力学6[1].刚体力学2
刚体力学基础
mA
第5章 刚体力学基础
2.7
刚体力学基础
解:研究对象:A、B、圆柱 用隔离法分别对各物体作受力 分析,如图所示。
mB
N
mA
f
mB m Bg
TB
TA
mA
aB T 'B
aA
mAg
T 'A
第5章 刚体力学基础
2.7
刚体力学基础
N
f
mB m Bg
TB
TA
T 'B
T 'A
mA mAg
aA
aB
A: mA g TA mAaA TB f mB aB B: N mB g 0
2.7
定点转动:
刚体力学基础
运动中刚体上只有一点固定不动,整个刚体绕过该
固定点的某一瞬时轴线转动. 如:陀螺的运动
i3
(转轴方向(2),绕轴转角(1))
第5章 刚体力学基础
2.7
刚体力学基础
二 刚体定轴转动的运动学描述 定轴转动:刚体上任意点都绕同一 轴在各自的转动平面内作圆周运动
特征:刚体各个部分在相同时间内绕 转轴转过的角度(角位移)都相同 引入角量描述将非常方便。
oo mi vi 垂直于z轴。
i
th
刚体 mi
oo mi vi ri mi vi
z
我们只对z方向的分量感兴趣:
Liz ri mi vi mi ri 2
Lz Liz mi ri
2
ω,α vi
△ mi
ri O’ × 刚体 × O
刚体定轴转动的动能=绕质心转动的动能+
刚体携总质量(质心)绕定轴作圆周运动的动能
刚体力学2
一.力矩 M = Fd = Fr sin
r ⊙M
r r r 力矩矢量式: 力矩矢量式: M = r × F
r o r d
r F
按右手螺旋法则 右手螺旋法则如图力矩的方向为⊙ 右手螺旋法则 要按右旋规则定义坐标轴: 要按右旋规则定义坐标轴:
Y j
( )
X (i
v
r r r r r r r r r vZ i × j = k j × k = i k × i = j (k ) r r r 相同单位 r r 反序: j × i = k i ×i = 0 矢量叉乘:
转动惯量的计算: 三.转动惯量的计算 转动惯量: 转动惯量 转动惯性大小的量度 转动惯量与下列因素有关: 转动惯量与下列因素有关: ①质量大小 ; 转轴位置; ②转轴位置; 相对轴的质量分布. ③相对轴的质量分布. ---- 称为转动惯量三要素 说一个刚体的转动惯量时,只有指出该刚体 相对某一转轴的转动惯量才有明确的意义。
v
)
1
二.转动定律 转动惯量 (转动定律由牛顿定律而来) r r 质量元mi , 外力 Fi , 内力 f i
r fi O
r ri mi
O′
2
θi i
r Fi
r r r Fi + f i = mi ai
法向 Fi cos i + f i cos θ i = mi ain = miω ri 切向 Fi sin i + f i sin θ i = mi ait = mi β ri 法向力通过转轴, 力矩为零, 故不予考虑;
λ dx =
I = ∫ x 2 λdx =
d L / 2
d +L / 2
理论力学刚体运动
Ek ( t ) Ek ( t0 ) A外
§6.2 作用在刚体上的力系 一、力系
1、定义:同时作用在一个刚体的一组力称为力系。
2、分类: ①共面力系:所有的力位于同一平面内。 a) 共点力系(汇交力系):所有力的作用线交 于一点的力系。 b) 平行力系:所有力互相平行或反平行。 ②异面力系:力的作用线不在一个平面内。
二、力系等效
1、等效力系的定义 如果在两个力系作用下,刚体的运动相同,则这 两个力系互为等效力系。
2、力系的等效条件:
F1i F2 j
r1i F1i r1 j F1 j
i j
i
j
3、零力系:力系力的矢量和为零,对固定参考点 的力矩和为零的力系。 说明:①所有的零力系都等效 ②任何力系加上零力系后与原力系等效 ③最简单的零力系是一对平衡力组成的力系
2
角动量定理: dL dt
M外
2、平衡条件: Fi 0,
i
且 Mi 0
i
(对任一定点成立)
例 质量为 m ,长为 a 的匀质杆 AB 由系于两端长是 a 的线悬于 O 点,在 B 端挂质量为 m 的重物。求平衡 时杆与水平方向的夹角θ及每根线中的张力 TA 和 TB 。
2、异面力系: 等效于一个单力与一个力偶
z -F3 A F1
F F3
O
x
B F2
y
§6.3 刚体的平衡
刚体运动 平动: 直线平动、曲线平动
转动: 定轴转动、一般转动 平动:运动过程中刚体任一直线的方向保持不变。
转动:刚体上一直线相对参考系的角度发生变化。
O
刚体的一般运动(n=6)
O
西工大与西安交大期末复习考研备考大学物理题库 一、力学 6 刚体力学
第四章 刚体力学一、选择题(共47题)选择题:一刚体以每分钟60转绕z 轴做匀速转动(ω 沿z 轴正方向).设某时刻刚体上一点P 的位置矢量为k j i r 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为:( ) A 、 k j i 157.0 125.6 94.2++=v . B 、 j i 8.18 1.25+-=v . C 、 j i 8.18 1.25--=v . D 、 k 4.31=v .答案:B难度:易选择题:如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有:( )A 、βA =βB .B 、βA >βB .C 、βA <βB .D 、开始时βA =βB ,以后βA <βB .题目图片:答案:C难度:易选择题:一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω :( )A 、必然增大.B 、必然减少.C 、不会改变.D 、如何变化,不能确定.题目图片:答案:A难度:易选择题:均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?()A、角速度从小到大,角加速度从大到小.B、角速度从小到大,角加速度从小到大.C、角速度从大到小,角加速度从大到小.D、角速度从大到小,角加速度从小到大.题目图片:答案:A难度:易选择题:关于刚体对轴的转动惯量,下列说法中正确的是:()A、只取决于刚体的质量,与质量的空间分布和轴的位置无关.B、取决于刚体的质量和质量的空间分布,与轴的位置无关.C、取决于刚体的质量、质量的空间分布和轴的位置.D、只取决于转轴的位置,与刚体的质量和质量的空间分布无关.答案:C难度:易选择题:一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J,绳下端挂一物体.物体所受重力为P,滑轮的角加速度为β.若将物体去掉而以与P相等的力直接向下拉绳子,滑轮的角加速度β将:()A、不变.B、变小.C、变大.D、如何变化无法判断.答案:C难度:易选择题:如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小:( )(A) 为41mg cos θ. (B) 为21mg tg θ. (C) 为mg sin θ. (D) 不能唯一确定.题目图片:答案:B难度:易选择题:两个匀质圆盘A 和B 的密度分别为A ρ和B ρ,若ρA >ρB ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则:( )A 、J A >JB .B 、 J B >J A .C 、J A =J B .D 、 J A 、J B 哪个大,不能确定.答案:B难度:易选择题:有两个力作用在一个有固定转轴的刚体上:( )(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,A 、只有(1)是正确的.B 、(1) 、(2)正确,(3) 、(4) 错误.C 、(1)、(2) 、(3) 都正确,(4)错误.D 、(1) 、(2) 、(3) 、(4)都正确.答案:B难度:中选择题:几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体:()A、必然不会转动.B、转速必然不变.C、转速必然改变.D、转速可能不变,也可能改变.答案:D难度:中选择题:一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力:()A、处处相等.B、左边大于右边.C、右边大于左边.D、哪边大无法判断.题目图片:答案:C难度:中选择题:有两个半径相同,质量相等的细圆环A和B.A环的质量分布均匀,B环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A和J B,则:()A、J A>J B.B、J A<J B.C、J A =J B.D、不能确定J A、J B哪个大.答案:C难度:中选择题:将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为 .如果以拉力2mg代替重物拉绳时,飞轮的角加速度将:( )A 、 小于β.B 、 大于β,小于2 β.C 、 大于2 β.D 、等于2 β.