2020版高中数学总复习教案及练习讲义归纳整理30知识讲解三角恒等变换基础

合集下载

2020年高考数学二轮复习回归教材基础知识总结-专题3三角函数、三角恒等变换与解三角形

2020年高考数学二轮复习回归教材基础知识总结-专题3三角函数、三角恒等变换与解三角形

2020年高考数学二轮复习回归教材基础知识总结-专题3三角函数、三角恒等变换与解三角形1.终边相同角的表示所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 2.几种特殊位置的角的集合(1)终边在x 轴非负半轴上的角的集合:{α|α=k ·360°,k ∈Z }. (2)终边在x 轴非正半轴上的角的集合:{α|α=180°+k ·360°,k ∈Z }. (3)终边在x 轴上的角的集合:{α|α=k ·180°,k ∈Z }. (4)终边在y 轴上的角的集合:{α|α=90°+k ·180°,k ∈Z }. (5)终边在坐标轴上的角的集合:{α|α=k ·90°,k ∈Z }. (6)终边在y =x 上的角的集合:{α|α=45°+k ·180°,k ∈Z }. (7)终边在y =-x 上的角的集合:{α|α=-45°+k ·180°,k ∈Z }. (8)终边在坐标轴或四象限角平分线上的角的集合:{α|α=k ·45°,k ∈Z }. 3.1弧度的角在圆中,把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示. 4.正角、负角和零角的弧度数一般的,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. 5.角度制与弧度制的换算 (1)1°=π180rad. (2)1 rad =⎝⎛⎭⎫180π°.6.如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=l r .相关公式:(1)l =n πr180=|α|r .(2)S =12lr =n πr 2360=12|α|r 2.7.利用单位圆定义任意角的三角函数设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:(1)y 叫做α的正弦,记作sin α,即sin α=y . (2)x 叫做α的余弦,记作cos α,即cos α=x . (3)y x 叫做α的正切,记作tan α,即tan α=yx (x ≠0). 8.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1⇒sin α=±1-cos 2α. (2)商的关系:sin αcos α=tan α⎝⎛⎭⎫α≠k π+π2(k ∈Z ). 9.三种三角函数的性质π10.函数y =A sin(ωx +φ)(ω>0,A >0)的图象 (1)“五点法”作图设z =ωx +φ,令z =0,π2,π,3π2,2π,求出相应的x 的值与y 的值,描点、连线可得.(2)由三角函数的图象确定解析式时,一般利用五点中的零点或最值点作为解题突破口. (3)图象变换y =sin x ――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位长度y =sin(x +φ) ――――――――――――→横坐标变为原来的1ω(ω>0)倍纵坐标不变y =sin(ωx +φ) ―――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). 11.准确记忆六组诱导公式对于“k π2±α,k ∈Z ”的三角函数值与α角的三角函数值的关系口诀:奇变偶不变,符号看象限.12.三角函数恒等变换(1) cos(α+β)=cos αcos β-sin αsin β, cos(α-β)=cos αcos β+sin αsin β, sin(α+β)=sin αcos β+cos αsin β, sin(α-β)=sin αcos β-cos αsin β, tan(α+β)=tan α+tan β1-tan αtan β⎝⎛⎭⎫α≠k π+π2,k ∈Z ,β≠k π+π2,k ∈Z ,α+β≠k π+π2,k ∈Z ,tan(α-β)=tan α-tan β1+tan αtan β⎝⎛⎭⎫α≠k π+π2,k ∈Z ,β≠k π+π2,k ∈Z ,α-β≠k π+π2,k ∈Z ,sin 2α=2sin αcos α,cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α, tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2,k ∈Z ,2α≠k π+π2,k ∈Z ,α≠k π±π4,k ∈Z .(2)辅助角公式 a cos x +b sin x =a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2cos x +b a 2+b 2sin x ,令sin θ=a a 2+b 2,cos θ=b a 2+b 2, ∴a cos x +b sin x =a 2+b 2sin(x +θ), 其中θ为辅助角,tan θ=ab .13.正弦定理及其变形a sin A =b sin B =c sin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C . sin A =a 2R ,sin B =b 2R ,sin C =c2R .a ∶b ∶c =sin A ∶sin B ∶sin C . 14.余弦定理及其推论、变形a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B , a 2+b 2-c 2=2ab cos C . 15.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .1.利用同角三角函数的平方关系式求值时,不要忽视角的范围,要先判断函数值的符号.2.在求三角函数的值域(或最值)时,不要忽略x 的取值范围.3.求函数f (x )=A sin(ωx +φ)的单调区间时,要注意A 与ω的符号,当ω<0时,需把ω的符号化为正值后求解.4.三角函数图象变换中,注意由y =sin ωx 的图象变换得到y =sin(ωx +φ)的图象时,平移量为⎪⎪⎪⎪φω,而不是φ.5.在已知两边和其中一边的对角利用正弦定理求解时,要注意检验解是否满足“大边对大角”,避免增解.。

2020版高考数学一轮复习教案- 第3章 第5节 三角恒等变换

2020版高考数学一轮复习教案- 第3章 第5节 三角恒等变换

Earlybird第五节三角恒等变换[考纲传真] 1.会用向量的数量积推导出两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的三角恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆).1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin_αcos_β±cos_αsin_β;(2)cos(α±β)=cos_αcos_β∓sin_αsin_β;tan α± tan β(3)tan(α±β)=.1 ∓tan αtan β2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin αcos α;(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;2tan α(3)tan 2α=.1-tan2α[常用结论]1.公式T(α±β)的变形:(1)tan α+tan β=tan(α+β)(1-tan αtan β);(2)tan α-tan β=tan(α-β)(1+tan αtan β).2.公式C2α的变形:1(1)sin2α=(1-cos 2α);21(2)cos2α=(1+cos 2α).23.公式逆用:Earlybirdππ(1)sin( ± α)=cos ( ∓ α);4 4 ππ(2)sin( ± α)=cos ( ∓ α);3 6 ππ(3)sin( ± α)=cos ( ∓ α).634.辅助角公式ba sin α+b cos α= a 2+b 2sin(α+φ)(其中 tan φ= ),a 特别的πsin α±cos α= 2sin (α ±;4)sinα±cos α= 2sin (α ±;πsin α± 3cos α=2sin (α ± ;3)π3(sin α±cos α=2sin α ± .6)[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)存在实数 α,β,使等式 sin(α+β)=sin α+sin β 成立.( )(2)在锐角△ABC 中,sin A sin B 和 cos A cos B 的大小关系不确定.( ) tan α+tan β (3)公式 tan(α+β)= 可以变形为 tan α+tan β=tan(α+β)(1-tan 1-tan αtan βαtan β),且对任意角 α,β 都成立. ( )(4)函数y=3sin x+4cos x的最大值为7. ()[答案](1)√(2)×(3)×(4)×2.(教材改编)sin 20°cos10°-cos 160°sin10°=()3 3 1 1A.- B. C.- D.2 2 2 2D[sin 20°cos10°-cos 160°sin10°=sin 20°cos10°+cos 20°sin10°=1sin(20°+10°)=sin 30°=,故选D.]23 π3.(教材改编)已知cos α=-,α是第三象限角,则cos 的值为()+α)5 (4Earlybird2 2 7 2 7 2A. B.- C. D.-10 10 10 103 4A[由cos α=-,α是第三象限角知sin α=-,5 5πππ 2 3 2 4 2 则cos( =cos cos α-sin sin α=×-×=.故选A.] +α) --2 ( 5 ) 2 ( 5 )4 4 4 1034.已知sin(α-π)=,则cos 2α=________.57 3 3[由sin(α-π)=,得sin α=-,则25 5 53 7cos 2α=1-2sin2α=1-2×( 2=.]-5 )251 15.(教材改编) -=________.1-tan 15°1+tan 15°3 1 1 1+tan 15°-1-tan 15°2tan 15°[ -===tan31-tan 15°1+tan 15°1-tan 15°1+tan 15°1-tan215°330°=. ]3三角函数式的化简ππ1.已知sin(-α)=cos(+α),则tan α=()6 61A.-1B.0 C. D.12ππA[因为sin(-α)=cos(+α),6 61 3 3 1所以cos α-sin α=cos α-sin α.2 2 2 21- 3 3-1所以cos α=sin α.2 2sin α所以tan α==-1,故选A.]cos αsin 110°sin20°2.计算的值为()cos2155°-sin2155°Earlybird1 1 3A.- B. C. D.-2 2 23 2sin 110°sin20°sin70°sin20°B[ =cos2155°-sin2155°cos 310°1sin 40°cos 20°sin20° 2 1===.]cos 50°sin 40° 2π14 2cos2θ-10,3.已知θ∈( ,且sin θ-cos θ=-,则=()4)4 πcos(+θ)42 43 3A. B. C. D.3 34 2D[由sin θ-cos θ=-14 4π7 得sin(-θ)=,4 4π因为θ∈( ,0,4)ππ所以0<-θ<,4 4π 3 所以cos(-θ)=.4 4 2cos2θ-1 cos 2θ=ππcos(+θ) sin(-θ)4 4ππsin(-2θ) sin[2(-θ)]2 4==ππsin(-θ) sin(-θ)4 4π 3=2cos(-θ)=.]4 2θθ1+sin θ+cos θ(sin -cos2)24.已知0<θ<π,则=________.2+2cos θEarlybirdθθθθθ2sin cos +2cos2 sin -cos( 2)(2)-cos θ[原式=2 2 2θ4cos22θθθθcos sin2 -cos2 -cos ·cosθ2( 2)2 2==.θθcos cos| 2 | | 2 |θπθ因为0<θ<π,所以0<<,所以cos >0.所以原式=-cos θ.]2 2 2[规律方法] 1.三角函数式的化简要遵循“三看”原则2.三角函数式化简的方法弦切互化,异名化同名,异角化同角,降幂或升幂.在三角函数式的化简中“次降角升”和“次升角降”是基本的规律,根号中含有三角函数式时,一般需要升次.三角函数式的求值►考法1给值求值1【例1】(1)(2018·全国卷Ⅲ)若sin α=,则cos 2α=()38 7 7 8A. B. C.-D.-9 9 9 9π 1 π(2)(2019·太原模拟)已知角α是锐角,若sin( =,则cos 等于()α-α-6) 3 ( 3)2 6+1 3- 2A. B.6 83+ 2 2 3-1C. D.8 6Earlybird1 1(3)若α,β是锐角,且sin α-sin β=-,cos α-cos β=,则tan(α-β)=2 2________.7 1 7(1)B(2)A(3)-[(1)cos 2α=1-2sin2α=1-2×2=.故选B.3 3 9ππππ(2)由0<α<得-<α-<2 6 6 3π 1又sin(=,α-6)3ππ 1 2 2∴cos( =1-sin2( ==α- 26) 6) 3 )α-1-(3πππππππ∴cos( =cos α-=cos cos +sin sinα--α-α-3) [( 6) 6] ( 6) 6 ( 6)62 23 1 1 2 6+1=×+×=,故选A.3 2 3 2 61 1(3)因为sin α-sin β=-,cos α-cos β=,两式平方相加得:2-2cos αcos2 21β-2sin αsin β=,21 3即2-2cos(α-β)=,所以cos(α-β)=,2 41因为α、β是锐角,且sin α-sin β=-<0,2ππ所以0<α<β<.所以-<α-β<0.2 27所以sin(α-β)=-1-cos2α-β=-.4sinα-β7所以tan(α-β)==-.]cosα-β 3►考法2给角求值【例2】(1)tan 20°+tan 40°+3tan 20°tan40°=________.(2)sin 50°(1+3tan 10°)=________.tan 20°+tan 40°(1) 3(2)1[(1)由tan(20°+40°)==3得1-tan 20°tan40°tan 20°+tan 40°=3(1-tan 20°tan40°)Earlybird∴原式=3(1-tan 20°tan40°)+3tan 20°tan40°= 3.(2)sin 50°(1+3tan 10°)sin 10°=sin 50°(1+3·cos 10°)cos 10°+3sin 10°=sin 50°×cos 10°1 3=sin 50°×2( sin 10°)cos 10°+2 2cos 10°2sin 50°·cos50°sin 100°cos 10°====1.]cos 10°cos 10°cos 10°►考法3给值求角5 10 π3π,π],β∈[π,,【例3】(1)若sin 2α=,sin(β-α)=,且α∈5 410 [ 2 ] 则α+β的值是()7π9πA. B.4 45π7π5π9πC. 或D. 或4 4 4 41 1(2)已知α,β∈(0,π),且tan(α-β)=,tan β=-,则2α-β的值为2 7________.3πππ(1)A(2)-[(1)∵α∈,π],∴2α∈[ ,2π].4 [4 25 π,π],又sin 2α=>0,∴2α∈5 [22 5 ππ∴cos 2α=-且α∈,.5 [ 2]43ππ5π又β∈[ ,∴β-α∈.π,,2 ] [ 4 ]210∵sin(β-α)=>0,103 10 π∴cos(β-α)=-且β-α∈,,π]10 [2Earlybird2 5∴cos(α+β)=cos[2α+(β-α)]=cos 2αcos(β-α)-sin 2αsin(β-α)=-×53 10 5 10 2-×=.-( 10 )5 10 2ππ∵2α∈[ ,π],β-α∈[ ,π],∴α+β∈[ ,π,2π]2 27π∴α+β=,故选A.4(2)因为tan α=tan[(α-β)+β]tanα-β+tan β=1-tanα-βtan β1 1-2 7 1==>0,1 1 31+×2 7π所以0<α<,212 ×2tan α 3 3 π又因为tan 2α===>0,所以0<2α<,1-tan2α 1 4 21-(23 )3 1+tan 2α-tan β 4 7 所以tan(2α-β)===1.1+tan2αtan β 3 11-×4 71因为tan β=-<0,7π所以<β<π,-π<2α-β<0,23π所以2α-β=-.]4[规律方法]三角函数求值的三种情况1“给角求值”中一般所给出的角都是非特殊角,应仔细观察非特殊角与特殊角之间的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数求解.Earlybird2“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.3“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,最后确定角.πππ 1 πβ 3(1)若0<α<,-<β<0,cos +α)=,cos =,则cos-2 4 4 32 (3 ( 2)βα+=()( 2)5 36 3 3A. B.- C. D.-9 9 3 31-cos210°(2) =________.cos 80°1-cos 20°5 10(3)(2019·长春模拟)已知sin α=,sin(α-β)=-,α,β均为锐角,则5 10角β值是________.2ππππ3ππ 1(1)A(2) (3) [(1)由0<α<得<+α<,又cos +α)=,2 4 2 4 4 4 34 (π 2 2 πππβπ∴sin(+α)=,由-<β<0 得<-<.4 3 2 4 4 2 2πβ 3 πβ 6又cos(=,∴sin =.--2) 3 ( 2)4 4 3βππβππβππβ∴cos( =cos -( =cos cos +sin sinα++α) +α) ( +α) (2) [( 2)] ( 2) ( 2)---4 4 4 4 4 41 32 2 6 5 3=×+×=.3 3 3 3 9sin210°sin210° 2(2)原式===.cos 80°2sin210°2sin210° 2ππ(3)∵α,β均为锐角,∴-<α-β<.2 210 3 10又sin(α-β)=-,∴cos(α-β)=.10 105 2 5又sin α=,∴cos α=,5 5∴sin β=sin[α-(α-β)]Earlybird=sin αcos(α-β)-cos αsin(α-β)5 3 10 2 5 10 2=×-×=.-5 10 25 ( 10 )π∴β=.]4三角恒等变换的综合应用π【例4】(2019·合肥模拟)已知函数f(x)=sin2x-sin2( ,x∈R.x-6)(1)求f(x)的最小正周期;ππ(2)求f(x)在区间[ 上的最大值和最小值.-,4]3[解](1)由已知得π1-cos(2x-3)1-cos 2xf(x)=-2 21 1 3 1=-cos 2xcos 2x+sin 2x)2(2 2 23 1 1 π=sin 2x-cos 2x=sin 2x-.2 ( 6)4 42π所以f(x)的最小正周期T==π.21 π(2)由(1)知f(x)=sin 2x-.2 ( 6)ππ∵-≤x≤,3 45πππ∴-≤2x-≤,6 6 3πππ∴当2x-=-,即x=-时,f(x)有最小值,6 2 6π 1且f( =-,-6 )2πππ当2x-=,即x=时,f(x)有最大值,6 3 4Earlybirdπ 3且f( =.4 )4ππ 3 1所以f(x)在区间[-上的最大值为,最小值为-.,4]3 4 2[规律方法]三角恒等变换在三角函数图象和性质中的应用解决此类问题可先根据和角公式、倍角公式把函数表达式变为正弦型函数y=A sinωx+φ+t或余弦型函数y=A cosωx+φ+t的形式,再利用三角函数的图象与性质求解.(2019·温州模拟)已知函数f(x)=3sin x cos x+cos2x.(1)求函数f(x)的最小正周期;π 5(2)若-<α<0,f(α)=,求sin 2α的值.2 6[解](1)∵函数f(x)=3sin x cos x+cos2x3 1+cos 2x=sin 2x+2 2π 1=sin( +,2x+6)22π∴函数f(x)的最小正周期为=π.2π(2)若-<α<0,2π5ππ则2α+∈-,,6 ( 6)6π 1 5 ∴f(α)=sin( +=,2α+6)2 6π 1∴sin( =,2α+6)3ππ∴2α+∈0,,6 ( 6)π∴cos(2α+6)π 2 2 =1-sin2(2α+=,6)3Earlybirdππππππ 1 3 2 2 ∴sin 2α=sin( -=sin cos -cos 2α+sin =×-2α+2α+6) ( 6) 6 ( 6)6 6 3 2 31 3-2 2×=.2 61 ππ1.(2017·全国卷Ⅲ)函数f(x)=sin x++cos x-的最大值为()53 ( 6)6 3 1A. B.1 C. D.5 5 51 ππA[法一:∵f(x)=sin x++cos x-5 ( 3) ( 6)1 1 3 3 1=+cos x+sin xsin x+cos x)5(2 2 2 21 3 3 1=sin x+cos x+cos x+sin x10 10 2 23 3 3 6 π=sin x+cos x=sin x+,5 ( 3)5 5π 6∴当x=+2kπ(k∈Z)时,f(x)取得最大值.6 5故选A.πππ法二:∵( +=,x+-x)3) (6 21 ππ∴f(x)=sin x++cos x-5 ( 3) ( 6)1 ππ-x)=sin +cosx+5 ( 3) (61 ππ=sin x++sin x+5 ( 3) ( 3)6 π 6=sin x+≤.5 ( 3)56∴f(x)ma x=,故选A.]5π 3 2.(2016·全国卷Ⅱ)若cos(-α)=,则sin 2α=()4 5Earlybird7 1 A. B. 25 51 7C .-D .-525π3D [因为 cos(-α)= ,4 5πππ 9 7所以 sin 2α=cos(-2α)=cos 2(-α)=2cos 2(-α)-1=2×-1=- .]24425253.(2018·全国卷Ⅰ)已知角 α 的顶点为坐标原点,始边与 x 轴的非负半轴重 2合,终边上有两点 A (1,a ),B (2,b ),且 cos 2α= ,则|a -b |=( )31 A. B. 5 5 52 5 C. D .15 2 5 B [由题意知 cos α>0.因为 cos 2α=2cos 2α-1= ,所以 cos α= ,sin α=3615a -b 5± ,得|tan α|= .由题意知|tan α|= ,所以|a -b |= .]651-255π 14.(2018·全国卷Ⅱ)已知 tan α- = ,则 tan α=________.4 5 3 5π 1 [法一:因为 tan α- = , 2455πtan α-tan4 1 tan α-1 1所以 = ,即 = ,5π 5 1+tan α 51+tan αtan43解得tan α=.25π 1 法二:因为tanα-=,4 55π5π所以tan α=tanα-+4 4Earlybird5π5π 1tanα-+tan +14 45 3===.]5π5π 1 21-tanα-tan 1-×14 4 55.(2017·全国卷Ⅱ)函数f(x)=2cos x+sin x的最大值为________.2 5 555( sin x)[f(x)=2cos x+sin x=,cos x+5 52 5 5设sin α=,cos α=,5 5则f(x)=5sin(x+α),∴函数f(x)=2cos x+sin x的最大值为 5.]。

