东北三省三校联考一模理科数学参考答案

合集下载

2023东北三省三校一模考数学试卷+答案(高清版)

2023东北三省三校一模考数学试卷+答案(高清版)

2023东北三省三校一模考数学试卷+答案(高清版)2023东北三省三校一模考数学试卷+答案(高清版)通过“一模”考试,学生不仅可以大概得知自己在学校或全区的档次,还能找到自己在前期学习中的漏洞所在。

以下是关于2023东北三省三校一模考数学试卷+答案(高清版)的相关内容,供大家参考!2023东北三省三校高三一模数学试题2023东北三省三校高三一模数学试题答案2023东北三省三校一模考试方向及内容三校联考试题命制依据教育部考试中心对2023年高考的基本定调,研究近几年全国新课标卷、新高考卷的规律和方向,突出立德树人导向,体现学科核心素养。

把握“一核四层四翼”原则,参考2023年关于高考的最新消息及时调整。

试题强调“基础性、综合性、应用性”,并把握“以能力立意为主,贴近现实”的命题指导思想,体现出新课改、新高考精神,注重考查学科核心素养。

试题力保原创性,试题样式会根据已获知的2023年最新高考信息进行适当变动。

高三的数学有什么答题技巧1、调整好状态,控制好自我。

(1)保持清醒。

数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

(2)按时到位。

今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。

建议同学们提前15-20分钟到达考场。

2、通览试卷,树立自信。

刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。

答题时,见到简单题,要细心,莫忘乎所以。

面对偏难的题,要耐心,不能急。

3、提高解选择题的速度、填空题的准确度。

数学选择题是知识灵活运用,解题要求是只要结果、不要过程。

因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。

12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。

由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。

2020年东北三省三校高三第一次模拟考理科数学试卷含解析

2020年东北三省三校高三第一次模拟考理科数学试卷含解析

D.VS
第 H 卷(非选择题 共90分)
二、填空题:本题共4小题,每小题5分 ,共20分.把答案填写在答题纸相应位置上. 13.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力
蓄电池技术作为新能源、汽车的核心技术,它的不断成熟也是推动新能源、汽车发展的主要动力. 假定现在市售的某款新能源汽车上,车载动力蓄电池 充放电循环次数达到2000次的概率为 85字号,充放电循环次数达到2500次的概率为 35%.若某用户的自用新能源汽车已经经过了 2000次充电,那么他的车能够充电 2500次的概率为
f(x
)=
I ri

一 lx-21,xξ[1,3)
/工 ← 1\
\2f(丁),巾,+∞)
’ 则函数
f(x )的图象与函数
rlnx,x二三1 g(x)=j\ln(2,--x)以1的图象
在区间[-5,7]上所有交点的横坐标之和为
A. 5
B. 6
C. 7
11.己知数列{a"}的通项公式为ι = 2η十2,将这个数列中的项摆
AB_lBC,AB = 2,BC二 l,BB I 二3,D是CC1 的中点,
E是AB 的中点.
C I )证明:DE//平面C1 BA1 ;
t C II) F是线段CC1 上一 点,且直线 AF与平面ABB1 A1 所成角的正弦值为 ,求二面角F BAi A的余 A
弦值.
D
C1
19.(本小题满分12分) 为了研究 55 岁左右的中国人睡眠质量与心脑血管病是否有关联,某机构在适龄人群中随机抽 取了100万个样本,调查 了他们每周是否至少三个晚上出现了三种失眠症状, A 症状:人睡困 难;B症状:醒得太早;C症状:不能深度入睡或做梦,得到的调查数据如下: 数据l:出现A 症状人数为8.5万,出现B 症状人数为9.3万,出现C症状人数为6. 5万,其中 含 AB 症状同时出现1.8万人,AC症状同时出现1 万人,BC症状同时出现2万人,ABC症状 同时出现0.5万人; 数据2:同时有失眠症状和忠心脑血管病的人数为5万人,没有失眠症状且无心脑血管病的人 数为73万人.

2019年东北三省三校第一次联合考试理科数学试题---含答案

2019年东北三省三校第一次联合考试理科数学试题---含答案

2019年三省三校高三第一次联合模拟考试理科数学答案一.选择题1-6 DBCABB 7-12 DACDCC二.填空题13. 3 14. 乙 15. 78-16. 4π 三.解答题17. 解:(Ⅰ)1()2cos 21sin(2)1226f x x x x =++=++π 2分 ∵[0,]2x π∈,∴72666πππ≤+≤x 4分∴1sin(2)1226π≤++≤x ∴函数()f x 的值域为1,22⎡⎤⎢⎥⎣⎦. 6分 (Ⅱ)∵3()sin(2)162π=++=f A A ∴1sin(2)62π+=A ∵0π<<A ,∴132666πππ<+<A ,∴5266ππ+=A ,即3π=A8分由正弦定理,2a AB ==,∴sin B = 2034B B ππ<<∴=9分∴sin sin()C AB =+=sin sin c bC B ==,∴2=b11分∴1sin 2∆==ABC S bc A 12分 18. 解:(Ⅰ)设“随机抽取2名,其中恰有一名学生不近视”为事件A ,则1131241()2C C P A C == 故随机抽取2名,其中恰有一名学生不近视的概率为12. 4分(Ⅱ)根据以上数据得到列联表: 近视 8分所以2K 的观测值2200(40406060)8.000 6.635(4060)(6040)(4060)(6040)k ⨯⨯-⨯==>++++, 故能在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系.12分 19.解:(Ⅰ)在BDC ∆中,延长BF 交CD 于点M , 13OF OD =,BDC ∆是等边三角形 F ∴为BDC ∆的重心13MF BM ∴= 2分//EF 平面ACD , EF ⊂平面ABM ABMACD AM =,且面面, //EF AM ∴13AE AB ∴=,即点E 为线段AB 上靠近点A 的三等分点. 4分(Ⅱ)等边BCD ∆中,O D B C ⊥,OD BCD ⊂平面,ABC BCD ⊥面面,交线为BC ,OD ABC ∴⊥平面 6分如图以O 为原点建立空间直角坐标系O xyz -点A 在平面BEF 上,所以二面角D FB E --与二面角D FB A --为相同二面角.设2AB =,则OD OA =,(0,0,(0,1,0)3F A B3(0,1,),(3,1,0)3BF BA ∴=-=- 设平面AFB 的法向量u (,,)x y z =,则⎧⎨⎩u u 00⋅=⋅=BF BA 即030y z y ⎧-+=⎪⎨-=,取1x =,则u (1,)= 9分又OA ⊥平面OBD ,(3,0,0)OA =,10分则cos <u ,OA >=u u 13== 又二面角D FB E --为钝二面角,所以余弦值为 . 12分 20.解:(Ⅰ)设),(00y x P 0(2)x ≠±,则220014x y +=, 因为)0,2(),0,2(B A -,则4144142220202020000021-=--=-=-⋅+=x x x y x y x y k k 2分(,)Q x y 设(2)x ≠±所以4422212243λλ-==-=-⋅+=k k x y x y x y k k , 整理得 1422=+λy x )2(±≠x . 所以,当4=λ时,曲线2C 的方程为 )2(422±≠=+x y x . .4分(Ⅱ)设),(),,(2211y x F y x E . 由题意知,直线AM 的方程为:26-=y x ,直线BM 的方程为:22+-=y x . 由(Ⅰ)知,曲线2C 的方程为1422=+λy x )2(±≠x , .7分 联立 )2(442622±≠⎩⎨⎧=+-=x y x y x λλ,消去x ,得2(91)60y y λ+-λ=,得 1961+=λλy 联立)2(442222±≠⎩⎨⎧=++-=x y x y x λλ,消去x ,得2(1)20λ+-λ=y y ,得 122+=λλy 9分 2212111111sin 91222211sin 2222MA MF AMF y y MA MF S S MB ME MB ME BME y y ∠--+=====+∠--λλ 10分 设918()911g λ+λ==-λ+λ+,则()g λ在[1,3]上递增 又(1)5,(3)7g g ==,OA ⋅OA12S S ∴ 的取值范围为[]5,7 12分21.解:(Ⅰ)当1a =时,()()()x h x f x g x e x -=+=+,()1,x h x e -'=-+令()0,h x '=解得0x =()=(0)1h x h ∴=极小值 4分 (Ⅱ)设1()(1)ln(1)e ()e ln(1)e t t f t t g t at t ϕ+=--++--=-++-,令1(1)t x x +=≥,()e ln e ,1x F x ax x a x =-+-+≥,1'()e x F x a x =-+,设1()()e x t x F x a x '==-+,21()e x t x x'=-, 由1x ≥得,2211,01x x e e x≥∴<≤≥Q 21'()e 0x t x x =->,()t x 在(1,)+∞单调递增, 即()F x '在(1,)+∞单调递增,(1)1F e a '=+-,① 当e 10a +-≥,即e 1a ≤+时,(1,)x ∈+∞时,()(1)0F x F ''>≥,()F x 在(1,)+∞单调递增,又(1)0F =,故当1x ≥时,关于x 的方程e ln e 0x ax x a -+-+=有且只有一个实数解. 8分②当10e a +-<,即1a e >+时,1(1)0,'(ln )0ln F F a a a a a a'<=-+>-=,又ln ln(1)1a e >+> 故00(1,ln ),()0x a F x '∃∈=,当0(1,)x x ∈时,()0F x '<,()F x 单调递减,又(1)0F =, 故当(]01,x x ∈时,()0F x <,在[)01,x 内,关于x 的方程e ln e 0x ax x a -+-+=有一个实数解1x =. 10分又0(,)x x ∈+∞时,()0F x '>,()F x 单调递增,且22()ln 1a a F a e a a a e e a =+-+->-+,令2()1(1)x k x e x x =-+≥, ()()2x s x k x e x '==-,()e 2e 20x s x '=->->,故()k x '在()1,+∞单调递增,又(1)0k '>故()k x 在()1,+∞单调递增,故()(1)0k a k >>,故()0F a >,又0ea a x >>,由零点存在定理可知,101(,),()0x x a F x ∃∈=,故在()0,x a 内,关于x 的方程e ln e 0x ax x a -+-+=有一个实数解1x .此时方程有两个解. 综上,e 1a ≤+. 12分22.解:(Ⅰ)22324103x x x y y αα⎧=+⎪∴-++=⎨=⎪⎩2分 所以曲线C 的极坐标方程为24cos 10ρρθ-+=.4分(Ⅱ)设直线l 的极坐标方程为[)11(,0,)R θθρθπ=∈∈,其中1θ为直线l 的倾斜角, 代入曲线C 得214cos 10,ρρθ-+=设,A B 所对应的极径分别为12,ρρ. 21211214cos ,10,16cos 40∴+==>∆=->ρρθρρθ7分 1212OA OB +=+=+=ρρρρ8分 1cos θ∴= 满足0∆>16πθ∴=或56π, l 的倾斜角为6π或56π, 则1tan k θ==10分 23.解:(Ⅰ)因为a x a x x a x x f 444)(=--≥+-=,所以 a a 42≤,解得 44≤≤-a .故实数a 的取值范围为]4,4[-.4分(Ⅱ)由(1)知,4=m ,即424x y z ++=. 根据柯西不等式 222)(z y y x +++[][]2222221)2(4)(211+-+⋅+++=z y y x []21162)(42112=+-+≥z y y x 8分 等号在z y y x =-=+24即884,,72121x y z ==-=时取得. 所以222)(z y y x +++的最小值为2116. 10分。

东北三省三校2022届高三第一次联合模拟考试理科数学试题 含答案

东北三省三校2022届高三第一次联合模拟考试理科数学试题 含答案

毫T 呈哈尔滨师大附中2022年高三第一次联合模拟考试科理东北师大附中辽宁省实验巾学注意事项:1.答卷前,二号哇务必将向己的姓名、谁写证号填写在答题卡上.数应丘�2.回答选择题时,选山每小题答案后,用铅笔把答题卡1-.5{才应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上元效.3.二号-试结束后,将本民卷和答题卡-·J i'-交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.I.复数z满足(I + i) 2 z = 2 -4i,则复数z=A.-2 + iB.-2 -iC.I -2i o.2 + i2.已知集合M=jyly=2’,x> I I ,N = !x I y =/h亏了i川IJ MU N等于人② B. J 21 C. [ I , + oo)3.下面是某城市某日在不同观测点对细颗粒物(P M2.s)的xlJl测值:396 275 268 225 168 166 176 173 188 168D.[O,+oo)141 157若在此组数据中增加一个比现有的最大值大25的数据,下列数字特征没有改变的是A.极差8.中位数C众数。

平均数4.设m,n是两条不同的直线,α,。

,γ是芝个不同的平面,下列四个命题中正确的是A.若m IIα,nllα,则l m II nB.若αiγ,βiγ,贝I J a IIβC.若α矿β,,n cα,凡矿β,则m矿,t0.若αj{3,βIIγ,m土α,则rn土γ5.等差数列iα,,i的前几J'.J i i和为乱,已知何=10,乌=44,则Ss=D II·2s.f C.5A.36.直线l:x+y+m=O与困C:(x+l)2+(y-1)2=4交子A,B两点,若IABI=2,则m的值为A.±ffB.±2 c.±./67.已知α,bεR,则““b笋。

