【高考数学大题精做】专题05 立体几何中最值问题(第三篇)(解析版)

合集下载

立体几何中的最值与动态问题 (解析版)

立体几何中的最值与动态问题 (解析版)

立体几何中的动态问题立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在试题中出现。

下面举例说明解决这类问题的常用方法。

一、以静制动例1、在三棱柱ABC —A 1B 1C 1中,AA 1=AB=AC ,AB ⊥AC ,M 是CC 1的中点,Q 是BC 的中点,点P 在A 1B 1上,则直线PQ 与直线AM 所成的角等于( D ) A 300 B 450 C 600 D 900分析:虽然点P 的具体位置不定,但PQ 在平面A 1C 上的射影是一条定直线A 1H ,在正方形ACC 1A 1中AM ⊥A 1H ,故由三垂线定理得BQ ⊥AM 。

例2 如图3,在棱长为a 的正方体1111ABCD A B C D -中,EF 是棱AB 上的一条线段,且EF =b <a ,若Q 是11A D 上的定点,P 在11C D 上滑动,则四面体PQEF 的体积( ). (A)是变量且有最大值 (B )是变量且有最小值 (C )是变量无最大最小值 (D )是常量分析:此题的解决需要我们仔细分析图形的特点.这个图形有很多不确定因素,线段EF 的位置不定,点P 在滑动,但在这一系列的变化中是否可以发现其中的稳定因素?求四面体的体积要具备哪些条件?仔细观察图形,应该以哪个面为底面?观察PEF ∆,我们发现它的形状位置是要变化的,但是底边EF 是定值,且P 到EF 的距离也是定值,故它的面积是定值.再发现点Q 到面PEF 的距离也是定值.因此,四面体PQEF 的体积是定值.我们没有一点计算,对图形的分析帮助我们解决了问题.1. 在正四棱锥S-ABCD 中,SO ⊥平面ABCD 于O ,SO=2,底面边长为2,点P 、Q 分别在线段BD 、SC 上移动,则P 、Q 两点的最短距离为( ) A.55B.552 C. 2 D. 1解析:如图,由于点P 、Q 分别在线段BD 、SC 上移动,先让点P 在BD 上固定,Q 在SC 上移动,当OQ 最小时,PQ 最小。

立体几何中的最值与动态问题

立体几何中的最值与动态问题

25立体几何中的最值问题立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在试题中出现。

下面举例说明解决这类问题的常用方法。

一、运用变量的相对性求最值例1. 在正四棱锥S-ABCD 中,SO⊥平面ABCD 于O,SO=2,底面边长为,点P、Q 分别在线段BD、SC 上移动,则P、Q 两点的最短距离为()A. B.5 5C. 2D. 1解析:如图1,由于点P、Q 分别在线段BD、SC 上移动,先让点P 在BD 上固定,Q 在SC 上移动,当OQ 最小时,PQ 最小。

过O 作OQ⊥SC,在Rt△SOC 中,OQ = 中。

又P 在BD 上运动,且当P 运动5到点O 时,PQ 最小,等于OQ 的长为,也就是异面直线BD 和SC 的公垂线段的长。

故选B。

5图 1二、定性分析法求最值例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。

AB⊥CD,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为。

解析:如图2,过点B 作平面α的垂线,垂足为O,连结AO,则∠BAO=30°。

过B 作BE//CD 交平面α 于E,则BE=CD。

连结AE,因为AB⊥CD,故AB⊥BE。

则在Rt△ABE 中,BE=AB·tan∠BAE≥AB·tan ∠BAO=3·tan30°= 。

故CD ≥ 3 。

2 52 52 53图 2三、展成平面求最值例3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a,AC=BD=b,AD=BC=c。

平面α分别截棱AB、BC、CD、DA 于点P、Q、R、S,则四边形PQRS 的周长的最小值是()A. 2aB. 2bC. 2cD. a+b+c图3-1解析:如图3-2,将四面体的侧面展开成平面图形。

由于四面体各侧面均为锐角三角形,且AB=CD,AC=BD,AD=BC,所以,A 与A’、D 与D’在四面体中是同一点,且AD // BC // A' D',AB// CD',A、C、A’共线,D、B、D’共线,AA'=DD' = 2BD 。

高三数学立体几何中的最值问题复习

高三数学立体几何中的最值问题复习

突破立体几何之《立体几何中的最值问题》 考点动向高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.例1如图6-1,在直三棱柱111ABC A B C -中,底面为直角三角形,1906ACB AC BC CC ∠==== ,,.P 是1BC 上一动点,则1CP PA +的最小值为 .解析 考虑将立体几何问题通过图形变换,转化为平面几何问题解答.解 连结1A B ,沿1BC 将1CBC △展开与11A BC △在同一个平面内,如图6-2所示,连1AC ,则1AC 的长度就是所求的最小值.通过计算可得1190AC C ∠=︒,又145BC C ∠=︒故11135AC C ∠=︒,由余弦定理可求得1AC =.例2 如图6-3,在四棱锥P ABCD -中,PA ⊥底面A B C D ,DAB ∠为直角,2A B C D A D C D A B ==,∥,E F ,分别为PC CD ,的中点.(I )试证:CD ⊥平面BEF ;(II )设PA k AB =,且二面角E BD C --的平面角大于30︒,求k 的取值范围.解析 对(I ),可以借助线面垂直的判定定理,或者借助平面的法向量及直线的方向A1A 11图6-1AC PB1A1C1B图6-2C C图6-3向量解答;对(II ),关键是确定出所求二面角的平面角.解法1(I )证:由已知DF AB ∥且DAB ∠为直角, 故ABFD 是矩形,从而CD BF ⊥.又PA ⊥底面ABC D ,CD AD ⊥,故由三垂线定理知CD PD ⊥.在PDC △中,E ,F 分别为PC ,CD 的中点,故EF PD ∥,从而CD EF ⊥,由此得CD ⊥面BEF .(II )连接AC 交BF 于G ,易知G 为AC 的中点,连接EG ,则在PAC △中易知EG PA ∥.又因PA ⊥底面ABCD ,故EG ⊥底面ABCD . 在底面ABCD 中,过G 作GH BD ⊥,垂足为H ,连接EH ,由三垂线定理知EH BD ⊥,从而EHG ∠为二面角E BD C --的平面角. 设AB a =,则在PAC△中,有1122EG PA ka ==.以下计算GH ,考虑底面的平面图(如图6-5),连接GD ,因1122BD S BD GH GB DF == △G , 故GB DFGH BD = .在ABD △中,因AB a =,2AD a =,得BD =.而1122GB FB AD a ===,DF AB =,从而得GB AB GH BD ===.因此1tan kaEG EHG GH ===.故0k >知EHG ∠是锐角,故要使30EHG >∠,必须tan 3023>=, 解之得,k的取值范围为15k >. 解法2(I )如图6-6,以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴建立空间直角坐标系,设AB a =,则易知点A ,B ,C ,D ,F 的坐标分别为()000A ,,,()00B a ,,,()220C a a ,,,()020D a ,,,()20F a a ,,.C图6-4图6-5A从而(200)(020)DC a BF a ==,,,,,,0DC BF = ,故DC BF ⊥ .设PA b =,则(00)P b ,,,而E 为PC 中点,故2b E a a ⎛⎫ ⎪⎝⎭,,,从而02b B E a ⎛⎫= ⎪⎝⎭ ,,.0DC BE = ,故D C B E⊥.由此得CD BEF ⊥面. (II )设E 在xOy 平面上的投影为G ,过G 作GH BD ⊥垂足为H ,由三垂线定理知EH BD ⊥.从而EHG ∠为二面角E BD C --的平面角.由PA k AB = 得(00)P ka ,,,2ka E a a ⎛⎫ ⎪⎝⎭,,,(0)G a a ,,.设(0)H x y ,,,则(0)(20)GH x a y a BD a a =--=- ,,,,,,由0GH BD =得()2()0a x a a y a --+-=,即2x y a -=-. ①又因(0)BH x a y =- ,,,且BH 与BD的方向相同,故2x a ya a-=-, 即22x y a +=. ②由①②解得3455x a y a ==,,从而21055GH a a GH ⎛⎫=--= ⎪⎝⎭,,,.tan ka EG EHG GH=== .由0k >知EHG ∠是锐角,由30EHG ∠>︒,得t a n t a n30E H G >︒,>. 故k的取值范围为k >. [规律小结]立体几何中的最值与范围,需要首先确定最值或范围的主体,确定题目中描述的相关变动的量,根据必要,可确定是利用几何方法解答,还是转化为代数(特别是函数)问题解答.其中的几何方法,往往是进行翻折变换,这时可以想象实际情形,认为几何体是利用硬纸等折图6-6成的,可以动手翻折的,在平时做练习时,不妨多动手试试,培养自己的空间想象能力,在考试时就可以不动手,动脑想就可以了.特别注意变动的过程,抓住变动的起始与终了等特殊环节.考点误区分析(1)这类问题容易成为难点,关键是学生的空间想象能力缺乏,或者对问题的转化方向不明确.因此,要注意常见的转化方向,如化立体几何问题为平面几何问题,或化立体几何问题为代数问题等,根据题目特征进行转化.(2)对题目所描述的情形没有清醒的认识也是造成错解的主要原因,注意产生量的变化的主要原因是什么,相关的数量和位置关系都做怎样的变化,抓住问题的关键,才能顺利解决问题.同步训练1.如图6-7,在直三棱柱111ABC A B C -中,AB BC ==12BB =, 90=∠ABC ,,E F分别为111,AA C B 的中点,沿棱柱的表面从E 到F 两点的最短路径的长度为 .2.有两个相同的直三棱柱,高为a2,底面三角形的三边长分别为)0(5,4,3>a a a a .用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则a 的取值范围是__________.3.如图6-8,正四面体ABCD 的棱长为1,棱AB ∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是 .[参考答案]1.[解析]分别将111A B C △沿11A B 折到平面11ABB A 上;将111A B C △沿11AC 折到平面11ACC A 上;将11BCC B 沿1BB 折到平面11ABB A 上;将11BCC B 沿1CC 折到平面11ACC AA图6-71A 1E图6-8上,比较其中EF 长即可.[答案]22.[解析]可知,全面积最小的是四棱柱面积为22428a +,全面积最小的是三棱柱面积为21248a +,解2212482428a a +>+即可.[答案]3150<<a . 3.[解析]当CD 所在的直线与平面α平行时,所求射影面积最大,为1122AB CD ⨯=;当CD 所在的直线与平面α垂直时,所求射影面积最小,可求得为4.[答案]1[]42.。

立体几何中的动点问题和最值问题(解析版)--高二数学上册常考题专练(人教A版2019选修一)

立体几何中的动点问题和最值问题(解析版)--高二数学上册常考题专练(人教A版2019选修一)

