internal Connections N.C.2, 3, 13Positive Supply Voltage Input V+1FUNCTIONNAME_____________________________________________________________Pin DescriptionsDiodesMAX306/MAX307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers_______________________________________________________________________________________7______________________________________________Test Circuits/Timing DiagramsM A X 306/M A X 307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers 8________________________________________________________________________________________________________________________Test Circuits/Timing Diagrams (continued)Figure 5. Charge InjectionMAX306/MAX307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers_______________________________________________________________________________________9_________________________________Test Circuits/Timing Diagrams (continued)Figure 8. NO/COM CapacitanceM A X 306/M A X 307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers 10______________________________________________________________________________________________Pin Configurations/Functional Diagrams/Truth Tables (continued)A2A1A0EN ON Switch X 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1X 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1X 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1None 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16MAX306LOGIC “0” V AL ≤ 0.8V, LOGIC “1” = V AH ≥ 2.4VA3X 0 0 0 0 0 0 0 0 1 1 1 1 1 1 11A2A1A0EN ON Switch X 0 0 0 0 1 1 1 1X 0 0 1 1 0 0 1 1X 0 1 0 1 0 1 0 10 1 1 1 1 1 1 1 1None 1 2 3 4 5 6 7 8MAX307LOGIC “0” V AL ≤ 0.8V, LOGIC “1” = V AH ≥ 2.4VMAX306/MAX307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers______________________________________________________________________________________11________Pin Configurations/Functional Diagrams/Truth Tables (continued)_Ordering Information (continued)* Contact factory for dice specifications.Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.12__________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600©1994 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.M A X 306/M A X 307Precision, 16-Channel/Dual 8-Channel,High-Performance, CMOS Analog Multiplexers __________________________________________________________Chip TopographiesGNDNO1 NO2 NO3 N04 NO5 NO6 NO7 NO80.184" (4.67mm)0.078" (1.98mm)NO9NO10NO11NO12N013NO14NO15NO16N.C.V-COM V+GND NO1A NO2A NO3A N04A NO5A NO6A NO7A NO8A0.184" (4.67mm)0.078" (1.98mm)NO1B NO2B NO3B NO4B N05B NO6B NO7B NO8B COMBV-COMA V+TRANSISTOR COUNT: 269SUBSTRATE IS INTERNALLY CONNECTED TO V+TRANSISTOR COUNT: 269SUBSTRATE IS INTERNALLY CONNECTED TO V+MAX306MAX307N.C. = NO INTERNAL CONNECTION。
MAA50-3S051515SXX中文资料
Single-output modelsModule МАА50- 1S03S ХХ МАА50- 1S05S ХХ МАА50- 1S12S ХХ МАА50- 1S15S ХХ МАА50- 1S24S ХХ МАА50- 1S27S ХХМАА50- 1S48S ХХ МАА50- 1S68S ХХ Output power 26,4 W 40 W 50 W Output voltage 3,3 VDC 5 VDC12 VDC15 VDC24 VDC27 VDC48 VDC68 VDCOutput current8 A8 А 4,17 А 3,33 А 2,27 А 1,85 А 1,04 А 0,73 АDual-output modelsModule МАА50-2S0505S ХХ МАА50-2S1212S ХХМАА50-2S1515S ХХOutput power 50 WChannel number 1 2 1 2 1 2 Output voltage 5 VDC 5 VDC 12 VDC 12 VDC15 VDC 15 VDC Output current5 А 5 А 2,1 А 2,1 А 1,67 А 1,67 АTriple-output modelsModule МАА50-3S051212S ХХМАА50-3S051515S ХХOutput power 50 WChannel number 1 2 3 1 2 3Output voltage 5 VDC12 VDC12 VDC5 VDC15 VDC15 VDCOutput current5 А 1,04А 1,04А 5 А 0,83 А 0,83 Аby request can be delivered modules with non-standard output voltage from 3 to 70 VDC and maximal output current to 8А.Ordering informationМАА 50 – 3 S 05 15 15 S U Nc d e f g h i j k lc - MAA Seriesd - Nominal output power, Watte - Channel quantity (1, 2, 3)f - - Input voltageS – 220VAC K – 115VACg - Output voltage channel 1, VDC h - Output voltage channel 2, VDC i - Output voltage channel 3, VDC j - Execution with sealing k - EmbodimentB – uniform case with primingl - Operating temperature range of caseN - - 40°С…+85°С P - - 50°С…+85°С• Rugged environment in operation intechnical equipment of industrial and special purpose. • Low-profile construction • Metal case• Cooling by heat sink or free air convection• Electromagnetic compatibility index to GOST V 25803-91 for group 1.2.1 (curve 2) • Stability to external factors of group 1U GOST RV 20.39.414.1-97 (additional) • Short circuit protection, overload, overvoltage and thermal protection • Galvanic isolated outputs •Acceptance «5»Температура окружающей среды Токр, С9080706050403020100-10-20-30-40-50Выходная мощность, Вт6050403020100Input specificationsParameter Conditions of dimensions MIN NOM MAX UnitS 187 220 242 VACSteady-state deviationК 80 115 140 VAC S 176 264 VACInput voltageTransient deflection, 1 secК 80 150 VAC SInput frequencyК47 400 440 HzOutput specificationsParameterConditions of dimensions MIN NOM MAX Unit Single-output execution (Inom 10 – 100%) ±3 % Output 1 multi-output execution(Inom 10 – 100%) ±3 %Uout2&3 differs from Uout1 less than 20% Output 2 and 3 multi-output execution(Inom 10 – 100%)±13 %Output 1 multi-output execution (Inom 30 – 100%) ±3 %Total output voltage instabilityUout2&3differs fromUout1 more than 20% Output 2 and 3 multi-output execution(Inom 50-100%) ±15 %Output voltage pulsations ripple(peak-to-peak)Dimension by device for pulsation control2% Uout.nom.Current overload protection actuation level110 % Iout.nom. Short circuit protection Autorepair 150 % Iout.nom. Overvoltage protection 120 % Uout.nom.Thermal protection90-95°CGeneral specificationsParameterConditions of dimensions MIN NOM MAX Unit- operating of case N P – 40 – 50 +85+85°C– power loss See diagram Temperature– storage – 50 +85 °CEfficiency 78 % Conversion frequency 50 kHz~ in/out 1500 VAC ~ in/case 1500 VAC~ out/case 500 VDC Isolation~ out/out 500 VDCInsulation resistance Voltage 500VDC 20 Ohm High humidity Temperature 35°С 98 % Cyclic overpatching of temperature – 60 +85 °C Multiple