2019届东北三省三校高三第一次联合模拟考试理科数学试题及答案

2019届东北三省三校高三第一次联合模拟考试理科数学试题及答案

东北三省三校高三第一次联合模拟考试理科数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知集合{}21x x A =-<<,{}220x x x B =-≤,则AB =( )A .{}01x x <<B .{}01x x ≤<C .{}11x x -<≤D .{}21x x -<≤ 2、复数212ii+=-( ) A .()22i+ B .1i + C .iD .i -3、点()1,1M 到抛物线2y ax =准线的距离为2,则a 的值为( ) A .14 B .112-C .14或112-D .14-或1124、设n S 是公差不为零的等差数列{}n a 的前n 项和,且10a >,若59S S =,则当n S 最大时,n =( )A .6B .7C .10D .95、执行如图所示的程序框图,要使输出的S 值小于1,则输入的t 值不能是下面的( )A .2012B .2013C .2014D .2015 6、下列命题中正确命题的个数是( ) ①对于命题:p R x ∃∈,使得210x x +-<,则:p ⌝R x ∀∈,均有210x x +->②p 是q 的必要不充分条件,则p ⌝是q ⌝的充分不必要条件 ③命题“若x y =,则sin sin x y =”的逆否命题为真命题④“1m =-”是“直线1:l ()2110mx m y +-+=与直线2:l 330x my ++=垂直”的充要条件A .1个B .2个C .3个D .4个7、如图,网格纸上小正方形的边长为1,若粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .8C .10D .128、设双曲线的一个焦点为F ,虚轴的一个端点为B ,焦点F 到一条渐近线的距离为d ,若F 3dB ≥,则双曲线离心率的取值范围是( ) A .(1,2⎤⎦B .)2,⎡+∞⎣C .(]1,3D .)3,⎡+∞⎣9、不等式组2204x y -≤≤⎧⎨≤≤⎩表示的点集记为A ,不等式组220x y y x-+≥⎧⎨≥⎩表示的点集记为B ,在A 中任取一点P ,则P∈B 的概率为( )A .932 B .732 C .916D .71610、设二项式12nx ⎛⎫- ⎪⎝⎭(n *∈N )展开式的二项式系数和与各项系数和分别为n a ,n b ,则1212n na a ab b b ++⋅⋅⋅+=++⋅⋅⋅+( )A .123n -+B .()1221n -+C .12n +D .111、已知数列{}n a 满足3215334n a n n m =-++,若数列的最小项为1,则m的值为( )A .14B .13C .14-D .13-12、已知函数())()()0ln 10x f x x x ≥=⎪--<⎩,若函数()()F x f x kx =-有且只有两个零点,则k 的取值范围为( )A .()0,1B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫⎪⎝⎭D .()1,+∞二、填空题(本大题共4小题,每小题5分,共20分.) 13、向量a ,b 满足1a =,2b =,()()2a b a b+⊥-,则向量a 与b 的夹角为 .14、三棱柱111C C AB -A B 各顶点都在一个球面上,侧棱与底面垂直,C 120∠A B =,C C A =B =,14AA =,则这个球的表面积为 .15、某校高一开设4门选修课,有4名同学,每人只选一门,恰有2门课程没有同学选修,共有 种不同选课方案(用数字作答).16、已知函数()()sin 2cos y x x πϕπϕ=+-+(0ϕπ<<)的图象关于直线1x =对称,则sin 2ϕ= .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17、(本小题满分12分)已知C ∆AB 的面积为2,且满足0C 4<AB⋅A ≤,设AB 和C A 的夹角为θ. ()1求θ的取值范围;()2求函数()22sin 3cos 24f πθθθ⎛⎫=+-⎪⎝⎭的取值范围.18、(本小题满分12分)为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽样100名市民,按年龄情况进行统计的频率分布表1和频率分布直方图2.()1频率分布表中的①②位置应填什么数?并补全频率分布直方图,再根据频率分布直方图估计这500名市民的平均年龄;()2在抽出的100名市民中,按分层抽样法抽取20人参加宣传活动,从这20人中选取2名市民担任主要发言人,设这2名市民中“年龄低于30岁”的人数为X ,求X 的分布列及数学期望. 19、(本小题满分12分)如图,四棱锥CD P -AB 的底面是边长为1的正方形,PA ⊥底面CD AB ,E 、F 分别为AB 、C P 的中点.()I 求证:F//E 平面D PA ;()II 若2PA =,试问在线段F E 上是否存在点Q ,使得二面角Q D -AP -的余弦值为55?若存在,确定点Q 的位置;若不存在,请说明理由.20、(本小题满分12分)已知椭圆22221x y a b+=(0a b >>)的左、右焦点为1F 、2F ,点()2,2A 在椭圆上,且2F A 与x 轴垂直.()1求椭圆的方程;()2过A 作直线与椭圆交于另外一点B ,求∆AOB 面积的最大值. 21、(本小题满分12分)已知a 是实常数,函数()2ln f x x x ax =+. ()1若曲线()y f x =在1x =处的切线过点()0,2A -,求实数a 的值;()2若()f x 有两个极值点1x ,2x (12x x <), ()I 求证:102a -<<; ()II 求证:()()2112f x f x >>-.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分. 22、(本小题满分10分)选修4-1:几何证明选讲如图,在C ∆AB 中,C 90∠AB =,以AB 为直径的圆O 交C A 于点E ,点D 是C B 边的中点,连接D O 交圆O 于点M . ()I 求证:D E 是圆O 的切线;()II 求证:D C D C D E⋅B =M⋅A +M⋅AB .23、(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是2cos ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是212x t m y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数). ()I 求曲线C 的直角坐标方程与直线l 的普通方程;()II 设点(),0m P ,若直线l 与曲线C 交于A ,B 两点,且1PA ⋅PB =,求实数m 的值. 24、(本小题满分10分)选修4-5:不等式选讲 设函数()212f x x x =--+. ()I 解不等式()0f x >;()II 若0R x ∃∈,使得()2024f x m m +<,求实数m 的取值范围.东北三省三校三校第一次联合模拟考试理科数学试题参考答案一.选择题:1.B2.C3.C4.B5.A6.B7.C8.A9.A 10.C 11.B 12.C 二.填空题:13. 9014. 64π 15. 84 16. 54-三.解答题:17.解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,,则由已知:2sin 21=θbc ,4cos 0≤<θbc , 4 分可得1tan ≥θ,所以:)2,4[ππθ∈. 6 分(Ⅱ)2π()2sin 24f θθθ⎛⎫=+-⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=+=-+ ⎪⎝⎭. 8 分)2,4[ππθ∈ ,∴)32,6[32πππθ∈-,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=.所以:函数)(θf 的取值范围是]3,2[12 分18.解:(1)由表知:①,②分别填300.0,35.补全频率分布直方3 分年龄(岁)平均年龄估值为:5.33)1.0853.07535.0652.05505.045(21=⨯+⨯+⨯+⨯+⨯(岁)6 分(2)由表知:抽取的20人中,年龄低于30岁的有5人,X 的可能取值为0,1,2 3821)0(222015===C C XP 3815)1(22011515===C C C X P 382)2(22025===C C X P 9 分X的分布列为X12P3821 3815 38210 分期望2138223815138210)(=⨯+⨯+⨯=X E (人)12 分19.证明: (Ⅰ)取PD 中点M , 连接MA MF ,, 在△CPD 中, F 为PC 的中点, DC MF 21//∴,正方形ABCD 中E 为AB 中点,DC AE 21//∴,MF AE //∴ 故:EFMA为平行四边形 AM EF //∴2 分又⊄EF 平面PAD,⊂AM 平面PAD∴//EF 平面PAD4 分(Ⅱ) 如图:以点A 为坐标原点建立空间直角坐标系:yz111(0,0,2),(0,1,0),(1,1,0),(0,,0),(,,1)222P B C E F由题易知平面PAD 的法向量为)0,1,0(=n , 6 分 假设存在Q 满足条件:设11,(,0,1),(,,)222EQ EF EF Q λλλ== ,]1,0[∈λ1(0,0,2),(,,),22AP AQ λλ==设平面PAQ 的法向量为(,,)m x y z =,10(1,,0)220x y z m z λλλ⎧++=⎪⇒=-⎨⎪=⎩10 分∴21,cos λλ+-< 由已知:5512=+λλ解得:21=λ 所以:满足条件的Q存在,是EF中点。

2024年东北三省三校高三下学期第一次联合模拟考数学试题及答案

2024年东北三省三校高三下学期第一次联合模拟考数学试题及答案

哈尔滨师大附中 东北师大附中 辽宁省实验中学2024年高三第一次联合模拟考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,定在.本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四选项中,只有一项是符合题目要求的.1.已知集合{}1,2M =,(){}2log 212x N x −≤=∈R ,则M N = ( ) A .{}1B .{}2C .{}1,2D .∅2.已知复数z 的共轭复数是z ,若i 1i z ⋅=−,则z =( ) A .1i −+B .1i −−C .1i −D .1i +3.已知函数()y f x =是定义在R 上的奇函数,且当0x <时,()2af x x x=+,若()38f =−,则a =( ) A .3−B .3C .13D .13−4.已知平面直角坐标系xOy 中,椭圆C :22221x y a b+=(0a b >>)的左顶点和上顶点分别为A ,B ,过左焦点F 且平行于直线AB 的直线交y 轴于点D ,若2OD DB =,则椭圆C 的离心率为( )A .12B C .13D .235.()521x x y y −−的展开式中32x y 的系数为( ) A .55B .70−C .30D .25−6.已知正四棱锥P ABCD −各顶点都在同一球面上,且正四棱锥底面边长为4,体积为643,则该球表面积为( ) A .9πB .36πC .4πD .4π37.已知函数()22e e xx f x ax −=−−,若0x ≥时,恒有()0f x ≥,则a 的取值范围是( )A .(],2−∞B .(],4−∞C .[)2,+∞D .[)4,+∞8.设1033e a =,11ln 10b =,ln 2.210c =,则( ) A .a b c <<B .c b a <<C .b c a <<D .a c b <<二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.等差数列{}n a 中,10a >,则下列命题正确的是( ) A .若374a a +=,则918S =B .若150S >,160S <,则2289a a > C .若211a a +=,349a a +=,则7825a a += D .若810a S =,则90S >,100S <10.在平面直角坐标系xOy 中,抛物线C :24y x =的焦点为F ,点P 在抛物线C 上,点Q 在抛物线C 的准线上,则以下命题正确的是( ) A .PQ PF +的最小值是2 B .PQ PF ≥C .当点P 的纵坐标为4时,存在点Q ,使得3QF FP =D .若PQF △是等边三角形,则点P 的橫坐标是311.在一个只有一条环形道路的小镇上,有2家酒馆A ,一个酒鬼家住在D ,其相对位置关系如图所示.小镇的环形道路可以视为8段小路,每段小路需要步行3分钟时间.某天晚上酒鬼从酒馆喝完酒后离开,因为醉酒,所以酒鬼在每段小路的起点都等可能的选择顺时针或者逆时针的走完这段小路。

2019年东北三省三校第一次联合考试理科数学试题--含答案(可编辑修改word版)

2019年东北三省三校第一次联合考试理科数学试题--含答案(可编辑修改word版)

2分
∵ x [0, ] ,∴ 2x 7
2
6
66
4分
∴ 1 sin(2x ) 1 2
2
6
∴函数
f
(x)
的值域为
1 2
,
2

(Ⅱ)∵ f ( A) sin(2A ) 1 3 ∴ sin(2A ) 1
6
2
62
∵0
A
,∴
2A
13
,∴ 2A
5
,即
A
6
66
66
F '(x) ex a 1 ,设 t(x) F(x) ex a 1 , t(x) ex 1 ,
x
x
x2
由 x 1得, x2 1,0 1 1 Q ex e x2
t '(x)
ex
1 x2
0 , t(x) 在 (1, ) 单调递增,
即 F(x) 在 (1, ) 单调递增, F(1) e 1 a ,
OD 平面ABC
6分
如图以 O 为原点建立空间直角坐标系 O xyz
点 A 在平面 BEF 上,所以二面角 D FB E 与二面角 D FB A 为相同二面角.
设 AB 2 ,则 OD OA 3 , F (0, 0, 3 ), A( 3, 0, 0), B(0,1, 0) 3
BF (0, 1,
. 4分
由(Ⅰ)知,曲线 C2 的方程为
x2 4
y2
1 (x
2) ,
.7 分
联立
x x2
6y2 4 y2 4
(
x
2)
,消去
x
,得
(9
1)
y
2
6y

2022年东北三省三校(哈师大附中、东北师大附中)高考数学一模试卷(理科)+答案解析(附后)

2022年东北三省三校(哈师大附中、东北师大附中)高考数学一模试卷(理科)+答案解析(附后)

