2018-2019学年第一章-有理数单元测试题及答案
人教版七年级上册数学 第一章 有理数 单元测试题 含答案 答题卡
第一章 有理数 单元测试题(一)一 选择题 (每小题3分 共30分)1.下列四个数中,在-2到 0之间的数是: ( ) A -1 B 1 C -3 D 32.下列说法正确的是: ( ) A 0表示什么也没有B 一场比赛赢4个球得+4分, -3分表示输了3个球 C 7没有符号D 0既不是正数,也不是负数3.既是分数又是正数的是( )A +2B -31C 0D 2.34.下列结论正确的有( )个: ① 规定了原点,正方向和单位长度的直线叫数轴 ② 最小的整数是0 ③ 正数,负数和零统称有理数 ④ 数轴上的点都表示有理数A 0B 1C 2D 3 5.在数轴上,A 点和B 点所表示的数分别为-2和1,若使A 点表示的数是B 点表示的数的3倍,应把A 点 ( ) A 向左移动5个单位 B 向右移动5个单位C 向右移动4个单位D 向左移动1个单位或向右移动5个单位 6.如图,在数轴上点M 表示的数可能是( )A .1.5B .-1.5C .-2.4D .2.47.在0.75,-1,-0.75,3,0,+5,-3这几个数中,互为相反数的有( ) A .0对 B .1对 C .2对 D .3对8.数a 在数轴上的对应点在原点左边,且|a|=4,则a 的值为( ) A .4或-4 B .4 C .-4 D .以上都不对 9.一个数的绝对值等于它的相反数,则这个数是( ) A .正数或0 B .负数或0 C .所有正数 D .所有负数10.清晨蜗牛从树根沿着树干往上爬,树高10m ,白天爬4m ,夜间下滑3m ,它从树根爬上树顶,需( ) A 、10天 B 、9天 C 、8天 D 、7天 二 填空题(每小题3分 共18分)1.如果向南走5米,记作+5米,那么向北走8米应记作____米. 2.已知下列各数:-4,3.5,0,-2,10,+21,其中非负数有_______ 3.在数轴上,距原点6个单位长度的点表示的数为____. 4.若a=-2020,则—a=____.5.某天早晨的气温是18℃,中午上升6℃,半夜又下降5℃,则半夜的气温是_____℃.6.如果x <0,y >0,且|x|=2,|y|=3,那么x+y=________. 三 解答题(本大题共72分) 1(30分) 计算(1)1+(-21 )+31 +(-61) (2)(-109)+(-267)+(+109)+268(3)(-23)-(+12)-(-56)-(-13) (4)(-813)-(+12)-(-70)-(-813);(5)(-3)-(-17)-(-33)-81 (6)(-12)+ 14 -(-21)+ 3 -(-2)2(8分)简答题:(1)-1和0之间还有负数吗?如有,请列举。
【推荐精选】2018-2019学年度七年级数学上册 第一章 有理数 1.1 正数和负数同步检测试卷(含解析)(新版)
1.1正数和负数一、选择题(每小题3分,总计30分。
请将唯一正确答案的字母填写在表格内)1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.在实数﹣1,﹣2,0,﹣π中,其中负数共有( ) A .1个 B .2个 C .3个 D .4个2.在﹣4、﹣2、0、1、3、4这六个数中,正数有()A .1个B .2个C .3个D .4个3.如果向东走2m 记为+2m ,则向西走3m 可记为( ) A .+3m B .+2m C .﹣3m D .﹣2m4.某大米包装袋上标注着“净含量10kg ±150g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是( )A .100gB .150gC .300gD .400g5.某种药品说明书上标明保存温度是(20±3)℃,则该药品在( )范围内保存最合适. A .17℃~20℃ B .20℃~23℃ C .17℃~23℃ D .17℃~24℃6.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( ) A .+0.8B .﹣3.5C .﹣0.7D .+2.17.如果+20%表示增加20%,那么﹣8%表示( ) A .增加12% B .增加8% C .减少28% D .减少8%8.水文观测中,常遇到水位上升或下降的问题.我们规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天上升3cm ,今天的水位为0cm ,那么2天前的水位用算式表示正确的是( )A .(+3)×(+2)B .(+3)×(﹣2)C .(﹣3)×(+2)D .(﹣3)×(﹣2) 9.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):当北京6月15日23时,悉尼、纽约的时间分别是( )A .6月16日1时;6月15日10时B .6月16日1时;6月14日10时C .6月15日21时;6月15日10时D .6月15日21时;6月16日12时10.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为( ) A .零上3℃ B .零下3℃ C .零上7℃ D .零下7℃ 二、 填空题(每空2分,总计20分)11.若向北走5km 记作﹣5km ,则+10km 的含义是 .12.南京市1月份的平均气温是零下5℃,用负数表示这个温度是 .13.如果水位升高2m 时,水位的变化记为+2m ,那么水位下降3m 时,水位的变化情况是 . 14.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为+0.25,﹣1,+0.5,﹣0.75,小红快速准确地算出了4筐白菜的总质量为 千克.15.一种零件的直径尺寸在图纸上是30±(单位:mm ),它表示这种零件的标准尺寸是30mm ,加工要求尺寸最大不超过 mm .16.如果把“收入500元”记作+500元,那么“支出100元”记作 .17.在一次全市的数学监测中某6名学生的成绩与全市学生的平均分80的差分别为5,﹣2,8,11,5,﹣6,则这6名学生的平均成绩为 分.18.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y ℃与向上攀登的高度x km 的几组对应值如表:若每向上攀登1km ,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.5km 时,登山队所在位置的气温约为 ℃.19.每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是 kg .20.阅览室某一书架上原有图书20本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书 本. 三.解答题(每题10分,总计50分)21.某地区图书馆平均每天借出图书50册,超出50册的用正数表示,不足50册的用负数表示,以下是上一周该图书馆借出图书的记录.(1)上周星期二比星期四多借出多少册?(2)上周平均每天借出图书多少册?22.某检修小组乘一辆汽车沿公路东西方向检修线路,约定向东为正.某天从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣2,+6.(1)计算收工时检修小组在A地的哪一边?距A地多远?(2)若每千米汽车耗油量为0.4升,求出发到收工汽车耗油多少升.23.已知买入股票与卖出股票均需支付成交金额的0.5%的交易费,张先生上周星期五在股市收盘价每股20元买进某公司的股票1000股,下表为本周交易日内,该股票每天收盘时每股的涨跌情况:注:①涨记作“+”,跌记作“﹣”;②表中记录的数据每天收盘价格与前一天收盘价格的变化量,星期一的数据是与上星期五收盘价格的变化量.(1)直接判断:本周内该股票收盘时,价格最高的是那一天?(2)求本周星期五收盘时,该股票每股多少元?(3)若张先生在本周的星期五以收盘价将全部股票卖出,求卖出股票应支付的交易费.24.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少?25.阅读与理解:如图,一只甲虫在5×5的方格(每个方格边长均为1)上沿着网格线爬行.若我们规定:在如图网格中,向上(或向右)爬行记为“+”,向下(或向左)爬行记为“﹣”,并且第一个数表示左右方向,第二个数表示上下方向.例如:从A到B记为:A→B(+1,+4),从D到C记为:D→C(﹣1,+2).思考与应用:(1)图中A→C(,),B→C(,),D→A(,)(2)若甲虫从A到P的行走路线依次为:(+3,+2)→(+1,+3)→(+1,﹣2),请在图中标出P的位置.(3)若甲虫的行走路线为A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),请计算该甲虫走过的总路程.参考答案与试题解析一.选择题(共10小题)1.【解答】解:在实数﹣1,﹣2,0,﹣π中,其中负数有﹣1,﹣2,﹣π,共有3个.故选:C.2.【解答】解:∵1>0,3>0,4>0,∴1,3,4是正数,故选:C.3.【解答】解:若向东走2m记作+2m,则向西走3m记作﹣3m,故选:C.4.【解答】解:根据题意得:10+0.15=10.15(kg),10﹣0.15=9.85(kg),因为两袋两大米最多差10.15﹣9.85=0.3(kg)=300(g),所以这两袋大米相差的克数不可能是400g;故选:D.5.【解答】解:20℃﹣3℃=17℃20℃+3℃=23℃所以该药品在17℃~23℃范围内保存才合适.故选:C.6.【解答】解:∵|+0.8|=0.8,|﹣3.5|=3.5,|﹣0.7|=0.7,|+2.1|=2.1,0.7<0.8<2.1<3.5,∴从轻重的角度看,最接近标准的是﹣0.7.故选:C.7.【解答】解:如果+20%表示增加20%,那么﹣8%表示减少8%,故选:D.8.【解答】解:根据题意得:2天前的水位用算式表示为(+3)×(﹣2),故选:B.9.【解答】解:悉尼的时间是:6月15日23时+2小时=6月16日1时,纽约时间是:6月15日23时﹣13小时=6月15日10时.故选:A.10.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.二.填空题(共10小题)11.【解答】解:∵向北走5km记作﹣5km,∴+10km的含义是向南走10km.故答案为:向南走10km12.【解答】解:若规定零上用正数表示,零下用负数表示.零下5℃可表示为:﹣5℃故答案为:﹣5℃13.【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降3m时水位变化记作﹣3m.故答案是:﹣3m.14.【解答】解:4筐白菜的总质量为25×4+(0.25﹣1+0.5﹣0.75)=99,故答案为:9915.【解答】解:根据正数和负数的意义可知,图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,误差不超过0.03mm;加工要求尺寸最大不超过30.03mm.故答案为:30.0316.【解答】解:规定收入为正,支出为负.收入500元记作+500元,那么支出100元应记作﹣100元,故答案为:﹣100元.17.【解答】解:由题意知,这6名学生的平均成绩=80+(5﹣2+8+11+5﹣6)÷6=83.5(分).