存在性问题

合集下载

难点7-双变量的“任意性”“存在性”问题

难点7-双变量的“任意性”“存在性”问题

难点7-双变量的“任意性”“存在性”问题本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March难点7 双变量的“任意性”与“存在性”问题1.“存在=存在”型∃x1∈D1,∃x2∈D2,使得f(x1)=g(x2),等价于函数f(x)在D1上的值域A与函数g(x)在D2上的值域B 的交集不为空集,即A∩B≠⌀.其等价转化的基本思想:两个函数有相等的函数值,即它们的值域有公共部分.典例1已知函数f(x)=x2-ax3,a>0,x∈R.g(x)=.若∃x1∈(-∞,-1],∃x2∈,使得f(x1)=g(x2),求实数a的取值范围.解析∵f(x)=x2-ax3,∴f '(x)=2x-2ax2=2x(1-ax).令f '(x)=0,得x=0或x=.∵a>0,∴>0,∴当x∈(-∞,0)时, f '(x)<0,∴f(x)在(-∞,-1]上单调递减, f(x)在(-∞,-1]上的值域为.∵g(x)=,∴g'(x)==.∵当x<-时,g'(x)>0,∴g(x)在上单调递增,∴g(x)<g=,∴g(x)在上的值域为.若∃x1∈(-∞,-1],∃x2∈,使得f(x1)=g(x2),则1+<,a<.故实数a的取值范围是.对点练已知函数f(x)=和函数g(x)=a·sin x-a+1(a>0),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是( )A. B.[1,2)C. D.答案 C 设函数f(x),g(x)在[0,1]上的值域分别为A,B,则“存在x1,x2∈[0,1],使得f(x1)=g(x2)成立”等价于“A∩B≠⌀”.当0≤x≤时, f(x)=-x+单调递减,所以0≤f(x)≤;当<x≤1时, f '(x)=>0,所以f(x)=单调递增,<f(x)≤,故f(x)在[0,1]上的值域A=.当x∈[0,1]时,x∈,y=sin x在[0,1]上单调递增.又a>0,所以g(x)=asin x-a+1在[0,1]上单调递增,其值域B=.由A∩B≠⌀,得0≤1-a≤或0≤1-≤,解得≤a≤2.故选C.2.“任意=存在”型∀x1∈D1,∃x2∈D2,使得f(x1)=g(x2),等价于函数f(x)在D1上的值域A是函数g(x)在D2上的值域B的子集,即A⊆B.其等价转化的基本思想:函数f(x)的任意一个函数值都与函数g(x)的某一个函数值相等,即f(x)的函数值都在g(x)的值域之中.典例2 已知函数f(x)=,x∈[0,1].(1)求f(x)的单调区间和值域;(2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1].若对于任意的x1∈[0,1],总存在x∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.解析(1)f '(x)==-,x∈[0,1].令f '(x)=0,解得x=或x=(舍去).当x变化时, f '(x), f(x)的变化情况如下表所示:x01f '(x)-0+f(x)-↘-4↗-3所以f(x)的递减区间是,递增区间是.f(x)min =f=-4,又f(0)=-, f(1)=-3,所以f(x)max=f(1)=-3.故当x∈[0,1]时, f(x)的值域为[-4,-3].(2)“对于任意的x1∈[0,1],总存在x∈[0,1],使得g(x)=f(x1)成立”等价于“在x∈[0,1]上,函数f(x)的值域B是函数g(x)的值域A的子集,即B⊆A”.因为a≥1,且g'(x)=3(x2-a2)<0,所以当x∈[0,1]时,g(x)为减函数,所以g(x)的值域A=[1-2a-3a2,-2a].由B⊆A,得1-2a-3a2≤-4且-2a≥-3,又a≥1,故1≤a≤.对点练已知函数f(x)=x2-ax3(a>0),x∈R.(1)求f(x)的单调区间和极值;(2)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1.求a的取值范围.解析(1)由已知,有f '(x)=2x-2ax2(a>0).令f '(x)=0,解得x=0或x=.当x变化时, f '(x), f(x)的变化情况如下表:x(-∞,0)f '(x)-0+0-f(x)↘0↗↘所以, f(x)的单调递增区间是;单调递减区间是(-∞,0),.当x=0时, f(x)有极小值,且极小值f(0)=0;当x=时,f(x)有极大值,且极大值f=.(2)由f(0)=f=0及(1)知,当x∈时, f(x)>0;当x∈时, f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B=,则“对于任意的x 1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1”等价于A⊆B.显然,0∉B.下面分三种情况讨论:①当>2,即0<a<时,由f=0可知,0∈A,而0∉B,所以A不是B的子集.②当1≤≤2,即≤a≤时,有f(2)≤0,且此时f(x)在(2,+∞)上单调递减,故A=(-∞,f(2)),因而A⊆(-∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值范围包含(-∞,0),即(-∞,0)⊆B.所以,A⊆B.③当<1,即a>时,有f(1)<0,且此时f(x)在(1,+∞)上单调递减,故B=,A=(-∞,f(2)),所以A不是B的子集.综上,a的取值范围是.3.“任意≥(≤、>、<)任意”型∀x1∈D1,∀x2∈D2,f(x1)>g(x2)恒成立,等价于f(x)min>g(x)max,或等价于f(x)>g(x)max恒成立,或等价于f(x)min>g(x)恒成立.其等价转化的基本思想是函数f(x)的任何一个函数值均大于函数g(x)的任何一个函数值.∀x1∈D1,∀x2∈D2,f(x1)<g(x2)恒成立,等价于f(x)max<g(x)min,或等价于f(x)<g(x)min恒成立,或等价于f(x)max<g(x)恒成立.其等价转化的基本思想是函数f(x)的任何一个函数值均小于函数g(x)的任何一个函数值.∀x1∈D1,∀x2∈D2,f(x1)-g(x2)>k恒成立,等价于[f(x1)-g(x2)]min>k恒成立,也等价于f(x)min-g(x)max>k.∀x1∈D1,∀x2∈D2,f(x1)-g(x2)<k恒成立,等价于[f(x1)-g(x2)]max<k恒成立,也等价于f(x)max-g(x)min<k.典例3 设函数f(x)=x3-x2-3.(1)求f(x)的单调区间;(2)设函数g(x)=+xln x,如果对任意的x1,x2∈,都有f(x1)≤g(x2)成立,求实数a的取值范围.解析(1)f '(x)=3x2-2x.f '(x)>0时,x<0或x>,f '(x)<0时,0<x<.所以, f(x)的递增区间是(-∞,0),;递减区间是.(2)由(1)知,函数f(x)在上单调递减,在上单调递增,而f=-, f(2)=1,故f(x)在区间上的最大值f(x)max=f(2)=1.“对任意的x1,x2∈,都有f(x1)≤g(x2)成立”等价于“对任意的x∈,g(x)≥f(x)max恒成立”,即当x∈时,g(x)=+xln x≥1恒成立,即a≥x-x2lnx恒成立,记u(x)=x-x2ln x,则有a≥u(x)max.u'(x)=1-x-2xln x,可知u'(1)=0.当x∈时,1-x>0,2xln x<0,则u'(x)>0, 所以u(x)在上递增;当x∈(1,2)时,1-x<0,2xln x>0,则u'(x)<0,所以u(x)在(1,2)上递减.故u(x)在区间上的最大值u(x)max=u(1)=1,所以实数a的取值范围是[1,+∞).点拨 (1)∀x 1∈D 1,∀x 2∈D 2,f(x 1)>g(x 2)恒成立,通常等价转化为f(x)min >g(x)max .这是两个独立变量——双变量问题,不等式两边f(x 1),g(x 2)中自变量x 1,x 2可能相等,也可能不相等; (2)对任意的x∈[m,n],不等式f(x)>g(x)恒成立,通常等价转化为[f(x)-g(x)]min >0.这是单变量问题,不等式两边f(x),g(x)的自变量x 相等. 对点练函数f(x)=+1(m≠0),g (x)=x 2e ax (a∈R).(1)直接写出函数f(x)的单调区间;(2)当m>0时,若对于任意的x 1,x 2∈[0,2], f(x 1)≥g(x 2)恒成立,求a 的取值范围. 解析 (1)当m>0时,f(x)的递增区间是(-1,1);递减区间是(-∞,-1),(1,+∞). 当m<0时,f(x)的递增区间是(-∞,-1),(1,+∞);递减区间是(-1,1).(2)当m>0时,“对于任意的x 1,x 2∈[0,2],f(x 1)≥g(x 2)恒成立”等价于“对于任意的x∈[0,2],f(x)min ≥g(x)max 成立”.当m>0时,由(1)知,函数f(x)在[0,1]上单调递增,在[1,2]上单调递减,因为f(0)=1,f(2)=+1>1,所以f(x)min =f(0)=1,故应满足1≥g(x)max .因为g(x)=x 2e ax ,所以g'(x)=(ax 2+2x)e ax .①当a=0时,g(x)=x 2,此时g(x)max =g(2)=4,不满足1≥g(x)max .②当a≠0时,令g'(x)=0,得x=0或x=-.(i)当-≥2,即-1≤a<0时,在[0,2]上,g'(x)≥0,g(x)在[0,2]上单调递增,g(x)max =g(2)=4e 2a .由1≥4e 2a,得a≤-ln 2,所以-1≤a≤-ln 2.(ii)当0<-<2,即a<-1时,在上,g'(x)≥0,g(x)递增;在上,g'(x)<0,g(x)递减.g(x)max =g =,由1≥,得a≤-,所以a<-1.(iii)当-<0,即a>0时,显然在[0,2]上,g'(x)≥0,g(x)单调递增,于是g(x)max =g(2)=4e 2a >4,此时不满足1≥g(x)max .综上,a的取值范围是(-∞,-ln 2].4.“任意≥(≤、>、<)存在”型∀x1∈D1,∃x2∈D2,使得f(x1)>g(x2)成立,等价于f(x)min>g(x)min.其等价转化的基本思想是函数f(x)的任意一个函数值大于函数g(x)的某一个函数值,但并不要求大于函数g(x)的所有函数值.∀x1∈D1,∃x2∈D2,使得f(x1)<g(x2)成立,等价于f(x)max<g(x)max.其等价转化的基本思想是函数f(x)的任意一个函数值小于函数g(x)的某一个函数值,但并不要求小于函数g(x)的所有函数值.∀x1∈D1,∃x2∈D2,使得f(x1)-g(x2)>k成立,等价于f(x)min-g(x)min>k.∀x1∈D1,∃x2∈D2,使得f(x1)-g(x2)<k成立,等价于f(x)max-g(x)max<k.典例4 函数f(x)=ln x-x+-1,g(x)=x2-2bx+4,若对任意的x1∈(0,2),存在x2∈[1,2],使得f(x1)≥g(x2)成立,求实数b的取值范围.解析“对任意的x1∈(0,2),存在x2∈[1,2],使得f(x1)≥g(x2)成立”等价于“f(x)在(0,2)上的最小值不小于g(x)在[1,2]上的最小值,即f(x)min ≥g(x)min(*)”.f '(x)=--=,当x∈(0,1)时, f '(x)<0, f(x)单调递减;当x∈(1,2)时, f '(x)>0, f(x)单调递增.故当x∈(0,2)时, f(x)min=f(1)=-.又g(x)=(x-b)2+4-b2,x∈[1,2],①当b<1时,g(x)min=g(1)=5-2b>3,此时与(*)矛盾;②当b∈[1,2]时,g(x)min=g(b)=4-b2≥0,同样与(*)矛盾;③当b∈(2,+∞)时,g(x)min=g(2)=8-4b,由8-4b≤-,得b≥.综上,实数b的取值范围是.对点练已知函数f(x)=x3+x2+ax.(1)若f(x)在区间[1,+∞)上单调递增,求a的最小值;(2)若g(x)=,∀x1∈,∃x2∈,使得f '(x1)≤g(x2)成立,求a的取值范围.解析(1)由题设知f '(x)=x2+2x+a≥0,即a≥-(x+1)2+1在[1,+∞)上恒成立,而y=-(x+1)2+1在[1,+∞)上单调递减,则ymax =-3,∴a≥-3,∴amin=-3.(2)“∀x1∈,∃x2∈,使f '(x1)≤g(x2)成立”等价于“x∈时,f'(x)max ≤g(x)max恒成立”.∵f '(x)=x2+2x+a=(x+1)2+a-1在上递增,∴f '(x)max=f '(2)=8+a,又g'(x)==,∴g(x)在(-∞,1)上递增,在(1,+∞)上递减.∴当x∈时,g(x)max=g(1)=,由8+a≤得,a≤-8,所以a的取值范围是.5.“存在≥(≤、>、<)存在”型若∃x1∈D1,∃x2∈D2,使得f(x1)>g(x2)成立,等价于f(x)max≥g(x)min.其等价转化的基本思想是函数f(x)的某一个函数值大于函数g(x)的某一个函数值,即只要有这样的函数值即可.若∃x1∈D1,∃x2∈D2,使得f(x1)<g(x2)成立,等价于f(x)min<g(x)max.其等价转化的基本思想是函数f(x)的某一个函数值小于函数g(x)的某一个函数值,即只要有这样的函数值即可.若∃x1∈D1,∃x2∈D2,使得f(x1)-g(x2)>k成立,等价于[f(x1)-g(x2)]max>k,也等价于f(x)max-g(x)min>k.若∃x1∈D1,∃x2∈D2,使得f(x1)-g(x2)<k成立,等价于[f(x1)-g(x2)]min<k,也等价于f(x)min-g(x)max<k.典例5 已知函数f(x)=4ln x-ax+(a≥0).(1)直接写出函数f(x)的单调区间;(2)当a≥1时,设g(x)=2e x-4x+2a,若存在x1,x2∈,使f(x1)>g(x2),求实数a的取值范围.解析(1)当a=0时,函数f(x)的递减区间为,递增区间为.当0<a<1时,函数f(x)的递减区间为,,递增区间为.当a≥1时, f(x)的递减区间为(0,+∞).(2)“存在x1,x2∈,使f(x1)>g(x2)”等价于“ 当x∈时, f(x)max>g(x)min”.由(1)知,当x∈时, f(x)max=f=-4ln 2+a+6, 由g'(x)=2e x-4>0,得x>ln 2,所以g(x)在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增,故当x∈时,g(x)min=g(ln 2)=4-4ln 2+2a,由f(x)max >g(x)min,得-4ln 2+a+6>4-4ln 2+2a,又a≥1,所以1≤a<4.对点练设函数f(x)=-ax.(1)若函数f(x)在(1,+∞)上为减函数,求实数a的最小值;(2)若存在x1,x2∈[e,e2],使f(x1)≤f '(x2)+a成立,求实数a的取值范围.解析(1)由题设知f '(x)=-a≤0在(1,+∞)上恒成立,则只需f '(x)max≤0.又f '(x)=-a=-+-a,所以当=,即x=e2时, f '(x)max=-a,由-a≤0得a≥,故a的最小值为.11 (2)“存在x 1,x 2∈[e,e 2],使f(x 1)≤f '(x 2)+a 成立”等价于“当x 1,x 2∈[e,e 2]时,f(x 1)min ≤f '(x 2)max +a”.由(1)知,当x∈[e,e 2]时, f '(x)max =f '(e 2)=-a,所以f '(x)max +a=. 则问题等价于“当x∈[e,e 2]时, f(x)min ≤”.①当a≥时,由(1)得f '(x)max =-a≤0, f(x)在[e,e 2]上为减函数,则f(x)min =f(e 2)=-ae 2,由f(x)min ≤,得a≥-.②当a<时, f '(x)=-+-a 在[e,e 2]上的值域为. (i)当-a≥0,即a≤0时, f '(x)≥0在[e,e 2]恒成立,故f(x)在[e,e 2]上为增函数,于是f(x)min =f(e)=e-ae≥e>,与f(x)min ≤矛盾.(ii)当-a<0,即0<a<时,由f '(x)的单调性和值域知,存在唯一的x 0∈(e,e 2),使f '(x)=0,且满足:当x∈(e,x 0)时, f '(x)<0, f(x)为减函数;当x∈(x 0,e 2)时, f '(x)>0, f(x)为增函数,所以f(x)min =f(x 0)=-ax 0≤,x 0∈(e,e 2).所以a≥->->-=,与0<a<矛盾.综上,a 的取值范围是a≥-.。