2022年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(理科)1. 复数z 满足,则复数( )A.B.C.D.2. 已知集合,,则等于( )A.B. C.D.3. 下面是某城市某日在不同观测点对细颗粒物的观测值:396 275 268 225 168 166 176 173 188 168 141 157若在此组数据中增加一个比现有的最大值大25的数据,下列数字特征没有改变的是( )A. 极差B. 中位数C. 众数D. 平均数4. 设m ,n 是两条不同的直线,,,是三个不同的平面,下列四个命题中正确的是( )A. 若,,则B. 若,,则C. 若,,,则D. 若,,,则 5.等差数列的前n 项和为,已知,,则( )A. 3B.C. 5D.6.直线l :与圆C :交于A ,B 两点,若,则m 的值为( )A.B. C.D.7. 已知a ,,则“”的一个必要条件是( )A. B. C.D.8. 已知,,,则( )A.B.C.D.9. 已知某个函数的图像如图所示,则下列解析式中与此图像最为符合的是( )A. B. C.D.10.已知数列满足对任意的正整数n,都有…,其中,则数列的前2022项和是( )A. B. C. D.11. 如图是一个简单几何体的三视图,若,则该几何体外接球表面积的最小值为( )A. B. C. D.12. 已知,,是双曲线:的两个焦点,若点P为椭圆:上的动点,当P为椭圆的短轴端点时,取最小值,则椭圆离心率的取值范围为( )A. B. C. D.13. 已知向量,,点A的坐标为,则点B的坐标为______.14. 对称性是数学美的重要特征,是数学家追求的目标,也是数学发现与创造中的重要的美学因素.著名德国数学家和物理学家魏尔说:“美和对称紧密相连”.现用随机模拟的方法来估算对称蝴做一个边长为2dm的正方形将其蝶如图中阴影区域所示的面积,包含在内,并向该正方形内随机投掷1000个点,已恰有395个点落在阴影区域内,据此可估计图中对称蝴蝶的面积是______15.在棱长为2的正方体的侧面内有一动点P到直线与直线BC的距离相等,则在侧面上动点P的轨迹与棱AB,所围成的图形面积是______.16. 已知函数,恰有3个零点,,,且,有下列结论:①;②;③;④其中正确结论的序号为______填写所有正确结论的序号17. 第七次全国人口普查数据显示,我国60岁及60岁以上人口已达亿,预计“十四五”期间这一数字将突破3亿,我国将从轻度老龄化进人中度老龄化阶段.为了调查某地区老年人生活幸福指数,某兴趣小组在该地区随机抽取40位老人其中男性20人,女性20人,进行幸福指数调查,规定幸福指数越高老年生活越幸福,幸福指数大于或等于50的老人为老年生活非常幸福,反之即为一般幸福.调查所得数据的茎叶图如图:依据上述样本数据的茎叶图,分析此样本中男性老人和女性老人相比哪个幸福指数相对更高,并说明理由可以不计算说明;请完成下列列联表,并判断能否有的把握认为老年人幸福指数与性别有关?一般幸福非常幸福合计男性20女性20合计40附:,其中18. 在中,内角A,B,C所对的边分别是a,b,c,已知,角C的内角平分线与边AB交于点求角B的大小;记,的面积分别为,,在①,,②,,这两个条件中任选一个作为已知,求的值.19.如图,在三棱柱中,侧面是矩形,,,,,E,F分别为棱,BC的中点,G为线段CF的中点.证明:平面AEF;求二面角的余弦值.20. 已知椭圆,点P为椭圆C上非顶点的动点,点,分别为椭圆C的左、右顶点,过,分别作,,直线,相交于点G,连接为坐标原点,线段OG与椭圆C交于点若直线OP,OQ的斜率分别为,求的值;求面积的最大值.21. 已知函数其中e是自然对数的底数当时,证明:;当时,恒成立,求正整数k的取值集合;证明:!参考数据:,,22. 在平面直角坐标系xOy中,曲线的参数方程为为参数,以原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程是分别写出的普通方程与的直角坐标方程;将曲线绕点按逆时针方向旋转得到曲线,若曲线与曲线交于A,B 两点,求的值.23. 已知函数求不等式的解集;若函数最小值为m,已知,,,,求的最小值.答案和解析1.【答案】B【解析】解:,,即故选:根据已知条件,结合复数的运算法则,即可求解.本题主要考查复数的运算法则,考查计算能力,属于基础题.2.【答案】D【解析】解:,,故选:分别求解函数的值域与定义域,化简M与N,再由并集运算得答案.本题考查函数的定义域及值域的求法,考查并集及其运算,是基础题.3.【答案】C【解析】解:根据题意,若在此组数据中增加一个比现有的最大值大25的数据,即最大值变为,极差为最大值与最小值的差,要发生改变,加入数据前,中位数为,加入数据后,中位数为发生改变,众数为数据中出现次数最多的数,不会改变,平均数体现数据的整体水平,要发生改变,故选:根据题意,由平均数、方差、众数、中位数的计算方法,依次分析是否发生改变,即可得答案.本题考查数据的数字特征,涉及平均数、方差、众数、中位数的计算,属于基础题.4.【答案】D【解析】解:m,n是两条不同的直线,,,是三个不同的平面,对于A,若,,则m与n相交、平行或异面,故A错误;对于B,若,,则与相交或平行,故B错误;对于C,若,,,则m与n平行或异面,故C错误;对于D,若,,,则由线面垂直的判定定理得,故D正确.故选:对于A,m与n相交、平行或异面;对于B,与相交或平行;对于C,m与n平行或异面;对于D,由线面垂直的判定定理得本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系,考查运算求解能力,是中档题.5.【答案】C【解析】解法一:等差数列的前n项和为,,,,解得,,解法二:等差数列的前n项和为,,,,即,解得,故选:法一:利用等差数列通项公式和前n项和公式列方程组,求出,,由此能求出法二:由,求出,从而,由此能求出结果.本题实数等差数列的前5项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.6.【答案】C【解析】解:直线l:与圆C:交于A,B两点,圆心到直线l的距离,,即,解得故选:根据已知条件,结合点到直线的距离公式,以及垂径定理,即可求解.本题主要考查直线与圆的位置关系,考查计算能力,属于基础题.7.【答案】B【解析】解:对于A,令,,推不出,故A错误,对于B,由“”得:且,故,反之,若,推不出,比如,,故是的必要不充分条件,故B正确,对于C,令,,推不出,故C错误,对于D,令,,推不出,故D错误,故选:取特殊值判断ACD,根据充分必要条件的定义判断本题考查了充分必要条件,考查特殊值法的应用,是基础题.8.【答案】B【解析】解:,且,,即,,,又,,故选:利用对数函数和指数函数的性质求解.本题考查三个数的大小的求法,是基础题,解题时要认真审题,注意对数函数和指数函数的性质的合理运用.9.【答案】B【解析】解:由图像可知函数的定义域为,对于A:函数的定义域为,故A不符合;对于B:函数的定义域为,故B符合,对于C:函数的定义域为,故C不符合;对于D函数的定义域为,但,故D不符合.故选:根据函数的定义域排除AC,根据函数的值排除本题考查了函数图像的识别,属于基础题.10.【答案】C【解析】解:不妨设数列的前n项和为,故由题可得,故当时,,则,即,又当时,,故该数列是,且从第二项起是公比为2的等比数列,故故选:根据已知条件,利用,的关系,求得数列类型,再利用等比数列的前n项和公式即可求得结果.本题考查了数列的递推式以及等比数列求和的问题,属于中档题.11.【答案】B【解析】解:由题意可知几何体的是三棱锥,是四棱柱的一部分,如图,三棱锥的外接球与四棱柱的外接球相同,该几何体外接球表面积的最小值就是外接球的半径取得最小值,即直径取得最小值,直径为AD,则,当且仅当时取等号,所以该几何体外接球表面积的最小值为:故选:判断几何体的形状,求解外接球的半径,然后求解即可.本题考查三视图求解几何体是外接球的表面积的最小值,考查空间想象能力,转化思想以及计算能力,是中档题.12.【答案】A【解析】解:假设点P在x轴上方,设,则,由已知得,设直线的倾斜角为,直线的倾斜角为,,,由于P为椭圆的短轴端点时,取最小值,即取最小值,也取最小值,此时,函数在上单调递减,,即,解得即椭圆离心率的取值范围为故选:假设点P在x轴上方,设,,利用与直线倾斜角以及直线倾斜角的关系构建关于的函数关系式,最后利用对勾函数的性质求解即可.本题考查了椭圆离心率取值范围的问题,属于中档题.13.【答案】【解析】解:设,由于向量,,故,整理得,故答案为:直接利用向量的线性运算的应用求出结果.本题考查的知识要点:向量的坐标运算,主要考查学生的运算能力和数学思维能力,属于基础题.14.【答案】【解析】解:根据题意,设图中对称蝴蝶的面积为,正方形的边长为2dm,则正方形的面积,向该正方形内随机投掷1000个点,已恰有395个点落在阴影区域内,则有,解可得,故答案为:根据题意,设图中对称蝴蝶的面积为,求出正方形的面积,由几何概型的计算公式可得,解可得答案.本题考查几何概型的计算,涉及模拟方法估算概率,属于基础题.15.【答案】【解析】解:P到直线与直线BC的距离相等,可得点P到直线与直线B的距离相等,所以点P的轨迹是以B为焦点,为准线的抛物线,以的中点为坐标原点,过中点M,的中点O的直线为y轴建立如图所示的直角坐标系,因为,所以抛物线方程为,所以在侧面上动点P的轨迹方程为,侧面上动点P的轨迹与棱AB,所围成的图形面积为故答案为:点P的轨迹是以B为焦点,为准线的抛物线,建立坐标系,求得曲线方程,利用定积分求面积.本题考查点的轨迹问题,以及曲线围成图形的面积,属中档题.16.【答案】②③④【解析】解:如下图所示:因为,则,由图可知,,则,且直线与曲线相切于点,对于①:若,即,由题意可得,所以,即,解得,因为,则不成立,故①错误;对于②:因为,则,故②正确;对于③:当时,则,,由题意可得,可得,所以,所以,故③正确;对于④:由上可知,所以,因此,,故④正确.故答案为:②③④.作出图形,分析可知,,且直线与曲线相切于点,可得出,利用反证法结合二倍角公式可判断①,由已知条件可判断②;利用二倍角的正弦公式和弦化切可判断③;利用已知条件可判断④.本题考查函数的零点与方程的根的关系,以及三角恒等变换,属难题.17.【答案】解:由茎叶图可知,女性老人的幸福指数主要集中在之间,男性老人的幸福指数主要集中在之间,故可推断出女性老人幸福指数的均值大于男性老人幸福指数的均值,故女性老人幸福指数更高.列联表如图所示:一般幸福非常幸福合计男性 16 4 20女性 11 9 20合计 27 1340,有的把握认为老年人幸福指数与性别有关.【解析】由茎叶图可得,女性老人幸福指数的均值大于男性老人幸福指数的均值,即可求解.根据已知条件,结合独立性检验公式,即可求解.本题主要考查独立性检验公式,考查计算能力,属于中档题.18.【答案】解:因为,由正弦定理可得,由可得,因为,可得,所以,即,因为,所以;选①:因为,,由余弦定理可得b²²²,代入可得a²,解得,因为CD平方,令,则,,则;选②:因为,解得,由,再由余弦定理可得b²²²,即²²,可得a²²,联立,解得,,由CD平方,令,则则,,则【解析】由,化简可得,即可求解;选①:由余弦定理求得a,令,结合三角形的面积公式求得,,即可求得的值.选②:由,求得,利用余弦定理求得a²²,联立方程组即可求得a,c ,结合面积公式求得,,即可求得的值.本题考查解三角形,涉及正余弦定理的应用,三角形面积公式的应用,属于中档题.19.【答案】解:证明:连接交AE于O,连接OF,由题意,四边形是平行四边形,所以,因为E为的中点,,∽,且相似比为,,又F,G分别为棱BC,CF的中点,,,又平面AEF,平面AEF,平面AEF,连接,,,,,,,建立如图所示的空间直角坐标系,则,,,,则,,,设平面AEF的一个法向量为,则,令,则,,平面AEF的一个法向量为,设平面BEF的一个法向量为,则,令,则,,平面BEF的一个法向量为,,,因为二面角的平面角为锐角,二面角的余弦值为【解析】连接交AE于O,连接OF,可证,进而可证平面AEF;建立如图所示的空间直角坐标系,求平面AEF的一个法向量,求平面BEF的一个法向量,利用向量法可求二面角的余弦值.本题考查线面平行的证明,以及面面角的余弦值的求法,属中档题.20.【答案】解:,,设,,由题意直线的方程为,①,直线的方程为,②,由①②得点,可得,,由知,设直线OP的方程为,直线OQ的方程为,由,得,由对称性,不妨设,,,由知,异号,,异号,,点Q到直线的距离,,,当且仅当,取等号,面积的最大值为【解析】设,,由题意写出直线,的方程,求出点G的坐标,从而表示出,,进而求出的值.设直线OP、OQ的方程,联立方程求出P,Q的坐标,计算点Q到直线的距离,表示出面积,利用基本不等式求解最大值.本题考查两直线的斜率的比值、三角形面积的最大值的求法,考查直线与椭圆的位置关系、韦达定理、根的判别式、弦长公式、点到直线距离公式等基础知识,考查运算求解能力,是中档题.21.【答案】解:证明:设,则,当时,,当时,,所以在上单调递减,在上单调递增,所以,即当且时,取等号,所以,则,即当且仅仅当时取等号,因为上述两个不等式等号不同时取到,所以,所以由已知,,且k为正整数,所以或,当时,令,所以在区间上单调递增,所以,所以在上单调递增,所以,即恒成立,当时,令,在上单调递增,所以,,所以存在,使得,当时,,则在上单调递减,所以,从而不满足恒成立,故,综上所述,正整数k的取值集合为由知时,,令,则,所以!,所以!,因为且,所以,所以,所以!【解析】设,求导判断单调性,从而证明,进而可证明当且仅仅当时取等号,可得,即证由已知判断得,分类讨论与的情况,令新函数,求导判断单调性,从而判断是否恒成立.由得,从而可得!,可证明!,即证!本题考查导数的综合应用,解题中需要理清思路,属于中档题.22.【答案】解:曲线的参数方程为为参数,消t可得,,,,①,故将曲线绕点按逆时针方向旋转得到曲线,直线的斜率为,即直线的方程为,则直线的参数方程为为参数②,联立①②可得,,A,B对应的参数为,,则,,点在圆C外,,同号,由参数方程的几何意义可知,【解析】根据已知方程,消t,即可求解,根据方程,结合极坐标公式,即可求解.根据已知条件,先求出,再可求得该参数方程,再结合参数方程的性质,即可求解.本题主要考查极坐标方程和参数方程的应用,考查转化能力,属于中档题.23.【答案】解:由题意,当时,,解得,当时,恒成立,解得,当时,,解得,综上所述,不等式的解集为由绝对值不等式可得,,当且仅当时等号成立,故函数最小值为3,即,所以,,,,,当且仅当时,等号成立,故,即的最小值为【解析】根据题意,分,,三种情况讨论,即可求解.由绝对值三角不等式可得,函数的最小值为3,即,再根据柯西不等式,即可求解.本题主要考查绝对值不等式的求解,考查柯西不等式的应用,属于中档题.。