答案:C难度:中选择题:如图所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小:( )A 、为 41mg cos θ. B 、为21mg tg θ. C 、为 mg sin θ.D 、不能唯一确定.题目图片:答案:D难度:较难选择题:一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统:( )A 、 动量守恒.B 、 机械能守恒.C 、 对转的角动量守恒.D 、 动量、机械能和角动量都守恒.答案:C难度:易选择题:刚体角动量守恒的充分而必要的条件是:( )A 、 刚体不受外力矩的作用.B 、 刚体所受合外力矩为零.C 、 刚体所受的合外力和合外力矩均为零.D 、 刚体的转动惯量和角速度均保持不变.答案:B难度:易选择题:质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为:( )A 、 ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. B 、 ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. C 、 ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. D 、 ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针.答案:A难度:易选择题:一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是:( )A 、 动能.B 、 绕木板转轴的角动量.C 、 机械能.D 、 动量.答案:B难度:易选择题:如图所示,一水平刚性轻杆,质量不计,杆长l =20 cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω 0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为:( )A 、 2ω 0.B 、ω 0.C 、 21 ω 0. D 、041ω. 题目图片:答案:D难度:易选择题:如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统:( )A 、 只有机械能守恒.B 、 只有动量守恒.C 、 只有对转轴O 的角动量守恒.D 、 机械能、动量和角动量均守恒.题目图片:答案:C难度:易选择题:花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为:( )A 、31ω0. B 、()3/1 ω0. C 、3 ω0.D 、3 ω0.答案:D难度:易选择题:有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为:( )A 、 02ωmR J J +.B 、()02ωR m J J +. C 、 02ωmRJ . D 、 0ω.答案:A难度:易选择题:光滑的水平桌面上有长为2l 、质量为m 的匀质细杆,可绕通过其中点O 且垂直于桌面的竖直固定轴自由转动,转动惯量为231ml ,起初杆静止.有一质量为m 的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v 运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是:( )A 、 12v l . B 、 l32v . C 、 l43v . D 、 lv 3.题目图片:答案:C难度:易选择题:如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为:( ) A 、 MLm v . B 、 MLm 23v .C 、MLm 35v . D 、 ML m 47v .题目图片:答案:B难度:易选择题:光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为:( )A 、 L32v . B 、 L54v . C 、 L76v . D 、 L98v .题目图片:答案:C难度:易选择题:一个物体正在绕固定光滑轴自由转动:( )A 、 它受热膨胀或遇冷收缩时,角速度不变.B 、 它受热时角速度变大,遇冷时角速度变小.C 、 它受热或遇冷时,角速度均变大.D 、 它受热时角速度变小,遇冷时角速度变大.v 俯视图O v 俯视图答案:D难度:中选择题:一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度 :( )A 、 增大.B 、 不变.C 、 减小.D 、 不能确定.题目图片:答案:C难度:中选择题:关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量.(2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中:( )A 、 只有(2) 是正确的.B 、 (1) 、(2) 是正确的.C 、 (2) 、(3) 是正确的.D 、 (1) 、(2) 、(3)都是正确的.答案:B难度:中选择题:一细圆环,对通过环心且垂直于环面的轴的转动惯量为J A ,而对任一直径为轴的转动惯量为J B ,则:( )A 、J A >JB .B 、J A <J B .C 、J A =J B .D 、无法确定哪个大.答案:A难度:易m m选择题:质量为m 、长度为l 的匀质细杆AB ,对通过杆的中心C 与杆垂直的轴的转动惯量为12/21ml J =,对通过杆端A (或B )与杆垂直的轴的转动惯量为2231ml J =.O 为杆外一点,AO =d ,AO 与AB 间的夹角为θ,如图所示.若杆对通过O 点并垂直于O 点和杆所在平面的轴的转动惯量为J ,则:( )A 、 J =J 1+m (d sin θ)2=ml 2 / 12+md 2sin 2θB 、 J =J 2+m (d sin θ)2=31ml 2 +md 2sin 2θ C 、 J =J 2+md 2=31ml 2 +md 2 D 、 J =J 1+m [(21l )2 + d 2 – 2(21l )d cos θ ]=31ml 2 +md 2-mld cos θ 题目图片:答案:D难度:易选择题:一刚体由匀质细杆和匀质球体两部分构成,杆在球体直径的延长线上,如图所示.球体的半径为R ,杆长为2R ,杆和球体的质量均为m .若杆对通过其中点O 1,与杆垂直的轴的转动惯量为J 1,球体对通过球心O 2的转动惯量为J 2,则整个刚体对通过杆与球体的固结点O 且与杆垂直的轴的转动惯量为:( )A 、 J =J 1+J 2.B 、 J =mR 2+mR 2.C 、 J =(J 1+mR 2)+(J 2+mR 2).D 、 J =[J 1+m (2R )2]+[J 2+m (2R )2].题目图片:答案:C难度:易选择题:有一质量为M ,半径为R ,高为H 的匀质圆柱体,通过与其侧面上的一条母线相重合的轴的转动惯量为:( )A 、 (1/4)MR 2.B 、 (1/2)MR 2.CC 、 (2/3)MR 2.D 、 (3/2)MR 2.答案:D难度:中选择题:半径为R ,质量为M 的均匀圆盘,靠边挖去直径为R 的一个圆孔后(如图),对通过圆盘中心O 且与盘面垂直的轴的转动惯量是:( )A 、 23215MR . B 、2167MR . C 、 23213MR . D 、 283MR .题目图片:答案:C难度:中选择题:一正方形均匀薄板,已知它对通过中心并与板面垂直的轴的转动惯量为J .若以其一条对角线为轴,则薄板对此轴的转动惯量为:( )A 、 (1/4)J .B 、 (1/2)J .C 、 (2/3)J .D 、 J .答案:B难度:易选择题:如图所示,一均匀细杆可绕通过其一端的水平光滑轴在竖直平面内自由转动,杆长l = (5/3) m .今使杆从与竖直方向成60°角的位置由静止释放(g 取10 m/s 2),则杆的最大角速度为:( )A 、 3 rad /s .B 、 rad /s .C 、 5 rad /s .D 、 53 rad /s .题目图片:答案:A难度:易选择题:图(a)为一绳长为l 、质量为m 的单摆.图(b)为一长度为l 、质量为m 能绕水平固定轴O 自由转动的匀质细棒.现将单摆和细棒同时从与竖直线成θ 角度的位置由静止释放,若运动到竖直位置时,单摆、细棒角速度分别以ω 1、ω 2表示.则:( )A 、 2121ωω=. B 、 ω 1 = ω 2.C 、 2132ωω=. D 、 213/2ωω=.题目图片:答案:D难度:易选择题:一匀质砂轮半径为R ,质量为M ,绕固定轴转动的角速度为ω.若此时砂轮的动能等于一质量为M 的自由落体从高度为h的位置落至地面时所具有的动能,那么h 应等于:( )A 、 2221ωMR . B 、 MR 422ω. C 、 MgR 2ω. D 、 gR 422ω.(a)(b)答案:D难度:易选择题:一个圆盘在水平面内绕一竖直固定轴转动的转动惯量为J ,初始角速度为ω 0,后来变为021ω.