三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结

三角恒等变换高考数学中的关键知识点总结三角恒等变换是高考数学中的重要内容,涉及到三角函数的性质和等价关系。

在解决三角函数相关题目时,熟练掌握三角恒等变换可帮助我们简化计算和推导过程,提高解题效率。

本文将对三角恒等变换中的关键知识点进行总结。

一、基本恒等式1. 余弦、正弦和正切的平方和恒等式:$cos^2(x) + sin^2(x) = 1$$1 - tan^2(x) = sec^2(x)$$1 - cot^2(x) = csc^2(x)$这些恒等式是三角函数中最为基础的恒等式,也是其他恒等式的基础。

通过这些基本恒等式,我们可以推导出其他更复杂的恒等式。

2. 三角函数的互余关系:$sin(\frac{\pi}{2} - x) = cos(x)$$cos(\frac{\pi}{2} - x) = sin(x)$$tan(\frac{\pi}{2} - x) = \frac{1}{cot(x)}$$cot(\frac{\pi}{2} - x) = \frac{1}{tan(x)}$互余关系表明,角度x和其余角之间的三角函数之间存在特定的关系。

3. 三角函数的倒数关系:$sin(-x) = -sin(x)$$cos(-x) = cos(x)$$tan(-x) = -tan(x)$$cot(-x) = -cot(x)$三角函数的倒数关系表明,对于同一角度的正负,其正弦、余弦、正切和余切的值也是相反的。

二、和差恒等式和差恒等式是三角恒等变换中的重要内容,它们可用于将角度的和或差转化为其他三角函数表示,从而简化解题过程。

1. 正弦和差恒等式:$sin(x \pm y) = sin(x)cos(y) \pm cos(x)sin(y)$2. 余弦和差恒等式:$cos(x \pm y) = cos(x)cos(y) \mp sin(x)sin(y)$3. 正切和差恒等式:$tan(x \pm y) = \frac{tan(x) \pm tan(y)}{1 \mp tan(x)tan(y)}$这些和差恒等式在解决角度和为特定值时的三角函数计算中起到了重要的作用。

三角恒等变换教案

三角恒等变换教案

三角恒等变换教案教案标题:三角恒等变换教案教案概述:本教案针对高中数学课程中的三角函数学习内容,以“三角恒等变换”为主题。

通过引导学生理解三角恒等变换的定义、性质和运用方法,培养学生的逻辑思维能力和数学推理能力,提高他们解决实际问题的能力。

教案目标:1. 了解三角恒等变换的概念和性质;2. 能够正确运用三角恒等变换的方法和技巧进行数学推导和证明;3. 培养学生的数学思维能力和解决实际问题的能力。

教案重点:1. 三角恒等变换的定义和性质;2. 学生针对具体问题,灵活运用三角恒等变换进行推导和证明。

教案难点:学生对三角恒等变换的抽象性理解以及如何熟练运用于解决问题。

教学准备:1. 教师准备幻灯片、黑板、白板等教学工具;2. 学生准备笔记本、教材等学习工具。

教学过程:步骤一:导入1. 引入数学公式和恒等式的概念,向学生介绍三角恒等变换是一类特殊的恒等变换。

2. 通过具体的示例和问题,引发学生对三角函数之间关系的思考。

步骤二:讲解1. 结合幻灯片或黑板,向学生逐步展示三角恒等变换的基本定义和性质。

2. 通过示例演算和详细讲解,帮助学生理解三角恒等变换的运用方法和技巧。

步骤三:练习1. 发放练习题,让学生运用所学的三角恒等变换方法解决具体问题。

2. 在学生独立完成后,进行试卷讲解,鼓励学生积极参与并解答问题。

步骤四:拓展1. 提出更加复杂的问题,引导学生运用三角恒等变换解决实际问题。

2. 引导学生思考三角恒等变换的实际应用,例如在工程、物理等领域中的具体运用。

步骤五:总结1. 对三角恒等变换内容进行小结,强调重要概念和方法。

2. 提醒学生在复习中注意三角恒等变换的细节,以及如何灵活运用于解决问题。

教学辅助:1. 幻灯片或黑板白板;2. 教材和练习题。

教学延伸:1. 将三角恒等变换与其他数学知识进行整合,拓展学生的数学思维;2. 引导学生自主探究和发现更多三角恒等变换的性质和应用场景;3. 带领学生进行相关的作业和实践项目,综合运用所学的知识。