mechanical shocks Speeding-up 15g 2 15 ms Sinusoidal vibration Speeding-up 5g 50 500 Hz Atmosphere pressure 6х104 1,2х105 Pa Time to failure Temperature 35°C 105 hour Mass 0,4 kg all specifications redused for normal climatic conditions, Uin.nom., Iout.nom., if it is not specified differently.Power loss diagramFree airconvectionWith heat sinkAmbient temperature Tamb, °CO u t p u t p o w e r , WOutput settings№ pin1 2 3 4 5 6 7 8 9 Single-channel case ~IN (N) ~IN (L) +out1 +out1 +out1 -out1 -out1 -out1 Dual-channel case ~IN (N) ~IN (L) +out1 +out1 -out1 -out1 -out2 +out2 Triple-channelcase~IN (N)~IN (L)-out3+out3+out1-out1-out2+out2Switching on standart diagramFU in – current safety device 1A for input voltage 220VAC, 2A for input voltage 115VAC.S out – ceramic condenser capacity 0,47-15 mcF with corresponding operating voltage to decrease high-frequency noise level.S out2 – electronic condenser capacity 22-100 mcF in consideration with operating voltage and polarity. It makes for purpose to decrease dynamic instability when module work at dynamic load.+Out -Out ~In (L) ~In (N) Power module R heat CaseСout1 Сout2~In (L)~In (N)ground FU inSingle, Dual, and Triple-output execution SBNSingle, Dual, and Triple-output execution SVN (with flexible erection joints)The Flexible erection fjoints by length (100±5)mm is executed by wire section (0,5...1,5)mm2.。
BUR-CAM 506367-3 506532SS 双功能水库水泵说明书
2190 Boul. Dagenais Ouest TEL: 514.337.4415 LAVAL(QUÉBEC)FAX: 514.337.4029 CANADAH7L******************INSTRUCTIONS D’INSTALLATIONS’il vous plaît,veuillezlire attentivementces instructions. Ledéfaut de voussoumettre auxinstructions etopérationsappropriéesà ce systèmepeût annulerla garantie.Votre pompe a étésoigneusement emballée àl’usine, pour prévenir les dommages possibles lorsdu transport. Toutefois, des dommages occasionnels peuvent être encourus parune mauvaise manutention.Vérifiez soigneusementafin dedéceler tout dommage possible qui pourrait causerun bris de la pompe. Signalez tout dommage au©2013 BUR-CAM Imprimé au Canada 506367-3MODÈLE 506532SSPOMPE ÀDOUBLE APPLICATIONS(pour usage à l’intérieur seulement)N’OUBLIEZ PAS QUE LE TUYAU HORIZONTAL ALLANT DU HAUT DU PUITS JUSQU’À LA MAISON DOIT ÊTRE INSTALLÉ DANS UNETRANCHÉE SOUS LE NIVEAU DU GEL DE VOTRE RÉGION.34Couper la longueur désirée de tuyau du haut du puits au niveau de pompage. Adoucir les bouts du tuyau avec la lime ronde (Assurez-vous qu’aucun rebut de coupe ne reste à l’intérieur du tuyau. Ceci pourrait bloquer l’injecteur ou l’impulseur de votre pompe).Enrouler les filets de l’adapteur mâle avec du ruban téflon et insérer l’adapteur dans le clapet de pied. Glisser deux brides d’acier inoxydable sur un bout du tuyau et utiliser la torche au propane pour amollir le tuyau. Insérer l’adapteur mâle et le clapet de pied dans le bout du tuyau. Serrer les brides avec le tournevis. Pour contrer les risques de fuite, nous suggérons l’usage de 2 brides d’acier inoxydable sur chaque adapteur .Insérer le coude d’étanchéité dans le joint d’étanchéité.Glisser deux brides d’acier inoxydable à l’autre extrémité du tuyau et utiliser la torche au propane pour amollir le tuyau. Insérer le coude (partie inférieure sous le joint d’étanchéité)dans le bout du tuyau. Serrer les brides avec le tournevis lorsque refroidi.Installer le joint d’étanchéité et l’ensemble de tuyauterie à l’intérieur du puits et utiliser votre clé à molette ajustable pour serrer les écrous du joint d’étanchéité.Installer votre pompe dans la maison sur une base solide, aussi près que possible du mur du sous-sol. Repérer l’entrée de succion à l’avant de la pompe et installer un adapteur mâle en utilisant du ruban téflon sur les filets. Attention de ne pas trop serrer.Couper la longueur désirée de tuyau de l’emplacement de la pompe au joint d’étanchéité de votre puits et procéder au raccordement en utilisant la méthode précédente, avec les brides et la torche au propane. Avant d’effectuer le raccordement du tuyau à la pompe, bien emplir celui-çi avec de l’eau.Ne pas remplir la tranchée avant de vous assurer qu’il n’y a aucune fuite dans vos raccords ou difficulté de fonctionnement du système d’eau .Les pointes de sable ou de puits sont limitées à des régions où le sable et/ou le gravier contiennent de l’eau sous la surface, et où il n’y a pas de roches ou rocs pour empêcher la pénétration de la pointe dans le sol.La quantité d’eau qu’une pointe de puits fournira est habituellement limitée. Quelquefois, il peut être nécessaire d’utiliser plus d’une pointe pour augmenter la quantité d’eau qui entre dans la pompe.L’ÉTAPE IMPORTANTE DANS L’UTILISATION DE POINTE(S) DE PUITS CONSISTE ÀINSTALLER UNE SOUPAPE DE RETENUE DANS LE TUYAU DE SUCCION MENANT ÀL’ENTRÉE DE LA POMPE, AUSSI PRÈS QUE POSSIBLE DE CELLE-CI , POUR GARDER LE TUYAU DE SUCCION BIEN AMORÇER.3APPLICATION POUR PUITS DE SURFACEVOIR LE DIAGRAMME À LA PAGE SUIVANTEPour faciliter l’accès futur, utiliser un adapteur à coulisseau et un couvercle de puits scelléà la place du coude et du joint étanche des étapes 3 et 4.5APPLICATION POUR PUITS DE SURFACEÉTAPE 2 Couper le tuyauet installer le clapet de pied.ÉTAPE 3 Insérer le coudedans le sceau d’étanchéité et le raccorder au tuyau.ÉTAPE 4 Installer lesceau d’étanchéité et le tuyau dans le puits.Installer votre pompeet visser un adapteur dans la succion.ÉTAPE 6 Couper le tuyauet raccorder les extrémités.Clapet de retenue près de la pompe.Installation optionnelle de pointe à puitsÉTAPE 7 Vous pouvez installer une ou plusieurspointes à puits pour augmenter l’alimentation en eau.8 9Connecter la conduite de distribution en utilisant une soupape à bille, tel qu’illustré(photo 1).