数列中的存在性问题 经典

数列中的存在性问题 经典

专题:数列中的存在性问题一、单存在性变量解题思路:该类问题往往和恒成立问题伴随出现(否则就是一个方程有解问题,即零点问题),可以先假设存在,列出一个等式,通过化简,整理成关于任意性变量(一般为n )的方程,然后n 的系数为0,构造方程,进而解出存在性变量,最后检验。

例1、已知数列{na }的前n 项和为n S =235n n +,在数列{n b }中,1b =8,164n nb b +-=0,问是否存在常数c 使得对任意n ,log n c na b +恒为常数M ,若存在求出常数c 和M ,若不存在说明理由.解析:假设存在常数c 使得对任意n ,log n c na b +恒为常数M ,∵n S =235n n+,∴当n =1时,则1a =1S =8,当n ≥2时,n a =1n n S S --=2235[3(1)5(1)]n n n n +--+-=62n +,当n =1适合, ∴n a =62n +,又∵164n n b b +-=0, ∴1n n b b +=164,∴数列{n b}是首项为8,公比为164的等比数列, ∴nb =118()64n -=962n -,则log n c n a b +=9662log 2n c n -++=62(96)log 2a n n ++-=6(1log 2)29log 2a a n -++,又∵对任意n ,log n c na b +恒为常数M ,∴6(1log 2)a -=0,解得c =2,∴M =29log 2a +=11,∴存在常数c =2使得对任意n ,log n c na b +恒为常数M =11.二、双存在型变量解题思路:先假设存在,根据题目条件,列出一个含有两个变量(一般至少都为正整数)的等式,即转化为一个数论中的双整数问题,然后分离变量。

如果可以分离常数,则利用数论中约数的知识列出所有可能情况,最后进行双检验,即对两个变量均进行条件检验;如果不可以分离常数,则利用分离出的变量所具有的隐含范围(如大于0)消元,进而构造一个不等式,解出另一个变量的范围,再列出求出的被压缩的范围里的所有整数值,分别求出对应的另一个存在性变量,最后进行检验。

抛物线中的存在性问题(顶点的存在性问题)

抛物线中的存在性问题(顶点的存在性问题)

抛物线中的存在性问题(顶点的存在性问题)抛物线中的存在性问题(顶点的存在性问题)抛物线是数学中常见的曲线之一,其方程一般形式为 y = ax^2 + bx + c。

在抛物线的研究中,存在一个重要的问题,即顶点的存在性问题。

问题描述顶点是抛物线中最高或最低的点,也是曲线的转折点。

通过确定顶点的位置,我们可以得到关于抛物线的许多重要性质和参数。

然而,并不是所有的抛物线都具有顶点,因此存在着顶点的存在性问题。

抛物线方程的参数对顶点的影响在讨论顶点的存在性之前,我们首先需要了解抛物线方程中的参数对顶点的影响。

1. 参数 a:决定了抛物线的开口方向。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

2. 参数 b:决定了抛物线在 x 轴上的位置。

当 b > 0 时,抛物线向左平移;当 b < 0 时,抛物线向右平移。

3. 参数 c:决定了抛物线在 y 轴上的位置。

抛物线与 y 轴相交的点就是 c。

顶点的存在性问题对于一般形式的抛物线方程 y = ax^2 + bx + c,顶点的存在性由参数 a 的正负决定。

- 当 a > 0 时,抛物线开口向上,顶点最低点存在。

- 当 a < 0 时,抛物线开口向下,顶点最高点存在。

- 当 a = 0 时,抛物线退化为直线,没有顶点。

因此,只有当 a 不等于零时,抛物线才会有顶点存在。

实例分析考虑以下两个抛物线方程:1. 抛物线方程 y = 2x^2 + 3x + 12. 抛物线方程 y = -x^2 + 4x - 2对于第一个方程,参数 a = 2,开口向上,因此存在一个最低点作为顶点。

而对于第二个方程,参数 a = -1,开口向下,因此存在一个最高点作为顶点。

结论顶点的存在性问题是在研究抛物线时需要考虑的一个重要因素。

通过分析抛物线方程中参数 a 的正负,我们可以确定抛物线是否具有顶点。

只有当参数 a 不等于零时,抛物线才会有顶点的存在。

专题22.8 二次函数中的存在性问题【八大题型】(人教版)(原卷版)

专题22.8 二次函数中的存在性问题【八大题型】(人教版)(原卷版)