故答案为83.5.18.【解答】解:由表格中的数据可知,每上升0.5km,温度大约下降3℃,∴向上攀登的海拔高度为2.5km时,登山队所在位置的气温约为﹣10℃,故答案为:﹣10.19.【解答】解:50+(﹣0.7)=49.3kg,故答案为:49.3kg.20.【解答】解:20﹣3+1﹣1+2=19(本)故答案为:19三.解答题(共5小题)21.【解答】解:(1)2﹣(﹣4)=6(册)答:上周星期二比星期四多借出6册;(2)50+(3+2+3﹣4+1)÷5=50+1=51(册)答:上周平均每天借出图书51册.22.【解答】解:(1)15﹣2+5﹣1+10+3﹣2+12+4﹣2+6=48,答:检修小组在A地东边,距A地48千米;(2)(15+|﹣2|+5+|﹣1|+10+|3|+|﹣2|+12+4+|﹣2|+6)×0.4=62×0.4=24.8(升),答:出发到收工检修小组耗油24.8升.23.【解答】解:(1)价格最高的是星期四;(2)该股票每股为:20+2+3﹣2.5+3﹣2=23.5元/股;(3)卖出股票应支付的交易费为:23.5×1000×0.5%=117.5元24.【解答】解:(1)根据题意得:﹣5×1﹣2×4+0×3+1×4+3×5+6×3=﹣5﹣80+4+15+18=24(克),则这批样品的质量比标准质量多,多24克;(2)根据题意得:20×450+24=9024(克),则抽样检测的总质量是9024克.25.【解答】解:(1)A→C向右3个单位,向上4个单位,所以A→C(+3,+4),同理:B→C(+2,0),D→A(﹣4,﹣2).故答案是:A→C(+3,+4),B→C(+2,0),D→A(﹣4,﹣2)(2)如图2所示.(3)甲虫走过的总路程:|+1|+|+4|+|+2|+|+1|+|﹣2|+|﹣4|+|﹣2|=16.。
第一章_有理数单元测试题(含答案)
第一章有理数单元测试题班级姓名学号得分考生注意:1、本卷共有29个小题,共100分+30分2、考试时间为90分钟一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请您把您认为适当得选项前得代号填入题后得括号中,每题2分,共20分)1、下列说法正确得就是( )A、整数就就是正整数与负整数B、负整数得相反数就就是非负整数C、有理数中不就是负数就就是正数D、零就是自然数,但不就是正整数2、下列各对数中,数值相等得就是( )A、-27与(-2)7B、-32与(-3)2C、-3×23与-32×2D、―(―3)2与―(―2)33、在-5,-,-3、5,-0、01,-2,-212各数中,最大得数就是( )A、-12B、- C 、-0、01 D、-54、如果一个数得平方与这个数得差等于0,那么这个数只能就是( )A、0B、-1 C 、1 D、0或15、绝对值大于或等于1,而小于4得所有得正整数得与就是( )A、 8B、7C、 6D、56、计算:(-2)100+(-2)101得就是( )A、2100B、-1C、-2D、-21007、比-7、1大,而比1小得整数得个数就是( )A 、6 B、7 C、 8 D、98、2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为12050000枚,用科学记数法表示正确得就是( )A.1、205×107B.1、20×108C.1、21×107D.1、205×1049、下列代数式中,值一定就是正数得就是( )A.x2 B、|-x+1| C、(-x)2+2 D、-x2+110、已知8、62=73、96,若x2=0、7396,则x得值等于( )A 86、 2B 862C ±0、862D ±862二、填空题(本题共有9个小题,每小题2分,共18分)11、一幢大楼地面上有12层,还有地下室2层,如果把地面上得第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为 ;地下第一层记作 ;数-2得实际意义为 ,数+9得实际意义为。
【推荐精选】2018-2019学年度七年级数学上册 第1章 有理数 1.2 数轴同步练习 (新版)浙教版
1.2 数轴学校:___________姓名:___________班级:___________一.选择题(共12小题)1.在数轴上与表示数4的点距离5个单位长度的点表示的数是()A.5 B.﹣1 C.9 D.﹣1或92.在数轴上距﹣2有3个单位长度的点所表示的数是()A.1 B.﹣1 C.﹣5 或1 D.﹣53.有理数a、b在数轴上的位置如图,则下列结论正确的是()A.﹣a<﹣b<a<b B.a<﹣b<b<﹣a C.﹣b<a<﹣a<b D.a<b<﹣b<﹣a 4.数轴上表示数12和表示数﹣4的两点之间的距离是()A.8 B.﹣8 C.16 D.﹣165.如图所示,圆的周长为4个单位长度.在圆的4等分点处标上0,1,2,3,先让圆周上的0对应的数与数轴的数﹣1所对应的点重合,再让数轴按逆时针方向绕在该圆上.那么数轴上的﹣2007将与圆周上的数字()重合.A.0 B.1 C.2 D.36.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1 B.3 C.±2 D.1或﹣37.小明同学将2B铅笔笔尖从原点O开始沿数轴进行连续滑动,先将笔尖沿正方向滑动1个单位长度完成第一次操作;再沿负半轴滑动2个单位长度完成第二次操作;又沿正方向滑动3个单位长度完成第三次操作,再沿负方向滑4个单位长度完成第四次操作,…,以此规律继续操作,经过第50次操作后笔尖停留在点P处,则点P对应的数是()A.0 B.﹣10 C.﹣25 D.508.已知如图:数轴上A,B,C,D四点对应的有理数分别是整数a,b,c,d,且有c﹣2a=7,则原点应是()A.A点B.B点C.C点D.D点9.如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数﹣2009的点与圆周上表示数字()的点重合.A.0 B.1 C.2 D.310.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是()A.0 B.2 C.l D.﹣111.数轴上表示整数的点成为整点,某数轴的单位长度为1cm,若在这个数轴上随意画出一条长2017cm的线段AB,则线段AB盖住的整点有()A.2016个B.2017个C.2016个或2017个D.2017个或2018个12.一个小虫在数轴上先向右爬3个单位,再向左爬7个单位,正好停在0的位置,则小虫的起始位置所表示的数是()A.0 B.2 C.4 D.﹣4二.填空题(共8小题)13.如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B 点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D 点向左移动4个单位长度至E点,…,依此类推,经过次移动后该点到原点的距离为2018个单位长度.14.如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第次移动到的点到原点的距离为2018.15.如图,在数轴上,点A,B分别在原点O的两侧,且到原点的距离都为2个单位长度,若点A以每秒3个单位长度,点B以每秒1个单位长度的速度均向右运动,当点A与点B 重合时,它们所对应的数为.16.在数轴上,点A表示的数是﹣5,点C表示的数是4,若AB=2BC,则点B在数轴上表示的数是.17.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向左滚动.那么数轴上的﹣2009所对应的点将与圆周上字母所对应的点重合.18.若点A、点B在数轴上,点A对应的数为2,点B与点A相距5个单位长度,则点B所表示的数是19.若点A在数轴上对应的数为2,点B在点A左边,且点B与点A相距7个单位长度,则点B所表示的数是.20.在数轴上的点A表示的数为2.5,则与A点相距3个单位长度的点表示的数是.三.解答题(共3小题)21.如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.22.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东记为正,向西记为负,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定B地相对于A地的位置;(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?23.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O 为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.参考答案与试题解析一.选择题(共12小题)1.【解答】解:当点在表示4的点的左边时,此时数为:4+(﹣5)=﹣1,当点在表示4的点的右边时,此时数为:4+(+5)=9,故选:D.2.【解答】解:依题意得:|﹣2﹣x|=3,即﹣2﹣x=3或﹣2﹣x=﹣3,解得:x=﹣5或x=1.故选:C.3.【解答】解:观察数轴,可知:a<0,b>0,|a|>|b|,∴a<﹣b<b<﹣a.故选:B.4.【解答】解:根据题意得:|12﹣(﹣4)|=16.故选:C.5.【解答】解:∵﹣1﹣(﹣2007)=2006,2006÷4=501…2,∴数轴上表示数﹣2007的点与圆周上表示2的数字重合.故选:C.6.【解答】解:在数轴上,与表示数﹣1的点的距离是2的点表示的数有两个:﹣1﹣2=﹣3;﹣1+2=1.故选:D.7.【解答】解:由题意得,1﹣2+3﹣4+5﹣6+…49﹣50=25×(﹣1)=﹣25,故选:C.8.【解答】解:∵c﹣2a=7,∴从图中可看出,c﹣a=4,∴c﹣2a=c﹣a﹣a=4﹣a=7,∴a=﹣3,∴b=0,即B是原点.故选:B.9.【解答】解:∵﹣1﹣(﹣2009)=2008,2008÷4=502,∴数轴上表示数﹣2009的点与圆周上起点处表示的数字重合,即与0重合.故选:A.10.【解答】解:根据题意得:﹣2+7﹣4=1,则此时这个点表示的数是1,故选:C.11.【解答】解:依题意得:①当线段AB起点在整点时覆盖2017+1=2018个数;②当线段AB起点不在整点,即在两个整点之间时覆盖2017个数.故选:D.12.【解答】解:如图所示:,从0的位置向右爬7个单位,再向左爬3个单位可得小虫的起始位置所表示的数是4,故选:C.二.填空题(共8小题)13.【解答】解:由图可得:第1次点A向右移动1个单位长度至点B,则B表示的数为0+1=1;第2次从点B向左移动2个单位长度至点C,则C表示的数为1﹣2=﹣1;第3次从点C向右移动3个单位长度至点D,则D表示的数为﹣1+3=2;第4次从点D向左移动4个单位长度至点E,则点E表示的数为2﹣4=﹣2;第5次从点E向右移动5个单位长度至点F,则F表示的数为﹣2+5=3;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:(n+1),当移动次数为偶数时,点在数轴上所表示的数满足:﹣n,当移动次数为奇数时,若(n+1)=2018,则n=4035,当移动次数为偶数时,若﹣n=﹣2018,则n=4036.故答案为:4035或4036.14.