(Photo 1).et emplir le boîtier de la pompe (Photo 1).Revisser le bouchon au tuyaud’amorçage en utilisant du ruban teflon(Photo 2).Brancher la pompe. Si, après 30 secondesde fonctionnement, l’eau n’a pascommencée à être propulsée dans lesystême de distribution, débrancher lapompe et répéter le tout à partir de l’étape10. Vous devrez répéter ces opérations àquelques reprises, selon la longueur devotre ligne d’approvisionnement.NOTE: Après l’installation, si la pompe effectue des cycles arrêt/départ alors qu’il n’y a aucun usage apparent, cela indique qu’il y a une fuite dans le système de distribution. La pompe n’est pas défectueuse. La fuite doit être localisée et réparée. Si vous avez besoin d’assistance, contactez-nous au 1 800.361.1820. La pompe est garantie par le manufacturier, et vous devez nous contacter pour connaître les procédures. La pompe ne peut pas être retournée au point d’achat sans notre consentement.11126INSTRUCTIONS D’AMORÇAGEPHOTO 1étape 8 SUIVEZ LES ÉTAPES SUIVANTES AFIN D’AMORCER FACILEMENT VOTRE POMPE.lisez attentivement les instructions pour une surface, puis raccordez votre pompe à votre 231231OUVERTOUVERTOUVERTFERMÉFERMÉFERMÉOPÉRATION DE SURPRESSIONFONCTION DE MAINTENANCEMANOMÈTREMANOMÈTRED éb i tD éb i tD éb i tD ébi t7Tuyauterie minimum de 1’’Tuyauterie minimum de 1’’510002GUIDE DE RÉSOLUTION DES PROBLÈMESLORS D’AJUSTEMENT SUR DES APPAREILS ÉLECTRIQUES, TOUJOURS S’ASSURER QUE LE COURANT EST DÉBRANCHÉ. NE PAS SEULEMENT ENLEVER LE FUSIBLE OU METTRE LE DISJONCTEUR HORS TENSION. IL FAUT DÉBRANCHER LE CÂBLE D’ALIMENTATION DE LA PRISE.Fusible brûléDisjoncteur déclenchéMoteur défectueuxPompe non amorcéeFuite dans le tuyau de succion Clapet de pied bouchéBec de l’injecteur obstruéNiveau de l’eau trop bas Succion trop profonde Voltage inadéquatNiveau de l’eau trop bas Bec de l’injecteur obstruéFriction excessive dans les tuyaux Voltage inadéquatFuite dans les tuyaux de décharge Moteur tourne trop lentementInterrupteur à pression mal ajustéBec de l’injecteur obstruéFuite dans le clapet de pied Fuite dans le tuyau de succion Clapet de pied demeure ouvert Interrupteur à pression mal ajustéFuite dans les tuyaux de décharge (toilette etc.)Fuite dans le tuyau de succion Gaz dans l’eauRéservoir rempli d’air (galvanisé)Remplacer Enclencher RemplacerAmorcer avec de l’eau propreVérifier tous les joints et les tuyaux Nettoyer NettoyerVérifier la position du clapet de piedNiveau de l’eau sous la limite de succion Vérifier le voltage du circuit Vérifier la position du clapet de pied NettoyerTuyau encrassé ou trop petit Vérifier le voltage du circuit Vérifier qu’il n’y a pas de fuite Vérifier le câblage et le voltage Vérifier ou remplacer NettoyerRemplacerVérifier tous les joints et les tuyaux Nettoyer ou remplacer Corriger le réglageVérifier qu’il n’y a pas de fuite Vérifier tous les joints et les tuyaux Vérifier et consulter l’usineRemplacer le contrôle de volume d’airPROBLÈME CAUSE POSSIBLE ACTIONLe moteur ne fonctionne pas.Le moteur tourne mais il n’y a pas d’eau pompée.La pompe ne s’arrête pas.Le débit n’est pas à pleine capacité.La pompe démarre et arrête trop souvent.De l’air sort des robinets.AU CONSOMMATEURSi vous connaissez des problèmes avec ce produit, avant d’appeler le magasin oùvous en avez fait l’acquisition, s’il-vous-plaît, contactez notre service à la clientèle au 514 337-4415. Ils se feront un plaisir de vous aider avec toutes les questions que vous auriez concernant l’installation.9GUIDE DE RÉSOLUTION DES PROBLÈMESDU FLUOMACLORS D’AJUSTEMENT SUR DES APPAREILS ÉLECTRIQUES, TOUJOURS S’ASSURER QUE LE COURANT EST DÉBRANCHÉ. NE PAS SEULEMENT ENLEVER LE FUSIBLE OU METTRE LE DISJONCTEUR HORS TENSION. IL FAUT DÉBRANCHER LE CÂBLE D’ALIMENTATION DE LA PRISE.Vérifiez les terminaux à l’aide d’unvoltmètre. S’il n’y a pas de tension,remplacer l’unitéAttendre la régénération du puits etappuyer sur “reset”Débloquer et appuyer sur “reset”Attendre 10 minutes et appuyer sur “reset”Débloquer le venturi et/ou le bec injecteuret appuyer sur “reset”Assurez-vous que tous les robinets sontfermé et que la valve de la toilettefonctionne. Si vous ne trouvez pas la fuite,installez un clapet à la sortie du fluomac.Si les cycles s’arrête, la fuite est après leclapet. Si les cycles continuent,la fuite estdans la succion. Le clapet de pied peutêtre bloqué ou défectueux. Remplacer.La pression de la colonne d’eau est plushaute que la pression de fermeture(26 lb/PO2). Relocaliser l’unité à un niveausupérieur.PROBLÈME CAUSE POSSIBLE ACTIONL’alimentation estbranché, aucunvoyant n’estallumé.L’alimentation estbranché, levoyant “on” de lapompe est éteint,le voyant “failure”est allumé.L’alimentation estbranché, levoyant “on” de lapompe estallumé, le voyant“failure” est éteint,et la pompeeffectue des arrêt-départ rapide.L’alimentation estbranché, levoyant “on” de lapompe estallumé, le voyant“failure” estéteint, un robinetest ouvert et il n’ya pas d’eau. Lapompe nefonctionne pas.AU CONSOMMATEURSi vous connaissez des problèmes avec ce produit, avant d’appeler le magasin oùvous en avez fait l’acquisition, s’il-vous-plaît, contactez notre service à la clientèleau 514 337-4415. Ils se feront un plaisir de vous aider avec toutes les questionsque vous auriez concernant l’installation.10。
三菱PLC型号目录
三菱PLC型号目录(常用品种,2015年4月)常用触摸屏型号说明经济型触摸屏GS2107-WTBD7寸宽屏,800*480,65535色,USB/232/422/以太网,直流经济型触摸屏GS2110-WTBD10寸宽屏,800*480,65535色,USB/232/422/以太网,直流中档触摸屏GT2308-VTBA8.4寸,65535色,USB/232/422,交流供电中档触摸屏GT2310-VTBA10.4寸,65535色,USB/232/422,交流供电小型PLC型号说明FX3U主机FX3U-16MR-ES-A AC电源,8入,8出,继电器FX3U主机FX3U-32MR-ES-A AC电源,16入,16出,继电器FX3U主机FX3U-48MR-ES-A AC电源,24入,24出,继电器FX3U主机FX3U-64MR-ES-A AC电源,32入,32出,继电器FX3U主机FX3U-80MR-ES-A AC电源,40入,40出,继电器FX3U主机FX3U-128MR-ES-A AC电源,64入,64出,继电器FX3U主机FX3U-16MT-ES-A AC电源,8入,8出,晶体管漏型,3轴定位FX3U主机FX3U-32MT-ES-A AC电源,16入,16出,晶体管漏型,3轴定位FX3U主机FX3U-48MT-ES-A AC电源,24入,24出,晶体管漏型,3轴定位FX3U主机FX3U-64MT-ES-A AC电源,32入,32出,晶体管漏型,3轴定位FX3U主机FX3U-80MT-ES-A AC电源,40入,40出,晶体管漏型,3轴定位FX3U主机FX3U-128MT-ES-A AC电源,64入,64出,晶体管漏型,3轴定位FX3U功能板FX3U-232-BD1通道RS232FX3U功能板FX3U-422-BD1通道RS422FX3U功能板FX3U-485-BD1通道RS485FX3UC主机FX3UC-16MT-D连接器式,DC电源,8入,8出,晶体管,3轴定位FX3UC主机FX3UC-32MT-D连接器式,DC电源,16入,16出,晶体管,3轴定位FX3UC主机FX3UC-64MT-D连接器式,DC电源,32入,32出,晶体管,3轴定位FX3UC主机FX3UC-96MT-D连接器式,DC电源,48入,48出,晶体管,3轴定位FX3GA主机FX3GA-24MR-CM