高三数学一轮复习三角恒等变换及应用教案

高三数学一轮复习三角恒等变换及应用教案

三角恒等变换及应用tan tan 1tan tan αβα±ααcos ;αα2sin -tan α。

(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。

5.三角等式的证明(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。

二.典例分析(2011·广东高考)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎪⎫5π4的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,求cos(α+β)的值.(1)∵f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,∴f ⎝⎛⎭⎪⎫5π4=2sin ⎝ ⎛⎭⎪⎫5π12-π6=2sin π4= 2.(2)∵α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,∴2sin α=1013,2sin ⎝ ⎛⎭⎪⎫β+π2=65.即sin α=513,cos β=35.∴cos α=1213,sin β=45.∴cos(α+β)=cos αcos β-sin αsin β =1213×35-513×45=1665. 由题悟法两角和与差的三角函数公式可看作是诱导公式的推广,可用α、β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.以题试法1.(1)已知sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,则cos 2α2sin ⎝⎛⎭⎪⎫α+π4=________.(2)(2012·济南模拟)已知α为锐角,cos α=55,则tan ⎝ ⎛⎭⎪⎫π4+2α=( ) A .-3 B .-17C .-43D .-7解析:(1)cos 2α2sin ⎝⎛⎭⎪⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎪⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-45.∴原式=-75.(2)依题意得,sin α=255,故tan α=2,tan 2α=2×21-4=-43,所以tan ⎝ ⎛⎭⎪⎫π4+2α=1-431+43=-17. 答案:(1)-75(2)B三角函数公式的逆用与变形应用典题导入(2013·德州一模)已知函数f (x )=2cos 2x2-3sin x .(1)求函数f (x )的最小正周期和值域;(2)若α为第二象限角,且f ⎝⎛⎭⎪⎫α-π3=13,求cos 2α1+cos 2α-sin 2α的值. (1)∵f (x )=2cos 2x 2-3sin x =1+cos x -3sin x =1+2cos ⎝⎛⎭⎪⎫x +π3,∴周期T =2π,f (x )的值域为.(2)∵f ⎝⎛⎭⎪⎫α-π3=13,∴1+2cos α=13,即cos α=-13.∵α为第二象限角,∴sin α=223.∴cos 2α1+cos 2α-sin 2α=cos 2α-sin 2α2cos 2α-2sin αcos α =cos α+sin α2cos α=-13+223-23=1-222.由题悟法运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.以题试法2.(1)(2012·赣州模拟)已知sin ⎝ ⎛⎭⎪⎫α+π6+cos α=435,则sin ⎝ ⎛⎭⎪⎫α+π3的值为( )A.45B.35 C.32D.35(2)若α+β=3π4,则(1-tan α)(1-tan β)的值是________.解析:(1)由条件得32sin α+32cos α=435, 即12sin α+32cos α=45. ∴sin ⎝⎛⎭⎪⎫α+π3=45.(2)-1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β,∴tan αtan β-1=tan α+tan β. ∴1-tan α-tan β+tan αtan β=2, 即(1-tan α)(1-tan β)=2. 答案:(1)A (2)2角 的 变 换典题导入(1)(2012·温州模拟)若sin α+cos αsin α-cos α=3,tan(α-β)=2,则tan(β-2α)=________.(2)(2012·江苏高考)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为________.(1)由条件知sin α+cos αsin α-cos α=tan α+1tan α-1=3,则tan α=2. 故tan(β-2α)=tan =tan β-α-tan α1+tan β-αtan α=-2-21+-2×2=43.(2)因为α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=45, 所以sin ⎝ ⎛⎭⎪⎫α+π6=35,sin 2⎝ ⎛⎭⎪⎫α+π6=2425,cos 2⎝⎛⎭⎪⎫α+π6=725, 所以sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6-π4=2425×22-725×22=17250. (1)43 (2)17250由题悟法1.当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式;2.当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.3.常见的配角技巧:α=2·α2;α=(α+β)-β;α=β-(β-α); α=12;β=12;π4+α=π2-⎝ ⎛⎭⎪⎫π4-α;α=π4-⎝ ⎛⎭⎪⎫π4-α. 以题试法3.设tan ()α+β=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,则tan ⎝ ⎛⎭⎪⎫α+π4=( )A.1318 B.1322C.322D.16解析:选C tan ⎝ ⎛⎭⎪⎫α+π4=tan ⎣⎢⎡⎦⎥⎤α+β-⎝⎛⎭⎪⎫β-π4=tan α+β-tan ⎝⎛⎭⎪⎫β-π41+tan α+βtan ⎝ ⎛⎭⎪⎫β-π4=322.化简2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .原式=-2sin 2x cos 2x +122sin ⎝ ⎛⎭⎪⎫π4-x cos 2⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x=121-sin 22x2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x =12cos 22x sin ⎝ ⎛⎭⎪⎫π2-2x=12cos 2x . 由题悟法三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等.以题试法1.化简⎝ ⎛⎭⎪⎪⎫1tan α2-tan α2·⎝ ⎛⎭⎪⎫1+tan α·tan α2. 解:法一:原式=⎝ ⎛⎭⎪⎫cos α2sin α2-sin α2cos α2·⎝⎛⎭⎪⎫1+sin αcos α·sin α2cosα2 =cos2α2-sin2α2sin α2·co s α2·cos αcos α2+sin αsinα2cos αcosα2=2cos αsin α·cos ⎝⎛⎭⎪⎫α-α2cos αcosα2=2cos αsin α·cos α2cos αcosα2=2sin α.法二:原式=1-tan2α2tanα2·⎝⎛⎭⎪⎫1+sin αsin α2cos αcos α2=2tan α·cos αcos α2+sin αsinα2cos αcosα2 =2cos αsin α·cosα2cos α·co sα2=2sin α.三角函数式的求值典题导入(1)(2012·重庆高考)sin 47°-sin 17°cos 30°cos 17°=( )A .-32B .-12C.12D.32. (2)已知α、β为锐角,sin α=35,cos ()α+β=-45,则2α+β=________.(1)原式=sin30°+17°-sin17°cos 30°cos 17°=sin 30°cos 17°+cos 30°sin 17°-sin 17°cos 30°cos 17°=sin 30°cos 17°cos 17°=sin 30°=12.(2)∵sin α=35,α∈⎝ ⎛⎭⎪⎫0,π2,∴cos α=45,∵cos(α+β)=-45,α+β∈(0,π),∴sin(α+β)=35,∴sin(2α+β)=sin =sin αcos(α+β)+cos αsin(α+β)=35×⎝ ⎛⎭⎪⎫-45+45×35=0. 又2α+β∈⎝⎛⎭⎪⎫0,3π2.∴2α+β=π. (1)C (2)π由题悟法三角函数求值有三类(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.以题试法2.(2012·广州一测)已知函数f (x )=tan ⎝⎛⎭⎪⎫3x +π4. (1)求f ⎝ ⎛⎭⎪⎫π9的值;(2)设α∈⎝ ⎛⎭⎪⎫π,3π2,若f ⎝ ⎛⎭⎪⎫α3+π4=2,求cos ⎝ ⎛⎭⎪⎫α-π4的值. 解:(1)f ⎝ ⎛⎭⎪⎫π9=tan ⎝ ⎛⎭⎪⎫π3+π4=tan π3+tanπ41-tan π3tanπ4=3+11-3=-2- 3. (2)因为f ⎝ ⎛⎭⎪⎫α3+π4=tan ⎝ ⎛⎭⎪⎫α+3π4+π4=tan(α+π)=tan α=2, 所以sin αcos α=2,即sin α=2cos α.①又sin 2α+cos 2α=1,② 由①②解得cos 2α=15.因为α∈⎝⎛⎭⎪⎫π,3π2,所以cos α=-55,sin α=-255. 所以cos ⎝ ⎛⎭⎪⎫α-π4=cos αcos π4+sin αsin π4=-55×22+⎝ ⎛⎭⎪⎫-255×22=-31010.三角恒等变换的综合应用典题导入(2011·四川高考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4+cos ⎝⎛⎭⎪⎫x -3π4,x ∈R .(1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:2-2=0.(1)∵f (x )=sin ⎝ ⎛⎭⎪⎫x +7π4-2π+cos ⎝ ⎛⎭⎪⎫x -π4-π2 =sin ⎝ ⎛⎭⎪⎫x -π4+sin ⎝ ⎛⎭⎪⎫x -π4=2sin ⎝⎛⎭⎪⎫x -π4,∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45. 两式相加得2cos βcos α=0.∵0<α<β≤π2,∴β=π2.∴2-2=4sin 2π4-2=0.在本例条件不变情况下,求函数f (x )的零点的集合.解:由(1)知f (x )=2sin ⎝⎛⎭⎪⎫x -π4, ∴sin ⎝⎛⎭⎪⎫x -π4=0,∴x -π4=k π(k ∈Z ), ∴x =k π+π4(k ∈Z ). 故函数f (x )的零点的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =k π+π4,k ∈Z .由题悟法三角变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)的形式再研究性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.以题试法3.已知函数f (x )=2cos x cos ⎝⎛⎭⎪⎫x -π6-3sin 2x +sin x cos x . (1)求f (x )的最小正周期;(2)当α∈时,若f (α)=1,求α的值.解:(1)因为f (x )=2cos x cos ⎝⎛⎭⎪⎫x -π6-3sin 2x +sin x cos x =3cos 2 x +sin x cos x -3sin 2x +sin x cos x=3cos 2x +sin 2x =2sin ⎝⎛⎭⎪⎫2x +π3, 所以最小正周期T =π.(2)由f (α)=1,得2sin ⎝ ⎛⎭⎪⎫2α+π3=1,tan tan 1tan tan αβα±ααcos ; αα2sin -tan α。

高二数学简单的三角恒等变换教案(通用11篇)

高二数学简单的三角恒等变换教案(通用11篇)

高二数学简单的三角恒等变换教案(通用11篇)高二数学简单的三角恒等变换教案 1教学目标1、理解并掌握基本的三角恒等式,如和差化积、积化和差公式。

2、能够运用三角恒等式进行简单的三角恒等变换。

3、培养学生的逻辑推理能力和数学运算能力。

教学重点1、三角恒等式的理解和记忆。

2、三角恒等变换的方法和步骤。

教学难点三角恒等式的灵活运用和复杂三角表达式的化简。

教学准备1、多媒体课件,包含三角恒等式、例题和练习题。

2、黑板和粉笔。

教学过程一、导入新课复习上节课内容,回顾三角函数的定义和性质。

提出问题:如何利用已知的三角函数公式推导出新的三角恒等式?二、新课讲解1、讲解三角恒等式的基本概念,介绍和差化积、积化和差等公式。

2、通过实例演示如何使用三角恒等式进行三角恒等变换。

3、引导学生总结三角恒等变换的.一般方法和步骤。

三、课堂练习布置一些简单的三角恒等变换练习题,让学生尝试运用所学知识解决问题。

教师巡视指导,及时纠正学生的错误,并给予适当的提示和帮助。

四、巩固提升分析一些较复杂的三角恒等变换问题,引导学生思考如何灵活运用三角恒等式进行化简。

鼓励学生相互讨论,分享解题思路和方法。

五、课堂小结总结本节课的重点内容,强调三角恒等变换的重要性和应用价值。

布置课后作业,要求学生完成一些三角恒等变换的练习题,以巩固所学知识。

教学反思本节课通过实例演示和课堂练习,使学生初步掌握了三角恒等变换的基本方法和步骤。

但在处理较复杂问题时,部分学生仍显得不够熟练,需要进一步加强练习和指导。

在今后的教学中,可以设计更多具有针对性的练习题,帮助学生巩固和提高三角恒等变换的能力。

同时,也要注重培养学生的逻辑思维能力和数学运算能力,为后续的数学学习打下坚实的基础。

高二数学简单的三角恒等变换教案 2理解并掌握三角恒等变换的基本公式,包括正弦、余弦、正切的和差公式,二倍角公式,半角公式等。

能够运用三角恒等变换解决一些简单的三角函数化简、求值及证明问题,培养学生的逻辑推理能力和数学运算能力。

高中数学教案三角恒等变换

高中数学教案三角恒等变换

高中数学教案三角恒等变换高中数学教案:三角恒等变换一、引言在高中数学中,三角恒等变换是重要的内容之一。

本教案旨在帮助学生深入理解三角恒等变换的概念、性质以及运用方法,以提升他们在解决相关数学问题时的能力。

二、基础知识概述1. 三角函数的定义- 正弦函数sin(x):在直角三角形中,对边与斜边的比值。

- 余弦函数cos(x):在直角三角形中,邻边与斜边的比值。

- 正切函数tan(x):在直角三角形中,对边与邻边的比值。

2. 三角恒等变换的基本概念- 三角恒等变换是指将一个三角函数转化为另一个三角函数的等价关系。

- 常见的三角恒等变换包括正弦函数、余弦函数和正切函数的互换关系。

三、三角恒等变换的性质1. 基本恒等变换a)正弦函数的互换:- sin(x) = cos(90° - x)- cos(x) = sin(90° - x)b)余弦函数的互换:- cos(x) = cos(-x)c)正切函数的互换:- tan(x) = cot(90° - x)- cot(x) = tan(90° - x)2. 辅助恒等变换a)正弦函数的辅助恒等变换:- sin²(x) + cos²(x) = 1- 1 + tan²(x) = sec²(x)b)余弦函数的辅助恒等变换:- 1 + cot²(x) = csc²(x)四、三角恒等变换的运用方法1. 化简复杂的三角表达式a)使用基本恒等变换来替换特定的三角函数,将复杂的表达式化简为简洁的形式。

b)利用辅助恒等变换将三角函数关系转化为其他形式的等式。

2. 证明三角恒等式a)基于已知三角函数的定义和性质,运用三角恒等变换的知识进行变换和推导,证明给定的三角恒等式。

b)通过使用辅助线、反证法等数学方法,辅助完成恒等式的证明过程。

3. 解决三角函数方程和不等式根据题目给出的条件和问题,结合三角恒等变换的知识,将方程或不等式中的三角函数改写为相同或相关的三角函数,从而简化问题的求解。

高中数学三角恒等变换知识点归纳总结

高中数学三角恒等变换知识点归纳总结

高中数学三角恒等变换知识点归纳总结1. 基本定义三角恒等变换是指在三角函数运算中,通过等式的变换,得到具有相同意义但表达形式不同的等价关系。

2. 基本恒等式- 正弦函数的基本恒等式:$\sin^2\theta + \cos^2\theta = 1$- 余弦函数的基本恒等式:$1 + \tan^2\theta = \sec^2\theta$- 正切函数的基本恒等式:$1 + \cot^2\theta = \csc^2\theta$3. 和差恒等式- 正弦函数的和差恒等式:$\sin(\alpha \pm \beta) =\sin\alpha\cos\beta \pm \cos\alpha\sin\beta$- 余弦函数的和差恒等式:$\cos(\alpha \pm \beta) =\cos\alpha\cos\beta \mp \sin\alpha\sin\beta$- 正切函数的和差恒等式:$\tan(\alpha \pm \beta) =\dfrac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta}$4. 二倍角恒等式- 正弦函数的二倍角恒等式:$\sin2\theta = 2\sin\theta\cos\theta$ - 余弦函数的二倍角恒等式:$\cos2\theta = \cos^2\theta -\sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$- 正切函数的二倍角恒等式:$\tan2\theta = \dfrac{2\tan\theta}{1 - \tan^2\theta}$5. 三倍角恒等式- 正弦函数的三倍角恒等式:$\sin3\theta = 3\sin\theta -4\sin^3\theta$- 余弦函数的三倍角恒等式:$\cos3\theta = 4\cos^3\theta -3\cos\theta$- 正切函数的三倍角恒等式:$\tan3\theta = \dfrac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$6. 半角恒等式- 正弦函数的半角恒等式:$\sin\dfrac{\theta}{2} = \sqrt{\dfrac{1 - \cos\theta}{2}}$- 余弦函数的半角恒等式:$\cos\dfrac{\theta}{2} =\sqrt{\dfrac{1 + \cos\theta}{2}}$- 正切函数的半角恒等式:$\tan\dfrac{\theta}{2} = \dfrac{1 -\cos\theta}{\sin\theta} = \dfrac{\sin\theta}{1 + \cos\theta}$7. 和角恒等式- 正弦函数的和角恒等式:$\sin(\alpha + \beta) =\sin\alpha\cos\beta + \cos\alpha\sin\beta$- 余弦函数的和角恒等式:$\cos(\alpha + \beta) =\cos\alpha\cos\alpha - \sin\alpha\sin\beta$以上是高中数学中常用的三角恒等变换知识点的归纳总结。