【解答】解:第1次点A向左移动3个单位长度至点B,则B表示的数,1﹣3=﹣2;第2次从点B向右移动6个单位长度至点C,则C表示的数为﹣2+6=4;第3次从点C向左移动9个单位长度至点D,则D表示的数为4﹣9=﹣5;第4次从点D向右移动12个单位长度至点E,则点E表示的数为﹣5+12=7;第5次从点E向左移动15个单位长度至点F,则F表示的数为7﹣15=﹣8;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:﹣(3n+1),当移动次数为偶数时,点在数轴上所表示的数满足:3n﹣2,当移动次数为奇数时,﹣(3n+1)=﹣2018,n=1345,当移动次数为偶数时,3n﹣2=2018,n=(不合题意).故答案为:1345.15.【解答】解:设点A、点B的运动时间为t,根据题意知﹣2+3t=2+t,解得:t=2,∴当点A与点B重合时,它们所对应的数为﹣2+3t=﹣2+6=4,故答案为:4.16.【解答】解:∵点A表示的数是﹣5,点C表示的数是4,∴AC=4﹣(﹣5)=9;又∵AB=2BC,∴①点B在C的右边,其坐标应为4+9=13;②B在C的左边,其坐标应为4﹣9×=4﹣3=1.故点B在数轴上表示的数是1或13.故答案为:1或13.17.【解答】解:1﹣(﹣2009)=2010,2010÷4=502(周)余2,再向左滚动2个单位长度应该与字母C所对应的点重合.18.【解答】解:由题意可得,当点B在点A的左侧时,点B表示的数是:2﹣5=﹣3,当点B在点A的右侧时,点B表示的数是:2+5=7,故答案为:﹣3或7.19.【解答】解:∵2﹣7=﹣5,∴点B所表示的数是﹣5.故答案为:﹣5.20.【解答】解:∵在数轴上的点A表示的数为2.5,∴与A点相距3个单位长度的点表示的数是:2.5﹣3=﹣0.5或2.5+3=5.5.故答案为:﹣0.5或5.5.三.解答题(共3小题)21.【解答】解:(1)﹣2+4=2.故点B所对应的数;(2)(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A,B两点间距离是12个单位长度.(3)运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,解得x=4;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12+4,解得x=8.故经过4秒或8秒长时间A,B两点相距4个单位长度.22.【解答】解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,答:B地在A地的东边20千米;(2)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12|+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升),答:冲锋舟当天救灾过程中至少还需补充9升油.23.【解答】解:(1)∵|a+8|与(b﹣16)2互为相反数,∴|a+8|+(b﹣16)2=0,∴a+8=0,b﹣16=0,解得a=﹣8,b=16.∴此时刻快车头A与慢车头C之间相距16﹣(﹣8)=24单位长度;(2)(24﹣8)÷(6+2)=16÷8=2(秒).或(24+8)÷(6+2)=4(秒)答:再行驶2秒或4秒两列火车行驶到车头AC相距8个单位长度;(3)∵PA+PB=AB=2,当P在CD之间时,PC+PD是定值4,t=4÷(6+2)=4÷8=0.5(秒),此时PA+PC+PB+PD=(PA+PB)+(PC+PD)=2+4=6(单位长度).故这个时间是0.5秒,定值是6单位长度.推荐精选K12资料推荐精选K12资料。
2018-2019年度部编版七年级上侧数学单元测试试卷 第一章 有理数1435
2018-2019年度部编版七年级上侧数学单元测试试卷第一章有理数满分:100分;考试时间:120分钟学校:__________一、选择题1.运用分配律计算(-3)×(-4+2-3),下面有四种不同的结果,其中正确的是()A.(-3)×4-3×2-3×3 B.(-3)×(-4)-3×2-3×3C.(-3)×(-4)+3×2-3×3 D.(-3)×(-4)-3×2+3×3答案:D解析:D2.如图所示的 6 个数是按一定规律排列的,根据这个规律,括号内的数应是()A.27 B.56 C.43 D.30答案:B解析:B3.6-(+4)-(-7)+(-3)写成省略加号的和式是()A.6-4+7+3 B.6+4-7-3 C.6-4+7-3 D.6-4-7-3答案:C解析:C二、填空题4.上海浦东磁悬浮铁路全长30 km,单程运行时间约8 min,那么磁悬浮列车的平均速度用科学记数法表示约为 m/min.解析:3.75×1035.a、b是两个自然数,如果100+=,那么a与b 的积最大是.a b解析:25006.绝对值小于 4 的所有整数的积等于.解析:07.绝对值不大于3的整数有个,它们是.解答题解析:7;-3,-2,-1,0,1,2,38.中国国家图书馆藏书约2亿册,用科学记数法表示为册.解析:8210⨯9.填一填:(1) (-5) ×0.2= ;(2) (-8)× (-0.25)= ;(3) (132-)×(27-)= ;(4)0.1×(-0. 01) = ;(5) ( -59 )×0.01 ×0= ;(6)(-2)×( )=12 -;(7)(-1)×( )=15;(8) (13-)×( )=1.解析:(1)-1 (2)2 (3)1 (4)-0. 001 (5)0 (6)14(7)15- (8)-310.对于加法,我们有 3+5=5+3,11112332+=+,(-3) +(-0.5) = (-0. 5)+(-3),…,用字母可以表示成.解析:a+b=b+a三、解答题11.一支考古队在某地挖掘出一枚正方体古代金属印章,其棱长为 4.5厘米,质量为1069克,则这枚印章每立方厘米约重多少克(结果精确到0.01克)?解析:正方体的棱长为 4.5 厘米,所以其体积为34.5立方厘米.。
2018-2019年度部编版七年级上侧数学单元测试试卷 第一章 有理数3831
2018-2019年度部编版七年级上侧数学单元测试试卷第一章 有理数满分:100分;考试时间:120分钟学校:__________一、选择题1.在(5)--,2(5)--,5--,2(5)-中,负数有( )A .0个B .1个C .2个D .3个答案:C解析:C2.已知x y >,则32x -与32y -的大小关系是( )A .3232x y -≥-B .3232x y ->-C .3232x y -<-D .3232x y -≠- 答案:C解析:C3.近似数91.60万精确到( ) A .百位 B .千位 C .百分位 D .千分位 答案:A解析:A4.现规定一种新的运算“※”:a ※b =a b ,如3※2=32=8,则3※12等于( ) A .18 B .8 C .16 D .32答案:A解析:A5.在数12-,0,4.5,9,-6.79中,属于正数的有( ) A .2个 B .3个 C .4个 D .5个答案:A解析:A6. 下列各式中,等号不成立的是( )A .|5|5-=B .|4||4|--=-C .|3|3-=D .|2|2--= 答案:D解析:D7.若1aa =,则a ( )A .是正数或负数B .是正数C .是有理数D .是正整数 答案:B解析:B8.若0a b +>,0a b>,则( ) A .0a >,0b >B .0a <,0b <C .a 、b 中一正一负,且正的绝对值较大D .a 、b 中一正一负,且负的绝对值较大答案:A解析:A9.如果一个数的平方与这个数的差等于零,那么这个数只能是( )A .0B .-1C . 1D .0 或 1答案:D解析:D10.某一天,早晨的气温是-3℃,中午的气温比早晨上升了8℃,晚上的气温比中午下降了9℃,那么晚上的气温是( )A .1℃B .-4℃C .-12℃D .-2℃答案:B解析:B二、填空题11. 若将时钟的时针从“12”按逆时针方向拨到“6”,记作拨“12+”周,则将时针从“12”拨“14-周”时,时针所指的数字是 . 解析:312.与73-的和等于-1的数是 .。
七年级数学上册《第一章-有理数》单元测试题及答案(人教版)
七年级数学上册《第一章有理数》单元测试题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”.是今有两数若其意义相反,则分别叫做正数与负数,如果向北走5步记作+5步,那么向南走10步记作()A.+10步B.−10步C.+12步D.−2步2.有理数−12,5,0,-(-3),-2,-|-25|中,负数的个数为()A.1B.2C.3D.43.大于-1且小于2的整数有()A.1个B.2个C.3个D.4个4.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是()A.甲B.乙C.丙D.丁5.有理数a、b、c、d在数轴上的对应点的位置如图所示,则下列结论中正确的为()A.a>b B.a+d>0C.|b|>|c|D.bd>06.某种植物成活的主要条件是该地区的四季温差不得超过30℃,若不考虑其他因素,表中的四个地区中,适合大面积栽培这种植物的地区()地区温度甲地区乙地区丙地区丁地区四季最高气温/℃2524324四季最低气温/℃-7-5-11-28 A.甲B.乙C.丙D.丁7.−12023的倒数是()A .2023B .12023C .−2023D .−120228.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是( )A .a +b >0B .a −b >0C .−a >−b >aD .a ⋅b >09. 1千克汽油完全燃烧放出的热量为46000000焦.数据46000000用科学记数法表示为( )A .0.46×107B .4.6×106C .4.6×107D .46.0×10510.祖冲之是我国古代杰出的数学家,他首次将圆周率π精算到小数第七位,即3.1415926<π<3.1415927,则精确到百分位时π的近似值是( ) A .3.1B .3.14C .3.141D .3.142二、填空题11.某单位开展了职工健步走活动,职工每天健步走5000步即为达标.若小夏走了6200步,记为+1200步,小辰走了4800步,记为 步.12.中国人很早就开始使用负数,中国古代数学著作《九章算术》的方程一章,在世界数学史上首次引入负数.下图是小明家长11月份的微信账单,如果收入3377.51元记作+3377.51元,那么支出5333.73元记作 元.13.比较大小:−(13)2 −(12)3(填 > 或者 < 或者 =).14.点A 为数轴上表示−1的点,若将点A 沿数轴一次平移一个单位,平移两次后到达点B ,则点B 表示的数是 .15.若a=4,|b|=3,且ab<0,则a+b= .16.整数a 、b 、c 满足1000|a|+10|b|+|c|=2023,其中|a|>1且abc>1,则a+b+c 的最小值是 .三、计算题17.计算:(1)15+(−13)+18 (2)−10.25×(−4)(3)−12÷4×3(4)−23×3+2×(−3)2四、解答题18.某学校准备在升旗台的台阶上铺设一种红色的地毯(含台阶的最上层),已知这种地毯的批发价为每平方米20元,升旗台的台阶宽为3米,其侧面如图所示,请你帮助测算一下,买地毯至少需要多少元?19.已知下列有理数,在数轴上表示下列各数,并按原数从小到大的顺序用“<”把这些数连接起来.20.若a、b互为相反数,c、d互为倒数,m的绝对值为2.求m+cd+a+bm的值.21.在宇宙之中,光速是目前知道的最快的速度,可以达到3×108m/s,如果我们用光速行驶3.6×103s,请问我们行驶的路程为多少m?22.一天,小明和小红利用温差测量山峰的高度,小明在山顶测得温度是-6℃,小红在同一时刻在山脚测得温度是3℃.已知该地区高度每增加100米气温大约降低0.6℃,这座山峰的高度大约是多少米?参考答案与解析1.【答案】B【解析】解:向北走5步记作+5步,那么向南走10步记作−10步故答案为:B.【分析】正数与负数可以表示一对具有相反意义的量,若规定向北走为正,则向南走为负,据此解答.2.【答案】C【解析】解:−(−3)=3,−|−25|=−25∴有理数−12,5,0,-(-3),-2,-|-25|中是负数的有−12,−2,−|−25|共3个故答案为:C.【分析】首先根据相反数及绝对值的性质将需要化简的数分别化简,再根据小于0的数就是负数即可判断得出答案.3.【答案】B【解析】解:大于-1且小于2的整数有0、1,共2个.故答案为:B.【分析】根据有理数比较大小的方法进行解答.4.【答案】D【解析】|+1.5|=1.5,|﹣3.5|=3.5,|0.7|=0.7,|﹣0.6|=0.60.6<0.7<1.5<3.5最接近标准质量的足球是丁.故答案为:D【分析】根据绝对值最小的最接近标准加以判定。