AC电源,14入,10出,继电器,USB接口FX3GA主机FX3GA-40MR-CM AC电源,24入,16出,继电器,USB接口FX3GA主机FX3GA-60MR-CM AC电源,36入,24出,继电器,USB接口FX3GA主机FX3GA-24MT-CM AC电源,14入,10出,晶体管漏型,2轴定位,USB接口FX3GA主机FX3GA-40MT-CM AC电源,24入,16出,晶体管漏型,3轴定位,USB接口FX3GA主机FX3GA-60MT-CM AC电源,36入,24出,晶体管漏型,3轴定位,USB接口FX3SA主机FX3SA-10MR-CM AC电源,6入,4出,继电器FX3SA主机FX3SA-14MR-CM AC电源,8入,6出,继电器FX3SA主机FX3SA-20MR-CM AC电源,12入,8出,继电器FX3SA主机FX3SA-30MR-CM AC电源,16入,14出,继电器FX3SA主机FX3SA-10MT-CM AC电源,6入,4出,晶体管漏型,2轴定位FX3SA主机FX3SA-14MT-CM AC电源,8入,6出,晶体管漏型,2轴定位FX3SA主机FX3SA-20MT-CM AC电源,12入,8出,晶体管漏型,2轴定位FX3SA主机FX3SA-30MT-CM AC电源,16入,14出,晶体管漏型,2轴定位FX3G功能板FX3G-232-BD1通道RS232FX3G功能板FX3G-485-BD1通道RS485FX3G功能板FX3G-1DA-BD FX3G用功能扩展板,1路模拟量输出FX3G功能板FX3G-2AD-BD FX3G用功能扩展板,2路模拟量输入FX3G功能板FX3G-CNV-ADP FX3G主机连接FX3U-ADP适配器时用的配件FX3适配器FX3U-232ADP-MB1通道RS232,支持MODBUS,需搭配BD使用FX3适配器FX3U-485ADP-MB1通道RS485,支持MODBUS,需搭配BD使用FX3适配器FX3U-4AD-ADP4路模拟量输入,电流/电压,分辨率12位,需搭配BD使用FX3适配器FX3U-4DA-ADP4路模拟量输出,电流/电压,分辨率12位,需搭配BD使用FX3适配器FX3U-4AD-PT-ADP4路PT热电偶温度输入,分辨率12位,需搭配BD使用FX3适配器FX3U-4AD-TC-ADP4路TC铂电阻温度输入,分辨率12位,需搭配BD使用FX3适配器FX3U-ENET-ADP FX3U用以太网特殊适配器,需搭配BD使用FX扩展模块FX2N-8EX扩展摸块,8入FX扩展模块FX2N-16EX扩展摸块,16入FX扩展模块FX2N-8EYR扩展摸块,8出,继电器FX扩展模块FX2N-16EYR扩展摸块,16出,继电器FX扩展模块FX2N-8EYT扩展摸块,8出,晶体管漏型FX扩展模块FX2N-16EYT扩展摸块,16出,晶体管漏型FX扩展模块FX2N-8ER扩展摸块,4入,4出,继电器FX扩展模块FX2N-8ER-ES-UL4入,4出,继电器,欧美标准FX扩展模块FX2N-16EX-ES-UL16入,欧美标准FX扩展模块FX2N-16EYT-ES-UL16出,晶体管,欧美标准FX扩展单元FX2N-32ER扩展单元,16入,16出,AC220V供电FX扩展单元FX2N-48ER扩展单元,24入,24出,AC220V供电FX扩展单元FX2N-32ET扩展单元,16入,16出,晶体管漏型,AC220V供电FX扩展单元FX2N-48ET扩展单元,24入,24出,晶体管漏型,AC220V供电FX功能模块FX3U-ENET-L FX3U用以太网模块FX功能模块FX3U-4AD4路模拟量输入,电流/电压,分辨率15位+符号1位FX功能模块FX3U-4DA4路模拟量输出,电流/电压,分辨率15位+符号1位FX功能模块FX3U-16CCL-M FX3G、3U用CC-LINK主站模块FX功能模块FX3U-64CCL FX3G、3U用CC-LINK丛站模块FX系列PLC FX2N-32CCL FX用CC-LINK丛站模块FX功能模块FX2N-2AD2路模拟量输入,电流电压其中一种,分辨率12位FX功能模块FX2N-4AD4路模拟量输入,电流/电压,分辨率11位+符号1位FX功能模块FX2N-8AD8路电流/电压/热点偶/铂电阻输入模块FX功能模块FX2N-4AD-PT4路铂电阻温度输入模块FX功能模块FX2N-4AD-TC4路热点偶温度输入模块FX功能模块FX2N-2DA2路模拟量输出,电流电压其中一种,分辨率12位FX功能模块FX2N-4DA4路模拟量输出,电流/电压,分辨率11位+符号1位FX功能模块FX2N-5A4路模拟量输入,电流/电压,1路模拟量输出FX功能模块FX0N-3A2路模拟量输入,1路模拟量输出,电流/电压FX功能模块FX2N-1HC FX用高速计数模块,可接收差分脉冲FX功能模块FX2N-2LC2路温度控制模块FX功能模块FX2N-1PG-E FX用1轴定位模块,集电极脉冲,100KHZFX功能模块FX2N-CNV-BC转换接头,配合FX0N-65EC使用FX功能模块FX0N-65EC65CM长,用于长距离连接功能模块,扩展模块,扩展单元中大型PLC型号说明新CPU Q00UJCPU支持256点,含电源及5个插槽,USB口新CPU Q00UCPU支持1024点,程序容量10K步,USB口新CPU Q01UCPU支持1024点,程序容量15K步,USB口新CPU Q02UCPU支持2048点,程序容量20K步,USB口新CPU Q03UDCPU支持4096点,程序容量30K步,USB口新CPU Q04UDHCPU支持4096点,程序容量40K步,USB口新CPU Q06UDHCPU支持4096点,程序容量60K步,USB口新CPU Q03UDECPU支持4096点,程序容量30K步,USB口,以太网口新CPU Q04UDEHCPU支持4096点,程序容量40K步,USB口,以太网口新CPU Q06UDEHCPU支持4096点,程序容量60K步,USB口,以太网口新CPU Q10UDEHCPU支持4096点,程序容量100K步,USB口,以太网口主基板Q35B电源插槽、CPU插槽、5个模块插槽主基板Q38B电源插槽、CPU插槽、8个模块插槽主基板Q312B电源插槽、CPU插槽、12个模块插槽扩展基板Q65B电源、5个模块插槽扩展基板Q68B电源、6个模块插槽扩展基板Q612B电源、12个模块插槽基板连接线QC06B0.6米长,用于连接扩展基板基板连接线QC12B 1.2米长,用于连接扩展基板基板连接线QC30B3米长,用于连接扩展基板电源模块Q61P输入交流100~240V,输出直流5V6A电源模块Q62P输入交流100~240V,输出直流5V3A,24V0.6A电源模块Q63P直流24V输入,直流5V 6A输出电源模块Q64PN输入交流100~240V,输出直流5V8.5A数字量模块QX1016入,输入AC100~120V数字量模块QX4016入,DC24V,正极公共端数字量模块QX4132入,DC24V,正极公共端数字量模块QX4264入,DC24V,正极公共端数字量模块QX40-S116入(高速),DC24V,正极公共端数字量模块QX41-S132入(高速),DC24V,正极公共端数字量模块QX42-S164入(高速),DC24V,正极公共端数字量模块QX8016入,DC24V,负极公共端数字量模块QX8132入,DC24V,负极公共端数字量模块QX8264入,DC24V,负极公共端数字量模块QY1016出,继电器式输出数字量模块QY18A8点独立输出,2A,继电器式输出数字量模块QY40P16出,DC12~24V,晶体管漏型数字量模块QY41P32出,DC12~24V,晶体管漏型数字量模块QY42P64出,DC12~24V,晶体管漏型数字量模块QY8016出,DC12~24V,晶体管源型数字量模块QY81P32出,DC12~24V,晶体管源型数字量模块QH42P32入,32出,DC12~24V,晶体管模拟量模块Q64AD4通道,电压/电流信号输入模拟量模块Q68ADI8通道,电流信号输入模拟量模块Q68ADV8通道,电压信号输入模拟量模块Q62DAN2通道电压/电流信号输出模拟量模块Q64DAN4通道电压/电流信号输出模拟量模块Q68DAIN8通道电流信号输出模拟量模块Q68DAVN8通道电压信号输出高速计数QD622通道高速计数,200kpps,DC5V/12V/24V高速计数QD62D2通道高速计数,500kpps,差分输入定位模块QD75P1N1轴定位,集电极脉冲定位模块QD75P2N2轴定位,集电极脉冲,直线插补,圆弧插补定位模块QD75P4N4轴定位,集电极脉冲,直线插补,圆弧插补定位模块QD75D1N1轴定位,差分脉冲定位模块QD75D2N2轴定位,差分脉冲,直线插补,圆弧插补定位模块QD75D4N2轴定位,差分脉冲,直线插补,圆弧插补定位模块QD70P44轴简易定位模块,集电极脉冲定位模块QD70P88轴简易定位模块,集电极脉冲定位模块QD77MS22轴光纤定位模块,与J4-B搭配使用定位模块QD77MS44轴光纤定位模块,与J4-B搭配使用定位模块QD77MS1616轴光纤定位模块,与J4-B搭配使用温度模块Q64RD4路铂电阻输入温度模块Q64TD4路热电偶输入温度模块Q64TCTT4路热电偶输入,晶体管输出,温度控制模块温度模块Q64TCRTN4路铂电阻输入,晶体管输出,温度控制模块通讯模块QJ71C24N串行通信模块,1路232,1路485/422通讯模块QJ71C24N-R2串行通信模块,2路232通讯模块QJ71C24N-R4串行通信模块,2路485/422通讯模块QJ61BT11N CC-LINK模块,主站/本地站通讯模块QJ71E71-100以太网模块,网线接口通讯模块QJ71LP21-25H网模块,光纤接口通讯模块QJ71BR1110H网模块,同轴电缆接口,带F头通讯模块QJ71MB91Modbus Master/Slave模块 1通道232,1通道422/485通讯模块QJ71PB92V ProfiBus-DP Master模块通讯模块QJ71PB93D ProfiBus-DP Slave模块空盖模块QG60空盖模块,用于填补空余的插槽插头A6CON1焊结式插头端子排A6TBXY36端子排,用于QX41/42,QY41/42端子排连接线AC10TB用于连接模块和端子排A6TBXY36,1米长端子排连接线AC20TB用于连接模块和端子排A6TBXY36,2米长端子排连接线AC30TB用于连接模块和端子排A6TBXY36,3米长远程模块AJ65SBTB1-8D CC-Link远程模块,8入远程模块AJ65SBTB1-16D CC-Link远程模块,16入远程模块AJ65SBTB1-32D CC-Link远程模块,32入远程模块AJ65SBTB1-16D1CC-Link远程模块,16入,0.2ms响应时间远程模块AJ65SBTB1-32D1CC-Link远程模块,32入,0.2ms响应时间远程模块AJ65SBTB1-8T CC-Link远程模块,8出,晶体管,0.5A远程模块AJ65SBTB1-16T CC-Link远程模块,16出,晶体管,0.5A远程模块AJ65SBTB1-32T CC-Link远程模块,32出,晶体管,0.5A远程模块AJ65SBTB1-16T1CC-Link远程模块,16出,晶体管,0.1A远程模块AJ65SBTB1-32T1CC-Link远程模块,32出,晶体管,0.1A远程模块AJ65SBTB2N-8R CC-Link远程模块,8点继电器输出远程模块AJ65SBTB2N-16R CC-Link远程模块,16点继电器输出远程模块AJ65SBTB1-16DT CC-Link远程模块,8入8出,晶体管远程模块AJ65SBTB1-32DT CC-Link远程模块,16入16出,晶体管远程模块AJ65SBTB1-16DT1CC-Link远程模块,8入8出,晶体管,高速响应远程模块AJ65SBTB1-32DT1CC-Link远程模块,16入16出,晶体管,高速响应远程模块AJ65SBT-64AD CC-Link远程模块,4路电流/电压信号输入远程模块AJ65SBT-62DA CC-Link远程模块,2路电流/电压信号输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