1/31专题03立体几何中的动点和最值问题题型一立体几何中的动点问题1.如图,在棱长为2的正方体1111ABCD A B C D -中,M 为棱11A D 的中点,下列说法正确的是()A .直线AC ⊥直线BMB .过点的C 的平面MB α⊥,则平面α截正方体所得的截面周长为325+C .若线段BM 上有一动点Q ,则Q 到直线1AA 255D .动点P 在侧面11BCC B 及其边界上运动,且AP BM ⊥,则AP 与平面11BCC B 成角正切的取值范围是255[]52【解答】解:对于A ,AC BD ⊥ ,1AC BB ⊥,1BD BB B = ,BD 、1BB ⊂平面11BB D D ,AC ∴⊥平面11BB D D ,BM⋂ 平面11BB D D ,∴直线AC 与直线BM 不垂直,故A 错误;对于B ,如图1,取1BB ,AB 的中点E 、F ,连接CE 、EF 、CF .因为BN CE ⊥,1EF A B ⊥,由三垂线定理得BM CE ⊥,BM EF ⊥,所以BM ⊥平面CEF ,所以α截正方体所得的截面为CEF ∆141411252+++=+B 错误;对于C ,如图过BM 构造平面与1AA 平行,2/31AH 即Q 到直线1AA 的距离的最小值,255AH =,故C 正确;对于D ,如图3,取1CC 的中点Q ,因为1BM AB ⊥,1BM B Q ⊥,所以BM ⊥平面1AB Q ,故P 点轨迹为1B Q .在正方形11BCC B 中,当P 与Q 重合时,BP 最大,当1BP B Q ⊥时,BP 最小.所以4[,5]5BP ∈因为AB ⊥平面11BCC B ,所以APB ∠为AP 与平面11BCC B 所成角,255tan [,]52AB APB BP ∠=∈则AP 与平面11BCC B 成角正切的取值范围是255[,]52,故D 正确.故选:CD .2.如图,在正方体1111ABCD A B C D -中,F 是棱11A D 上的动点,下列说法正确的是()A .对任意动点F ,在平面11ADD A 内不存在与平面CBF 平行的直线B .对任意动点F ,在平面ABCD 内存在与平面CBF 垂直的直线3/31C .当点F 从1A 运动到1D 的过程中,二面角F BC A --的大小不变D .当点F 从1A 运动到1D 的过程中,点D 到平面CBF 的距离逐渐变大【解答】解:对任意动点F ,在平面11ADD A 内只要与AD 平行的直线,即可与平面CBF 平行,所以A 不正确;对任意动点F ,在平面ABCD 内存在与平面CBF 垂直的直线,不正确;因为二面角F BC A --的大小不变是锐角,所以B 不正确;当点F 从1A 运动到1D 的过程中,二面角F BC A --的大小不变,由二面角的定义可知,命题是真命题,正确;当点F 从1A 运动到1D 的过程中,点D 到平面CBF 的距离逐渐变大,不正确;因为A BCF V -是定值,三角形BCF 的面积是定值,所以点D 到平面CBF 的距离不变,所以D 不正确;故选:C .3.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且22EF =,则下列结论中正确的有()A .当E 点运动时,1A C AE ⊥总成立B .当E 向1D 运动时,二面角A EF B --逐渐变小C .二面角E AB C --的最小值为45︒D .三棱锥A BEF -的体积为定值【解答】解:对于A ,易证11B D ⊥平面11A C C ,所以111A C B D ⊥,同理可证11A C AD ⊥,从而1A C ⊥平面11AB D ,所以1A C AE ⊥恒成立,A 正确;对于B ,平面EFB 即平面11BDD B ,而平面EFA 即平面11AB D ,所以当E 向1D 运动时,二面角A EF B --的大小不变,B 错误;对于C ,当点E 从11B D 的中点向点1D 运动时,平面ABE 逐渐向底面ABCD 靠拢,4/31这个过程中,二面角越来越小,所以二面角E AB C --的最小值为45︒,C 正确;对于D ,因为1221224BEF S ∆=⨯⨯=,点A 到平面11BDD B 的距离为22,所以体积为122134212⨯⨯=,即体积为定值,D 正确.故选:ACD .4.如图,在棱长为6的正方体1111ABCD A B C D -中,E 为棱1DD 上一点,且2DE =,F 为棱11C D 的中点,点G 是线段1BC 上的动点,则()A .无论点G 在线段1BC 上如何移动,都有异面直线1A G ,1B D 的夹角为2πB .三棱锥A GAE -的体积为108C .直线AE 与BF 所成角的余弦值1015D .直线1AG 与平面1BDC 所成最大角的余弦值为13【解答】解:在正方体1111ABCD A B C D -中,易证1DB ⊥面11A BC ,又1A G ⊂平面11A BC ,所以11A G B D ⊥,所以异面直线1A G ,1B D 的夹角为2π,则A 正确;1116663632A GAE G A AE V V --⨯==⨯⨯=三棱锥三棱锥,则B 错误;在棱1CC 上取点N ,使2CN =,连结BN ,NE ,FN (如图),则易知FBN ∠为直线AE 与BF 所成角或其补角,可得10BN =,5FN =,9FB =,5/31则222(210)958410cos 1529210310FBN +-∠===⨯⨯,则直线AE 与BF 所成角的余弦值为41015,则C 正确;由题意知三棱锥11A BDC -为棱长为62的正四面体,作1A O ⊥平面1BDC ,O 为垂足,则O 为正1BDC ∆的中心,且1A GO 为直线1A G 与平面1BDC 所成角,所以211211cos 1AO OG AGO AG AG ∠==-,当点G 移动到1BC 的中点时,1A G 最短,如图,此时1cos A GO ∠最小,1A GO ∠最大,此时1161cos 336OG AGO AG ∠===,则D 正确.故选:ACD .5.在棱长为1的正方体1111ABCD A B C D -中,M 是线段11A C 上一个动点,则下列结论正确的有()A .存在M 点使得异面直线BM 与AC 所成角为90︒B .存在M 点使得异面直线BM 与AC 所成角为45︒C .存在M 点使得二面角M BD C --的平面角为45︒D .当1114A M A C =时,平面BDM 截正方体所得的截面面积为98【解答】解:对于A ,连接11A C 、11B D ,交于1O ,连接BD ,取点M 为1O 时,连接1O B ,因为AC BD ⊥、1AC B B ⊥,所以AC ⊥平面11BB D D ,又因为1O B ⊂平面11BB D D ,所以1AC O B ⊥,所以A 对;对于B ,因为11//A C AC ,所以异面直线BM 与AC 所成角就是1BMC ∠,6/31因为160BMC ∠︒,所以B 错;对于C ,因为二面角M BD C --的平面角为MOC ∠,因为45MOC ∠>︒,所以C 错;对于D ,取OA 中点N ,连接MN ,过M 作11//EF B D ,交11A D 于E ,交11A B 于F ,连接ED 、FB ,22EF =,BD =324OM =,112329()22248EFBD S EF BD OM =⋅+⋅=⋅⋅.所以D 对.故选:AD.6.已知正方体1111ABCD A B C D -的棱长为4,EF 是棱AB 上的一条线段,且1EF =,点Q 是棱11A D 的中点,点P 是棱11C D 上的动点,则下面结论中正确的是()A .PQ 与EF 一定不垂直B .二面角P EF Q --C .PEF ∆的面积是D .点P 到平面QEF 的距离是常量【解答】解:对于A ,当P 与点1D 重合时,PQ EF ⊥,故选项A 错误;对于B ,由于点P 是棱11C D 上的动点,EF 是棱AB 上的一条线段,所以平面PEF 即平面11ABC D ,建立如图所示的空间直角坐标系,则(2Q ,0,4),(4A ,0,0),(4B ,4,0),所以(2,04),(0,4,0)QA AB =-=,平面QEF 即平面QAB ,设平面QAB 的法向量为(,,)n x y z = ,则00n QA n AB ⎧⋅=⎪⎨⋅=⎪⎩,即24040x z y -=⎧⎨=⎩,令1z =,则(2,0,1)n =,同理可求得平面11ABC D 的法向量为(1,0,1)m =,设二面角P EF Q --为θ,7/31所以||21310|cos ||cos ,|||||1025m n m n m n θ⋅+=<>===⨯,故2231010sin 11()1010cos θθ=-=-=,故选项B 正确;对于C ,由于AB ⊥平面11BB CC ,又1BC ⊂平面11BB CC ,所以1AB BC ⊥,所以1BC EF ⊥,所以1BC 是PEF ∆的高,所以1111422222PEF S EF BC ∆=⋅⋅=⨯⨯=,故选项C 正确;对于D ,由于11//C D EF ,且11C D ⊂/平面QEF ,EF ⊂平面QEF ,所以11//C D 平面QEF ,又点P 在11C D 上,所以点P 到平面QEF 的距离为常量,故选项D 正确.故选:BCD .7.在长方体1111ABCD A B C D -中,1226BC AB BB ===,点E 为棱BC 上靠近点C 的三等分点,点F 是长方形11ADD A 内一动点(含边界),且直线1B F ,EF 与平面11ADD A 所成角的大小相等,则()A .1//A F 平面11BCC B B .三棱锥1F BB E -的体积为4C .存在点F ,使得11//A F B ED .线段1A F 的长度的取值范围为5[2,258【解答】解: 平面11//ADD A 平面11BCC B ,1A F ⊂平面11ADD A ,1//A F ∴平面11BCC B ,故A 正确;8/311111343632F BB E A BB E V V --==⨯⨯⨯⨯=,故B 错误;连接1A F ,作//EG CD 交AD 于G ,连接FG ,11A B ⊥ 平面11ADD A ,11A FB ∴∠为1B F 与平面11ADD A 所成的角,EG ⊥ 平面11ADD A ,EFG ∴∠为EF 与平面11ADD A 所成角.直线1B F ,EF 与平面11ADD A 所成角的大小相等,11A FB EFG ∴∠=∠,则11111tan tan A B EGA FB EFG A F FG∠==∠=,又11A B EG = ,1A F FG ∴=,则点F 在1A G 的中垂线上,即点F 在线段HI 上运动,当点F 与点K 重合时,11//A F B E ,故C 正确;126BC BB == ,E 为棱BC 上靠近C 的三等分点,13AA ∴=,4AG =,则15A G =,11cos AG KG A GA A G HG∠==,1258HG A I ∴==,当点F 在点I 或点H 处时,线段1A F 的长度取得最大值,最大值为258,当点F 在点K 处时,线段1A F 的线段取得最小值,最小值为52,∴线段1A F 的长度的取值范围为5[2,25]8,故D 正确.故选:ACD .8.已知正方体1111ABCD A B C D -棱长为2,如图,M 为1CC 上的动点,AM ⊥平面α.下面说法正确的是()A .直线AB 与平面α所成角的正弦值范围为32[32B .点M 与点1C 重合时,平面α截正方体所得的截面,其面积越大,周长就越大9/31C .点M 为1CC 的中点时,若平面α经过点B ,则平面α截正方体所得截面图形是等腰梯形D .已知N 为1DD 中点,当AM MN +的和最小时,M 为1CC 的中点【解答】解:对于A 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点(2A ,0,0)、(2B ,2,0),设点(0M ,2,)(02)a a ,AM ⊥ 平面α,则AM为平面α的一个法向量,且(2,2,)AM a =- ,(0,2,0)AB =,||32|cos ,|[,]32||||AB AM AB AM AB AM ⋅<>==⋅,所以,直线AB 与平面α所成角的正弦值范围为32[32,A选项正确;对于B 选项,当M 与1CC 重合时,连接1A D 、BD 、1A B 、AC ,在正方体1111ABCD A B C D -中,1CC ⊥平面ABCD,BD ⊂ 平面ABCD ,1BD CC ∴⊥, 四边形ABCD 是正方形,则BD AC ⊥,1CC AC C = ,BD ∴⊥平面1ACC ,1AC ⊂ 平面1ACC ,1AC BD ∴⊥,同理可证11AC A D ⊥,10/311A D BD D = ,1AC ∴⊥平面1A BD ,易知△1A BD是边长为的等边三角形,其面积为1234A BD S =⨯=,周长为3=.设E 、F 、Q 、N 、G 、H 分别为棱11A D 、11A B 、1BB 、BC 、CD 、1DD 的中点,易知六边形EFQNGH的正六边形,且平面//EFQNGH 平面1A BD ,正六边形EFQNGH的周长为26=则△1A BD 的面积小于正六边形EFQNGH 的面积,它们的周长相等,B 选项错误;对于C 选项,设平面α交棱11A D 于点(E b ,0,2),点(0M ,2,1),(2,2,1)AM =-,AM ⊥ 平面α,DE ⊂平面α,AM DE ∴⊥,即220AM DE b ⋅=-+=,得1b =,(1E ∴,0,2),所以,点E 为棱11A D 的中点,同理可知,点F 为棱11A B 的中点,则(2F ,1,2),(1,1,0)EF = ,而(2,2,0)DB = ,∴12EF DB =,//EF DB ∴且EF DB ≠,由空间中两点间的距离公式可得DE ==,BF ==DE BF ∴=,所以,四边形BDEF 为等腰梯形,C 选项正确;对于D 选项,将矩形11ACC A 与矩形11CC D D 延展为一个平面,如下图所示:若AM MN +最短,则A 、M 、N 三点共线,11//CC DD ,∴2MC AC DN AD ===-1122MC CC =≠,11/31所以,点M 不是棱1CC 的中点,D选项错误.故选:AC .9.如图,在正四棱柱1111ABCD A B C D -中,3AB AD ==,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为()A .43B .53C .2D .259【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设(P a ,3,)c ,(03,04)a c ,则(3A ,0,0),(3B ,3,0),1(0D ,0,4),(3AP a =- ,3,)c ,1(3BD =- ,3-,4),平面11BCC B 的法向量(0n = ,1,0),1AP BD ⊥ ,∴13(3)940AP BD a c ⋅=---+= ,解得34c a =,∴(3AP a =- ,3,3)4a ,AP 与平面11BCC B 所成的角为θ,222||312sin ||||9484896(3)95()1625625AP n AP n a a a θ⋅∴==⋅-++-+ ,∴当4825a =时,sin θ34.此时25cos 1()3434θ=-=12/31tan θ∴53=.故选:B.10.在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[0λ∈,1],[0μ∈,1],则()A .当1λ=时,△1AB P 的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【解答】解:对于A ,当1λ=时,1BP BC BB μ=+ ,即1CP BB μ= ,所以1//CP BB ,故点P 在线段1CC 上,此时△1AB P 的周长为11AB B P AP ++,当点P 为1CC 的中点时,△1AB P,当点P 在点1C 处时,△1AB P的周长为1,故周长不为定值,故选项A 错误;13/31对于B ,当1μ=时,1BP BC BB λ=+ ,即1B P BC λ= ,所以1//B P BC,故点P 在线段11B C 上,因为11//B C 平面1A BC ,所以直线11B C 上的点到平面1A BC 的距离相等,又△1A BC 的面积为定值,所以三棱锥1P A BC -的体积为定值,故选项B正确;对于C ,当12λ=时,取线段BC ,11B C 的中点分别为M ,1M ,连结1M M ,因为112BP BC BB μ=+,即1MP BB μ= ,所以1//MP BB,则点P 在线段1M M 上,当点P 在1M 处时,1111A M B C ⊥,111A M B B ⊥,又1111B C B B B = ,所以11A M ⊥平面11BB C C ,又1BM ⊂平面11BB C C ,所以111A M BM ⊥,即1A P BP ⊥,同理,当点P 在M 处,1A P BP ⊥,故选项C 错误;14/31对于D ,当12μ=时,取1CC 的中点1D ,1BB 的中点D ,因为112BP BC BB λ=+ ,即DP BC λ= ,所以//DP BC,则点P 在线的1DD 上,当点P 在点1D 处时,取AC 的中点E ,连结1A E ,BE ,因为BE ⊥平面11ACC A ,又1AD ⊂平面11ACC A ,所以1AD BE ⊥,在正方形11ACC A 中,11AD A E ⊥,又1BE A E E = ,BE ,1A E ⊂平面1A BE ,故1AD ⊥平面1A BE ,又1A B ⊂平面1A BE ,所以11A B AD ⊥,在正方体形11ABB A 中,11A B AB ⊥,又11AD AB A = ,1AD ,1AB ⊂平面11AB D ,所以1A B ⊥平面11AB D ,因为过定点A 与定直线1A B 垂直的平面有且只有一个,故有且仅有一个点P ,使得1A B ⊥平面1AB P ,故选项D正确.故选:BD .15/3111.如图,已知四边形ABCD 为直角梯形,BDEF 为矩形,平面BDEF ⊥平面ABCD ,//AD BC ,90DAB ABC ∠=∠=︒,1AD AB ED ===,2BC =.(1)若点M 为EF 中点,求证:BM ⊥平面CDF ;(2)若点M 为线段EF 上一动点,求BD 与平面BCM所成角的取值范围.【解答】证明:(1) 平面BDEF ⊥平面ABCD ,平面BDEF ⋂平面ABCD BD =,BF ⊂面BDEF 且BF BD ⊥,BF ∴⊥面ABCD .建立空间直角坐标系B xyz -如图,则(0B ,0,0),(0A ,1,0),(2C ,0,0),(1D ,1,0),(0F ,0,1),(1E ,1,1),1(2M ,12,1).11(,,1)22BM = ,(1,1,0)CD =- ,(1,1,1)DF =-- ,故11022BM CD ⋅=-+= ,111022BM DF ⋅=--+= .CD BM ∴⊥,FD BM ⊥,又FD CD D = ,FD ,CD ⊂面FCD ,故BM ⊥面FCD ;解:(2)由(1)知,(1,1,0)FE = ,设(,,0)FM FE λλλ== ,则(M λ,λ,1),∴(,,1),(2,0,0),(1,1,0)BM BC BD λλ=== ,设平面BMC 的法向量为(,,)n x y z = ,由200n BC x n BM x y z λλ⎧⋅==⎪⎨⋅=++=⎪⎩,取1y =-,则z λ=,故平面BMC 的一个法向量为(0,1,)n λ=- .16/31设BD 与平面BCM 所成角为θ,∴||sin |cos ,|||||n BD n BD n BD θ⋅=<>==⋅ .∴当0λ=时取最大值22,当1λ=时取最小值12.故BD 与平面BCM 所成角的取值范围为[30︒,45]︒.12.如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别是棱AB ,BC 上的动点,且AE BF =.(1)求证:11A F C E ⊥;(2)当EF 取得最大值时,求二面角11E A C F --的余弦值.【解答】解:(1)证明:如图,建立空间直角坐标系D xyz -,设AE m =,(02)m ,则1(2A ,0,2),(2F m -,2,0),1(0C ,2,2),(2E ,m ,0),∴1(A F m =- ,2,2)-,1(2C E = ,2m -,2)-,∴1122440A F C E m m ⋅=-+-+= ,11A F C E ∴⊥.(2)由(1)得EF ==,17/3102m ,∴当0m =或2m =时,EF 取得最大值为2,当0m =时,点E 与点A 重合,即(2E ,0,0),点F 与点B 重合,即(2F ,2,0),∴11(2A C =- ,2,0),1(0EA = ,0,2),1(0FA = ,2-,2),设平面11A C E 的一个法向量为(n x = ,y ,)z ,则1122020n AC x y n EA z ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,取1x =,得(1n = ,1,0),设平面11A C F 的一个法向量(m a = ,b ,)c ,则111220220m A C a b m FA b c ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,取1a =,得(1m = ,1,1),设二面角11E A C F --的平面角为θ,则||cos ||||3m n m n θ⋅===⋅ ,∴二面角11E A C F --的余弦值为63.当2m =时,点E 与点B 重合,点F 与点C 重合,同理可得二面角11E A C F --综上,当EF 取得最大值时,二面角11E A C F --的余弦值为63.题型二立体几何中的最值问题13.在四面体ABCD 中,ABC ∆是边长为2的正三角形,60ADB ∠=︒,二面角D AB C --的大小为60︒,则下列说法正确的是()A .AB CD⊥18/31B .四面体ABCD 的体积V的最大值为2C .棱CDD .四面体ABCD 的外接球的表面积为529π【解答】解:对于A ,假设AB CD ⊥,设AB 的中点为E ,因为三角形ABC 为正三角形,则CE AB ⊥,又CE CD C = ,CE ,CD ⊂平面CDE ,故AB ⊥平面CDE ,又DE ⊂平面CDE ,故AB DE ⊥,而题中并不能得到AB DE ⊥,故假设不成立,所以AB 不垂直CD ,故选项A 错误;对于B ,要使的ABCD V 最大,只需高最大,故V的最大值为113332ABC S DF ∆⋅⋅=⨯=,故选项B 正确;对于C ,由选项B 中可知,此时CD 也最小,故CD=,故选项C 正确;对于D ,设ABD ∆的外心为M ,E 为AB的中点,MA MB MD ===设过M 与平面ABD 垂直的直线为MN ,过C 作CR ED ⊥于点R ,则外接球球心O 在MN 上,只需OA OC =,又32CR =,ER EM MR ===,设OM x =,由22OA OC =,可得22223()2x x +=+-,解得13x =,所以21413939R =+=,所以四面体ABCD 的外接球的表面积为213524499R πππ⋅=⋅=,故选项D 正确.故选:BCD .19/3114.已知长方体1111ABCD A B C D -的高12AA =,AC =,1AB x =,1AD y =,则当x y +最大时,二面角111A B D C --的余弦值为()A .155B .155-C .55D .55【解答】解: 长方体1111ABCD A B C D -的高12AA =,AC =,1AB x =,1AD y =,∴当x y +最大时,AB BC ==,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,则A ,0,0),1B ,2),1(0D ,0,2),1(0C,,2),1(0AB =,,2),1(AD =- 2),设平面11AB D 的法向量(n x = ,y ,)z ,则112020n AB z n AD z ⎧=+=⎪⎨=-+=⎪⎩ ,取1x =,得(1n = ,1-,平面111B D C 的法向量(0m = ,0,1),设二面角111A B D C --的平面角为α,结合图形得α为钝角,则||cos ||||m n m n α=-== .∴二面角111A B D C --的余弦值为5-.故选:B .20/3115.如图,在棱长为4的正方体1111ABCD A B C D -中,M 是棱1A A 上的动点,N 是棱BC 的中点.当平面1D MN 与底面ABCD 所成的锐二面角最小时,1A M =85.【解答】解:以D 为坐标原点建立空间直角坐标系如图所示,设MA k =,则1(0D ,0,4),(0C ,4,0),(2N ,3,0),(4M ,0,)k ,所以11(4,0,4),(2,4,4)D M k D N =-=- ,设平面1D MN 的法向量为(,,)n x y z = ,则有1100n D M n D N ⎧⋅=⎪⎨⋅=⎪⎩ ,即4(4)02420x k z x y z +-=⎧⎨+-=⎩,令8z =,则82x k =-,4y k =+,故(82,4,8)n k k =-+ ,平面ABCD 的一个法向量为(0,0,1)m = ,设平面1D MN 与底面ABCD 所成的锐二面角为α,则||cos ||||n m n m α⋅== ,21/31锐二面角α越小,则cos α越大,所以求2524144k k -+的最小值,令2212576()5241445()55f k k k k =-+=-+,所以当125k =时,α有最小值,此时11284455A M k =-=-=.故答案为:85.16.四棱锥P ABCD -的底面ABCD 是边长为a 的菱形,PA ⊥面ABCD ,120BAD ∠=︒,E ,F 分别是CD ,PC 的中点.(1)求证:平面AEF ⊥平面PAB ;(2)M 是PB 上的动点,EM 与平面PAB 所成的最大角为45︒,求二面角F AE D --的余弦值.【解答】解:(1)证明:底面ABCD 是边长为a 的菱形,120BAD ∠=︒,故60ADE ∠=︒,12DE a =,AD a =,由22222211132cos 6024224AE AD DE AD DE a a a a a =+-︒=+-= ,所以222AE DE AD +=,故Rt ADE ∆,AE ED ⊥,又//AB CD ,所以AE AB ⊥,22/31又PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以AE PA ⊥,又AB PA A = ,所以AE ⊥平面PAB ,又AE ⊂平面AEF ,故平面AEF ⊥平面PAB ;(2)连接AM ,则由(1)知,AE ⊥平面PAB ,则AME ∠为直线EM 与平面PAB 所成的角,在Rt AME ∆中,tan AEAME AM ∠=,当AM 最小时,即AM PB ⊥时,AME ∠取得最大值45︒,此时AE AM =,设PA x =,则由PA AB PB AM =得,2ax a =,解得x =,根据题意,以AB ,AE ,AP 分别为x ,y ,z 轴建立空间直角坐标系,则(B a ,0,0),(0E ,32,0),(2aC ,32,0),(0P ,0),33(,,)442a F,(0,,0)2AE =,(,442a AF = ,设平面AEF 的法向量为(,,)m x y z = ,由0204m AE a m AF x ⎧==⎪⎪⎨⎪=++=⎪⎩,得(m =-,又平面AED 的法向量为(0,0,1)n = ,由cos ,13m n <>== ,因为二面角F AE D --为钝角,所以二面角F AE D --的余弦值为1313-.23/3117.如图,在直三棱柱111ABC A B C -中,底面三角形ABC 为直角三角形,其中AB AC ⊥,3AB =,4AC =,18CC =,M ,N 分别为1BB 和1AA 的中点.(1)求证:CN ⊥平面1C MN ;(2)当点P 在线段1C A 上移动时,求直线NP 与平面11BB C C所成角正弦的最大值.【解答】解:依题意可得AB ,AC ,1AA 两两垂直,故以A 为原点建立空间直角坐标系(如图),(0A ,0,0),(3B ,0,0),(0C ,4,0),1(0A ,0,8),1(3B ,0,8),1(0C ,4,8),(1)(3M ,0,4),(0N ,0,4),(3,0,0)MN =- ,(0,4,4)CN =- ,1(0,4,4)C N =-- ,∴0MN CN ⋅= ,10CN C N ⋅= ,CN MN ∴⊥,1CN C N ⊥,且1C N M N N = ,CN ∴⊥面1C MN .(2)设1AP AC λ= ,01λ,(0NP NA AP =+= ,0,4)(0λ-+,4,8)(0=,4λ,84)λ-,(3,4,0)BC =- ,1(0BB = ,0,8),24/31设面11BB C C 的法向量为(m x = ,y ,)z ,由134080m BC x y m BB z ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,可取(4m = ,3,0),则直线NP 与平面11BB C C所成角正弦值为||||||m NP m NP ⋅===当12λ=时,2145λλ-+取得最小值1的值最大为35.即直线NP 与平面11BB C C 所成角正弦的最大值为35.18.如图,矩形ABCD 所在的平面与半圆弧 CD所在的平面垂直,2AB =,22AD =,M 是 CD 上异于C ,D 的动点.(1)证明:平面AMD ⊥平面BMC ;(2)设BM 和平面ABCD 所成角为θ,求sin θ的最大值.【解答】(1)证明:由题意可知,平面CMD ⊥平面ABCD ,且平面CMD ⋂平面ABCD CD =,又BC CD ⊥,BC ⊂平面ABCD ,故BC ⊥平面CMD ,25/31又DM ⊂平面CMD ,所以BC DM ⊥,因为M 是 CD上异于C ,D 的动点,且CD 为直径,所以DM CM ⊥,又BC CM C = ,BC ,CM ⊂平面BMC ,所以DM ⊥平面BMC ,又DM ⊂平面AMD ,故平面AMD ⊥平面BMC ;(2)解:过点M 作MH CD ⊥,交CD 于点H ,连接HB ,MC ,由平面DMC ⊥平面ABCD ,且平面CMD ⋂平面ABCD CD =,所以MH ⊥平面ABCD ,则MBH ∠为MB 与平面ABCD 所成角,即MBH θ∠=,不妨设HC x =,(02)x <<,所以2DH x =-,则由射影定理可得,22(2)2MH x x x x =-=-,又222221(22HB x x =+=+,所以222122MB MH HB x =+=+,故22222122MH x x sin MB x θ-==+,令1192(,)222x y +=∈,故22112()()595122()441642y y y sin y y θ--==-+-=,当且仅当12x =时取等号,所以sin θ的最大值为22.19.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,26/31D 为棱11A B 上的点,11BF A B ⊥.(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE所成的二面角的正弦值最小?【解答】(1)证明:连接AF ,E ,F 分别为直三棱柱111ABC A B C -的棱AC 和1CC 的中点,且2AB BC ==,1CF ∴=,BF =11BF A B ⊥ ,11//AB A B ,BF AB∴⊥3AF ∴=,AC ===,222AC AB BC ∴=+,即BA BC ⊥,故以B 为原点,BA ,BC ,1BB 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则(2A ,0,0),(0B ,0,0),(0C ,2,0),(1E ,1,0),(0F ,2,1),设1B D m =,则(D m ,0,2),∴(0BF = ,2,1),(1DE m =- ,1,2)-,∴0BF DE ⋅= ,即BF DE ⊥.(2)解:AB ⊥ 平面11BB C C ,∴平面11BB C C 的一个法向量为(1p = ,0,0),由(1)知,(1DE m =- ,1,2)-,(1EF =- ,1,1),设平面DEF 的法向量为(n x = ,y ,)z ,则00nDEn EF ⎧⋅=⎪⎨⋅=⎪⎩,即(1)200m x y z x y z -+-=⎧⎨-++=⎩,令3x =,则1y m =+,2z m =-,∴(3n = ,1m +,2)m -,27/31cos p ∴<,||||p n n p n ⋅>====⋅ ∴当12m =时,面11BB C C 与面DFE 所成的二面角的余弦值最大,此时正弦值最小,故当112B D =时,面11BB C C 与面DFE所成的二面角的正弦值最小.20.如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD所成二面角的正弦值.【解答】解:(1)证明:在半圆中,DM MC ⊥,正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,AD ∴⊥平面DCM ,则AD MC ⊥,AD DM D = ,MC ∴⊥平面ADM ,MC ⊂ 平面MBC ,∴平面AMD ⊥平面BMC .(2)ABC ∆ 的面积为定值,∴要使三棱锥M ABC -体积最大,则三棱锥的高最大,此时M 为圆弧的中点,28/31建立以O 为坐标原点,如图所示的空间直角坐标系如图正方形ABCD 的边长为2,(2A ∴,1-,0),(2B ,1,0),(0M ,0,1),则平面MCD 的法向量(1m = ,0,0),设平面MAB 的法向量为(n x = ,y ,)z 则(0AB = ,2,0),(2AM =- ,1,1),由20n AB y == ,20n AM x y z =-++= ,令1x =,则0y =,2z =,即(1n = ,0,2),则cos m <,||||m n n m n >== ,则面MAB 与面MCD所成二面角的正弦值sin 5α==.21.如图,在四棱锥P ABCD -中,四边形ABCD 为矩形,PD ⊥平面ABCD ,1PD CD ==,PA 与平面ABCD 所成角为30︒,M 为PB 上一点且CM PA ⊥.(1)证明:PA DM ⊥;(2)设平面PAD 与平面PBC 的交线为l ,在l 上取点N 使PN DA = ,Q 为线段PN 上一动点,求平面ACQ与平面PDC 所成二面角的余弦值的最大值.29/31【解答】解:(1)证明: 四边形ABCD 为矩形,AD CD ∴⊥,PD ⊥ 平面ABCD ,PD CD ∴⊥,AD PD D = ,AD ,PD ⊂平面PAD ,CD ∴⊥平面PAD ,PA ⊂ 平面PAD ,PA CD ∴⊥,CM PA ⊥ ,CM CD C = ,CM ,CD ⊂平面CMD ,PA ∴⊥平面CMD ,DM ⊂ 平面CMD ,PA DM ∴⊥.(2)PD ⊥ 平面ABCD ,PAD ∴∠为PA 与平面ABCD 所成角,PA 与平面ABCD 所成角为30︒,30PAD ∴∠=︒,1PD =,AD ∴=以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z轴,建立空间直角坐标系,AD = 1PD CD ==,PN DA =,PN ∴=令(0PQ λλ=,则(0D ,0,0),A 0,0),(0C ,1,0),(Q λ,0,1),(AC = 1,0),(CQ λ= ,1-,1),设(n x = ,y ,)z 是平面ACQ 的一个法向量,则00nAC y n CQ x y z λ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取1x =,得(1n =)λ,平面PDC 的一个法向量为(1m = ,0,0),cos ,||||m n m n m n ⋅∴<>==⋅,0λ ,∴当λ=cos ,m n <> 的最大值12,30/31∴平面ACQ 与平面PDC 所成二面角的余弦值的最大值为12.22.如图,四边形ABDE 为直角梯形,其中//AE BD ,AE AB ⊥,33AE BD ==,F 为腰DE 上的一个动点.ABC ∆为等腰直角三角形,2AB AC ==,平面ABDE ⊥平面ABC .(1)求证:AC BF ⊥;(2)当直线CF 与平面ABDE 所成角最大时,求平面FBC 与平面ABC所成锐二面角的余弦值.【解答】(1)证明:ABC ∆ 为等腰直角三角形,AB AC =,AC AB ∴⊥,又 平面ABDE ⊥平面ABC ,平面ABDE ⋂平面ABC AB =,AC ⊂平面ABC ,AC ∴⊥平面ABDE ,BF ⊂ 平面ABDE ,AC BF ∴⊥;(2)解:连接AF ,由(1)知AC ⊥平面ABDE ,直线CF 与平面ABDE 成角为CFA ∠,2tan AC CFA AF AF ∠==,∴当AF 最小时,CF 与平面ABDE 所成角最大,此时AF DE ⊥,过F 作FM AB ⊥于M ,过M 作MN BC ⊥于N ,连接NF ,则FNM ∠为二面角F BC A --的平面角,在AE 上取得H ,使1AH BD ==,连接DH ,则DH AE ⊥,在Rt DHE ∆中,由2EH =,2DH =,可得ED =,由1122ADE S AE DH DE AF ∆=⋅=⋅,可得322AE DH AF DE ⋅==,则322EF ===,32222DE ∴=-=,由1124FM-=,可得32FM=,由Rt BNM Rt BAC∆∆∽,得NM BMAC BC=,即12224NM⨯==,NF∴===cos19NMFNMFN∴∠===.31/31。

重难点突破:立体几何中最值问题全梳理

重难点突破:立体几何中最值问题全梳理

重难点突破:立体几何中最值问题全梳理模块一、题型梳理题型一 空间角的最值问题例题1: 如图,四边形和均为正方形,它们所在的平面互相垂直,动点在线段上,分别为的中点.设异面直线与所成的角为,则的最大值为_________.【解析】AB 为x 轴,AD 为y 轴,AQ 为z 轴建立坐标系,设正方形边长为2.cos θ=令[]()0,2)f m m =∈,()f m '=[]0,2,()0m f m '∈∴<,max 2()(0)5f m f ==,即max 2cos 5θ=ABCD ADPQ M PQ ,E F ,AB BC EM AF θθcos例题2: 正四棱柱1111ABCD A B C D -中,4AB =,1AA =.若M 是侧面11BCC B 内的动点,且AM MC ⊥,则1A M 与平面11BCC B 所成角的正切值的最大值为___________.【分析】如图,以D 为原点建立空间直角坐标系,设点(),4,M m n ,由AM MC ⊥得()2224m n -+=,证明11A MB 为1A M 与平面11BCC B 所成角,令22cos ,2sin m n θθ=+=,用三角函数表示出11tan A MB ∠,求解三角函数的最大值得到结果.【解析】如图,以D 为原点建立空间直角坐标系,设点(),4,M m n ,则()()(14,0,0,0,4,0,4,4,A C B ()(),0,,4,4,CM m n AM m n ∴==-,又AM MC ⊥,得2240,AM CM m m n ⋅=-+=即()2224m n -+=;又11A B ⊥平面11BCC B ,11A MB ∴∠为1A M 与平面11BCC B 所成角,令[]22cos ,2sin ,0,m n θθθπ=+=∈,11111tan ∴∠==A B A MB B M==,∴当3πθ=时,11tan A MB ∠最大,即1A M 与平面11BCCB 所成角的正切值的最大值为2.故答案为:2【小结】本题主要考查了立体几何中的动点问题,考查了直线与平面所成角的计算.对于这类题,一般是建立空间直角坐标,在动点坐标内引入参数,将最值问题转化为函数的最值问题求解,考查了学生的运算求解能力和直观想象能力.题型二 空间距离的最值问题例题3: 的正三棱柱111ABC A B C -中,ABC ∆的边长为2,D 为棱11B C 的中点,若一只蚂蚁从点A 沿表面爬向点D ,则蚂蚁爬行的最短距离为( )A .3B .C .D .2【分析】将正三棱柱展开,化平面图形中的距离最短的问题.有三种选择,第一种是从A 点出发,经过BC 再到达点D .第二种是从A 点出发,经过11A B 再到达点D .第三种是从A 点出发,经过1BB ,最后到达点D .分别求出三种情况的距离,选其中较小的值,即为所求最短距离.【解析】如图1,将矩形11BCB C 翻折到与平面ABC 共面的位置11BCC B '',此时,爬行的最短距离为AD '=2,将111A B C △翻折到与平面11ABB A 共面的位置111A B C ',易知11A D AA '=1120D A A '∠=︒,此时爬行的最短距离3AD '=;如图3,将矩形11BCB C 翻折到与平面11ABB A 共面的位置11BC C B '',此时,爬行的最短距离AD '=综上,小蚂蚁爬行的最短距离为3.故选:A.【小结】本题考查了空间想象能力,和平面几何的计算能力,解决本题的关键是依据“在平面内,两点之间线段最短”.属于中档题.例题4: 点D 是直角ABC ∆斜边AB 上一动点,3,4AC BC ==,将直角ABC ∆沿着CD 翻折,使'B DC ∆与ADC ∆构成直二面角,则翻折后'AB 的最小值是( )A B C .D【分析】过点B ′作B E CD '⊥于点E ,连接,BE AE ,根据折叠性质设BCD B CD α∠=∠'=,用α表示出,,2B E CE ACE πα'∠=-,在AEC ∆中由余弦定理表示出2AE ,再在Rt AEB ∆'中,由勾股定理即可求得'AB 的最小值.【解析】过点B ′作B E CD '⊥于点E ,连接,BE AE ,如下图所示:设BCD B CD α∠=∠'=,则有4sin 4cos 2B E CE ACE πααα'==∠=-,,,在AEC ∆中,由余弦定理得,2222cos 2AE AC CE AC CE πα⎛⎫=+-⋅⋅- ⎪⎝⎭2916cos 24cos sin ααα=+-,在Rt AEB ∆'中,由勾股定理得,22222916cos 24cos sin 16sin AB AE B E αααα'+'+-+==2512sin 2α=-,∴当4πα=时,AB 'B . 【小结】本题考查了立体几何中折叠问题的综合应用,余弦定理表示出边长,并由三角函数值域的有界性确定最值,属于中档题.题型三 球体的最值问题例题5: 将半径为r 的5个球放入由一个半径不小于3r 的球面和这个球的内接正四面体的四个面分割成的五个空间内,若此正四面体的棱长为r 的最大值为________.【分析】计算正四面体的外接球半径3R =,内切圆半径为11r =,设1OO 与球面相交于点Q ,如图所示,画出剖面图,33R r =≥,1r r ≤,122O Q r =≥,解得答案.【解析】正四面体的棱长为根据对称性知,A 的投影为三角形BCD 的中心1O ,则123O D DM ==高14AO ==,设外接球半径为R ,故()22211R AO R DO =-+,解得3R =,设正四面体内切球半径为1r ,根据等体积法得到:((2211111sin 604sin 6043232r ⋅︒⨯=⨯︒⨯,故11r =, 根据题意33R r =≥,1r r ≤,1r ≤.设1OO 与球面相交于点Q ,如图所示,画出剖面图,1122O Q R OO r =-=≥,故1r ≤.综上所述:1r ≤,故r 的最大值为1.故答案为:1.【小结】本题考查了四面体的外接球内切球问题,意在考查学生的计算能力和空间想象能力.例题6: 已知点,,A B C 在半径为2的球面上,满足1AB AC ==,BC =S 是球面上任意一点,则三棱锥S ABC -体积的最大值为( )A B .36+ C .212+ D .312+ 【分析】要使S ABC -体积的最大,需S 到平面ABC 距离最大,当S 为ABC 外接圆圆心与球心的延长线与球面的交点时取最大值,求出ABC 外接圆的半径,进而求出球心与ABC 外接圆圆心的距离,即可求解.【解析】设ABC 外接圆圆心为O ',三棱锥S ABC -外接球的球心为O ,1AB AC ==,设D 为BC 中点,连AD ,则AD BC ⊥,且O '在AD 上,12AD ==,设ABC 外接圆半径为r ,222231()()()242BC r AD r r =+-=+-,解得1,||r OO '=∴=要使S ABC -体积的最大,需S 到平面ABC 距离, 即S 为O O '2,所以三棱锥S ABC -体积的最大值为11112)2)3322ABC S ⨯=⨯⨯⨯=【小结】本题考查三棱锥体积的最值、多面体与球的“接”“切”问题,注意应用球的截面性质,属于中档题例题7: 已知四棱锥S ABCD -的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥体积取得最大值时,其表面积等于2+,则球O 的体积等于( )A .43πB .83πC .163πD .223π 【分析】由条件可得球心O 为正方形ABCD 的中心,当此四棱锥的高为球的半径时,此四棱锥体积取得最大值. 设球O 的半径为R ,则AB ==,可得SBC ∆为等边三角形,根据条件可得1R =,从而得出答案.【解析】四棱锥S ABCD -的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内, 所以球心O 为正方形ABCD 的中心,当此四棱锥的高为球的半径时,此四棱锥体积取得最大值.此时四棱锥为正四棱锥.设球O 的半径为R ,则AB ==,SB ==,SBC ∆为等边三角形,则2213sin 6022SBC S SB R ∆==,所以此四棱锥的表面积为22422SBC ABCD S S R ∆+=+=+ 所以1R =.球O 的体积34433V R ππ== ,故选:A【小结】本题考查四棱锥的表面积和外接球的体积问题,属于中档题.例题8: 的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )A .12B .12C D 【解析】因为蛋巢的底面是边长为1的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为1,又因为鸡蛋的体积为4π3,所以球的半径为1,所以球心到截面的距离2d ==为1,而蛋巢的高度为12,故球体到蛋巢底面的最短距离为112⎛--= ⎝⎭. 【小结】本题主要考查折叠问题,考查球体有关的知识.在解答过程中,如果遇到球体或者圆锥等几何体的内接或外接几何体的问题时,可以采用轴截面的方法来处理.也就是画出题目通过球心和最低点的截面,然后利用弦长和勾股定理来解决.球的表面积公式和体积公式是需要熟记的.题型四 棱锥的最值问题例题9: 如图,三棱锥P ABC -的四个顶点恰是长、宽、高分别是m ,2,n 的长方体的顶点,此三棱锥的体积为2,则该三棱锥外接球体积的最小值为__________.【分析】由题知,由三棱锥的体积得6mn =, 又三棱锥P ABC -的外接球直径是长方体的体对角线2R . 【解析】P ABC -的外接球直径是长方体的体对角线,∴R =,3334411=3386V R πππ==⨯ 1212=233P ABC ABC mn V S h -∆⋅=⨯⨯= ,6mn ∴=,222=12m n mn ∴+≥,当且仅当=m n =时,等号成立,3311=32463=6V πππ≥⨯,三棱锥外接球体积的最小值为323π,故答案为323π. 【小结】本题考查与球有关外接问题. 与球有关外接问题的解题规律:(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12. (2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.例题10: 有一个长方形木块,三个侧面积分别为8,12,24,现将其削成一个正四面体模型,则该正四面体模型棱长的最大值为( )A .2 B.C .4 D.【分析】先求长方体从同一顶点出发的三条棱的长度,从而可得正四面体模型棱长的最大值.【解析】设长方体从同一顶点出发的三条棱的长分别为,,a b c ,则81224ab ac bc =⎧⎪=⎨⎪=⎩,故246a b c =⎧⎪=⎨⎪=⎩,若能从该长方体削得一个棱长最长的正四面体模型,则该四面体的顶点必在长方体的面内,过正四面体的顶点作垂直于长方体的棱的垂面切割长方体,含正四面体的几何体必为正方体, 故正四面体的棱长为正方体的面对角线的长,而从长方体切割出一个正方体,使得面对角线的长最大,需以最小棱长2为切割后的正方体的棱长切割才可,故所求的正四面体模型棱长的最大值.故选:B.【小结】本题考查正四面体的外接,注意根据外接的要求确定出顶点在长方体的侧面内,从而得到正四面体的各顶点为某个正方体的顶点,从而得到切割的方法,本题属于中档题.例题11: 某三棱锥的三视图如图,且图中的三个三角形均为直角三角形,则x y +的最大值为________.【分析】根据三视图,利用勾股定理列出等式,再结合基本不等式求最值.【解析】由三视图之间的关系可知2210802x y =--,整理得22128x y +=,故22222()2()2562x x y x y x y y =++=++≤, 解得16x y +,当且仅当8x y ==时等号成立,故答案为:16【小结】本题考查三视图之间的关系应用,考查基本不等式,难度不大.例题12:如图,在三棱锥P ABC -中PA PB PC 、、两两垂直,且3,2,1PA PB PC ===,设M 是底面三角形ABC 内一动点,定义:()(,,)f M m n p =,其中m n p 、、分别是三棱锥M PAB -、三棱锥M PBC -、三棱锥M PAC -的体积。