专题22.8 二次函数中的存在性问题【八大题型】【人教版】【题型1 二次函数中直角三角形的存在性问题】 (1)【题型2 二次函数中等腰三角形的存在性问题】 (3)【题型3 二次函数中等腰直角三角形的存在性问题】 (5)【题型4 二次函数中平行四边形的存在性问题】 (7)【题型5 二次函数中矩形的存在性问题】 (9)【题型6 二次函数中菱形的存在性问题】 (11)【题型7 二次函数中正方形的存在性问题】 (13)【题型8 二次函数中角度问题的存在性问题】 (15)【题型1 二次函数中直角三角形的存在性问题】【例1】(2022•柳州)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C(0,5).(1)求b,c,m的值;(2)如图1,点D是抛物线上位于对称轴右侧的一个动点,且点D在第一象限内,过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,垂足为点F,当四边形DEFG 的周长最大时,求点D的坐标;(3)如图2,点M是抛物线的顶点,将△MBC沿BC翻折得到△NBC,NB与y轴交于点Q,在对称轴上找一点P,使得△PQB是以QB为直角边的直角三角形,求出所有符合条件的点P的坐标.【变式1-1】(2022•桐梓县模拟)在平面直角坐标系xOy中,已知抛物线y=−√36x2+2√33x+2√3与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,它的对称轴与x轴交于点D,直线L经过C,D两点,连接AC.(1)求A,B两点的坐标及直线L的函数表达式;(2)探索直线L上是否存在点E,使△ACE为直角三角形,若存在,求出点E的坐标;若不存在,说明理由.【变式1-2】(2022秋•日喀则市月考)如图,二次函数y=﹣x2+4x+5的图象与x轴交于A,B两点,与y 轴交于点C,M为抛物线的顶点.(1)求M点的坐标;(2)求△MBC的面积;(3)坐标轴上是否存在点N,使得以B,C,N为顶点的三角形是直角三角形?若存在,求出点N的坐标;若不存在,请说明理由.【变式1-3】(2022•平南县二模)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且A(﹣1,0),对称轴为直线x=2.(1)求该抛物线的表达式;(2)直线l过点A与抛物线交于点P,当∠P AB=45°时,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使得△BCQ是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【题型2 二次函数中等腰三角形的存在性问题】【例2】(2022•沙坪坝区校级模拟)如图1,抛物线y=ax2+bx+2(a≠0)交x轴于点A(﹣1,0),点B (4,0),交y轴于点C.连接BC,过点A作AD∥BC交抛物线于点D(异于点A).(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上一动点,过点P作PE∥y轴,交AD于点E,过点E作EG⊥BC于点G,连接PG.求△PEG面积的最大值及此时点P的坐标;个单位,得到新抛物线y1,在y1的对称轴上(3)如图2,将抛物线y=ax2+bx+2(a≠0)水平向右平移32确定一点M,使得△BDM是以BD为腰的等腰三角形,请写出所有符合条件的点M的坐标,并任选其中一个点的坐标,写出求解过程.【变式2-1】(2022•湘西州)定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C1:y=x2+2x﹣3与抛物线C2:y=ax2+2ax+c组成一个开口向上的“月牙线”,抛物线C1和抛物线C2与x轴有着相同的交点A(﹣3,0)、B(点B在点A右侧),与y轴的交点分别为G、H(0,﹣1).(1)求抛物线C2的解析式和点G的坐标.(2)点M是x轴下方抛物线C1上的点,过点M作MN⊥x轴于点N,交抛物线C2于点D,求线段MN 与线段DM的长度的比值.(3)如图②,点E是点H关于抛物线对称轴的对称点,连接EG,在x轴上是否存在点F,使得△EFG 是以EG为腰的等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.【变式2-2】(2022秋•永嘉县校级期末)如图,在平面直角坐标系中,点A,B分别是y轴正半轴,x轴正x2+3x+k交y 半轴上两动点,OA=2k,OB=2k+3,以AO,BO为邻边构造矩形AOBC,抛物线y=−34轴于点D,P为顶点,PM⊥x轴于点M.(1)求OD,PM的长(结果均用含k的代数式表示).(2)当PM=BM时,求该抛物线的表达式.(3)在点A在整个运动过程中,若存在△ADP是等腰三角形,请求出所有满足条件的k的值.【变式2-3】(2022•杭州校级自主招生)如图,抛物线y=ax2﹣5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴的负半轴上,点C在y轴上,且AC=BC.(1)求抛物线的对称轴;(2)求A点坐标并求抛物线的解析式;(3)若点P在x轴下方且在抛物线对称轴上的动点,是否存在△P AB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.【题型3 二次函数中等腰直角三角形的存在性问题】【例3】(2022•顺城区模拟)如图,抛物线y=﹣x2+bx+c与x轴交于点A和B(5,0),与y轴交于点C (0,5).(1)求抛物线的解析式;(2)抛物线的对称轴与x轴交于点M,与BC交于点F,点D是对称轴上一点,当点D关于直线BC的对称点E在抛物线上时,求点E的坐标;(3)点P在抛物线的对称轴上,点Q在直线BC上方的抛物线上,是否存在以O,P,Q为顶点的三角形是等腰直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.x2+bx+c的图象与x轴交于点A(﹣2,0),与【变式3-1】(2022•碑林区校级三模)已知抛物线C1:y=14y轴交于点C(0,﹣3),顶点为D.(1)求抛物线C1的表达式和点D的坐标;(2)将抛物线C1沿x轴平移m(m>0)个单位长度,所得新的抛物线记作C2,C2的顶点为D′,与抛物线C1交于点E,在平移过程中,是否存在△DED′是等腰直角三角形?如果存在,请求出满足条件的抛物线C2的表达式,并写出平移过程;如果不存在,请说明理由.【变式3-2】(2022•琼海二模)如图1,抛物线y=ax2+bx+3与x轴交于点A(3,0)、B(﹣1,0),与y 轴交于点C,点P为x轴上方抛物线上的动点,点F为y轴上的动点,连接P A,PF,AF.(1)求该抛物线所对应的函数解析式;(2)如图1,当点F的坐标为(0,﹣4),求出此时△AFP面积的最大值;(3)如图2,是否存在点F,使得△AFP是以AP为腰的等腰直角三角形?若存在,求出所有点F的坐标;若不存在,请说明理由.【变式3-3】(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【题型4 二次函数中平行四边形的存在性问题】【例4】(2022•垦利区二模)已知抛物线y=ax2+bx+3的图象与x轴相交于点A和点B(1,0),与y轴交于点C,连接AC,有一动点D在线段AC上运动,过点D作x轴的垂线,交抛物线于点E,交x轴于点F,AB=4,设点D的横坐标为m.(1)求抛物线的解析式;(2)连接AE、CE,当△ACE的面积最大时,点D的坐标是;(3)当m=﹣2时,在平面内是否存在点Q,使以B,C,E,Q为顶点的四边形为平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.【变式4-1】(2022•澄迈县模拟)在平面直角坐标系中,抛物线经过点A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求该抛物线的函数表达式及顶点C的坐标;(2)设该抛物线上一动点P的横坐标为t.①在图1中,当﹣3<t<0时,求△PBO的面积S与t的函数关系式,并求S的最大值;②在图2中,若点P在该抛物线上,点E在该抛物线的对称轴上,且以A,O,P,E为顶点的四边形是平行四边形,求点P的坐标;【变式4-2】(2022•福山区一模)如图,抛物线y=ax2+bx+c过点A(﹣1,0),点B(3,0),与y轴负半轴交于点C,且OC=3OA,抛物线的顶点为D,对称轴交x轴于点E.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)若点P是抛物线上一点,过点P作PQ⊥x轴交直线BC于点Q,试探究是否存在以点E,D,P,Q为顶点的平行四边形.若存在,求出点P坐标;若不存在,请说明理由.【变式4-3】(2022•青羊区校级模拟)抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3),点P是抛物线上的一个动点.(1)求抛物线的函数表达式;(2)如图1,点P在线段AC上方的抛物线上运动(不与A,C重合),过点P作PD⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值;(3)如图2,点Q是抛物线的对称轴l上的一个动点,在抛物线上,是否存在点P,使得以点A,P,C,Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.【题型5 二次函数中矩形的存在性问题】【例5】(2022•齐齐哈尔三模)综合与实践如图,二次函数y=﹣x2+c的图象交x轴于点A、点B,其中点B的坐标为(2,0),点C的坐标为(0,2),过点A、C的直线交二次函数的图象于点D.(1)求二次函数和直线AC的函数表达式;(2)连接DB,则△DAB的面积为6;(3)在y轴上确定点Q,使得∠AQB=135°,点Q的坐标为;(4)点M是抛物线上一点,点N为平面上一点,是否存在这样的点N,使得以点A、点D、点M、点N 为顶点的四边形是以AD为边的矩形?若存在,请你直接写出点N的坐标;若不存在,请说明理由.【变式5-1】(2022•博山区一模)如图,已知抛物线y=ax2+bx﹣4与x轴交于A,B两点,与y轴交于点C,x﹣4.且点A的坐标为(﹣2,0),直线BC的解析式为y=12(1)求抛物线的解析式.(2)如图1,过点A作AD∥BC交抛物线于点D(异于点A),P是直线BC下方抛物线上一点,过点P作PQ∥y轴,交AD于点Q,过点Q作QR⊥BC于点R,连接PR.求△PQR面积的最大值及此时点P 的坐标.(3)如图2,点C关于x轴的对称点为点C′,将抛物线沿射线C′A的方向平移2√5个单位长度得到新的抛物线y′,新抛物线y′与原抛物线交于点M,原抛物线的对称轴上有一动点N,平面直角坐标系内是否存在一点K,使得以D,M,N,K为顶点的四边形是矩形?若存在,请直接写出点K的坐标;若不存在,请说明理由.【变式5-2】(2022•绥化)如图,抛物线y=ax2+bx+c交y轴于点A(0,﹣4),并经过点C(6,0),过点A作AB⊥y轴交抛物线于点B,抛物线的对称轴为直线x=2,D点的坐标为(4,0),连接AD,BC,BD.点E从A点出发,以每秒√2个单位长度的速度沿着射线AD运动,设点E的运动时间为m秒,过点E作EF⊥AB于F,以EF为对角线作正方形EGFH.(1)求抛物线的解析式;(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.【变式5-3】(2022•黔东南州)如图,抛物线y=ax2+2x+c的对称轴是直线x=1,与x轴交于点A,B(3,0),与y轴交于点C,连接AC.(1)求此抛物线的解析式;(2)已知点D是第一象限内抛物线上的一个动点,过点D作DM⊥x轴,垂足为点M,DM交直线BC 于点N,是否存在这样的点N,使得以A,C,N为顶点的三角形是等腰三角形.若存在,请求出点N的坐标,若不存在,请说明理由;(3)已知点E是抛物线对称轴上的点,在坐标平面内是否存在点F,使以点B、C、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由.【题型6 二次函数中菱形的存在性问题】【例6】(2022•烟台一模)如图,平面直角坐标系中,正方形ABCD的顶点A,B在x轴上,抛物线y=﹣x2+bx+c经过A,C(4,﹣5)两点,且与直线DC交于另一点E.(1)求抛物线的解析式;(2)P为y轴上一点,过点P作抛物线对称轴的垂线,垂足为Q,连接EQ,AP.试求EQ+PQ+AP的最小值;(3)N为平面内一点,在抛物线对称轴上是否存在点M,使得以点M,N,E,A为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【变式6-1】(2022•邵阳县模拟)如图,直线l:y=﹣3x﹣6与x轴、y轴分别相交于点A、C;经过点A、x2+bx+c与x轴的另一个交点为点B,其顶点为点D,对称轴与x轴相交于点E.C的抛物线C:y=12(1)求抛物线C的对称轴.(2)将直线l向右平移得到直线l1.①如图①,直线l1与抛物线C的对称轴DE相交于点P,要使PB+PC的值最小,求直线l1的解析式.②如图②,直线l1与直线BC相交于点F,直线l1上是否存在点M,使得以点A、C、F、M为顶点的四边形是菱形,若存在,求出点M的坐标;若不存在,请说明理由.【变式6-2】(2022•嘉定区二模)在平面直角坐标系xOy(如图)中,已知抛物线y=ax2+bx+3经过点A(3,0)、B(4,1)两点,与y轴的交点为C点.(1)求抛物线的表达式;(2)求四边形OABC的面积;(3)设抛物线y=ax2+bx+3的对称轴是直线l,点D与点B关于直线l对称,在线段BC上是否存在一点E,使四边形ADCE是菱形,如果存在,请求出点E的坐标;如果不存在,请说明理由.【变式6-3】(2022•山西模拟)综合与探究如图,二次函数y=ax2+bx+4的图象与x轴分别交于点A(﹣2,0),B(4,0),点E是x轴正半轴上的一个动点,过点E作直线PE⊥x轴,交抛物线于点P,交直线BC于点F.(1)求二次函数的表达式.EF,求此时点P的坐标.(2)当点E在线段OB上运动时(不与点O,B重合),恰有线段PF=12(3)试探究:若点Q是y轴上一点,在点E运动过程中,是否存在点Q,使得以点C,F,P,Q为顶点的四边形为菱形,若存在,直接写出点Q的坐标;若不存在,请说明理由.【题型7 二次函数中正方形的存在性问题】【例7】(2022•铁锋区二模)综合与探究如图,在平面直角坐标系中,直线y=x+b与x轴交于点A(4,0),与y轴交于点B,过A,B两点的抛物线交x轴于另一点C,且OA=20C,点F是直线AB下方抛物线上的动点,连接F A,FB.(1)求抛物线解析式;(2)当点F与抛物线的顶点重合时,△ABF的面积为;(3)求四边形F AOB面积的最大值及此时点F的坐标.(4)在(3)的条件下,点Q为平面内y轴右侧的一点,是否存在点Q及平面内另一点M,使得以A,F,Q,M为顶点的四边形是正方形?若存在,直接写出点Q的坐标;若不存在,说明理由.【变式7-1】(2022•陇县二模)在平面直角坐标系中,已知抛物线L1:y=ax2+bx+c经过A(﹣2,0),)两点,且与y轴交于点C,点B是该抛物线的顶点.B(1,−94(1)求抛物线L1的表达式;(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边形是正方形,求抛物线L2的解析式.【变式7-2】(2022秋•南宁期中)如图,抛物线与y轴交于点C(0,3),与x轴于点A(﹣1,0)、B(3,0),点P是抛物线的顶点.(1)求抛物线的解析式;(2)Q是抛物线上第一象限除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标;(3)若M、N为抛物线上两个动点,分别过点M、N作直线BC的垂线段,垂足分别为D、E.是否存在点M、N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.【变式7-3】(2022•南充)如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.【题型8 二次函数中角度问题的存在性问题】【例8】(2022•西宁)如图,抛物线y=ax2+bx+3与x轴交于点A(3,0),与y轴交于点B,点C在直线AB上,过点C作CD⊥x轴于点D(1,0),将△ACD沿CD所在直线翻折,使点A恰好落在抛物线上的点E处.(1)求抛物线解析式;(2)连接BE,求△BCE的面积;(3)抛物线上是否存在一点P,使∠PEA=∠BAE?若存在,求出P点坐标;若不存在,请说明理由.,0),B(3,【变式8-1】(2022•鄂尔多斯)如图,在平面直角坐标系中,抛物线y=ax2+bx+2经过A(−127)两点,与y轴交于点C.2(1)求抛物线的解析式;(2)点P在抛物线上,过P作PD⊥x轴,交直线BC于点D,若以P、D、O、C为顶点的四边形是平行四边形,求点P的横坐标;(3)抛物线上是否存在点Q,使∠QCB=45°?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【变式8-2】(2022•运城二模)如图,已知抛物线y=ax2+bx﹣8与x轴交于点A(﹣2,0),B(8,0)两点,与y轴交于点C,点P是直线BC下方抛物线上一动点,过点P作直线PE∥y轴,交直线BC于点D,交x轴于点F,以PD为斜边,在PD的右侧作等腰直角△PDF.(1)求抛物线的表达式,并直接写出直线BC的表达式;(2)设点P的横坐标为m(0<m<3),在点P运动的过程中,当等腰直角△PDF的面积为9时,请求出m的值;(3)连接AC,该抛物线上是否存在一点M,使∠ACO+∠BCM=∠ABC,若存在,请直接写出所有符合条件的点M的坐标,若不存在,请说明理由.x2+bx+c交x轴于A(﹣3,0),B(4,0)【变式8-3】(2022•罗湖区校级一模)如图,已知抛物线y=−13两点,交y轴于点C,点P是抛物线上一点,连接AC、BC.(1)求抛物线的表达式;(2)连接OP,BP,若S△BOP=2S△AOC,求点P的坐标;(3)在抛物线的对称轴上是否存在点Q,使得∠QBA=75°?若存在,直接写出点Q的坐标;若不存在,请说明理由.。