General DescriptionThe MAX5062/MAX5063/MAX5064 high-frequency,125V half-bridge, n-channel MOSFET drivers drive high-and low-side MOSFETs in high-voltage applications.These drivers are independently controlled and their 35ns typical propagation delay, from input to output, are matched to within 3ns (typ). The high-voltage operation with very low and matched propagation delay between drivers, and high source/sink current capabilities in a thermally enhanced package make these devices suit-able for the high-power, high-frequency telecom power converters. The 125V maximum input voltage range pro-vides plenty of margin over the 100V input transient requirement of telecom standards. A reliable on-chip bootstrap diode connected between V DD and BST elimi-nates the need for an external discrete diode.The MAX5062A/C and the MAX5063A/C offer both nonin-verting drivers (see the Selector Guide ). The MAX5062B/D and the MAX5063B/D offer a noninverting high-side driver and an inverting low-side driver. The MAX5064A/B offer two inputs per driver that can be either inverting or noninverting. The MAX5062A/B/C/D and the MAX5064A feature CMOS (V DD / 2) logic inputs.The MAX5063A/B/C/D and the MAX5064B feature TTL logic inputs. The MAX5064A/B include a break-before-make adjustment input that sets the dead time between drivers from 16ns to 95ns. The drivers are available in the industry-standard 8-pin SO footprint and pin configura-tion, and a thermally enhanced 8-pin SO and 12-pin (4mm x 4mm) thin QFN packages. All devices operate over the -40°C to +125°C automotive temperature range.ApplicationsTelecom Half-Bridge Power Supplies Two-Switch Forward Converters Full-Bridge ConvertersActive-Clamp Forward Converters Power-Supply Modules Motor ControlFeatures♦HIP2100/HIP2101 Pin Compatible (MAX5062A/MAX5063A)♦Up to 125V Input Operation♦8V to 12.6V V DD Input Voltage Range♦2A Peak Source and Sink Current Drive Capability ♦35ns Typical Propagation Delay♦Guaranteed 8ns Propagation Delay Matching Between Drivers♦Programmable Break-Before-Make Timing (MAX5064)♦Up to 1MHz Combined Switching Frequency while Driving 100nC Gate Charge (MAX5064)♦Available in CMOS (V DD / 2) or TTL Logic-Level Inputs with Hysteresis♦Up to 15V Logic Inputs Independent of Input Voltage♦Low 2.5pF Input Capacitance♦Instant Turn-Off of Drivers During Fault or PWM Start-Stop Synchronization (MAX5064)♦ Low 200µA Supply Current♦Versions Available With Combination ofNoninverting and Inverting Drivers (MAX5062B/D and MAX5063B/D)♦Available in 8-Pin SO, Thermally Enhanced SO,and 12-Pin Thin QFN PackagesMAX5062/MAX5063/MAX5064125V/2A, High-Speed,Half-Bridge MOSFET Drivers________________________________________________________________Maxim Integrated Products1Ordering InformationSelector Guide19-3502; Rev 5; 5/07For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Selector Guide continued at end of data sheet .*EP = Exposed paddle.Devices are available in both leaded and lead-free packaging.Specify lead-free by replacing “-T” with “+T” when ordering.Ordering Information continued at end of data sheet.M A X 5062/M A X 5063/M A X 5064125V/2A, High-Speed,Half-Bridge MOSFET Drivers 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V DD = V BST = +8V to +12.6V, V HS = GND = 0V, BBM = open, T A = -40°C to +125°C, unless otherwise noted. Typical values are atStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(All voltages referenced to GND, unless otherwise noted.)V DD , IN_H, IN_L, IN_L+, IN_L-, IN_H+, IN_H-........-0.3V to +15V DL, BBM.....................................................-0.3V to (V DD + 0.3V)HS............................................................................-5V to +130V DH to HS.....................................................-0.3V to (V DD + 0.3V)BST to HS...............................................................-0.3V to +15V AGND to PGND (MAX5064)..................................-0.3V to +0.3V dV/dt at HS........................................................................50V/ns Continuous Power Dissipation (T A = +70°C)8-Pin SO (derate 5.9mW/°C above +70°C)...............470.6mW8-Pin SO with Exposed Pad (derate 19.2mW/°Cabove +70°C)*....................................................1538.5mW 12-Pin Thin QFN (derate 24.4mW/°Cabove +70°C)*....................................................1951.2mW Maximum Junction Temperature.....................................+150°C Operating Temperature Range .........................-40°C to +125°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°C *Per JEDEC 51 standard multilayer board.ELECTRICAL CHARACTERISTICS (continued)MAX5062/MAX5063/MAX5064125V/2A, High-Speed, Half-Bridge MOSFET DriversM A X 5062/M A X 5063/M A X 5064125V/2A, High-Speed,Half-Bridge MOSFET Drivers 4_______________________________________________________________________________________DD Note 3:Guaranteed by design, not production tested.Note 4:Break-before-make time is calculated by t BBM = 8ns x (1 + R BBM / 10k Ω).Note 5:See the Minimum Pulse Width section.ELECTRICAL CHARACTERISTICS (continued)(V DD = V BST = +8V to +12.6V, V HS = GND = 0V, BBM = open, T A = -40°C to +125°C, unless otherwise noted. Typical values are atMAX5062/MAX5063/MAX5064125V/2A, High-Speed,Half-Bridge MOSFET Drivers_______________________________________________________________________________________5UNDERVOLTAGE LOCKOUT(V DD AND V BST RISING) vs. TEMPERATURETEMPERATURE (°C)U V L O (V )110956580-105203550-256.66.76.86.97.07.17.27.37.47.56.5-40125V DD AND BST UNDERVOLTAGE LOCKOUTHYSTERESIS vs. TEMPERATURETEMPERATURE (°C)U VL O H Y ST E R E S I S (V )110956580-105203550-250.10.20.30.40.50.60.70.80.91.00-40125I DD vs. V DD40µs/divV DD2V/div500µA/div0A0V I DDI DDO + I BSTO vs. V DD (f SW = 250kHz)V DD (V)I D D O + I B S T O (m A )1210113456789121.00.80.60.40.21.21.41.61.82.02.22.42.62.83.00013604020801001201401601802000.50.70.60.80.9 1.0 1.1INTERNAL BST DIODE (I-V) CHARACTERISTICSV DD - V BST (V)I D I O D E (m A )604020801001201401600426810153791112131415V DD QUIESCENT CURRENT vs. V DD (NO SWITCHING)V DD (V)I D D (µA)639121518210426810153791112131415BST QUIESCENT CURRENTvs. BST VOLTAGEV BST (V)I B S T (µA )Typical Operating Characteristics(Typical values are at V DD = V BST = +12V and T A = +25°C, unless otherwise specified.)M A X 5062/M A X 5063/M A X 5064125V/2A, High-Speed,Half-Bridge MOSFET Drivers 6_______________________________________________________________________________________V DD AND BST OPERATING SUPPLYCURRENT