立体几何第三讲 空间几何体得最值问题

立体几何第三讲  空间几何体得最值问题

分清定量与变量,然后根据变量的取值情况,利用函数法或平面几何的相关结论判断相应的
最值.如该题中确定三棱锥底面的面积最值是关键.
【玩转跟踪】在棱长为 1 的正方体 ABCD A1B1C1D1 中,点 P1, P2 分别是线段 AB 、BD1(不
包括端点)上的动点,且线段 P1P2 平行于 平面 A1 ADD1 ,则四面体 P1P2 AB 的体积的最大值
锥 P-AEF 的底面积和高,高为定值时,底面积最大,则体积最大.
【解析】因为 PA 平面 ABC, BC 平面 ABC,所以 PABC 又因为 BCAC, PA AC A ,所以 BC 平面 PAC,又 AF 平面 PAC,所以 BCAF , 又 AFPC, PC BC C ,所以 AF 平面 PBC,即 AFEF 。EF 是 AE 在平面 PBC 上的 射影,因为 AEPB ,所以 EFPB ,即 PE 平面 AEF。在三棱锥 P AEF 中, AP AB 2, AEPB ,
5
.
5
又 P 在 BD 上运动,且当 P 运动到点 O 时,PQ 最小,等于 OQ 的长为 2 5 ,也就是异面直 5
线 BD 和 SC 的公垂线段的长.故选 B. 2.几何体表面上的最短距离问题
【例 2】正三棱柱 ABC—A1B1C1 中,各棱长均为 2,M 为 AA1 中点,N 为 BC 的中点,则 在棱柱的表面上从点 M 到点 N 的最短距离是多少?并求之.
又∵ 0<α+β<π,∴(α+β)max=π-arctan 2 ,(α+β)min=π-arctan2 2 .
【迁移运用】
1.【西藏日喀则一中高三 10 月检测】已知正三C 的距离为1,点 是线段 的中点,过点 作球 的截面,则截面面

立体几何中的最值问题答案

立体几何中的最值问题答案

立体几何中的最值问题答案立体几何中的最值问题一、线段长度最短或截面周长最小问题例1. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之.解析: (1)从侧面到N ,如图1,沿棱柱的侧棱AA 1剪开,并展开,则MN =22AN AM +=22)12(1++=10(2)从底面到N 点,沿棱柱的AC 、BC 剪开、展开,如图2.则MN =??-+120cos 222AN AM AN AM =21312)3(122++=34+∵34+<10 ∴m in MN =34+.例2.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。

点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<(2)当a 为何值时,MN 的长最小;(3)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小。

解析:(1)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连接PQ ,依题意可得MP ∥NQ ,且MP=NQ ,即MNQP 是平行四边形。

∴MN=PQ,由已知,CM=BN=a,CB=AB=BE=1,∴2==BF AC ,21,21a BQ a CP ==, 即2aBQ CP ==, ∴=+-==22)1(BQ CP PQ MN )20(21)22()2()21(222<<+-=+-a a a a (2)由(1)知: 2222==MN a 时,当,的中点时,分别移动到即BF AC N M ,, 22的长最小,最小值为MN(3)取MN 的中点G ,连接AG 、BG ,∵AM=AN,BM=BN ,∴AG ⊥MN,BG ⊥MN ,∴∠AGB 即为二面角α的平面角。

又46==BG AG ,所以由余弦定理有31464621)46()46(cos 22-=?-+=α。

最新3. 立体几何中的最值问题资料资料

最新3. 立体几何中的最值问题资料资料

3. 立体几何中的最值问题(一)求解立体几何的最值问题主要应用代数中的有关函数知识或不等式有关知识求解。

解题的关键是恰当地引入参变量(一元或二元),建立目标函数,然后由表达式的特点求最值;求曲面上的两点间距离或多面体中的折线的最短长度问题,可考虑展开后转化为平面上两点间的最短距离问题,然后用通常的解三角形的方法加以解决。

一、面积的最值问题1. 【湖南省怀化市2014届高三第二次模拟考试统一检测】在空间中有一棱长为a 的正四面体,其俯视图的面积的最大值为( )A .2a B .22a C .24D .24a2. (湖北省荆州市2013届高三3月质量检测(Ⅱ)数学(理)试题)在半径为R 的球内有一内接圆柱,设该圆柱底面半径为r ,当圆柱的侧面积最大时,rR 为 ( )A .14B .12C .2D3.(东北三省三校2013年3月高三第一次联合模拟)点A B C D 、、、在同一个球的球面上,AB BC ==2AC =,若四面体ABCD 体积的最大值为23,则这个球的表面积为( )A .1256π3B .8πC .254πD .2516π4 .(河北省武邑中学2013届高三第一次模拟考试数学(理)试题)如图,在三棱锥ABC P -中,PA ⊥底面ABC ,∠ACB = 90,AE ⊥PB 于E ,AF ⊥PC 于F ,若2==AB PA ,∠BPC =θ,则当AEF ∆的面积最大时,θtan 的值为( )A .2B .21 C .2 D .225.(河南省豫东、豫北十所名校2012届高三阶段性测试四理科)已知长方体ABCD -A 1B 1C 1D 1的外接球的表面积为16,则该长方体的表面积的最大值为( )A .32B .36C .48D .646. (湖南省株洲市2008届高三第二次质检)已知三棱锥P —ABC 的四个顶点均在半径为1的球面上,且满足0=⋅,0=⋅,0=⋅,则三棱锥P —ABC 的侧面积的最大值为( )A .2B .1C .21D .417. 设圆柱轴截面的对角线长为定值,为使圆柱的侧面积最大,则轴截面的对角线与底面所成的角为( )A 、6πB 、4πC 、3πD 、125πFEPCBA8. 有一个棱长为a 的正方体骨架,其内放置一气球,使其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为( )A 、2a πB 、22a πC 、23a πD 、24a π9. 已知圆锥的母线长为,l 底面半径为R ,如果过圆锥顶点的轴截面面积的最大值是221l ,则( )A 、22≤l R B 、22=l R C 、22≥l R D 、22<l R10、如果过圆锥顶点的面积最大的截面是轴截面,则圆锥的侧面展开图的圆心角的取值范围是( )A 、⎪⎪⎭⎫ ⎝⎛π220,B 、()π20,C 、⎥⎦⎤ ⎝⎛π220, D 、(]π20,11. 圆锥的轴截面为正三角形,母线长为8,圆锥的内接圆柱的高为h ,当内接圆柱的侧面积最大时,h 的值是( )A 、334 B 、4 C 、33 D 、3212. 在正三棱锥P -ABC 中,AB =8,PC =54,动点ABM PC M ∆∈,则面积的最小值为( )A 、524B 、374C 、354D 、5551613. 【2014年呼伦贝尔市高考模拟统一考试(二)】设A 、B 、C 、D 是半径为2的球面上的四点,且满足,,AB AC AD AC AB AD ⊥⊥⊥,ABC ABD ACD S S S ∆∆∆++的最大值是 _______ .14【东北三省三校2014届高三第一次联合模拟】 正四面体ABCD 的棱长为4,E 为棱BC 的中点,过E 作其外接球的截面,则截面面积的最小值为 .答案:1-12 BCCD AABB CCDD 13. 8; 14. 4π3. 立体几何中的最值问题(二)二、体积的最值问题1. (2010全国卷2理数)(9)已知正四棱锥S ABCD -中,SA =,那么当该棱锥的体积最大时,它的高为( )A .1B .C .2D .32. (2010全国卷1文理数)(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB =CD =2,则四面体ABCD 的体积的最大值为( )A B C . D3.【湖北省稳派教育2014届高三上学期强化训练(三)数学(理)试题】在三棱锥ABC P -中,PC PB PA ,,两两垂直,且1,2,3===PC PB PA ,设M 是底面ABC ∆内一点,定义),,()(p n m M f =,其中p n m ,,分别是三棱锥PAB M -,三棱锥PBC M -,三棱锥PCA M -的体积,若),,21()(y x M f =,且81≥+y a x ,则正实数a 的最小值为( )A . 1B .2C .22D .44. 【陕西省西工大附中2014届高三第四次适应性训练】已知一个四面体有五条棱长都等于2,则该四面体的体积最大值为( )A .12B .1C .22 D .25. (北京市朝阳区2013届高三上学期期末考试数学理试题 )在棱长为1的正方体1111ABCD A B C D 中,点1P ,2P 分别是线段AB ,1BD (不包括端点)上的动点,且线段12P P 平行于平面11A ADD ,则四面体121PP AB 的体积的最大值是( ) A .124B .112 C .16D .126.(河南省十所名校2013届高三第三次联考数学(理)试题)四面体ABCD 中,AD 与BC 互相垂直,AD =2BC =4,且AB +BD =AC +CD =2,则四面体ABCD 的体积的最大值是( )A .4B .2C .5 D7.(吉林省实验中学2012届高三第六次模拟理科)已知正四棱锥S ABCD-中,SA=,那么当该棱锥的体积最大时,它的高为()A.1 B C.2 D.38.(四川省成都市新都一中高2008级12月月考)已知一个四面体有五条棱长都等于2,则该四面体的体积最大值为( )A、12B、22C、1D、29. (2009湖南师大附中第五次月考)如图,三棱柱ABC-A1B1C1的侧面A1ABB1⊥BC,且A1C与底面成 45°角,AB=BC=2,则该棱柱体积的最小值为 ()A.34B.33C.4 D. 310.【湖南省衡阳市八中2014届高三上学期第三次月考试卷数学(理)】在三棱锥D-ABC中,已知BC丄AD,BC=2 ,AD=6,AB+BD=AC+CD=10,则三棱锥D一ABC的体积的最大值是__________.11. 【山东省东营市高三4月统一质量检测】已知直角梯形ABCD,AB AD⊥,CD AD⊥,222AB AD CD===,沿AC折叠成三棱锥,当三棱锥体积最大时,三棱锥外接球的体积为.12.【2012高考真题上海理14】如图,AD与BC是四面体ABCD中互相垂直的棱,2=BC,若cAD2=,且aCDACBDAB2=+=+,其中a、c为常数,则四面体ABCD的体积的最大值是。

高三数学选择填空难题突破 立体几何中最值问题

高三数学选择填空难题突破 立体几何中最值问题

高三数学选择填空难题突破立体几何中最值问题高三数学选择填空难题突破——立体几何中的最值问题一、方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题。

此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练。

立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合。

解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解。

二、解题策略类型一:距离最值问题例1:如图,矩形ADFE,矩形CDFG,正方形ABCD两两垂直,且AB=2,若线段DE上存在点P使得GP⊥BP,则边CG长度的最小值为()解:建立空间直角坐标系,设CG长度为a及点P的坐标,求BP与GP的坐标,得到函数关系式,利用函数求其最值。

举一反三:如图,在棱长为1的正方体ABCD-A中,点E、F分别是棱BC、CC'的中点,P是侧面BCC'B内一点,若A'P⊥平面AEF,则线段A'P长度的取值范围是_____。

二、改写后的文章高三数学选择填空难题突破——立体几何中的最值问题一、方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目。

而几何问题中的最值与范围类问题,不仅可以考查学生的空间想象能力,还可以考查运用运动变化观点处理问题的能力,因此这类问题将是有中等难度的考题。

专题05 解析几何中的最值问题 (解析版)

专题05 解析几何中的最值问题 (解析版)