东北三省三校2020年高三第一次联合模拟考试理科数学试题 (含评分细则)

东北三省三校2020年高三第一次联合模拟考试理科数学试题 (含评分细则)

2020年高三第一次联合模拟考试理科数学第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0322<--=x x x A ,⎭⎬⎫⎩⎨⎧>=11x xB 则=)(B AC R Y ( ) A.),3()1,(+∞--∞Y B.),3[]1,(+∞--∞Y C.),3[+∞ D.),1[]1,(+∞--∞Y 2.已知复数),(R b a bi a z ∈+=,1+i z是实数,那么复数z 的实部与虚部满足的关系式为( )A.0=+b aB.0=-b aC.02=-b aD.02=+b a 3.已知βα,是两个不同的平面,直线α⊂m ,下列命题中正确的是( ) A.若βα⊥,则β∥m B.若βα⊥,则β⊥m C.若β∥m ,则βα∥ D.若β⊥m ,则βα⊥4.大约在20世纪30年代,世界上许多国家都流传着这样一个题目:任取一个正整数n ,如果它是偶数,则除以2;如果它是奇数,则将它乘以3加1,这样反复运算,最后结果必然是1,这个题目在东方称为“角谷猜想”,世界一流的大数学家都被其卷入其中,用尽了各种方法,甚至动用了最先进的电子计算机,验算到对700亿以内的自然数上述结论均为正确的,但却给不出一般性的证明,例如取13=n ,则要想算出结果1,共需要经过的运算步数是( )A.9B.10C.11D.125.已知e c e b a πlog ,log ,3ln 3===(注:e 为自然对数的底数),则下列关系正确的是( )A.c a b <<B.a b c <<C.a c b <<D.c b a << 6.已知在边长为3的等边ABC ∆的中,21=,则⋅=( ) A.6 B.9 C.12 D.6-7.如图,四边形ABCD 是边长为2的正方形,⊥ED 平面ABCD ,⊥FC 平面ABCD ,22==FC ED ,则四面体BEF A -的体积为( )A.31 B.32 C.1 D.34 8.已知函数x x x f 2cos 32sin )(+=的图像向右平移)20(πϕϕ<<个单位后,其图像关于y 轴对称,则=ϕ( )A.12π B.6π C.3π D.125π 9.已知椭圆)0(12222>>=+b a b y a x 的右焦点为)0,(c F ,上顶点为),0(b A ,直线ca x 2=上存在一点P 满足0)(=⋅+,则椭圆的离心率取值范围为( )A.)1,21[B.)1,22[C.)1,215[-D.]22,0( 10.已知定义在R 上的函数)(x f ,满足)1()1(x f x f -=+,当),1[+∞∈x 时⎪⎩⎪⎨⎧+∞∈-∈--=),3[),21(2)3,1[,21)(x x f x x x f ,则函数)(x f 的图像与函数⎩⎨⎧<-≥=1),2ln(1,ln )(x x x x x g 的图像在区间]7,5[-上所有交点的横坐标之和为( )A.5B.6C.7D.911.已知数{}n a 列的通项公式为22+=n a n ,将这个数列中的项摆放成如图所示的数阵,记n b 为数阵从左至右的n 列,从上到下的n 行共2n 个数的和,则数列⎭⎬⎫⎩⎨⎧n b n 的前2020项和为( )A.20201011 B.20202019 C.20212020 D.2021101012.已知双曲线1322=-y x 的左、右焦点分别为21F F 、,点P 在双曲线上,且ο12021=∠PF F ,21PF F ∠的平分线交x 轴于点A ,则=PA ( )A.55 B.552 C.553 D.5 第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.把答案填写在答题纸相应位置上. 13.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的 不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为 .14.已知函数xx ae e x f -+=)(在]1,0[上不单调,则实数a 的取值范围为 .15.数列{}n a 满足11=a ,),2(2)12(*2N n n S S a n n n ∈≥=-,则n a = .16.已知函数b x a x x f ----=13)()(222,当 时(从①②③④中选出一个作为条件),函数有 .(从⑤⑥⑦⑧中选出相应的作为结论,只填出一组即可) ①21-≤a ②2523<<a ③02,1<<-=b a ④249,1-<<-=b a 或0=b ⑤4个极小值点 ⑥1个极小值点 ⑦6个零点 ⑧4个零点 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. (一)必考题:共60分. 17.(本小题满分12分)在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,已知c a C b +=2cos 2(Ⅰ)求B ;(Ⅱ)若2=a ,D 为AC 的中点,且3=BD ,求c . 18.(本小题满分12分)如图,三棱柱ABC C B A -111中,⊥1BB 平面ABC ,BC AB ⊥,2=AB ,1=BC ,31=BB ,D 是1CC 的中点,E 是AB 的中点.(Ⅰ)证明:DE ∥平面11BA C ;(Ⅱ)F 是线段1CC 上一点,且直线AF 与平面11A ABB 所成角的正弦值为31,求二面角A BA F --1的余弦值. 19.(本小题满分12分)为了研究55岁左右的中国人睡眠质量与心脑血管病是否有关联,某机构在适龄人群中随机抽取了100万个样本,调查了他们每周是否至少三个晚上出现了三种失眠症状,A 症状:入睡困难;B 症状:醒的太早;C 症状:不能深度入睡或做梦,得到的调查数据如下: 数据1:出现A 症状人数为8.5万,出现B 症状人数为9.3万,出现C 症状人数为6.5万,其中含AB 症状同时出现1.8万人,AC 症状同时出现1万人,BC 症状同时出现2万人,ABC 症状同时出现0.5万人;数据2:同时有失眠症状和患心脑血管病的人数为5万人,没有失眠症状且无心脑血管病的人数为73万人.(Ⅰ)依据上述数据试分析55岁左右的中国人患有失眠症的比例大约多少?(Ⅱ)根据以上数据完成如下列联表,并根据所填列联表判断能否有95%的把握说明失眠与心脑血管病存在“强关联”?参考数据如下:参考公式:))()()(()(22d b c a d c b a bc ad n K ++++-=20.(本小题满分12分)已知以动点P 为圆心的⊙P 与直线21:-=x l 相切,与定圆⊙:F 41)1(22=+-y x 相外切.(Ⅰ)求动圆圆心P 的轨迹方程C ;(Ⅱ)过曲线C 上位于x 轴两侧的点N M 、(MN 不与x 轴垂直)分别作直线l 的垂线,垂足记为11N M 、,直线l 交x 轴于点A ,记11ANN AMN AMM ∆∆∆、、的面积分别为321S S S 、、,且31224S S S =,证明:直线MN 过定点.21.(本小题满分12分)已知函数)(21-1ln()1()(2R a x ax x x x f ∈-++=). (Ⅰ)设)(x f '为函数)(x f 的导函数,求函数)(x f '的单调区间; (Ⅱ)若函数)(x f 在),0(+∞上有最大值,求实数a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任取一题作答.如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑.本题满分10分. 22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,参数方程⎩⎨⎧==θθsin cos y x (其中θ为参数)的曲线经过伸缩变换⎩⎨⎧='='yy xx 2:ϕ得到曲线C ,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的极坐标方程为2103)4sin(=+πθρ. (Ⅰ)求曲线C 的普通方程及曲线D 的直角坐标方程;(Ⅱ)设N M 、分别为曲线C 和曲线D 上的动点,求MN 的最小值.23.[选修4-5:不等式选将] 设函数32)(-++=x x x f (Ⅰ)求不等式9)(>x f 的解集;(Ⅱ)过关于x 的不等式23)(-≤m x f 有解,求实数m 的取值范围.一模答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BBDABABDCCDB13.14.15. ()()1,12,22123n n a n n n =⎧⎪=⎨-≥⎪--⎩16. ①⑥、②⑤、③⑦、④⑧均可三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.解析:(Ⅰ)由正弦定理得2sin cos 2sin sin B C A C =++,……………………………….2分又由sin sin()sin cos cos sin A B C B C B C =+=+,……………………………….4分 得2cos sin sin 0B C C +=,因为0C π<<,所以sin 0C ≠,所以1cos 2B =-.因为0B π<<,所以23B π=.……………………………….6分 (Ⅱ)因为D 为AC 的中点,所以2BA BC BD +=u u u r u u u r u u u r,……………………………….8分所以22()(2)BA BC BD +=u u u r u u u r u u u r,即2212a c ac ++=,……………………………….10分 因为2a =,解方程2280c c --=,得4c =.……………………………….12分 18.解析:(I )连结1AB 交1A B 于O ,连结1,EO OC11,,,2OA OB AE EB OE BB ==∴=Q 1//OE BB ,……………………………….1分 又1112DC BB =,1DC //1BB , 1//OE DC ∴,因此,四边形1DEOC 为平行四边形,即1//ED OC ……………………………….2分111,,OC C AB ED C AB ⊂⊄Q 面面DE ∴//平面11C BA (II )建立空间直角坐标系B xyz -,如图 过F 作1FH BB ⊥,连结AH11,,BB ABC AB ABC AB BB ⊥⊂∴⊥Q 面面 111,,AB BC BC BB AB CBB C ⊥∴⊥Q I 面 111111,,AB BAA B BAA B CBB C ⊂∴⊥Q 面面面111,,FH CBB C FH BB ⊂⊥Q 面11111,BAA B CBB C BB =I 面面11FH BAA B ⊥面,即FAH ∠为直线AF 与平面11ABB A 所成角,……………………………….7分 记为θ,11sin ,3,3AF AF θ==∴= 在Rt ACF ∆中,222259,2,AC CF AF CF CF ==+=+∴=11(0,2,1),(2,3,0),(0,2,1),(2,3,0),F A BF BA ==u u u r u u u rBA B C OH设平面1BAC 的法向量(,,)m x y z =u r,120230m BF y z m BA x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩u r u u u r ur u u u r ,取2,(3,2,4)y m ==--u r 平面1BAA 的法向量(0,0,1)n =r,……………………………….10分|cos ,|m n <>=u r r ……………………………….11分 因此,二面角1F BA A --的余弦值……………………………….12分19. 解析:设A ={出现A 症状的人}、B ={出现B 症状的人}、C ={出现C 症状的人}(card 表示有限集合元素个数) 根据数据1可知()()()()1.8,1,2,0.5card A B card A C card B C card A B C ====I I I I I ,所以()()()()()()()card A B C card A card B card C card A B card A C card B C card=++-+++⎡⎤⎣⎦U U I I I (9)分()22100573157 4.001 3.84112888020k ⨯⨯-⨯=≈>⨯⨯⨯.……………………………….11分有95%的把握说明失眠与中风或心脏病存在“强关联” .……………………………….12分20.解析:(Ⅰ)设(),P x y ,P e 半径为R ,则11,22R x PF R =+=+,所以点P 到直线1x =-的距离与到()1,0F 的距离相等,故点P 的轨迹方程C 为24y x =.……………………………….4分 (Ⅱ)设()()1122,,M x y N x y 、,则11211,,22M y N y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭、 设直线():0MN x ty n t =+≠代入24y x =中得2440y ty n --=12124,40y y t y y n +==-<.……………………………….6分 11132211112222S x y S x y =+⋅=+⋅Q 、 131112114S S 22x x y y ⎛⎫⎛⎫∴=++ ⎪⎪⎝⎭⎝⎭()12122212122222211221142211444221242ty n ty n y y t y y n t y y n nnt t n n nt n n⎛⎫⎛⎫=++++ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫=+++++⋅-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫⎛⎫=-++++⋅⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦⎡⎤⎛⎫=++⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.……………………………….8分又21211112222S n y y n =+⋅-=+()()22222211116164422S n t n n t n ⎛⎫⎛⎫∴=+⋅+=+⋅+ ⎪ ⎪⎝⎭⎝⎭.……………………………….10分2222221311484222S S S nt n t n n ⎛⎫⎛⎫=⇔=+⇔=+ ⎪ ⎪⎝⎭⎝⎭12n ⇒=.……………………………….11分∴直线MN 恒过1,02⎛⎫⎪⎝⎭.……………………………….12分21.解析:(Ⅰ)()()ln 1f x x ax '=+-令()()()ln 1h x f x x ax '==+-, ()11h x a x '=-+;.……………………………….1分 1o 当0a ≤时,()0h x '>,()'f x ∴在()1,-+∞上递增,无减区间()0h x '=.……………………………….3分 2o 当0a >时,令()1011h x x a'>⇒-<<-, 令()101h x x a'<⇒>- 所以,()'f x 在11,1a ⎛⎫-- ⎪⎝⎭上单调递增,在11,a⎛⎫-+∞ ⎪⎝⎭上单调递减; (5)分(Ⅱ)由(Ⅰ)可知,当0a ≤时,()'fx ∴在()0,+∞上递增,()()''00f x f ∴>=()f x ∴在()0,+∞上递增,无最大值,不合题意;.……………………………….6分 1o 当1a ≥时,()1101h x a a x '=-<-≤+ ()'f x ∴在()0,+∞上递减,()()''00f x f ∴<=,()f x ∴在()0,+∞上递减,无最大值,不合题意;.……………………………….8分2o 当01a <<时,110a->,由(Ⅰ)可知()'fx 在10,1a ⎛⎫- ⎪⎝⎭上单调递增,在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递减;.……………………………….9分 设()1ln g x x x =--,则()1x g x x-'=; 令()001g x x '<⇒<<;令()01g x x '>⇒>()g x ∴在()0,1上单调递减,在()1,+∞单调递增; ()()10g x g ∴≥=,即ln 1x x ≤-由此,当0x >时,1≤<ln x <所以,当0x >时,()()12h x ax a x <<+=-. 取241t a =-,则11t a >-,且()20h t <-=. 又因为()1100h h a ⎛⎫->= ⎪⎝⎭,所以由零点存在性定理,存在011,x t a ⎛⎫∈- ⎪⎝⎭,使得()00h x =;.……………………………….11分当()00,x x ∈时,()0h x >,即()0f x '>;当()0,x x ∈+∞时,()0h x <,即()0f x '<;所以,()f x 在()00,x 上单调递增,在()0,x +∞上单调递减,在()0,+∞上有最大值()0f x .综上,01a <<.……………………………….12分在第22、23题中任选一题做答,如果多做,则按所做的第一题记分,做答时用2B ..铅笔..在答题卡上把所选题目对应的题号涂黑。