vs. FREQUENCYFREQUENCY (kHz)I D D O + I B S T O (m A )9007008002003004005006001001234567891001000DH OR DL OUTPUT LOW VOLTAGEvs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L T A G E (V )110956580-105203550-250.120.140.160.180.200.240.280.320.340.220.260.300.10-40125DH OR DL FALL TIMEvs. TEMPERATURE (C LOAD = 10nF)TEMPERATURE (°C)t F (n s )110956580-105203550-251020304050701101009012060800-40125DH OR DL RISE PROPAGATION DELAYvs. TEMPERATURETEMPERATURE (°C)P RO P A G A T I O N D E L A Y (n s )110956580-105203550-25510152025355560304550400-40125PEAK DH AND DL SOURCE/SINK CURRENTMAX5062/3/4 toc101µs/divDH OR DL5V/divSINK AND SOURCE CURRENT2A/divC L = 100nFDH OR DL RISE TIMEvs. TEMPERATURE (C L = 10nF)TEMPERATURE (°C)t R (n s )110956580-105203550-251224364860841081207296-40125Typical Operating Characteristics (continued)(Typical values are at V DD = V BST = +12V and T A = +25°C, unless otherwise specified.)MAX5062/MAX5063/MAX5064125V/2A, High-Speed,Half-Bridge MOSFET Drivers_______________________________________________________________________________________7DH OR DL FALL PROPAGATION DELAYvs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )110956580-105203550-25510152025355560304550400-40125BREAK-BEFORE-MAKE DEAD TIME vs. R BBMR BBM(k Ω)t B B M (n s )2902102509013017050255075100125175250150200225010BREAK-BEFORE-MAKE DEAD TIMEvs. TEMPERATURETEMPERATURE (°C)t B B M (n s )110956580-105203550-251020304050701101009012060800-40125DELAY MATCHING (DH/DL RISING)MAX5062/3/4 toc1710ns/divINPUT5V/div 5V/divDH/DLC L = 0DELAY MATCHING (DH/DL FALLING)MAX5062/3/4 toc1810ns/div INPUT5V/div5V/divDH/DLC L = 0DH/DL RESPONSE TO V DD GLITCHMAX5062/3/4 toc1940µs/divDH DLV DD10V/div10V/div10V/div5V/divINPUTTypical Operating Characteristics (continued)(Typical values are at V DD = V BST = +12V and T A = +25°C, unless otherwise specified.)M A X 5062/M A X 5063/M A X 5064125V/2A, High-Speed,Half-Bridge MOSFET Drivers 8_______________________________________________________________________________________MAX5062/MAX5063/MAX5064125V/2A, High-Speed,Half-Bridge MOSFET Drivers_______________________________________________________________________________________9Detailed DescriptionThe MAX5062/MAX5063/MAX5064 are 125V/2A high-speed, half-bridge MOSFET drivers that operate from a supply voltage of +8V to +12.6V. The drivers are intended to drive a high-side switch without any isola-tion device like an optocoupler or drive transformer.The high-side driver is controlled by a TTL/CMOS logic signal referenced to ground. The 2A source and sink drive capability is achieved by using low R DS_ON p-and n-channel driver output stages. The BiCMOS process allows extremely fast rise/fall times and lowpropagation delays. The typical propagation delay from the logic-input signal to the drive output is 35ns with a matched propagation delay of 3ns typical. Matching these propagation delays is as important as the absolute value of the delay itself. The high 125V input voltage range allows plenty of margin above the 100V transient specification per telecom standards.The MAX5064 is available in a thermally enhanced TQFN package, which can dissipate up to 1.95W (at +70°C) and allow up to 1MHz switching frequency while driving 100nC combined gate-charge MOSFETs.Figure 1. Timing Characteristics for Noninverting and Inverting Logic InputsM A X 5062/M A X 5063/M A X 5064Undervoltage LockoutBoth the high- and low-side drivers feature undervolt-age lockout (UVLO). The low-side driver’s UVLO LOW threshold is referenced to GND and pulls both driver outputs low when V DD falls below 6.8V. The high-side driver has its own undervoltage lockout threshold (UVLO HIGH ), referenced to HS, and pulls DH low when BST falls below 6.4V with respect to HS.During turn-on, once V DD rises above its UVLO thresh-old, DL starts switching and follows the IN_L logic input.At this time, the bootstrap capacitor is not charged and the BST-to-HS voltage is below UVLO BST . For synchro-nous buck and half-bridge converter topologies, the bootstrap capacitor can charge up in one cycle and normal operation begins in a few microseconds after the BST-to-HS voltage exceeds UVLO BST . In the two-switch forward topology, the BST capacitor takes some time (a few hundred microseconds) to charge and increase its voltage above UVLO BST .The typical hysteresis for both UVLO thresholds is 0.5V.The bootstrap capacitor value should be selected care-fully to avoid unintentional oscillations during turn-on and turn-off at the DH output. Choose the capacitor value about 20 times higher than the total gate capaci-tance of the MOSFET. Use a low-ESR-type X7R dielec-tric ceramic capacitor at BST (typically a 0.1µF ceramic is adequate) and a parallel combination of 1µF and 0.1µF ceramic capacitors from V DD to GND (MAX5062_, MAX5063_) or to PGND (MAX5064_). The high-side MOSFET’s continuous on-time is limited due to the charge loss from the high-side driver’s quiescent current. The maximum on-time is dependent on the size of C BST , I BST (50µA max), and UVLO BST .Output DriverThe MAX5062/MAX5063/MAX5064 have low 2.5ΩR DS_ON p-channel and n-channel devices (totem pole)in the output stage. This allows for a fast turn-on and turn-off of the high gate-charge switching MOSFETs.The peak source and sink current is typically 2A.Propagation delays from the logic inputs to the driver outputs are matched to within 8ns. The internal p- and n-channel MOSFETs have a 1ns break-before-make logic to avoid any cross conduction between them. This internal break-before-make logic eliminates shoot-through currents reducing the operating supply current as well as the spikes at V DD . The DL voltage is approxi-mately equal to V DD and the DH-to-HS voltage, a diode drop below V DD , when they are in a high state and to zero when in a low state. The driver R DS_ON is lower at higher V DD . Lower R DS_ON means higher source and sink currents and faster