在上述过程中,阻力矩所作的功为:( ) A 、 2041ωJ . B 、 2081ωJ -. C 、 2041ωJ - D 、 2083ωJ -.答案:D难度:易选择题:一人站在旋转平台的中央,两臂侧平举,整个系统以2π rad/s 的角速度旋转,转动惯量为 6.0 kg ·m 2.如果将双臂收回则系统的转动惯量变为2.0 kg ·m 2.此时系统的转动动能与原来的转动动能之比E k / E k 0为:( )A 、 2.B 、 3.C 、 2.D 、 3.答案:D难度:中选择题:一均匀细杆可绕垂直它而离其一端l / 4 (l 为杆长)的水平固定轴O 在竖直平面内转动.杆的质量为m ,当杆自由悬挂时,给它一个起始角速度ω 0,如杆恰能持续转动而不作往复摆动(一切摩擦不计)则需要:( )A 、 ω 0≥l g 7/34.B 、 ω 0≥l g /4.C 、 ω 0≥()l g /3/4.D 、 ω 0≥l g /12.[已知细杆绕轴O 的转动惯量J =(7/48)ml 2]题目图片:答案:A难度:中选择题:一均匀细杆原来静止放在光滑的水平面上,现在其一端给予一垂直于杆身的水平方向的打击,此后杆的运动情况是:( )A 、 杆沿力的方向平动.B 、 杆绕其未受打击的端点转动.C 、 杆的质心沿打击力的方向运动,杆又绕质心转动.D 、 杆的质心不动,而杆绕质心转动.答案:C难度:易选择题:如图所示,将一根质量为m 、长为l 的均匀细杆悬挂于通过其一端的固定光滑水平轴O 上.今在悬点下方距离x 处施以水平冲力F ,使杆开始摆动,要使在悬点处杆与轴之间不产生水平方向的作用力,则施力F 的位置x 应等于:( )A 、 3l / 8.B 、 l / 2.C 、 2l / 3.D 、 l .题目图片:答案:C难度:较难选择题:质量不同的一个球和一个圆柱体,前者的半径和后者的横截面半径相同.二者放在同一斜面上,从同一高度静止开始无滑动地滚下(圆柱体的轴始终维持水平),则:( )A 、 两者同时到达底部.O lOB、圆柱体先到达底部.C、圆球先到达底部.D、质量大的先到达底部.答案:C难度:中选择题:实心圆柱体、空心圆筒和实心球,三者质量相同,且柱的半径、筒的外径和球的半径均相同.当它们沿同一斜面,由同一高度同时从静止无滑动地滚下时,它们到达斜面底的先后次序是:()A、实心球最先,圆柱体次之,圆筒最后.B、圆柱体最先,圆筒次之,实心球最后.C、圆筒最先,实心球次之,圆柱体最后.D、实心球最先,圆筒次之,圆柱体最后.E、圆筒最先,圆柱体次之,实心球最后.答案:A难度:中选择题:如图所示,一个绕轴AB作高速转动的轮子,轴的一端A用一根链条挂起,如果原来轴在水平位置,从轮子上面向下看,则它的运动为:()A、轴AB绕A点在竖直平面内作顺时针转动.B、轴AB绕A点在竖直平面内作逆时针转动.C、轴AB绕A点在水平面内作逆时针转动.D、轴AB绕A点在水平面内作顺时针转动.题目图片:答案:C难度:易选择题:一玩具回转仪,转动部分的质量为0.12 kg.转动惯量为1.50×10-4 kg·m2,架子的质量为0.13 kg.回转仪由一支柱支撑,如图所示.设回转议重心与支点的水平距离为0.05 m,并在一水平面内以1 rad·s-1的角速度旋进,则转动部分自转的角速度为:()A、392 rad·s-1.B、817 rad·s-1.C、3745 rad·s-1.D、4682 rad·s-1.题目图片:答案:B难度:易选择题:如图示,一陀螺由两个重为W 、高为h 、转动惯量为J 0的圆锥对称地粘接而成.当自转角速度为ω时,其转轴与竖直方向夹角为θ,则其旋进角速度为:( )A 、 ()ω02J Wh . B 、 ()ω0J Wgh . C 、 ()ωθ02sin J Wh . D 、 WhJ ω02. E 、 ωθ0sin J Wh . 题目图片:答案:E难度:易二、填空题(共94题)填空题:利用皮带传动,用电动机拖动一个真空泵.电动机上装一半径为 0.1m 的轮子,真空泵上装一半径为0.29m 的轮子,如图所示.如果电动机的转速为1450 rev/min ,则真空泵上的轮子的边缘上一点的线速度为__________________,真空泵的转速为____________________.题目图片:答案:v≈15.2 m /s ,n2=500 rev /min难度:易填空题:半径为20 cm的主动轮,通过皮带拖动半径为50 cm的被动轮转动,皮带与轮之间无相对滑动.主动轮从静止开始作匀角加速转动.在4 s内被动轮的角速度达到8πrad·s-1,则主动轮在这段时间内转过了________圈.答案:20难度:易填空题:半径为30 cm的飞轮,从静止开始以0.50 rad·s-2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t=________,法向加速度a n=_______________.答案:0.15 m·s-2,1.26 m·s-2难度:易填空题:一飞轮作匀减速转动,在5 s内角速度由40π rad·s-1减到10π rad·s-1,则飞轮在这5 s内总共转过了________________圈,飞轮再经______________的时间才能停止转动.答案:62.5,1.67s难度:易填空题:一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20πrad/s,再转60转后角速度为ω2=30π rad /s,则角加速度β=_____________,转过上述60转所需的时间Δt=________________.答案:4.8 s,6.54 rad / s2难度:易填空题:可绕水平轴转动的飞轮,直径为1.0 m,一条绳子绕在飞轮的外周边缘上.如果飞轮从静止开始做匀角加速运动且在4 s内绳被展开10 m,则飞轮的角加速度为_________________.答案:2.5 rad / s2难度:易填空题:绕定轴转动的飞轮均匀地减速,t=0时角速度为ω 0=5 rad / s,t=20 s时角速度为ω = 0.8ω 0,则飞轮的角加速度β =______________,t=0到t=100 s时间内飞轮所转过的角度θ =___________________.答案:250 rad,-0.05 rad·s-2难度:易填空题:一个匀质圆盘由静止开始以恒定角加速度绕通过中心且垂直于盘面的轴转动.在某一时刻转速为10 rev/s,再转60圈后转速变为15 rev/s.则由静止达到10 rev/s所需时间t=________;由静止到10 rev/s时圆盘所转的圈数N=________.答案:9.61 s,48 rev难度:易填空题:半径为r=1.5 m的飞轮,初角速度ω 0=10 rad·s-1,角加速度β=-5 rad·s-2,则在t=___________时角位移为零,而此时边缘上点的线速度v=___________.答案:4 s,-15 m·s-1难度:易填空题:半径为R具有光滑轴的定滑轮边缘绕一细绳,绳的下端挂一质量为m的物体.绳的质量可以忽略,绳与定滑轮之间无相对滑动.若物体下落的加速度为a,则定滑轮对轴的转动惯量J=______________________.答案:m(g-a)R2 / a难度:易填空题:一个作定轴转动的物体,对转轴的转动惯量为J.正以角速度ω0=10 rad·s-1匀速转动.现对物体加一恒定制动力矩M=-0.5 N·m,经过时间t=5.0 s后,物体停止了转动.物体的转动惯量J=__________.答案:0.25 kg·m2难度:易填空题:一长为L的轻质细杆,两端分别固定质量为m和2m的小球,此系统在竖直平面内可绕过中点O且与杆垂直的水平光滑固定轴(O轴)转动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后,杆球这一刚体系统绕O轴转动.系统绕O轴的转动惯量J=____________.释放后,当杆转到水平位置时,刚体受到的合外力矩M=______________;角加速度β ________________.题目图片:答案:3mL 2 / 4,21mgL ,L g 32 难度:易填空题:如图所示,一轻绳绕于半径r = 0.2 m 的飞轮边缘,并施以F =98 N 的拉力,若不计轴的摩擦,飞轮的角加速度等于39.2 rad/s 2,此飞轮的转动惯量为___________________________.题目图片:答案:0.5kg ·m 2难度:易填空题:一可绕定轴转动的飞轮,在20 N ·m 的总力矩作用下,在10s 内转速由零均匀地增加到8 rad/s ,飞轮的转动惯量J =______________.答案:25 kg ·m 2难度:易填空题:如图所示,一轻绳绕于半径为r 的飞轮边缘,并以质量为m 的物体挂在绳端,飞轮对过轮心且与轮面垂直的水平固定轴的转动惯量为J.若不计摩擦,飞轮的角加速度 =_______________.题目图片:答案:mr rJ mg+难度:易填空题:一个作定轴转动的轮子,对轴的转动惯量J = 2.0kg ·m 2,正以角速度0ω作匀速转动.现对轮子加一恒定的力矩M = -12N ·m ,经过时间t=8.0s 时轮子的 角速度ω=-0ω,则0ω=________________.