高中数学必修一三角恒等变换概念知识点总结及练习题

高中数学必修一三角恒等变换概念知识点总结及练习题

高中数学必修一三角恒等变换概念知识点总结及练习题本文将总结高中数学必修一中与三角恒等变换相关的概念知识点,并提供一些相关练题供学生练。

三角恒等变换的概念三角恒等变换是指对三角函数中的角度进行等价变换,得到相等的结果。

常见的三角恒等变换有以下几种:1. 反函数关系:正弦和余弦的反函数关系为:$$\sin(\theta) = \cos(\frac{\pi}{2}-\theta)\quad \cos(\theta) =\sin(\frac{\pi}{2}-\theta)$$正切和余切的反函数关系为:$$\tan(\theta) = \cot(\frac{\pi}{2}-\theta)\quad \cot(\theta) =\tan(\frac{\pi}{2}-\theta)$$2. 二倍角公式:正弦和余弦的二倍角公式为:$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$$正切的二倍角公式为:$$\tan(2\theta) = \frac{2\tan(\theta)}{1-\tan^2(\theta)}$$3. 半角公式:正弦和余弦的半角公式为:$$\sin(\frac{\theta}{2}) = \pm \sqrt{\frac{1-\cos(\theta)}{2}}$$ $$\cos(\frac{\theta}{2}) = \pm \sqrt{\frac{1+\cos(\theta)}{2}}$$ 正切的半角公式为:$$\tan(\frac{\theta}{2}) = \frac{1-\cos(\theta)}{\sin(\theta)}$$练题1. 已知 $\sin(\alpha) = \frac{3}{5}$,求 $\cos(\alpha)$ 的值。

2. 求证 $\cos^2(\theta) - \sin^2(\theta) = \cos(2\theta)$。

2020年新高考数学核心知识点12.1 三角恒等变换(精讲精析篇)(学生版)

2020年新高考数学核心知识点12.1 三角恒等变换(精讲精析篇)(学生版)

专题12.1三角恒等变换(精讲精析篇)提纲挈领点点突破热门考点01 两角和与差的三角函数公式的应用两角和与差的正弦、余弦、正切公式C(α-β):cos(α-β)=cosαcosβ+sinαsinβ;C(α+β):cos(α+β)=cosαcos_β-sin_αsinβ;S(α+β):sin(α+β)=sinαcosβ+cosαsinβ;S(α-β):sin(α-β)=sin_αcos_β-cosαsinβ;T(α+β):tan(α+β)=tan α+tan β1-tan αtan β;T(α-β):tan(α-β)=tan α-tan β1+tan αtan β. 变形公式:tan α±tan β=tan(α±β)(1∓tanαtanβ);)4sin(2cos sin πααα±=±.sin αsin β+cos(α+β)=cos αcos β, cos αsin β+sin(α-β)=sin αcos β,函数f(α)=acos α+bsin α(a ,b 为常数),可以化为f(α)=a 2+b 2sin(α+φ)或f(α)=a 2+b 2cos(α-φ),其中φ可由a,b 的值唯一确定.【典例1】(2018·全国高考真题(理))已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________. 【典例2】(2018·全国高考真题(文))已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________. 【方法技巧】1.三角公式化简求值的策略(1)使用两角和、差及倍角公式,首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)使用公式求值,应注意与同角三角函数基本关系、诱导公式的综合应用. (3)使用公式求值,应注意配方法、因式分解和整体代换思想的应用. 2.注意三角函数公式逆用和变形用的两个问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.热门考点02 二倍(半)角公式的运用二倍角的正弦、余弦、正切公式: S 2α:sin 2α=2sin_αcos_α;C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; T 2α:tan 2α=2tan α1-tan 2α.变形公式:降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2配方变形:1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)21±sin α=⎝ ⎛⎭⎪⎫sin α2±co s α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2【典例3】(2019·全国高考真题(理))已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=( )A .15 B .5 C .3 D .255【典例4】(2019·河南高三(理))若34tan 43πθ⎛⎫-=- ⎪⎝⎭,则tan 2θ=( ) A .725-B .725C .724-D .724【总结提升】1.运用两角和与差的三角函数公式时,不但要熟练,准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.2.应熟悉公式的逆用和变形应用,公式的正用是常见的,但逆用和变形应用则往往容易被忽视,公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力,只有熟悉了公式的逆用和变形应用后,才能真正掌握公式的应用.提醒:在T (α+β)与T (α-β)中,α,β,α±β都不等于k π+π2(k ∈Z ),即保证tan α,tan β,tan(α+β)都有意义;若α,β中有一角是k π+π2(k ∈Z ),可利用诱导公式化简.热门考点03 三角函数恒等变换中“角、名、式”的变换(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫π4-α=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.【典例5】(2019·上海市向明中学高一期中)已知tan 1α=,()3sin sin 2βαβ=+,则()tan αβ+=______.【典例6】(2019·宁夏银川一中高三)已知,2παπ⎛⎫∈⎪⎝⎭,1tan 47πα⎛⎫+= ⎪⎝⎭,则sin cos αα+=____.【典例7】(2018届河南省郑州外国语学校高三第十五次调研)已知,满足,则的最大值为______.【典例8】求证:ααπαcos 1)24tan(1tan =++. 【典例9】(2018·浙江高考真题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455--,). (Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求cos β的值. 【总结提升】1.三角函数式的化简遵循的三个原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的变换,从而正确使用公式. (2)二看“名”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”或“弦化切”.(3)三看“形”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”“整式因式分解”“二次式配方”“遇到平方要降幂”等. 2.三角函数式化简的方法(1)弦切互化,异名化同名,异角化同角,降幂或升幂.(2)在三角函数式的化简中“次降角升”和“次升角降”是基本的规律,根号中含有三角函数式时,一般需要升次,去掉根号.3.三角恒等式的证明方法(1)从等式的比较复杂的一边化简变形到另一边,相当于解决化简题目. (2)等式两边同时变形,变形后的结果为同一个式子.(3)先将要证明的式子进行等价变形,再证明变形后的式子成立.提醒:开平方时正负号的选取易出现错误,所以要根据已知和未知的角之间的关系,恰当地把角拆分,根据角的范围确定三角函数的符号.热门考点04 函数y =Asin(ωx +φ)的图象及其性质1.函数的解析式(1)()sin y A x ωϕ=+的有关概念()sin y A x ωϕ=+()0,0A ω>>, 振幅周期 频率 相位 初相(2)用五点法画sin y A x =+一个周期内的简图用五点法画()sin y A x ωϕ=+一个周期内的简图时,要找五个关键点,如下表所示:2.函数图象的变换(平移变换和上下变换) 平移变换:左加右减,上加下减把函数()y f x =向左平移()0ϕϕ>个单位,得到函数()y f x ϕ=+的图象; 把函数()y f x =向右平移()0ϕϕ>个单位,得到函数()y f x ϕ=-的图象;+网】 把函数()y f x =向上平移()0ϕϕ>个单位,得到函数()y f x ϕ=+的图象; 把函数()y f x =向下平移()0ϕϕ>个单位,得到函数()y f x ϕ=-的图象. 伸缩变换:把函数()y f x =图象的纵坐标不变,横坐标伸长到原来的1ω,得到函数()()01y f x ωω=<<的图象; 把函数()y f x =图象的纵坐标不变,横坐标缩短到原来的1ω,得到函数()()1y fx ωω=>的图象;把函数()y f x =图象的横坐标不变,纵坐标伸长到原来的A ,得到函数()()1y Af x A =>的图象; 把函数()y f x =图象的横坐标不变,纵坐标缩短到原来的A ,得到函数()()01y Af x A =<<的图象. 3. 由sin y x =的图象变换出()sin y x ωϕ=+()0ω>的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换,利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少. 途径一:先平移变换再周期变换(伸缩变换)先将sin y x =的图象向左()0ϕ>或向右()0ϕ<平移ϕ个单位,再将图象上各点的横坐标变为原来的1ω倍(0ω>),便得()sin y x ωϕ=+的图象.途径二:先周期变换(伸缩变换)再平移变换:先将sin y x =的图象上各点的横坐标变为原来的1ω倍(0ω>),再沿x 轴向左(0ϕ>)或向右(0ϕ<)平移ωϕ||个单位,便得()sin y x ωϕ=+的图象.注意:函数sin() y x ωϕ=+的图象,可以看作把曲线sin y x ω=上所有点向左(当0ϕ>时)或向右(当0ϕ<时)平行移动ϕω个单位长度而得到. 4.函数的综合运用(1)x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈. (2)对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系.sin )y A x ωϕ=+(的图象有无穷多条对称轴,可由方程()2x k k Z πωϕπ+=+∈解出;它还有无穷多个对称中心,它们是图象与x 轴的交点,可由()x k k Z ωϕπ+=∈,解得()k x k Z πϕω-=∈,即其对称中心为(),0k k Z πϕω-⎛⎫∈ ⎪⎝⎭. (3)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈.(4)()sin()f x A x ωϕ=+的最小正周期都是2||T πω=. 【典例10】(2019·广东高考模拟(理))把函数()y f x =的图象向左平移23π个单位长度,再把所得的图象上每个点的横、纵坐标都变为原来的2倍,得到函数()g x 的图象,并且()g x 的图象如图所示,则()f x 的表达式可以为( )A .()2sin 6f x x π⎛⎫=+⎪⎝⎭B .()sin 46f x x π⎛⎫=+⎪⎝⎭C .()sin 46f x x π⎛⎫=-⎪⎝⎭D .()2sin 46f x x π⎛⎫=-⎪⎝⎭【典例11】(2016年高考四川理)为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度 (B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度【典例12】(2018年理天津卷)将函数的图象向右平移个单位长度,所得图象对应的函数( ) A. 在区间上单调递增 B. 在区间上单调递减 C. 在区间上单调递增 D. 在区间上单调递减【总结提升】1.由()sin y A x ωϕ=+的图象求其函数式:已知函数()sin y A x ωϕ=+的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定ϕ常根据“五点法”中的五个点求解,其中一般把第一个零点,0ϕω⎛⎫- ⎪⎝⎭作为突破口,可以从图象的升降找准第一个零点的位置. 2.利用图象变换求解析式:由sin y x =的图象向左()0ϕ>或向右()0ϕ<平移ϕ个单位,,得到函数()sin y x ϕ=+,将图象上各点的横坐标变为原来的1ω倍(0ω>),便得()sin y x ωϕ=+,将图象上各点的纵坐标变为原来的A 倍(0A >),便得()sin y A x ωϕ=+.3. 图象的变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”,注意二者的“不同”之处.4.研究函数的性质,要注意“复合函数”这一特征.热门考点05 三角函数模型的应用【典例13】如图为一半径为3m 的水轮,水轮圆心O 距水面2m ,已知水轮每分钟转4圈,水轮上的点P 到水面距离y (单位:m )与时间x (单位:s )满足关系式()sin 2y A x ωϕ=++,则有( )A.5,512A πω== B.2,315A πω== C.5,312A πω== D.15,52A ωπ== 【典例14】某港口一天内的水深y (米)是时间t (024t 剟,单位:时)的函数,下面是水深数据: t (时)0 3 6 9 12 15 18 21 24 y (米)10.013.09.97.010.013.010.17.010.0据上述数据描成的曲线如图所示,经拟合,该曲线可近似地看成正弦型函数()sin 0,0y A t B A ωω=+>>的图象.(1)试根据数据和曲线,求出sin y A t B ω=+的解析式.(2)一般情况下,船舶航行时船底与海底的距离不小于4.5米是安全的,如果某船的吃水度(船底与水面的距离)为7米,那么该船在什么时间段能够安全进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间?(忽略离港所用的时间)【总结提升】三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型再利用三角函数的有关知识解决问题.热门考点06 三角恒等变换的综合应用三角恒等变换在研究三角函数图象和性质中的应用(1)图象变换问题:先根据和角公式、倍角公式把函数表达式变为正弦型函数y =A sin(ωx +φ)+b 的形式,再进行图象变换.(2)函数性质问题:求函数周期、最值、单调区间的方法步骤①利用三角恒等变换及辅助角公式把三角函数关系式化成y =A sin(ωx +φ)+b 的形式;②利用公式T =2πω(ω>0)求周期;③根据自变量的范围确定ωx +φ的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为求二次函数的最值;④根据正、余弦函数的单调区间列不等式求函数y =A sin(ωx +φ)+b 的单调区间. 【典例15】(2018·北京高考真题(文))已知函数()2sin 3sin cos f x x x x =+.(Ⅰ)求()f x 的最小正周期; (Ⅱ)若()f x 在区间,3m π⎡⎤-⎢⎥⎣⎦上的最大值为32,求m 的最小值.【典例16】(2018·上海高考真题)设常数R a ∈,函数()2sin 22cos f x a x x =+. (1)若()f x 为偶函数,求a 的值; (2)若π314f ⎛⎫=+⎪⎝⎭,求方程()12f x =-在区间[]ππ-,上的解. 【典例17】(2016高考天津理)已知函数f(x)=4tanxsin(2x π-)cos(3x π-)-3.(Ⅰ)求f (x )的定义域与最小正周期; (Ⅱ)讨论f(x)在区间[,44ππ-]上的单调性.【总结提升】1.函数的对称性问题,往往先将函数化成sin)y A x B ωϕ=++(的形式,其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心, 关键是记住三角函数的图象,根据图象并结合整体代入的基本思想即可求三角函数的对称轴与对称中心. 2.函数的性质 (1).(2)周期(3)由求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间; 由求减区间.巩固提升1.(2018·全国高考真题(文))函数()2tan 1tan xf x x=+的最小正周期为( ) A .4π B .2π C .πD .2π2.(2018·全国高考真题(文))若1sin 3α=,则cos2α=( ) A .89B .79C .79- D .89-3.(2016·全国高考真题(理))若,则( )A .B .C .D .4.(2018·全国高考真题(文))已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -=( ) A .15B .5 C .25D .15.(2018·全国高考真题(文))已知函数()222cos sin 2f x x x =-+,则( ) A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为46.(2019·全国高三(理))已知sinα-cosβ=3,cosα+sinβ=12,则sin (α-β)=( )A .1B .-1C .12D .-127.(2019·四川高三月考(理))函数()2sin223cos 2f x x x =+-的一条对称轴是( ) A .π12x = B .π6x = C .π3x =D .π2x =8.(2019·北京高考真题(理))函数f (x )=sin 22x 的最小正周期是__________. 9.(2019·江苏高考真题)已知,则的值是_____.知识点透视·备战高考提升突破·战胜高考 10.(2019·全国高考真题(文))函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 11.(2019·江苏省黄桥中学高三月考(理))已知1cos()33x π-=,则2cos(2)sin ()33x x ππ++-的值为_____________.12.(2019·内蒙古高三月考(理))已知tan 34πθ⎛⎫+= ⎪⎝⎭,则cos 24πθ⎛⎫-= ⎪⎝⎭______. 13.(2018·浙江高考真题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455--,). (Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求cos β的值. 14.(2018·江苏高考真题)已知,αβ为锐角,4tan 3α=,cos()αβ+=.(1)求cos2α的值;(2)求tan()αβ-的值. 15.(2019·上海市敬业中学高三)已知函数()2sin 22cos 20.2f x x x x π⎡⎤=++∈⎢⎥⎣⎦,, (1)求函数()y f x =的单调递减区间;(2)求函数()y f x =的值域.16.(2019·西藏拉萨中学高二月考)已知函数()()22f x sin x cos x x cos x x R =--∈ (I )求2f 3π⎛⎫ ⎪⎝⎭的值 (II )求()f x 的最小正周期及单调递增区间.。