第80讲 存在性问题(新)

第80讲 存在性问题(新)

第20讲 存在性问题本节主要内容是存在性问题. 存在性问题有三种:第一类是肯定性问题, 其模式为“已知A, 证明存在对象B, 使其具有某种性质”. 第二类是否定性问题, 其模式为“已知A, 证明具有某种性质B 的对象不可能存在”. 第三类是探索性问题, 其模式为“已知A, 问是否存在具有某种性质B 的对象”.解决存在性问题通常有两种解题思路. 一种思路是通过正确的逻辑推理(包括直接计算), 证明(或求出)符合条件或要求的对象B 必然存在. 常利用反证法、数学归纳法、抽屉原则、计数法等. 另一种思路是构造法. 直接构造具有某种性质B 的对象. 常常采用排序原则、极端性原则进行构造.A 类例题例1 已知函数f (x )=|1-1x|.(1)是否存在实数a ,b (a <b ), 使得函数的定义域和值域都是[a ,b ]?若存在,请求出a ,b 的值;若不存在,请说明理由。

(2)若存在实数a ,b (a <b ), 使得函数的定义域是[a ,b ],值域是[ma ,mb ](m ≠0),求实数m 的取值范围.(2005年天津市数学竞赛试题)分析 函数f (x )是分段函数,它的值域是[0,).+∞ [a ,b ]是[0,)+∞的子集,而f (0)>0,所以a >0,因为函数f (x )在(0,1)上是减函数,在(1,+∞)上是增函数,所以我们分三种情况(i) 当a ,b ∈(0,1)时;(ii) 当 a ,b ∈(1,+∞)时;(iii)当a ∈(0,1),b ∈[1,+∞)时加以讨论.解 (1)不存在实数a ,b (a <b )满足条件.事实上,若存在实数a ,b (a <b ), 使得函数的定义域和值域都是[a ,b ],则有x ≣a >0.故 f (x )=11, 1.11, 1.x x x x⎧-≥⎪⎪⎨⎪-<⎪⎩(i)当a ,b ∈(0,1)时, f (x )= 1x-1在(0,1)上是减函数,所以,(),(),fa b fb a =⎧⎨=⎩即11,11.b a a b⎧-=⎪⎪⎨⎪-=⎪⎩由此推出a =b 与已知矛盾. 故此时不存在实数a ,b 满足条件. (ii)当a ,b ∈(1,+∞)时, f (x )=1-1x在(1,+∞)上为增函数,所以,(),(),fa a fb b =⎧⎨=⎩即11,11.a ab b⎧-=⎪⎪⎨⎪-=⎪⎩于是,a ,b 是方程x 2-x +1=0的实根,而此方程无实根,故此时不存在实数a ,b 满足条件.(iii) 当a ∈(0,1),b ∈[1,+∞)时,显然,1∈[a ,b ],而f(1)=0,所以0∈[a ,b ],矛盾. 故故此时不存在实数a ,b 满足条件.综上可知,不存在实数a ,b (a <b )满足条件.(2)若存在实数a ,b (a <b ), 使得函数的定义域是[a ,b ],值域是[ma ,mb ](m ≠0)易得m >0,a >0. 仿照(1)的解答,当a ,b ∈(0,1)或a ∈(0,1),b ∈[1,+∞)时,满足条件的a ,b 不存在. 只有当a ,b ∈(1,+∞)时,f (x )=1-1x在(1,+∞)上为增函数,有(),(),fa m a fb m b =⎧⎨=⎩即11,11.m a am b b⎧-=⎪⎪⎨⎪-=⎪⎩于是,a ,b 是方程mx 2-x +1=0的两个大于1的实数根.所以,140,11,2m x ∆=->⎧⎪⎨±=>⎪⎩只须0,140,12.m m m ⎧>⎪->⎨⎪->⎩解得0<m <14. 因此,m 的取值范围是0<m <14.说明 本题首先要注意题目的隐含条件a >0,因为函数的值域是[0,).+∞例2 已知常数a >0,在矩形ABCD 中,AB=4, BC=4a ,O 为AB 的中点,E 、F 、G 分别在BC 、CD 、DA 上移动,且BE BC = CF CD = DG DA,P 为CE 与OF 的交点. 问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.(2003年全国高考江苏卷试题)分析 根据题设满足的条件, 首先求出动点P 的轨迹方程,根据轨迹是否是椭圆,就可断定是否存在两个定点(椭圆的两个焦点), 使得P 到这两点的距离的和为定值.解 按题意有A(-2,0),B(2,0),C(2,4a ),D(-2, 4a ).设BE BC = CF CD = DGDA = k (0≤k ≤1).由此有E(2,4ak ),F(2-4k , 4a ),G(-2, 4a -4ak ).直线OF 的方程为2ax +(2k -1)y =0, ① 直线GE 的方程为-a (2k -1)x + y -2a =0, ② 由①②消去参数k 得点P(x ,y )坐标满足方程2a 2x 2+y 2-2ay =0, 整理得x 212+(y -a )2a 2=1.当a 2=12时,点P 的轨迹为圆弧,所以不存在符合题意的两点;当a 2≠12时,点P 的轨迹为椭圆的一部分,点P 到该椭圆的两个焦点的距离的和是定长;当a 2<12时,P 到椭圆两个焦点(-12-a 2,a ),(12-a 2,a )的距离之和为定长2; 当a 2>12时,P 到椭圆两个焦点(0, a -a 2-12),(0, a +a 2-12)的距离之和为定长2a .说明 要解决轨迹问题首先要建立适当的直角坐标系,有时还要选择适当的参数作过渡.情景再现1.已知二次函数f (x )=ax 2+bx +a 满足条件f (x +74)= f (74x ), 且方程f (x )=7x +a 有两个相等的实数根.(1) 求f (x )的解析式;(2) 是否存在实数m 、n (0<m <n ),使得f (x )的定义域和值域分别是[m ,n ]和[3n ,3m ]? 若存在, 求出m 、n 的值; 若不存在, 请说明理由. (2004年河南省数学竞赛试题)2.直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B .(I) 求实数k 的取值范围;(II)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F?若存在,求出k 的值;若不存在,说明理由. (2004年湖北省高考理科试题)B 类例题例3将平面上每个点都以红、蓝两色之一着色,证明:存在这样的两个相似三角形,它们的相似比为1995,并且每一个三角形的三个顶点同色.(1995年全国高中数学联赛第二试试题)分析 因为平面上的每点不是红色就是蓝色,由抽屉原理,对任何一个无穷点集,至少有一个无穷子集是同色点集,对一个含n 个元素的有限点集,至少有一个含]21n [+个元素的子集是同色点集.(其中[ ]为高斯符号),于是利用抽屉原理,在半径为1和1995的两个同心圆上,寻找两个三顶点同色的相似三角形.证明 在平面上,以O 为圆心,作两个半径为1和1995的同心圆.根据抽屉原理,小圆周上至少有5点同色,不妨设为A 1,A 2,A 3,A 4,A 5,连接OA 1,OA 2,OA 3,OA 4,OA 5,分别交大圆 于B 1,B 2,B 3,B 4,B 5,根据抽屉原理,B 1,B 2,B 3,B 4,B 5中必有三点同色,不妨设为B 1,B 2,B 3,分别连接A 1A 2,A 2A 3,A 3A 1,B 1B 2,B 2B 3,B 3B 1,则△A 1A 2A 3∽△B 1B 2B 3,其相似比为1995,且两个三角形三顶点同色.说明 解决有关染色问题抽屉原理是经常使用的.例4 在坐标平面上,纵、横坐标都是整数的点称为整点.试证:存在一个同心圆的集合,使得 (1) 每个整点都在此集合的某一个圆周上; (2) 此集合的每个圆周上,有且仅有一个整点.(1987年全国高中数学联赛第二试试题)分析 构造法.先设法证明任意两整点到P ⎪⎭⎫⎝⎛31,2的距离不可能相等,从而将所有整点到P 点的距离排序造出同心圆的集合,这里同心圆的坐标不是惟一的,可取⎪⎭⎫⎝⎛31,2外的其它值. 证明 取点P ⎪⎭⎫⎝⎛31,2. 设整点(a ,b )和(c ,d )到点P 的距离相等,则2222222211(()((),3322(().3a b c d c a c a d b b d -+-=-+--=-+-+-即上式仅当两端都为零时成立.所以c =a ①c 2-a 2+d 2-b 2+32(b -d )=0 ②将①代入②并化简得d 2-b 2+32(b -d )=0.1即 (d -b )(d +b -32)=0由于b ,d 都是整数,第二个因子不能为零,因此b =d ,从而点(a ,b )与(c ,d )重合,故任意两个整点到P ⎪⎭⎫⎝⎛31,2的距离都不相等.将所有整点到P 点的距离从大到小排成一列 d 1,d 2,d 3,……,d n ,…….显然,以P 为圆心,以d 1,d 2,d 3,…为半径作的同心圆集合即为所求.说明 同心圆的圆心坐标不是惟一的.例5 (1)给定正整数n (n ≣5), 集合A n ={1,2,3,…,n }, 是否存在一一映射φ:A n →A n 满足条件:对一切k (1≢k ≢n -1), 都有k |(φ(1)+ φ(2)+ … +φ(n ));(2)N +为全体正整数的集合, 是否存在一一映射φ:N +→N +满足条件:对一切k ∈N +, 都有k |(φ(1)+ φ(2)+ … +φ(n )).注 映射φ:A →B 称为一一映射, 如果对任意b ∈B, 有且仅有一个a ∈A, 使得b =φ(a ).题中“|”为整除符号. (2004年福建省数学竞赛试题)分析 对于问题(1)不难用反证法结合简单的同余理论可以获解;对于问题(2)采用归纳构造.解(1)不存在. 记S k =∑=ni i 1)(ϕ.当n =2m +1(m ≣2)时, 由2m |S 2m 及S 2m = (2m +1)(2m +2)2-φ(2m +1)得φ(2m +1)≡m +1(mod2m ).但φ(2m +1)∈A 2m +1, 故φ(2m +1)=m +1. 再由(2m -1)|S 2m -1及S 2m -1= (2m +1)(2m +2)2-(m +1)-φ(2m )得φ(2m )≡m +1(mod(2m -1)).所以, φ(2m ) =m +1, 与φ的双射定义矛盾. 当n =2m +1(m ≣2)时, S 2m +1= (2m +2)(2m +3)2-φ(2m +2)给出φ(2m +2)=1或2m +2, 同上又得φ(2m +1)=φ(2m )=m +2或m +1, 矛盾.(2) 存在.对n 归纳定义φ(2n -1)及φ(2n )如下:令φ(1)=1, φ(2)=3. 现已定义出不同的正整数φ(k )(1≢k ≢2n )满足整除条件且包含1,2,…,n , 又设v 是未取到的最小正整数值. 由于2n +1与2n +2互质, 根据孙子定理, 存在不同于v 及φ(k )(1≢k ≢2n )的正整数u 满足同余式组u ≡-S 2n (mod(2n +1)) ≡-S 2n -v (mod(2n +2)).定义φ(2n +1)= u , φ(2n +2)=v . 正整数φ(k )(1≢k ≢2n +2)也互不相同, 满足整除条件, 且包含1,2,…,n +1. 根据数学归纳法原理, 已经得到符合要求的一一映射φ:N +→N +.说明 数论中的存在性问题是竞赛命题的一个热点.情景再现3.将平面上每个点都以红、蓝两色之一着色. 存在有两个内角分别为2π7、 4π7,且夹边长为1996的三角形,其三个顶点同色.(1996年北京市数学竞赛试题)4. 在平面直角坐标系中,横坐标和纵坐标都是整数的点称为格点,任取6个格点P I (x i ,y i )(i =1,2,3,4,5,6)满足(1)|x i |≢2,| y i |≢2, (i =1,2,3,4,5,6); (2)任何三点不在同一条直线上.试证 在P i ( i =1,2,3,4,5,6)以为顶点的所有三角形中,必有一个三角形,它的面积不大于2.(1992年全国高中数学联赛第二试试题)5. 在坐标平面上,是否存在一个含有无穷多条直线l 1,l 2,…,l n ,…的直线族,它满足条件:(1)点(1,1)∈l n ,n =1,2,…; (2)k n +1=a n —b n ,其中k 1是l 1的斜率,k n +1是l n +1的斜率,a n 和b n 分别是l n 在x 轴和y 轴上的截距,n =1,2,3, …; (3)k n k n +1≣0,n =1,2,3, ….并证明你的结论. (1988年全国高中数学联赛第二试试题)C 类例题例6 平面上是否存在100条直线, 使它们恰好有1985个交点.(第26届IMO 预选题)分析 由于100条直线最多有C 1002=4950(>1985)个交点, 所以符合要求的直线可能存在.减少交点的个数可有两种途径:一是利用平行线, 二是利用共点线. 所以用构造法.解法一 由于x 条直线与一族100-x 条平行线可得x (100-x )个交点. 而x (100-x )=1985没有整数解, 于是可以考虑99条直线构成的平行网格.由于x (99-x )<1985的解为x ≢26或x ≣73,x ∈N , 且1985=73×26+99-12, 于是可作如下构造: (1) 由73条水平直线和26条竖直直线 x =k ,k =1,2,3, (73)y = k ,k =1,2,3, (26)共99条直线, 可得73×26个交点.(2)再作直线y =x +14与上述99条直线都相交, 共得到99个交点, 但其中有12个交点(1,15),(2,16),…,(12,26)也是(1)中99条直线的彼此的交点, 所以共得99-12个交点. 由(1)、(2),这100条直线可得到73×26+99-12=1985个交点.解法二 若100条直线没有两条是平行的, 也没有三条直线共点, 则可得到C 1002=4950(>1985)个交点, 先用共点直线减少交点数.注意到若有n 1条直线共点, 则可减少12n C -1个交点. 设有k 个共点直线束, 每条直线束的直线条数依次为n 1, n 2,…, n k . 则有 n 1+n 2+…+ n k ≢100,122221112965k n n n C C C -+-++-=L ( C 1002-1985=2965).因为满足12n C -1<2965的最大整数是n 1=77, 此时C 772-1=2925.因此可构造一个由77条直线组成的直线束,这时还应再减少40个交点. 而满足22n C -1<40的最大整数为n 2=9, 此时C 92-1=35. 