专题05 解析几何中的最值问题常见考点考点一 面积最值问题典例1.已知椭圆C ∶22221(0)x y a b a b+=>>经过点P32),O 为坐标原点,若直线l 与椭圆C交于A ,B 两点,线段AB 的中点为M ,直线l 与直线OM 的斜率乘积为-14. (1)求椭圆C 的标准方程;(2)若OM =AOB 面积的最大值.【答案】(1)221123x y +=(2)3 【解析】 【分析】(1)根据椭圆经过点P32),得到223914a b+=,再利用点差法,根据直线l 与直线OM 的斜率乘积为-14,得到 2214b a -=-求解;(2)当AB x ⊥轴时,易得12AOBSOM AB =⋅AB 与x 轴不垂直时,设直线AB 的方程为y kx t =+,联立221123x y y kx t ⎧+=⎪⎨⎪=+⎩,根据OM =k ,t 的关系,再求得AB 和点O 到直线AB 的距离为d ,由12AOB S AB d =⋅⋅求解.(1)解:因为椭圆经过点P32), 所以223914a b +=, 设()()1122,,,A x y B x y ,因为直线l 与椭圆C 交于A ,B 两点,所以22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得2121221212y y x x b x x a y y -+=-⋅-+,因为线段AB 的中点为M ,且直线l 与直线OM 的斜率乘积为-14,所以 2214b a -=-,解得223,12b a ==,所以椭圆方程为:221123x y +=;(2)当AB x ⊥轴时,点M 在x 轴上,且OM AB ⊥,由OM =3AB =,所以12AOBSOM AB =⋅ 当直线AB 与x 轴不垂直时,设直线AB 的方程为y kx t =+,由221123x y y kx t ⎧+=⎪⎨⎪=+⎩,消去y 得()2221484120k x ktx t +++-=, 则21212228412,1414kt t x x x x k k -+=-⋅=++,224,1414kt t M k k ⎛⎫- ⎪++⎝⎭,由OM =()2222314116k t k +=+,因为AB =点O 到直线AB 的距离为d =所以12AOBSAB d =⋅⋅=3≤=,当且仅当221214k k =+,即218k =时,等号成立,综上 AOB 面积的最大值是3.变式1-1.已知椭圆221221x y C a b+=:的焦距为2,且过点(P .若直线AB 为椭圆1C 与抛物线2C :22(0)y px p =>的公切线.其中点,A B 分别为1C ,2C 上的切点.(1)求椭圆1C 的标准方程:(2)求OAB 面积的最小值.【答案】(1)2212x y +=;(2)2. 【解析】 【分析】(1)根据给定条件,列出关于22,a b 的方程,求解作答.(2)设出直线AB 的方程,分别与抛物线2C ,椭圆1C 的方程联立,求出切点纵坐标,再求出面积的函数关系,借助均值不等式计算作答. (1)椭圆半焦距c ,依题意,1c =,221112a b+=,又2221a b c -==,解得22a =,21b =, 所以椭圆1C 的标准方程为:2212x y +=. (2)显然直线AB 不垂直于坐标轴,设直线AB 的方程为(0)x my t m =+≠,()11,A x y ,()22,B x y ,由22y px x my t⎧=⎨=+⎩消去x 并整理得:2220y pmy pt --=, 则22480p m pt ∆=+=,即22t p m =-,22ty pm m==-, 由2222x y x my t⎧+=⎨=+⎩ 消去x 并整理得:()2222220m y mty t +++-=, 则()()222244220m t m t '∆=-+-=,即222t m =+,1222mt mt my m t t --===-+,点O 到直线AB 的距离为d =∴1211222OABm tS AB d y y t t m =⋅=-=⋅-+221212414(||)2222||t m m m m m m m +=-+=-+=+≥=, 当且仅当4||||m m =,即2m =±时取“=”, 所以OAB 面积的最小值为2.变式1-2.已知曲线C 上任一点到点()3,0F 的距离等于该点到直线3x =-的距离.经过点()3,0F 的直线l 与曲线C 交于A 、B 两点. (1)求曲线C 的方程;(2)若曲线C 在点A 、B 处的切线交于点P ,求PAB △面积的最小值. 【答案】(1)212y x = (2)36 【解析】 【分析】(1)分析可知曲线C 是以点()3,0F 为焦点,以直线3x =-为准线的抛物线,由此可求得曲线C 的方程;(2)先证明结论:抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+,设直线l 的方程为3x ty =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,求出AB ,写出抛物线C 在A 、B 两点处的切线方程,求出点P 的坐标,进而求出点P 到直线l 的距离,利用三角形的面积公式结合二次函数的性质可求得PAB △面积的最小值. (1)解:由题意可知,曲线C 是以点()3,0F 为焦点,以直线3x =-为准线的抛物线,设抛物线C 的标准方程为()220y px p =>,则32p ,可得6p ,因此,曲线C 的方程为212y x =. (2)解:先证明结论:抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+, 由题意可得20012y x =,联立()002612y y x x y x⎧=+⎨=⎩,可得()200x x -=,解得0x x =,因此,抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+. 若直线l 与x 轴重合,则直线l 与抛物线C 只有一个交点,不合乎题意. 设直线l 的方程为3x ty =+,设点()11,A x y 、()22,B x y ,联立2312x ty y x=+⎧⎨=⎩,可得212360y ty --=,21441440t ∆=+>,由韦达定理可得1212y y t +=,1236y y =-,()2121AB t ==+,抛物线212y x =在点A 处的切线方程为()2111662y y y x x x =+=+,同理可知抛物线212y x =在点A 处的切线方程为22262y y y x =+,联立2112226262y y y x y y y x ⎧=+⎪⎪⎨⎪=+⎪⎩,解得121231262y y x y y y t ⎧==-⎪⎪⎨+⎪==⎪⎩,即点()3,6P t -, 点P 到直线l 的距离为261t d +==所以,()3221361362PABS AB d t =⋅=+≥△,当且仅当0=t 时,等号成立. 因此,PAB △面积的最小值为36. 【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.变式1-3.已知椭圆E :22221(0)x y a b a b +=>>,且过点⎛- ⎝⎭. (1)求E 的方程;(2)若()3,0M ,O 为坐标原点,点P 是E 上位于第一象限的一点,线段PM 的垂直平分线交y 轴于点N ,求四边形OPMN 面积的最小值.【答案】(1)22162x y +=(2)【解析】 【分析】(1)根据椭圆的离心率以及椭圆上的点,列出方程组,解得a.b ,可得答案.(2)设P 点坐标,表示出直线PM 的斜率,进而可得其中垂线方程,求得N 点坐标,从而表示出四边形OPMN 的面积,结合基本不等式,即可求得答案. (1)设E 的焦距为2c,则()222222211c a a b a b c ⎧=⎪⎪⎪⎪-⎪⎝⎭+=⎨⎪-=⎪⎪⎪⎪⎩,解得2a b c ⎧=⎪⎪=⎨⎪=⎪⎩所以E 的方程是22162x y +=.(2)由题意,设()(000,0P x y y <,线段MP 的中点为A ,则点A 的坐标为003,22x y+⎛⎫⎪⎝⎭,且直线MP 的斜率003PM y k x =-,故直线AN 的斜率为0031AN PM x k k y -=-=, 从而直线AN 的方程为00003322y x x y x y -+⎛⎫-=- ⎪⎝⎭, 又2200162x y +=,则220063x y =-, 令0x =,得2200092x y y y +-=,化简得200230,2y N y ⎛⎫-- ⎪⎝⎭,所以四边形OPMN 的面积2000231133222OPMN OMNOPMy S SSy y --=+=⨯⨯+⨯⨯200023322y y y ⎛⎫+=+ ⎪⎝⎭003332222y y ⎛⎫=+≥⨯= ⎪⎝⎭当且仅当0y =所以四边形OPMN面积的最小值为考点二 其他最值问题典例2.如图,已知椭圆C :22212x y a +=的左、右焦点为1F 、2F ,左、右顶点分别为1A 、2A ,离心率e =M 为椭圆C 上动点,直线1A M 交y 轴正半轴于点A ,直线2A M 交y 轴正半轴于点B (当M 为椭圆短轴上端点时,A ,B ,M 重合).(1)求椭圆C 的方程;(2)若3OA OB =,求直线MA 的方程;(3)设直线2MA 、2AA 的斜率分别为1k 、2k ,求12k k +的最大值.【答案】(1)22142x y +=(2)y =(3)【解析】 【分析】(1)根据离心率可求a ,从而可得椭圆方程.(2)设()00,M x y ,则可以用M 的坐标表示,A B ,再根据3OA OB =可求0x ,从而可求M 的坐标,故可求直线MA 的方程.(3)结合(2)可得12k k +,利用M 在椭圆上可化简前者,利用其纵坐标的范围可求最大值. (1)因为椭圆的离心率为e =c a =即22212a a -=,故24a =,所以椭圆的方程为:22142x y +=.设()00,M x y ,因为直线1A M 交y 轴正半轴于点A ,则02x ≠±,00y >,又()00:22y AM y x x =++,故0020,2y A x ⎛⎫⎪+⎝⎭,()00:22y MM y x x =--,故0020,2y B x ⎛⎫- ⎪-⎝⎭, 因为3OA OB =,故000022322yyx x =-⨯+-,所以01x =-,所以0y =故()2:212AM y x x =+=-+y =. (3)由(2)可得0102y k x =-,而0020202022y x y k x -+==--+, 故00002200000124422242y y y y k y k x x x y =-==-=--+-+,因为00y <2y -≤12k k +的最大值为 变式2-1.已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=(2)8 【解析】 【分析】(1)根据双曲线的定义即可得出答案;(2)可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx⎧-=⎪⎨⎪=⎩,求得2OP ,同理求得2OQ ,从而可求得2211||||OP OQ +的值,再结合基本不等式即可得出答案. (1)解:设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)解:由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩, 所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--, 所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++,()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.变式2-2.已知椭圆2222:1(0)x y C a b a b +=>>过点(0,1)P,椭圆上的任意一点到焦点距离的最小值为2(1)求椭圆C 的方程;(2)设不过点P 的直线l 与椭圆相交于,A B 两点,若直线PA 与直线PB 斜率之和为1-,求点P 到直线l 距离的最大值.【答案】(1)2214x y +=(2)【解析】【分析】(1)根据题意可得21b =且2a c -=a ,b ,c 之间的关系,解得a ,c ,b ,即可得出答案. (2)当直线l 垂直于y 轴时,直线PA 与直线PB 的斜率和为0,不符合题意,设直线l 的方程为x my n =+,则111PA y k x -=,221PB y k x -=,联立直线l 与椭圆C 的方程,可得244181()10n m y y m n x m n x---+⋅+=++,PA k ,PB k 是该二次方程的两根,利用韦达定理结合条件可得到21PA PB k k n m+=-=--,即可得出答案. (1)因为椭圆过点(0,1)P,椭圆上的任意一点到焦点距离的最小值为2, 所以21b =且2a c -= 又22221a b c c =+=+, 解得2a =,c =所以椭圆的方程为2214x y +=.(2)当直线l 垂直于y 轴时,直线PA 与直线PB 的斜率和为0,不符合题意, 故设直线l 的方程为x my n =+, 由于直线l 不过点(0,1)P ,故0m n +≠, 设1(A x ,1)y ,2(B x ,2)y ,10x ≠,20x ≠, 则111PA y k x -=,221PB y k x -=, 直线l 的方程可改写为(1)1x m y m n m n--=++, 椭圆C 的方程可改写为224(1)8(1)0x y y +-+-=, 两者联立,可得22(1)4(1)8(1)[]0x m y x y y m n m n-+-+-⋅-=++, 0x ≠时,整理可得244181()10n m y y m n x m n x---+⋅+=++①, 若n m =,则直线l 与椭圆C 的一个交点为(0,1)-, 此时直线PA 的斜率不存在,不符合题意, 故n m ≠,且PA k ,PB k 是以上二次方程①的两根, 由韦达定理有21PA PB k k n m+=-=--,于是2n m =+,直线l 的方程为2x my m =++,所以直线l 经过定点(2,1)-,则当点P 与该定点的连线与l 垂直时,点P 到直线l 距离的最大,最大值.. 【点睛】本题考查椭圆的方程,直线与椭圆的相交问题,解答时要注意便是德技巧,解题中需要一定的计算能力,属于较难题.变式2-3.已知点()0,2R -,()0,2Q ,双曲线C 上除顶点外任一点(),M x y 满足直线RM 与QM 的斜率之积为4. (1)求C 的方程;(2)若直线l 过C 上的一点P ,且与C 的渐近线相交于A ,B 两点,点A ,B 分别位于第一、第二象限,2AP PB =,求AP PB ⋅的最小值.【答案】(1)2214y x -=(2)1 【解析】 【分析】 (1)由题意得224+-⋅=y y x x,化简可得答案, (2)求出渐近线方程,设点()00,P x y ,()11,2A x x ,()22,2B x x -,1>0x ,20x <,由2AP PB =可得12023x x x +=,120243-=x x y 代入双曲线方程化简可得1298⋅=-x x ,然后表示AP PB ,的坐标,再进行数量积运算,化简后利用基本不等式可得答案 (1)由题意得224+-⋅=y y x x ,即2244-=y x, 整理得2214y x -=,因为双曲线的顶点坐标满足上式,所以C 的方程为2214y x -=.(2)由(1)可知,曲线C 的渐近线方程为2y x =±, 设点()00,P x y ,()11,2A x x ,()22,2B x x -,1>0x ,20x <, 由2AP PB =,得()()01012020,22,2--=---x x y x x x x y , 整理得12023x x x +=,120243-=x x y ①,把①代入220014y x -=,整理得1298⋅=-x x ②, 因为()121201012244,2,33-+--⎛⎫=--=⎪⎝⎭x x x x AP x x y x , ()2121202022,2,33---⎛⎫=---= ⎪⎝⎭x x x x PB x x x y , 所以()22121211010129⋅=++⋅AP PB x x x x .由1298=-x x ,得1298=-x x , 则()22221212221199192710101210101210219988982⎡⎤⎛⎫⎛⎫⎢⎥⋅=++⋅=-+-⨯≥⨯⨯-= ⎪⎪⎝⎭⎢⎥⎝⎭⎣⎦AP PB x x x x x x ,当且仅当24x =-时等号成立,所以AP PB ⋅的最小值是1.巩固练习练习一 面积最值问题1.点P 与定点()1,0F 的距离和它到定直线:4l x =的距离之比为1:2. (1)求点P 的轨迹方程;(2)记点P 的轨迹为曲线C ,直线l 与x 轴的交点M ,直线PF 与曲线C 的另一个交点为Q .求四边形OPMQ 面积的最大值.(O 为坐标原点)【答案】(1)22143x y +=(2)6 【解析】 【分析】(1)设出点(),P x y ,直接法求出轨迹方程;(2)求出4OM =,设出直线方程,表达出四边形OPMQ 面积,使用换元及基本不等式求出面积最大值. (1)设点(),P x y ,则PF =P 到直线:4l x =的距离为4x -,12=,解得:22143x y +=.(2)由题意得:()4,0M ,则4OM =,设当直线l 斜率为0时,即0y =,此时四边形OPMQ 不存在,故舍去;设直线l 为1x ky =+,与22143x y +=联立得:()2234690k y ky ++-=,设()()1122,,,P x y Q x y ,则由韦达定理得:122634k y y k -+=+,122934y y k-=+,则12y y -==, 四边形OPMQ面积1211422S OM y y =⋅-=⨯=,t =()1t ≥,则221k t =-,224241313t S t t t==++,其中13y t t =+在[)1,t ∈+∞上单调递增,故当1t =时,13y t t=+取得最小值为4,此时面积S 取得最大值6 【点睛】求解轨迹方程通常方法有:直接法,定义法,相关点法,交轨法,本题中使用的是直接法.2.设椭圆E :22143x y +=的右焦点为F ,点A ,B ,P 在椭圆E 上,点M 是线段AB 的中点,点F是线段MP 中点(1)若M 为坐标原点,且△ABP 的面积为3,求直线AB 的方程; (2)求△ABP 面积的最大值. 【答案】(1)32y x =或32y x =- (2)【解析】 【分析】(1)分斜率存在和不存在讨论,当斜率存在时设直线方程与椭圆方程联立消元,利用弦长公式和点到直线的距离公式表示出面积,根据已知列方程可解;(2)分直线过原点和不过原点,当不过原点时设直线方程与椭圆方程联立消元,利用韦达定理表示出M 坐标,再由中点坐标公式得P 点坐标,代入椭圆方程可得k 和b 的关系,然后利用弦长公式和点到直线的距离公式表示出面积(注意2ABPABFS S=),然后用导数求最值.(1)在椭圆22143x y +=中,2,1a b c ===,此时点P 坐标为(2,0),当直线AB的斜率不存在时,易知AB =122ABPS=⨯=,不满足题意.故设直线方程为y kx =,代入椭圆方程得22234120x k x +-=,即22(43)120k x +-=,由弦长公式得AB =P 到直线AB 的距3=,解得32k =±,所以直线AB 的方程为32y x =或32y x =-.(2)由(1)知,当直线过原点且斜率存在时,ABPS==故此时面积最大值为ABP S =△当直线不过原点时,易知直线斜率一定存在,设方程为y kx m =+,代入椭圆方程整理可得()2224384120k x kmx m +++-=…①,记112200(,),(,),(,)A x y B x y M x y ,则21212228412,4343km m x x x x k k -+=-=++,002243,4343km mx y k k =-=++,00(2,)P x y -- 则22003(2)412x y -+=,将002243,4343km m x y k k =-=++代入上式得222243324124343km m k k ⎛⎫⎛⎫++= ⎪ ⎪++⎝⎭⎝⎭,整理得4m k =-,代入①得2222(43)3264120k x k x k +-+-=,又点F 到直线AB,则ABPSAB k ===+ABPS=2t k =,2(14)()(43)t t g t t -=+,则()()332843t g t t -=+',易知当3028t <<时,()0g t '>,函数单调递增,当328t >时,()0g t '<,函数单调递减,故当328t =时,max 31()()28192g t g ==,所以ABPS≤=又直线与椭圆有两个交点,所以422644(43)(6412)0k k k ∆=-+⨯->,解得214k <,故当2328k =,即k =ABP综上,△ABP 面积的最大值为【点睛】设而不求是圆锥曲线中最常用的方法之一,本题通过各点之间的关系,结合韦达定理表示出M 坐标,进而得到点P 坐标,借助P 点在椭圆上作为突破口进行求解,考察学生的转化能力和运算能力,属难题.3.设椭圆()2222:10x y E a b a b+=>>,点1F ,2F 为E 的左、右焦点,椭圆的离心率12e =,点31,2P ⎛⎫ ⎪⎝⎭在椭圆E 上.(1)求椭圆E 的方程;(2)M 是直线4x =上任意一点,过M 作椭圆E 的两条切线MA ,MB ,(A ,B 为切点). ①求证:2⊥MF AB ; ②求MAB △面积的最小值.【答案】(1)22143x y +=;(2)①证明见解析;②92. 【解析】【分析】(1)由题得222222123121c a a b a b c ⎧=⎪⎪⎪⎛⎫⎪⎪⎪⎝⎭+=⎨⎪=+⎪⎪⎪⎪⎩,即得;(2)由题可得在点(),A A A x y ,(),B B B x y 处的切线方程,进而可得直线AB 方程,再利用斜率关系即证,联立直线AB 方程,与椭圆方程,利用韦达定理可得(222291212MAB t S AB MF t +=⋅⋅=+△,再通过换元,利用函数的性质可求. (1)由题可得,222222123121c a a b a b c ⎧=⎪⎪⎪⎛⎫⎪⎪⎪⎝⎭+=⎨⎪=+⎪⎪⎪⎪⎩,解得224,3,a b ⎧=⎨=⎩ ∴椭圆E 的标准方程为22143x y +=.(2)①先求在椭圆上一点的切线方程,设椭圆上一点为()x y x y ≠≠0000,,0,0,切线方程为()00y y k x x -=-,联立方程组()0022143y y k x x x y ⎧-=-⎪⎨+=⎪⎩,可得()()()22200003484120k x k y kx x y kx ++-+--=,∴()()()222000084344120k y kx k y kx ⎡⎤⎡⎤∆=--⨯+--=⎣⎦⎣⎦,∴()()22200004230x k kx y y -++-=,即2220000432034y x k kx y ++=,∴034x k y =-, 故切线方程为()000034x y y x x y -=--,即00143x x y y +=, 设(),A A A x y ,(),B B B x y ,()4,M t . 椭圆E 在点(),A A A x y 的切线AM 的方程为:143A A x x y y+=, 在点(),B B B x y 处的切线BM 方程为:143B B x x y y +=. 又直线AM ,BM 过点()4,M t ,即41434143A A B B x ty x ty ⎧+=⎪⎪⎨⎪+=⎪⎩,即3333A A B B x ty x ty +=⎧⎨+=⎩,故点(),A A A x y ,(),B B B x y ,在直线33x ty +=上,故直线AB 方程为:33x ty +=, 当0=t ,即()4,0M 时,直线AB 方程为:1x =,则2⊥MF AB . 当0t ≠时,直线AB 方程为:33y x t t=-+.右焦点()21,0F ,则23MF t k =,所以2313MF AB t k k t ⎛⎫⋅=⋅-=- ⎪⎝⎭,即2⊥MF AB .②直线AB 方程为:33x ty +=与椭圆E 联立得;()22126270t y ty +--=,2612A B t y y t +=+,22712A By y t -=+,(222291212MABt S AB MF t +=⋅⋅==+△令m =3m ≥,则(23223292213123MABt m S t m m m +===+++△在[)3,m ∈+∞上单调递增,所以当3m =时,MAB S 取最小值92.4.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,A B 两点. (1)证明:以AB 为直径的圆与直线1x =-相切;(2)设(1)中的切点为,P O 为坐标原点,直线OP 与C 的另一个交点为E ,求ABE △面积的最小值. 【答案】(1)证明见解析 (2)【解析】 【分析】(1)利用直线与圆相切等价于圆心到直线的距离等于半径来证明;(2)先设直线AB 的方程为1x my =+,以m 为参数表示出点P 以及点E 的坐标,进而求出E 点到直线的距离,即为ABE △的高,最后把ABE △的面积表示成m 的函数,求其最值. (1)证明:抛物线24y x =的焦点为()1,0F ,准线方程为1x =-. 设()()()()()11221212,,,,112A x y B x y AB AF BF x x x x =+=+++=++, 弦AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭, 则M 到准线1x =-的距离为()121211222AB x x x x++--=+=, 所以以AB 为直径的圆与直线1x =-相切. (2)解:由题可知直线l 的斜率不能为0,设直线l 的方程为1x my =+,由21,4x my y x=+⎧⎨=⎩整理得2440y my --=, 又()()1122,,,A x y B x y , 则12124,4y y m y y +==-,所以2AB =()()21212444x x m y y m ++=++=+.点P 的坐标为()1,2m -,于是直线OP 的方程为2y mx =-, 代入24y x =,整理得0x =或21x m =, 从而212,E mm ⎛⎫-⎪⎝⎭ 则点E 到直线AB211+=故()()32221442ABESm m =+=.[),1,t t ∈+∞,()()()()223222232,11t t t f t f t t t -=--'= 则()f t在⎡⎣上单调递减,在)+∞上单调递增,故min ()f t f ==练习二 其他最值问题5.已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅的最小值.【答案】(1)24x y = (2)32 【解析】 【分析】(1)设()04,Q y ,列方程组000216524py p y y =⎧⎪⎨+=⎪⎩,求出2p =,即可得到抛物线E 的方程;(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,利用ABC 是以AC 为斜边的等腰直角三角形,表示出()()32211k x k k --+,用坐标表示出AB AC =()()32221611k k k ++利用基本不等式求出AB AC 的最小值.(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =. 因为0p >,则2p =,所以抛物线E 的方程是24x y =. (2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-. 因为AB BC =,则212232111x x k x x k -+=-+,得()2312x x k x x -=-,① 因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k=--③将②③代入①,得()2242420x k k x k +--=,即()()322212120k k x k k k-+---=,则()()32211k x k k -=+, 所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+ ()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k ++≥,则()()3222121k k k +≥+,从而()()3222121k k k +≥+,当且仅当1k =时取等号,所以AB AC 的最小值为32.6.已知双曲线C :()222210,0x y a b a b-=>>的左右顶点分别为()1,0A -,()10B ,,两条准线之间的距离为1.(1)求双曲线C 的标准方程;(2)若点P 为右准线上一点,直线P A 与C 交于A ,M ,直线PB 与C 交于B ,N ,求点B 到直线MN 的距离的最大值.【答案】(1)2213y x -=(2)1【解析】【分析】(1)求得双曲线C 的的,a b ,即可求得双曲线C 的标准方程;(2)以设而不求的方法先判定直线MN 过定点,再去求点B 到直线MN 的距离的最大值.(1)由题意得1a =.设双曲线C 的焦距为2c ,则221a c⨯=,所以2c =.所以b所以双曲线C 的标准方程2213y x -=. (2) 设1,2P t ⎛⎫ ⎪⎝⎭,则直线P A 的方程为:()213t y x =+. 由()2213213y x t y x ⎧-=⎪⎪⎨⎪=+⎪⎩,得()222242784270t x t x t -+++=.因为直线P A 与C 交于A ,M ,所以24270t -≠,所以t ≠. 因为22427427A M M t x x x t +=-=-,所以22427427M t x t +=--, ()22222427361133427427M M t t t t y x t t ⎛⎫+-=+=-+= ⎪--⎝⎭, 所以22242736,427427t t M t t ⎛⎫+-- ⎪--⎝⎭. 因为直线PB 的方程为()21y t x =--,由()221321y x y t x ⎧-=⎪⎨⎪=--⎩,得()2222438430t x t x t --++=.因为直线PB 与C 交于B ,N ,所以2430t -≠,所以t ≠ 因为224343B N N t x x x t +==-,所以224343N t x t +=-, ()222431*********N N t t y t x t t t ⎛⎫+-=--=--= ⎪--⎝⎭,所以2224312,4343t t N t t ⎛⎫+- ⎪--⎝⎭. 所以当32t ≠±时,直线MN 的方程为222222222123612434342743427434343427t t t t t t y x t t t t t t -+⎛⎫+--+=- ⎪++--⎝⎭+--. 令0y =,得()()22422222222221243649610821236434274443431327438843427t t t t x t t t t t t t t t t t t ++-=⨯+==--+++--+-+---. 所以直线MN 过定点()2,0D . 当32t =±时,222242743242743t t t t ++-==--,所以直线MN 过定点()2,0D . 所以当BD MN ⊥时,点B 到直线MN 的距离取得最大值为1.7.如图,已知点()2,2P 是焦点为F 的抛物线()2:20C y px p =<上一点,A ,B 是抛物线C 上异于P 的两点,且直线P A ,PB 的倾斜角互补,若直线P A 的斜率为()1k k <.(1)求抛物线方程;(2)证明:直线AB 的斜率为定值并求出此定值;(3)令焦点F 到直线AB 的距离d ,求d d FA FB -的最大值.【答案】(1)22y x =(2)证明见解析,12-【解析】【分析】(1)待定系数法求解抛物线方程;(2)设出直线方程,联立后得到A 点纵坐标,同理得到B 点纵坐标,从而求出直线AB 的斜率;(3)在前两问基础上用斜率k表达出2454516k d d k FA FB k k --=⎛⎫-+ ⎪⎝⎭,换元后使用基本不等式求出最大值.(1)将点()2,2P 代入抛物线方程可得:1p =,抛物线2:2C y x =(2)设()():221-=->PA y k x k ,与抛物线方程联立可得:22440-+-=ky y k ,∴4422--=⇒=A P A k k y y y k k ,用k -代k 可得:22+=-B k y k因此,2221222A B A B AB A B A B A B y y y y k y y x x y y --===--+-=,即12AB k =-. (3) 由(1)可知,12AB k =-,()222122,⎛⎫-- ⎪ ⎪⎝⎭k k A k k ,()222122,⎛⎫+-+ ⎪ ⎪⎝⎭k k B k k 因此()22222122122:202⎛⎫----=--⇒+-= ⎪ ⎪⎝⎭k k k AB y x x y k k k 1,02F ⎛⎫ ⎪⎝⎭到直线AB的距离2==d . 11d d d FA FB FA FB ⎛⎫-=- ⎪ ⎪⎝⎭∵()342113211112524162422B A B A A B A B A B FB FA x x x x k FA FB FA FB k k x x x x x x ----====⋅-+⎛⎫⎛⎫++++⋅+ ⎪ ⎪⎝⎭⎝⎭∴()22342425432252416252416k k d d k FA FB k k k k --==-+-+22244551642524516--==⎛⎫-+-+ ⎪⎝⎭k k k k k k k k ,令45=-t k k,由1k >得1t >∴211616d d tFA FB t tt-=≤=++当且仅当4454=⇒-=⇒=t k kk.d dFA FB-【点睛】求解抛物线取值范围问题,把要求解的问题转化为单元问题,常使用的工具有换元,基本不等式,或导函数.8.已知抛物线()2:20C y px p=>的焦点为F,A,B是该抛物线上不重合的两个动点,O为坐标原点,当A点的横坐标为4时,3cos5OFA∠=-.(1)求抛物线C的方程;(2)以AB为直径的圆经过点()1,2P,点A,B都不与点P重合,求AF BF+的最小值.【答案】(1)24y x=;(2)11.【解析】【分析】(1)作出辅助线,利用焦半径与余弦值求出p的值,进而求出抛物线方程;(2)设出直线方程,与抛物线方程联立,根据PA PB⊥得到等量关系,求出25n m=+,从而表达出212124112AF BF x x m⎛⎫+=++=++⎪⎝⎭,求出最小值.(1)设()04,A y,因为3cos05OFA∠=-<,所以42p>,42pAF=+,过点A作AD⊥x轴于点D,则42pDF=-,432cos542pDFDFApAF-∠===+,解得:2p=,所以抛物线方程为24y x=.(2)设直线AB 为x my n =+,()()1122,,,A x y B x y ,由方程x my n =+与24y x =联立得:2440y my n --=,所以()24160m n ∆=-+>,即20m n +>,且124y y m +=,124y y n =-,所以()21212242x x m y y n m n +=++=+,222121216y y x x n ⋅==,因为以AB 为直径的圆经过点()1,2P ,所以PA PB ⊥,即()()11221,21,20PA PB x y x y ⋅=--⋅--=,即()()12121212250x x x x y y y y -++-++=,所以()22424850n m n n m -+--+=,所以()()22322n m -=+,所以25n m =+或21n m =-+, 当21n m =-+时,直线AB 为12x my m =+-过点P ,此时与题干条件A ,B 都不与点P 重合矛盾,不合题意,舍去;当25n m =+时,直线AB 为25x my m =++,满足要求,所以2212424410x x m n m m +=+=++,则22121244124112AF BF x x m m m ⎛⎫+=++=++=++ ⎪⎝⎭,所以当12m =-时,AF BF +最小,且最小值为11.。