2020版高考数学一轮复习 简单的三角恒等变换教案(理)(含解析)新人教A版

2020版高考数学一轮复习 简单的三角恒等变换教案(理)(含解析)新人教A版

第5讲简单的三角恒等变换基础知识整合1.两角和与差的正弦、余弦和正切公式2.二倍角的正弦、余弦、正切公式1.降幂公式:cos 2α=1+cos2α2,sin 2α=1-cos2α2.2.升幂公式:1+cos2α=2cos 2α,1-cos2α=2sin 2α. 3.公式变形:tan α±tan β=tan(α±β)(1∓tan α·tan β). 4.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ), 其中sin φ=b a 2+b2,cos φ=a a 2+b2.1.(2018·全国卷Ⅲ)若sin α=13,则cos2α=( )A.89B.79 C .-79 D .-89 答案 B解析 cos2α=1-2sin 2α=1-29=79.故选B.2.(2019·吉林模拟)若sin(π-α)=13,且π2≤α≤π,则sin2α的值为( )A .-429B .-229C.229D.429答案 A解析 ∵sin(π-α)=13,即sin α=13,又π2≤α≤π,∴cos α=-1-sin 2α=-223,∴sin2α=2sin αcos α=-429. 3.(2016·全国卷Ⅲ)若tan θ=-13,则cos2θ=( )A .-45B .-15C.15D.45答案 D解析 解法一:cos2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45.故选D. 解法二:由tan θ=-13,可得sin θ=±110,因而cos2θ=1-2sin 2θ=45.4.(2019·南宁联考)若角α满足sin α+2cos α=0,则tan2α=( ) A .-43 B.34 C .-34 D.43答案 D解析 由题意知,tan α=-2,tan2α=2tan α1-tan 2α=43.故选D. 5.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为( )A .1B .2 C.3+1 D.3+2答案 B解析 f (x )=⎝⎛⎭⎪⎫1+3·sin x cos x cos x =cos x +3sin x =2sin ⎝⎛⎭⎪⎫x +π6,∴当x =π3时,f (x )取得最大值2.6.(2017·全国卷Ⅰ)已知α∈⎝⎛⎭⎪⎫0,π2,tan α=2,则cos ⎝ ⎛⎭⎪⎫α-π4=________.答案31010解析 cos ⎝ ⎛⎭⎪⎫α-π4=cos αcos π4+sin αsin π4 =22(cos α+sin α). 又由α∈⎝⎛⎭⎪⎫0,π2,tan α=2,知sin α=255,cos α=55,∴cos ⎝ ⎛⎭⎪⎫α-π4=22×⎝ ⎛⎭⎪⎫55+255=31010. 核心考向突破考向一 三角函数的化简例1 (1)(2018·全国卷Ⅰ)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4 答案 B解析 根据题意,有f (x )=32cos2x +52,所以函数f (x )的最小正周期为T =2π2=π,且最大值为f (x )max =32+52=4.故选B.(2)(2018·全国卷Ⅲ)函数f (x )=tan x1+tan 2x 的最小正周期为( )A.π4 B.π2C .πD .2π 答案 C解析 由已知得f (x )=tan x 1+tan 2x =sin xcos x 1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x cos x =12sin2x ,f (x )的最小正周期T =2π2=π.故选C. 触类旁通三角函数式化简的常用方法(1)异角化同角:善于发现角之间的差别与联系,合理对角拆分,恰当选择三角公式,能求值的求出值,减少角的个数.2异名化同名:统一三角函数名称,利用诱导公式切弦互化、二倍角公式等实现名称的统一.3异次化同次:统一三角函数的次数,一般利用降幂公式化高次为低次.即时训练 1.(2017·全国卷Ⅲ)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B .1 C.35 D.15答案 A解析 ∵f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫π6-x=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-x =15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3 =65sin ⎝⎛⎭⎪⎫x +π3,∴当x =π6+2k π(k ∈Z )时,f (x )取得最大值65.故选A.2.函数y =sin x cos x +3cos 2x -32的最小正周期是( ) A .2π B .π C.π2D.π4答案 B解析 ∵y =12sin2x +3·1+cos2x 2-32=12sin2x +32cos2x =sin ⎝ ⎛⎭⎪⎫2x +π3,∴此函数的最小正周期是T =2π2=π.考向二 三角函数的求值角度1 给值求值例2 (1)(2019·汕头模拟)已知tan α2=3,则cos α=( )A.45 B .-45C.415D .-35答案 B解析 cos α=cos2α2-sin2α2=cos2α2-sin2α2cos 2α2+sin2α2=1-tan 2α21+tan 2α2=1-91+9=-45.故选B. (2)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.答案 -12解析 解法一:因为sin α+cos β=1,cos α+sin β=0,所以(1-sin α)2+(-cos α)2=1,所以sin α=12,cos β=12,因此sin(α+β)=sin αcos β+cos αsin β=12×12-cos 2α=14-1+sin 2α=14-1+14=-12.解法二:由(sin α+cos β)2+(cos α+sin β)2=1,得2+2sin(α+β)=1,所以sin(α+β)=-12.(3)(2019·重庆检测)已知α是第四象限角,且sin α+cos α=15,则tan α2=________.答案 -13解析 因为sin α+cos α=15,α是第四象限角,所以sin α=-35,cos α=45,则tanα2=sin α2cos α2=2sin2α22sin α2cosα2=1-cos αsin α=-13.触类旁通给值求值是指已知某个角的三角函数值,求与该角相关的其他三角函数值的问题,解题的基本方法是通过角的三角函数的变换把求解目标用已知条件表达出来.即时训练 3.(2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos2α的值; (2)求tan(α-β)的值.解 (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α.因为sin 2α+cos 2α=1,所以cos 2α=925,所以cos2α=2cos 2α-1=-725.(2)因为α,β为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55, 所以sin(α+β)=1-cos 2α+β=255, 因此tan(α+β)=-2.因为tan α=43,所以tan2α=2tan α1-tan 2α=-247. 因此tan(α-β)=tan[2α-(α+β)]=tan2α-tan α+β1+tan2αtan α+β=-211.角度2 给角求值例3 (1)(2019·浙江模拟)tan70°+tan50°-3tan70°·tan50°的值等于( ) A. 3 B.33 C .-33D .- 3答案 D解析 因为tan120°=tan70°+tan50°1-tan70°·tan50°=-3,所以tan70°+tan50°-3tan70°·tan50°=- 3.故选D. (2)(2018·衡水中学二调)3cos10°-1sin170°=( )A .4B .2C .-2D .-4答案 D 解析3cos10°-1sin170°=3cos10°-1sin10°=3sin10°-cos10°sin10°cos10°=2sin 10°-30°12sin20°=-2sin20°12sin20°=-4.触类旁通该类问题中给出的角一般都不是特殊角,需要通过三角恒等变换将其变为特殊角,或者能够正负相消,或者能够约分相消,最后得到具体的值.即时训练 4.(2019·九江模拟)化简sin 235°-12cos10°cos80°等于( )A .-2B .-12C .-1D .1答案 C解析 sin 235°-12cos10°cos80°=1-cos70°2-12cos10°sin10°=-12cos70°12sin20°=-1.5.(2019·上海模拟)计算tan12°-34cos 212°-2sin12°=________. 答案 -4解析 原式=sin12°cos12°-322cos 212°-1sin12°=sin12°-3cos12°2sin12°cos12°cos24°=2⎝ ⎛⎭⎪⎫12sin12°-32cos12°sin24°cos24° =2sin 12°-60°12sin48°=-4.角度3 给值求角例4 (1)(2019·四川模拟)若sin2α=55,sin(β-α)=1010,且α∈⎣⎢⎡⎦⎥⎤π4,π,β∈⎣⎢⎡⎦⎥⎤π,3π2,则α+β的值是( ) A.7π4B.9π4C.5π4或7π4D.5π4或9π4答案 A解析 因为α∈⎣⎢⎡⎦⎥⎤π4,π,所以2α∈⎣⎢⎡⎦⎥⎤π2,2π,又sin2α=55,所以2α∈⎣⎢⎡⎦⎥⎤π2,π,α∈⎣⎢⎡⎦⎥⎤π4,π2,所以cos2α=-255.又β∈⎣⎢⎡⎦⎥⎤π,3π2,所以β-α∈⎣⎢⎡⎦⎥⎤π2,5π4,故cos(β-α)=-31010,所以cos(α+β)=cos[2α+(β-α)]=cos2αcos(β-α)-sin2αsin(β-α)=-255×⎝ ⎛⎭⎪⎫-31010-55×1010=22,又α+β∈⎣⎢⎡⎦⎥⎤5π4,2π,故α+β=7π4.选A.(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.答案 -3π4解析 ∵tan α=tan[(α-β)+β]=tan α-β+tan β1-tan α-βtan β=12-171+12×17=13>0,∴0<α<π2.又∵tan2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan2α-tan β1+tan2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.触类旁通通过求角的某种三角函数值来求角,在选取函数时应遵循的原则(1)已知正切函数值,则选正切函数.即时训练 6.(2019·福建漳州八校联考)已知锐角α的终边上一点P (sin40°,1+cos40°),则α等于( )A .10°B .20°C .70°D .80°答案 C解析 由题意得tan α=1+cos40°sin40°=2cos 220°2cos20°sin20°=co s20°sin20°=sin70°cos70°=tan70°.又α为锐角,∴α=70°,故选C.7.(2019·江苏徐州质检)已知cos α=17,cos(α-β)=1314,且0<β<α<π2,则β的值为________.答案π3解析 ∵0<β<α<π2,∴0<α-β<π2.又∵cos(α-β)=1314,∴sin(α-β)=1-cos2α-β=3314. ∵cos α=17,0<α<π2,∴sin α=437,∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=17×1314+437×3314=12. ∵0<β<π2,∴β=π3.考向三 三角恒等变换的综合应用例5 (2019·广东模拟)已知函数f (x )=⎝ ⎛⎭⎪⎫sin x2+cos x 22-2sin 2x2.(1)若f (x )=233,求sin2x 的值;(2)求函数F (x )=f (x )·f (-x )+f 2(x )的最大值与单调递增区间. 解 (1)由题意知f (x )=1+sin x -(1-cos x )=sin x +cos x , 又∵f (x )=233,∴sin x +cos x =233,∴sin2x +1=43,∴sin2x =13.(2)F (x )=(sin x +cos x )·[sin(-x )+cos(-x )]+(sin x +cos x )2=cos 2x -sin 2x +1+sin2x =cos2x +sin2x +1 =2sin ⎝⎛⎭⎪⎫2x +π4+1, 当sin ⎝ ⎛⎭⎪⎫2x +π4=1时,F (x )取得最大值, 即F (x )max =2+1.令-π2+2k π≤2x +π4≤π2+2k π(k ∈Z ),∴k π-3π8≤x ≤k π+π8(k ∈Z ),从而函数F (x )的最大值为2+1,单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8(k ∈Z ).触类旁通三角恒等变换的应用策略(1)进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.2把形如y =a sin x +b cos x 化为y =sin x +φ,可进一步研究函数的周期性、单调性、最值与对称性.即时训练 8.(2019·贵阳模拟)已知函数f (x )=cos x ·sin ⎝⎛⎭⎪⎫x +π3-3cos 2x +34,x∈R .(1)求f (x )的最小正周期,对称轴方程,对称中心坐标;(2)求f (x )的闭区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值和最小值. 解 (1)由已知,有f (x )=cos x ·⎝ ⎛⎭⎪⎫12sin x +32cos x -3cos 2x +34=12sin x ·cos x -32cos 2x +34 =14sin2x -34(1+cos2x )+34 =14sin2x -34cos2x =12sin ⎝ ⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π. 由2x -π3=π2+k π(k ∈Z )得对称轴方程为x =5π12+k π2(k ∈Z );由2x -π3=k π(k ∈Z )得x =π6+k π2(k ∈Z ),∴对称中心坐标为⎝ ⎛⎭⎪⎫π6+k π2,0(k ∈Z ).(2)由x ∈⎣⎢⎡⎦⎥⎤-π4,π4得2x -π3∈⎣⎢⎡⎦⎥⎤-5π6,π6,则sin ⎝⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-1,12,即函数f (x )=12sin ⎝⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-12,14.所以函数f (x )在闭区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值为14,最小值为-12.1.(2019·海口模拟)4cos50°-tan40°=( ) A. 2 B.2+32C.3 D .22-1答案 C解析 4cos50°-tan40°=4sin40°cos40°-sin40°cos40°=2sin80°-sin40°cos40°=2sin100°-sin40°cos40°=2sin 60°+40°-si n40°cos40°=2×32cos40°+2×12sin40°-sin40°cos40°= 3.2.设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为________. 答案17250解析 cos ⎝ ⎛⎭⎪⎫α+π6=45,α为锐角,则α+π6为锐角, sin ⎝⎛⎭⎪⎫α+π6=35, 由二倍角公式得sin2⎝ ⎛⎭⎪⎫α+π6=2425,cos2⎝⎛⎭⎪⎫α+π6=725,所以sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π6-π4 =sin2⎝ ⎛⎭⎪⎫α+π6cos π4-cos2⎝ ⎛⎭⎪⎫α+π6sin π4=2425×22-725×22=17250. 答题启示角的变换是三角函数变化的一种常用技巧,解题时要看清楚题中角与角之间的和差,倍半、互余、互补的关系,把“目标角”变成“已知角”,通过角的变换,沟通条件与结论中角的差异,使问题获得解决.对点训练1.已知tan(α+β)=-1,tan(α-β)=12,则sin2αsin2β的值为( )A.13B .-13C .3D .-3答案 A 解析 sin2αsin2β=sin[α+β+α-β]sin[α+β-α-β]=sin α+βcos α-β+cos α+βsin α-βsin α+βcos α-β-cos α+βsin α-β=tan α+β+tan α-βtan α+β-tan α-β=13.故选A.2.(2019·合肥模拟)计算:tan20°+4sin20°=________. 答案3解析 原式=sin20°cos20°+4sin20°=sin20°+4sin20°cos20°cos20°=sin20°+2sin40°cos20°=sin 30°-10°+2sin 30°+10°cos20°=32cos10°+32sin10°cos20°=3⎝ ⎛⎭⎪⎫32cos10°+12sin10°cos20°=3cos30°-10°cos20°= 3.。