答案:14 rad/s难度:易填空题:如图所示,滑块A 、重物B 和滑轮C 的质量分别为m A 、m B 和m C ,滑轮的半径为R ,滑轮对轴的转动惯量J =21m C R 2.滑块A 与桌面间、滑轮与轴承之间均无摩擦,绳的质量可不计,绳与滑轮之间无相对滑动.滑块A 的加速度a =________________________.题目图片:答案:`21C B A B m m m gm ++难度:易填空题:一根均匀棒,长为l ,质量为m ,可绕通过其一端且与其垂直的固定轴在竖直面内自由转动.开始时棒静止在水平位置,当它自由下摆时,它的初角速度等于__________,初角加速度等于__________.已知均匀棒对于通过其一端垂直于棒的轴的转动惯量为231ml . 答案:0,lg 23 难度:易填空题:一定滑轮质量为M 、半径为R ,对水平轴的转动惯量J =21MR 2.在滑轮的边缘绕一细绳,绳的下端挂一物体.绳的质量可以忽略且不能伸长,滑轮与轴承间无摩擦.物体下落的加速度为a ,则绳中的张力T =_________________. 答案:Ma 21 难度:易填空题:如图所示,一质量为m 、半径为R 的薄圆盘,可绕通过其一直径的光滑固定轴A A '转动,转动惯量J =mR 2 / 4.该圆盘从静止开始在恒力矩M 作用下转动,t 秒后位于圆盘边缘上与轴A A '的垂直距离为R 的B 点的切向加速度a t =_____________,法向加速度a n =_____________.题目图片:答案:4M / (mR ),322216Rm t M 难度:易填空题:一均匀细直棒,可绕通过其一端的光滑固定轴在竖直平面内转动.使棒从水平位置自由下摆,棒是否作匀角加速转动?________________.理由是__________________________________________________________________________________________________________________________________.答案:否,在棒的自由下摆过程中,转动惯量不变,但使棒下摆的力矩随摆的下摆而减小.由转动定律知棒摆动的角加速度也要随之变小.难度:易填空题:决定刚体转动惯量的因素________________________________________ ______________________________________________________.答案:刚体的质量和质量分布以及转轴的位置(或刚体的形状、大小、密度分布和转轴位置;或刚体的质量分布及转轴的位置.)难度:易填空题:一长为l ,质量可以忽略的直杆,可绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量为m 的小球,如图所示.现将杆由水平位置无初转速地释放.则杆刚被释放时的角加速度β0=____________,杆与水平方向夹角为60°时的角加速度β =________________.'题目图片:答案:g / l ,g / (2l )难度:易填空题:一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m 的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动.开始杆与水平方向成某一角度θ,处于静止状态,如图所示.释放后,杆绕O 轴转动.则当杆转到水平位置时,该系统所受到的合外力矩的大小M =_____________________,此时该系统角加速度的大小β _____________________.题目图片:答案:mgl 21,2g / (3l ) 难度:易填空题:一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________.答案:157 N ·m难度:易填空题:一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度ω 0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到ω =2.0 rad/s 时,物体已转过了角度∆θ =_________________.答案:4.0 rad/s难度:易填空题:一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩M r 外,还受到恒定外力矩M 的作用.若M =20 N · m ,轮子对固定轴的转动惯量为J =15 kg · m 2.在t =10 s 内,轮子的角速度由ω =0增大到ω=10 rad/s ,则M r =_____________.m答案:5.0 N ·m难度:易填空题:如图所示,P 、Q 、R 和S 是附于刚性轻质细杆上的质量分别为4m 、3m 、2m 和m 的四个质点,PQ =QR =RS =l ,则系统对O O '轴的转动惯量为____________.题目图片:答案:50ml 2难度:易填空题:质量为20 kg 、边长为1.0 m 的均匀立方物体,放在水平地面上.有一拉力F 作用在该物体一顶边的中点,且与包含该顶边的物体侧面垂直,如图所示.地面极粗糙,物体不可能滑动.若要使该立方体翻转90°,则拉力F 不能小于___________________.题目图片:答案:98N难度:中填空题:一根质量为m 、长为l 的均匀细杆,可在水平桌面上绕通过其一端的竖直固定轴转动.已知细杆与桌面的滑动摩擦系数为μ,则杆转动时受的摩擦力矩的大 小为________________.答案:mgl μ21 难度:中填空题:一长为l 、重W 的均匀梯子,靠墙放置,如图.梯子下端连一劲度系数为k 的弹簧.当梯子靠墙竖直放置时,弹簧处于自然长度.墙和地面都是光滑的.当梯子依墙而与地面成θ 角且处于平衡状态时,S ′。
3章刚体力学2
当不计摩擦阻力矩即令M=0时,有
m1 g m2 m1 g a J 1 m2 m1 2 m2 m1 m r 2
2
m
同例一
当不计滑轮质量及摩擦阻力矩即令m=0、M=0时,有
2m1m2 T1 T2 g m2 m1
1 2 J ml 3
J
1 ml 2 12
l
5
J r 2m
6
球体
7
关于刚体定轴转动定理的几点讨论 M J 1、不仅适用于刚体定轴转动的情形;刚体关于 过质心轴的转动定律与定轴转动定律完全相同。 见第三章习题3.8。
2、M 是刚体所受的对转轴的合外力矩;
3、可以用来求刚体的角加速度、所受的外力 矩和刚体的转动惯量。
分析:
M J
1 2 s v0t at 2
a r
O r
m
17
解:设绳子对物体(或绳子对轮轴)的拉力为T, 受力分析如图: mgT=ma (1) (2)
Tr J
r
T
T a
由运动学关系有:
mg
a r
解得 又根据已知条件
(3)
J=m( g-a) r2 / a
(4)
将⑤式代入④式得:
m2 m1 g M r / r m2 m1 g M / r
J m2 m1 2 r
1 m2 2m1 m g+M / r 2 T2 m1 g-a 1 m2 m1 m 2
13
a r
m2 m1 g M / r
m1 g T1 m1a1 T2 m2 g m2a2 a1 a2 a
第三章刚体力学(2)
J 00 ( J 0 mR )
2
J 00 ( J 0 0)
0
J 00 J 0 mR2
R
O’ Cபைடு நூலகம்
B
(2) 球与环及地球为系统,机械能守恒
势能零点
1 1 2 1 2 2 J 00 mg 2 R mv J 00 2 2 2
v 2 gR
环上C点处对惯性系的速度为零
d A M d
1 2 Ek J 2
A Md
1
2
定轴转动动能定理 势能 刚体的机械能
1 1 2 A J 2 J 12 2 2
E p mghc
1 2 E E p Ek mghc J 2 A外 A非保 E
A外+A非保=0 ΔE=0
*
机械能守恒
三、定轴转动定理定律 力矩 角动量
M r F
L J L J z
dLz M z J dt
定轴转动定律
分析问题:对刚体列出定轴转动定律方程
对质点列出牛顿定律方程 线量与角量的关系 M = 0 L = 常量——角动量守恒 J = 常量
力(力矩)对刚体的功 定轴转动动能
各质点的位置和速度 某点的位矢 = 质心的位矢 + 该质点相对质心的位矢 某点的速度 = 质心的平动速度 + 该质点相对质心的速度
y
ri rc ri
vi vc vi vc ri
mi
ri
ri′ rc
x
质心系
ω是该质点相对质心做转动时的角速度
O
八.细杆长l,质量m.从水平位置释放后与物 体碰撞,物体质量m,与地面摩擦系数u,撞后 滑行S停止,求碰后杆质心C上升的最大高度. 解: 分三阶段考虑 杆机械能守恒
刚体力学
例、在光滑的水平桌面上有一小孔0,一细绳穿过小孔, 其一端系一小球放在桌面上,另一端用手拉绳, 开始时小球绕孔运动,速率为 v1 ,半径为 r1 ,当半径变 为 r2 时 r2 f拉 求小球的速率 v2 解:小球受力:
f拉
L2 = L1
因f 拉为有心力
r r L2 = L1
r1 mv 1 = r2 mv 2 r1 v 2 = v1 显然 v 2 v1 r2
' 2
m
.