switching speeds.Internal Bootstrap DiodeAn internal diode connects from V DD to BST and is used in conjunction with a bootstrap capacitor external-ly connected between BST and HS. The diode charges the capacitor from V DD when the DL low-side switch is on and isolates V DD when HS is pulled high as the high-side driver turns on (see the Typical Operating Circuit ).The internal bootstrap diode has a typical forward volt-age drop of 0.9V and has a 10ns typical turn-off/turn-on time. For lower voltage drops from V DD to BST, connect an external Schottky diode between V DD and BST.Programmable Break-Before-Make(MAX5064)Half-bridge and synchronous buck topologies require that the high- or low-side switch be turned off before the other switch is turned on to avoid shoot-through currents. Shoot-through occurs when both high- and low-side switches are on at the same time. This condi-tion is caused by the mismatch in the propagation delay from I N_H/I N_L to DH/DL, driver output imped-ance, and the MOSFET gate capacitance. Shoot-through currents increase power dissipation, radiate EMI , and can be catastrophic, especially with high input voltages.The MAX5064 offers a break-before-make (BBM) fea-ture that allows the adjustment of the delay from the input to the output of each driver. The propagation delay from the rising edges of IN_H and IN_L to the ris-ing edges of DH and DL, respectively, can be pro-grammed from 16ns to 95ns. Note that the BBM time (t BBM ) has a higher percentage error at lower value because of the fixed comparator delay in the BBM block. The propagation delay mismatch (t MATCH_)needs to be included when calculating the total t BBM error. The low 8ns (maximum) delay mismatch reduces the total t BBM variation. Use the following equations to calculate R BBM for the required BBM time and t BBM_ERROR :where t BBM is in nanoseconds.The voltage at BBM is regulated to 1.3V. The BBM circuit adjusts t BBM depending on the current drawn by R BBM .Bypass BBM to AGND with a 1nF or smaller ceramic capacitor (C BBM ) to avoid any effect of ground bounce caused during switching. The charging time of C BBM does not affect t BBM at turn-on because the BBM voltageis stabilized before the UVLO clears the device turn-on.125V/2A, High-Speed,Half-Bridge MOSFET Drivers 10______________________________________________________________________________________Topologies like the two-switch forward converter, where both high- and low-side switches are turned on and off simultaneously, can have the BBM function disabled by leaving BBM unconnected. When disabled, t BBM is typi-cally 1ns.Driver Logic Inputs (IN_H, IN_L, IN_H+,IN_H-, IN_L+, IN_L-)The MAX5062_/MAX5064A are CMOS (V DD / 2) logic-input drivers while the MAX5063_/MAX5064B have TTL-compatible logic inputs. The logic-input signals are independent of V DD . For example, the IC can be pow-ered by a 10V supply while the logic inputs are provid-ed from a 12V CMOS logic. Also, the logic inputs are protected against voltage spikes up to 15V, regardless of the V DD voltage. The TTL and CMOS logic inputs have 400mV and 1.6V hysteresis, respectively, to avoid double pulsing during transition. The logic inputs are high-impedance pins and should not be left floating.The low 2.5pF input capacitance reduces loading and increases switching speed. The noninverting inputs are pulled down to GND and the inverting inputs are pulled up to V DD internally using a 1M Ωresistor. The PWM output from the controller must assume a proper state while powering up the device. With the logic inputs floating, the DH and DL outputs pull low as V DD rises up above the UVLO threshold.The MAX5064_ has two logic inputs per driver, which provide greater flexibility in controlling the e I N_H+/I N_L+ for noninverting logic and I N_H-/I N_L- for inverting logic operation. Connect I N_H+/I N_L+ to V DD and I N_H-/I N_L- to GND if not used. Alternatively, the unused input can be used as an ON/OFF function. Use IN_+ for active-low and IN_- for active-high shutdown logic.The MAX5062/MAX5063/MAX5064 uses a single-shot level shifter architecture to achieve low propagation delay. Typical level shifter architecture causes a mini-mum (high or low) pulse width (t DMIN ) at the output that may be higher than the logic-input pulse width. For MAX5062/MAX5063/MAX5064 devices, the DH mini-mum high pulse width (t DMIN-DH-H ) is lower than the DL minimum low pulse width (t DMIN-DL-L ) to avoid anyshoot-through in the absence of external BBM delay during the narrow pulse at low duty cycle (see Figure 2).At high duty cycle (close to 100%) the DH minimum low pulse width (t DMIN-DH-L ) must be higher than the DL minimum low pulse width (t DMIN-DL-L ) to avoid overlap and shoot-through (see Figure 3). I n the case of MAX5062/MAX5063/MAX5064, there is a possibility of about 40ns overlap if an external BBM delay is not pro-vided. We recommend adding external delay in the INH path so that the minimum low pulse width seen at INH is always longer than t PW-MIN . See the Electrical Characteristics table for the typical values of t PW-MIN .MAX5062/MAX5063/MAX5064Half-Bridge MOSFET Drivers______________________________________________________________________________________11Figure 2. Minimum Pulse-Width Behavior for Narrow Duty-Cycle Input (On-Time < t PW-MIN)M A X 5062/M A X 5063/M A X 5064Applications InformationSupply Bypassing and GroundingPay extra attention to bypassing and grounding the MAX5062/MAX5063/MAX5064. Peak supply and output currents may exceed 4A when both drivers are driving large external capacitive loads in-phase. Supply drops and ground shifts create forms of negative feedback for inverters and may degrade the delay and transition times. Ground shifts due to insufficient device ground-ing may also disturb other circuits sharing the same AC ground return path. Any series inductance in the V DD ,DH, DL, and/or GND paths can cause