知识讲解_简单的三角恒等变换_基础

知识讲解_简单的三角恒等变换_基础

简单的三角恒等变换编稿:丁会敏 审稿:王静伟【学习目标】1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧;3.了解积化和差、和差化积公式的推导过程,能初步运用公式进行互化;4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想的作用,发展推理能力和运算能力;5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理问题的能力.【要点梳理】要点一:升(降)幂缩(扩)角公式升幂公式:21cos 22cos αα+=, 21cos 22sin αα-= 降幂公式:21cos 2cos 2αα+=,21cos 2sin 2αα-= 要点诠释:利用二倍角公式的等价变形:21cos 2sin2αα-=,21cos 2cos2αα+=进行“升、降幂”变换,即由左边的“一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为“降幂”变换.要点二:辅助角公式1.形如sin cos a x b x +的三角函数式的变形:sin cos a x b x +x x ⎫⎪⎭令cos ϕϕ==,则sin cos a x b x +)sin cos cos sin x x ϕϕ+)x ϕ+(其中ϕ角所在象限由,a b 的符号确定,ϕ角的值由t a nb a ϕ=确定,或由sin ϕ=和cos ϕ=)2.辅助角公式在解题中的应用通过应用公式sin cos a x b x +=)x ϕ+(或sin cos a x b x +)αϕ-),将形如sin cos a x b x +(,a b)x ϕ+)αϕ-).这种恒等变形实质上是将同角的正弦和余弦函数值与其他常数积的和变形为一个三角函数,这样做有利于函数式的化简、求值等.【典型例题】类型一:利用公式对三角函数式进行证明 例1.求证:αααααsin cos 1cos 1sin 2tan-=+=【思路点拨】观察式子的结构形式,寻找式子中α与2α之间的关系发现,利用二倍角公式即可证明. 【证明】方法一:2tan 2cos2sin2cos 22cos2sin2cos 1sin 2αααααααα===+ 2tan 2cos2sin2cos2sin22sin 2sin cos 12αααααααα===- 方法二:sin sin2cossin 222tan 21cos cos cos 2cos 222ααααααααα⋅===+⋅sin sin2sin1cos 222tan2sin coscos 2sin 222ααααααααα⋅-===⋅【总结升华】代数式变换往往着眼于式子结构形式的变换;对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角式恒等变换的重要特点. 举一反三:【变式1】求证:2tan 12tan2tan ,2tan 12tan 1cos ,2tan 12tan2sin 2222α-α=αα+α-=αα+α=α 【证明】2222sin cos2tan222sin 2sincos22sin cos 1tan 222ααααααααα===++22222222cos sin 1tan 222cos cos sin 22cos sin 1tan 222ααααααααα--=-==++2222sincos2tansin 222tan cos cos sin 1tan 222ααααααααα===--. 例2.求证:(1)1cos cos [cos()cos()]2αβαβαβ=++- (2)cos cos 2coscos 22x y x y x y +-+= 【思路点拨】(1)把右边两角和与差的余弦公式展开、相加即得左边.(2)把右边两角和与差的余弦公式展开、相加,然后观察所得式子与要证明的式子之间的区别,最后令,x y αβαβ+=-=即可得证. 【证明】 (1)cos()cos cos sin sin αβαβαβ+=- ①又cos()cos cos sin sin αβαβαβ-=+ ②∴①+②得1cos cos [cos()cos()]2αβαβαβ=++-结论得证. (2)cos()cos cos sin sin αβαβαβ+=- ①又cos()cos cos sin sin αβαβαβ-=+ ②∴①+②得1cos cos [cos()cos()]2αβαβαβ=++-令,x y αβαβ+=-=,则,22x y x yαβ+-== []1cos cos cos cos 222x y x y x y +-∴=+cos cos 2cos cos 22x y x yx y +-∴+=结论得证.【总结升华】当和、积互化时,角度重新组合,因此有可能产生特殊角;结构将变化,因此有可能产生互消项或互约因式,从而利于化简求值.正因为如此“和、积互化”是三角恒等变形的一种基本手段.举一反三:【变式1】求证:sin sin 2sin cos22θϕθϕθϕ+-+=【证明】sin()sin cos cos sin αβαβαβ+=+,sin()sin cos cos sin αβαβαβ-=-上面两式相加得:sin()sin()2sin cos αβαβαβ++-= 令,αβθαβϕ+=-=,则,22θϕθϕαβ+-==∴sin sin 2sincos22θϕθϕθϕ+-+=结论得证.【变式2】求证:32sin tantan 22cos cos 2x x x x x-=+. 【思路点拨】 从消除恒等式左、右两边的差异入手,将右边的角x ,2x 凑成32x ,2x的形式,注意到322x x x =-,3222x xx =+,于是 【证明】右边32sin 2sin 2233cos cos 2cos cos 2222x x x x x x x x x ⎛⎫- ⎪⎝⎭==+⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭3332sin cos cos sin sin 322222tan tan 3222cos cos cos 222xx x x xx x x x x ⎛⎫- ⎪⎝⎭===-=左边. ∴等式成立.【总结升华】解答中右边分母拆角的目的是利用和(差)角公式.证明(化简)的本质上是一个寻找差异、消除差异、追求和谐的过程,应从消除差异入手.类型二:利用公式对三角函数式进行化简 例3. 已知322πθπ<<【思路点拨】根据化简的基本思想,本题需消去根式,联想到恒等式21sin sin cos 22θθθ⎛⎫±=± ⎪⎝⎭,于是利用此公式先化简. 【解析】原式sincossincos2222θθθθ=+--,∵322πθπ<<,∴342πθπ<<,∴0sin 22θ<<,1cos 22θ-<<-, 从而sincos022θθ+<,sincos022θθ->,∴原式sincos sin cos 2sin 22222θθθθθ⎛⎫⎛⎫=-+--=- ⎪ ⎪⎝⎭⎝⎭. 【总结升华】从局部看(即每个式子本身)上述解法是唯一解法,但从整体看两个根号里面的式子相加得2,相乘得cos 2θ,因此可以“先平方暂时去掉根号”.注意到322πθπ<<,则sin 0θ<,cos 0θ>,设x =,则x <0,则2222cos x θ=-=-=-,又342πθπ<<,故sin02θ>,从而2sin2x θ==-.举一反三: 【变式13,22αππ⎡⎤⎛⎫∈ ⎪⎢⎥⎝⎭⎣⎦. 【解析】∵3,22παπ⎛⎫∈⎪⎝⎭,∴cos α>0cos α=,∴原式=3,24αππ⎛⎫∈ ⎪⎝⎭,∴sin 02α>,sin 2α=. 即原式=sin2α. 类型三:利用公式进行三角函数式的求值 例4.已知1sin()2αβ+=,1sin()3αβ-=,求2tan()tan tan tan tan()αβαββαβ+--+的值. 【解析】原式=2tan()(tan tan )tan tan()αβαββαβ+-++ =2tan()tan()(1tan tan )tan tan()αβαβαββαβ+-+-+=21(1tan tan )tan αββ-- =tan tan αβ =sin cos cos sin αβαβ由1sin()sin cos cos sin ,21sin()sin cos cos sin 3αβαβαβαβαβαβ⎧+=+=⎪⎪⎨⎪-=-=⎪⎩得51sin cos ,cos sin 1212αβαβ== 【总结升华】求解三角函数式的值时,一般先化简所给三角函数式,寻求它与条件的联系,以便迅速找出解题思路.举一反三:【变式1】已知sin x -sin y =-23,cos x -cos y =23,且x ,y 为锐角,则sin(x +y )的值是( ) A .1 B .-1C.13 D. 12【答案】A【解析】∵sin x -sin y =-23,cos x -cos y =23,两式相加得:sin x +cos x =sin y +cos y , ∴sin2x =sin2y .又∵x 、y 均为锐角,∴2x =π-2y ,∴x +y =2π,∴sin(x +y )=1. 【变式2】若sin cos 3sin cos αααα+=-,tan(α-β)=2,则tan(β-2α)=________. 【答案】43【解析】∵sin cos tan 13sin cos tan 1αααααα++==--,∴tan α=2. 又tan(α-β)=2,∴tan(β-2α)=tan[(β-α)-α] =-tan[(α-β)+α] =tan()tan 1tan()tan αβααβα-+---⋅=43类型四:三角恒等变换的综合应用【高清栏目:简单的三角恒等变换401793 例2】 例5.求函数sin cos sin cos y x x x x =+-;3[,]44x ∈ππ的值域【思路点拨】设sin cos x x t +=,则21s i n c o s 2t xx -=,然后把y 转化为关于t 的二次函数,利用配方法求y 的最值.【解析】 设3sin cos ,,44x x t x ππ⎡⎤+=∈⎢⎥⎣⎦))224t x x x π∴=+=+又344x ππ≤≤,24x πππ∴≤+≤,t ⎡∴∈⎣ 又212sin cos x x t +=,21sin cos 2t x x -∴=则22111222t y t t t -=-=-++ =21(1)12t --+ 当0t =时,min 12y =当1t =时,max 1y =1,12y ⎡⎤∴∈⎢⎥⎣⎦【总结升华】本题给出了sin cos ,sin cos θθθθ+-及sin cos θθ三者之间的关系,三者知一求二,在求解的过程中关键是利用了22sin cos 1θθ+=这个隐含条件. 举一反三:【变式1】已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.【解析】(Ⅰ)1cos 2()222x f x x ωω-=+11sin 2cos 2222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭. 因为函数()f x 的最小正周期为π,且0ω>,所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤,所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤. 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,.。

2020高考文科数学(人教A版)总复习课件:三角恒等变换

2020高考文科数学(人教A版)总复习课件:三角恒等变换

考点1
第四章
考点2
考点3
4.6 三角恒等变换
必备知识·预案自诊
关关键键能能力力··学学案案突突破破
-13-
(2)因为 α,β 为锐角,所以 α+β∈(0,π). 又因为 cos(α+β)=-√55,
所以 sin(α+β)= 1-cos2(������ + ������) = 2√55, 因此 tan(α+β)=-2. 因为 tan α=43,所以 tan 2α=12-ttaann2������������=-274, 因此,tan(α-β)=tan[2α-(α+β)]=1t+atna2n���2���-���t���atann(���(������+���+���������)���)=-121.
=
12.
思考解决“给值求角”问题的一般思路是什么?
-11-
.
考点1
第四章
考点2
考点3
4.6 三角恒等变换
必备知识·预案自诊
关关键键能能力力··学学案案突突破破
-12-
考向3 给值求值问题
例4(2018江苏,16)已知α,β为锐角, (1)求cos 2α的值;
tan
α=43,cos(α+β)=-√55.
5π 4
= 15,则 tan α=
3 2
.
解析:∵tan
������-
5 4
π
=
tan������-tan54π 1+tan������tan54π
=
tan������-1 1+tan������
=
15,
∴5tan α-5=1+tan α.∴tan α=32.