第一章《有理数》单元综合测试题(附答案)
第一章《有理数》单元综合测试题(收假后对改)一、选择题(每小题3分,共30分)1.下列说法正确的是( )A .任何负数都小于它的相反数B .零除以任何数都等于零C .若b a≠,则22b a ≠ D .两个负数比较大小,大的反而小2.如果一个数的绝对值等于它的相反数,那么这个数( )A .必为正数B .必为负数C .一定不是正数D .不能确定正负 3.当a 、b 互为相反数时,下列各式一定成立的是( ) A .1-=a b B .1=abC .0=+b aD .0 ab 4.π-14.3的计算结果是( )A .0B .π-14.3C .14.3-πD .π--14.35.a 为有理数,则下列各式成立的是( ) A .02>aB .012<-aC .0)(>--aD .012>+a6.如果一个数的平方与这个数的绝对值相等,那么这个数是( ) A .0 B .1 C .-1 D .0,1或-1 7.若3.0860是四舍五入得到的近似数,则下列说法中正确的是( ) A .它有四个有效数字3,0,8,6 B .它有五个有效数字3,0,8,6,0 C .它精确到0.001 D .它精确到百分位 8.已知0<a ,01<<-b ,则a ,ab ,2ab 按从小到大的顺序排列为( )A .2ab ab a<< B .ab a ab <<2 C .a ab ab <<2 D .ab ab a <<29. 下列各组运算中,其值最小的是( )A .2)23(--- B .)2()3(-⨯- C .22)2()3(-÷- D .)2()3(2-⨯-10.几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是( ) A .28 B .33 C .45 D .57 二、填空题(每小题3分,共24分) 11.绝对值小于5的整数共有___________个。
有理数单元测试题(含答案)
第一章有理数单元测试一、选择题(共10小题)1.在,﹣2,0,﹣3.4这四个数中,属于负分数的是()A. B. -2 C. 0 D. ﹣3.4【答案】D2.下列四个数中,其倒数的相反数是正整数的是()A. 3B.C. -2D.【答案】D3.2018年五一小长假,杭州市公园、景区共接待游客总量617.57万人次,用科学计数法表示617.57万的结果是( )A. B. C. D.【答案】B4.a,b是有理数,它们在数轴上的对应点的位置如图所示,则下列结论正确的是()A. a+b>0B. a+b<0C. a﹣b=0D. a﹣b>0【答案】B5.若有理数a与3互为相反数,则a的值是()A. 3B. -3C.D. -【答案】B6.数据26000用科学记数法表示为2.6×10n,则n的值是()A. 2B. 3C. 4D. 5【答案】C7.在一次数学测试中,七(2)班的平均分为85分,把高于平均分的高出部分数记为正数,老师将某一小组的美美、多多、田田、乐乐四位同学的成绩记为+7,-4,-11,+13,则这四位同学实际成绩最高的是()A. 美美B. 多多C. 田田D. 乐乐【答案】D8.下列说法中正确的是()A. 减去一个数等于加上这个数B. 两个相反数相减得0C. 两个数相减,差一定小于被减数D. 两个数相减,差不一定小于被减数【答案】D9.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)= ;④(﹣4)÷×(﹣2)=16.其中正确的个数()A. 4个B. 3个C. 2个D. 1个【答案】C10.下列说法中正确的是()A. 若a+b>0,则a>0,b>0B. 若a+b<0,则a<0,b<0C. 若a+b>a,则a+b>bD. 若|a|=|b|,则a=b或a+b=0【答案】D二、填空题(共10小题)11.若约定向北走5km记作+5km,那么向南走3km记作________ km.【答案】﹣312.比较大小:4 ________5【答案】<13.若x=4,则|x﹣5|=________.【答案】114.(2016•镇江)计算:(﹣2)3=________.【答案】-815.设[x]表示不超过x的最大整数,计算[2.7]+[﹣4.5]=________.【答案】﹣316.到原点的距离不大于3的整数有________ 个【答案】717. 截止2017年4月28日,电影《美人鱼》的累计票房达到大约3390000000元,数据3390000000用科学记数法表示为________【答案】3.39×10918.﹣1减去与的和,所得的差是________【答案】19.数轴上A点表示原点左边距离原点3个单位长度、B点在原点右边距离原点2个单位长度,那么两点所表示的有理数的和与10的差是________【答案】—1120.对有理数a、b定义运算“﹡”如下:a﹡b= ,则(﹣3)﹡4=________.【答案】-12三、解答题(共5题)21.写出数轴上所有大于-4,且小于2的整数;【答案】—3、—2、—1、0、122.规定a※b=a﹣b,求4※(﹣6)的值.【答案】解:4※(﹣6)=4﹣(﹣6)=4+6=10.23.计算:(1)4×(﹣5)+|5﹣8|+24÷(﹣3)(2).【答案】(1)解:原式=﹣20+3﹣8=﹣25(2)解:原式=﹣1﹣=﹣24.今年的“十•一”黄金周是8天的长假,某风景区在8天假期中每天旅游人数变化如表(正号表示人数比前一天多,符号表示比前一天少)日期1日2日3日4日5日6日7日8日人数变化单位:万人+1.8 ﹣0.6 +0.2 ﹣0.7 ﹣1.3 +0.5 ﹣2.4 ﹣1.2(1)若9月30日的游客人数为4.2万人,则10月4日的旅客人数为________万人;(2)八天中旅客人数最多的一天比最少的一天多________万人?(3)如果每万人带来的经济收入约为100万元,则黄金周八天的旅游总收入约为多少万元?【答案】(1)4.9(2)4.3(3)解:根据表格得:每天旅客人数分别为6万人、5.4万人、5.6万人、4.9万人、3.6万人、4.1万人、1.7万人,则黄金周七天的旅游总收入约为(6+5.4+5.6+4.9+3.6+4.1+1.7)×100=3130(万元).25.检修组乘汽车,沿公路检修线路,约定向东为正.向西为负,某天自A出发,到收工时,行走记录为(单位:千米):+8、﹣9、+4、+7、﹣2、﹣10、+19、﹣3 回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?【答案】(1)解:+8﹣9+4+7﹣2﹣10+19﹣3=14,东边14千米(2)解:(+8+|﹣9|+4+7+|﹣2|+|﹣10|+19+|﹣3|)×0.3=18.3升,答:从A地出发到收工时,共耗油18.3升。
第一章-有理数单元测试题及答案
第一章 有理数测试题一、 选择题(每题3分,共30分)1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元(A )4101.1⨯ (B )5101.1⨯ (C )3104.11⨯ (D )3103.11⨯2、大于–3.5,小于2.5的整数共有( )个。
(A )6 (B )5 (C )4 (D )33、已知数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于( )(A )2 (B )–2 (C )1 (D )–14、如果两个有理数的积是正数,和也是正数,那么这两个有理数( )(A )同号,且均为负数 (B )异号,且正数的绝对值比负数的绝对值大(C )同号,且均为正数 (D )异号,且负数的绝对值比正数的绝对值大5、在下列说法中,正确的个数是( )⑴任何一个有理数都可以用数轴上的一个点来表示⑵数轴上的每一个点都表示一个有理数⑶任何有理数的绝对值都不可能是负数⑷每个有理数都有相反数A 、1B 、2C 、3D 、46、如果一个数的相反数比它本身大,那么这个数为( )A 、正数B 、负数C 、整数D 、不等于零的有理数7、下列说法正确的是( )A 、几个有理数相乘,当因数有奇数个时,积为负;B 、几个有理数相乘,当正因数有奇数个时,积为负;C 、几个有理数相乘,当负因数有奇数个时,积为负;D 、几个有理数相乘,当积为负数时,负因数有奇数个;8、在有理数中,绝对值等于它本身的数有()A.1个B.2个C. 3个D.无穷多个9、下列计算正确的是()A.-22=-4B.-(-2)2=4C.(-3)2=6D.(-1)3=110、如果a <0,那么a 和它的相反数的差的绝对值等于( )A.aB.0C.-aD.-2a二、填空题:(每题2分,共42分)1、()642=。
2、小明与小刚规定了一种新运算*:若a 、b 是有理数,则a*b = b a 23-。
第一章有理数单元测试题(含解析)