2019年东北三省三校第一次联合考试理科数学试题--含答案

2019年东北三省三校第一次联合考试理科数学试题--含答案

理科数学试卷笫1页(共4页)哈师大附中 东北师大附中辽宁省实验中学2019年鳥三第一次联合模拟考试理科数学试卷支注意事项:1 •本试卷分第I 卷(选择題)和第II 卷(非选择题)两邙分,共150分,考试时间120分钟答卷 的,号土齐必将口匸的姓名、木考证号塩写任答题卡的和应位3±..2.冋答第I 卷时,选出何小题答案后•用铅笔把答题卡JL 对应题冃的符案标号涂黒•如需改动, :用橡皮擦于净后・再选涂其它答案标号,写在本试卷上无效.:3.冋苓第u 卷时•将答案q 任答趣K 上,写在本试卷上无效-第1卷(选择题共6()分)一.选择题(龙大题共12小談,每小颍5分■共50分•在毎小題給岀的四个选项中,只有一项是符合 題目要求的)1•复数(l-i )(3+»)的虚部是 6•中国冇十二生肖•乂叫卜二属札每一个人的出生年份对应了 I 二种动物(鼠、牛.虎、兔、龙屈、 马、羊、狼、鸡、狗、猪)中的一种•现有I •二牛•肖的吉祥物各一个,三位同学依次选一个作为礼物, 甲同学韓欢牛和马,乙同学頁欢牛、狗和羊,内同学哪个吉祥物都宵欢,如采让三位同学选取礼物 都満意•则选法有A.3O WB.50 种C.60 种1).90 种A .4B.-4(“22•集合A = |xl-l^x^2| ,B= x 1 log^x € 11 JiJ 4n/; =A. j x 1 — 1 v <x v 2}B.!xl0<x<;2!c.lxl 1^X^2|3•已知向员4上的夹角为60\lfll = l JM=2.则 1%+bl =A.J5R./7C.丽4 设 a = (;)、=占「) *c=(y )侧"""的.人小关系为A.b<ccaB.«<6<rC.a<c<b5•等差数列{““}的前n 项和为S.・目心+“ 10= 16.a 8 = 11, S 7 =A.30B.35(:42D.-2D. x I x - 1 或才>2}I)•何V).e<a<h1).56理科数学试卷第2贞(共4贝〉7•执行闻次下图所示的程序框图,若第一次输人的戈的值为4•第二次输入的工的值为5■记邹•次输出的Q 的值为© •第二次输出的a 的值为5•则产&如图•在直角坐标系My 中•过坐标原点0作曲线y = e f 的切线•切点为P •过点P 分别作X.)轴 的垂线,垂足分別为儿〃,向矩形OAPH 中随机撤一粒黄豆•则它倍到阴影部分的槪率为 A.竿 B.孚 C.I/I2c 2e e e9•已甸a,0是不jfi 合的平面 Z 是不两合的f*(线•则加丄a 的一个充分条件是 A.m ln,nCa丄0C.nXa.n 丄0,加丄尸Ti.aC }fi-n.a 丄0■皿丄n10.双曲线斗1@>0上>0)的左焦点为F(-V 5,0),点.4的坐标为(0.2),点P 为双曲线右支上 a的动点,且△ AM 周长的域小值为8,则収曲线的离心率为\.J2B.VTC.2D.万11•各项均为正数的等比数列{"・}的前“项和为S.,若5 •畋= 4®“,则匕© 的战小值为A .4B.6C ・8D.12ABC 中,乙ABC = 90。

东北三省三校2020届高三第一次联合模拟考试-理科数学答案

东北三省三校2020届高三第一次联合模拟考试-理科数学答案

1 一模答案 一、选择题 题号 123456789 10 11 12 答案 B B D A B A B D C C D B二、填空题13. 717 14. (1,e 2) 15. ()()1,12,22123n n a n n n =⎧⎪=⎨-≥⎪--⎩16.①⑥、②⑤、③⑦、④⑧均可三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.解析:(Ⅰ)由正弦定理得2sin cos 2sin sin B C A C =++,……………………………….2分 又由sin sin()sin cos cos sin A B C B C B C =+=+,……………………………….4分得2cos sin sin 0B C C +=,因为0C π<<,所以sin 0C ≠,所以1cos 2B =-.因为0B π<<,所以23B π=.……………………………….6分(Ⅱ)因为D 为AC 的中点,所以2BA BC BD +=u u u r u u u r u u u r ,……………………………….8分 所以22()(2)BA BC BD +=u u u r u u u r u u u r ,即2212a c ac ++=,……………………………….10分因为2a =,解方程2280c c --=,得4c =.……………………………….12分18.解析:(I )连结1AB 交1A B 于O ,连结1,EO OC11,,,2OA OB AE EB OE BB ==∴=Q 1//OE BB ,……………………………….1分又1112DC BB =,1DC //1BB ,1//OE DC ∴,因此,四边形1DEOC 为平行四边形,即1//ED OC ……………………………….2分 111,,OC C AB ED C AB ⊂⊄Q 面面DE ∴//平面11C BA ……………………………….5分 (II )建立空间直角坐标系B xyz -,如图 过F 作1FH BB ⊥,连结AH11,,BB ABC AB ABC AB BB ⊥⊂∴⊥Q 面面 111,,AB BC BC BB AB CBB C ⊥∴⊥Q I 面 111111,,AB BAA B BAA B CBB C ⊂∴⊥Q 面面面 111,,FH CBB C FH BB ⊂⊥Q 面11111,BAA B CBB C BB =I 面面11FH BAA B ⊥面,B C 1A 1B 1CD O F H xy z。

高三数学2024年东北三省三校联考一模数学答案

高三数学2024年东北三省三校联考一模数学答案

2024年高三第一次联合模拟考试数学参考答案一.单项选择题1-4 CABD 5-8 CBBB 二.多项选择题9.ACD 10.ABD 11.ABD 三.填空题12. 3274四.解答题15.解:(1)()2cos 22sin f x x x '=− 2' (0)2,(0)2f f '== 4'∴()f x 在0x =处的切线方程为22(0)y x −=−,即22y x =+ 6'(2)22()2cos 22sin 2(1sin )2sin 2(2sin sin 1)f x x x x x x x '=−=−−=−+− 8'()0f x '<则22(2sin sin 1)0x x −+−< 10'即2(2sin 1)(sin 1)0x x −−+<即1sin 2x >解得5(2,2),66x k k k Z ππππ∈++∈ 12' 故()f x 的单调递减区间为5(2,2),66k k k Z ππππ++∈ 13' 16.解:(1)底面ABCD 为平行四边形,120ADC ∠=,60DAB ∴∠=. 4,8DA AB ==由余弦定理可得:2222cos 6048DB AB AD AB AD =+−⨯=DB ∴=则222DA DB AB +=,DA DB ∴⊥ 2' 侧棱1DD ABCD ⊥平面,DB ABCD ⊂平面1DD DB ∴⊥4'111111,,DA ADD A DD ADD A DA DD D ⊂⊂=又平面平面且11DB ADD A ∴⊥平面6' 111AA ADD A ⊂又平面1DB AA ∴⊥7'(2)四棱台中1111ABCD A B C D −的体积为2833111111111()3ABCD A B C D ABCD A B C D V S S S S ∴=++1111111112831()33DD AD DB A D D B AD DB A D D B ∴=++ 1283128333DD ∴=,解得:11DD = 9'如图,以点D 为原点,1,,DA DB DD 所在直线为x 轴,y 轴,z 轴, 建立如图的空间直角坐标系,则1(4,0,0),(0,43,0),(4,43,0),(0,23,1)A B C B −1(4,0,0),(0,23,1)BC BB ∴=−=−11'设平面11BCC B 的法向量为(,,)n x y z =,则有140230n BC x n BB y z ⎧=−=⎪⎨=−+=⎪⎩所以(0,1,23)n =13'平面11ADD A 的法向量为(0,1,0)m =,设平面11ADD A 与平面11BCC B 所成锐二面角为θ 则113cos |cos ,|1313m n m n m nθ⋅=<>=== 15'17.解:(1)由图估计甲班平均分较高3'(2)由图可知,甲班中有12的学生分数低于128分; 乙班中有34的学生分数低于128分 设从两班中随机抽取一人, “该同学来自甲班为事件A ”,“该同学分数低于128分为事件B ”,则1113(),(),(),(),2224P A P A P B A P B A ==== 5' ()()()()()()()P B P AB P AB P B A P A P B A P A ∴=+=⋅+⋅1131522428=⨯+⨯=7'11()()()222()5()()58P A P B A P AB P A B P B P B ⨯==== 8'13()()()324()5()()58P A P B A P AB P A B P B P B ⨯====9'所以,该同学来自甲乙两班的概率分别为23,55(3)依题X 的所有可能取值为0,1,2,310'30643101(0)6C C P X C === 11'21643101(1)2C C P X C === 12'12643103(2)10C C P X C ===13'03643101(4)30C C P X C ===14'所以X 的分布列为:15'18.解:(1)设1122(,),(,)M x y N x y ,则12122,6x x y y +=+=,M N 两点在双曲线C 上22112222222211x y a b x y a b ⎧−=⎪⎪∴⎨⎪−=⎪⎩①②,由−①②得22221212220x x y y a b −−−= 即2221222212y y b x x a −=−, ()()()()2121221212y y y y b x x x x a+−∴=+− 2'22OQ MNb k k a∴⋅=,即222213,3b b a a ∴⋅=∴=又21,3a b =∴=,∴双曲线C 的方程为:2213y x −=4'(2)由已知可得,直线MN 的方程为:31(1)y x −=⋅−,即2y x =+联立22222470,1656720330y x x x x y =+⎧⇒−−=∆=+=>⎨−−=⎩ 6' 则121272,2x x x x +==− 8'11221212(1,)(1,)(1)(1)EM EN x y x y x x y y ⋅=−⋅−=−−+12121212(1)(1)(2)(2)2()5x x x x x x x x =−−+++=+++72()2502=⨯−++=EM EN ∴⊥,EMN ∴∆为直角三角形 10'(3)由题意可知,若直线AB 有斜率则斜率不为0,故设直线AB 方程为:x my n =+ 设334455(,),(,),(,)P x y A x y B x y34345353,(,)(,)AP PB x x y y x x y y λλ=∴−−=−−45334533453453()1()1x x x x x x x y y y y y y y λλλλλλ+⎧=⎪−=−⎧⎪+∴⇒⎨⎨−=−+⎩⎪=⎪+⎩点P 在双曲线C 上, 22454511113x x y y λλλλ++⎛⎫⎛⎫ ⎪ ⎪++⎝⎭⎝⎭∴−= 22245453()()3(1)x x y y λλλ∴+−+=+22222244554545(3)(3)2(3)3(1)x y x y x x y y λλλ∴−+−+−=+③又2222445530,30x y x y −=−=,245452(3)3(1)x x y y λλ∴−=+,245453(1)32x x y y λλ+∴−=④ 联立2222230(31)630x y m y mny n x my n ⎧−=⇒−++=⎨=+⎩2222231033612(31)0m m m n n m ⎧−≠⇒≠±⎨∆=−−>⎩245452263,3131mn n y y y y m m −+==−−⑤⑥14',A B 分别在第一象限和第四象限,2450,310y y m ∴<∴−<由④式得:245453(1)3()()2my n my n y y λλ+++−=22245453(1)(31)3()32m y y mn y y n λλ+∴−+++=⑦将⑤⑥代入⑦得:222222363(1)(31)3331312n mn m mn n m m λλ−+∴−++=−− 22263(1)312n m λλ−+∴=−121sin 2AOB S OA OB AOB y y ∆∴=⋅⋅∠=221223(1)12312n y m λλλλ+⎫=====++⎪−⎭15'令11(),[,2]3h λλλλ=+∈ 221(1)(1)1()1,[,2]3h λλλλλλ+−'=−=∈ 1,1,()03h λλ⎡⎫'∴∈<⎪⎢⎣⎭,()h λ单调递减(]1,2,()0h λλ'∈>,()h λ单调递增10()[2,]3h λ∴∈, 16'3AOB S ∆∴∈⎦17'19.(1)证明:32310183222121k k k n a a a +++=⋅+⋅++⋅+⋅+01(83)11()2k S n a a a S n ∴+=+++++=+ 3'21210143222121k k k n a a a +++=⋅+⋅++⋅+⋅+01(43)11()2k S n a a a S n ∴+=+++++=+6' (83)(43)S n S n ∴+=+7'(2)(Ⅰ)解:260321684(111100)=+++=(60)2I ∴= 10'(Ⅱ)解: 21(1)=,2511(111111111)=,故从1n =到511n =中 I(n)=0有9个,I(n)=1有C 11+C 21+⋯C 81=C 92个, I(n)=2有C 22+C 32+⋯C 82=C 93个,……,I(n)=9有C 88=C 99=1个, ∑2I(n)511n=1=9×20+C 92×21+C 93×22+⋯C 99×2813'=C91×21+C92×22+C93×23+⋯C99×292=C90×20+C91×21+C92×22+C93×23+⋯C99×29−1216'=(1+2)9−12=984117'。