因此又可构造一个由9条直线组成的直线束. 这时还应减少5个交点.由于C 42-1=5,所以最后可构造一个由4条直线组成的直线束.因为77+9+4=90<100, 所以这100条直线可构成为77条,9条,4条的直线束, 另10条保持不动即可. 说明 本题的基本数学思想方法是逐步调整,这在证明不等式时经常使用,但学会在几何中应用,会使你的解题思想锦上添花.例7 设n 是大于等于3的整数, 证明平面上存在一个由n 个点组成的集合, 集合中任意两点之间的距离为无理数, 任三点组成一个非退化的面积为有理数的三角形. (第28届IMO 试题)分析 本题的解决方法是构造法,一种方法在抛物线y =x 2上选择点列,另一种方法在半圆周上选择点列.解法一 在抛物线y =x 2上选取n 个点P 1,P 2,…,P n , 点P i 的坐标为(i ,i 2) (i =1,2,…,n ).因为直线和抛物线的交点至多两个, 故n 个点中任意三点不共线, 构成三角形为非退化的. 任两点P i 和P j之间的距离是|P i P j|=(i-j)2+(i2-j2)2=|i-j|1+(i+j)2(i≠j, i, j=1,2,…,n).由于(i+j)2<1+(i+j)2<(i+j)2+2(i+j)+1=(i+j+1)2, 所以1+(i+j)2是无理数.从而|P i P j|是无理数.△P i P j P k的面积= 12222111i j ki j k=12|(i-j) (i-k)(j-k)|, 显然是有理数.因此,所选的n个点符合条件.解法二考虑半圆周x2+y2=r2(y∈R+, r =2)上的点列{A n},对一切n∈N*,令∠x OA n=αn,则任意两点A i,A j之间的距离为|A i A j|=2r|sin αi-αj2|,其中,0<αn≢π, cosαn2=n2-1n2+1, sinαn2=2nn2+1.∴|A i A j|=2r|sin αi2cosαj2―cosαi2sinαj2|为无理数.又sinαn =2sin αn2cosαn2∈Q, cosαn = cos2αn2―sin2αn2∈Q.任何三点A i,A j,A k不共线,必然构成非退化三角形,注意到r =2,其面积S=12111cos cos cossin sin sini j ki j kr r rr r rαααααα=r22111cos cos cossin sin sini j ki j kαααααα=111cos cos cossin sin sini j ki j kαααααα为有理数.说明本题与第17届IMO试题(见情景再现7)有一定的联系,请读者参考本解答完成它的解答.例8一个n×n的矩阵(正方阵)称为“银矩阵”,如果它的元素取自集合S={1,2,…,2n-1},且对每个i=1,2,…,n, 它的第i行和第i列中的所有元素合起来恰好是S中所有元素.证明(1)不存在n=1997阶的银矩阵;(2)有无穷多个的n值,存在n阶银矩阵.(第38届IMO试题)分析根据银矩阵的结构特征可以证明不存在奇数阶银矩阵,对任意自然数k, 用构造法构造出2k阶银矩阵.解(1)设n>1且存在n阶银矩阵A. 由于S中所有的2n-1个数都要在矩阵A中出现,而A的主对角线上只有n个元素,所以,至少有一个x∈S不在A的主对角线上. 取定这样的x. 对于每个i=1,2,…,n,记A的第i行和第i列中的所有元素合起来构成的集合为A i,称为第i个十字,则x在每个A i中恰好出现一次.假设x位于A的第i行、第i列(i≠j).则x属于A i和Aj,将A i与Aj配对,这样A的n个十字两两配对,从而n必为偶数. 而1997是奇数,故不存在n=1997阶的银矩阵.(2)对于n=2,A=1231骣÷ç÷ç÷ç÷桫即为一个银矩阵,对于n=4,A=1256317546127431骣÷ç÷ç÷ç÷ç÷ç÷÷ç÷ç÷ç÷ç÷÷ç桫为一个银矩阵. 一般地,假设存在n阶银矩阵A,则可以按照如下方式构造2n阶银矩阵D,D=A BC A骣÷ç÷ç÷ç÷桫,其中B是一个n×n的矩阵,它是通过A的每一个元素加上2n得到,而C是通过把B的主对角线元素换成2n得到.为证明D是2n阶银矩阵,考察其第i个十字. 不妨设i≢n,这时,第i个十字由A的第i个十字以及B的第i行和C的第i列构成. A 的第i个十字包含元素{1,2,…,2n-1}.而B的第i行和C的第i列包含元素{2n, 2n+1,…,4n-1}.所以D确实是一个2n阶银矩阵.于是,用这种方法可以对任意自然数k,造出2k阶银矩阵.说明读者可以构造任意偶数阶银矩阵.情景再现6.证明不存在具有如下性质的由平面上多于2n(n>3)个两两不平行的向量构成的有限集合G:(1)对于该集合中的任何n个向量, 都能从该集合中再找到n-1个向量, 使得这2n-1个向量的和等于0;(2)对于该集合中的任何n个向量, 都能从该集合中再找到n个向量, 使得这2n个向量的和等于0.(2003年俄罗斯数学奥林匹克试题)7.试证:在半径为1的圆周上存在1975个点, 其中任意两点之间的距离都是有理数.(第17届IMO试题)8.是否存在平面上的一个无穷点集,使得其中任意三点不共线,且任意两点之间的距离为有理数?(1994年亚太地区数学奥林匹克试题)习题201.已知抛物线y2=4ax(0<a<1)的焦点为F,以A(a+4,0)为圆心,|AF|为半径在x轴上方作半圆交抛物线于不同的两点M和N,设P为线段MN的中点.(1)求|MF|+|NF|的值;(2)是否存在这样的a值,使|MF|,|PF|,|NF|成等差数列?若存在,求出a的值;若不存在,说明理由.(1996年昆明市数学选拔赛试题)2.证明:不存在正整数n使2n2+1,3n2+1,6n2+1都是完全平方数. (2004年日本数学奥林匹克试题)3.证明只存在一个三角形,它的边长为三个连续的自然数,并且它的三个内角中有一个为另一个的两倍.(第10届IMO试题)4.是否存在这样的实系数多项式P(x):它具有负实数,而对于n>1, P n(x)的系数全是正的.(1994年莫斯科数学奥林匹克试题)5.证明不存在对任意实数x均满足f[f(x)]= x2-1996的函数. (1996年城市数学联赛试题)6.是否存在有界函数f : R→R, 使得f(1)>0, 且对一切的x、y∈R, 都有f 2(x+y)≣f 2(x)+2 f(xy)+ f 2 (y)成立. (2005年俄罗斯数学奥林匹克试题)7.是否存在数列x1,x2,…,x1999,满足(1)x i<x i+1(i=1,2,3,…,1998);(2) x i+1- x i = x i- x i-1(i=2,3,…,1998);(3)( x i的数字和)<( x i+1的数字和) (i=1,2,3,…,1998);(4) (x i+1的数字和)-( x i的数字和) = ( x i的数字和)–( x i-1的数字和)(i=2,3,…,1998).(1999年江苏省数学冬令营试题)8.(1)是否存在正整数的无穷数列{a n},使得对任意的正整数n都有a2n+1≣2a n a n+2?(2)是否存在正无理数的无穷数列{a n},使得对任意的正整数n都有a2n+1≣2a n a n+2?(2004年中国东南地区数学奥林匹克试题)9.是否存在一个无限素数数列p1, p2,…,p n,…,对任意n满足|p n+1-2p n|=1.(2004年波罗的海数学奥林匹克试题) 10.证明:对于每个实数M, 存在一个无穷多项的等差数列, 使得(1)每项是一个正整数, 公差不能被10整除;(2)每项的各位数字之和超过M. (第40届IMOY预选题)11.是否存在定义在实数集R上的函数f(x),使得对任意的x∈R,f(f(x))=x, ①且f(f(x)+1)=1-x? ②若存在,写出一个符合条件的函数;若不存在,请说明理由.(2004年河南省数学竞赛试题)12. 对于给定的大于1的正整数n ,是否存在2n 个两两不同的正整数a 1,a 2,…,a n ; b 1,b 2,…,b n 同时满足以下两个条件:(1) a 1+a 2+…+a n = b 1+b 2+…+b n ;(2)n -1>1ni i i i ia b a b =-+å> n -1-11998.(1998年CMO 试题) “情景再现”解答1.(1)由条件有f (x )=ax 2-72a x +a . 又f (x )=7x +a 有两个相等的实数根,则由ax 2-(72a +7)=0可知, ∆=(72a +7)2-4a ·0=0, 解得a =-2.故f (x )= -2x 2+7x -2.(2)存在. 如图. 设g (x )= 3x (x >0). 则当f (x )= g (x )时, 有-2x 2+7x -2= 3x ,即2x 3-7x 2+2x +3=0. 故(x -1)(x -3)(2x +1)=0. 解得x 1=1, x 2=3, x 2=-12(舍去).因为f (x )max = 4ac -b 24a = 338,此时,x = 74∈[1,3],所以, 3f (x )max = 811<1. 故取m =811, n =3时, f (x )= -2x 2+7x -2在[811,3]上的值域为[1, 338符合条件. 2. (I)将直线l 的方程y =kx +1代入双曲线C 的方程2x 2-y 2=1后,整理后得(k 2-1)x 2+2kx +2=0 ①依题意,直线l 与双曲线C 的右支交于不同的两点,故k 2-2≠0,Δ=(2k )2-8(k 2-2)>0,-2kk 2-2>0, 2k 2-2. 解得k 的取值范围为-2<k <-2.(II)设A 、B 两点的坐标分别为A(x 1, y 1),B(x 2, y 2),则由①得x 1+x 2=-2kk 2-2,x 1x 2=2k 2-2. ②假设存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F(c ,0), 则由FA ⊥FB 得(x 1-c )( x 2-c )+ y 1y 2=0,即(x 1-c )( x 2-c )+( kx 1+1)( kx 2+1)=0.整理得(k 2+1)x 1x 2+(k -c )(x 1+x 2)+c 2+1=0. ③将②式及c= 62代入③式化简得5k 2+26kx -6=0.解得k =- 6+65或k =6-65∉(-2,-2)(舍去). 可知k =- 6+65使得以线段AB 为直径的圆经过双曲线C 的右焦点F .435A3. 任作一个边长为1996的正七边形A 1A 2A 3A 4A 5A 6A 7.这7个顶点中必有4点同色,而在这同色四点中,必有两点是相邻顶点, 为确定起见, 不妨设这两点就是A 1、A 2,并且它们均是红色. (1) A 4或A 6中有一个是红色的, 比如, A 6是红色的,△A 1A 2A 6即为所求.(2) A 4与A 6都是蓝色的. 若A 7是蓝色的, 则△A 4A 6A 7即为所求;若A 3是蓝色的, 则△A 4A 6A 7即为所求; 若A 3、A 7都是红色, 则为△A 1A 3A 7所求.4. 设存在6个格点P 1, P 2 ,P 3 ,P 4 ,P 5 ,P 6 落在区域S={(x ,y )||x |≢2,|y |≢2}内,它们任3个点所成的三角形面积都大于2.记P={ P 1, P 2 ,P 3 ,P 4 ,P 5 ,P 6}(1)若x 轴具有P 中的点数小于2,则由抽屉原理,x 轴的上半平面(或下半平面——不包括x 轴)至少有P i 的三个点.此三点所成的三角形面积不大于2.矛盾.故x 轴上恰有P 的2个点(因不能有3点共线).又剩下P 的4个点不可能有一点在直线y =±1上,否则出现P 中的点为顶点的面积不大于2的三角形.这就证明了,在直线y =2,和y =-2上,分别恰有P 的两个点.注意到S 的对称性,同理可证:直线x =-2, x =0, x =2上分别有P 的两个点. 于是,在每条直线y =2i ,x =2i (i =0,±1)上恰有P 的两个点.(2)P 必不能包含原点,否则,因S 内纵,横坐标均为偶数的所有格点落在且仅落在过原点的4条直线上,由 抽屉原理,剩下的P 的5个点,至少有两个点落在这些直线的其中一条上,于是3点共线,矛盾. 因此,P 中在x 轴的两点必是(-2,0),(2,0).同理,在y 轴上的两点必是(0,-2),(0,2). 剩下的两点只能取(-2,-2),(2,2),或(-2,2),(2,-2).不论哪一种情形,都得到一个以P 点为顶点的面积不大于2的三角形,矛盾.5. 满足条件(1)、(2)、(3)的直线族不存在.若不然,l n 的方程为y —1=k n (x —1)1111,1,n n n n n n n nna b k a b k k k k +=-=--=-=都存在,故k n ≠0,n =1,2,3, ….对于n ≣1,有 1112111121,1,,1.111n n n n n n n nk k k k k k k k k k k k k k +---=--=--=-=-+++相加得:()由于k n ≠0及(III)有k n k n +1>0可知诸k n 符号相同,不妨设k n >0,n =1,2,……. 由11111121111111,,(),n n n n nn nnn k k k k k k k k k k k k k +++=-<>=-+++<-有但当n >k 12时k n +1<0,矛盾.同理可证,当k n <0,n =1,2, …,也会出现矛盾.6. 假设题目的结论不真.选取一条直线l , 使其不与集合G 中的任何一个向量垂直. 于是, G 中至少有n 个向量在直线l 上的投影指向同一方向, 设它们为e 1, e 2, …, e n . 在直线l 上取定方向,使得这些向量的投影所指的方向为负. 再在集合G 中选取n 个向量f 1, f 2 ,…, f n ,使得它们的和在直线l 上的投影的代数值s 达到最大. 由题中条件(2)知s >0.由条件(1),可以找到n -1个向量a 1, a 2 ,…,a n -1,使得f 1+ f 2+…+f n = -(a 1+a 2+…+a n -1).显然, 至少有某个向量e i 不出现在上式右端, 不妨设为e 1. 从而a 1+a 2+…+a n -1+e 1的投影为负, 且其绝对值大于s .再由条件(2)知, 又可以找到n 个向量, 使得它们的代数和等于-(a 1+a 2+…+a n -1+e 1),从而,该和的投影代数值大于s . 