有理数单元测试题(含解析)试卷副标题考试范围:有理数;考试时间:100分钟;命题人:xxx 学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题)1.计算﹣(+1)+|﹣1|,结果为()A.﹣2B.2C.1D.02.若|a|=|b|,则a,b的关系是()A.a=bC.a=0且b=0B.a=﹣bD.a+b=0或a﹣b=03.若|x|+x=0,则x一定是()A.负数B.0C.非正数D.非负数4.已知|a|=3,b=﹣8,ab>0,则a﹣b的值为()A.11B.﹣11C.5D.﹣5 5.如果|a|≥0,那么()A.a>0B.a<0C.a≠0D.a为任意数6.如果|a|=﹣a,下列成立的是()A.a>0B.a<0C.a≥0D.a≤0 7.如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤0 8.如果|﹣a|=﹣a,下列成立的是()A.a<0B.a≤0C.a>0D.a≥0 9.若ab>0,且a+b<0,那么()A.a>0,b>0B.a>0,b<0C.a<0,b<0D.a<0,b>0 10.数a,b,c在数轴上对应的点的位置如图所示,化简﹣|a|+|b﹣c|﹣|a﹣b|()A.﹣2b+c B.2a+c C.2a﹣2b+c D.﹣2a+c评卷人得分二.填空题(共8小题)11.相反数等于本身的数是,倒数等于本身的数是,绝对值等于本身的数是,立方等于本身的数是.12.绝对值等于本身的数是.相反数等于本身的数是,绝对值最小的负整数是,绝对值最小的有理数是.13.最小的正整数是,最大的负整数是,相反数等于本身的数是.14.比﹣3小9的数是,最小的正整数是,相反数等于本身的数是.15.若|x﹣3|与|y+2|互为相反数,求x+y+3的值.16.若有理数m、n满足|m+2|+(n﹣1)2=0,则(m+n)2014=.17.已知|x|=3,|y|=7,x<y,则x+y=.18.x是绝对值最小的有理数,y是最小的正整数,z是最大的负整数,则x+y+z=.评卷人得分三.解答题(共14小题)19.把下列各数填入相应的大括号里.﹣,﹣3.14,260,﹣2009,,﹣0.010010001…,﹣7,3.1415,π,0,,0.03,﹣3,10,﹣0.,﹣正分数集合{…};正数集合{…};整数集合{…};非正数集合{…};有理数集合{…};自然数集合{…}.20.已知a,b,c为三个不等于0的数,且满足abc>0,a+b+c<0,求++的值.21.已知有理数a、b、c在数轴上所对应的点位置如图所示,原点为O.试化简|a+2b|﹣|a ﹣c|﹣|c﹣2b|+|c﹣b|.22.若|x﹣3|与(y+1)2互为相反数,求x3﹣y3的值.23.已知:|x|=3,|y|=5,|z|=7,若x<y<z,求x+y+z的值.24.若|m|=37,|n|=31,且|m+n|=﹣(m+n),求m﹣n的值.25.已知|a|=2,|b|=5,且ab<0,求3a﹣2b的值.26.已知=1,求++的值.27.如果|a+1|+(b﹣2)2=0(1)求a,b的值;(2)求(a+b)2017+a2018的值.28.已知有理数a,b,c在数轴上对应点如图所示,化简|a﹣b|+|b﹣c|﹣|c﹣a|.29.有理数a,b,c在数轴上对应的点分别为A,B,C.(1)若有理数a,b,c对应的点在数轴上的位置如图1,若|a|>|b|,请用“<”把﹣,﹣a,b,a﹣c连接起来;(2)如图2,已知a=﹣,b=,点C是数轴上的一个点.①若点C与点B的距离为,则c的值为;②若点M是AC的中点,点N是BC的中点,猜想线段AB与线段MN之间的关系,并说明理由.30.观察下面三行数:﹣3,9,﹣27,81…①1,﹣3,9,﹣27…②﹣2,10,﹣26,82…③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)设x,y,z分别为第①②③行的2012个数,求x+6y+z的值.:31.某一出租车一天下午以家为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:km )依先后次序记录如下:+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+15(1)将最后一名乘客送到目的地,出租车离自己家多远?在自己家的什么方向?(2)若汽车耗油量为 0.1L /km (升/千米),这天下午接送乘客,出租车共耗油多少升?(3)若出租车起步价为 8 元,起步里程为 3km (包括 3km ),超过部分每千米 1.2 元,问这天下午司机的营业额是多少元?32.某工艺厂计划一周生产工艺品 2100 个,平均每天生产 300 个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负)星期增减(单位:个)一+5二﹣2 三﹣5 四+15五﹣10 六+16日﹣9(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量;(4)已知该厂实行每周计件工资制,每生产一个工艺品可得 60 元,若超额完成任务,则超过部分每个另奖 50 元,少生产一个扣 80 元.试求该工艺厂在这一周应付出的工资总额.| 0有理数单元测试题(含解析)参考答案与试题解析一.选择题(共 10 小题)1.计算﹣(+1)+|﹣1|,结果为()A .﹣2B .2C .1D .0【分析】原式利用绝对值的代数意义,以及加法法则计算即可求出值.【解答】解:原式=﹣1+1=0,故选:D .【点评】此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.2.若|a|=|b |,则 a ,b 的关系是()A .a =bC .a =0 且 b =0B .a =﹣bD .a +b =0 或 a ﹣b =0【分析】根据绝对值性质选择.【解答】解:根据绝对值性质可知,若a|=|b |,则 a 与 b 相等或相反,即 a +b =0 或 a ﹣b=0.故选:D .【点评】一个正数的绝对值是它本身;一个负数的绝对值是它的相反数; 的绝对值是 0. 3.若|x |+x =0,则 x 一定是()A .负数B .0C .非正数D .非负数【分析】先整理,然后根据绝对值等于它的相反数进行解答.【解答】解:由 x +|x|=0 得,|x|=﹣x ,∵负数或零的绝对值等于它的相反数,∴x 一定是负数或零,即非正数.故选:C .【点评】本题考查了绝对值与正数和负数,需要注意 0 的相反数是 0,也是它的相反数.4.已知|a|=3,b =﹣8,ab >0,则 a ﹣b 的值为()A .11B .﹣11C .5D .﹣5【分析】先由绝对值性质知a=3或a=﹣3,再根据ab>0知a=﹣3,代入计算可得.【解答】解:∵|a|=3,∴a=3或a=﹣3,∵b=﹣8、ab>0,∴a=﹣3、b=﹣8,则a﹣b=﹣3﹣(﹣8)=﹣3+8=5,故选:C.【点评】本题主要考查有理数的乘法,解题的关键是掌握绝对值的性质、有理数的乘法法则和减法法则.5.如果|a|≥0,那么()A.a>0B.a<0C.a≠0D.a为任意数【分析】根据绝对值的性质判断即可.【解答】解:∵|a|≥0,∴a为任意数,故选:D.【点评】本题考查了绝对值的性质,熟记绝对值的性质是解题的关键.6.如果|a|=﹣a,下列成立的是()A.a>0B.a<0C.a≥0D.a≤0【分析】绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【解答】解:如果|a|=﹣a,即一个数的绝对值等于它的相反数,则a≤0.故选:D.【点评】本题主要考查的类型是:|a|=﹣a时,a≤0.此类题型的易错点是漏掉0这种特殊情况.规律总结:|a|=﹣a时,a≤0;|a|=a时,a≥0.7.如果|a|=a,下列各式成立的是()A.a>0B.a<0C.a≥0D.a≤0【分析】由条件可知a是绝对值等于本身的数,可知a为0或正数,可得出答案.【解答】解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.【点评】本题主要考查绝对值的计算,掌握绝对值等于它本身的数有0和正数(即非负数)是解题的关键.8.如果|﹣a|=﹣a,下列成立的是()A.a<0B.a≤0C.a>0D.a≥0【分析】根据绝对值的意义由|﹣a|=﹣a得到﹣a≥0,然后解不等式即可.【解答】解:∵|﹣a|=﹣a,∴﹣a≥0,∴a≤0.故选:B.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.9.若ab>0,且a+b<0,那么()A.a>0,b>0B.a>0,b<0C.a<0,b<0D.a<0,b>0【分析】两数之积大于0,说明两数同号,两数之和小于0,说明两数都是负数.【解答】解:∵ab>0,∴a,b同号;又∵a+b<0,∴a,b同为负数.故选:C.【点评】本题考查的知识点为:两数相乘,同号得正;同号两数相加为负数,则这两个数都为负数.10.数a,b,c在数轴上对应的点的位置如图所示,化简﹣|a|+|b﹣c|﹣|a﹣b|()A.﹣2b+c B.2a+c C.2a﹣2b+c D.﹣2a+c【分析】首先利用数轴得出a<0,b﹣c<0,a﹣b<0,进而去绝对值合并同类项即可.【解答】解:由数轴可得:a<0,b﹣c<0,a﹣b<0,则﹣|a|+|b﹣c|﹣|a﹣b|=a﹣b+c+a﹣b=2a﹣2b+c.故选:C.【点评】此题主要考查了整式的加减,正确得出绝对值里面式子的符号是解题关键.二.填空题(共8小题)11.相反数等于本身的数是0,倒数等于本身的数是±1,绝对值等于本身的数是非负数,立方等于本身的数是0和±1.【分析】根据相反数的定义,倒数的定义,绝对值的性质和有理数的乘方的定义分别填空即可.【解答】解:相反数等于本身的数是0,倒数等于本身的数是±1,绝对值等于本身的数是非负数,立方等于本身的数是0和±1.故答案为:0;±1;非负数;0和±1.【点评】本题考查了有理数的乘方,相反数的定义,绝对值的性质和倒数的定义,是基础题,熟记各概念与性质是解题的关键.12.绝对值等于本身的数是非负数.相反数等于本身的数是0,绝对值最小的负整数是﹣1,绝对值最小的有理数是0.【分析】根据绝对值和相反数的定义及性质来解答.【解答】解:绝对值等于本身的数是非负数.相反数等于本身的数是0,绝对值最小的负整数是﹣1,绝对值最小的有理数是0.【点评】本题考查了相反数和绝对值的定义,对于这样的题,要灵活掌握理解其性质.13.最小的正整数是1,最大的负整数是﹣1,相反数等于本身的数是0.【分析】根据正数、负数、整数、相反数定义得出即可.【解答】解:最小的正整数是1,最大的负整数是﹣1,相反数等于本身的数是0,故答案为:1,﹣1,0.【点评】本题考查了对有理数和相反数的应用,主要考查学生的理解能力.14.比﹣3小9的数是﹣12,最小的正整数是1,相反数等于本身的数是0.【分析】根据题意列出算式,利用减法法则计算即可得到结果;找出最小的正整数,以及相反数等于本身的数即可.【解答】解:根据题意得:﹣3﹣9=﹣12;最小的正整数为1;相反数等于本身的数为0,故答案为:﹣12;1;0.【点评】此题考查了有理数的减法,有理数,以及相反数,熟练掌握运算法则是解本题的关键.15.若|x﹣3|与|y+2|互为相反数,求x+y+3的值4.【分析】根据互为相反数的两个数的性质可知:互为相反数的两个数的和0.再结合绝对值的意义分析:几个非负数的和为0,它们同时为0.【解答】解:因为|x﹣3|与|y+2|互为相反数,所以|x﹣3|+|y+2|=0,所以|x﹣3|=0,|y+2|=0,即x﹣3=0,y+2=0,所以x=3,y=﹣2.所以x+y+3=3+(﹣2)+3=4.【点评】注意:几个非负数的和为0,那么它们必须同时为0.16.若有理数m、n满足|m+2|+(n﹣1)2=0,则(m+n)2014=1.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m+2=0,n﹣1=0,解得m=﹣2,n=1,所以,(m+n)2014=(﹣2+1)2014=1.故答案为:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.17.已知|x|=3,|y|=7,x<y,则x+y=10或4.【分析】根据绝对值的定义,求出x、y的值,计算即可;【解答】解:∵|x|=3,|y|=7,∴x=±3,y=±7,∵x<y,∴x=3,y=7或x=﹣3,y=7,∴x+y=10或4,故答案为10或4.【点评】本题考查绝对值、有理数的加法等知识,解题的关键是判断出x、y的值是解决问题的关键.,3.1415,18.x 是绝对值最小的有理数,y 是最小的正整数,z 是最大的负整数,则 x +y +z =0 .