东北三省三校2019届高三第一次模拟数学(理)试题(解析版)

东北三省三校2019届高三第一次模拟数学(理)试题(解析版)

东北三省三校2019年高三第一次联合模拟考试理科数学试卷第Ⅰ卷一、选择题。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的虚部是()A. 4B. -4C. 2D. -2【答案】D【解析】【分析】先将复数进行化简得,得出答案.【详解】复数=所以虚部为-2故选D【点睛】本题主要考查了复数的化简,属于基础题.2.集合,,则()A. B. C. D.【答案】B【解析】【分析】先求出集合,再利用交集的定义得出答案.【详解】因为可得,集合,所以故选B【点睛】本题主要考查了交集的定义,属于基础题.3.已知向量的夹角为,,,则()A. B. C. D.【答案】C【解析】【分析】由题,先求出,可得结果.【详解】所以故选C【点睛】本题主要考查了数列的运算,属于基础题.4.设,,,则的大小关系为()A. B. C. D.【答案】A【解析】【分析】先利用是单调递减的,得出;再利用在是单调递增的,得出求得答案. 【详解】因为是单调递减的,且,所以;又因为在是单调递增的,,所以综上,故选A【点睛】本题主要考查了指数函数和幂函数的性质,来比较大小,掌握函数的性质是解题的关键.5.等差数列的前项和为,且,,则()A. 30B. 35C. 42D. 56【答案】B【解析】【分析】先根据题目已知利用公式求出公差,,再利用求和公式得出结果.【详解】因为是等差数列,所以,所以公差,根据求和公式【点睛】本题主要考查了数列的求和以及性质,对于等差数列的公式的熟练运用是解题的关键,属于基础题.6.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有()A. 30种 B. 50种 C. 60种 D. 90种【答案】B【解析】【分析】先分情况甲选牛共有,甲选马有,得出结果.【详解】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10中任意选,所以共有若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10中任意选,所以共有所以共有种故选B【点睛】本题主要考查了排列组合,分情况选择是解题的关键,属于较为基础题.7.执行两次下图所示的程序框图,若第一次输入的的值为4,第二次输入的的值为5,记第一次输出的的值为,第二次输出的的值为,则()A. 2B. 1C. 0D. -1【答案】D【解析】根据已知的程序框图,模拟程序的执行过程,可的结果.【详解】当输入x的值为4时,第一次不满足,但是满足x能被b整除,输出;当输入x的值为5时,第一次不满足,也不满足x能被b整除,故b=3第二次满足,故输出则-1故选D【点睛】本题主要考查了程序框图,属于较为基础题.8.如图,在直角坐标系中,过坐标原点作曲线的切线,切点为分别作轴的垂线,垂足分别为,向矩形中随机撒一粒黄豆,则它落到阴影部分的概率为()A. B. C. D.【答案】A【解析】【分析】先设出切点,利用切线过原点求出切点P的坐标,再用积分求出阴影部分的面积,最后用几何概型求得结果.【详解】设切点,所以切线方程,又因为过原点所以解得因为与轴在围成的面积是则阴影部分的面积为而矩形的面积为故向矩形中随机撒一粒黄豆,则它落到阴影部分的概率为故选A【点睛】本题主要考查了几何概型,但是解题的关键是在于对于切点和积分的运用是否熟练,属于中档题.9.已知是不重合的平面,是不重合的直线,则的一个充分条件是()A., B. ,C.,, D. ,,【答案】C【解析】【分析】由题意,分别分析每个答案,容易得出当,,得出,再得出,得出答案.【详解】对于答案A:,,得出与是相交的或是垂直的,故A错;答案B:,,得出与是相交的、平行的都可以,故B错;答案C:,,得出,再得出,故C正确;答案D:,,,得出与是相交的或是垂直的,故D错故选C【点睛】本题主要考查了线面位置关系的知识点,熟悉平行以及垂直的判定定理和性质定理是我们解题的关键所在,属于较为基础题.10.双曲线的左焦点为,点的坐标为,点为双曲线右支上的动点,且周长的最小值为8,则双曲线的离心率为()A. B. C. 2 D.【答案】D【解析】【分析】先根据双曲线的定义求出,然后据题意周长的最小值是当三点共线,求出a的值,再求出离心率即可.【详解】由题易知双曲线的右焦点,即,点P为双曲线右支上的动点,根据双曲线的定义可知所以周长为:当点共线是,周长最小即解得故离心率故选D【点睛】本题主要考查了双曲线的定义和性质,熟悉性质和图像是解题的关键,属于基础题.11.各项均为正数的等比数列的前项和,若,,则的最小值为()A. 4B. 6C. 8D. 12【答案】C【解析】【分析】由题意,根据等比中项得出,然后求得公比首项,再利用公式求得,通项带入用基本不等式求最值.【详解】因为,且等比数列各项均为正数,所以公比首项所以,通项所以当且紧当所以当时,的最小值为8故选C【点睛】本题考查了等比数列的通项、求和以及性质,最后还用到基本不等式,属于小综合题型,属于中档题,需要注意的是利用基本不等式要有三要素“一正、二定、三相等”.12.中,,,,中,,则的取值范围是()A. B.C. D.【答案】C【解析】【分析】根据题意,建立直角坐标系,设点D的坐标,然后分析点D的位置,利用直线的夹角公式,求得点D的轨迹方程为圆的一部分,然后利用圆的相关知识求出最大最小值即可.【详解】由题,以点B为坐标原点,AB所在直线为x轴,BC所在直线为y轴建立直角坐标系;设点,因为,所以由题易知点D可能在直线AB的上方,也可能在AB的下方;当点D可能在直线AB的上方;直线BD的斜率;直线AD的斜率由两直线的夹角公式可得:化简整理的可得点D的轨迹是以点为圆心,半径的圆,且点D在AB的上方,所以是圆在AB上方的劣弧部分;此时CD的最短距离为:当当点D可能在直线AB的下方;同理可得点D的轨迹方程:此时点D的轨迹是以点为圆心,半径的圆,且点D在AB的下方,所以是圆在AB下方的劣弧部分;此时CD的最大距离为:所以CD的取值范围为【点睛】本题主要考察了直线与圆的综合知识,建系与直线的夹角公式是解题的关键,属于难题.第Ⅱ卷二、填空题(将答案填在答题纸上)13.已知满足约束条件:,则的最大值是______.【答案】3【解析】根据约束条件,画出可行域,再求出与的交点,带入求出答案.【详解】满足约束条件:,可行域如图:解得由题,当目标函数过点A时取最大值,即故答案为3【点睛】本题主要考查了简单的线性规划,画出可行域是解题的关键,属于基础题.14.甲、乙、丙三人中,只有一个会弹钢琴,甲说:“我会”,乙说:“我不会”,丙说:“甲不会”,如果这三句话,只有一句是真的,那么会弹钢琴的是_____.【答案】乙【解析】【分析】根据题意,假设结论,根据他们所说的话推出与题意矛盾的即为错误结论,从而得出答案.【详解】假设甲会,那么甲、乙说的都是真话,与题意矛盾,所以甲不会;假设乙会,那么甲、乙说的都是假话,丙说的是真话,符合题意,假设丙会,那么乙、丙说的都是真话,与题意矛盾;故答案是乙【点睛】本题主要考查了推理证明,属于基础题.15.已知函数是定义域为的偶函数,且为奇函数,当时,,则__.【答案】【解析】【分析】先由题意,是定义域为的偶函数,且为奇函数,利用函数的奇偶性推出的周期,可得,然后带入求得结果.【详解】因为为奇函数,所以又因为是定义域为的偶函数,所以即所以的周期因为所以故答案为【点睛】本题主要考查了函数的性质,函数性质的变形以及公式的熟记是解题的关键,属于中档题.16.四面体中,底面,,,则四面体的外接球的表面积为____.【答案】【解析】【分析】根据题意,证明出CD平面ABC,从而证明出CD AC,然后取AD的中点O,可得OC=OA=OB=OD,求出O为外接球的球心,然后求得表面积即可.【详解】由题意,可得BC CD,又因为底面,所以AB CD,即CD平面ABC,所以CD AC取AD的中点O,则OC=OA=OB=OD故点O为四面体外接球的球心,因为所以球半径故外接球的表面积故答案为【点睛】本题主要考查了三棱锥的外接球知识,找出球心的位置是解题的关键,属于中档题.三、解答题(解答应写出文字说明、证明过程或演算步骤.)17.设函数.(1)当时,求函数的值域;(2)中,角的对边分别为,且,,,求的面积.【答案】(1) (2)【解析】【分析】(1)先将函数利用和差角、降幂公式、辅助角公式进行化简得,再根据x的取值,求得值域;(2)根据第一问求得角A,再根据正弦定理求得角B,然后再求得角C的正弦值和边b,利用面积公式求得面积.【详解】(Ⅰ)∵,∴∴∴函数的值域为.(Ⅱ)∵∴∵,∴,∴,即由正弦定理,,∴∴,,∴∴【点睛】本题主要考查了三角函数综合和解三角形,解题的关键是在于三角恒等变化公式的利用(和差角、降幂、辅助角公式的合理利用)以及正弦定理的变化应用,属于较为基础题.18.世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据:(1)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;(2)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(2)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?附:【答案】(1) (2)见解析【解析】【分析】(1)根据题意,时间不少于28小时的4名学生中,近视1名,不近视3名,所以恰好一名近视:,4名学生抽2名共有:,然后求得其概率.(2)先根据表格得出在户外的时间与近视的人数分别是多少,完成联表,然后根据公式求得的观测值,得出结果.【详解】(Ⅰ)设“随机抽取2名,其中恰有一名学生不近视”为事件,则故随机抽取2名,中恰有一名学生不近视的概率为.(Ⅱ)根据以上数据得到列联表:所以的观测值,故能在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系.【点睛】本题主要考查了概率和统计案例综合,属于基础题.19.如图,在三棱锥中,与都为等边三角形,且侧面与底面互相垂直,为的中点,点在线段上,且,为棱上一点.(1)试确定点的位置,使得平面;(2)在(1)的条件下,求二面角的余弦值.【答案】(1)见证明;(2)【解析】【分析】(1)根据题意,延长交于点,要使得平面;即,然后确定出点E的位置即可;(2)建立空间直角坐标系,求出平面的法向量,然后根据二面角的夹角公式求得余弦值即可.【详解】(Ⅰ)在中,延长交于点,,是等边三角形为的重心平面, 平面,,即点为线段上靠近点的三等分点(Ⅱ)等边中,,,,交线为,如图以为原点建立空间直角坐标系点在平面上,所以二面角与二面角为相同二面角.设,则,设平面的法向量,则即,取,则又平面,,则,又二面角为钝二面角,所以余弦值为 .【点睛】本题主要考查了立体几何,熟练线面之间的平行、垂直的判定定理和性质定理是证明的关键,以及求出平面的法向量是解决第二问的关键,属于中档题.20.已知椭圆:的左、右两个顶点分别为,点为椭圆上异于的一个动点,设直线的斜率分别为,若动点与的连线斜率分别为,且,记动点的轨迹为曲线. (1)当时,求曲线的方程;(2)已知点,直线与分别与曲线交于两点,设的面积为,的面积为,若,求的取值范围.【答案】(1) (2)【解析】【分析】(1)由题意设,,再表示出得出.然后求得结果.(2) 由题求出直线的方程为:,直线的方程为:,然后分别与曲线联立,求得点E、F的纵坐标,然后再带入面积公式表示出再利用函数的单调性求得范围.【详解】(Ⅰ)设,则,因为,则所以,整理得.所以,当时,曲线的方程为.(Ⅱ)设. 由题意知,直线的方程为:,直线的方程为:.由(Ⅰ)知,曲线的方程为,联立,消去,得,得联立,消去,得,得设则在上递增又,的取值范围为【点睛】本题主要考查了圆锥曲线的综合,审题仔细以及计算细心是解题的关键,属于较难题. 21.已知(为自然对数的底数),.(1)当时,求函数的极小值;(2)当时,关于的方程有且只有一个实数解,求实数的取值范围. 【答案】(1)见解析;(2)见解析 【解析】 【分析】 (1)由题意,当时,然后求导函数,分析单调性求得极值;(2)先将原方程化简,然后换元转化成只有一个零点,再对函数进行求导,讨论单调性,利用零点存在性定理求得a 的取值. 【详解】(Ⅰ)当时,令解得(Ⅱ)设,令,,,设,,由得,,在单调递增,即在单调递增,,①当,即时,时,,在单调递增,又,故当时,关于的方程有且只有一个实数解.②当,即时,,又故,当时,,单调递减,又,故当时,,在内,关于的方程有一个实数解.又时,,单调递增,且,令,,,故在单调递增,又故在单调递增,故,故,又,由零点存在定理可知,.【点睛】本题主要考查了导函数的应用,讨论单调性和零点的存在性定理是解题的关键点,属于难题.如果函数y= f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a).f(b)<0,那么,函数y= f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)= 0的根.22.选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数),直线的方程为,以坐标原点为极点,以轴正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)曲线与直线交于两点,若,求的值.【答案】(1);(2)【解析】【分析】(1)先将曲线的参数方程化为普通方程,然后再化为极坐标方程;(2)由题意,写出直线的参数方程,然后带入曲线的普通方程,利用韦达定理表示出求得结果即可.【详解】(1)由题,曲线的参数方程为(为参数),化为普通方程为:所以曲线C的极坐标方程:(2)直线的方程为,的参数方程为为参数),然后将直线得参数方程带入曲线C的普通方程,化简可得:,所以故解得【点睛】本题主要考查了极坐标和参数方程的综合,极坐标方程,普通方程,参数方程的互化为解题的关键,属于基础题.23.选修4-5:不等式选讲已知函数.(1)若不等式对恒成立,求实数的取值范围;(2)设实数为(1)中的最大值,若实数满足,求的最小值.【答案】(1);(2)【解析】【分析】(1)由不等式性质,解出a的值即可;(2)先求得m的值,然后对原式配形,可得再利用柯西不等式,得出结果.【详解】(1)因为函数恒成立,解得;(2)由第一问可知,即由柯西不等式可得:化简:即当且紧当:时取等号,故最小值为【点睛】本题主要考查了不等式选讲,不等式的性质以及柯西不等式,熟悉柯西不等式是解题的关键,属于中档题.。