立体几何中的最值问题【解析版】

立体几何中的最值问题【解析版】

第四章立体几何专题17 立体几何中的最值问题【压轴综述】在立体几何中,判定和证明空间的线线、线面以及面面之间的位置关系(主要是平行与垂直的位置关系),计算空间图形中的几何量(主要是角与距离)是两类基本问题.在涉及最值的问题中主要有三类,一是距离(长度)的最值问题;二是面(体)积的最值问题;三是在最值已知的条件下,确定参数(其它几何量)的值.从解答思路看,有几何法(利用几何特征)和代数法(应用函数思想、应用基本不等式等)两种,都需要我们正确揭示空间图形与平面图形的联系,并有效地实施空间图形与平面图形的转换.要善于将空间问题转化为平面问题:这一步要求我们具备较强的空间想象能力,对几何体的结构特征要牢牢抓住,有关计算公式熟练掌握.一、涉及几何体切接问题最值计算求解与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径等.通过作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.这样才能进一步将空间问题转化为平面内的问题;二.涉及角的计算最值问题1. 二面角的平面角及其求法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.2.求异面直线所成角的步骤:一平移,将两条异面直线平移成相交直线.二定角,根据异面直线所成角的定义找出所成角.三求角,在三角形中用余弦定理或正弦定理或三角函数求角.四结论.3.线面角的计算:(1)利用几何法:原则上先利用图形“找线面角”或者遵循“一做----二证----三计算”. (2)利用向量法求线面角的方法(i分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(ii)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角(钝角时取其补角),取其余角就是斜线和平面所成的角.下面通过例题说明应对这类问题的方法与技巧.【压轴典例】例1.(2018·全国高考真题(理))已知正方体的棱长为1,每条棱所在直线与平面 所成的角都相等,则α截此正方体所得截面面积的最大值为( )A B C .4D 【答案】A 【解析】根据相互平行的直线与平面所成的角是相等的, 所以在正方体1111ABCD A B C D -中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,且过棱的中点的正六边形,且边长为2,所以其面积为26(2S ==,故选A. 例2.(2018·全国高考真题(文))设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为( )A .B .C .D .【答案】B 【解析】 如图所示,点M 为三角形ABC 的中心,E 为AC 中点,当DM ⊥平面ABC 时,三棱锥D ABC -体积最大 此时,OD OB R 4===2393ABCSAB == AB 6∴=,点M 为三角形ABC 的中心2BM 233BE ∴==Rt OMB ∴中,有22OM 2OB BM =-=DM OD OM 426∴=+=+=()max 19361833D ABC V -∴=⨯=故选B.例3.(2017·全国高考真题(理))a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号) 【答案】②③ 【解析】由题意知,a 、b 、AC 三条直线两两相互垂直,画出图形如图, 不妨设图中所示正方体边长为1, 故|AC |=1,|AB|=斜边AB 以直线AC 为旋转轴,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系, 则D (1,0,0),A (0,0,1),直线a 的方向单位向量a =(0,1,0),|a |=1, 直线b 的方向单位向量b =(1,0,0),|b |=1,设B 点在运动过程中的坐标中的坐标B ′(cosθ,sinθ,0), 其中θ为B ′C 与CD 的夹角,θ∈[0,2π),∴AB ′在运动过程中的向量,'AB =(cosθ,sinθ,﹣1),|'AB|=设'AB 与a 所成夹角为α∈[0,2π], 则cosα()()10102'cos sin a AB θθ--⋅==⋅,,,,, ∴α∈[4π,2π],∴③正确,④错误.设'AB 与b 所成夹角为β∈[0,2π],cosβ()()'11002''AB b cossin AB bbAB θθ⋅-⋅===⋅⋅,,,,|cosθ|, 当'AB 与a 夹角为60°时,即α3π=,|sinθ|3πα===, ∵cos 2θ+sin 2θ=1,∴cosβ2=|cosθ|12=,∵β∈[0,2π],∴β3π=,此时'AB 与b 的夹角为60°, ∴②正确,①错误. 故答案为:②③.例4.(2017·全国高考真题(理))如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.【答案】15【解析】如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则133OG x =3x =. ∴35FG SG x ==-,222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积2113355333ABC V S h x x ⎛⎫=⋅=- ⎪ ⎪⎝⎭451535123x x =-. 设()4535n x x x =-,x >0,则()345320n x x x '=, 令()0n x '=,即43403x =,得43x ,易知()n x 在43x 处取得最大值. ∴max 154854415V =-=例5.(2016·浙江高考真题(理))如图,在ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是 .【答案】【解析】中,因为,所以.由余弦定理可得,所以.设,则,.在中,由余弦定理可得.故.在中,,.由余弦定理可得,所以.由此可得,将ABD沿BD翻折后可与PBD重合,无论点D在任何位置,只要点D的位置确定,当平面PBD⊥平面BDC时,四面体PBCD的体积最大(欲求最大值可不考虑不垂直的情况).过作直线的垂线,垂足为.设,则,即,解得.而 的面积.当平面PBD⊥平面BDC 时: 四面体的体积.观察上式,易得,当且仅当,即时取等号,同时我们可以发现当时,取得最小值,故当时,四面体的体积最大,为例6.(2019·安徽芜湖一中高三开学考试)在Rt AOB ∆中,6OAB π∠=,斜边4AB =.Rt AOC ∆可以通过Rt AOB ∆以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上.(1)求证:平面COD ⊥平面AOB ;(2)求直线CD 与平面AOB 所成角的正弦的最大值. 【答案】(1)详见解析;(2277【解析】(1)AOB ∆为直角三角形,且斜边为AB ,2AOB π∴∠=.将Rt AOB ∆以直线AO 为轴旋转得到Rt AOC ∆,则2AOC π∠=,即OC AO ⊥.二面角B AO C --是直二面角,即平面AOC ⊥平面AOB . 又平面AOC平面AOB AO =,OC ⊂平面AOC ,OC ∴⊥平面AOB .OC ⊂平面COD ,因此,平面COD ⊥平面AOB ;(2)在Rt AOB ∆中,6OAB π∠=,斜边4AB =,122OB AB ∴==且3OBA π∠=. 由(1)知,OC ⊥平面AOB ,所以,直线CD 与平面AOB 所成的角为ODC ∠. 在Rt OCD ∆中,2COD π∠=,2OC OB ==,2224CD OD OC OD =+=+,22sin 4OC ODC CD OD ∴∠==+, 当⊥OD AB 时,OD 取最小值,此时sin ODC ∠取最大值,且sin33OD OB π==.因此,22227sin 774OC ODC CD OD ∠==≤=+,即直线CD 与平面AOB 所成角的正弦的最大值为277. 例7.(2019·深圳市高级中学高三月考(文))如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.(1)若D 为线段AC 的中点,求证:AC⊥平面PDO ; (2)求三棱锥P -ABC 体积的最大值; (3)若,点E 在线段PB 上,求CE +OE 的最小值.【答案】(1)见解析;(2);(3)【解析】(1)证明:在△AOC中,因为OA=OC,D为AC的中点,所以AC⊥DO.又PO垂直于圆O所在的平面,所以PO⊥AC.因为DO∩PO=O,所以AC⊥平面PDO.(2)解:因为点C在圆O上,所以当CO⊥AB时,C到AB的距离最大,且最大值为1.又AB=2,所以△ABC面积的最大值为.又因为三棱锥P-ABC的高PO=1,故三棱锥P-ABC体积的最大值为.(3)解:在△POB中,PO=OB=1,∠POB=90°,所以.同理,所以PB=PC=BC.在三棱锥P-ABC中,将侧面BCP绕PB旋转至平面BC′P,使之与平面ABP共面,如图所示.当O,E,C′共线时,CE+OE取得最小值.又因为OP=OB,,所以垂直平分PB,即E为PB的中点.从而,即CE+OE的最小值为.例8.(2016·江苏高考真题)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.(1)若则仓库的容积是多少? (2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?【答案】(1)312(2)【解析】(1)由PO 1=2知OO 1=4PO 1=8. 因为A 1B 1=AB=6,所以正四棱锥P-A 1B 1C 1D 1的体积正四棱柱ABCD-A 1B 1C 1D 1的体积所以仓库的容积V=V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a (m ),PO 1=h (m ),则0<h<6,OO 1=4h.连结O 1B 1. 因为在中,所以,即于是仓库的容积,从而. 令,得或(舍).当时,,V 是单调增函数; 当时,,V 是单调减函数.故时,V 取得极大值,也是最大值.因此,当m 时,仓库的容积最大.【压轴训练】1.(2019·四川石室中学高三开学考试(文))在ABC △中,已知23AB =6BC =045ABC ∠=,D 是边AC 上一点,将ABD △沿BD 折起,得到三棱锥A BCD -.若该三棱锥的顶点A 在底面BCD 的射影M 在线段BC 上,设BM x =,则x 的取值范围为( ) A.()23,26 B.()6,23C.()3,6D.()0,23【答案】B 【解析】由将ABD △沿BD 折起,得到三棱锥A BCD -,且A 在底面BCD 的射影M 在线段BC 上, 如图2所示,AM ⊥平面BCD ,则AM BD ⊥, 在折叠前图1中,作AM BD ⊥,垂足为N ,在图1中过A 作1AM BC ⊥于点1M ,当运动点D 与点C 无限接近时,折痕BD 接近BC ,此时M 与点1M 无限接近,在图2中,由于AB 是直角ABM ∆的斜边,BM 为直角边,所以BM AB <, 由此可得1BM BM AB <<,因为ABC ∆中,023,26,45ABC AB BC ∠===,由余弦定理可得23AC =,所以221(23)(6)6BM =-=, 所以623BM <<由于BM x =,所以实数x 的取值范围是()6,23,故选B .2.(2019·四川高三月考(文))已知球O 表面上的四点A ,B ,C ,P 满足2AC BC ==2AB =.若四面体PABC 体积的最大值为23,则球O 的表面积为( ) A .254πB .254π C .2516π D .8π【答案】A 【解析】当平面ABP 与平面ABC 垂直时,四面体ABCP 的体积最大.由AC BC ==2AB =,得90ACB ︒∠=.设点Р到平面ABC 的距离为h,则112323h ⨯=,解得2h =. 设四面体ABCP 外接球的半径为R ,则()22221R R =-+,解得5R=4.所以球O 的表面积为2525444ππ⎛⎫⨯= ⎪⎝⎭. 故选:A .3.(2019·湖南雅礼中学高三月考(理))圆锥的母线长为2,其侧面展开图的中心角为θ弧度,过圆锥顶点的截面中,面积的最大值为2,则θ的取值范围是( ) A.),2π B.π⎡⎤⎣⎦C.}D.,2π⎫⎪⎪⎣⎭【答案】A 【解析】设轴截面的中心角为α,过圆锥顶点的截面的顶角为β,且βα≤ 过圆锥顶点的截面的面积为:122sin β2sin β2⨯⨯⨯=, 又过圆锥顶点的截面中,面积的最大值为2, 故此时β2π=,故απ2π≤<圆锥底面半径r )2sin22α=∈ ∴侧面展开图的中心角为θ弧度2sin222πsin22απα⨯⨯==∈),2π 故选:A.4.(2019·安徽高考模拟(理))如图,已知四面体ABCD 为正四面体,1AB =,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .14B .24C .34D .1【答案】A 【解析】将正四面体补成正方体,如下图所示:EF α⊥ ∴截面为平行四边形MNKL ,可得1NK KL +=又//KL BC ,//KN AD ,且AD BC ⊥ KN KL ∴⊥ 可得2124MNKLNK KL S NK KL +⎛⎫=⋅≤=⎪⎝⎭四边形(当且仅当NK KL =时取等号) 本题正确选项:A5.(2019·湖北高三月考(理))若一个四棱锥底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球表面积最小时,它的高为( ) A .3 B .2C .3D .33【答案】A 【解析】设正方形的边长为a ,则四棱锥的高为227h a =2a ,则其外接圆的半径22r a =.设球的半径为R ,则()222h R r R -+=,解得44222272727210844108a a R a a a =+=++4322272793441084a a a ≥⋅⋅=,当且仅当42274108a a =,即3a =时等号成立,此时,四棱锥的高为2272739h a ===.故选A. 6.(2019·四川雅安中学高三开学考试(文))已知三棱锥D ABC -四个顶点均在半径为R 的球面上,且2AB BC ==,2AC =,若该三棱锥体积的最大值为1,则这个球的表面积为( )A.50081πB.1009πC.259πD.4π【答案】B 【解析】2AB BC ==,2AC = 222AB BC AC ∴+= AB BC ∴⊥112ABC S AB BC ∆∴=⋅= 如下图所示:若三棱锥D ABC -体积最大值为1,则点D 到平面ABC 的最大距离:3d = 即:3DO '=设球的半径为R ,则在Rt OAO '∆中:()22213R R =+-,解得:53R =∴球的表面积:210049S R ππ==本题正确选项:B7.(2017·山西高三(理))两球1O 和2O 在棱长为1的正方体1111ABCD A B C D -的内部,且互相外切,若球1O 与过点A 的正方体的三个面相切,球2O 与过点1C 的正方体的三个面相切,则球1O 和2O 的表面积之和的最小值为( ) A .(323p B .(423pC .(323p +D .(423p【答案】A 【解析】设球1O 与球2O 的半径分别为r 1,r 2,∴r 1+r 23r 1+r 2)= 3 r 1+r 2313+=332-, r 1+r 2⩾12r r 球1O 与球2O 的面积之和为: S =4π(21r+21r)=4π(r 1+r 2)2−8π12r r ⩾()212π13+−2π()2313+=(6−3)π,当且仅当r 1=r 2时取等号 其面积最小值为(6−3π. 故选A.8.(2019·广东高考模拟(理))平面四边形ABCD 中,2AD AB ==5CD CB ==且AD AB ⊥,现将ABD ∆沿对角线BD 翻折成A BD '∆,则在A BD '∆折起至转到平面BCD 的过程中,直线A C '与平面BCD 所成最大角的正切值为( )A .2B .12C 3D 3【答案】D 【解析】 取BD 的中点O,则,,,A B A D BC CD A O BD CO BD '''==∴⊥⊥即BD ⊥平面A OC ',从而平面BCD ⊥平面A OC ',因此A '在平面BCD 的射影在直线OC 上,即A CO '∠为直线A C '与平面BCD 所成角,因为2AD AB ==5CD CB ==AD AB ⊥,所以111,2sin sin sin 22A O A O OC A CO OA C OA C OC '''''==∴∠=∠=∠≤,即A CO '∠最大值为π6,因此直线A C '与平面BCD 所成最大角的正切值为π3tan63=,选D.9.(2019·云南省玉溪第一中学高二月考(理))已知底面边长为42,侧棱长为25的正四棱锥S ABCD -内接于球1O .若球2O 在球1O 内且与平面ABCD 相切,则球2O 的直径的最大值为__________. 【答案】8 【解析】如图所示,正四棱锥S ABCD -内接于球1O ,1SO 与平面ABCD 交于点O , 正方形ABCD 中,42,4AB AO ==, 在直角三角形SAO 中,2222(25)42SO SA OA =-=-=,设球1O 的半径为R ,则在直角三角形1OAO 中,222(2)4R R -+=, 解得5R =, 所以球1O 的直径为10,当求2O 与平面ABCD 相切且与球1O 相切时,球2O 的直径最大, 又因为球2SO =,所以球2O 的直径的最大值为1028-=.10.(2019·山西高三月考)已知三棱锥P ABC -的四个顶点都在半径为3的球面上,AB AC ⊥,则该三棱锥体积的最大值是__. 【答案】323【解析】如图所示,设,AB m AC n ==,则12ABCS mn ∆=,ABC ∆22m n +22934m n +-,三棱锥P ABC -的体积公式为222222111(93)(93)324344m n m n m n mn +++⨯-≤⨯-, 设224m n t +=,则1()(93)3f t t t =-+,1()93329f t t t '⎫=-+⎪-⎭,令()0f t '=,解得8t =,()f t 在()0,8单增,[]8,9单减,max 32()(8)3f t f ∴==, 所以三棱锥P ABC -体积最大值为32311.(2019·云南师大附中高三月考)在直三棱柱111ABC A B C -中,90BAC ∠=︒且14BB =,设其外接球的球心为O ,已知三棱锥O -ABC 的体积为2,则球O 的表面积的最小值是_____________. 【答案】28π 【解析】 如图,在Rt ABC △中,设AB c =,=AC b ,则22BC b c =+, 取BC ,11B C 的中点分别为2O ,1O ,则2O ,1O 分别为Rt ABC △和111Rt A B C △的外接圆的圆心,连接2O 1O ,又直三棱柱111ABC A B C -的外接球的球心为O ,则O 为2O 1O 的中点,连接OB ,则OB 为三棱柱外接球的半径.设半径为R ,因为直三棱柱111ABC A B C -,所以1214BB O O ==,所以三棱锥O ABC -的高为2,即22OO =,又三棱锥O ABC -体积为2,所以1122632O ABC V bc bc -=⨯⨯=⇒=.在2Rt OO B △中,2222222221()4424b c b c R BC OO ++⎛⎫=+=+=+ ⎪⎝⎭⎝⎭, 所以2=4πS R =球表22224π4π()16π2π16π12π16π28π4b c b c bc ⎛⎫++=+++=+= ⎪⎝⎭≥,当且仅当b c =时取“=”,所以球O 的表面积的最小值是28π,故答案为28π.12.(2019·湖南高三月考(文))已知三棱锥A BCD -满足3AB BD DC CA ====,则该三棱锥体积的最大值为________. 【答案】3【解析】取AD 中点E ,连接BE ,CE ,因为3AB BD DC CA ====, 所以BE AD ⊥,CE AD ⊥,且BE CE =,由题意可得,当平面⊥BAD 平面CAD 时,棱锥的高最大,等于BE ,此时体积也最大; 所以此时该三棱锥体积为113sin sin 362-∆=⋅⋅=⋅⋅⋅∠⋅=⋅∠A BCD ACD V S BE CA CD ACD BE CE ACD ,设ACD θ∠=,则sin 3cos 22πθθ-⎛⎫=⋅=⎪⎝⎭CE CD , 所以239cos sin 9sin cos 9sin sin 222222θθθθθθ-⎛⎫=⋅=⋅=- ⎪⎝⎭A BCD V , 令sin2θ=x ,因为0θπ<<,所以0sin12θ<<,设3()=-f x x x ,01x <<,则2()13'=-f x x ,由2()130'=->f x x 得303x <<; 由2()130'=-<f x x 得313x <<; 所以函数3()=-f x x x 在30,3⎛⎫ ⎪ ⎪⎝⎭上单调递增,在3,13⎛⎫⎪ ⎪⎝⎭上单调递减; 所以max 333323()33279⎛⎫==-= ⎪ ⎪⎝⎭f x f ,因此三棱锥体积的最大值为239239-=⋅=A BCD V . 故答案为2313.(2019·河南高三月考(文))已知三棱锥P ABC -的四个顶点均在同一个球面上,底面ABC ∆满足6BA BC ==,2ABC π∠=,若该三棱锥体积的最大值为3.则其外接球的体积为________.【答案】323π 【解析】 如图所示:设球心为O ,ABC △所在圆面的圆心为1O ,则1OO ⊥平面ABC ;因为6BA BC ==2ABC π∠=,所以ABC △是等腰直角三角形,所以1O 是AC 中点;所以当三棱锥体积最大时,P 为射线1O O 与球的交点,所以113p ABC ABC V PO S -=⋅⋅;因为16632ABCS==,设球的半径为R ,所以2221113PO PO OO R R AO R R =+=-=+-(213333R R ⋅-⋅=,解得:2R =,所以球的体积为:343233R ππ=.14.(2019·四川双流中学高三月考(文))已知球的直径4DC =,A ,B 是该球面上的两点,6ADC BDC π∠=∠=,则三棱锥A BCD -的体积最大值是______.【答案】2 【解析】因为球的直径4DC =,且6ADC BDC π∠=∠=,所以2AC BC ==,23AD BD ==13A BCD BCD V S h -∆=⨯⨯(其中h 为点A 到底面BCD 的距离),故当h 最大时,A BCD V -的体积最大,即当面ADC ⊥面BDC 时,h 最大且满足4223h =⨯3h =112233232A BCD V -=⨯⨯⨯=.15.(2019·河北高三月考)在四棱锥P ABCD -中,PD AC ⊥,AB ⊥平面PAD ,底面ABCD 为正方形,且3CD PD +=,若四棱锥P ABCD -的每个顶点都在球O 的球面上,则球O 的表面积的最小值为_____. 【答案】6π 【解析】∵AB ⊥平面PAD ,∴AB PD ⊥,又PD AC ⊥,∴PD ⊥平面ABCD ,则四棱锥P ABCD -可补形成一个长方体,球O 的球心为PB 的中点,设()03CD x x =<<,则3PD x =-.从而球O 的表面积为()()222223431262x x x x πππ⎛⎫++- ⎪⎡⎤=-+≥⎣⎦ ⎪⎝⎭. 故答案为6π 16.(2016·浙江高考真题(文))如图,已知平面四边形ABCD ,AB=BC=3,CD=1,AD=5,∠ADC=90°.沿直线AC 将ACD 翻折成ACD',直线AC 与BD' 所成角的余弦的最大值是______.6 【解析】试题分析:如图,连接BD′,设直线AC 与'BD 所成的角为θ.O 是AC 的中点.由已知得6AC =,以OB 为x 轴, OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,则60,2A ⎛⎫ ⎪ ⎪⎝⎭, 302B ⎛⎫ ⎪ ⎪⎝⎭, 60,2C ⎛⎫- ⎪ ⎪⎝⎭.作DH AC ⊥于H ,连接D′H 翻折过程中, 'D H 始终与AC 垂直, 则266CD CH CA ===则63OH = 15306DH ⨯==因此30630'cos ,sin 636D αα⎛⎫-- ⎪ ⎪⎝⎭(设∠DHD′=α), 则3030630'BD αα⎛⎫= ⎪ ⎪⎝⎭,与CA 平行的单位向量为()0,1,0n =,所以cos cos ',BD n θ= ''BD n BD n⋅==6395cos α+,所以cos 1α=-时, cos θ取得最大值,为66. 17.(2019·重庆一中高三开学考试(理))已知正方形ABCD 的边长为22,将ABC ∆沿对角线AC 折起,使平面ABC ⊥平面ACD ,得到如图所示的三棱锥B-ACD .若O 为AC 的中点,点M ,N 分别为DC ,BO 上的动点(不包括端点),且BN CM =,则当三棱锥N-AMC 的体积取得最大值时,点N 到平面ACD 的距离为______.【答案】1【解析】由题意知,BO AC ⊥,而平面ABC ⊥平面ACD ,所以BO ⊥平面ACD ,易知BO =2,设BN x =,三棱锥N AMC -的高为NO ,则2NO x =-,由三棱锥体积公式得21122=22(2)(1)3233N AMC V y x x x -=⨯⨯⨯-=--+,∴x =1时,y max =23.此时,211NO =-=. 故本题正确答案为1.18.(2019·浙江高三开学考试)如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 中点,动点P 在底面ABCD 内(不包括边界),使四面体1A BMP 体积为23,则1C P 的最小值是___________. 【答案】2305【解析】 由已知得四面体1A BMP 体积1122,33A MBP MBP V S -∆=⨯⨯= 所以1,MBPS ∆=设P 到BM 的距离为h ,则151,2MBP S h ∆=⨯⨯= 解得25,5h =所以P 在底面ABCD 内(不包括边界)与BM 平行且距离为255的线段l 上, 要使1C P 的最小,则此时P 是过C 作BM 的垂线的垂足.点C 到BM 的距离为45,5所以25,5CP = 此时()221min 252302.55C P ⎛⎫=+= ⎪ ⎪⎝⎭故答案为2305. 19.(2019·安徽合肥一中高考模拟(文))如图,在棱长为 1 的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1//B P 平面1A BM ,则1C P 的最小值是____.【答案】305 【解析】 取BC 中点N ,连结11,,B D B N DN ,作CO DN ⊥,连1C O ,因为面1//B DN 面面1A BM ,所以动点P 在底面ABCD 内的轨迹为线段DN , 当点P 与点O 重合时,1C P 取得最小值,因为1115222552DN CO DC NC CO ⋅=⋅⇒==, 所以221min 11130()155C P C O CO CC ==+=+=. 20.(2019·湖南高三期末(文))点P 在正方体1111ABCD A B C D -的侧面11BCC B 及其边界上运动,并保持1AP BD ⊥,若正方体边长为2,则PB 的取值范围是__________.【答案】2,2⎡⎤⎣⎦【解析】连结1AB ,AC ,1CB ,易知平面11ACB BD ⊥,故P 点的轨道为线段1CB ,当P 在1CB 当P 与C 或1B 重合时:最大值为2则PB 的取值范围是2⎤⎦.故答案为:2⎤⎦。

立体几何最值问题-高考数学一题多解

立体几何最值问题-高考数学一题多解

立体几何最值问题-高考数学一题多解一、攻关方略事物的空间形成,总是表现为不同维数且遵循由低维到高维的发展规律,所谓升维策略,就是把维数、抽象水平较低的或局部的问题转化为维数、抽象水平较高或整体性较强的整体间的关系问题,通过对整体性质或关系的考虑,使原问题获得解决的策略,如平面图形通过翻折或旋转成为空间图形就是二维向三维的转化与变换.在解题时,考虑把高维空间的问题转化为低维空间的问题,这种处理问题的方法叫降维法,也可称之为降维策略,如将立体几何问题转化为平面几何问题.实际上,许多立体几何问题如求空间角、空间距离等,通常总是转化为平面内的问题,通过计算来解决的,当然将空间角、空间距离转变为平面角、平面上点线距离这一步是需要证明的.在立体几何学习中经常碰到几何体中有变角或变动的线段,此时必须根据题意列出沟通已知量与变量之间的关系,运用函数与方程的思想来处理,立体几何中由于动点的变化引起的最值,通常建立关于与动点相关的角度的目标函数,转化为函数最值问题求解.若在空间图形中建立空间直角坐标系,利用向量坐标法,结合条件得到方程(组),则可用解方程(组)求出结果,利用函数与方程的思想方法还可以解空间图形中涉及线面关系、面面关系的探究性问题.真可谓:翻折旋转二维升三,空间问题降维处理.点动角变牵动图形,立几最值函数搞定.1.如图所示,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,DBC △、ECA △、FAB 分别是以BC 、CA 、AB 为底边的等腰三角形,沿虚线剪开后,分别以BC 、CA 、AB 为折痕折起DBC △、ECA △、FAB ,使得D 、E 、F 重合,得到三棱锥.当ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.【针对训练】2.点P 在ABC 所在平面α外,PA α⊥,PB PC ==,3tan 2PBC ∠=,则点A 到平面PBC 的距离的最大值是______.3.如图所示,在ABC 中,2AB BC ==,120ABC ∠=︒.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA =,PB BA =,则四面体P BCD -的体积的最大值是______.4.已知底面边长为2的正三棱锥-P ABC ,其表面展开图是123PP P ,如图所示,求123PP P 的各边长及此三棱锥的体积V .5.已知球的直径4SC =,A 、B 是该球面上的两点,30ASC BSC ∠=∠=︒,则三棱锥S ABC -的体积的最大值为______.(2021全国新高考Ⅰ卷19)6.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?(2022新高考1卷)7.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且333l ≤≤)A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27](2022年全国乙卷(文数)第12题)8.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A .13B .12C D .2(2022年全国乙卷(文数)第18题)9.如图,四面体ABCD 中,AD CD ⊥,AD CD =,ADB BDC ∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2AB BD ==,60ACB ∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.10.如图,已知平面四边形ABCD ,AB=BC=3,CD=1,ADC=90°.沿直线AC 将ACD 翻折成ACD '△,直线AC 与BD '所成角的余弦的最大值是________.11.已知四边形ABCD ,2AB BD DA ===,BC CD ==ABD △沿BD 折起,使二面角A BD C --的大小在5,66ππ⎡⎤⎢⎥⎣⎦内,则直线AB 与CD 所成角的余弦值取值范围是()A .08⎡⎢⎣⎦,B .08⎡⎢⎣⎦,C .01⎡⎫⎪⎢⎪⎣⎦⎣⎭ D .88⎢⎣⎦,参考答案:1.3【分析】先求得所求三棱锥体积的表达式,然后利用导数或基本不等式求得体积的最大值.【详解】解法一:由题意可知,折起后所得三棱锥为正三棱锥,当ABC 的边长变化时,设ABC 的边长为()0a a >cm ,则ABC 的面积为24a .DBC △的高为56a -,则正三棱锥的高为=∴2503->,∴0a <<.∴所得三棱锥的体积213412V a =⨯=.令45253t a a =-,则34100t a =',由0t '=,得a =此时所得三棱锥的体积最大,为3.解法二:如图所示,连接OD 交BC 于点G ,由题意知,OD BC ⊥,OG 是等边三角形ABC 内切圆半径,21π1sin 3232BC BC OG ⨯⨯=⨯⨯,解得OG =,∴OG 的长度与BC 的长度成正比.设OG x =,则BC =,5DG x =-,2132ABC S x =⨯=△,则所得三棱锥的体积2213V =⨯=令()452510f x x x =-,50,2x ⎛⎫∈ ⎪⎝⎭.则()3410050f x x x '=-,令()0f x '≥,即4320x x -≤,得02x <≤.则当50,2x ⎛⎫∈ ⎪⎝⎭时,()()280f x f =≤,∴V ≤.∴所求三棱锥的体积的最大值为3.解法三:如图所示,连接OE 交AC 于点H ,连接AO 、OC ,设OH x =.则AC =,5EH x =-,三棱锥D ABC -2ABC S = ,D ABC V -=2≤=,当且仅当104x x =-,即2x =时取等号.∴所求三棱锥的体积的最大值为3.【点睛】本题为平面图形折叠成空间图形,当折叠终止时,几何体是一个正三棱锥,这个正三棱锥底面边长是一个变元,从而导致三棱锥体积的变化,特别要提醒的是,在折叠问题中,必须注意到折叠过程中哪些要素在变化,哪些要素始终保持不变,其中不变要素见核心要素.根据平面图形的性质,寻找不变的数量关系以及直线与直线平行和垂直的位置关系,是解决折叠问题的突破口,因此折叠问题要通过变图、想图、构图、用图的过程,积极思考,体会解题程序方向性,直击问题的本质,折叠问题既要看清平面转化为空间的过程,又要了解三维空间图形问题的平面化处理,两者是互通的.在建立体积表达式的函数模型之后,结合函数思想求最值,通常用导数法,也可考虑运用基本不等式的方法.策略一:以动正三角形AEC 的边长为变元建立函数关系式,运用导数法求其最大值.策略二:以动正三角形ABC 的中心到边的距离为变元建立函数关系式,运用导数法求其最大值.策略三:以动正三角形ABC 的中心到边的距离为变元建立函数关系式,运用基本不等式求最大值,注意等号成立的条件.2【分析】法一,取BC 的中点D ,连接AD 、PD ,设ADP θ∠=,用θ的正余弦表示AD ,PD ,再利用等体积法求解作答.法二,作PD BC ⊥于点D ,连接AD ,作AF PD ⊥于点F ,证明AF ⊥平面PBC ,再利用均值不等式求解作答.【详解】解法一,取BC 的中点D ,连接AD 、PD ,如图,因PB PC =,则PD BC ⊥,而3tan2PBC ∠=,有sin PBC ∠=则有sin PD PB PBC =⋅∠=PA ⊥平面ABC ,,AD BC ⊂平面ABC ,则PA AD ⊥,PA BC ⊥,又,,PA PD P PA PD ⋂=⊂平面PAD ,因此BC ⊥平面PAD ,AD ⊂平面PAD ,则AD BC ⊥,在Rt PAD △中,令(0,)2ADP πθ∠=∈,sin ,cos PA PD AD PD θθ==,设点A 到平面PBC 的距离为h ,11,22PBC ABC S BC PD S BC AD =⋅=⋅ ,由A PBC P ABC V V --=得:1133PBC ABC S h S PA ⋅=⋅ ,即1122BC PD h BC AD PA ⋅⋅=⋅⋅,于是得cos sin 2AD PA PD PD h PD PD θθθ⋅⋅==,当且仅当22=πθ,即4πθ=时取等号,所以点A 到平面PBC解法二,在PBC 中,作PD BC ⊥于点D ,连接AD ,作AF PD ⊥于点F,如图,PA ⊥平面ABC ,BC ⊂平面ABC ,则PA BC ⊥,又,,PA PD P PA PD ⋂=⊂平面PAD ,因此BC ⊥平面PAD ,而BC ⊂平面PBC ,则有平面PAD ⊥平面PBC ,又平面PAD ⋂平面PBC PD =,AF ⊂平面PAD ,因此AF ⊥平面PBC ,即AF 就是点A 到平面PBC 的距离,而3tan 2PBC ∠=,有sin PBD ∠=sin PD PB PBD =⋅∠=,在Rt PAD △中,22211()1222PA AD PD PA AD AF PD PD PD PD +⋅=≤==当且仅当3PA AD ==时取等号,所以点A 到平面PBC3.12##0.5【分析】先求得四面体P BCD -体积的表达式,利用基本不等式或函数的单调性求得体积的最大值.【详解】解法一:由2AB BC ==,120ABC ∠=︒,可得AC =要求四面体P BCD -的体积,关键是寻找底面三角形BCD 的面积BCD S △和点P 到平面BCD 的距离h ,易知2h ≤.设AD x =,则DP x =,DC x =,()12sin 3022DBC xS x =⨯⨯⨯︒=△,其中(0,x ∈,且h x ≤.∴2111366622P BCDBCD x x x x V S h h x -⎛⎫-+=⨯=≤≤= ⎪ ⎪⎝⎭△.当且仅当x x =,即x =P BCD -的体积的最大值是12.解法二:设PD AD x ==,∵PB PA =,PBD ABD ≌△△,1133P BCD BCD V S h -=⨯=△(h 为三棱锥P BCD -的高).当平面PBD ⊥平面BDC 时,使四面体PBCD 的体积较大.作PH BD ⊥,垂足为H ,则PH ⊥平面BCD ,sin sin h PH PD PDB x ADB ==⋅∠=⋅∠.此时,()211sin sin sin 662P BCDx x V ADB ADB ADB -=⋅∠≤∠=∠⎝⎭,当且仅当x =1sin 2P BCD V ADB -=∠,当90ADB ∠=︒,即AD BD ⊥时,P BCD V -最大值为12.解法三:∵13P BCD BCD V S h -=⨯△(h 为三棱锥P BCD -的高),在ABC 中,2AB BC ==,120ABC ∠=︒,则AC =30BAC BCA ∠=∠=︒,设(0PD DA x x ==<<,则DC x =-,1sin 22BCD xS BC CD BCA =⨯⋅∠=△.在ABD △中,由余弦定理,有2222cos BD AD AB AD AB BAC =+-⋅∠.代入整理得BD =PBD △中,由余弦定理,有222cos 2PB BD PD PBD PB BD+-∠=⋅,代值整理得cos PBD ∠∴sin PBD ∠=.过P 作PM BD ⊥,垂足为M ,则PM 为四面体P BCD -的高.∴sin h PM PB PBM ==∠故111336P BCDBCD V S h -===△,t =,∵0x <<12t ≤<,∴224x t -=-.2141466P BCDt V t t t--⎛⎫=⨯=- ⎪⎝⎭在[)1,2t ∈上单调递减.∴当1t =,即x =P BCD -的体积最大为1411612P BCD V --=⨯=.4.1213234PP PP P P ===,3【分析】由12APB CBP ≌△△,分析可得123PP P 是边长为4的正三角形,再由13P ABC ABC S PO V -=⋅ 结合题干数据求解即可.【详解】由题图可知1P 、B 、2P 三点共线,∴12APBCBP ≌△△.∵60ABC ∠=︒,∴1260ABP CBP ∠=∠=︒,1APB △和2CBP △都是正三角形.∴124PP =.同理可知其他两边长也是4,∴123PP P 是边长为4的正三角形.折叠后是棱长为2的正四面体-P ABC ,如图所示.设顶点P 在底面内的投影为O ,连结BO 并延长,交AC 于点D ,则D 为AC 的中点,O 为ABC 的重心,PO ⊥底面ABC .AO AB ==,PO ==.故133P ABC ABC V S PO -=⋅=△.5.2【分析】过AB 作与SC 垂直的截面ABM .通过13S ABC ABM V SC S -=⋅△,分析即得解.【详解】过AB 作平面ABM SC ⊥且SC 平面ABM M =,如图所示,由题意知SAC 、SBC △均为直角三角形.∵4SC =,30ASC BSC ∠=∠=︒,故SAC SBC ≅ ,∴SA =,2CA =,∴SA ACAM BM SC⋅==.∴2141sin 2sin 2332S ABCABM V SC S AMB AMB -=⋅=⨯⨯∠=∠≤△.∴三棱锥S ABC -体积的最大值为2.故答案为:26.(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,AM BN ,因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅ ,则1CBF BBN ∠=∠.又因为1190BBN BNB ∠+∠=︒,所以1190CBF BNB BF BN ∠+∠=︒⊥,.又因为111111,BF AB BN AB B ⊥= ,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥.[方法二]【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1B B AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅= ,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++ ()11=BF B D BF EB BB ⋅+⋅+ 1BF EB BF BB =⋅+⋅ 11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅ 112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=2202-⨯⨯,所以BF ED ⊥.(2)[方法一]【最优解】:向量法设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩ ,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅=⋅==当12a =时,2224a a -+取最小值为272,此时cos θ=所以()minsin θ=112B D =.[方法二]:几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE 平面11B BCC FT =.作1BH FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1D H B ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//CG AB 交DS 于点G .由111113C S C G SA A D ==得11(2)3C G t =-.又1111B D BT C G C T=,即12(2)3t s s t =--,所以31t s t =+.又111B H BT C F FT =,即11B H =,所以1B H =所以DH ==则11sin B D DHB DH∠===所以,当12t =时,()1min 3sin 3DHB ∠=.[方法三]:投影法如图,联结1,FB FN,DEF 在平面11BB C C 的投影为1BN F ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS S θ=.设1(02)BD t t =≤≤,在1Rt DB F中,DF ==在Rt ECF中,EF =D 作1B N 的平行线交EN 于点Q .在Rt DEQ △中,DE ==在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅=,sin DFE ∠1sin 2DFE S DF EF DFE =⋅∠ =13,2B NF S = 1cos B NF DFES S θ==,sin θ,当12t =,即112B D =,面11BB C C与面DFE 所成的二面角的正弦值最小,最小值为3.【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维.第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C 与面DFE 所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE 在面11BB C C 上的投影三角形的面积与DFE △面积之比即为面11BB C C 与面DFE 所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.7.C【分析】设正四棱锥的高为h ,根据题意求出正四棱锥的底面边长与高的关系,再利用导数求解即可.【详解】设球体的半径为R ,由题知:34363R ππ=,所以球的半径3R =.设正四棱锥的底面边长为2a ,高为h ,则222222l h a h =+=+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,设()641=936x f x x ⎛⎫- ⎪⎝⎭,3x ≤≤,所以()5233112449696x x f x x x ⎛⎫⎛⎫-'=-= ⎪⎝⎭⎝⎭,当3x ≤≤()0f x ¢>,()f x 为增函数,当x <≤()0f x '<,()f x 为减函数,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C 8.C【分析】令四棱锥底面四边形外接圆半径为r ,用r 表示四棱锥的高及底面四边形面积最大值,再借助导数求解作答.【详解】设该四棱锥底面四边形为ABCD ,平面ABCD 截球O 所得小圆半径为r ,则球心O到平面ABCD 的距离h =设四边形ABCD 对角线,AC BD 的夹角为α,则1sin 2ABCD S AC BD α=⋅,于是得该四棱锥的体积:12sin 22sin 36623ABCD V S h BD r r rπα=⋅=⋅≤⋅⋅=当且仅当对角线,AC BD 是截面小圆互相垂直的两条直径,即四边形ABCD 为正方形时取等号,令2(0,1)r x =∈,有23r =23(),(0,1)f x x x x =-∈,求导得:22()233()3f x x x x x '=-=-,当203x <<时,()0f x '>,当213x <<时,()0f x '<,因此函数()f x 在2(0,)3上单调递增,在2(,1)3上单调递减,当23x =时,23max 224()(()3327f x =-=,从而当223r =时,max 222(333r =⨯⨯max V =,此时3h ==,故选:C9.(1)证明见解析;【分析】(1)利用线面垂直的判定定理可得AC ⊥平面BED ,然后根据面面垂直的判定定理可得平面BED ⊥平面ACD ;(2)首先判断出三角形AFC 的面积最小时F 点的位置,然后求得F 到平面ABC 的距离,从而求得三棱锥F ABC -的体积或利用等积法及锥体的体积公式即得.【详解】(1)AD CD = ,ADB BDC ∠=∠,BD BD =,ADB CDB ∴≅ ,AB BC ∴=,又E 为AC 的中点.AC BE ∴⊥,AD CD = ,E 为AC 的中点.AC DE ∴⊥,又BE DE E = ,BE ⊂平面BED ,DE ⊂平面BED ,AC ∴⊥平面BED ,又AC ⊂ 平面ACD ,∴平面BED ⊥平面ACD ;(2)方法一:依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形,所以2,1,AC AE CE BE ====由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =,所以222DE BE BD +=,即DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC ,由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BFFBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小,过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得2EF =,所以13,222DF BF DF ===-=,所以34BF BD =,过F 作FH BE ⊥,垂足为H ,则//FH DE ,又DE ⊥平面ABC ,所以FH ⊥平面ABC ,且34FH BF DE BD ==,所以34FH =,所以111323324F ABC ABC V S FH -=⋅⋅=⨯⨯=方法二:AB BC = ,60ACB ∠=︒,2AB =ABC ∴ 是边长为2的等边三角形,BE ∴=连接EF ,由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BFFBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小,即EF BD ⊥时,AFC △的面积最小,,,2AD CD AD CD AC ⊥== ,E 为AC 的中点,∴1DE =,222DE BE BD +=,BE ED ∴⊥,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得2EF =,∴32BF ,113222BEF S BF EF ∴=⋅=⋅11233F ABC A BEF C BEF BEF V V V S AC ---∴=+=⋅=⋅= .10.6【分析】取AC 中点O ,连接OB ,过点O 作Oz ⊥平面ABC ,以点O 为原点建立空间直角坐标系,设二面角D AC B '--的大小为α,把直线A C 与BD '所成角的余弦表示为α的函数,求出函数最大值作答.【详解】在ACD 中,90ADC ∠= ,1,CD AD ==则AC =,过D 作DH AC ⊥于H ,连接D H ',如图,显然D H AC '⊥,ACD 绕直线AC 旋转过程中,线段DH 绕点H 在垂直于直线AC 的平面γ内旋转到D H ',取AC 中点O ,连接OB ,因3AB BC ==,有OB AC ⊥,OB =,,663CD ADD H DH CH OH AC⋅'=====,过点O 作Oz ⊥平面ABC ,以点O 为原点,射线,,OB OA Oz 分别为,,x y z 轴非负半轴,建立空间直角坐标系,则A ,B ,(0,2C -,显然有//Oz 平面γ,设二面角D AC B '--的大小为[0,]απ∈,有(,,sin )636D αα'-,则有(,sin )6236BD αα=--' ,CA的方向向量为(0,1,0)n = ,设直线AC 与BD '所成的角为θ,于是得||cos |cos ,|||||n BD n BD n BD θ'⋅'=〈〉=='因[0,]απ∈,则1cos 1α-≤≤,于是得cos 6θ=,当且仅当cos 1α=取等号,所以直线AC 与BD '11.A【分析】取BD 中点O ,连接AO ,CO ,以O 为原点建立空间直角坐标系,利用二面角A BD C --的大小θ的正余弦表示,AB CD的坐标,利用空间向量建立函数关系求解作答.【详解】取BD 中点O ,连接AO ,CO ,而AB =BD =DA =2,BC =CD,则CO ⊥BD ,AO ⊥BD ,且CO =1,AOAOC ∠是二面角A BD C --的平面角,令5[,]66AOC ππθ∠=∈,显然有BD ⊥平面AOC ,BD ⊂平面BCD ,则平面AOC ⊥平面BCD ,在平面AOC 内过O 作Oz OC ⊥,而平面AOC I 平面BCD OC =,因此Oz ⊥平面BCD ,即射线,,OC OD Oz 两两垂直,以O 为原点,射线,,OC OD Oz 分别为,,x y z轴非负半轴,建立空间直角坐标系,如图,则(0,1,0),(1,0,0),(0,1,0)B C D -,)A θθ,,1,),(1,1,0)BA CD θθ==-,设直线AB 与CD 所成的角为α,则||cos |cos ,|||||AB CD AB CD AB CD α⋅=〈〉==,由5[,66ππθ∈得:cos [,]22θ∈,15122θ-≤≤,则5|1|[0,2θ∈,于是得cos[0,]α∈,8.所以直线AB与CD 所成角的余弦值取值范围是[0,]8故选:A答案第18页,共18页。