【分析】直接利用绝对值的性质以及正整数、负整数的定义得出 x ,y ,z 的值进而得出答案.【解答】解:∵x 是绝对值最小的有理数,y 是最小的正整数,z 是最大的负整数,∴x =0,y =1,z =﹣1,则 x +y +z =0+1﹣1=0.故答案为:0.【点评】此题主要考查了有理数的加法,正确把握相关定义得出 x ,y ,z 的值是解题关键.三.解答题(共 14 小题)19.把下列各数填入相应的大括号里.﹣ ,﹣3.14,260,﹣2009, ,﹣0.010010001…,﹣7,3.1415,π,0, ,0.03,﹣3 ,10,﹣0.,﹣正分数集合{,0.03 …};正数集合 { 260, ,3.1415,π,,0.03,10 …};整数集合 { 260,﹣2009,﹣7,0,10,﹣…};非正数集合{ ﹣ ,﹣3.14,﹣2009,﹣0.010010001…,﹣7,,﹣3 ,﹣0.,﹣ …};有理数集合{ ﹣ ,﹣3.14,260,﹣2009, ,﹣7,3.1415,0,10,﹣0.,﹣ …};自然数集合{ 260,0,10. …}.【分析】根据各自的定义判断即可得到结果.,0.03,﹣3 ,【解答】解:正分数集合{ ,3.1415,,0.03,…};正数集合 {260, ,3.1415,π,,0.03,10,…};整数集合 { 260,﹣2009,﹣7,0,10,﹣ …};非正数集合{﹣ ,﹣3.14,﹣2009,﹣0.010010001…,﹣7,0,﹣3 ,﹣0.,﹣ …};有理数集合{﹣,﹣3.14,260,﹣2009,,﹣7,3.1415,0,,0.03,﹣3,10,﹣0.,﹣…};自然数集合{260,0,10,…}.故答案为:,3.1415,,0.03;260,,3.1415,π,,0.03,10;260,﹣2009,﹣7,0,10,﹣;﹣,﹣3.14,﹣2009,﹣0.010010001…,﹣7,0,﹣3,﹣0.,﹣;﹣,﹣3.14,260,﹣2009,,﹣7,3.1415,0,,0.03,﹣3,10,﹣0.,﹣;260,0,10.【点评】此题考查了有理数,熟练掌握各自的定义是解本题的关键.20.已知a,b,c为三个不等于0的数,且满足abc>0,a+b+c<0,求++的值.【分析】根据题意,由于abc>0,a+b+c<0,依据有理数加法和乘法法则求解即可.【解答】解:∵abc>0,a+b+c<0,∴a,b,c一正两负,∴++=1﹣1﹣1=﹣1.【点评】本题考查了有理数的乘法,几个不等于零的数相乘,积的符号由负因数的个数决定:当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正.21.已知有理数a、b、c在数轴上所对应的点位置如图所示,原点为O.试化简|a+2b|﹣|a ﹣c|﹣|c﹣2b|+|c﹣b|.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【解答】解:根据数轴上点的位置得:a<b<0<c,∴a+2b<0,a﹣c<0,c﹣2b>0,c﹣b>0,则原式=﹣a﹣2b+a﹣c﹣c+2b+c﹣b=﹣c﹣b.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.22.若|x﹣3|与(y+1)2互为相反数,求x3﹣y3的值.【分析】根据|x﹣3|与(y+1)2互为相反数及绝对值、平方的性质求出x,y的值,代入x3﹣y3进行计算即可.【解答】解:∵|x﹣3|与(y+1)2互为相反数,|x+2|≥0,(y﹣3)2≥0,∴|x﹣3|=0,(y+1)2=0,解得x=3,y=﹣1,∴x3﹣y3=33﹣(﹣1)3=28.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).23.已知:|x|=3,|y|=5,|z|=7,若x<y<z,求x+y+z的值.【分析】根据|x|=3,|y|=5,|z|=7,求出x、y、z的值,再根据x<y<z,分情况求x+y+z 的值.【解答】解:因为|x|=3,|y|=5,|z|=7,所以x=±3,y=±5,z=±7,又因为x<y<z,则当x=﹣3,y=5,z=7时,x+y+z=﹣3+5+7=9;当x=3,y=5,z=7时,x+y+z=3+5+7=15.所以x+y+z的值为9或15.【点评】考查了有理数的加法,注意本题分x=﹣3,y=5,z=7和x=3,y=5,z=7两种情况求值,不要漏解.24.若|m|=37,|n|=31,且|m+n|=﹣(m+n),求m﹣n的值.【分析】根据绝对值的意义,可得m、n的值;根据m、n的值,可得答案.【解答】解:|m|=37,|n|=31,且|m+n|=﹣(m+n),得m=﹣37,n=±31,m﹣n=﹣37+31=﹣6,或m﹣n=﹣37﹣31=﹣68.【点评】本题考查了绝对值,利用绝对值的意义得出m、n的值是解题关键.25.已知|a|=2,|b|=5,且ab<0,求3a﹣2b的值.【分析】根据题意,利用绝对值的代数意义计算求出a与b的值,代入原式计算即可求( 出值.【解答】解:∵|a|=2,|b |=5,且 ab <0,∴a =﹣2,b =5;a =2,b =﹣5,则 3a ﹣2b =﹣16 或 16.【点评】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.26.已知=1,求 + + 的值.【分析】根据题意得到 abc 同号,分类讨论即可确定出原式的值.【解答】解:∵=1,即|abc|=abc ,∴abc >0,当 a ,b ,c 同时为正时,原式=1+1+1=3;当 a ,b ,c 中有两个为负,一个为正时,原式=﹣1﹣1+1=﹣1.【点评】此题考查了有理数的除法,以及有理数的乘法,熟练掌握运算法则是解本题的关键.27.如果|a +1|+(b ﹣2)2=0(1)求 a ,b 的值;(2)求(a +b )2017+a 2018 的值.【分析】 1)根据非负数的性质列式求出 a 、b ;(2)根据乘方法则计算即可.【解答】解:(1)由题意得,a +1=0,b ﹣2=0,解得,a =﹣1,b =2;(2)(a +b )2017+a 2018=1+1=2.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为 0 时,则其中的每一项都必须等于 0 是解题的关键.28.已知有理数 a ,b ,c 在数轴上对应点如图所示,化简|a ﹣b |+|b ﹣c|﹣|c ﹣a|.【分析】结合数轴,先确定 a 、b 、c 的大小关系,进而确定 a ﹣b ,b ﹣c ,c ﹣a 的符号,再利用绝对值的性质求解.【解答】解:由图示知:c <0<b <a ,∴a ﹣b >0,b ﹣c >0,c ﹣a <0,( ( ( ( ∴|a ﹣b |=a ﹣b ,|b ﹣c|=b ﹣c ,|c ﹣a|=﹣(c ﹣a ),∴|a ﹣b |+|b ﹣c|﹣|c ﹣a|=a ﹣b +b ﹣c +c ﹣a =0.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.要注意先确定绝对值符号内代数式的正负情况,再根据绝对值的性质去掉绝对值符号进行有理数运算.尤其要注意绝对值内的代数式是负数时,去掉绝对值符号后变为原来的相反数.29.有理数 a ,b ,c 在数轴上对应的点分别为 A ,B ,C .(1)若有理数 a ,b ,c 对应的点在数轴上的位置如图 1,若|a|>|b |,请用“<”把﹣ ,﹣a ,b ,a ﹣c 连接起来;(2)如图 2,已知 a =﹣ ,b = ,点 C 是数轴上的一个点.①若点 C 与点 B 的距离为 ,则 c 的值为 0 或 ;②若点 M 是 AC 的中点,点 N 是 BC 的中点,猜想线段 AB 与线段 MN 之间的关系,并说明理由.【分析】 1)根据数轴左边的数小于右边的数即可求解;(2)①分两种情况讨论即可求解;②分三种情况: 一)当点 C 在线段 AB 上时; 二)当点 C 在线段 AB 的延长线上时; 三)当点 C 在线段 BA 的延长线上时;进行讨论即可求解.【解答】解:(1)用“<”把﹣ ,﹣a ,b ,a ﹣c 连接起来为:a ﹣c <b <﹣a <﹣ ;(2)① ﹣c = ,解得 c =0;c ﹣ = ,解得 c = .故 c 的值为 0 或 .故答案为:0 或 .②(一)如图,当点C在线段AB上时;∵M是AC的中点,N是BC的中点∴CM=AC=,CN=BC=,∴MN=CM+CN=(AC+BC)=AB=;(二)如图,当点C在线段AB的延长线上时;∵M是AC的中点,N是BC的中点,∴CM=AC=,CN=BC=;∴MN=CM﹣CN=(AC﹣BC)=AB=.(三)如图,当点C在线段BA的延长线上时;∵M是AC的中点,N是BC的中点,∴CM=AC=,CN=BC=;∴MN=CN﹣CM=(BC﹣AC)=AB=.综上所述:MN=AB=.【点评】此题综合考查了数轴、有理数大小比较和两点间的距离的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.30.观察下面三行数:﹣3,9,﹣27,81…①1,﹣3,9,﹣27…②﹣2,10,﹣26,82…③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)设x,y,z分别为第①②③行的2012个数,求x+6y+z的值.【分析】1)观察可看出第一行的数分别是﹣3的1次方,二次方,三次方,四次方…且(( (偶数项是正数,奇数项是负数,用式子表示规律为: ﹣3)n ;(2)观察②,③两行的数与第①行的联系,即可得出答案;(3)分别求得第①②③行的 2012 个数,得出 x ,y ,z 代入求得答案即可.【解答】解:(1)∵﹣3,9,﹣27,81,﹣243,729…;∴第①行数是:(﹣3)1,(﹣3)2,(﹣3)3,(﹣3)4,…(﹣3)n ;(2)第②行数是第①行数相应的数乘﹣ 即﹣ ×(﹣3)n ,第③行数的比第①行的数大 1 即(﹣3)n +1.(3)∵x =32012,y =﹣ ×32012×=﹣32011,z =32012+1,∴x +6y +z =32012+6×(﹣32011)+32012+1=1.【点评】此题主要考查了数字变化规律,比较简单,观察得出每行之间的关系是解题的关键.31.某一出租车一天下午以家为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:km )依先后次序记录如下:+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+15(1)将最后一名乘客送到目的地,出租车离自己家多远?在自己家的什么方向?(2)若汽车耗油量为 0.1L /km (升/千米),这天下午接送乘客,出租车共耗油多少升?(3)若出租车起步价为 8 元,起步里程为 3km (包括 3km ),超过部分每千米 1.2 元,问这天下午司机的营业额是多少元?【分析】 1)考虑方向和路程问题,应该把这些数相加.(2)考虑行驶的路程(和行驶的方向无关),应将记录数的绝对值相加.(3)小题是实际应用,考虑与实际问题相符合 8×10+(63﹣3×10)×1.2.【解答】解:(1)(+9)+(﹣3)+(﹣5)+(+4)+(﹣8)+(+6)+(﹣3)+(﹣6)+(﹣4)+(+15)=(+9)+(+4)+(+6)+(+15)+(﹣3)+(﹣5)+(﹣8)+(﹣3)+(﹣6)+(﹣4)=(+34)+(﹣29)=+5(km ).