东北三省三校高三一模数学理版含答案(最新整理)

东北三省三校高三一模数学理版含答案(最新整理)
(3)以这 10 天的 PM2.5 日均值来估计一年的空气质量状况,则一年(按 366 天算)中平 均有多少天的空气质量达到一级或二级。(精确到整数)
19.(本小题满分 12 分) 如图,三棱柱 ABC—A1B1C1 的侧棱 AA2⊥底面 ABC,∠ACB = 90°,E 是棱 CC1 上动点,F
是 AB 中点,AC = 1,BC = 2,AA1 = 4。 (1)当 E 是棱 CC1 中点时,求证:CF∥平面 AEB1; (2)在棱 CC1 上是否存在点 E,使得二面角 A—EB1—B 的
③ f (x0 ) x0

f
(x0 )
1 2
B.②④
C.②⑤

f
(x0 )
1 2
D.③⑤
第 II 卷(非选择题,共 90 分)
本卷包括必考题和选考题两部分,第 13 题 ~ 第 21 题为必考题,每个试题要求考生必须
作答,第 22 题 ~ 第 24 题为选考题,考生根据要求作答。
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)
3x y 6 0
x y 2 0
13.设
x,y
满足约束条件
x
0
,则目标函数 z 2x y 的最大值为__________。
y 0
1
14.已知 {(x, y) || x | 1,| y | 1},A 是曲线 y x2 与 y x 2 围成的区域,若在区域 Ω 上
随机投一点 P,则点 P 落入区域 A 的概率为__________。
点 A、B、C、D,且 M、N 分别是 AB、CD 的中点 (1)若 m = 1,k1k2 = -1,求三角形
EMN 面积的最小值; (2)若 k1 + k2 = 1,求证:直线 MN