立体几何中的最值问题

立体几何中的最值问题
AB + BD = AC + CD = 2a,显然△ABD≌ △ACD,所以BE = CE.
取 BC 中点 F,∴ EF⊥BC,EF⊥AD,四面体 ABCD 的体 积的最大值,只需 EF 最大即可,
当△ABD 是等腰直角三角形时几何体的体积最大. ∵ AB + BD = AC + CD = 2a,
∴ AB = a,所以 EB = 槡a2 - c2 ,EF = 槡a2 - c2 - 1,
棱 AA1 的长的最小值为

解析 设 AA1 = m,AE = x,以 D 为坐标
原点建系,则 D( 0,0,0) ,E( a,0,x) ,B( a,
a,0)
所,C以1 ( E→0B,a=,m( 0)
, ,a,-
x)
,E→C1
=

- a,a,m - x) ,
所以 x2 - mx + a2 = 0,x∈[0,m].
点评 本题求的是动点到两个定点距离和的最值问
题,采用了补型的 技 巧,化 曲 为 直,将 折 线 的 最 值 转 化 为 直
线的最值得解,这是动点距离和中常用的技巧.
题型二 棱长最值问题
例 2 长方体 ABCD - A1 B1 C1 D1 的底
面是边长为 a 的正方形,若在侧棱 AA1 上
至少存在一点 E,使得 ∠C1 EB = 90°,则侧
解题技巧与方法
126
JIETI JIQIAO YU FANGFA
立体几何中的最值问题
◎孙岳炜 ( 山东省寿光现代中学,山东 寿光 262700)
立体几何中 的 最 值 问 题 一 般 是 指 有 关 距 离 的 最 值 、角
的最值或面积的最值的问题. 在立体几何中,计算几何体的

专题05 立体几何与数学文化-高考中的数学文化试题 (解析版)

专题05 立体几何与数学文化-高考中的数学文化试题 (解析版)

专题05 立体几何与数学文化纵观近几年高考,立体几何以数学文化为背景的问题,层出不穷,让人耳目一新。

同时它也使考生们受困于背景陌生,阅读受阻,使思路无法打开。

本专题通过对典型高考问题的剖析、数学文化的介绍、及精选模拟题的求解,让考生提升审题能力,增加对数学文化的认识,进而加深对数学文理解,发展数学核心素养。

【例1】(2019课标2)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为.【答案】26,21.【解析】中间层是一个正八棱柱,有8个侧面,上层是有81+,个面,下层也有81+个面,故共有26个面;半正多面体的棱长为中间层正八棱柱的棱长加上两个棱长的2cos452=倍.该半正多面体共有888226+++=个面,设其棱长为x,则221x x=,解得21x.【试题赏析】本题以金石文化为背景,考查了球内接多面体,体现了对直观想象和数学运算素养的考查。

【例2】(2018课标Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A .B .C .D .【答案】A【解析】由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A .【试题赏析】本题以中国古建筑借助榫卯将木构件为背景,考查了简单几何体的三视图的画法。

【例2】 (2019浙江高考) 祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V sh 柱体,其中s 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A .158B .162C .182D .324【答案】B【解析】由三视图还原原几何体如图,该几何体为直五棱柱,底面五边形的面积可用两个直角梯形的面积求解, 即()()114632632722ABCDE S =+⨯++⨯=五边形,高为6,则该柱体的体积是276162V =⨯=.故选:B . 【试题赏析】本题以祖暅原理为背景,考查由三视图求面积、体积,关键是由三视图还原原几何体。

高中数学立体几何中的最值问题、内接外切、球面距离

高中数学立体几何中的最值问题、内接外切、球面距离

For personal use only in study and research; not for commercial use立体几何中的最值问题、内接外切、球面距离1. 一条长为2,a b 的三条线段,则ab 的最大值为A B C .52D .3【答案】C【解析】构造一个长方体,让长为2的线段为体对角线,由题意知2222221,1,3a y b x x y =+=++=,即22222325a b x y +=++=+=,又2252a b ab =+≥,所以52ab ≤,当且仅当a b =时取等号,所以选C. 2. 四棱锥P ABCD -的三视图如右图所示,四棱锥P ABCD -的五个顶点都在一个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为 A.12p B.24p C.36p D.48p3. 若三棱锥S ABC -的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =1AB =,2AC =,60BAC ∠=︒,则球O 的表面积为 ( ) A .64π B .16π C .12π D .4π【答案】B【解析】因为1AB =,2AC =,60BAC ∠=︒,所以2212212cos603BC =+-⨯⨯=,所以BC =。

所以90ABC ∠=,即ABC ∆为直角三角形。

因为三棱锥S ABC -的所有顶点都在球O 的球面上,所以斜边AC的中点是截面小圆的圆心'O ,即小圆的半径为12r AC ==.,因为,OA OS 是半径,所以三角形AOS 为等腰三角形,过O 作OM SA ⊥,则M 为中点,所以1'2OO AM SA ====所以半径2OA ====,所以球的表面积为2416R ππ=,选B.4. 已知正四棱柱ABCD-A 1B 1C 1D 1的高为323p,则A 、B 两点的球面距离为____________. 【答案】23π 【解析】因为正四棱柱外接球的体积为323p ,所以343233R pp =,即外接球的半径为2R =,所以正四棱柱的体对角线为24R =,设底面边长为x ,则222)(24+=,解得底面边长2x =。

例谈立体几何最值问题的几种解法

例谈立体几何最值问题的几种解法

思路探寻立体几何最值问题侧重于考查同学们的空间想象、逻辑推理和数学运算等能力.常见的立体几何最值问题是求立体几何图形中某条线段、某个角、体积、表面积的最值,那么如何求解呢?一、利用函数思想在大多数情况下,我们可以把与动点有关的立体几何问题看作函数问题来求解.以其中某一个量,如动点的坐标、线段的长、角的大小为变量,建立关于该变量的关系式,并将其视为函数式,即可利用一次函数、二次函数、三角函数的性质和图象求得最值.例1.如图1,正方体ABCD-A1B1C1D1的棱长为1,P为AA1的中点,M在侧面AA1B1B上,若D1M⊥CP,则ΔBCM).C.5D.2图1图2解:过M作MG⊥平面ABCD,垂足为G,作GH⊥BC于点H,连接MH,以D为坐标原点,建立如图2所示的空间直角坐标系,可得D()0,0,0,C()0,1,0,A()1,0,0,P()1,0,12,D1(0,0,1),B()1,1,0.设M()1,a,b,则D1M=()1,a,b-1,CP=()1,-1,12,∵D1M⊥CP,∴ D1M⋅ CP=12b-a+12=0,∴b=2a-1,∴CH=1-a,MG=2a-1,∴MH=()1-a2+()2a-12=5a2-6a+2,∴SΔBCM=12BC⋅MH=1=可知当a=35时,ΔBCM面积取最小值,为SΔBCM=12×=故选B.在建立空间直角坐标系后,设出点M的坐标,以a、b为变量,构建关于a的函数式SΔBCM=然后将5a2-6a+2看作二次函数式,对其配方,根据二次函数的性质即可知函数在a=35时取最小值.二、运用基本不等式在解答立体几何最值问题时,我们往往可以先根据立体几何中的性质、定义、定理求得目标式;然后将其进行合理的变形,采用拆项、凑系数、补一次项,去掉常数项等方式,配凑出两式的和或积,就可以直接运用基本不等式来求得最值.在运用基本不等式求最值时,要把握三个条件:一正、二定、三相等.例2.已知三棱锥P-ABC的4个顶点均在球心为O、直径为23的球面上,PA=2,且PA,PB,PC两两垂直.当PC+AB取最大值时,三棱锥O-PAB的体积为().A. C.6解:∵PA,PB,PC两两互相垂直,∴三棱锥P-ABC可补全为如图3所示的长方体.则长方体的外接球即为三棱锥P-ABC的外接球,∴PA2+PB2+PC2=()232=12,又PA=2,∴PB2+PC2=10,∵AB2=PA2+PB2=2+PB2,∴PC2+AB2=2+PB2+PC2=12,∴()PC+AB2-2PC⋅AB=12,又PC⋅AB≤()PC+AB22,∴12=()PC+AB2-2PC⋅AB≥()PC+AB2-2()PC+AB22=12()PC+AB2,当且仅当PC=AB时取等号,∴()PC+AB max=26,此时PC=AB=6,PB=图347思路探寻AB 2-PA 2=2,∴V O -PAB =12V C -PAB =16S △PAB ⋅PC =112PA ⋅PB⋅PC =112×2×2×6故选B.根据长方体的性质得到()PC +AB 2-2PC ⋅AB =10后,可发现该式中含有PC 、AB 的和与积,根据基本不等式a +b ≥2ab 求解,即可得到三棱锥O -PAB 的体积.三、转化法运用转化法求解立体几何最值问题有两种思路.一是将问题转化为平面几何问题.先将几何体的表面展开,或将几何体内部满足条件的某些面展开成平面;再在平面内利用平面几何知识,如正余弦定理、两点间的距离最短、三角形的两边之和大于第三边等求解,这样问题就变得十分直观,容易求解了.另一种思路是根据题意和几何图形中的点、线、面的位置关系,明确其中改变的量和不变的量及其关系,根据简单几何体的性质、表面积公式、体积公式,将问题转化为求某些线段或角的最值.再结合简单几何体的性质,几何图形中点、线、面的位置关系求得最值例3.如图4,在正三棱柱ABC -A 1B 1C 1中,AA 1=AB =2,D 在A 1C 上,E 是A 1B 的中点,则()AD +DE 2的最小值是().A.6-7 B.27 C.3+7 D.5+7图4图5解:将平面A 1BC 与平面A 1AC 翻折到同一平面上,连接AE ,如图5所示,设AE ⋂A 1C =F .由题意可知A 1A =AC =BC =2,A 1C =A 1B =22,所以AA 21+AC 2=A 1C 2,所以AA 1⊥AC ,则∠AA 1C =45°,由余弦定理可得cos∠BA 1C =A 1B 2+A 1C 2-BC 22A 1B ⋅A 1C=8+8-42×22×22=34,则sin∠BA 1C =1-cos 2∠BA 1C =故cos∠AA 1B =cos ()∠AA 1C +∠BA 1C =cos ∠AA 1C cos ∠BA 1C -sin ∠AA 1C sin ∠BA 1C =32-148.因为E 是A 1B 的中点,所以A 1E =2,由余弦定理可得AE 2=AA 21+A 1E 2-2AA 1⋅A 1E cos∠BA 1A=4+2-2×2×2×32-148=3+7.因为D 在A 1C 上,所以AD +DE ≥AE ,当A 、E 、D 三点共线时,等号成立,则()AD +DE 2≥3+7.故选C .将平面A 1BC 与平面A 1AC 翻折到同一平面上,就可以把立体几何问题转化为平面几何问题,即可根据勾股定理和余弦定理求得A 1E 以及AE 的值.分析图形可知当A 、E 、D 三点共线时,AD +DE 取得最大值,再结合余弦定理求解即可.例4.已知球O 的表面积为60π,四面体P -ABC 内接于球O ,ΔABC 是边长为6的正三角形,平面PBC ⊥平面ABC ,则四面体P -ABC 体积的最大值为().A.18B.27C.32D.81解:因为球O 的表面积为60π,所以球的半径R ==15,由题意知四面体P -ABC 底面三角形的面积为定值,要使四面体的体积最大,只须使顶点P 到底面的距离最大,又因为平面PBC ⊥平面ABC ,所以当PB =PC 时,点P 到底面的距离最大,而ΔABC 外接圆的半径r =62sin60°=23,则O 到面ABC 的距离为d =R 2-r 2=3,且O 到面PBC 的距离为h =12r =3,设点P 到平面ABC 的距离为H ,则R 2=()H -d 2+h 2,解得H =33,此时体积最大值为V max =13×12×6×6×sin60°×33=27.故选B.解答本题,首先根据球的表面积求得球的半径;再根据题意和几何体的特征明确当PB =PC 时,点P 到底面的距离最大;最后根据外接圆的性质、勾股定理求出点P 到底面的距离,即可求出最大值.除了上述三种方法外,有时还可采用定义法、构造法来求立体几何最值问题的答案.总之,同学们在解题时,要先根据题意和几何体的结构特征寻找取得最值的情形,求得目标式;然后根据目标式的特征,选用合适的方法求最值.(作者单位:贵州省江口中学)48。

第5讲 立体几何中的范围与最值问题(解析版)

第5讲 立体几何中的范围与最值问题(解析版)