R
m1 Mf
' T1
m2
m
如图
T2'
T2
对m2: m 2 g - T2 = m 2 a
- m1 g = m1a
' 1
T1
m1 g
T 对m: R - T R - M f = J
m2 g
1 2 ' ' a = R , J = mR , T1 = T1 , T2 = T2 2
联立求得: = a
r M
M = rF sin = Fd
o
r r
r M
r F
r F应理解为在垂直于转轴的平面内。 r o 若不在,则将 F 分解为平行 于转轴的分量和垂直于转轴 的分量.只有垂直于转轴的力 的分量才对转轴有力矩.
r 20 F 的方向与转轴平行.
r F
r r
合外力矩 M = r1 F1 sin 1 - r2 F2 sin 2 r3 F3 sin 3
r Fi = m
r dv c
dt
注意各量的 物理意义
质心运动定理说明:不管物体的质量如何分布、外力作用 在什么地方,质心的运动就象物体的全部质量都集中于此, 而且所有的外力都作用于其上的一个质点的运动一样。 (例:炮弹在飞行轨道上爆炸 ……见教材p98--例3)
工程力学重点总结
P2 刚体:在力的作用下不会发生形变的物体。
力的三要素:大小、方向、作用点平衡:物体相对于惯性参考系处于静止或作匀速直线运动。
二、静力学公理1力的平行四边形法则:作用在物体上同一点的两个力,可以合成为仍作用于改点的一个合力,合力的大小和方向由这两个力为边构成的平行四边形的对角线矢量确定。
2二力平衡条件:作用在同一刚体上的两个力使刚体保持平衡的必要和充分条件是:这两个力的大小相等、方向相反,并且作用在同一直线上。
3加减平衡力系原理:作用于刚体的任何一个力系中,加上或减去任意一个平衡力系,并不改变原来力系对刚体的作用。
(1)力的可传性原理:作用在刚体上某点的力可沿其作用线移动到该刚体内的任意一点,而不改变该力对刚体的作用。
(2)三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
4作用与反作用定律:两个物体间相互作用的力,即作用力和反作用力,总是大小相等,方向相反,作用线重合,并分别作用在两个物体上。
5 刚化原理:变形体在某一力系作用下处于平衡状态时,如假想将其刚化为刚体,则其平衡状态保持不变。
三、约束和约束反力P7 约束:1柔索约束:柔索只能承受拉力,只能阻碍物体沿着柔索伸长的方向运动,故约束反力通过柔索与物体的连接点,方位沿柔索本身,指向背离物体;2光滑面约束:约束反力通过接触点,沿接触面在接触点的公法线,并指向物体,即约束反力为压力;3光滑圆柱铰链约束:①圆柱、②固定铰链、③向心轴承:通过圆孔中心或轴心,方向不定的力,可正交分解为两个方向、大小不定的力;④辊轴支座:垂直于支撑面,通过圆孔中心,方向不定;4链杆约束(二力杆):工程中将仅在两端通过光滑铰链与其他物体连接,中间又不受力作用的直杆或曲杆称为连杆或二力杆,当连杆仅受两铰链的约束力作用而处于平衡时,这两个约束反力必定大小相等、方向相反、沿着两端铰链中心的连线作用,具体指向待定。
大学物理_第06章 刚体力学
接触点相同线速度时: 1r1 2r2
联立解得:
1
J1
J1 ( r1 r2
)2
J2
0
2
r1 r2
J1
J1
(
r1 r2
)2
J
2
0
书上177页
解: dm
2 rdr
m2 rdr R2
2mrdr R2
df
2mrdr R2
g
dM
r
2mrdr R2
g et
2mr 2dr R2
g
M
R
dM
0
R 0
2mr 2 dr R2
dm dV
其中、、分别为质量线密度、面密度和体密度。
转动惯量
2). 转动惯量的计算:
质点、圆环、圆筒绕中心轴转动
z
z
Rm
oR m
R
m
o
质点的转动惯量为
Jo mR2
对于匀质圆环和薄圆筒,因各质元到轴的垂直距
离都相同,则有
Jo mR2
圆盘、圆柱绕中心轴转动
对于质量为m、半径为R、厚为l 的均匀圆盘取半径为 r宽
需要一个动力学方程 — 角动量定理
角动量定理: M dL
dt
转轴转动角动量表达式:
Mz
dLz dt
转轴分量角动量定理表达式:
n
Lz z mi (xi2 yi2 ) z J i1
转动定律:
Mz
dLz dt
d (J)
dt
J
d
dt
J
z v
r
P
当刚体绕固定轴转动时,刚体对该轴的转动惯量与角加速 度的乘积等于外力对此轴的合力距。 — 定轴转动定律
刚体动力学2
J = ∑ mi ri 2
转动惯量
转动定律
M = Jβ
刚体是特殊质点系,转动定律和质心运 动定律非常相似:
G G M = Jβ
G G F = mac
4
§3.3 转动惯量
一、转动惯量的物理意义 转动惯量特点
J = ∑ mi ri = ∑ J i
2
第 第三 三章 章
转动惯量是转 动惯性的量度
质量是平动 惯性的量度
桌面支持力对轴不产生力矩,摩 擦力矩使圆盘转动停止。 设转动方向为正,转动定律
o
ω0
R
dω −M f = J β = J dt
14
第三 三章 章 设圆盘的体密度 ρ ,厚度 l,在圆盘上 第 半径r处,取宽为dr的细圆环为质元。 质量dm=ρdV=2πrlρdr ,摩擦力df=μN=μgdm G G G 2 d M = 2 πμρ glr dr 力矩 dM f = r × df 大小 f
转 动 定 律
第 第三 三章 章
o x 1 2 M = Fy = J β = ml β 3 y F = F = ma x方向上的质心运动定理 ∑ x cx c
【解】只有F的力矩引起转动,转动定律
线量和角量关系,细杆的质心在l/2处
F y
l acx = ac = β 2
解得
2 y= l 3
17
【例】 如图所示,两物体的质量
J = ∑ mi ri
2
2
J = ∫r dm
质量体分布 dm ρ= dV J = ∫V r 2 ρ d V
6
一些常见刚体的转动惯量 一些常见刚体的转动惯量
第 第三 三章 章
细杆
1 2 J = ml 12
刚体力学
第五章刚体力学引言:前面一章我们讨论了质点组在外力和内力作用下的运动规律,在此基础上,本章就开始讨论一种特殊形式的质点组---即刚体在外力作用下的运动规律。
对刚体在力的作用下运动规律的研究就称为刚体力学.一、刚体的定义和自由度:什么叫刚体?[对刚体的概念在普通力学中讲过,可由学生回答,然后再得出它正确的定义],一个质点组,无论所受的作用力如何,只要质点组内任意两个质点之间的距离保持不变,这样的质点组就叫做刚体,这也就是刚体的含义。
由刚体的定义可知,刚体不同于质点的概念,质点是忽略大小和形状,只具备一定质量的几何点,而刚体则是要考虑物体的大小和形状,但忽略其大小和形状变化的一种理想的力学模型。