oscillations due to the very high di/dt when switching the MAX5062/MAX5063/MAX5064 with any capacitive load. Place one or more 0.1µF ceramic capacitors in parallel as close to the device as possible to bypass V DD to GND (MAX5062/MAX5063) or PGND (MAX5064). Use a ground plane to minimize ground return resistance andseries inductance. Place the external MOSFET as close as possible to the MAX5062/MAX5063/MAX5064 to fur-ther minimize board inductance and AC path resis-tance. For the MAX5064_ the low-power logic ground (AGND) is separated from the high-power driver return (PGND). Apply the logic-input signal between I N_ to AGND and connect the load (MOSFET gate) between DL and PGND.Power DissipationPower dissipation in the MAX5062/MAX5063/MAX5064is primarily due to power loss in the internal boost diode and the nMOS and pMOS FETS.For capacitive loads, the total power dissipation for the device is:P C V f I I V D L DD SW DDO BSTO DD=××⎛⎝⎞⎠++()×2 Half-Bridge MOSFET Drivers 12______________________________________________________________________________________Figure 3. Minimum Pulse-Width Behavior for High Duty-Cycle Input (Off-Time < t PW-MIN )MAX5062/MAX5063/MAX5064Half-Bridge MOSFET Drivers______________________________________________________________________________________13where C L is the combined capacitive load at DH and DL. V DD is the supply voltage and f SW is the switching frequency of the converter. P D includes the power dis-sipated in the internal bootstrap diode. The internal power dissipation reduces by P DIODE , if an external bootstrap Schottky diode is used. The power dissipa-tion in the internal boost diode (when driving a capaci-tive load) will be the charge through the diode per switching period multiplied by the maximum diode for-ward voltage drop (V f = 1V).The total power dissipation when using the internal boost diode will be P D and, when using an external Schottky diode, will be P D - P DIODE . The total power dissipated in the device must be kept below the maxi-mum of 1.951W for the 12-pin TQFN package, 1.5W for the 8-pin SO with exposed pad, and 0.471W for the regular 8-pin SO package at T A = +70°C ambient.Layout InformationThe MAX5062/MAX5063/MAX5064 drivers source and sink large currents to create very fast rise and fall edges at the gates of the switching MOSFETs. The high di/dt can cause unacceptable ringing if the trace lengths and impedances are not well controlled. Use the following PC board layout guidelines when design-ing with the MAX5062/MAX5063/MAX5064:•It is important that the V DD voltage (with respect to ground) or BST voltage (with respect to HS) does not exceed 13.2V. Voltage spikes higher than 13.2Vfrom V DD to GND or BST to HS can damage the device. Place one or more low ESL 0.1µF decou-pling ceramic capacitors from V DD to GND (MAX5062/MAX5063) or to PGND (MAX5064), and from BST to HS as close as possible to the part. The ceramic decoupling capacitors should be at least 20 times the gate capacitance being driven.•There are two AC current loops formed between the device and the gate of the MOSFET being driven.The MOSFET looks like a large capacitance from gate to source when the gate is being pulled low. The active current loop is from the MOSFET driver output (DL or DH) to the MOSFET gate, to the MOSFET source, and to the return terminal of the MOSFET dri-ver (either GND or HS). When the gate of the MOS-FET is being pulled high, the active current loop is from the MOSFET driver output, (DL or DH), to the MOSFET gate, to the MOSFET source, to the return terminal of the drivers decoupling capacitor, to the positive terminal of the decoupling capacitor, and to the supply connection of the MOSFET driver. The decoupling capacitor will be either the flying capaci-tor connected between BST and HS or the decou-pling capacitor for V DD . Care must be taken to minimize the physical distance and the impedance of these AC current paths.•Solder the exposed pad of the TQFN (MAX5064) or SO (MAX5062C/D and MAX5063C/D) package to a large copper plane to achieve the rated power dissi-pation. Connect AGND and PGND at one point near V DD ’s decoupling capacitor return.P C V f V DIODE DH DD SW f=×()××− 1M A X 5062/M A X 5063/M A X 5064Half-Bridge MOSFET Drivers 14______________________________________________________________________________________Typical Application CircuitsFigure 4. MAX5062 Half-Bridge ConversionFigure 5. Synchronous Buck ConverterMAX5062/MAX5063/MAX5064Half-Bridge MOSFET Drivers______________________________________________________________________________________15Typical Application Circuits (continued)Figure 6. Two-Switch Forward ConversionFigure 7. MAX5064 Half-Bridge ConverterM A X 5062/M A X 5063/M A X 5064Half-Bridge MOSFET DriversPin ConfigurationsFunctional DiagramsMAX5062/MAX5063/MAX5064Half-Bridge MOSFET Drivers______________________________________________________________________________________17Typical Operating CircuitOrdering Information (continued)Chip InformationTRANSISTOR COUNT: 790PROCESS: HV BiCMOSDevices are available in both leaded and lead-free packaging.Specify lead-free by replacing “-T” with “+T” when ordering.M A X 5062/M A X 5063/M A X 5064Half-Bridge MOSFET Drivers 18______________________________________________________________________________________Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)MAX5062/MAX5063/MAX5064Half-Bridge MOSFET Drivers______________________________________________________________________________________19Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)M A X 5062/M A X 5063/M A X 5064Half-Bridge MOSFET Drivers Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. N o circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.20____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2007 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)Revision HistoryPages changed at Rev 5: 1, 2, 4, 5, 11–15, 19, 20。