第5讲 立体几何中的范围与最值问题一、单选题1.(2021·浙江衢州市·高二期末)如图,在三棱锥D ABC -中,,1,1AD BC BC AD ⊥==.且2AB BD AC CD +=+=,则四面体ABCD 的体积的最大值为( )A .14B C .6D 【答案】B 【分析】作BE ⊥AD 于E ,连接CE ,B 与C 都是在以A 、D 为焦点的椭球上,且BE 、CE 都垂直于焦距AD ,要求四面体ABCD 的体积的最大值,根据AD 是定值,只需三角形EBC 的面积最大,又BC 是定值,只需EF 最大即可. 【详解】作BE ⊥AD 于E ,连接CE ,如图,因为,AD BC ⊥,BE BC 再平面BEC 内相交,所以AD ⊥平面BEC , 因为CE ⊂平面BEC ,所以CE ⊥AD , 因为2AB BD AC CD +=+=,所以B 与C 都是在以A 、D 为焦点的椭球上,且BE 、CE 都垂直于焦距AD , AB +BD = AC +CD =2,显然ABD ACD ≅,所以BE =CE . 取BC 中点F ,,,BC E AD E F F ⊥∴⊥要求四面体ABCD 的体积的最大值,因为AD 是定值,只需三角形EBC 的面积最大, 因为BC 是定值,所以只需EF 最大即可,当△ABD 是等腰直角三角形时几何体的体积最大, 因为AB +BD = AC +CD =2,1AB ∴=,EB EF ∴====所以几何体的体积为111132⨯⨯⨯=故选:B 【点睛】方法点睛:空间几何体体积问题的常见类型及解题策略:(1)求简单几何体的体积时若所给的几何体为柱体锥体或台体,则可直接利用公式求解;(2)求组合体的体积时若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解.2.(2021·山东高三专题练习)如图所示,在三棱锥P ABC -中,BC ⊥平面PAC ,PA AB ⊥,4PA AB ==,且E 为PB 的中点,AF PC ⊥于F ,当AC 变化时,则三棱锥P AEF -体积的最大值是( )A .3B C .3D .3【答案】C 【分析】由题意知P AEF E PAF V V --=且216||||316||E PAF AC BC V AC -⋅=⋅+,令||AC a =,结合换元法、二次函数最值求P AEF -体积的最大值即可.【详解】在三棱锥P ABC -中,BC ⊥平面PAC ,4PA AB ==知:222||||||16AC BC AB +==,而1||||2||2PACSAC PA AC =⋅⋅=, 而P AEF E PAF V V --=且1||32E PAFPAFBC V S -=⋅⋅,又222||||||PAFPACPA SS PA AC =⋅+∵E 为PB 的中点,知:21||16||||32316||E PAF PAFBC AC BC V S AC -⋅=⋅⋅=⋅+∴设||AC a =,则||BC =216316E PAFV a-=⋅+令21616m a =+≥,有161633E PAF V -==令11(0,]16x m =∈,163E PAF V -=2()512481f x x x =-+-的性质知:364x =时有最大值为18,∴E PAF V -最大值为1633=, 故选:C 【点睛】本题考查三棱锥的体积计算,结合换元法、二次函数最值求三棱锥体积最值,注意换元过程中定义域的等价变化.3.(2021·合肥市第六中学高二期末(理))如图,正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱1AA ,1CC 的中点,过点,E F 的平面分别与棱1BB ,1DD 交于点G ,H ,给出以下四个命题:①平面EGFH 与平面ABCD 所成角的最大值为45°; ②四边形EGFH 的面积的最小值为1; ③四棱锥1C EGFH -的体积为定值16; ④点1B 到平面EGFH. 其中正确命题的序号为( ) A .②③ B .①④C .①③④D .②③④【答案】D 【分析】由两平面所成角的余弦公式即面积射影公式,计算可得所求最大值,可判断①;由四边形EGFH 为菱形,计算面积,分析GH 的最小值,可判断②;由棱锥的等体积法,计算可判断③;由等体积法和函数的性质可判断④. 【详解】对于①,四边形EGFH 为平行四边形,又直角梯形CBGF 和直角梯形ABGE 全等,得EG FG =,所以四边形EGFH 为菱形,且GH EF ⊥,平面EGFH 在底面上的射影为四边形ABCD ,设平面EGFH 与平面ABCD 所成角为θ,则1cos 12ABCD EGFH S S GH GH θ===,GH ≤≤cos 1θ≤≤,可得所成角的最大值不为45°,故①错误;对于②GH ≤EGFH 的面积的最小值为112=,故②正确;对于③,四棱锥1C EGFH -的体积为1111112223226C EGF E GFC V V V --===⨯⨯⨯=,故③正确;对于④,设BG x =,[]0,1x ∈,()111111132B EFG E B FG V V x --==⨯⨯⨯-⨯(01x ≤≤),设1B 到平面EGFH 的距离为d,可得11132B EFGV d -=⨯所以d ===(其中1t x =-),当0x =即1t =时,d④正确. 故选:D. 【点睛】一般关于体积计算,一是可以考虑通过空间向量的方法,写出点的坐标,计算底面积与点到底面的距离,代入体积公式计算,二是可以通过等体积法,通过换底换高求解;关于空间几何体中一些边长或者距离的最值计算一般转化为函数问题,可以通过二次函数、反比例函数的性质求解最值,或者有时可以利用基本不等式,较难的问题则需要通过导数判断单调性从而求出最值.4.(2021·安徽黄山市·高二期末(理))长方体1111ABCD A B C D -中,2AB =,1BC =,12AA =,P 为该正方体侧面11CC D D内(含边界)的动点,且满足tan tan PAD PBC ∠+∠=则四棱锥P ABCD -体积的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦B.233⎤⎥⎣⎦C .40,3⎛⎤ ⎥⎝⎦D.433⎤⎥⎣⎦【答案】B 【分析】首先根据tan tan PAD PBC ∠+∠=2PD PC CD +=>=,所以P 的轨迹是以,C D 为焦点2a =的椭圆,再根据椭圆的几何性质可得到四棱锥P ABCD -的高的最值,即可得到体积的范围.【详解】 如图所示:在RT PAD 中,tan PDPAD PD AD ∠==, 在RT PBC 中,tan PCPBC PC BC∠==,因为tan tan PAD PBC ∠+∠=所以PD PC +=因为2PD PC CD +=>=所以点P 的轨迹是以,C D 为焦点 2a =的椭圆. 如下图所示:a =1c =,1b ==.椭圆的标准方程为:2212x y +=.1(0,1)P联立22112x x y =⎧⎪⎨+=⎪⎩,解得:y =所以2(1,2P -,3(1,2P . 当点P 运动到1P 位置时,此时四棱锥P ABCD -的高最长, 所以max 1112()21333P ABCD ABCD V S PO -=⨯⨯=⨯⨯=. 当点P 运动到2P 或3P 位置时,此时四棱锥P ABCD -的高最短,所以min 211()23323P ABCD ABCD V S P D -=⨯⨯=⨯⨯=.综上所述:233P ABCD V -≤≤. 故选:B 【点睛】本题主要考查计算四棱锥的体积,同时考查了椭圆的几何性质,将立体思想转化为椭圆思想是解题的关键,属于难题.5.(2021·江西南昌市·南昌十中高二期末(文))已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是线段AB 、1BD 上的动点,若//EF 平面11ADD A ,则三棱锥1A EFB -的最大体积为( )AB .112C .124D .18【答案】C 【分析】在平面1BDD 内过F 作FG DB ⊥于G ,证明EG ⊥平面1AEB ,得F 到平面1AEB 的距离等于G 到平面1AEB 的距离,设()01BE x x =<<,则F 到平面1AEB 的距离等于G 到平面1AEB 的距离为x ,利用等体积法写出三棱锥1A EFB -的体积,再由二次函数求最值. 【详解】 如图,由1DD ⊥底面ABCD ,可得平面1BDD ⊥底面ABCD , 在平面1BDD 内过F 作FG DB ⊥于G , 则FG ⊥底面ABCD ,可得1//FG DD ,//FG ∴平面11ADD A ,又//EF 平面11ADD A ,且1FG DD F ⋂=,∴平面//EFG 平面11ADD A ,可得//EG AD ,则EG ⊥平面1AEB , 又11////FG DD AA ,且FG ⊄平面1AEB , 可得//FG 平面1AEB ,则F 到平面1AEB 的距离等于G 到平面1AEB 的距离,设()01BE x x =<<,则F 到平面1AEB 的距离等于G 到平面1AEB 的距离为x ,则()()11111122AEB Sx x =-⨯=-, ()()1121111326A EFB F AEB V V x x x x --∴==⋅-⋅=-+,当()10,12x =∈时,()1124A EFB V -=. 故选:C 【点睛】本题主要考查了线线、线面、面面平行,线面垂直,三棱锥体积最大值的求法,考查了转化与化归的思想方法,利用二次函数求最值,属于难题.6.(2021·浙江高三月考)已知正方体ABCD A B C D ''''-的棱长为1,点M ,N 分别为线段AB ',AC 上的动点,点T 在平面BCC B ''内,则MT NT +的最小值是( )A B .3C .2D .1【答案】B 【分析】设A 点关于BC 的对称点为E ,M 关于BB '的对称点为M ',则最小值为直线EB '与AC 之间的距离,利用等积法可求此最小距离. 【详解】解:A 点关于BC 的对称点为E ,M 关于BB '的对称点为M ',记d 为直线EB '与AC 之间的距离,则MT NT M T NT M N d ''+=+≥≥, 由//B E D C '',d 为E 到平面ACD '的距离, 因为111111333D ACE ACEV S '-=⨯⨯==⨯⨯=,而213D ACE E ACD V V d ''--==⨯=,故d =, 故选:B.【点睛】方法点睛:空间中动线段的距离和的最值问题,可以类比平面中的距离和的最值处理利用对称性来处理于转化,另外异面直线间的公垂线段的长度可利用点到平面的距离来处理.7.(2021·浙江丽水市·高二期末)在棱长为1的正方体1111ABCD A B C D -中,E 为线段1B C 的中点,F 是棱11C D 上的动点,若点P 为线段1BD 上的动点,则PE PF +的最小值为( )A .6B .122C .2D .2【答案】A 【分析】连接1BC ,得出点,,P E F 在平面11BC D 中,问题转化为在平面内直线1BD 上取一点P ,求点P 到定点E 的距离与到定直线的距离的和的最小值问题,建立平面直角坐标系,问题转化为点E 关于直线1BD 到直线11C D 的距离,从而可得结果.【详解】图1连接1BC ,则11BC B C E =,点,,P E F 在平面11BC D 中,且111111,1,BC C D C D BC ⊥==1所示,在11Rt BC D ∆中,以11C D 为x 轴,1C B 为y 轴,建立平面直角坐标系, 如图2所示,图2()(11,0,,0,2D B E ⎛ ⎝⎭,设点E 关于直线1BD 的对称点为'E , 1BD的方程为1x =,①'EE k ∴==∴直线'EE的方程为22y x =+,② 由①②组成方程组,解得133x y ⎧=⎪⎪⎨⎪=⎪⎩直线'EE 与1BD的交点1,33M ⎛⎫⎪ ⎪⎝⎭,∴对称点2'3E ⎛ ⎝⎭, 'PE PF PE PF ∴+=+,最小值为'E 到直线11C D的距离为6,故选A. 【点睛】求最值问题一般有两种方法:一是几何意义,特别是用曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.8.(2021·安徽六安市·六安一中高二开学考试(理))正方体1111ABCD A B C D -的棱长为4,点M 在棱AB 上,且1AM =,点P 是正方体下底面ABCD 内(含边界)的动点,且动点P 到直线11A D 的距离与点P 到点M 的距离的平方差为16,则动点P 到B 点的最小值是( ).A .72B .C D【答案】C 【分析】作PQ AD ⊥,11QR A D ⊥,PR 即为P 到直线11A D 的距离,从而可得PM PQ =,即点P 的轨迹是以AD 为准线,点M 为焦点的抛物线,然后建立平面直角坐标系求解. 【详解】如图所示,作PQ AD ⊥,Q 为垂足,则PQ ⊥面11ADD A 过点Q 作11QR A D ⊥,则11A D ⊥面PQR 所以PR 即为P 到直线11A D 的距离因为22216PR PQ RQ -==,2216PR PM -= 所以PM PQ =所以点P 的轨迹是以AD 为准线,点M 为焦点的抛物线如图建立直角坐标系,则点P 的轨迹方程是(220y x y =≤≤点7,02B ⎛⎫⎪⎝⎭,设2,2y P y ⎛⎫⎪⎝⎭所以PB ==所以当25y =,PB故选:C 【点睛】本题考查的是立体几何中的垂直关系、解析几何中抛物线的定义及最值问题,属于较难题.9.(2021·四川资阳市·高二期末(文))如图,棱长为3的正方体ABCD -A 1B 1C 1D 1中,P 为正方体表面BCC 1B 1上的一个动点,E ,F 分别为BD 1的三等分点,则||||PE PF +的最小值为( )A .B .2C .1+ D【答案】D 【分析】过F 作F 关于平面11BCC B 的对称点'F ,连接'EF 交平面11BCC B 于点0P ,证明此时的0P 使得||||PE PF +最小,建立空间直角坐标系,求出所需点的坐标,||||PE PF +的最小值为'EF . 【详解】过F 作F 关于平面11BCC B 的对称点'F ,连接'EF 交平面11BCC B 于点0P .可以证明此时的0P 使得||||PE PF +最小:任取1P (不含0P ),此时1111''PE PF PE PF EF +=+>. 在点D 处建立如图所示空间直角坐标系,则()()10,0,3,3,3,0D B ,因为E ,F 分别为BD 1的三等分点,所以()()1,1,2,2,2,1E F , 又点F 距平面11BCC B 的距离为1,所以()'2,4,1F ,||||PE PF +的最小值为2'1EF ==故选:D10.(2021·全国高三专题练习(理))已知直三棱柱111ABC A B C -的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱111,,AA BB CC ,分别交于三点,,M N Q ,若MNQ ∆为直角三角形,则该直角三角形斜边长的最小值为( )A .B .3C .D .4【答案】C 【分析】设N 在B 处,AM h =,CQ m =,分别表示出,,MQ BQ MB ,由勾股定理可构造方程,根据方程有解可得0∆≥,求得2h 的范围,进而得到MB 所处的范围. 【详解】如图,不妨设N 在B 处,AM h =,CQ m =则224MB h =+,224BQ m =+,()224MQ h m =-+由222MB BQ MQ =+得:220m hm -+=,则280h ∆=-≥,即28h ≥∴该直角三角形斜边MB =≥=故选:C 【点睛】本题考查立体几何中最值问题的求解,关键是能够通过特殊位置构造出关于变量的方程,通过方程有解确定所求变量所处的范围;考查了由特殊到一般的基本思想,对于学生的推理能力有一定要求,属于较难题. 11.(2021·台州市书生中学高二开学考试)等腰直角三角形ABE 的斜边AB 为正四面体ABCD 侧棱,直角边AE 绕斜边AB 旋转,则在旋转的过程中,则下列说法错误的是( )A .四面体E BCD -的体积有最大值和最小值;B .存在某个位置,使得AE BD ⊥;C .设二面角D ABE --的平面角为θ,则DAE θ≥∠;D .AE 的中点M 与AB 的中点N 连线交平面BCD 于点P ,则点P 的轨迹为椭圆. 【答案】C 【分析】通过旋转判定E 的位置可知A 的正误,通过证明E ﹣ABD 为正三棱锥可知B 的正误,根据,12DAE ππ⎡⎫∠∈⎪⎢⎣⎭,可知C 的正误,利用1P BCPB d -<结合椭圆定义可知D 的正误【详解】对A ,当CD ⊥平面ABE ,且E 在AB 的右上方时,E 到平面BCD 的距离最大, 当CD ⊥平面ABE ,且E 在AB 的左下方时,E 到平面BCD 的距离最小, ∴四面体E ﹣BCD 的体积有最大值和最小值,故A 正确;对B ,连接DE ,若存在某个位置,使得AE ⊥BD ,又AE ⊥BE ,则AE ⊥平面BDE ,可得AE ⊥DE ,进一步可得AE =DE ,此时E ﹣ABD 为正三棱锥,故B 正确; 对C ,取AB 中点O ,连接DO ,EO ,则∠DOE 为二面角D ﹣AB ﹣E 的平面角为θ,直角边AE 绕斜边AB 旋转,则在旋转的过程中,θ∈[0,π),,12DAE ππ⎡⎫∠∈⎪⎢⎣⎭,所以θ≥∠DAE 不成立.C 不正确;对于D,AE 的中点M 与AB 的中点N 连线交平面BCD 于点P ,P 到BC 的距离为:P BC d -,因为1P BCPB d -<,所以点P 的轨迹为椭圆.D 正确. 故选:C . 【点睛】关键点点睛:本题关键在于旋转过程能借用图形形象直观,同时掌握椭圆的定义,可以更快的解决问题. 12.(2021·浙江高一期末)三棱锥P ﹣ABC 中,PA 、PB 、PC 两两垂直,且PA =3,PB =2,PC =1,设M 是底面△ABC 内一点,定义f (M )=(m ,n ,p ),其中m ,n ,p 分别是三棱锥M ﹣PAB ,三棱锥M ﹣PBC ,三棱锥M ﹣PCA 的体积.若f (M )=(12,x ,y ),且18a x y +≥恒成立,则正实数a 的最小值为( )A .1B .13﹣C .9﹣D .2【答案】A 【分析】由题意可得12P ABC V x y -=++三棱锥,即()21x y +=.利用基本不等式求1a x y +的最小值,建立关于a 的不等式,即可解得. 【详解】,,PA PB PC 两两垂直,且3,2,1PA PB PC ===.由题意可得1113211322P ABC V x y -=⨯⨯⨯⨯==++三棱锥, ()1,212x y x y ∴+=∴+=. 所以()1122222a a y ax x y a x y x y x y⎛⎫+=+⨯+=+++ ⎪⎝⎭2222a a ≥++=++当且仅当22y ax x y=,即=y 时,等号成立.由228a ++≥恒成立,解得1a ≥, ∴正实数a 的最小值为1. 故选:A . 【点睛】本题考查棱锥的体积和基本不等式,属于中档题.二、多选题13.(2021·山东高三专题练习)已知边长为2的等边ABC ,点D 、E 分别是边AC 、AB 上的点,满足//DE BC 且AD ACλ=(()0,1λ∈),将ADE 沿直线DE 折到A DE '的位置,在翻折过程中,下列结论成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面ACD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--等于60°时,2A B '=D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ【答案】CD 【分析】假设结论成立,推出矛盾结论判断A ,B ,利用勾股定理计算||A B '判断C ,求出()f λ解析式,利用导数求出最大值判断D . 【详解】解:对于A ,连接AA ',A B ',A C ',显然平面A BE '⋂平面ACDAA '=', 若A E '上存在点F 使得//BF ACD ',则//BF AA ',显然BF 与AA '为相交直线,矛盾,故A 错误; 对于B ,设BC 中点M ,DE 中点O ,由等边三角形性质可知DE AO ⊥,DE AO ⊥', 若平面A BC '⊥平面BCDE ,则A '在底面BCDE 上的射影为M ,于是AOOM '>, 12λ∴>,与1(0,)2λ∈矛盾,故B 错误;对于C ,若12λ=,二面角A DE B '--等于60︒,则12OA OM AM '===,设A '在底面BCDE 上的射影为N ,则3sin 604A N OA '='︒=,cos60ON OA ='︒=,MN ∴=BN =,||AB ∴'=,故C 正确;对于D ,AO AD DEAM AC BCλ===,2DE λ∴=,OA OA '==, )21122122BCDE S λλ∴=⨯⨯=-梯形,显然在翻折过程中,当平面A DE '⊥平面BCDE 时,四棱锥的体积最大,故231())3f λλλλ=-=-,2()13f λλ'=-,令()0f λ'=可得λ=0λ<<时,()0f λ'>1λ<<时,()0f λ'<,∴当3λ=时,()f λ取得最大值f ,故D 正确.故选:CD .【点睛】本题考查了线面平行的性质,考查棱锥的体积计算,属于中档题.14.(2021·江苏南通市·高三期末)如图,在棱长为1的正方体1111ABCD A B C D -中,P 为线段11B D 上一动点(包括端点),则以下结论正确的有( )A .三棱锥1P A BD -的体积为定值13B .过点P 平行于平面1A BD 的平面被正方体1111ABCD A BCD -C .直线1PA 与平面1A BD 所成角的正弦值的范围为⎣⎦D .当点P 与1B 重合时,三棱锥1P A BD -的外接球的体积为2【答案】BCD 【分析】由11P A BD A PBD V V --=,可判定A 不正确;根据正方体的结构,得出截面为正11B D C ∆,可判定B 正确;由正方体的结构特征和性质,以及线面角的定义与求法,可判定C 正确;设1B D 的中点为O ,得到11OA OB OD OB === 得出三棱锥1P A BD -的外接球的的半径,结合体积公式,可判定D 正确. 【详解】对于A 中,由1111113226P A BD A PBD V V --==⨯⨯=,所以A 不正确; 对于B 中,过点P 平行于平面1A BD 的平面被正方体截得的多边形平面11B D C ,此时三角形11B D C 的等边三角形,其面积为242⨯=,所以B 正确;对于C 中,由正方体的结构特征和性质,可得点P 到平面1A BD ,当点P 在线段11B D 上运动时,1max 1PA =(P 为端点时),mi 1nPA =,设直线1PA 与平面1A BD 所成角为θ,则sin 33θ∈⎣⎦,所以C 正确; 对于D 中,当点P 与1B 重合时,此时三棱锥为11B A BD -,设1B D 的中点为O ,因为11190B BD B A D ∠=∠=︒,可得11OA OB OD OB ===所以三棱锥1P A BD -的外接球的球心为1B D 的中点,其半径为2,所以三棱锥1P A BD -的外接球的体积为343π⨯=,所以D 正确. 故选BCD. 【点睛】1、对于三棱锥体积的求解可采用等体积法求解,通过选择合适的底面来求几何体体积的一种方法,多用来解决锥体的体积,特别时三棱锥的体积.2、对于线面角的计算问题可以通过根据直线与平面所成角的定义,结合垂线段与斜线段的长度比求得线面角的正弦值;3、对于球的组合体问题:如果是内切球,球心到切点的距离相等且为半径;如果是外接球,球心到接点的距离相等且为半径;15.(2021·全国高三专题练习)如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 的最小值为5B .DPC .1AP PC +D .1AP PC +【答案】AD 【分析】DP 的最小值,即求1DA B △底边1A B 上的高即可;旋转11A BC 所在平面到平面11ABB A ,1AP PC +的最小值转化为求AC '即可. 【详解】求DP 的最小值,即求1DA B △底边1A B 上的高,易知11A B A D BD ==,所以1A B 边上的高为h =连接111,AC BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为所求的最小值,易知1112,10AA AC AAC ''==∠=-,所以5AC '==. 故选:AD. 【点睛】本题考查利用旋转求解线段最小值问题.求解翻折、旋转问题的关键是弄清原有的性质变化与否, (1)点的变化,点与点的重合及点的位置变化;(2)线的变化,翻折、旋转前后应注意其位置关系的变化;(3)长度、角度等几何度量的变化.16.(2021·山东济南市·高二期末)已知正方体1111ABCD A B C D -的棱长为2,点E ,F 在平面1111D C B A 内,若||AE =AC DF ⊥,则( )A .点E 的轨迹是一个圆B .点F 的轨迹是一个圆C .EF 1D .AE 与平面1A BD 所成角的正弦值的最大值为15【答案】ACD 【分析】对于A 、B 、C 、D 四个选项,需要对各个选项一一验证.选项A :由||AE ==1||1A E =,分析得E 的轨迹为圆的一部分;选项B :由AC DBF ⊥,而点F 在11B D 上,即F 的轨迹为线段11B D ,; 选项C :由E 的轨迹为圆,F 的轨迹为线段11B D ,可分析得min ||EF d r =-; 选项D :建立空间直角坐标系,用向量法求最值. 【详解】对于A:||AE ===1||1A E =,即点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上,应为圆的一部分;故A 错误;对于B: 正方体1111ABCD A B C D -中,AC ⊥BD ,又AC DF ⊥,且BD ∩DF=D ,所以AC DBF ⊥,所以点F 在11B D 上,即F 的轨迹为线段11B D ,故B 错误; 对于C:在平面1111D C B A 内,1A 到直线11B D 的距离为d =当点E ,F 落在11A C 上时,min ||1EF =;故C 正确;对于D:建立如图示的坐标系,则()()()()10,0,0,2,0,0,0,0,2,0,2,0A B A D因为点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上,可设()cos ,sin ,2E θθ 所以()()()1cos ,sin ,2,2,0,2,2,2,0,AE A B BD θθ==-=-设平面1A BD 的法向量(),,n x y z =,则有1·220·220n BD x y n A B x z ⎧=-+=⎪⎨=-=⎪⎩ 不妨令x =1,则()1,1,1n =, 设AE 与平面1A BD 所成角为α,则:2||||cos sin |cos ,|||||n AE n AEn AE πθα⎛⎫++ ⎪====⨯当且仅当4πθ=时,sin α15=, 故D正确 故选:CD 【点睛】多项选择题是2020年高考新题型,需要要对选项一一验证.17.(2021·全国高三其他模拟)已知正方体1111ABCD A B C D -的棱长为2,点E ,F 分别是棱AB ,11A B 的中点,点P 在四边形ABCD 内(包括边界)运动,则下列说法正确的是( )A .若P 是线段BC 的中点,则平面1AB P ⊥平面DEFB .若P 在线段AC 上,则1D P 与11A C 所成角的取值范围为,42ππ⎡⎤⎢⎥⎣⎦C .若1//PD 平面11ACE ,则点PD .若//PF 平面11B CD ,则线段PF 【答案】AC 【分析】证明AP ⊥平面DEF ,得面面垂直,判断A ;由1D AC 为正三角形,得1D P 与11A C 所成角的取值范围,判断B ;分别取AD ,DC 的中点M ,N ,证明平面1//D MN 平面11AC E ,判断C ;取1BB 的中点R ,BC 的中点G ,DC 的中点N ,连接FN ,平面//FNGR 平面1B CD (先证明四点,,,F N G R 共面),确定FG 是最小值,然后计算FG 后,判断D . 【详解】 对于A ,如下图,P ,E 分别是线段BC ,AB 的中点,故ABP DAE △△≌,则PAB ADE ∠=∠,2PAB DEA ADE DEA π∠+∠=∠+∠=,所以AP DE ⊥,易知EF ⊥平面ABCD ,所以EF AP ⊥, 所以AP ⊥平面DEF ,从而平面1AB P ⊥平面DEF , 故A 正确.对于B ,正方体1111 ABCD A B C D -中,11//AC AC , 所以1D P 与11A C 所成的角为1D P 与AC 所成的角, 连接1D A ,1D C , 则1D AC 为正三角形,所以1D P 与11A C 所成角的取值范围为,32ππ⎡⎤⎢⎥⎣⎦, 故B 错误.对于C ,如下图,设平面11AC E 与直线BC 交于点G , 连接1C G ,EG ,则G 为BC 的中点, 分别取AD ,DC 的中点M ,N , 连接1D M ,MN ,1D N ,易知11//D M C G , 所以1//D M 平面11AC E .同理可得1//D N 平面11AC E ,所以平面1//D MN 平面11AC E , 由此结合1//PD 平面11AC E ,可得直线1PD ⊂平面1D MN ,所以点P 的轨迹是线段MN ,易得MN =故C 正确. 对于D ,如下图,取1BB 的中点R ,BC 的中点G ,DC 的中点N ,连接FN , 因为1//FB NC ,1FB NC =, 所以四边形1FB CN 为平行四边形, 所以1//FN B C ,所以//FN 平面11B CD , 连接BD ,NG ,则//NG BD ,又1//BD B D , 所以11//NG B D ,所以//NG 平面11B CD , 连接FR ,GR ,易知1//GR B C ,又1//B C FN , 所以//RG FN ,故F ,N ,G ,R 四点共面, 所以平面//FNGR 平面1B CD .因为//PF 平面11B CD ,所以PF ⊂平面FNGR , 所以点P 的轨迹为线段NG .由2AB =知,FN =NG =,连接FB ,FG ,在Rt FBG △中, 222216FG FB BG =+=+=,所以FG =所以222FN NG FG =+,得FGN ∠为直角,故线段FP , 故D 错误. 故选:AC . 【点睛】关键点点睛:本题考查面面垂直,面面平行的证明,考查异面直线所成的角,考查立体几何中点的轨迹.解题关键是动点轨迹的确定,题中是通过平行平面得出动点轨迹.解题技巧是利用中点的特征得出构造图形,证明结论.三、双空题18.(2021·全国高三其他模拟)如图,在正方体1111ABCD A B C D -中,13AA =,点M ,N 分别在棱AB 和1BB 上,且1D M MN ⊥,则线段BN 的长度的最大值为___________,此时,三棱锥1M ACD -的体积为___________.【答案】343 【分析】设BN t =()03t ≤≤,BM x =()03x ≤≤,则3AM x =-,13NB t =-,根据22211D M MN D N +=列方程可得2133324t x ⎛⎫=--+ ⎪⎝⎭,所以当32x =时,t 取得最大值34,根据1M ACD V -=1D ACM V -以及棱锥的体积公式可得结果. 【详解】设BN t =()03t ≤≤,BM x =()03x ≤≤,则3AM x =-,13NB t =-,在正方体中,因为13AA =,所以111AD B D ==,所以(()22213D M x =+-,(()22213D N t =+-,222MN x t =+,因为1D M MN ⊥,所以22211D M MN D N +=,即()()2222183183x x t t +-++=+-,化简得233t x x -=-23924x ⎛⎫=-- ⎪⎝⎭, 所以2133324t x ⎛⎫=--+ ⎪⎝⎭,所以当32x =时,t 取得最大值34,所以线段BN 的长度的最大值为34, 此时1M ACD V -=1D ACM V -=11323332⨯⨯⨯⨯=. 故答案为:34;3 【点睛】本题考查了正方体的结构特征,考查了棱锥的体积公式,属于基础题.19.(2021·江苏常州市·高三期末)矩形ABCD 中,1AB BC ==,现将ACD △沿对角线AC 向上翻折,得到四面体D ABC -,则该四面体外接球的体积为__________;设二面角D AC B --的平面角为θ,当θ在,32ππ⎡⎤⎢⎥⎣⎦内变化时,BD 的范围为__________.【答案】43π; ⎣⎦.【分析】根据题意,由矩形ABCD 可求出112OA OB OC OD AC =====,从而确定点O 是四面体D ABC -外接球的球心,得出外接球的半径1r =,由球的体积公式343V r π=即可求出该四面体外接球的体积;利用几何法作BE AC ⊥、DF AC ⊥且EG AC ⊥,确定二面角D AC B --的平面角为BEG ∠,则BEG θ∠=,根据空间向量的线性运算和向量的数量积公式,得出BD BE EF FD →→→→=++=,结合,32ππθ⎡⎤∈⎢⎥⎣⎦,即可求出BD 的范围. 【详解】解:已知矩形ABCD 中,1AB BC ==,在矩形ABCD 中,连接AC 和BD 交于点O ,2AC BD ∴====,112OA OB OC OD AC ∴=====, 可知点O 是四面体D ABC -外接球的球心,则外接球的半径1r =, 所以该四面体外接球的体积34433V r ππ==; 在四面体D ABC -中,作BE AC ⊥交AC 于点E ,DF AC ⊥交AC 于点F , 再作EG AC ⊥交CD 于点G ,则//EG DF ,所以二面角D AC B --的平面角为BEG ∠,则BEG θ∠=,在矩形ABCD 中,可知1AB BC ==,1OC OB ==,所以BOC 是等边三角形,3cos302BE DF BC ∴==⋅=2sin301EF AC CE AC BC =-=-⋅=,由四面体D ABC -可知,BE EF ⊥,DFEF ,则0BE EF →→⋅=,0DF EF →→⋅=,而BD BE EF FD →→→→=++======即BD =所以当θ在,32ππ⎡⎤⎢⎥⎣⎦内变化时,10cos 2θ≤≤BD ≤≤即BD 的范围为⎣⎦.故答案为:43π;,22⎣⎦.【点睛】关键点点睛:本题考查四面体外接球的体积和空间二面角的求法,利用空间向量的线性运算求出BD BE EF FD →→→→=++是解题的关键,考查空间想象能力和逻辑推理能力.20.(2021·全国高三专题练习)如图所示,在棱长为1的正方体1111ABCD A B C D -中,E ,F 分别是正方形1111D C B A 和正方形11ADD A 的中心,P 为线段EF 上的点(P 异于E ,F ),则EF 和BC 所成的角的大小是_______,三棱锥1P AB C -的体积为_________.【答案】2π16【分析】将异面直线平移到同一个平面内即可求出EF 和BC 所成的角,利用线面平行得到三棱锥1P AB C -的高,再利用椎体的体积公式即可求得. 【详解】解:如图所示:连接11D B ,1AB ,又E ,F 分别为11D B ,1AD 的中点,1//EF AB ∴,又11//BC B C ,11AB C ∴∠就是EF 和BC 所成的角,又11B C ⊥平面11ABB A ,1AB ⊂平面11ABB A , 111B C AB ∴⊥,即 112AB C π∠=,EF ∴和BC 所成的角的大小是2π; 如图:连接1B C ,AC ,1//EF AB ,EF ⊄平面1AB C ,1AB ⊂平面1AB C ,//EF ∴平面1AB C ,P ∴到平面1AB C 的距离就等于E 到平面1AB C 的距离,又正方体的棱长为1,E 到平面1AB C 的距离为113BD =,, 1ACB 为等边三角形,11sin 23ACB Sπ==1113236P AB C V -∴=⨯⨯=.故答案为:2π;16. 【点睛】方法点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形; ④取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.21.(2021·浙江绍兴市·高二期末)已知正四面体A BCD -的棱长为3,平面BCD 内一动点P 满足AP =则||BP 的最小值是___________;直线AP 与直线BC 所成角的取值范围为___________.,32ππ⎡⎤⎢⎥⎣⎦【分析】(1)本题可求出点P 的轨迹,根据轨迹为圆确定||BP 的最小值(2)建立空间直角坐标系,表示出向量,AP BC ,求出夹角的余弦值,根据余弦值的范围求出AP 与直线BC 所成角的范围. 【详解】设A 在面BCD 的内的投影为E ,故E 为三角形BCD 的中心,故2332BE =⨯⨯=AE ==AP =PE ==P 的轨迹为平面BCD 内以E 为半径的圆.BE =,,B P E三点共线时,且P 在BE 之间时,||BP .以E 为圆心,BE 所在直线为x 轴建立如图所示直角坐标系(A ,)B,3,02C ⎛⎫ ⎪ ⎪⎝⎭,3,02D ⎛⎫-⎪ ⎪⎝⎭设),0Pθθ,[)0,2θπ∈故(2,AP θθ=3,02BC ⎛⎫= ⎪ ⎪⎝⎭设直线AP 与直线BC 所成角为α,3111cos sin ,2322AP BC BC APθθπαθ-+⎛⎫⎡⎤===-∈- ⎪⎢⎥⎝⎭⎣⋅⎦11cos ,22α⎡⎤∈-⎢⎥⎣⎦又0,2απ⎡∈⎤⎢⎥⎣⎦,故,32ππα⎡⎤∈⎢⎥⎣⎦,32ππ⎡⎤⎢⎥⎣⎦【点睛】本题考查了立体几何中的两条直线所成角的问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解直线的方向向量,利用向量的夹角公式求解.四、填空题22.(2020·浙江高二期末)在矩形ABCD 中,=1AD ,点E 为线段CD 中点,如图3所示,将AED ∆沿着AE 翻折至AED ∆'(点D 不在平面ABCD 内),记线段CD '中点为F,若三棱锥F AED -'体积的最大值为15,则线段AB 长度的最大值为___.【答案】4 【分析】取AB 得中点G,连接CG,易得CG AE ∥,CG AED '面,得点C 到平面AED '的距离即为直线CG 到平面AED '的距离,可求出直线CG 到面AED '的最大值, ,设AB x =,可得F 点到平面AED '的距离为d =,代入三棱锥体积的计算公式可得答案.【详解】解:由题意得:设F 点到平面AED '的距离为d,由线段CD '中点为F ,可得点C 到平面AED '的距离为2d,如图取AB 得中点G,连接CG,易得CG AE ∥,CG AED '面,得点C 到平面AED '的距离即为直线CG 到平面AED '的距离,易得直线CG 到平面AED '的距离小于等于直线CG 到直线AE 的距离, 再ABCD 中,设AB x =,直线CG 到直线AE 的距离为h ,可得AE =可得AE h AG AD ⨯=⨯,1x h ⨯==, 由三棱锥F AED -'体积的最大值为15,可得2d h =,d =,可得111322F AED xV -'=⨯⨯=⨯可得4x =,故答案为:4. 【点睛】本题主要考查三棱锥体积的求法,综合性大,属于难题.。