2020学年高中数学第3章三角恒等变换章末复习课讲义苏教版必修4(2021-2022学年)

2020学年高中数学第3章三角恒等变换章末复习课讲义苏教版必修4(2021-2022学年)

第3章三角恒等变换求值问题已知tanα=43,cos(α+β)=-错误!,α,β均为锐角,求cosβ的值.思路点拨:由tan α求sinα,由cos(α+β)求sin(α+β),再利用cosβ=cos[(α+β)-α]展开求解.[解]因为α,β均为锐角,所以0<α+β<π,又cos(α+β)=-错误!,所以错误!未定义书签。

<α+β<π,且sin(α+β)=错误!.因为tan α=4错误!未定义书签。

,所以sin α=错误!,cosα=错误!.所以cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=错误!未定义书签。

三角函数求值主要有三种类型,即(1)“给角求值”,一般给出的角都是非特殊角,观察发现题中的角与特殊角都有着一定的关系,如和或差为特殊角,必要时运用诱导公式。

(2)“给值求值”,即给出某些角的三角函数式的值,求另外一些三角函数的值,这类求值问题关键在于结合条件和结论中的角,合理拆、配角,要注意角的范围.(3)“给值求角”,本质上还是“给值求值”,只不过往往求出的是特殊角的值,在求出角之前还需结合函数的单调性确定角,必要时还要讨论角的范围.1.已知sin 错误!s in错误!=错误!未定义书签。

,α∈错误!,求错误!未定义书签。

的值. [解] ∵sin 错误!sin 错误!=错误!,∴s in 错误!cos 错误!=错误!,sin 错误!=错误!,即cos 2α=错误!.又α∈错误!,2α∈(π,2π),∴sin 2α=-错误!未定义书签。

=-错误!=-错误!.∴错误!未定义书签。

=错误!未定义书签。

=错误!未定义书签。

=-错误!未定义书签。

化简与证明求证:错误!未定义书签。

=1+si n 4θ+cos 4θ1-ta n2θ。

思路点拨:先对原式进行等价变形,同时注意应用“二倍角”的正弦、余弦、正切公式.[证明] 证明原不等式成立,即证明1+sin 4θ-cos 4θ=ta n 2θ(1+sin 4θ+cos 4θ)成立.∵ta n 2θ(1+sin 4θ+cos 4θ)=错误!未定义书签。

(新课改省份专用)2020版高考数学一轮复习-第五节三角恒等变换讲义(含解析)

(新课改省份专用)2020版高考数学一轮复习-第五节三角恒等变换讲义(含解析)

第五节三角恒等变换突破点一三角函数求值[基本知识]1.两角和与差的正弦、余弦、正切公式C(α-β)cos(α-β)=cos αcos β+sin αsin βC(α+β)cos(α+β)=cos_αcos_β-sin_αsin_βS(α-β)sin(α-β)=sin_αcos_β-cos_αsin_βS(α+β)sin(α+β)=sin_αcos_β+cos_αsin_βT(α-β)tan(α-β)=tan α-tan β1+tan αtan β;变形:tan α-tan β=tan(α-β)(1+tan αtan β)T(α+β)tan(α+β)=tan α+tan β1-tan αtan β;变形:tan α+tan β=tan(α+β)(1-tan αtan β)S2αsin 2α=2sin_αcos_α;变形:1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2C2αcos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;变形:cos2α=1+cos 2α2,sin2α=1-cos 2α2T2αtan 2α=2tan α1-tan2α一、判断题(对的打“√”,错的打“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( )(2)在锐角△ABC中,sin A sin B和cos A cos B大小不确定.( )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )(4)公式a sin x+b cos x=a2+b2sin(x+φ)中φ的取值与a,b的值无关.( )答案:(1)√(2)×(3)×(4)×二、填空题1.已知tan α=2,则tan ⎝ ⎛⎭⎪⎫α-π4=________. 解析:∵tan α=2,∴tan ⎝ ⎛⎭⎪⎫α-π4=tan α-11+tan α=13. 答案:132.化简cos 18°cos 42°-cos 72°sin 42°的值为________.解析:法一:原式=cos 18°cos 42°-sin 18°sin 42°=cos(18°+42°)=cos 60°=12. 法二:原式=sin 72°cos 42°-cos 72°sin 42°=sin(72°-42°)=sin 30°=12.答案:123.3cos 15°-4sin 215°cos 15°=________.解析:3cos 15°-4sin 215°cos 15°=3cos 15°-2sin 15°·2sin 15°cos 15°=3cos 15°-2sin 15°·sin 30°=3cos 15°-sin 15°=2cos(15°+30°)=2cos 45°= 2.答案: 24.设sin α=2cos α,则tan 2α的值为________. 解析:由题可知,tan α=sin αcos α=2,∴tan 2α=2tan α1-tan 2α=-43. 答案:-43[全析考法]考法一 三角函数式的化简求值1.三角函数式化简的一般要求:(1)函数名称尽可能少;(2)项数尽可能少;(3)尽可能不含根式;(4)次数尽可能低、尽可能求出值.2.常用的基本变换方法有:异角化同角、异名化同名、异次化同次,降幂或升幂,“1”的代换,弦切互化等.[例1] (1)sin 47°-sin 17°cos 30°cos 17°=( )A .-32 B .-12C.12D.32(2)化简:2cos 2α-12tan ⎝ ⎛⎭⎪⎫π4-αsin 2⎝ ⎛⎭⎪⎫π4+α=________ .[解析] (1)sin 47°-sin 17°cos 30°cos 17°=sin17°+30°-sin 17°cos 30°cos 17°=sin 17°cos 30°+cos 17°sin 30°-sin 17°cos 30°cos 17°=sin 30°=12.(2)法一:原式=cos 2α-sin 2α2×1-tan α1+tan α⎝ ⎛⎭⎪⎫sin π4cos α+cos π4sin α2=cos 2α-sin 2α1+tan α1-tan αcos α+sin α2=cos 2α-sin 2α⎝ ⎛⎭⎪⎫1+sin αcos α⎝ ⎛⎭⎪⎫1-sin αcos αcos α+sin α2=1.法二:原式=cos 2α2tan ⎝ ⎛⎭⎪⎫π4-αcos 2⎝ ⎛⎭⎪⎫π4-α=cos 2α2sin ⎝ ⎛⎭⎪⎫π4-αcos ⎝ ⎛⎭⎪⎫π4-α=cos 2αsin ⎝ ⎛⎭⎪⎫π2-2α=cos 2αcos 2α=1.[答案] (1)C (2)1[方法技巧] 三角函数式的化简要遵循“三看”原则考法二 三角函数的给值求值(角)[例2] (1)(2019·辽宁师大附中期末)若α,β均为锐角且cos α=17,cos(α+β)=-1114,则sin ⎝ ⎛⎭⎪⎫32π+2β=( ) A .-12B.12 C .-32D.32(2)(2019·福州外国语学校适应性考试)已知A ,B 均为钝角,sin 2A 2+cos ⎝⎛⎭⎪⎫A +π3=5-1510,且sin B =1010,则A +B =( ) A.3π4 B.5π4 C.7π4D.7π6[解析] (1)∵α,β均为锐角,∴0<α+β<π. ∵cos α=17,cos(α+β)=-1114,∴sin α=437,sin(α+β)=5314.∴cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=⎝ ⎛⎭⎪⎫-1114×17+5314×437=12. ∴sin ⎝ ⎛⎭⎪⎫32π+2β=-cos 2β=1-2cos 2β=12.故选B.(2)因为sin 2A 2+cos ⎝⎛⎭⎪⎫A +π3=5-1510, 所以1-cos A 2+12cos A -32sin A =5-1510,即12-32sin A =5-1510,解得sin A =55. 因为A 为钝角,所以cos A =-1-sin 2A =-1-⎝⎛⎭⎪⎫552=-255. 由sin B =1010,且B 为钝角,可得cos B =-1-sin 2B =- 1-⎝⎛⎭⎪⎫10102=-31010. 所以cos(A +B )=cos A cos B -sin A sin B =⎝ ⎛⎭⎪⎫-255×⎝ ⎛⎭⎪⎫-31010-55×1010 =22. 又A ,B 都为钝角,即A ,B ∈⎝ ⎛⎭⎪⎫π2,π,所以A +B ∈(π,2π),故A +B =7π4,故选C.[答案] (1)B (2)C [方法技巧]1.给值求值问题的求解思路 (1)化简所求式子.(2)观察已知条件与所求式子之间的联系(从三角函数名及角入手). (3)将已知条件代入所求式子,化简求值. 2.给值求角问题的解题策略 (1)讨论所求角的范围.(2)根据已知条件,选取合适的三角函数求值. ①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数.若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦函数皆可;若角的范围是(0,π),选余弦函数较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦函数较好.(3)由角的范围,结合所求三角函数值写出要求的角.[集训冲关]1.[考法二]已知sin 2α=23,则cos 2⎝ ⎛⎭⎪⎫α+π4=( ) A.16B.13C.12D.23解析:选A ∵sin 2α=23,∴cos 2⎝ ⎛⎭⎪⎫α+π4=1+cos ⎝ ⎛⎭⎪⎫2α+π22=1-sin 2α2=1-232=16.故选A. 2.[考法一](1+tan 18°)·(1+tan 27°)的值是( ) A. 3 B .1+ 2C .2D .2(tan 18°+tan 27°)解析:选C (1+tan 18°)(1+tan 27°)=1+tan 18°+tan 27°+tan 18°tan 27°=1+ tan 45°(1-tan 18°tan 27°)+tan 18°·tan 27°=2.故选C.3.[考法二]若cos ⎝ ⎛⎭⎪⎫π8-α=16,则cos ⎝ ⎛⎭⎪⎫3π4+2α的值为( )A.1718 B .-1718C.1819D .-1819解析:选A ∵cos ⎝ ⎛⎭⎪⎫π8-α=16,∴cos ⎝ ⎛⎭⎪⎫π4-2α=2cos 2⎝ ⎛⎭⎪⎫π8-α-1=2×⎝ ⎛⎭⎪⎫162-1=-1718, ∴cos ( 3π4+2α )=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π4-2α=-cos ⎝ ⎛⎭⎪⎫π4-2α=1718.故选A.4.[考法二]定义运算⎪⎪⎪⎪a c b d =ad -bc .若cos α=17,⎪⎪⎪⎪sin αcos α sin βcos β=3314,0<β<α<π2,则β=________.解析:依题意有sin αcos β-cos αsin β=sin(α-β)=3314.又0<β<α<π2,∴0<α-β<π2,故cos(α-β)=1-sin 2α-β=1314,而cos α=17,∴sin α=437,于是sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=437×1314-17×3314=32,故β=π3. 答案:π3突破点二 三角恒等变换的综合问题利用三角恒等变换将三角函数化简后研究图象及性质是高考的热点.在高考中以解答题的形式出现,考查三角函数的值域、最值、单调性、周期、奇偶性、对称性等问题.[典例] (2019·北京朝阳期末)已知函数f (x )=(sin x +cos x )2-cos 2x . (1)求函数f (x )的最小正周期;(2)求证:当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )≥0.[解] (1)因为f (x )=sin 2x +cos 2x +sin 2x -cos 2x =1+sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π4+1,所以函数f (x )的最小正周期为π.(2)证明:由(1)可知,f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4+1.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1, 2sin ⎝⎛⎭⎪⎫2x -π4+1∈[0,2+1]. 当2x -π4=-π4,即x =0时,f (x )取得最小值0.所以当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )≥0.[方法技巧]求函数周期、最值、单调区间的方法步骤(1)利用三角恒等变换及辅助角公式把三角函数关系式化成y =A sin(ωx +φ)+t 或y =A cos(ωx +φ)+t 的形式;(2)利用公式T =2πω(ω>0)求周期;(3)根据自变量的范围确定ωx +φ的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为求二次函数的最值;(4)根据正、余弦函数的单调区间列不等式求函数y =A sin(ωx +φ)+t 或y =A cos(ωx +φ)+t 的单调区间.[针对训练](2019·襄阳四校期中联考)设函数f (x )=cos ⎝ ⎛⎭⎪⎫π2-x cos x -sin 2(π-x )-12.(1)求函数f (x )的最小正周期和单调递增区间;(2)若f (α)=3210-1,且α∈⎝ ⎛⎭⎪⎫π8,3π8,求f ⎝⎛⎭⎪⎫α-π8的值.解:(1)∵f (x )=sin x cos x -sin 2x -12=12(sin 2x +cos 2x )-1=22sin ⎝ ⎛⎭⎪⎫2x +π4-1,∴f (x )的最小正周期T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.(2)∵f (α)=22sin ⎝⎛⎭⎪⎫2α+π4-1=3210-1, ∴sin ⎝⎛⎭⎪⎫2α+π4=35.由α∈⎝ ⎛⎭⎪⎫π8,3π8知2α+π4∈⎝ ⎛⎭⎪⎫π2,π, ∴cos ⎝⎛⎭⎪⎫2α+π4=-45. ∴f ⎝ ⎛⎭⎪⎫α-π8=22sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α-π8+π4-1=22sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π4-π4-1=22⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2α+π4cos π4-cos ⎝ ⎛⎭⎪⎫2α+π4sin π4-1 =22×⎝ ⎛⎭⎪⎫35×22+45×22-1=-310.。

2020年新高考数学核心知识点12.1 三角恒等变换(精讲精析篇)(教师版)

2020年新高考数学核心知识点12.1 三角恒等变换(精讲精析篇)(教师版)