答:将最后一名乘客送到目的地,出租车离自己家 5km ,在自己家的东面.(2)|+9|+|﹣3|+|﹣5|+|+4|+|﹣8|+|+6|+|﹣3|+|﹣6|+|﹣4|+|+15|:( =9+3+5+4+8+6+3+6+4+15,=63,0.1×63=6.3(升),答:若汽车耗油量为 0.1L /km (升/千米),这天下午接送乘客,出租车共耗油 6.3 升.(3)8×10+(63﹣3×10)×1.2=119.6(元).答:这天下午司机的营业额是 119.6 元【点评】本题考查了数轴,解此题的关键是考虑问题的方向有关还是无关,应看清题的含义,注意方向和数字两方面考虑.再应用数学解决实际问题.32.某工艺厂计划一周生产工艺品 2100 个,平均每天生产 300 个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负)星期增减(单位:个)一+5二﹣2 三﹣5 四+15五﹣10 六+16日﹣9(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量;(4)已知该厂实行每周计件工资制,每生产一个工艺品可得 60 元,若超额完成任务,则超过部分每个另奖 50 元,少生产一个扣 80 元.试求该工艺厂在这一周应付出的工资总额.【分析】 1)根据表格将 300 与 5 相加即可求得周一的产量;(2)由表格中的数字可知星期六产量最高,星期五产量最低,用星期六对应的数字与 300相加求出产量最高的量,同理用星期五对应的数字与 300 相加求出产量最低的量,两者相减即可求出所求的个数;(3)由表格中的增减情况,把每天对应的数字相加,利用互为相反数的两数和为 0,且根据同号及异号两数相加的法则计算后,与 300 与 7 的积相加即可得到工艺品一周共生产的个数;(4)用计划的 2100 乘以单价 60 元,加超额的个数乘以 50,减不足的个数乘以﹣80,即为一周工人的工资总额.【解答】解:(1)周一的产量为:300+5=305 个;(2)由表格可知:星期六产量最高,为300+(+16)=316(个),星期五产量最低,为300+(﹣10)=290(个),则产量最多的一天比产量最少的一天多生产316﹣290=26(个);(3)根据题意得一周生产的服装套数为:300×7+[(+5)+(﹣2)+(﹣5)+(+15)+(﹣10)+(+16)+(﹣9)]=2100+10=2110(套).答:服装厂这一周共生产服装2110套;(4)(+5)+(﹣2)+(﹣5)+(+15)+(﹣10)+(+16)+(﹣9)=10个,根据题意得该厂工人一周的工资总额为:2110×60+50×10=127100(元).【点评】此题考查了有理数的混合运算的应用,此类题常常结合生产、生活中的热点问题,是近几年中考的必考题型,认真阅读,理解题意是解此类题的关键.。
人教版七年级数学上册《第1章-有理数》单元测试题及答案
第一章 有理数检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分) 1.如果表示增加,那么表示( )A.增加B.增加C.减少D.减少2.有理数在数轴上表示的点如图所示,则的大小关系是( ) A. B.C. D.3.下列说法正确的个数是( ) ①一个有理数不是整数就是分数; ②一个有理数不是正数就是负数; ③一个整数不是正的,就是负的; ④一个分数不是正的,就是负的.B. 2C. 3D. 4 4.(江西中考)下列四个数中,最小的数是( ) A. B. 0 C. -2 D. 25.有理数a 、a 在数轴上对应的位置如图所示,则( )1-2A.a +a <0B.a +a >0C.a -a =0D.a -a >06.在-5,-,-,-,-2,-212各数中,最大的数是( )A.-212B.-C .- D.-57.(福州中考)地球绕太阳公转的速度约是110 000千米/时,将110 000用科学记数法表示为( ) A .11104 B .105 C .104 D .1068.用四舍五入法按要求对分别取近似值,其中错误的是( ) (精确到) (精确到百分位) (精确到千分位) 2(精确到)9.小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是( )分 分 分 分10.若规定“!”是一种数学运算符号,且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,⋯,则的值为( ) A.B. C. D.101101!98!1004950第5题图二、填空题(每小题3分,共24分) 11.的倒数是____;的相反数是____.12.在数轴上,点a 所表示的数为2,那么到点a 的距离等于3个单位长度的点所表示的数是 . 13.若0<a <1,则,,的大小关系是 .14.+的相反数与-的绝对值的和是 .15.已知每辆汽车要装4个轮胎,则51只轮胎至多能装配 辆汽车.、6、-3这三个数的和比它们绝对值的和小 .17. 一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑 台.18. 规定a ﹡a =5a +2a −1,则(-4)﹡6的值为 . 三、解答题(共46分) 19.(6分)计算下列各题: (1); (2)(12;(3)[(-4)2-(1-32)2] 22.31-321a 2a 1a⨯31⨯⨯)216141-+⨯⨯÷20.(8分)比较下列各对数的大小:(1)与; (2)与; (3)与; (4)与.21.(6分)10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:−6,−3,−1,−2,+7,+3,+4,−3,−2,+1,与标准质量相比较,这10袋小麦总计超过或不足多少千克10袋小麦总质量是多少千克每袋小麦的平均质量是多少千克54-43-54+-54+-2552232⨯2)32(⨯22.(6分)若a >0,a <0,求的值.23.(6分)小虫从某点O 出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:cm ):+5,−3,+10,−8,−6,+12,−10. 问:(1)小虫是否回到出发点O(2)小虫离开出发点O 最远是多少厘米(3)在爬行过程中,如果每爬行1 cm 奖励一粒芝麻,则小虫共可得到多少粒芝麻?32---+-x y y x24.(6分)同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)找出所有符合条件的整数a,使得|a+5|+|a−2|=7,这样的整数是_____.25.(8分)一辆货车从超市出发,向东走了1千米,到达小明家,继续向东走了3千米到达小兵家,然后向西走了10千米,到达小华家,最后又向东走了6千米结束行程.(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1千米,请你在下面的数轴上表示出小明家、小兵家和小华家的具体位置.第25题图(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1千米的用油量为升,请你计算货车从出发到结束行程共耗油多少升?第一章 有理数检测题参考答案解析:在一对具有相反意义的量中,把其中的一个量规定为“正”的,那么与它意义相反的量就是“负”的.“正”和“负”相对,所以如果表示增加,那么表示减少.解析:由数轴可知。
七年级上册数学第一章《有理数》测试题(含答案)
第一章 有理数单元测试题(120分)姓名: 班级: 学号:一、选择题(3分×10=30分) 1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、200812、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-112-=D 、1)1(2-=- 3、下列各对数互为相反数的是( )A 、-(-8)与+(+8)B 、-(+8)与+︱-8︱C 、-2222)与(- D 、-︱-8︱与+(-8)4、计算(-1)÷(-5)×51的结果是( )A 、-1B 、1C 、251D 、-255、两个互为相反数的有理数的乘积为( )A 、正数B 、负数C 、0D 、负数或06、下列说法中,正确的是( )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )A 、800 mB 、200 mC 、2400 mD 、-200 m 8、已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所表示的数有( )A 、1个B 、2个C 、3个D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( )A 、(0.1×20)mmB 、(0.1×40)mmC 、(0.1×220)mmD 、(0.1×202)mm 二、填空题(5分×3=15)11、妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能表示什么 _____ 12、一个正整数,加上-10,其和小于0,则这个正整数可能是 (写出两个即可)13、绝对值小于2008的所有整数的和是( ) 14、观察下列各数,按规律在横线上填上适当的数。
浙江杭州外国语学校2018-2019学年度第一学期七年级数学上册_第一章_有理数_单元检测试题【有答案】
浙江杭州外国语学校2018-2019学年度第一学期七年级数学上册第一章有理数单元检测试题考试总分: 120分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.下列选项中所给的数既是正数又是整数的是()A.2.1B.−3C.0D.12.−3的相反数是()A.3B.13C.−3 D.−133.比较两个数的大小,结果正确的是()A.−5>−3B.15>|−12|C.−2.25>−(−2.5)D.−821>−374.下列说法正确的有()(1)整数就是正整数和负整数;(2)零是整数,但不是自然数;(3)分数包括正分数、负分数;(4)正数和负数统称为有理数;(5)一个有理数,它不是整数就是分数.A.1个B.2个C.3个D.4个5.A为数轴上表示3的点,将点A沿数轴向左平移7个单位到点B,再由B向右平移6个单位到点C,则点C表示的数是()A.0B.1C.2D.36.下列各式中一定为负数的是()A.−(−1)B.−|−1|C.−(−1)3D.(−1)27.下列几组数中,互为相反数的是()A.−(+5)和+(−5)B.(−3)2和(+3)2C.−(−4)和−|−4|D.(−2)3和−238.下列有理数大小关系判断正确的是()A.−6>−11B.0.23<−0.13C.|−3|<|+3|D.−1>−0.019.若|x−1|+|y+2|=0,则(x+1)(y−2)的值为()A.−8B.−2C.0D.810.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a−b|=3,|b−c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边二、填空题(共 8 小题,每小题 3 分,共 24 分)11.|a+3|+|b−2|=0,则a+b=________.12.