对物体形状、大小的改变与所研究的问题无关或者关系不大的物体我们都可以将它看作刚体。
因为刚体是质点组的一种特殊情况,所以在上一章中涉及到的所有定理对刚体也同样成立。
把上一章得出的结论应用到刚体上来是研究刚体力学的基本出发点和基本方法。
在上章曾经讲过,一个自由质点需要三个独变量才能确定它在空间的位置。
为确定一个力学系统的位置所需要的独立变量的个数,就叫做这个力学系统的自由度数。
因此一个质点有三个自由度,由N个自由质点组成的质点组,显然就有3N个自由度。
刚体虽然由大量质点组成,但是根据刚体内任意两质点间的距离始终保持不变的这一特征,刚体的自由度并不是很多,那么刚体的自由度到底有几个?我们知道刚性联系的两个质点组成的质点组,它们两者之间存在着在一个刚性的几何约束条件。
因此它的自由度应该是6-1=5,刚性联系的三个质点组成的质点组的自由度是5+3-2=6[2个质点是5个,加上一个质点的3个自由度,再减去增加的2个几何约束条件,所以……]由此可以推知三个以上质点组成的刚体,其自由度也都只有六个,所以,刚体的自由度最多是六个,其实一个刚体,只要它上面不在同一直线上的三个点的位置确定了,刚体的位置也就确定了,所以说一个自由刚体的自由度只有六个。
力学知识点总结大全
力学知识点总结大全一、力学基础知识1. 力的概念力是物体之间相互作用的结果,是引起物体运动、形变或状态变化的原因。
根据牛顿第一定律,物体要想改变它的状态,必须有力的作用。
2. 力的性质力有大小、方向和作用点,可以通过矢量来表示。
力的大小用单位牛顿(N)来表示,方向则通过力的矢量来描述。
作用点是力的作用点。
3. 力的合成与分解对于一个物体来说,当施加多个力时,可以通过合力的概念来表示总的受力情况;而对于一个力来说,可以通过分解的方法将其拆分成不同的力的合力来表示。
4. 牛顿定律牛顿的三大定律是力学的基础,包括牛顿第一定律(惯性定律)、牛顿第二定律(运动定律)、牛顿第三定律(作用-反作用定律)。
5. 动量和冲量动量是物体运动的特性,是质量和速度的乘积;而冲量是力在时间内对物体物体的作用。
6. 动力学动力学是力学中的一个分支,它研究物体在受到力的影响下的运动规律,涉及到牛顿第二和第三定律的应用。
7. 势能和功势能是物体由于位置而具有的能量,包括重力势能、弹性势能等;而功是力对物体的作用,是力的大小与移动距离乘积。
二、质点力学1. 质点的运动质点是物体的简化模型,它不考虑物体的形状和大小,只考虑质点的位置和速度。
质点运动可以通过位移、速度和加速度来描述。
2. 牛顿运动定律牛顿第二定律描述了质点在力的作用下的运动规律,即F=ma,力的大小与物体的加速度成正比。
3. 立体运动立体运动是质点在空间中的运动,可以通过三维坐标来描述。
4. 弹性碰撞弹性碰撞是物体之间在碰撞中动能守恒的碰撞,它们的速度和动能在碰撞前后保持不变。
5. 火箭技术火箭技术是利用动量守恒定律和火箭运动定律研究飞行器的动力和轨迹。
三、刚体力学1. 刚体的概念刚体是物理中的一种理想模型,它不考虑物体的形变,只考虑物体的位置和姿态。
2. 刚体的平动和转动刚体的平动是指刚体作为一个整体进行平移运动的现象;转动则是刚体绕轴进行旋转的运动。
3. 刚体定轴转动刚体定轴转动是指刚体绕一个固定轴进行的运动,可以通过角速度和角加速度来描述。
002刚体力学习题汇总(答案)
(3) v l
3 gl sin
10、如图所示,长为 l 的轻杆,两端各固定质量分
别为 m 和 2m 的小球,杆可绕 水平光滑固定轴 O 在竖直面 内转动, 转轴 O 距两端分别为
解:受力分析如图,可建立方程:
2mg T2 2ma ┄① T1 mg ma ┄②
1 2 l和 l. 轻杆原来静止在竖 3 3
2、对于一根质量分布均匀的木棒,质量 m,长度为 L,以木棒端点为轴旋转的转动惯量为 J1=
1 2 ml , 3
以 木 棒 中 点 为 轴 旋 转 的 转 动 惯 量 为 J2=
1 2 ml ,则 J1 是 J2 的 12
3、如图 1 所示的圆锥摆,绳长为 l ,绳子一端固定 在 O 点,另一端系一质量为 m 的质点,以匀角速 度 绕竖直轴线作圆周运动, 绳子与轴线的夹角为
得: t
(2)相碰时小球受到的冲量为
2m2 (v1 v2 ) 。 m1 g
Fdt (mv) mv mv
0
由①式求得
Fdt mv mv
0
J 1 Ml 3 l
-3-
Mr Lee 制作,内部交流
a r , J mr / 2 ┄⑤
2
联立,解得: a
1 11 g , T mg 。 4 8
9、如图所示,一匀质细杆质量为 m ,长为 l ,可绕
杆于水平位置由静止 过一端 O 的水平轴自由转动, 开始摆下.求:
2 2 2l l mv0 l m v l m( ) 2 2m ( ) 2 3 3 3 3
以逆时针为正向,有:
v0
J v ml
④
6.1 刚体运动学(大学物理)
1、转动惯量
刚体转动时,刚 体内的各质点作圆周 运动,刚体的动能等 于各质点动能之和。
mn
m1
rn
r1
r2 m2
1 1 1 2 2 2 Ek m1v1 m2v2 mnvn 2 2 2 n n 1 1 2 2 mivi mi (ri ) i 1 2 i 1 2 1 n 2 2 ( miri ) 2 i 1
1 l 1 2 2 J ml m ml 结果与前相同。 3 12 2
t
0
1 2 0 0 t t 2
v v 2a( x x0 )
2 2 0
2 ( )
2 2 0 0
匀变速转动
六 角量与线量之间的关系
1、位移与角位移之间的关系 刚体转过 刚体上的一点 位移 s
o
r
s
x
s r
第六章 刚体力学
本章主要内容:
6-1 刚体的运动 6-2 刚体的角动量、转动动能、转动惯量
6-3 力矩
刚体定轴转动定律
6-4 定轴转动的动能定理 6-5 刚体对定轴的角动量守恒定律
6-6 进动*
本章学习要求
2.理解转动惯量、力矩的概念,掌握转动定律。 3.掌握刚体转动的动能定理、角动量定理。
1.掌握刚体定轴转动的特点,理解角坐标、角位移 角速度、角加速度的概念。
1 n 刚体的转动动能 Ek ( miri2 ) 2 2 i 1 1 2 与平动动能比较 Ek mv 2 n 2 miri :相对于转轴的特征的物理量
i 1
转动惯量的定义:
单位:kg ·m2
J m r
i 1
第5章 刚体力学2
F x t 棒的末动量
mv mv
Vc
0
M
0
而棒的末动量
F M
MV
w l
2t mv t
lw 2
c
v0
m v
mv t
x
由此可知:一般情况下 Fx
x 子弹和棒的水平方 0 向动量不守恒!!
2)总角动量守恒吗?若守恒,其方程应如何写?