此与我们对f 1, f 2 ,…, f n 的选取相矛盾.7. 取θn =arctan n 2-12n (1≢n ≢1975), 则sin θn = n 2-1n 2+1 , cos θn = 2nn 2+1都是有理数, 且2θn 互不相同.对单位圆上辐角为2θ1,2θ2,…,2θ1975的点P 1,P 2,…,P 1975,|P i P j |=2|sin(θi -θj )|=2| sin θi cos θj - cos θi sin θj )|为有理数.8. 答案是肯定的,下面提供两种构造这样的点集的方法.方法一 存在角α,使得cos α与sin α都是有理数(例如sin α=35,cos α=45).考虑一个以有理数R 为半径的圆周,和一个弧度为2α的圆弧,显然a2R = sin α,其中a 是上述圆弧所对的弦长,因此弦长为有理数.从此弧的端点出发,在圆周上连续截取弧度为2α的圆弧,显然,任一弧所对的弦长XY 是有理数.由作图法知XY2R = |sin n α|,对某个正整数n ,由于cos α与sin α都是有理数,所以由数学归纳法可以证明sin n α和cos n α都是有理数. 下面证明此过程产生一个无穷点集.为了此目的,设sin α=p r , cos α=qr ,其中(p ,q )=1,p 2+q 2=r 2,由棣美弗定理得(q r +i pr )n =cos n α+ i sin n α. 若其值为1,则1= cos n α=Σ(-1)k C n 2k p n -2k q 2k rn. 由于q 2≡-p 2(mod r 2),则r n ≡p n 2n -1(mod r 2). 故2| r ,然而从p 2+q 2=r 2, (p ,q )=1可知这是不可能的.这就证明了我们描述的集合是无限集.方法二 在平面上取一点P 和一条与P 距离为1的直线l ,设Q 是l 上与P 相距为1的点,考察l 上所有满足SQ,PS 都是有理数的点S,由于毕达哥拉斯基本的三元数组有无穷多个,而且与点S 一一对应,故存在无穷多个这样的点.作一个以P 为中心,半径为1的反演.此变换保持点之间的距离的有理性(这容易通过△PSR ∽△PS'R'证明,其中S 和R 是点集中的点,S'和R'分别为它们的象).用这样的方法构造的点集在一个圆周上,因此,无三点共线.习题20解答1. 解 (1)由已知得F(a ,0),半圆为[x -(a +4)]2+y 2=16(y ≣0).把y 2=4ax 代入,可得x 2-2(4-a )x +a 2+4a =0. 设M(x 1, y 1),N(x 2, y 2).则由抛物线的定义得|MF|+|NF|=(x 1+a )+(x 2+a )=( x 1+ x 2)+2a =2(4-a ) +2a =8. (2)若|MF|,|PF|,|NF|成等差数列,则有2|PF|=|MF|+|NF|.另一方面,设M, P , N 在抛物线准线上的射影为M', P', N'. 则在直角梯形M'MNN'中,P'P 是中位线,又有2|P'P|=|M'M|+|N'N|=|FM|+|FN|,因而|PF|=|P'P|.这说明了点P 应在抛物线上.但由已知P 是线段MN 的中点,即P 并不在抛物线上.所以不存在这样的a 值,使|MF|,|PF|,|NF|成等差数列.2. 假设存在这样的n , 使2n 2+1,3n 2+1,6n 2+1都是完全平方数, 那么(2n 2+1)( 3n 2+1)(6n 2+1)必定为完全平方数, 而(2n 2+1)(3n 2+1)(6n 2+1)=36n 6+36n 4+11n 2+1,(6n 3+3n )2=36n 6+36n 4+9n 2,(6n 3+3n +1)2=36n 6+36n 4+12n 3+9n 2+6n +1,所以 (6n 3+3n )2<(2n 2+1)(3n 2+1)(6n 2+1)<(6n 3+3n +1)2,显然,与(2n 2+1)( 3n 2+1)(6n 2+1)为完全平方数矛盾.3. 设△ABC 满足题设条件, 即AB=n ,AC=n -1,BC=n +1, 这里n 是大于1的自然数. 并且△ABC 的三个内角分别为α、2α和π-3α,其中0<α<π3由于在同一个三角形中,较大的边所对的角也较大, 因此出现的情况只有如图所示的三种.对于情况(1), 因为sin(π-3α)sin α = sin3αsin α =4cos 2α-1=(sin2αsin α)2-1, 所以利用正弦定理可知n n -1 = sin(π-3α)sin α = (sin2αsin α)2-1= (n +1n -1)2-1, 从而得到n 2-5n =0, 解得n =5.同样,在情况(2)中,有n +1n -1 =(n n -1)2-1,解得n =2. 但n =2,此时三边为1,2,3,不能构成三角形. 在情况(3)中, 有n -1n =(n +1n)2-1,整理得n 2-3n -1=0, 但这个方程无整数解. 综上, 满足题设条件的三角形三边长只有4,5,6.可以证明cosB=3418=cos2B, A=2B . 4. 存在.P(x )=10(x 3+1)(x +1)- x 2 =10x 4+10x 3- x 2+10x +10具有负系数, 但是P 2(x )= x 4+100(x 3+1)2(x +1)2-20x 2(x 3+1)(x +1)= x 4+20(x 3+1)[5(x 3+1)(x +1)2- x 2(x +1)]= x 4+20(x 3+1)(5x 5+10x 4+4x 3+4x 2+10x +5)的系数全是正的.P 3(x )=1000(x 3+1)3(x +1)3-300 x 2(x 3+1)2(x +1)2+30x 4(x 3+1)(x +1)-x 6=100(x 3+1)2(x +1)[10(x 3+1)(x +1)2-3x 2(x +1)]-x 6+30x 4(x 3+1)(x +1)=100(x 3+1)2(x +1)(10x 5+20x 4+7x 3+7x 2+20x +1)-x 6+30x 4(x 3+1)(x +1)=Q 1(x )-x 6+Q 2(x )Q 1(x )中的x 6的系数不小于1000,所以P 3(x )的系数也全是正的.又当k ≣2时,有P 2k (x )=[P 2(x )] k , P 2k +1(x )=[P 2(x )] k -1· P 3(x ).所以,对一切n >1, P n (x )的系数全是正的.5. 令g (x )= f [f (x )] = x 2-1996, 设a 、b 为方程x 2-1996= x 的两个实数根, 则a 、b 是g (x )的不动点. 设f (a )=p , 则f [f (p )]= f [f (f (a ))]= f (a )=p , 即p 也是g (x )的不动点. 所以f (a )∈{a ,b }.同理, f (b )∈{a ,b }.令h (x )= g [g (x )]=(x 2-1996)2-1996, 则h (x ) = x ∴ (x 2-1996)2-1996= x ∴ (x 2- x -1996)( x 2+ x -1995)=0所以h (x )存在四个不动点a 、b 、c 、d .因为c 2+c -1995=0, 所以g (c )= c 2-1996=- c -1= d .同理, g (d )=c .令f (c )=r , 则h [f (c )]= f [h (c )]= f (c ),即r 也是h (x )的不动点.若r ∈{a ,b },则d = f (r )∈{a ,b },矛盾; 若r = c , 则g (c )= f (r )= f (c )=r = c ,矛盾; 若r = d , 则d =g (c )= f (r )= f (d ),g (d )=g (r )=g (f (c ))=f (g (c ))= f (d )=d, 矛盾.综上所述, 满足条件的函数f (x )不存在.6. 不存在. 任取x 1≠0, 令y 1=1x 1 , 有 f 2(x 1+y 1)≣f 2(x 1)+2 f (1)+ f 2 (y 1) ≣f 2(x 1)+a ,其中a =2f (1)>0.令x n =x n -1+y n -1, y n =1x n , n ≣2. 于是, 有 f 2(x n +y n )≣f 2(x n )+a = f 2(x n -1+y n -1) +a ≣f 2(x n -1)+2a ≣…≣f 2(x 1)+na ,故数列{ f (x 1), f (x 2),…, f (x n ) ,…}并非有界.7. 存在,构造如下:取x 1= 00000 00001 00002 00003…09999,x 2= 00001 00002 00003 00004…10000,x 3= 00002 00003 00004 00005…10001,…………,x 1998= 01997 01998 01999 02000…11996,x 1999= 01998 01999 02000 02001…11997,这是公差为00001 00001 00001 00001…00001的等差数列(项数取1999),且各项数字和为公差是1的等差数列.8.(1)不存在.假设存在正整数数列{a n }满足条件a 2n +1≣2a n a n +2.因为a 2n +1≣2a n a n +2, a n >0,所以a n a n -1≢12·a n -1a n -2≢122·a n -2a n -3≢…≢12n -2·a 2a 1(n =3,4,…), 又a 2a 1≢122-2 · a 2a 1, 所以有a n a n -1≢12n -2·a 2a 1(n =2,3,4,…)成立, 于是 a n ≢(12n -2·a 2a 1)a n -1≢12(n -2)+(n -3)·(a 2a 1)2·a n -2≢…≢12(n -2)+(n -3)+…+1·(a 2a 1)n -2·a 2, 所以12222211().2≢n n n n a a a ---×设212[2,2),k k a k +挝N *, 取N=k +3,则有1221222221111121()() 1.22≢≢N k k N N N k k a a a a -++--++?这与a N 是正整数矛盾.所以, 不存在正整数数列{a n }满足条件.(2) a n = π2(n -1)( n -2)就是满足条件的一个无理数数列, 此时有a 2n +1=4a n a n +2≣2a n a n +2.9. 若存在这样的数列{ p n }满足条件. 由| p n +1-2p n | =1得 p n +1=2p n ±1>2p n , 则数列{ p n }严格递增数列, 所以p 3>3且不能被3整除, 若p 3≡1(mod3)时, 可得p 4= 2p 3-1(否则p 4= 2p 3+1≡0(mod3), 即p 4能被3整除,舍去), 类似的有, p 5= 2p 4-1, …,p n =2p n -1-1,容易得到p n =2n -3p 3-2n -3+1(n ≣3),令n -3= p 3-1, 由费尔马小定理)(mod 12313p p ≡-,则p n =2n -3p 3-2n -3+1≡0(mod p 3), 即p 3|p n , 矛盾. 当p 3≡2(mod3)时, 也可得到类似的结论.综上, 不存在这样的数列.10. 我们证明这个等差数列的公差为10m +1的形式. 设a 0是一个正整数, a n = a 0+n (10m +1)=10s s b b b -L , 这里s 和数字b 0,b 1,…,b s 依赖于n . 若l ≡k (mod2m ), 设l =2mt +k ,则10l =102mt +k =(10m +1-1)2t ·10k ≡(mod(10m +1)).于是, a 0≡a n =10s s b b b -L ≡21010m i i i c -=×å( mod(10m+1)). 其中c i =b i +b 2m +i +b 4m +i +…,i =0,1,2,…,2m -1.令N 是大于M 的正整数, 满足c 0+c 1+…+c 2m -1≢N 的非负整数解(c 0,c 1,…,c 2m -1)的个数等于严格递增数列0≢c 0<c 0+c 1+1<c 0+c 1+ c 2+1<c 0+c 1+…+c 2m -1+2m -1≢N+2m -1的数目, 即 K N,2m =C 2m +N 2m =C 2m +N N = (2m +N)(2m +N -1)…(2m +1)N!. 对于足够大的m , 则有K N,2m <10m . 取a 0∈{1,2,…, 10m },使得a 0与集合 {21220m m c c c --L |c 0+c 1+…+c 2m -1≢N}中的任意元素模10m +1不同余, 因此, a 0的各位数字之和大于N . 从而, a n 的各位数字之和也大于N .11. 这样的函数不存在.下面用反证法证明.若存在函数f (x )使得条件均成立,先证明是f (x )是一一映射. 对于任意的a 、b , 若f (a )= f (b ),则由①有a = f (f (a ))= f (f (b ))= b , 即f (x )是一一映射.将x =0代入①,则有f (f (0))= 0. ③ 将x =1代入②,得f (f (1)+1)= 0. ④ 由式③、④得f (f (0))= f (f (1)+1).因为f (x )是一一映射,所以,f (0)=f (1)+1. ⑤ 同理,分别将x =1和x =0代入①、②,得f (f (1))= f (f (0)+1).则f (1) = f (0)+1. ⑥ ⑤+⑥得0=2. 矛盾.12. 存在符合命题要求的2n 个正整数.令a i =2M i ,b i =2i ,(i =1,2,3,n -1;M 是大于或等于8000n 的正整数),a n =(M -1)2n (n -1),b n =M(M -1)n (n -1).显然,上述2n 个正整数两两不同,且a 1+a 2+…+a n = b 1+b 2+…+b n = n (n -1)(M 2-M+1), 另一方面,我们有1ni i i i i a b a b =-+å=(n -1) M -1M+1 - 12M -1<n -1, 1n i ii i i a b a b =-+å=n -1- 2(n -1)M+1 - 12M -1>n -1-2(n -1)8000n - 18000>n -1- 11998 因此,上述所给的2n 个正整数符合命题要求.。