专题12.1三角恒等变换(精讲精析篇)提纲挈领点点突破热门考点01 两角和与差的三角函数公式的应用两角和与差的正弦、余弦、正切公式C(α-β):cos(α-β)=cosαcosβ+sinαsinβ;C(α+β):cos(α+β)=cosαcos_β-sin_αsinβ;S(α+β):sin(α+β)=sinαcosβ+cosαsinβ;S(α-β):sin(α-β)=sin_αcos_β-cosαsinβ;T(α+β):tan(α+β)=tan α+tan β1-tan αtan β;T(α-β):tan(α-β)=tan α-tan β1+tan αtan β. 变形公式:tan α±tan β=tan(α±β)(1∓tanαtanβ);)4sin(2cos sin πααα±=±.sin αsin β+cos(α+β)=cos αcos β, cos αsin β+sin(α-β)=sin αcos β,函数f(α)=acos α+bsin α(a ,b 为常数),可以化为f(α)=a 2+b 2sin(α+φ)或f(α)=a 2+b 2cos(α-φ),其中φ可由a,b 的值唯一确定.【典例1】(2018·全国高考真题(理))已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________. 【答案】12- 【解析】 因为,所以,①因为,所以,②①②得,即, 解得, 故本题正确答案为【典例2】(2018·全国高考真题(文))已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________. 【答案】32. 【解析】5tan tan5tan 114tan 541tan 51tan tan 4παπααπαα--⎛⎫-=== ⎪+⎝⎭+⋅,解方程得3tan 2α=. 【方法技巧】1.三角公式化简求值的策略(1)使用两角和、差及倍角公式,首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)使用公式求值,应注意与同角三角函数基本关系、诱导公式的综合应用.(3)使用公式求值,应注意配方法、因式分解和整体代换思想的应用. 2.注意三角函数公式逆用和变形用的两个问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.热门考点02 二倍(半)角公式的运用二倍角的正弦、余弦、正切公式: S 2α:sin 2α=2sin_αcos_α;C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; T 2α:tan 2α=2tan α1-tan 2α.变形公式:降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2配方变形:1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)21±sin α=⎝ ⎛⎭⎪⎫sin α2±co s α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2【典例3】(2019·全国高考真题(理))已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=( )A .15 B .5C D 【答案】B 【解析】2sin 2cos21α=α+Q ,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭Q .sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin 5α∴=,故选B . 【典例4】(2019·河南高三(理))若34tan 43πθ⎛⎫-=-⎪⎝⎭,则tan 2θ=( )A .725-B .725C .724-D .724【答案】C 【解析】 因为34tan 43πθ⎛⎫-=- ⎪⎝⎭,所以tan 141tan 3θθ+=--,解得tan 7θ=,从而22tan 7tan21tan 24θθθ==--. 故选:C 【总结提升】1.运用两角和与差的三角函数公式时,不但要熟练,准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.2.应熟悉公式的逆用和变形应用,公式的正用是常见的,但逆用和变形应用则往往容易被忽视,公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力,只有熟悉了公式的逆用和变形应用后,才能真正掌握公式的应用.提醒:在T (α+β)与T (α-β)中,α,β,α±β都不等于k π+π2(k ∈Z ),即保证tan α,tan β,tan(α+β)都有意义;若α,β中有一角是k π+π2(k ∈Z ),可利用诱导公式化简.热门考点03 三角函数恒等变换中“角、名、式”的变换(1)角的变换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫π4-α=π2,α2=2×α4等.(2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.【典例5】(2019·上海市向明中学高一期中)已知tan 1α=,()3sin sin 2βαβ=+,则()tan αβ+=______.【答案】2 【解析】因为()βαβα=+-,()2αβαβα+=++, 所以()3sin sin 2βαβ=+即()()()()3sinsin αβααβα+-=++,即()()()()3sin cos 3cos sin sin cos cos sin αβααβααβααβα+-+=+++, 所以()()2sin cos 4cos sin αβααβα+=+, 所以()2tan 4tan 4αβα+==, 所以()tan 2αβ+=. 故答案为:2【典例6】(2019·宁夏银川一中高三)已知,2παπ⎛⎫∈ ⎪⎝⎭,1tan 47πα⎛⎫+= ⎪⎝⎭,则sin cos αα+=____.【答案】15- 【解析】 ∵1tan 47πα⎛⎫+= ⎪⎝⎭ ∴1tan 11tan 7αα+=-解得3tan 4α=-,∵,2παπ⎛⎫∈ ⎪⎝⎭,∵22sin cos 1αα+=…①sin tan cos ααα=,…② 解①②得34sin ,cos 55αα==-∴341sin cos 555αα+=-=-.故答案为:15-.【典例7】(2018届河南省郑州外国语学校高三第十五次调研)已知,满足,则的最大值为______.【答案】.【解析】由, 得化为, ,,的最大值为,故答案为.【典例8】求证:ααπαcos 1)24tan(1tan =++. 【解析】左边=sin αcos α+)24sin()24cos(απαπ++ )24sin(cos )24cos(cos )24sin(sin απααπααπα++++=)24sin(cos )24cos(απαααπ+-+=)24sin(cos )24cos(απααπ+-===++=ααπααπcos 1)24sin(cos )24sin(=右边. 故原式得证.【典例9】(2018·浙江高考真题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455--,). (Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求cos β的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角恒等变换 编稿:李霞 审稿:孙永钊【考纲要求】1、会用向量的数量积推导出两角差的余弦公式.2、能利用两角差的余弦公式导出两角差的正弦、正切公式.3、能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.4、能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【知识网络】【考点梳理】考点一、两角和、差的正、余弦公式()sin()sin cos cos sin ()S αβαβαβαβ±±=± ()cos()cos cos sin sin ()C αβαβαβαβ±±=()tan tan tan()()1tan tan T αβαβαβαβ±±±=-要点诠释:1.公式的适用条件(定义域) :前两个公式()S αβ±,()C αβ±对任意实数α,β都成立,这表明该公式是R 上的恒等式;公式()T αβ±③中,∈,且R αβk (k Z)2±≠+∈、、παβαβπ2.正向用公式()S αβ±,()C αβ±,能把和差角()±αβ的弦函数表示成单角α,β的弦函数;反向用,能把右边结构复杂的展开式化简为和差角()±αβ 的弦函数。

公式()T αβ±正向用是用单角的正切值表示和差角()±αβ的正切值化简。

考点二、二倍角公式1. 在两角和的三角函数公式()()(),,S C T αβαβαβαβ+++=中,当时,就可得到二倍角的三角函数公式222,,S C T ααα:sin 22sin cos ααα= 2()S α; ααα22sin cos 2cos -=2()C α;22tan tan 21tan ααα=-2()T α。

要点诠释:1.在公式22,S C αα中,角α没有限制,但公式2T α中,只有当)(224Z k k k ∈+≠+≠ππαππα和时才成立; 2. 余弦的二倍角公式有三种:ααα22sin cos 2cos -==1cos 22-α=α2sin 21-;解题对应根据不同函数名的需要,函数不同的形式,公式的双向应用分别起缩角升幂和扩角降幂的作用。

3. 二倍角公式不仅限于2α和α的二倍的形式,其它如4α是2α的二倍,24αα是的二倍,332αα是的二倍等等,要熟悉这多种形式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键。

考点三、二倍角公式的推论降幂公式:ααα2sin 21cos sin =; 22cos 1sin 2αα-=;22cos 1cos 2αα+=.万能公式:ααα2tan 1tan 22sin +=;ααα22tan 1tan 12cos +-=.半角公式:2cos 12sinαα-±=; 2cos 12cosαα+±=; αααcos 1cos 12tan+-±=.其中根号的符号由2α所在的象限决定. 要点诠释:(1)半角公式中正负号的选取由2α所在的象限确定; (2)半角都是相对于某个角来说的,如23α可以看作是3α的半角,2α可以看作是4α的半角等等。

(3)正切半角公式成立的条件是α≠2k π+π(k ∈Z)正切还有另外两个半角公式:Z k k k ∈≠-=+≠+=),(sin cos 12tan ),2(cos 1sin 2tanπααααππαααα,这两个公式不用考虑正负号的选取问题,但是需要知道两个三角函数值。

常常用于把正切化为正余弦的表达式。

考点四、三角形内角定理的变形由A B C π++=,知()A B C π=-+可得出:sin sin()A B C =+,cos cos()A B C =-+.而()222A B C π+=-,有:()sin cos 22A B C +=,()cos sin 22A B C +=. 【典型例题】 类型一:正用公式例1.(2016 全国新课标Ⅱ)若3cos()45πα-=,则sin 2α=( ) (A)725(B)15 (C)15- (D)725-【答案】D【试题解析】因为3cos()45πα-=,所以2cos 2()2cos ()144ππαα-=--,即237cos(2)sin 22()12525παα-==⨯-=-,即7sin 225α=-.【点评】例1是对公式的正用. 举一反三:【变式1】已知(,0)2x π∈-,4cos 5x =,则tan 2x = . 【答案】247-. 【变式2】已知tan()24x π+=,则tan tan 2xx= .【答案】19【变式3】已知tan α和tan β是方程2260x x +-=的两个根,求tan()αβ+的值. 【答案】18-【试题解析】由韦达定理,得1tan tan 2αβ+=-, tan tan 3αβ⋅=-, ∴ tan tan 1tan()1tan tan 8αβαβαβ++==--⋅. 【高清课堂:三角恒等变换397881 例1】【变式4】某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)22sin 13cos 17sin13cos17︒+︒-︒︒(2)22sin 15cos 15sin15cos15︒+︒-︒︒ (3)22sin 18cos 12sin18cos12︒+︒-︒︒ (4)22sin (18)cos 48sin(18)cos 48-︒+︒--︒︒ (5)22sin (25)cos 55sin(25)cos55-︒+︒--︒︒ Ⅰ 试从上述五个式子中选择一个,求出这个常数Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广三角恒等式,并证明你的结论. 【试题解析】Ⅰ.选择(2)式计算如下2213sin 15cos 15sin15cos151sin 3024︒+︒-︒︒=-︒= Ⅱ.证明:22sin cos (30)sin cos(30)αααα+︒--︒-22sin (cos30cos sin 30sin )sin (cos30cos sin 30sin )αααααα=+︒+︒-︒+︒2222311sin cos cos sin cos sin 42422αααααααα=+++--22333sin cos 444αα=+= 例2(2015 源汇区校级一模)设1cos 29βα⎛⎫-=- ⎪⎝⎭,2sin 23αβ⎛⎫-= ⎪⎝⎭,且2παπ<<,02πβ<<,则()cos αβ+= .【思路点拨】注意到()()222αββααβ+=---,将()2βα-,()2αβ-看做一个整体运用公式.【答案】239729-【试题解析】1cos 029βα⎛⎫-=-< ⎪⎝⎭且2παπ<<,02πβ<<22πβαπ∴<-<sin 2βα⎛⎫∴-== ⎪⎝⎭ 2sin 23αβ⎛⎫-= ⎪⎝⎭且2παπ<<,02πβ<<422παπβ∴-<-<cos 23αβ⎛⎫-==⎪⎝⎭sin sin 222sin cos cos sin 222212229327αββααββαβααβαβ+⎡⎤⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫⎛⎫⎛⎫=----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫=-⋅= ⎪⎝⎭()2222239cos 12sin12227729αβαβ+⎛⎫+=-=-⨯=- ⎪⎝⎭【点评】1、给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,例2中应用了()()222αββααβ+=---的变换 ,体现了灵活解决问题的能力,应着重体会,常见的变换技巧还有2()()ααβαβ=++-,(),βαβα=+-,1[()()]2ααβαβ=++-,2()()βαβαβ=+--,()424πππαα+=--等. 2、已知某一个(或两个)角的三角函数值,求另一个相关角的三角函数值,基本的解题策略是从“角的关系式”入手切入或突破.角的关系主要有互余(或互补)关系,和差(为特殊角)关系,倍半关系等.对于比较复杂的问题,则需要两种关系的混合运用.举一反三:【变式1】已知3sin 5α=,α是第二象限角,且tan()1αβ+=,求tan 2β的值. 【答案】724-【试题解析】由3sin 5α=且α是第二象限角,得3tan 4α=-,∵()αβαβ+-=, ∴tan()tan tan tan[()]71tan()tan αβαβαβααβα+-=+-==++.22tan 7tan 21tan 24βββ∴==-- 【变式2】函数)2cos(10)y x x =+-+的最大值为( )A.4 C. 2 D. 2+ 【答案】C ;【试题解析】∵7060(10)x x +=++,60cos(10)cos60sin(10)]2cos(10)cos(10)3sin(10)2sin(40)x x x x x x ∴=+++-+=+++=+原式.所以其最大值为2,故选C. 【变式3】(2015 河南模拟)若1sin 34πα⎛⎫-= ⎪⎝⎭,则cos 23πα⎛⎫+ ⎪⎝⎭等于( ) A. 7-8 B. 1-4 C. 14 D. 78【答案】A【试题解析】222cos 2cos 2cos 2cos 233331712sin 213168ππππαπαααπα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=--=-+=-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫=---=⨯-=-⎪⎢⎥⎝⎭⎣⎦故选A.【变式4】已知παπ434<<,40πβ<<,53)4cos(=-απ,135)43sin(=+βπ,求sin()αβ+的值。

【答案】5665【试题解析】∵ 042<-<-αππ, ∴54)4sin(-=-απ,∵ πβππ<+<4343, ∴1312)43cos(-=+βπ。

∴)](2cos[)sin(βαπβα++-=+6556)54(135531312)]4sin()43sin()4cos()43[cos()]4()43cos[(=-⨯-⨯=-++-+-=--+-=απβπαπβπαπβπ类型二:逆用公式 例3.求值:(1)sin 43cos13cos43sin13︒︒-︒︒;x x ;(3)1tan151tan15+-;(4)44(sin 23cos8sin 67cos98)(sin 730cos 730)''+-.【思路点拨】逆用两角和(差)正(余)弦公式,正切公式. 【试题解析】(1)原式=1sin(4313)sin 302︒-︒=︒=; (2)原式12(cos )30cos cos30sin )22sin(30)22x x x x x =-=-=-;(3)原式tan 45tan15tan(4515)tan 6031tan 45tan15+==+==-⋅; (4)原式2222(sin 23cos8cos 23sin8)(sin 730cos 730)(sin730cos 730)''''=-+-22sin(238)(cos 730sin 730)''=---11sin15cos15sin 3024=-=-=-.【点评】①把式中某函数作适当的转换之后,再逆用两角和(差)正(余)弦公式,二倍角公式等,即所谓“逆用公式”。

相关文档
最新文档