当x=________时,−10−|x−1|有最大值,最大值为________.13.比较大小:−23________−56(填“>”、“<”)14.如果节约20kW⋅ℎ电记作+20kW⋅ℎ,那么浪费10kW⋅ℎ电记作________kW⋅ℎ.15.比较大小:−23________−34;|−4+5|________|−4|+|5|16.测得某乒乓球厂生产的五个乒乓球的质量误差(g)如表.通常把比标准质量大的克数记为正,比标准质量小的克数记为负.请你选出最接近标准质量的球是________号.17.在数−8,+4.3,−|−2|,0,−(−50),−12,3 中负数有________,整数有________.18.同学们都知道,|5−(−2)|表示5与−2之差的绝对值,实际上也可理解为5与−2两数在数轴上所对的两点之间的距离.试探索:同学们都知道,|5−(−2)|表示5与−2之差的绝对值,实际上也可理解为5与−2两数在数轴上所对的两点之间的距离.试探索:(1)求|5−(−2)|=________.(2)找出所有符合条件的整数x使得|x+5|+|x−2|=7成立的整数是________.(3)请你写出|x−1|+|x−2|的最小值为________.并确定相应的x的取值范围是________.三、解答题(共 9 小题,每小题7分,共63分)19.若a,b互为相反数,c,d互为倒数,|m|=3,求a+b+3|m|−cd5的值.20.在数轴上表示下列各数:0,−2.5,313,−2,+5,113,并用“<”号连接.21.若|3x−5|与|4−2y|互为相反数,求3y−2x的值.22.将下列各有理数:−(+1),|−2.5|,0,−(−212),−|−3|在数轴上表示出来,并按从大到小的顺序用“>”连接起来.23.写出下列各数的相反数,并在数轴上表示出来,试用“>”连接它们的相反数5,−3,34,−67,235,7,2.24.读如图提供的信息,回答下列问题.求:(1)a的值;(2)b的值;(3)a与b的和.25.在数轴上表示下列各数,并用“>”连接.+5,+(−2.5),12,−112,−|−4|,0,3.5.26.一座桥梁的设计长度为810m,建成后,测量的数据是(单位:m):814,813,812,809,808,807.如果以设计长度为基准,试用正负数表示各次测得的数值与设计长度的差.哪次测得的结果最接近设计长度?你说的接近是根27.“十•一”黄金周期间,某风景区在7天假期中每天旅游的人数变化如下表(正(1)若9月30日的游客人数记为a,请用a的代数式表示10月2日的游客人数:________万人.(2)请判断七天内游客人数最多的是________日.(3)以9月30日的游客人数为0点,用折线统计图表示这7天的游客人数情况:人数变化(万人)答案1.D2.A3.D4.B5.C6.B7.C8.A9.A10.C11.−112.1−1013.>14.−1015.><16.317.−8,−|−2|,−12−8,−|−2|,0,−(−50),318.7−5,−4,−3,−2,−1,0,1,211≤x≤219.解:根据题意得:a+b=0,cd=1,m=3或−3,当m=3时,原式=0+9−15=85.20.解:在数轴上表示为:用“<”号连接为:−2.5<−2<9<113<313<+5.21.解:由题意得,|3x−5|+|4−2y|=0,则3x−5=0,4−2y=0,解得,x=53,y=2,3y−2x=6−103=83.22.解:−|−3|<−(+1)<0<−(−212)=|−2.5|.23.解:5的相反数是−5,−3的相反数是3,34的相反数是−34,−67的相反数是67,23 5的相反数是−235,7的相反数是−7,2的相反数是−2,如图所示:用“>”连接它们的相反数为3>67>−34>−2>−235>−5>−7.24.解:(1)∵a的相反数是它本身,∴a=0,(2),∵b的绝对值是5,∴b=5或−5,(3)a+b=0±5=±5.25.解:各数表示在数轴如下图所示:大小关系为:+5>3.5>12>0>−112>+(−2.5)>−|−4|.26.解:(1)用正负数表示各次测得的数值与设计长度的差分别是:814−810=+4,813−810=+3,812−810=+2,809−810=−1,808−810=−2,807−810=−3.填表格如右:(2)由(1)知:−1的绝对值最小,所以第4次测得的结果最接近设计长度;(3)所说的接近是根据绝对值的意义说的.27.a+2.4;(2)由图可知,人数最多的是10月3日;故答案为:10月3日;(3)如图所示:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 有理数单元测试题
一、 选择题(每题3分,共30分)
1、1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为( )亿元
(A )4101.1⨯ (B )5101.1⨯ (C )3104.11⨯ (D )3103.11⨯
2、大于–3.5,小于2.5的整数共有( )个。
(A )6 (B )5 (C )4 (D )3
3、已知数b a ,在数轴上对应的点在原点两侧,并且到原点的位置相等;数y x ,是互为倒数,那么xy b a 2||2-+的值等于( )
(A )2 (B )–2 (C )1 (D )–1
4、如果两个有理数的积是正数,和也是正数,那么这两个有理数( )
(A )同号,且均为负数 (B )异号,且正数的绝对值比负数的绝对值大
(C )同号,且均为正数 (D )异号,且负数的绝对值比正数的绝对值大
5、在下列说法中,正确的个数是( )
⑴任何一个有理数都可以用数轴上的一个点来表示
⑵数轴上的每一个点都表示一个有理数
⑶任何有理数的绝对值都不可能是负数
⑷每个有理数都有相反数
A 、1
B 、2
C 、3
D 、4
6、如果一个数的相反数比它本身大,那么这个数为( )
A 、正数
B 、负数
C 、整数
D 、不等于零的有理数
7、下列说法正确的是( )
A 、几个有理数相乘,当因数有奇数个时,积为负;
B 、几个有理数相乘,当正因数有奇数个时,积为负;
C 、几个有理数相乘,当负因数有奇数个时,积为负;
D 、几个有理数相乘,当积为负数时,负因数有奇数个;
8、在有理数中,绝对值等于它本身的数有()
A.1个
B.2个
C. 3个
D.无穷多个
9、下列计算正确的是()
A.-22=-4
B.-(-2)2=4
C.(-3)2=6
D.(-1)3=1
10、如果a <0,那么a 和它的相反数的差的绝对值等于( )
A.a
B.0
C.-a
D.-2a
二、填空题:(每题2分,共42分)
1、()642=。
2、小明与小刚规定了一种新运算*:若a 、b 是有理数,则a*b = b a 23-。
小明计算出2*5=-4,请你帮小刚计算2*(-5)= 。
3、若056=++-y x ,则y x -= ;
4、大于-2而小于3的整数分别是_________________、
5、(-3.2)3中底数是______,乘方的结果符号为______。
6、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大
7、在数轴上表示两个数, 的数总比 的大。
(用“左边”“右边”填空)
8、仔细观察、思考下面一列数有哪些..
规律:-2 ,4 ,-8 ,16 ,-32 ,64 ,…………然后填出下面两空:(1)第7个数是 ;(2)第 n 个 数是 。
9、若│-a │=5,则a=________.
10、已知:, (15)
441544,833833,322322222⨯=+⨯=+⨯=+若b a b a ⨯=+21010(a,b 均为整数)则a+b= .
11、写出三个有理数数,使它们满足:①是负数;②是整数;③能被2、3、5 整除。
答:____________。
12、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。
13、已知0||=--a a ,则a 是__________数;已知
()01||<-=b ab ab ,那么a 是_________数。
14、计算:()()()20002
1111-+-+- =_________。
15、已知()02|4|2=-++b a a ,则b a 2+=_________。
16、____________________范围内的有理数经过四舍五入得到的近似数3.142。
17、:2000
19991431321211⨯++⨯+⨯+⨯ = 。
18、数5的绝对值是5,是它的本身;数–5的绝对值是5,是它的相反数;以上由定理非负数的绝对值等于它本身,非正数的绝对值等于它的相反数而来。
由这句话,正数–a 的绝对值为__________;负数–b 的绝对值为________;负数1+a 的绝对值为________,正数–a+1的绝对值___________。
19、已知|a|=3,|b|=5,且a<b ,则a-b 的值为 。
20、观察下列等式,你会发现什么规律:22131=+⨯ ,23142=+⨯,2
4153=+⨯,。
请将你发现的规律用只含一个字母n (n 为正整数)的等式表示出来
21 、观察下列各式32353,22242,12131222⨯+=⨯⨯+=⨯⨯+=⨯,。
请你将猜到的规律用n (n ≥1)表示出来 . 22、已知0|
|||=+b b a a ,则=⨯⨯b a b a ||___________。
23、当31<<x 时,化简
2|1||3|--+-x x x 的结果是 24、已知a 是整数,5232++a a 是一个偶数,则a 是 (奇,偶)
25、当6-<a 时,化简||3|3|a +-的结果为 。
三、计算下列各题(要求写出解题关键步骤):
1、 ()()()5
4321132---⨯---
2、
)3
1()21(54)32(21-+-++-+
3、()()
43223133213423-⨯⎥⎥⎦⎤⎢⎢⎣⎡---⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-
4、(-81)÷2
14×(-49
)÷(-16)
5、()2523-⨯-
6 . )16
11318521(48-+-⨯-
7、432226)(0.5)3
1(⨯-⨯⨯-
四、我们已经学过:任意两个有理数的和仍是有理数,在数学上就称有理数集合对加法运算是封闭的。
同样,有理数集合对减法、乘法、除法(除数不为0)也是封闭的。
请你判断整数集合对加、减、乘、除四则运算是否具有封闭性?(4分)
利用你的结论,解答:
若a 、b 、c 为整数,且1=-+-a c b a ,求a c c b b a -+-+-的值。
第一章有理数 答案
答案:一、1、A 2 A 3 B 4 C 5 C 6 B 7 D 8 D 9 A 10 D
二、1±8,2,16,3,11,4,-1、0、1、2,5,-3.2,6,-7.2,7、右、左,8,2)2(-
9,±5 10,109,11,-30,-60,-90 12,-120,13,a ≥0,正数,14,0,15,-8,16,大于或等于3.1415且小于 3.1425,17,2000
1999 18、-a ,b ,-1-a ,-a+1,19、-2或-8,20,2)1(1)2(+=++n n n ,21,n n n n 2)2(2+=+
22,-1,23,22
-x ,24,奇数,25,-a-6
三、1、24 2、-1/5 3、-30 4、-1 5、-47 6
、23 7、-96
四、加减乘封闭,除不封闭。
五、2。