开放性问题与存在性问题

开放性问题与存在性问题

课题:开放型问题与存在型问题一、开放型问题1、主要有下列两种描述:(1)答案不固定或条件不完备的习题.(2)具有多种不同的解法或有多种可能的解答问题.2、特点是:(1)条件多余需选择,条件不足需补充.(2)答案不固定.(3)问题一般没有明确的结论,没有固定的形式和方法,需要自己通过观察、分析、比较、概括、推理、判断等探索活动来确定所需求的结论或条件或方法.3、类型:(1)条件开放型;(2)结论开放型;(3)策略开放型;(4)综合开放型(一)条件开放题条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1 已知反比例函数错误!未找到引用源。

,其图象在第一、三象限内,则k值可为.(写出满足条件的一个k的值即可)(二)结论开放题给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2 如图,AB是⊙O的直径, ⊙O交BC于D,过D作⊙O的切线DE交AC于E,且DE⊥AC,由上述条件,你能推出的正确结论有: .例3 一条抛物线的对称轴是x=1逐步形成与x轴有唯一的公共点,并且开口向下,则这条抛物线的解析式是.(任写一个)(三)条件、结论开放题综合开放型试题的的条件和结论都不确定,需要考生认定条件和结论,然后组成一个新命题,并加以证明或判断.这种新颖的组合型开放题,已使几何由论证转向发现、猜想与探究,成为中考命题的热点.例4 如图①, 四边形ABCD 中,点E 在边CD 上,连结AE 、BE ,给出下列五个等式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.将其中三个关系式作为题设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题(书写形式如:如果……, 那么……),并给出证明; (2)用序号再写出三个真命题(不要求证明); (3)加分题:其命题不止以上四个,想一想,就能够多写出几个真命题,每多写一个真命题就给多加1分,最多2 分.例5、如图,已知两条抛物线的解析式分别是211y ax ax =--+, 221y ax ax =--(其中a 是常数,且a>0)(1)请写出三条与上述抛物线有关的不同类型的结论; (2)当12a =时,设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,请写出一个你所得到的正确结论,并说明理由;二、存在性问题所谓存在性问题是指根据题目所给的条件,探究是否存在符合要求的结论. (一)存在性问题的解决策略1、直接求解法存在性问题是探索型问题中的一种典型性问题.存在性问题探索的方向是明确的.探索的结果有两种:一种是存在:另一种是不存在.直接求解法就是直接从已知条件入手,逐步试探,求出满足条件的对象,使问题得到解决的解法.2、假设求解法先假设结论存在,再从已知条件和定义,定理,公理出发,进行演绎推理;若得到和题意相容的结论,则假设成立,结论也存在;否则,假设不成立,结论不存在.即假设结论存在,根据条件推理、计算,如果求得出一个结果,并根据推理或计算过程每一步的可逆性,证得结论存在;如果推得矛盾的结论或求不出结果,则说明结论不存在. (二)中考数学中的存在性问题的类型1、定性分类(1)肯定型存在性问题肯定型存在性问题是解决其余两类存在性问题的基础,具体地构造出(或求出,寻找出)满足条件的数学对象,是证明肯定型存在性问题的主要方法.这种处理方法一般分为两大步,第一步是构造出满足要求的数学对象;第二步是通过验证,证明构造的对象满足问题的要求. 例1、(2011浙江台州)已知抛物线n m x a y +-=2)(与y 轴交于点A ,它的顶点为B ,点A 、B 关于原点O 的对称点分别是点C 、D.若点A 、B 、C 、D 中任何三点都不在一直线上,则称四边形ABCD 为抛物线的伴随四边形,直线AB 为抛物线的伴随直线. (1)如图1,求抛物线1)2(2+-=x y 的伴随直线的解析式;(2)如图2,若n m x a y +-=2)((m>0)的伴随直线是y=x -3,伴随四边形的面积为12,求此抛物线的解析式;(3)如图3,若抛物线n m x a y +-=2)(的伴随直线是y =-2x+b (b>0),且伴随四边形ABCD 是矩形.① 用含b 的代数式表示m,n 的值;② 在抛物线的对称轴上是否存在点P ,使得△PBD 是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式);若不存在,请说明理由.反证法是证明否定型存在性问题的主要方法,特别是在无限个候选对象中,证明某种数学对象不存在时,逐一淘汰的方法几乎不能实行,更经常地使用反证法.例2、(2010年安徽卷)如图,已知111ABC A B C △∽△,相似比为k (k >1),且ABC △的三边长分别为a 、b 、c (a>b>c ),111A B C △的三边长分别为1a 、1b 、1c .(1)若c=a 1,求证:a=kc ;(2)若c=a 1,试给出符合条件的一对111ABC A B C △和△,使得a 、b 、c 和1a 、1b 、1c 都是正整数,并加以说明;(3)若b=a 1,c=b 1,是否存在111ABC A B C △和△使得k =2?请说明理由.将问题看成求解题,进而从有解或无解的条件,来判明数学对象是否存在,这是解决讨论型存在性问题的主要方法.另外,先猜出对象可能存在或不存在,从而将讨论型存在性问题转化为肯定型或否定型处理,是解决讨论型存在性问题的又一重要方法.例3、(2011四川重庆,26,12分)如图,矩形ABCD中,AB=6,BC=23,点O是AB 的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速动动,到达A点后,立即以原速度沿AO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线P A匀速动动,点E、F同时出发,当两点相遇时停止运动.在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线P A 的同侧,设动动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.2、定量分类可细分为以下问题及类型:(1)数值存在性问题,(2)定值存在性问题,(3)极值存在性问题,(4)点存在性问题,(5)直线存在性问题,(6)三角形存在性问题,(7)平行四边形存在性问题,(8)圆存在性问题,(9)时间存在性问题,(10)位置存在性问题,(11)变化存在性问题等.说明:以上问题作为作业题安排在后面作为资料,根据各校学情供老师们选用.三、作业1、(数值存在性问题)(2011山东济宁)如图,第一象限内半径为2的⊙C 与y 轴相切于点A ,作直径AD ,过点D 作⊙C 的切线l 交x 轴于点B ,P 为直线l 上一动点,已知直线P A 的解析式为:3y kx =+.(1)设点P 的纵坐标为p ,写出p 随k 变化的函数关系式;(2)设⊙C 与P A 交于点M ,与AB 交于点N ,则不论动点P 处于直线l 上(除点B 以外)的什么位置时,都有△AMN ∽△ABP ,请你对于点P 处于图中位置时的两个三角形相似给予证明;(3)是否存在使△AMN 的面积等于3235的k 符合条件的k 值;若不存在,请说明理由.2、(2010年咸宁卷)(定值存在性问题)如图,直角梯形ABCD 中,AB ∥DC ,90DAB ∠=︒,24AD DC ==,6AB =.动点M 以每秒1个单位长的速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C -D -A 向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M 作直线l ∥AD ,与线段CD 的交点为E ,与折线A -C -B 的交点为Q .点M 运动的时间为t (秒).(1)当0.5t =时,求线段QM 的长;(2)当0<t <2时,如果以C 、P 、Q 为顶点的三角形为直角三角形,求t 的值; (3)当t >2时,连接PQ 交线段AC 于点R .请探究CQRQ是否为定值,若是,试求这个定值;若不是,请说明理由.BCD(备用图1)BCD(备用图2)QAB CDl MP (第24题)E3、(2010年莆田卷)(极值存在性问题)如图,矩形ABCD (点A 在第一象限)与x 轴的正半轴相交于M,,与y 的负半轴相交于N ,AB ∥x 轴,反比例函数ky x=的图象过A 、C 两点,直线AC 与x 轴相交于点E 、与y 轴相交于点F. (1)若B (-3,3),直线AC 的解析式为y ax b =+. ①求a 的值;②连结OA 、OC ,若△OAC 的面积记为OAC S ∆,△ABC 的面积记为ABC S ∆,记S= ABC S ∆-OAC S ∆,问S 是否存在最小值?若存在,求出其最小值;若不存在,请说明理由(2)AE 与CF 是否相等?请证明你的结论.4、(点存在性问题)(2011四川成都)如图,在平面直角坐标系xOy 中,△ABC 的A 、B 两个顶点在x 轴上,顶点C 在y 轴的负半轴上.已知:1:5OA OB =,OB OC =,△ABC 的面积15ABC S ∆=,抛物线2(0)y ax bx c a =++≠经过A 、B 、C 三点. (1)求此抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上异于点B 的一个动点,过点E 作x 轴的平行线交抛物线于另一点F ,过点F 作FG 垂直于x 轴于点G ,再过点E 作EH 垂直于x 轴于点H ,得到矩形EFGH .则在点E 的运动过程中,当矩形EFGH 为正方形时,求出该正方形的边长;(3)在抛物线上是否存在异于B 、C 的点M ,使△MBC 中BC 边上的高为M 的坐标;若不存在,请说明理由.5、(2010年红河卷)(三角形存在性问题)如图9,在直角坐标系xoy 中,O 是坐标原点,点A 在x轴的正半轴上,OA =,点B 在y 轴的正半轴上,12cm,OB =动点P 从点O 开始沿OA以s 的速度向点A 移动,动点Q 从点A 开始沿AB 以4cm/s 的速度向点B 移动,动点R 从点B 开始沿BO 以2cm/s 速度向点O 移动.如果P Q R 、、 分别从O A B 、、同时移动,移动时间为()06s.t t << (1)求OAB ∠的度数.(2)以OB 为直径的O ⊙′与AB 交于点,M 当t 为何值时,PM 与O ⊙′相切?(3)写出PQR △的面积S 随动点移动时间t 的函数关系式,并求S 的最小值及相应的t 值. (4)是否存在APQ △为等腰三角形?若存在,请求出相应的t 值,若不存在,请说明理由.图96、(2012·湖北省恩施市)(平行四边形存在性问题)如图,已知抛物线y =-x 2+bx +c与一直线相交于A (-1,0),C (2,3)两点,与y 轴交与点N 。