2020年高考数学冲刺复习知识点精讲:立体几何中的最值问题含解析

2020年高考数学冲刺复习知识点精讲:立体几何中的最值问题含解析

立体几何中的最值问题一、考情分析立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从两个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是直接法,即根据几何体的结构特征或平面几何中的相关结论,直接判断最值. 纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.二、经验分享1.解决立体几何中的最值问题常见方法有:(1)建立函数法是一种常用的最值方法,很多情况下,我们都是把这类动态问题转化成目标函数,最终利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法;二次数的配方法、公试法;有界函数界值法(如三角函数等)及高阶函数的拐点导数法等.(2)公理与定义法通常以公理与定义作依据,直接推理问题的最大值与最小值,一般的公理与定理有:两点之间以线段为最短,分居在两异面直线上的两点的连线段中,以它们的公垂线段为短.球面上任意两点间的连线中以过这两点与球心的平面所得圆的劣弧长为最短等.如果直接建立函数关系求之比较困难,而运用两异面直线公垂线段最短则是解决问题的捷径.(3)解不等式法是解最值问题的常用方法、在立体几何中同样可利用不等式的性质和一些变量的特殊不等关系求解:如最小角定理所建立的不等关系等等.(4)展开体图法是求立体几何最值的一种特殊方法,也是一种常用的方法,它可将几何题表面展开,也可将几何体内部的某些满足条件的部分面展开成平面,这样能使求解问题,变得十分直观,由难化易.(5)变量分析法是我们要透过现象看本质,在几何体中的点、线、面,哪些在动,哪些不动,要分析透彻,明白它们之间的相互关系,从而转化成求某些线段或角等一些量的求解最值总题的方法.除了上述5种常用方法外,还有一些使用并不普遍的特殊方法,可以让我们达到求解最值问题的目的,这就是:列方程法、极限思想法、向量计算法等等其各法的特点与普遍性,大家可以通过实例感受其精彩内涵与思想方法所在.2.决定棱锥体积的量有两个,即底面积和高,当研究其体积的最值问题时,若其中有一个量确定,则只需另一个量的最值;若两个量都不确定,可通过设变量法,将体积表示为变量的函数解析式,利用函数思想确定其最值;将空间问题转化为平面问题是转化思想的重要体现,通过旋转到一个平面内,利用两点之间距离最短求解3.解决几何体体积最值问题的方法(1) 根据条件建立两个变量的和或积为定值,利用基本不等式求体积的最值;通过建立相关函数式,将所求的最值问题转化为函数的最值问题求解,此法应用最为广泛;由图形的特殊位置确定最值,如垂直求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.4.解题时,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次从本文所标定的方法顺序思考,必能找到解题的途径三、题型分析(一) 距离最值问题1.空间中两点间距离的最值问题A C与BD上,求MN的最小值. 【例1】正方体的棱长为1,M、N分别在线段11【分析】方法一,该题可以结合正方体的结构特征,将其转化为两异面直线的距离来求;方法二,可设出变量,构建相应的函数,利用函数的最值求解;方法三,建立空间直角坐标系,利用点的坐标以及距离公式表示出目标函数,然后利用函数方法求解最值.A C与BD是异面直线,所以当MN是两直线的共垂线段时,MN 【解析】方法一(定义转化法)因为直线11取得最小值.取11A C 的中点P ,BD 的中点Q .则线段PQ 就是两异面直线11A C 与BD 的共垂线段.下证明之.在矩形11BDD B 中,PQ 为中位线,所以1//PQ BB ,又因为1BB ⊥平面ABCD ,所以PQ ⊥平面ABCD又因为BD ⊆平面ABCD ,所以PQ BD ⊥.同理可证11PQ A C ⊥,而, ,所以线段PQ 就是两异面直线11A C 与BD 的共垂线段,且1PQ =.由异面直线公垂线段的定义可得,故MN 的最小值为1.方法二:(参数法)如图,取11A C 的中点P ,BD 的中点Q .则线段PQ 就是两异面直线11A C 与BD 的共垂线段.由正方体的棱长为1可得1PQ =.连结AC ,则11//AC A C ,所以BQC ∠为两异面直线11A C 与BD 所成角.在正方形ABCD 中,AC BD ⊥,所以.过点M 作MH AC ⊥,垂足为H ,连结NH ,则//MH PQ ,且. 设PM m =,QN t =,则QH m =.在Rt QNH ∆中,, 在Rt MHN ∆中,.显然,当0m n ==时,2MN 取得最小值1,即MN 的最小值为1.方法三:(向量法)如图,以D 为坐标原点,分别以射线DA 、DC 、1DD 为x 、y 、z 轴建立空间直角坐标系.设DN m =,1A M n =.则,即;,即.所以,故当2m n ==时,2MN 取得最小值1,即MN 的最小值为1.【点评】空间中两点距离的最值,最基本的方法就是利用距离公式建立目标函数,根据目标函数解析式的结构特征求解最值.对于分别在两个不同对象上的点之间距离的最值,可以根据这两个元素之间的关系,借助立体几何中相关的性质、定理等判断并求解相应的最值.如【典例1】中的两点分别在两条异面直线上,显然这两点之间距离的最小值即为两异面直线的公垂线段的长度.另外注意直线和平面的距离,两平面的距离等的灵活运用.【小试牛刀】【湖南省长沙市2019届上学期高三统一检测】设正方体的棱长为,为的中点,为直线上一点,为平面内一点,则,两点间距离的最小值为()A. B. C. D.【答案】B【解析】结合题意,绘制图形结合题意可知OE是三角形中位线,题目计算距离最短,即求OE与两平行线的距离,,所以距离d,结合三角形面积计算公式可得,解得,故选B。

专题05 立体几何中的距离问题(原卷版)

专题05 立体几何中的距离问题(原卷版)

第三篇 立体几何专题05 立体几何中的距离问题常见考点考点一 点面、线面、面面距离典例1.如图,四棱锥P ABCD -中,底面ABCD 是平行四边形,45ABC ∠=︒,CF BC ⊥,2CF BC ==,PA PB =,平面PAB ⊥平面ABCD ,E ,F 分别是PD ,AB 中点.(1)求证:EF ∥平面PBC ;(2)若CE 与平面PCF 成角θ为30°,求点B 到平面CEF 的距离d .变式1-1.如图,在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒,2CA =,侧棱12AA =,D 、E 分别是1CC 和1A B 的中点.(1)求证:平面ADE ⊥平面1A AB ;(2)求点1A 到平面ADE 的距离.变式1-2.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,PA AD ⊥,2PA AB ==,在棱PD 上取点Q ,使得PB ∥平面ACQ .(1)求证:PA ⊥平面ABCD ;(2)求平面ACQ 与平面ABCD 夹角的余弦值;(3)求直线PB 到平面ACQ 的距离.变式1-3.如图,在直三棱柱111ABC A B C -中,90ABC ∠=︒,2BC =,14CC =,点E 在棱1BB 上,11EB =,D ,F ,G 分别为1CC ,11B C ,11A C 的中点,EF 与1B D 相交于点H .(1)求证:1B D ⊥平面ABD ;(2)求证:平面//EGF 平面ABD ;(3)求平面EGF 与平面ABD 的距离.考点二 点线、线线距离典例2.如图,在棱长为1的正方体1111ABCD A B C D -中,E 为线段1DD 的中点,F 为线段1BB 的中点.(1)求点1A 到直线1B E 的距离;(2)求直线1FC 到直线AE 的距离;(3)求点1A 到平面1AB E 的距离;(4)求直线1FC 到平面1AB E 的距离.变式2-1.在如图所示的多面体中,AD BC ∥且2AD BC =.AD CD ⊥,EG AD ∥且EG AD =,CD FG ∥且2CD FG =,DG ⊥平面ABCD ,2DA DC DG ===.(1)求点F 到直线EC 的距离;(2)求平面BED 与平面EDC 夹角的余弦值.变式2-2.如图,在正四棱柱ABCD ﹣A 1B 1C 1D 1中,AB =1,AA 1=2,点E 为CC 1中点,点F 为BD 1中点.(1)求异面直线BD 1与CC 1的距离;(2)求直线BD 1与平面BDE 所成角的正弦值; (3)求点F 到平面BDE 的距离.变式2-3.如图,三棱柱111ABC A B C -中,侧面11A ACC ⊥底面ABC ,1,ABC A AC ∆∆是边长为2的正三角形,已知D 点满足BD BA BC =+.(1)求二面角1B AC B --的大小;(2)求异面直线1A A 与BC 的距离;(3)直线1A A 上是否存在点G ,使1//DG AB C 平面?若存在,请确定点G 的位置;若不存在,请说明理由.巩固练习练习一 点面、线面、面面距离1.如图,直三棱柱111ABC A B C -中,90ACB ∠=︒,1AC BC ==,13AA =,且112AD DA =.(1)求平面BDC 与平面1BDC 所成角的余弦值;(2)求点1B 到平面BDC 距离.2.如图,在四棱锥P ABCD -中,底面ABCD 为矩形且22AD AB ==,侧面PAD ⊥底面ABCD ,且侧面P AD 是正三角形,E 、F 分别是AD ,PB 的中点.(1)求证:AF ∥平面PCE ;(2)求直线CF 与平面PCE 所成角的正弦值;(3)求点F 到平面PCE 的距离.3.如图在直三棱柱111ABC A B C -中,190,2,BAC AB AC AA M ∠====为AB 的中点,N 为11B C 的中点,H 是11A B 中点,P 是1BC 与1B C 的交点,Q 是1A N 与1C H 的交点.(1)求证:11A C BC ⊥;(2)求证:PQ 平面1ACM ; (3)求直线PQ 与平面1ACM 的距离.4.如图,正方体ABCD ­A 1B 1C 1D 1的棱长为1, M , N 分别是BB 1, B 1C 1的中点.(1)求直线MN 到平面ACD 1的距离;(2)若G 是A 1B 1的中点,求平面MNG 与平面ACD 1的距离.练习二 点线、线线距离5.已知三棱柱111ABC A B C -的侧棱垂直于底面,90o BAC ∠=,11AB AC AA ===,E F 、分别是棱1C C BC 、的中点.(1)求证:1B F ⊥平面AEF ;(2)求点1A 到直线1B E 的距离.6.已知四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,2PA AD ==,1AB =,点M 在PD上,且BM =(1)求PM MD的值; (2)求点B 到直线CM 的距离.7.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PE EC ⊥.已知PD 2CD =,12AE =.(1)求直线AD 与平面PBC 间的距离; (2)求异面直线EC 与PB 间的距离; (3)求点B 到平面PEC 的距离.8.如下图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,,2,12ABC BAD PA AD AB BC π∠=∠=====.(1)求平面PAB 与平面PCD 所成夹角的余弦值; (2)求异面直线PB 与CD 之间的距离.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高考数学大题精做】第三篇 立体几何专题05 立体几何中最值问题【典例1】【河南省非凡吉创联盟2020届调研】如图,AB 是圆柱的直径,PA 是圆柱的母线,3AB =,PA =,点C 是圆柱底面圆周上的点.(1)求三棱锥P ABC -体积的最大值;(2)若1AC =,D 是线段PB 上靠近点P 的三等分点,点E 是线段PA 上的动点,求CE ED +的最小值. 【思路引导】(1)三棱锥的高为定值,要根据三棱锥体积公式13V Sh =可知,要使得体积最大,就要底面积最大,又因为边AB 为定值,故当C 到AB 的距离取得最大值时,底面积最大,故此时棱锥的体积最大;(2)反向延长AB 至C ',使得,,C D E '三点共线,三点共线时,距离最短,则C D '为CE ED +最小值. 【详解】(1)三棱锥P ABC -高h =,3AB =,点C 到AB 的最大值为底面圆的半径32,则三棱锥P ABC -体积的最大值等于1133322⨯⨯⨯=. (2)将PAC ∆绕着PA 旋转到PAC '使其共面,且C '在AB 的反向延长线上,连接C D ',C D '与PA 的交点为E ,此时CE ED +最小,为C D ';由3AB =,PA =且易知PA AB ⊥,由勾股定理知6PB =,因为12AB PB =,所以30APB ∠=o ,则60DBC ∠='o ,243BD PB ==; 134C B C A AB '+=+'==,则BDC '∆是边长为4的等边三角形,故4C D '=,所以CE ED +的最小值等于4.【典例2】【江西省新余市第四中学2020届月考】 已知梯形ABCD 中,AD ∥BC ,∠ABC =∠BAD =2π,AB=BC=2AD=4,E 、F 分别是AB 、CD 上的点,EF ∥BC ,AE =x ,G 是BC 的中点.沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)若以F 、B 、C 、D 为顶点的三棱锥的体积记为()f x ,求()f x 的最大值; (2)当 ()f x 取得最大值时,求二面角D -BF -C 的余弦值. 【思路引导】(1)由AEFD ⊥平面EBCF ,////EF BC AD ,可得AE EF ⊥,进而由面面垂直的性质定理得到AE ⊥平面EBCF ,进而建立空间坐标系E xyz -,可得()D BCF A BFC f x V V --==的解析式,根据二次函数的性质,易求出()f x 有最大值;(2)根据(1)的结论平面BCF 的一个法向量为()20,0,1n =u u v ,利用向量垂直数量积为零列方程组求出平面BDF 的法向量,代入向量夹角公式即可得到二面角D BF C --的余弦值.解:(1)∵平面AEFD ⊥平面EBCF ,AE ⊥EF,∴AE ⊥面平面EBCF ,AE ⊥EF,AE ⊥BE,又BE ⊥EF,故可如图建立空间坐标系E -xy z .则A (0,0,2),B (2,0,0),G (2,2,0),D (0,2,2), E (0,0,0)∵AD ∥面BFC ,所以()f x =V A -BFC =13BFC S AE ∆⋅ ()114432x x ⋅⋅⋅-⋅ ()22882333x =--+≤,即2x =时()f x 有最大值为83.(2)设平面DBF 的法向量为()1,,n x y z =u v,∵AE=2, B (2,0,0),D (0,2,2),F (0,3,0),∴()2,3,0,BF =-u u u v BD =u u u v (-2,2,2),则1100n BD n BF ⎧⋅=⎪⎨⋅=⎪⎩u v u u u vu v u u u v ,即()()()(),,2,2,20,,2,3,00x y z x y z ⎧⋅-=⎪⎨⋅-=⎪⎩,2220230x y z x y -++=⎧⎨-+=⎩ 取x =3,则y =2,z =1,∴()13,2,1n u v=面BCF 的一个法向量为()20,0,1n =u u v则cos<12,n n u v u u v>=121214n n n n u v u u v u v u u v ⋅=⋅. 由于所求二面角D -BF -C的平面角为钝角,所以此二面角的余弦值为:-14【典例3】【北京市昌平区2020届模拟】如图,在长方体ABCD -A 1B 1C 1D 1中,E ,H 分别是棱A 1B 1,D 1C 1上的点(点E 与B 1不重合),且EH ∥A 1D 1. 过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G .(I )证明:AD ∥平面EFGH ;(II ) 设AB=2AA 1="2" a .在长方体ABCD -A 1B 1C 1D 1内随机选取一点.记该点取自几何体A 1ABFE -D 1DCGH 内的概率为p ,当点E ,F 分别在棱A 1B 1上运动且满足EF=a 时,求p 的最小值.【思路引导】 解法一:(I ) 证明:在长方体ABCD -A 1B 1C 1D 1中,AD ∥A 1D 1 又∵EH ∥A 1D 1,∴AD ∥EH. ∵AD ¢平面EFGH EH 平面EFGH ∴AD//平面EFGH.(II ) 设BC=b ,则长方体ABCD -A 1B 1C 1D 1的体积V=AB·AD·AA 1=2a 2b , 几何体EB 1F -HC 1G 的体积V 1=(1/2EB 1 ·B 1F )·B 1C 1=b/2·EB­1·B 1 F ∵EB 12+ B 1 F 2=a 2∴EB 12+ B 1 F 2≤ (EB 12+ B 1 F 2)/2 = a 2 / 2,当且仅当EB­1=B 1F=2a 时等号成立 从而V 1≤ a 2b /4 .故 p=1-V 1/V ≥22412a ba b-=78 解法二:(I ) 同解法一(II ) 设BC=b ,则长方体ABCD -A 1B 1C 1D 1的体积V=AB·AD·AA 1=2a 2b , 几何体EB 1F -HC 1G 的体积V 1=(1/2 EB­1·B 1 F )·B 1C 1=b/2 EB­1·B 1 F设∠B 1EF=θ(0°≤θ≤90°),则EB­1=" a" cosθ,B 1 F ="a" sinθ 故EB­1·B 1 F = a 2sinθcosθ=,当且仅当sin 2θ=1即θ=45°时等号成立.从而214a bV ≤ ∴p=1- V 1/V≥22412a ba b-=78,当且仅当sin 2θ=1即θ=45°时等号成立.所以,p 的最小值等于7/81. 【广东省佛山市第一中学2020届月考】如图,正方体1111ABCD A B C D -的棱长为a ,E F 、分别为AB BC 、上的点,且AE BF x ==.(1)当x 为何值时,三棱锥1B BEF -的体积最大? (2)求异面直线1A E 与1B F 所成的角的取值范围. 【思路引导】(1)首先得到体积函数,然后利用均值不等式确定取得最值时x 的值即可;(2)首先作出异面直线1A E 与1B F 所成的角,然后结合余弦定理求得角的余弦值取值范围,最后利用余弦值的范围确定异面直线1A E 与1B F 所成的角的取值范围. 【详解】 (1),当2ax =时,三棱锥1B BEF -的体积最大. (2)在AD 上取点H 使AH =BF =AE ,则,,,所以1HA E∠(或补角)是异面直线1A E 与1B F 所成的角;在Rt △1A AH 中,1A H =在Rt △1A AE 中,1A E =在Rt △HAE 中,HE ==,在△1HA E 中,222111112A H A E EH cosHA E A H A E +-=⋅ 222a a x=+, 因为0x a <≤,所以22222a x a a <+≤,222112a x a≤<+,1112cosHA E ≤<,1π03HA E <∠≤ 2.【安徽省安庆市2020届模拟】如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,2,AB EB ==(1)求证:DE ⊥平面ADC ;(2)设AC x =,(x)V 表示三棱锥B ACE -的体积,求函数(x)V 的解析式及最大值. 【思路引导】(1)要证(1)要证DE ⊥平面ADC ,需证BC ⊥平面ADC ,需证DC BC BC AC ⊥⊥,,用综合法书写即可.(2)由(1)可知BE ⊥平面ABC ,所以体积为13ABC BE S ⨯, AC x BC EB ===,均值不等式求解最大值.详解:(1)证明:∵四边形DCBE 为平行四边形,∴CD ∥BE ,BC ∥DE . ∵DC ⊥平面ABC ,BC ⊂平面ABC ,∴DC ⊥BC . ∵AB 是圆O 的直径,∴BC ⊥AC ,且DC ∩AC =C . ∴BC ⊥平面ADC .∵DE ∥BC ,∴DE ⊥平面ADC ; (2)∵DC ⊥平面ABC ,∴BE ⊥平面ABC . 在Rt △ABE 中,AB =2,EB =3√.在Rt △ABC 中,∵AC =x ,BC =4−x 2−−−−−√(0<x <2). ∴S △ABC =12AC ⋅BC =12x ⋅4−x 2−−−−−√, ∴V (x )=VE −ABC =3√6x ⋅4−x 2−−−−−√,(0<x <2).∵x 2(4−x 2)⩽(x 2+4−x 22)2=4,当且仅当x 2=4−x 2,即x =2√时,取等号, ∴x =2√时,体积有最大值为3√3.3.【浙江省金华市十校2020届模拟】如图,在三棱锥P ABC -中,AB BC =,AP PC =,60ABC ∠=︒,AP PC ⊥,直线BP 与平面ABC 成30°角,D 为AC 的中点,PQ PC λ=u u u v u u u v,(0,1)λ∈.(Ⅰ)若PB PC >,求证:平面ABC ⊥平面PAC ;(Ⅰ)若PC PB <,求直线BQ 与平面PAB 所成角的正弦值的取值范围. 【思路引导】由题意可得直线BP 与平面ABC 所成角是PBD ∠,即30PBD ∠=︒.设2AC a =,则BD =,PD a =,由余弦定理得PB a =或2a .(Ⅰ)若PB PC >,则2PB a =,由勾股定理可得PD DB ⊥,又PD AC ⊥,据此可得PD ⊥平面ABC ,平面PAC ⊥平面ABC .(Ⅰ)若PB PC <,则PB a =,故PQ a =,BQ =,设Q h 是Q 到面PAB 的距离,C h 是C 到面PAB 的距离,则Q C h h λ=,由等体积法可得7C h a =,7Q h a λ=.设直线BQ 与平面PAB 所成角为α,则sin α=,据此可得直线BQ 与平面PAB 所成角的正弦值的取值范围为0,7⎛ ⎝⎭.试题解析:∵AB BC =,AP PC =,D 为AC 的中点,∴BD AC ⊥,PD AC ⊥,∴AC ⊥平面PBD , ∴直线BP 与平面ABC 所成角是PBD ∠,30PBD ∠=︒. 设2AC a =,则BD =,PD a =,由余弦定理得PB a =或2a .(Ⅰ)若PB PC >,则2PB a =,∴在PBD ∆中222PD DB PB +=.∴PD DB ⊥, 又PD AC ⊥,AC DB D ⋂=,∴PD ⊥平面ABC ,∴平面PAC ⊥平面ABC . (Ⅰ)若PB PC <,∴PB a =,∵PQ PC λ=u u u v u u u v,∴PQ a =,BQ =,设Q h 是Q 到面PAB 的距离,C h 是C 到面PAB 的距离,则Q C h h λ=,由等体积法:)2112323C aa a h ⋅=⋅,∴7C h a =,∴7Q h a λ=. 设直线BQ 与平面PAB 所成角为α,则HQsin BQα==a=7=.∵()0,1λ∈10,2⎛⎫ ⎪⎝⎭.∴0sin α<<故直线BQ 与平面PAB所成角的正弦值的取值范围为0,7⎛ ⎝⎭. 4.【北京市城六区2019届高三模拟】已知三棱锥P ABC -(如图1)的平面展开图(如图2)中,四边形ABCD的正方形,△ABE 和△BCF 均为正三角形,在三棱锥P ABC -中: (I)证明:平面PAC ⊥平面ABC ; (Ⅰ)求二面角A PC B --的余弦值; (Ⅰ)若点M 在棱PC 上,满足CMCP λ=,12[,]33λ∈,点N 在棱BP 上,且BM AN ⊥,求BN BP的取值范围.【思路引导】第一问取AC 中点O ,根据等腰三角形的性质求得PO AC ⊥,根据题中所给的边长,利用勾股定理求得PO OB ⊥,利用线面垂直的判定定理以及面面垂直的判定定理得到结果;第二问根据题中所给的条件建立空间直角坐标系,写出相应的点的坐标,求得面的法向量,利用法向量所成角的余弦值得出结果;第三问利用向量间的关系,利用向量垂直的条件,利用向量的数量积等于0,得出所求的比值μ与λ的关系式,利用函数的有关知识求得结果. (Ⅰ)方法1:设AC 的中点为O ,连接BO ,PO . 由题意PA PB PC ===,1PO =,1AO BO CO ===因为在PAC ∆中,PA PC =,O 为AC 的中点 所以PO AC ⊥,因为在POB ∆中,1PO =,1OB =,PB =所以PO OB ⊥因为AC OB O ⋂=,,AC OB ⊂平面ABC 所以PO ⊥平面ABC 因为PO ⊂平面PAC 所以平面PAC ⊥平面ABC 方法2:设AC 的中点为O ,连接BO ,PO .因为在PAC ∆中,PA PC =,O 为AC 的中点 所以PO AC ⊥,因为PA PB PC ==,PO PO PO ==,AO BO CO == 所以POA ∆≌POB ∆≌POC ∆ 所以90POA POB POC ∠=∠=∠=︒ 所以PO OB ⊥因为AC OB O ⋂=,,AC OB ⊂平面ABC 所以PO ⊥平面ABC 因为PO ⊂平面PAC 所以平面PAC ⊥平面ABC 方法3:设AC 的中点为O ,连接PO ,因为在PAC ∆中,PA PC =, 所以PO AC ⊥设AB 的中点Q ,连接PQ ,OQ 及OB . 因为在OAB ∆中,OA OB =,Q 为AB 的中点 所以OQ AB ⊥.因为在PAB ∆中,PA PB =,Q 为AB 的中点 所以PQ AB ⊥.因为PQ OQ Q ⋂=,,PQ OQ ⊂平面OPQ所以AB ⊥平面OPQ因为OP ⊂平面OPQ所以OP AB ⊥因为AB AC A ⋂=,,AB AC ⊂平面ABC所以PO ⊥平面ABC因为PO ⊂平面PAC所以平面PAC ⊥平面ABC(Ⅰ)由PO ⊥平面ABC ,OB AC ⊥,如图建立空间直角坐标系,则()0,0,0O ,()1,0,0C ,()0,1,0B ,()1,0,0A -,()0,0,1P 由OB ⊥平面APC ,故平面APC 的法向量为()0,1,0OB =u u u v 由()1,1,0BC =-u u u v ,()1,0,1PC =-u u u v设平面PBC 的法向量为(),,n x y z =v ,则由00n BC n PC ⎧⋅=⎨⋅=⎩u u u vu u u v 得:00x y x z -=⎧⎨-=⎩令1x =,得1y =,1z =,即()1,1,1n =vcos ,nOBn OB n OB ⋅===⋅u u u vv u u u v v u u u v v由二面角A PC B --是锐二面角,所以二面角A PC B --的余弦值为3(Ⅰ)设BN BP μ=u u u v u u u v ,01μ≤≤,则()()()1,1,01,0,11,1,BM BC CM BC CP λλλλ=+=+=-+-=--u u u u v u u u v u u u u v u u u v u u u v ()()()1,1,00,1,11,1,AN AB BN AB BP μμμμ=+=+=+-=-u u u v u u u v u u u v u u u v u u u v 令0BM AN ⋅=u u u u v u u u v得()()()11110λμλμ-⋅+-⋅-+⋅= 即1111λμλλ==-++,μ是关于λ的单调递增函数, 当12,33λ⎡⎤∈⎢⎥⎣⎦时,12,45μ⎡⎤∈⎢⎥⎣⎦, 所以12,45BN BP ⎡⎤∈⎢⎥⎣⎦。

相关文档
最新文档