1、力矩的功
F cos F cos
dA
F dr
F cos
| dr |
r
F cos rd
r M
v
O
d r
F
dA Md
力矩 的功:
dr
P
x
A
2
Md
1
力对转动物体作的功等于相 应力矩和角位移的乘积。
2、刚体定轴转动的动能定理 刚体定轴转动的动能 由定轴转动 M 的转动定律:
2、刚体的角动量定理
在定轴转动中
M J J
dw dt d dt (Jw ) d L dt
积分形式
t L
Mdt
0
2
dL
L
1
L
2
L
1
( Jw )
2
( J w )1
左边为对某个固定轴 的外力矩的作用在某 段时间内的积累效果, 称为冲量矩;
右边为刚体对同 一转动轴的角动 量的增量。
v
A
例1:如图一根质量为m、长为l的均匀细棒,可绕 通过其一端的轴 O 在铅直平面内转动,轴承处的 摩擦不计。如果让棒自水平位置开始自由释放, 求棒转到铅直位置时棒端A的速度。 c A . O 首先分析棒所受之力及相 解:
《理论力学》第六章 刚体的基本运动习题全解
第六章 刚体的基本运动 习题全解[习题6-1] 物体绕定轴转动的运动方程为334t t -=ϕ(ϕ以rad 计,t 以s 计)。
试求物体内与转动轴相距m r 5.0=的一点,在00=t 与s t 11=时的速度和加速度的大小,并问物体在什么时刻改变它的转向? 解:角速度: 2394)34(t t t dt ddt d -=-==ϕω 角加速度:t t dtddt d 18)94(2-=-==ωα速度: )94(2t r r v -==ω)/(2)094(5.0|20s m r v t =⨯-⨯===ω)/(5.2)194(5.0|21s m v t -=⨯-⨯==切向加速度:rt t r a t 18)18(-=-==ρα法向加速度:22222)94()]94([t r rt r v a n -=-==ρ 加速度: 422222222)94(324])94([)18(t t r t r rt n a a n t -+=-+-=+=)/(8165.0)094(0324|24220s m r a t =⨯=⨯-+⨯== )/(405.1581.305.0)194(1324|24221s m r a t =⨯=⨯-+⨯== 物体改变方向时,速度等于零。
即:0)94(2=-=t r v )(667.0)(32s s t ==[习题6-2] 飞轮边缘上一点M,以匀速v=10m/s运动。
后因刹车,该点以)/(1.02s m t a t =作减速运动。
设轮半径R=0.4m,求M点在减速运动过程中的运动方程及t=2s时的速度、切向加速度与法向加速度。
解:t dtd a t 1.04.022-===ϕρα (作减速运动,角加速度为负)t dt d 25.022-=ϕ12125.0C t dtd +-=ϕ2130417.0C t C t ++-=ϕ12124.005.0)125.0(4.0C t C t dtd R v +-=+-⨯==ϕ104.0005.0|120=+⨯-==C v t图题46-251=C0000417.0|2130=+⨯+⨯-==C C t ϕ 02=C ,故运动方程为: t t 250417.03+=ϕt t t t R s 100167.0)250417.0(4.033+-=+-==ϕ速度方程:1005.02+-=t v)/(8.910205.0|22s m v t =+⨯-== 切向加速度:)/(2.021.01.0|22s m t a t t -=⨯-=-== 法向加速度:222)25125.0(4.0+-⨯==t a n ρω)/(1.240)252125.0(4.0|2222s m a t n =+⨯-⨯==[习题6-3] 当起动陀螺罗盘时,其转子的角加速度从零开始与时间成正比地增大。
刚体力学第2讲——定轴转动中的功能关系刚体的角动量定理和角动量守恒定律
动相反方向作圆周运动(如图) 求:1) 圆盘对地的角速度.
2)欲使圆盘对地静止,人应沿着圆周对圆盘的速 度的大小及方向?
R
R/2 v
解:取人和盘为系统,
M 外 0 系统的角动量守恒.
R /2
Ro
v
(1)开始系统的角动量为
m
12 R
2
0
1 2
M
R 20
后来:
m
1 4
R 2 mE
1 2
M
R 2 ME
mE ME mM 21 M R 20 / 40
R /2
Ro
v
MR 40
2
ME
2v R
M
R 2 ME
/2
为
亦即l>6s;当‘’取负值,则棒向右摆,其条件为
3gl 3 2gs 0 亦即l<6s
棒的质心C上升的最大高度,与第一阶段情况相似,也可由 机械能守恒定律求得:
mgh 1 1 ml 2 2
23
把式(5)代入上式,所求结果为
h l 3s 6sl
解 这个问题可分为三个
阶段进行分析。第一阶段 是棒自由摆落的过程。这
O
时除重力外,其余内力与
外力都不作功,所以机械
能守恒。我们把棒在竖直
C
位置时质心所在处取为势
能零点,用表示棒这时
的角速度,则
mg l 1 J 2=1 1 ml 2 2
22
23
(1)
理论力学 刚体学力2
5. 惯量主轴及其求法 一般坐标系下的惯量椭球
I xx x2 + I yy x2 + I zz z 2 − 2I yz yz − 2I zx zx − 2I xy xy = 1
若取椭球三主轴为坐标轴,交叉项消失, 若取椭球三主轴为坐标轴,交叉项消失, 得到主轴坐标系下的惯量椭球
I1 x2 + I 2 y 2 + I3 z 2 = 1
其动量矩为: 其动量矩为:
转动惯量 I = ∑ mi ρi2
i =1
n
令
I = mk
2
k=
回转半 径
转动惯量的计算 1. 离散分布的物体 2. 连续分布的物体
I = ∑ mi ρi2
i =1 n
I m
说明: 说明: 1) 刚体的转动惯量是由 总 质量 、 质量分布 、 转轴的位置三 刚体的转动惯量是由总质量、质量分布、 个因素决定; 个因素决定 2) 同一刚体对不同转轴的转动惯量不同, 凡是提到转动惯量, 同一刚体对不同转轴的转动惯量不同 凡是提到转动惯量 必须指明它是对哪个轴的才有意义; 必须指明它是对哪个轴的才有意义 3) 物体由A和B两部分组成 则有 I = IA + IB ,其中 、IA和 物体由 和 两部分组成 两部分组成,则有 其中I、 其中 IB是相对于同一转轴 是相对于同一转轴.
动能和角动量简化为
1 2 T = ( I1ωx 2 + I 2ωy + I3ωz2 ) 2 r r r r J = I1ωx i + I 2ωy j + I3ωz k
均匀长方形薄片绕对角线的转动惯量。 例1 均匀长方形薄片绕对角线的转动惯量。 例2:3.7 :
x2 y2 z2 如椭球方程为: 如椭球方程为: 2 + 2 + 2 = 1,试求此椭球绕其三个中心主轴 a b c 转动时的中心主转动惯量。 转动时的中心主转动惯量。设此椭球的质量为 m ,并且密度ρ
刚体接触力学-概述说明以及解释
刚体接触力学-概述说明以及解释1.引言1.1 概述在撰写这篇长文之前,我们先来了解一下刚体接触力学的概念和研究内容。
刚体接触力学是研究刚体在接触过程中受到的力学作用的学科。
在实际生活和工程领域中,我们经常会遇到一些物体之间的接触现象,比如两个物体之间的摩擦、压力和力传递等,这些现象都是刚体接触力学的研究范畴。
刚体接触力学的研究方法主要包括实验研究和理论分析两种。
实验研究是通过设计和搭建相应的实验装置来模拟和测量刚体接触过程中的力学行为,并通过实验数据来验证和优化理论模型。
而理论分析则是通过建立刚体接触力学的数学模型,运用力学原理和数学方法来对刚体接触过程中的力学现象进行预测和分析。
总结起来,刚体接触力学在解决实际问题和优化设计中具有重要的意义和应用价值。
通过深入研究刚体接触力学,我们可以更好地理解物体之间的接触行为,优化设计,提高机械系统的性能。
同时,刚体接触力学的应用也涵盖了多个领域,如机械工程、材料科学、生物力学等。
因此,深入研究和应用刚体接触力学对于推动科学技术发展和改善人们的生活质量具有重要意义。
接下来,我们将在本文的后续章节中,详细介绍刚体接触力学的基础知识和概念,探讨刚体接触力学的研究方法,并对其意义和应用进行展望。
最后,我们将对整篇文章进行总结,并得出结论。
希望通过这篇长文的撰写,能够为读者提供一个系统全面的刚体接触力学知识框架,并对该领域的研究和应用产生一定的启发和促进。
1.2文章结构1.2 文章结构本文将按照以下结构进行叙述刚体接触力学的相关内容:1. 刚体力学基础:首先,在探讨刚体接触力学之前,我们将简要回顾刚体力学的基本概念和原理。
这部分包括刚体的定义、平动和转动的基本原理、牛顿力学定律和动量守恒等基础知识。
2. 刚体接触力学的概念:在本部分,我们将详细介绍刚体接触力学的概念和基本要素。
包括刚体接触问题的定义与特点,接触力和接触区域的概念,以及刚体接触力学中常见的类型和形式的分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转动正向 O
l
*C
d mgl J 2 dt mgl 2 令 J d 2
2
dt
P
(C点为质心)
2
24
dt 2
d 2 2 2 dt mgl J
转动正向
O
l
J转动惯量 T 2π mgl
2π
*C
J T 2π (C点为质心) mgl m cos( t ) 简谐振动
dΘ 旋进角速度:Ω dt
Ω d dL L sin L
M M Ω L si n J si n
O
M 当 90 时 ,Ω J
Ω
1
, Ω
34
▲ 地球转轴的旋进,岁差
随着地球自转轴
北 天 极
地球自转角动量
地球自转轴旋进
T = 25800年
的旋进,北天极方
此时角动量可在系统内部各刚体间传递, 而却保持刚体系对转轴的总角动量不变。
20
ω
滑冰运动员的旋转
21
§5.8 单摆和复摆 一 单摆
动力学分析: 5 时, sin
M mgl sin mgl 2 d mgl J 2 dt d 2 g 2 dt l
O
F法
F切
细杆在水平力矩作用下作定轴转动
d
Fd J
1 2 细杆相对O点的转动惯量 J ml 3 1 质心切向加速度 aC切 rC l 2 质心切向运动方程 F F切 maC切
切向力为零 F切 0
F
P
J 2 d l mrc 3
打棒球 锤子
27
• 5.10 刚体的平衡
3g sin
比用转动定律简单!