2021年东北三校(哈师大附中、东师大附中、辽宁省实验)高三第一次联合模拟考试理科数学答案

2021年东北三校(哈师大附中、东师大附中、辽宁省实验)高三第一次联合模拟考试理科数学答案

2021年东北三校(哈师大附中、东师大附中、辽宁省实验)高三第一次联合模拟考试理科数学参考答案1.D 【详解】由lg 0x ≤得01x <≤;又(2)(21)0x x -+≤得122x -≤≤, 所以(]0,1AB =,故选: D.2.B 【详解】()1=1z i i i =-+,1z i ∴=-,故选:B3.C 【详解】由题意,从一、二、三车间抽取的口罩数分别为a b c 、、且a b c 、、构成等差数列,可得2a c b +=,则第二车间生产的口罩数为3600360012003b ba b c b⨯=⨯=++个.故选:C.4.A 【详解】当圆形排在第一个,因为方形、五角形相邻,所以捆在一起与其他图形全排列,且方形、五角形内部排列 ,有5252240A A=种不同的排法.,同理当圆形排在最后一个有5252240A A=种不同的排法.综上:圆形要排在第一个或最后一个,方形、五角形相邻,则共有480种不同的排法.故选:A5.A 【详解】充分性:若33log log a b <,则0a b <<,则11a b>,故充分性成立;必要性:若11a b>,则可能0a b <<,此时33log ,log a b 无意义,故必要性不成立,即“33log log a b <”是“11a b>”的充分不必要条件.故选:A.6.C 【详解】因为{}n a 是等差数列,所以138********a a a a a a ++==+=,51a =, 所以3912951299222......2222512a a a a a a a a +++⋅⋅====.故选:C .7.A 【详解】因为()512x -展开式的通项公式是()()15522rrr r r r T x x C C +=-=-,所以含2x 的项的系数是()()12125522270C C -+-=,故选:A8.B 【详解】作出可行域,如图ABC 内部(含边界),作直线:30l x y -=,由3x y z -=得133zy x =-,直线向下平移时,纵截距减小,z 增大,所以平移直线l ,当直线l 过点(0,1)A -时,max 03(1)3z =-⨯-=.9.B 【详解】对于A 选项,由0x x x xe e e e --⎧+>⎨->⎩,解得0x >, 所以,函数()()()ln ln xx xxf x e eee --=+--的定义域为()0,∞+,该函数为非奇非偶函数,A 选项不满足条件;对于B 选项,由sin 0x ≠,可得()x k k Z π≠∈,即函数()1sin sin f x x x=+的定义域为{},x x k k Z π≠∈.()()()()11sin sin sin sin f x x x f x x x-=-+=--=--,该函数为奇函数,当()0,1x ∈时,()322cos cos cos 0sin sin x xf x x x x-'=-=<, 所以,函数()1sin sin f x x x=+在()0,1上单调递减,B 选项满足条件; 对于C 选项,由1010x x +>⎧⎨->⎩,解得11x -<<,所以,函数()()()ln 1ln 1f x x x =+--的定义域为()1,1-,()()()()ln 1ln 1f x x x f x -=--+=-,该函数为奇函数,当()0,1x ∈时,()21120111f x x x x'=+=>+--,该函数在()0,1上为增函数,C 选项不满足条件;对于D 选项,函数()1xxf x e e =-的定义域为R , ()()11x xx x f x e e f x e e---=-=-=-,该函数为奇函数,当()0,1x ∈时,()10xxf x e e '=+>,该函数在()0,1上为增函数,D 选项不满足条件. 故选:B.10.A 【详解】连接111,AC B C ,取1B C 中点G ,连接11,A G C G ,如图,//α平面11A B CD ,11//EF A C ,∴直线EF 与平面α所成角即为11A C 与平面11A B CD 所成的角,1111,,C G B C CD C G B CCD C ⊥⊥=,1C G ∴⊥平面11A B CD ,11C A G ∴∠即为11A C 与平面11A B CD 所成的角,设正方体棱长为2,1111121sin 222C G C AG AC ∴∠===, 故选:A11.C 【详解】由2214x C y +=:可得:2a =,1b = ,所以()2,0A ,()0,1B ,5AB =所以直线AB 的方程为:112y x -=-,即112y x =-+, 设过点P 与直线AB 平行的直线l :12y x t =-+, 则直线l 与直线AB 的距离1211514t d t -==-+,因为点P 为直线l 与椭圆的交点, 所以点P 到直线AB 的距离为d ,因为PAB △21,可得:111122PABS AB d=⨯⨯=-=,解得:t=或2t=-当t=时,由221412xyy x⎧+=⎪⎪⎨⎪=-+⎪⎩可得:(20x=,解得2xy⎧=⎪⎨=⎪⎩,此时2P⎫⎪⎪⎭,当2t=-2214122xyy x⎧+=⎪⎪⎨⎪=-+⎪⎩可得()24100x x++-=,因为()()244101610∆=--=>,此时直线l与椭圆有2个交点,此时有2个点P,所以共有3个点P,故选:C12.C【详解】设球心为点O,平面ABC截球O所得截面圆的半径为3r==,由正弦定理可得3sinABACB=∠,233ABπ∴==,又2OA OB==,所以,AOB为等边三角形,则3AOBπ∠=,因此,A、B两点间的球面距离为2233ππ⨯=.故选:C.13()()()()1,1,1,2,2,1,3,4A B C D---,所以向量()2,1,5AB AB==,()5,5,52CD CD==所以向量AB与CD的夹角余弦值为:cos,105AB CDAB CDAB CD⋅===⋅14.112n-【详解】因为122n na S++=①,当2n≥时122n na S-+=②①式减②式得:112n na a+=,又当1n=时,2122a S+=,212a=,所以数列{}n a是以1为首项,公比为12的等比数列,112n na-=.15.4【详解】由题意,双曲线2222:1(0,0)x yC a ba b-=>>,可得12(,0),(,0)F c F c-,因为120FQ F Q ⋅=,可得12FQ F Q ⊥,及1290FQF ∠=, 所以点Q 在以12F F 为直径的圆上,即点Q 在圆222x y c +=上,又因为点Q 在渐近线by x a=, 联立方程组222b y x ax y c⎧=⎪⎨⎪+=⎩,解得,x a y b ==,即点(,)Q a b , 设点11(,)P x y ,因为12F P PQ=,可得1111(,)2(,)x c y a x b y +=--, 即11112222x c a x y b y +=-⎧⎨=-⎩,解得1112(2),33x a c y b =-=,即22(,)33a c bP -, 又由点P 在渐近线b y x a =-上,可得2233b b a ca -=-⨯, 化简可得4c a =,所以4ce a==.故答案为:4.16.①③【详解】由函数sin y x =的最小正周期为2π,函数sin 2y x =的最小正周期为π,所以函数()2sin sin 2f x x x =+的最小正周期为两个函数周期的最小公倍数,所以函数()f x 的最小正周期为2π,所以①正确;由()22cos 2cos22cos 4cos 22(2cos 1)(cos 1),[0,2]f x x x x x x x x π'=+=+-=-+∈,因为cos [1,1]x ∈-,可得cos 10x +≥, 当[0,)3x π∈时,()0f x '>,()f x 单调递增;当5(,)33x ππ∈时,()0f x '<,()f x 单调递减;当5(,2]3x ππ∈时,()0f x '>,()f x 单调递增; 所以当3x π=时,函数()f x 取得极大值,当53x π=时,函数()f x 取得极小值,即()f x 在[0,2]π内有2个极值点,所以②不正确;令()0f x =,即2sin sin 22sin (1cos )0x x x x +=+=,解得sin 0x =或cos 1x =-, 因为[0,2]x π,所以0,,2x ππ=,即()f x 在[0,2]π内有3个零点,所以③正确; 由2()2sin()sin[2()]4sin()cos ()()3333623x f x x x x f x ππππππ-=-+-=--≠+, 所以④不正确. 故答案为:①③17.【详解】(1)根据题中样本数据,设“这位小学生佩戴眼镜”为事件A ,则24()0.24100P A ==, “这位小学生佩戴的眼镜是角膜塑形镜”为事件B ,则“这位小学生佩戴眼镜,且眼镜是角膜塑形镜”为事件AB ,则()80.08100P AB ==, 故所求的概率为: ()0.081(|)()0.243P AB P B A P A ===, 所以从样本中选一位学生,已知这位小学生戴眼镜,则他戴的是角膜塑形镜的概率是13; (2)依题意,佩戴角膜塑形镜的有8人,其中2名是男生,6名是女生,故从中抽3人,男生人数X 的所有可能取值分别为0,1,2,其中:()36386542056087656146C P X C⨯⨯=====⨯⨯; ()12263865230152187656286C C P X C ⨯⨯=====⨯⨯; ()212638663287656286C C P X C =====⨯⨯. 所以男生人数X 的分布列为:(3)由已知可得:()~20,0.08Y B则:()200.08 1.6E Y n p =⨯=⨯=,()()1200.080.92 1.472D Y np p =-=⨯⨯= 所以佩戴角膜塑形镜的人数Y 的期望是1.6,方差是1.472.18.【详解】(1)3()2(1cos 2)12f x x x =-++, 1232x π⎛⎫=-- ⎪⎝⎭,由3222,232k x k k Z πππππ+≤-≤+∈, 解得:511,1212k x k k Z ππππ+≤≤+∈, 所以()f x 递减区间511[,],1212k k k Z ππππ++∈.(2)1())132f C C π=--=由,得sin(2)32C π-=, ABC 为锐角三角形,(0,)2C π∈∴,22(,)333C πππ∴-∈-, 233C ππ∴-=,3C π∴=,由余弦定理得:2222cos a CD BDC =+-⋅∠,22233()2cos 22b CD CD ADC =+-⋅⋅∠, 且cos cos BDC ADC ∠=-∠, 两式相加得:22213)24CD a b =+-(, 由222232cos a b ab C a b ab =+-=+-,2222221()22a b a b a b +≥+-=+,当a b =时,等号成立, 即22a b +的最大值为6, 所以CD 的最大值为32. 19.【详解】(1)证明:在1A AC 中,160A AC ∠=,1AC =,12AA =,由余弦定理可得22222111112cos 2122132AC AA AC AA AC A AC =+-⋅∠=+-⨯⨯⨯=, 22211AC AC AA ∴+=,1AC AC ∴⊥, 又1A C AB ⊥,AB AC A ⋂=,1A C ∴⊥平面ABC ;(2)由(1)知:CA 、CB 、1CA 两两垂直,以C 为原点,CA 、CB 、1CA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()1,0,0A 、()0,0,0C、(1A ,设点()0,,0B b ,其中0b >, 设平面1BCB 法向量为(),,n x y z =,()0,,0CB b =,(11CC AA ==-,10n CB by n CC x ⎧⋅==⎪⎨⋅=-+=⎪⎩,取x =0y =,1z =,得()3,0,1n =, (10,BA b =-,由已知111cos ,3n BA n BA n BA ⋅<>===⋅ 解得:1b =,可得点()0,1,0B ,设()111,,m x y z =为平面11A BB 的法向量,()1,1,0AB =-,由11111030m AB x y m AA x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取1x =1y =11z =,可得()3,m =,cos ,3n m n m n m⋅∴<>===+⋅,由图可知,二面角11A BB C --为锐角,所以,二面角11A BB C --. 20.【详解】(1)函数的定义域为R . 由已知()ln ln ln (1)xxf x a a a a a '=-=-01a <<,ln 0a ∴<由()0f x '>得:()f x 增区间(0,)+∞ 由()0f x '<得:()f x 减区间(),0-∞(2)由已知:2()ln x h x a x a x =-+设()h x 在[1,1]-上的最大值为M ,最小值为m 依题意:1M m e -≥-()ln ln 2,(0)0x h x a a a x h ''=-+=2()(ln )20x h x a a ''∴=+>,()h x '∴为增函数0x ∴>时,()0,()h x h x '>递增;0x ∴<时,()0,()h x h x '<递减.故(0)1m h ==,{}max (1),(1)M h h =- 设1()(1)(1)2ln ,(1)0u a h h a a u a=--=--= 22212(1)()10(0)a u a a a a a-'=+-=≥>()u a ∴在(0,)+∞上递增 1a ∴>时,()0u a >,此时(1)M h = 01a ∴<<时,()0u a <,此时(1)M h =-当1a >时,ln M m a a -=-设()ln (1)G a a a a =->,1()10G a a'∴=->,()G a ∴在1(,)+∞上递增, 又()1G e e =-,所以由ln 1a a e -≥-得:()()G a G e a e ≥⇔≥,当01a <<时,11ln ,1M m a a a-=+>, 由1ln 1a e a +≥-得:111()()0G G e e a a a e≥⇔≥⇔<≤ 综上:a 的取值范围是1(0,][,)e e+∞.21.【详解】(1)由题意,设:2l y kx =+,代入2:4G x y =得:2480x kx --=,216(2)0k ∆=+>令1122(,),(,)A x y B x y ,则12124,8x x k x x +==-.抛物线G 在点A 处的切线方程为:2111()42x x y x x -=-,即211()24x x y x =-,抛物线G 在点B 处的切线方程为:2222()42x x y x x -=-,即222()24x x y x =-,联立得:点Q 的坐标为1212(,)24x x x x +,即(2,2)Q k -. ∴点Q 在定直线:2m y =-上.(2)(i )联立1:()4x AO y x =与:2m y =-得:18(,2)C x --,联立2:()4x BO y x =与:2m y =-得:28(,2)D x --, 由(1)知:218C x x x =-=, //BC y ∴轴,同理//AD y 轴,//BC AD ∴,即AOD BOC ,OA OD OC OB∴=,即OA OB OC OD ⋅=⋅且AOB DOC ∠=∠, ∴AOB COD S S =△△得证.(ii )由(1)得:2212121242,()444x x k y y k x x k -=++=++=+ 2ABCD OCD P S S =-11(||||)||22||22AD BC CD CD =+⋅-⋅⋅⋅()()12122||2||2y y CD CD =+++⋅-⎡⎤⎣⎦()221||k CD =+⋅()22812k k =++令22t k +,则2t ≥2()8(1),(2)f t t t t =-≥2()8(31)0f t t '=->,即()f t 在)2,⎡+∞⎣上递增, min (2)82P f ∴==0k =时,min 82P =22.【详解】(1)由曲线C 的参数方程消去参数α可得普通方程为2219x y +=, 将cos ,sin x y ρθρθ==代入可得2222cos sin 19ρθρθ+=,整理可得曲线C 的极坐标方程为()2218sin 9ρθ+=; (2)设T 的极坐标为()1,ρϕ,N 的极坐标为2,2πρϕ⎛⎫+ ⎪⎝⎭, 则212918sin ρϕ=+,22229918cos 18sin 2ρπϕϕ==+⎛⎫++ ⎪⎝⎭,121122TON S ρρ∴====当sin 20ϕ=时,TON S 取得最大值为32, 当sin 21ϕ=±时,TON S 取得最小值为910, 故TON 面积的范围为93,102⎡⎤⎢⎥⎣⎦. 23.【解析】(1)21(1)()21{3(12)21(2)x x f x x x x x x -+<-=-++=-≤≤->所以1{3214x x x x <-⇒≤--+≥-或12{1234x x x -≤≤⇒≤≤≥-,或2{2214x x x x>⇒>-≥-. 所以不等式的解集为(,3][1,)-∞-⋃+∞.(2)由(1)易知()3f x ≥,所以3,3a b ≥≥,由于2()(4)224(2)(2)a b ab a ab b a b +-+=-+-=--,因为3,3a b ≥≥,所以20,20a b ->-<,即(2)(2)0a b --<,所以2()4a b ab +<+.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以曲线 EMBED Equation.3 的方程为: EMBED Equation.3 ……4分
(Ⅱ)由题意直线 EMBED Equation.3 的方程为: EMBED Equation.3 ,则点 EMBED Equation.3 EMBED Equation.3
(2)当 EMBED Equation.3 时, EMBED Equation.3 ,由 EMBED Equation.3 ,可得 EMBED Equation.3 .
设 EMBED Equation.3 ,则 EMBED Equation.3 , EMBED Equation.3 . EMBED Equation.3 .
解得: EMBED Equation.3
故存在实数 EMBED Equation.3 使命题成立。 ……12分
21解:
(Ⅰ) EMBED Equation.3 , EMBED Equation.3 ,定义域为 EMBED Equation.3 .
EMBED Equation.DSMT4 EMBED Equation.DSMT4 底面 EMBED Equation.DSMT4 EMBED Equation.DSMT4 平面 EMBED Equation.DSMT4 EMBED Equation.DSMT4
东北三省三校联考一模理科数学参考答案
一.选择题
1 2 3 4 5 6 7 8 9 10 11 12 A D A A D B C D A A D D 二.填空题
(13) EMBED Equation.3 ; (14) EMBED Equation.3 ; (15); EMBED Equation.DSMT4 (16). EMBED Equation.3
(2) 由 EMBED Equation.DSMT4 \* MERGEFORMAT ,即 EMBED Equation.DSMT4 \* MERGEFORMAT ,及 EMBED Equation.DSMT4 \* MERGEFORMAT ,可得 EMBED Equation.DSMT4 \* MERGEFORMAT 。……6分
所以二面角的余弦值为 EMBED Equation.DSMT4 ……12分
20.解:
(Ⅰ)依题意知: EMBED Equation.DSMT4 解得: EMBED Equation.DSMT4
所以直线 EMBED Equation.3 的斜率 EMBED Equation.3 ……10分
过点 EMBED Equation.3 的切线的斜率 EMBED Equation.3
由题意应有: EMBED Equation.3 EMBED Equation.3
EMBED Equation.DSMT4 的数学期望为 EMBED Equation.DSMT4 . ……12分
19. 解:
(Ⅰ) EMBED Equation.DSMT4 为等边三角形, EMBED Equation.DSMT4 即: EMBED Equation.DSMT4 ……2分
又 EMBED Equation.3 ,所以 EMBED Equation.3 , BED Equation.3 . ……10分
若 EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3 ,所以存在 EMBED Equation.3 ,使得 EMBED Equation.3 ,对任意 EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3 在 EMBED Equation.3 上是减函数,又 EMBED Equation.3 ,所以 EMBED Equation.3 , EMBED Equation.3 .
EMBED Equation.3 . ……2分
设 EMBED Equation.3 ,则 EMBED Equation.3 .
因为 EMBED Equation.3 , EMBED Equation.3 ,所以 EMBED Equation.3 在 EMBED Equation.3 上是减函数,又 EMBED Equation.3 ,于是
(Ⅱ)由已知 EMBED Equation.3 ,因为 EMBED Equation.3 ,所以 EMBED Equation.3 .
(1)当 EMBED Equation.3 时, EMBED Equation.3 ,不合题意. ……8分
联立方程组 EMBED Equation.3 消去 EMBED Equation.3 得: EMBED Equation.3
得 EMBED Equation.3 ……6分

EMBED Equation.DSMT4
EMBED Equation.DSMT4 ……8分
设平面 EMBED Equation.DSMT4 的法向量为 EMBED Equation.DSMT4 ,则 EMBED Equation.DSMT4 解得 EMBED Equation.DSMT4
18.解:
(Ⅰ)依题意及频率分布直方图知,居民月收入在 EMBED Equation.DSMT4 的概率约为:
EMBED Equation.DSMT4 ; ……4分
(Ⅱ)居民月收入在 EMBED Equation.DSMT4 的概率为: EMBED Equation.DSMT4 .
在 EMBED Equation.DSMT4 \* MERGEFORMAT 中,根据余弦定理,有
EMBED Equation.DSMT4 \* MERGEFORMAT ,即 EMBED Equation.DSMT4 \* MERGEFORMAT , ……8分
平面 EMBED Equation.DSMT4 的法向量为 EMBED Equation.DSMT4 ,则 EMBED Equation.DSMT4 解得 EMBED Equation.DSMT4
……10分
EMBED Equation.DSMT4
则 EMBED Equation.DSMT4 , EMBED Equation.DSMT4
分别以 EMBED Equation.DSMT4 所在直线为 EMBED Equation.DSMT4 轴建立空间直角坐标系,设 EMBED Equation.DSMT4
进而得直线 EMBED Equation.3 的方程: EMBED Equation.3
代入曲线 EMBED Equation.3 :得 EMBED Equation.3
解得: EMBED Equation.3 ……8分
联立 EMBED Equation.DSMT4 \* MERGEFORMAT ,及 EMBED Equation.DSMT4 \* MERGEFORMAT ,可得 EMBED Equation.DSMT4 \* MERGEFORMAT 。 ……10分
三.解答题
17、解:
(1) 由变换得 EMBED Equation.DSMT4 \* MERGEFORMAT ……3分
所以, EMBED Equation.DSMT4 \* MERGEFORMAT ;
由 EMBED Equation.DSMT4 \* MERGEFORMAT ,得对称轴为 EMBED Equation.DSMT4 \* MERGEFORMAT ;……5分
EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3 ; EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3 .
所以 EMBED Equation.3 的增区间为 EMBED Equation.3 ,减区间为 EMBED Equation.3 . ……6分
由题意知, EMBED Equation.DSMT4 ~ EMBED Equation.DSMT4 , ……6分
因此 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 ,
EMBED Equation.DSMT4 , EMBED Equation.DSMT4 ,
故随机变量X的分布列为
EMBED Equation.DSMT4 0 1 2 3 EMBED Equation.DSMT4 0.216 0.432 0.288 0.064 ……10分
设 EMBED Equation.3 ,方程 EMBED Equation.3 的判别式 EMBED Equation.3 .
若 EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3 在 EMBED Equation.3 上是增函数,
EMBED Equation.DSMT4 ……6分
(Ⅱ)取 EMBED Equation.DSMT4 中点 EMBED Equation.DSMT4 ,则 EMBED Equation.DSMT4 ,又 EMBED Equation.DSMT4 所以△ EMBED Equation.DSMT4 为等边三角形
相关文档
最新文档