l d 3g cos dt 2l
10
杆动能的另一种表达:科尼西定理
势能零点
2 l 1 l 1 0 mg sin m Jc 2 2 2 2 2 质心动能 绕过质心轴 1 2 转动动能 Jc 12 ml
A
FT
O
l
转 动 正 向 m
J ml mg
2
22
d g 2 dt l g 2 令 l 2 d 2 2 dt
2
A
FT
O
l
转 动 正 向 m
m cos( t )
l T 2 π / 2 π g
J ml mg
2
23
二 复摆 ( 5 ) 书P179 M l F M mgl sin d 2 J J 2
t
1
外z
2z
1z
刚体:
Lz J z
d t J z 2 J z1
19
t2 M 外z t1
——刚体定轴转动的角动量定理
刚体定轴转动的角动量守恒定律:
M外z
大小不变 0 ,则 J z const. 正、负不变
对刚体系, M外z = 0 时, J iz i const , .
§5.5 定轴转动中的功能关系
一. 力矩的功 力矩的空间积累效应:
F
d
dW F cos (r d )
( F cos r ) d
M d
z
轴
·
r
x
力矩的功:
W
2 1
M d
1
二. 定轴转动动能定理
W
2 M 1
d
2 J 1
11
两个同样大小(R),同样质量(M)的球(或圆柱), 一个空心对称(金),一个实心(银),外观上无差别, 怎样在不破坏外观的前提下区分出它们?
让它们滚起来!滚得快的是实心!
12
§5.6 刚体的无滑动滚动 瞬时转轴(补充) 1、平面平行运动 质心做平面运动+绕过质心垂直轴做转动 只考虑圆柱,球等轴对称刚体的滚动。 2、无滑动滚动:任意时刻接触点P 瞬时静止
25
P
• §5.9 打击中心(center of percussion)
向左动 向右动 静止
质心 打击中心
质心 打击中心
质心 打击中心
在光滑的水平细杆上悬挂一金属棒,用锤子敲击下部,观察其运动
26
• 例 以水平力F打击悬挂在O点的长l的匀质细杆,
打击点为P。若打击点选择合适,则打击过程中 轴对细杆的切向力F切为0,该点称为打击中心。 求打击中心到轴的距离d。
d d dt
2 J 1
1 1 2 2 d J 2 J 1 2 2
1 2 ( Ek ) 令转动动能: E k J 2 (飞轮储能)
1 1 2 2 (可证: J mi vi ) 书P178 2 2 刚体定轴转动 W Ek 2 Ek1 动能定理:
15
绕瞬时转轴的转动定理的形式? 虽然p点瞬时静止,但有加速度,所以除了 力矩Mp外,还应考虑惯性力矩。
惯性力作用在质心上,方向与p点的加速度 方向相反。 下面证明:对于无滑动滚动的轴对称刚体, 接触点p的加速度沿过p点的半径方向,因此, 关于过p点的转轴,惯性力矩等于零。 轴对称刚体,绕瞬时转轴的转动定理:
▲祖冲之(公元429
— 500)编《大明历》最先
将岁差引入历法:391年有144个闰月。
37
刚体定轴转动与质点一维运动的对比
质点一维运动
位移
刚体定轴转动
x 角位移 d dx v 速度 角速度 dt d d 2 2 dt dv d x 加速度 角加速度 2 a 2 dt dt 转动惯量 J r 2dmdt dt m 质量 力 力矩 F M rF 转动定律 F ma 运动定律 M J 动量 p mv质心 p mv 动量 角动量 Li J Lr p 角动量 t2 t2 动量定理 t1 Fdt mv 2 mv1 角动量定理 t1 Mdt J2 J1 动量守恒定律 F 0 时 角动量守恒定律
向不断改变。 太阳
北极星 F1
L M
(F1>F2 )
F2
C1
赤道平面 C2
23o 27
黄道平面
地球
3000年前 小熊座 现在 小熊座 12000年后 天琴座 (织女)
地轴
35
分点每年在黄
道上西移50.2
地轴 旋进 春分点
旋进周期25800年
赤道面
北半球
南半球 西
黄道面
东
秋分点
【思考】下一时刻P点位置?
C
ac
无滑动滚动条件:
R p
vc
vC R aC R
13
【例】两个质量和半径 都相同,但转动惯量不 同的柱体,在斜面上作 无滑动滚动,哪个滚得 快?
C R f
mg
y
x
mg sin f maC 质心运动定理 Rf JC 过质心轴转动定理 aC R 纯滚动条件(运动学条件) mgR sin mR 2 转动惯量小的滚得快! J
太阳
太阳年(回归年): 太阳由春分秋分春分 恒星年(时间长): 地球绕太阳一周的时间
岁差 (precession)
36
岁差 = 恒星年 太阳年 = 20分23秒
我国古代已发现了岁差:
▲ 前汉(公元前206 ▲晋朝(公元265
— 23) 刘歆发现岁差。
虞喜最先确定了岁差: — 316)
每50年差1度(约72/年) (精确值为 50.2/年)
关于瞬转轴列转动定理重解:
mgR sin Jp
J p JC mR mgR sin 2 JC mR
2
简单多了!
18
§5.7 刚体定轴转动的角动量定理 和角动量守恒定律
讨论力矩对时间的积累效应。 质点系: t2 dL 对点: M 外 ,t M 外 d t L2 L1 1 dt 对轴: t 2 M d t L L
Mp Jp
J p : 关于过p点转轴的转动惯量
16
证明:
无滑动滚动:vpt vC , apt aC a p aC apt apn aC aC apn ac C a pn
按切、法向分解:a a a p pt pn
28
在某一时刻,刚体静止。 若刚体所受外力之和为零,则刚体的质心不动。 若刚体所受外力矩之和为零,则刚体无转动。
刚体的平衡条件
Fi 0 i ri Fi 0 i
29
30
§5.11 旋进 (进动)
旋进:高速旋转的物体,其自转轴绕另一个 轴转动的现象。如玩具陀螺的运动:
3 g sin l
6
3、求转轴受力
(1)Nn 平动:质心运动定理
Nn mg sin man
1 an l 2
2
l 2
5 N n mg sin 2
7
N (2) t 转动:关于质心轴列转动定理
MC JC , C O
2
三. 刚体的重力势能
Δ mi C× hC hi
Ep= 0
E p mi ghi
mi hi mg
m
mghC
四. 应用举例 对于包括刚体的系统,功能原理和机械能
守恒定律仍成立。
3
【例】转轴光滑,初态静止,求下摆到
角时的角加速度,角速度,转轴受力。
4
解:刚体定轴转动