第一节 存在性问题

第一节 存在性问题

第五章组合数学第一节存在性问题E1-001 证明:对每一个自然数m,平面内存在一有限点集S.有如下性质:对S中每一个点A,S中恰有m个点与A相距为1单位,这种点集S有无限多个.【题说】第十三届(1971年)国际数学奥林匹克题5.本题由保加利亚提供.【证】m=1时,取两个距离为1的点,它们所成的集显然具有所说的性质.设对于自然数k,存在点集S k具有所说性质.将S k平移1个单位得到点S'k.平移方向不与以下直线平行:(1)过S k中任两点的直线;(2)以S k中每一点为圆心,1为半径作圆,过这些圆的交点与圆心的直线.这时S k中每一点A恰与S k∪S'k中k+1个点的距离为1.同样,S'k中每一点恰与S k∪S'k中k+1个点的距离为1.因此S k+1=S k∪S'k具有所说的性质.因此命题成立.E1-002 给出一个集合,该集合由十个互不相同的两位十进制正整数组成.证明:这个集合必有两个无共同元素的子集,两子集中各数之和相等.【题说】第十四届(1972年)国际数学奥林匹克题1.本题由原苏联提供.【证】该集合共有210-1=1023个非空子集.每个子集中的数的和≤10×100=1000,故其中必有两个和相等.相应的两个子集如有公共元,将公共元划去,产生的两个子集,所含数的和相等.E1-003 集合M由1985个不等的正整数组成,其中每个正整数的素因子均不大于26.证明:M至少含有一个由4个不同的数组成的子集,这4个数之积为某整数的4次幂.【题说】第二十六届(1985年)国际数学奥林匹克题4.本题由内蒙古提供.【证】小于26的素数为2,3,5,7,11,13,17,19,23共9个.按题意,M中每一数具有标准形式:2a13a25a3…23a9…(1)其中a1,a2,…,a9为非负整数.注意a i按奇偶来分只有两种可能,所以9个指数a1,a2,…,a9的奇偶分配共29=512种,从而M中1985(>513)个形如(1)的数中,可以找到一对数,它们的指数的奇偶性相同,不仅如此,将找到的数取出后,还可以继续在M中选出这样的数对,直至选出737对,每一对这样的数的乘积的形式为(2β13β2…23β9)2(2)其中βi(1≤i≤9)为非负整数.如上所说,在形如(2)的737个数中,必有两数的指数中的β1,β2,…,β9与β'1,β'2,…β'9的奇偶性相同,这两个数的积(ab)(cd)=(2r12r2…23r9)4其中r i为非负整数,所以a、b、c、d的积为整数的4次方.E1-004 在坐标平面上,纵横坐标都是整数的点称为整点.试证:存在一个同心圆的集合,使得(1)每个整点都在此集合的某一圆周上;(2)此集合的每个圆周上,有且只有一个整点.【题说】1987年全国联赛二试题2.【证】设m是无理数,n是有理数,且2n≠整数,则点P(m,n)到任何二相异整点(a,b),(c,d)不等距因为由(a-m)2+(b-n)2=(c-m)2+(d-n)2得出 a2+b2-c2-d2+2(d-b)n=2(a-c)m上式左边是有理数,所以必须右边为0,从而a=c,则(b-d)(b+d-2n)=0由n的取法,必须b=d,与二点不同矛盾).以P为心,过各个整点作圆,则每个圆上恰有一个整点,所以这一族同心圆即为所求.E1-005 空间是否存在一个无限点集,它在每个平面上都至少有一个点,但都没有无限多个点?【题说】1987年匈牙利数学奥林匹克题2.【解】点集M={(t5,t3,t):t∈R}在每一个平面Ax+By+Cz+D=0上至少有一个点,至多有五个点,因为奇次方程At5+Bt3+Ct+D=0至少有一个实数根,至多有五个实数根.E1-006 是否存在两个整数,其立方和等于1991?【题说】第十七届(1991年)全俄数学奥林匹克九年级题5.【解】易知对x∈Zx3≡0,±1(mod 7)因此,对于任意的X、y∈Z,x3+y3除以7的余数∈{0,1,2,5,6}.但1991除以7的余数是3,所以不存在X,y∈Z,使得x3+y3=1991E1-007 设X是一个有限集合.法则f使得X的每一个偶子集E(偶数个元素组成的子集)都对应一个实数f(E),且满足条件:(1)存在一个偶子集D,使得f(D)>1990;(2)对于X的任意两个不相交的偶子集A,B,有f(A∪B)=f(A)+f(B)-1990求证:存在X的子集P和Q,满足(1)P∩Q=,P∪Q=Z;(2)对P的任何非空偶子集S,有f(S)> 1990;(3)对Q的任何偶子集T,有f(T)≤1990.【题说】第五届(1990年)全国冬令营赛题5.【证】由于X是有限集,X的偶子集的个数是有限的.令P是使f值最大的偶子集,如果这样的偶子集不只一个,取其中元素最少的为P.Q是P 相对于X的余集.显然P∩Q=,P∪Q=X从而f(S)>1990对Q的偶子集T,由于P∩T=,P∩T是偶子集,所以f(P)≥f(P∪T)=f(P)+f(T)-1990因此,f(T)≤1990E1-008 从数集{0,1,2,…,14}中选出不同的数,填入下图中10个小圆中,使得由线段连结的两个数之差的绝对值均不相同.这可能吗?请证明你的结论.【题说】第二十三届(1991年)加拿大数学奥林匹克题4.【解】不可能.用反证法证明如下:如果能按题中要求从{0,1,…,14}选出10个数填入图中圆中,使由线段连结的两个数之差的绝对值都不同.那么这14个差的绝对值应恰好是1,2,…,14,其中有7个奇数,7个偶数.因而它们的和S是奇数.另一方面,小圆中的每个数在S中出现偶数次(每个小圆引出偶数条线段),所以S应当是偶数.以上矛盾即证明了我们的论断.E1-009设整数n≥4,a1,a2,…,a n是区间(0,2n)中的不同整数.证明:集合{a1,a2,…,a n}有这样的子集存在,它的所有元素之和能被2n 整除.【题说】1992年四川省高中数学联赛决赛题4.【证】(1)若n{a1,a2,…,a n}则2n个整数a1,a2,…,a n,2n-a1,2n-a2,…,2n-an都属于(0,2n).由抽屉原理其中至少有二数相等,令a i=2n-a j.因n{a1,a2,…,a n},必有i≠j,于是a i+a j能被2n整除.(2)若n∈{a1,a2,…,a n},不妨设a n=n,考虑 n-1个整数 a1,a2,…,a n-1(n-1≥3),在其中任取三个数a i<a j<a k.若a k-a j,a j-a i均能被n整除,则a k-a i=a k-a j+a j-a i≥2n与a k∈(0,2n)矛盾.故a1,a2,…,a n-1中至少有两个数,差不能被n整除.不妨设a1与a2的差不能被n整除,考虑n个整数:a1,a2,a1+a2,a1+a2+a3,…,a1+a2+…+a n-1.(i)若这n个数关于模n的余数都不同,则其中必有一个数能被n整除,令此数为kn.若k为偶数,结论成立;若k为奇数,加上a n即构成所需要的子集.(ii)若这些数中有两个数关于模n同余,则它们的差被n整除,因a1和a2不同余,故这二数之差必为原集合中若干数之和.以下讨论同(i).这里n≥4是必要的,如n=3时,集{1,3,4}结论不成立.【又解】假设结论不成立,则{1,2n-1},{2,2n-2},…,(n-1,n+1},{n}这n个集每个至多含一个a i(1≤i≤n).从而这n个集每个恰含一个a i(1≤i≤n).特别地,可设a n=n.于是(否则j+(n-j)+n=2n).因为(2n-1)+(n+1)+n=4n,所以1与n-1至少有一个∈A.不妨设1∈A,这时n-1A,n+1∈A.因为(2n-2)+(n+1)+1+n=4n,所以2n-2A,2∈A.E1-010 A是满足下列条件的m×n矩阵.(1)m≤n;(2)矩阵中的元素均为0或1;(3)若f是{1,2,…,m}到{1,2,…,n}的单射,则存在i∈{1,2,…,m},使得第i行f(i)列元素为0.证明:存在满足下列条件的集合S {1,2,…,m }和T {1,2,…,n},使得(1)若i∈S,j∈T,则第i行j列元素为0;【题说】1992年日本数学奥林匹克题4.【证】条件(3)即A'中任m个元素,如果每两个不同行也不同列,那么这m个元素中必有0.所要证的结论即A有一个s×t的子矩阵,元素全为0,而且s+t>n.如果m<n,可添n-m行,每行元素都是1,因此可设m=n,即只需考虑方阵.m=1时结论显然.假设m换为较小的数时结论成立.如果元素全部为0,结论显然.不妨设第m行第m列的那个元素为1.这时前m-1行前m-1列的子矩阵,具有与(3)相应的性质,即每m-1个两两不同行不同列的元中必有0,从而由归纳假设,存在s×t的零子矩阵,s+t >m-1.若s+t>m,结论已真.设s+t=m,并且这个零子矩阵在左上角,即前s行前t列.右上角的s×s方阵与左下角的t×t方阵中,若某一个不具有与(3)相应的性质(即有一条两两不同行不同列的1组成的对角线),则由(3),另一个必具有相应的性质.不妨设s×s方阵具有相应的性质,则由归纳假设,其中有h×k的零子矩阵,h+k>s.将它与左上角的零子矩阵合在一起,得到一个h×(t+k)的零子矩阵,而h+(t+k)>s+t=n于是结论对一切自然数m成立.E1-011 设k和l为正整数.证明:存在整数M,使得当n>M时,【题说】1992年澳大利亚数学奥林匹克题4.(2k+1)n+(2l+1)n≡1+2kn+1+2ln(mod 4)=2n(k+l)+2要使2n整除(2k+1)n+(2l+1)n,n必为奇数.此时(2k+1)n+(2l+l)n=(2k+2l+2)[(2k+1)n-1-(2k+1)n-2.(2l+1)+…+(2l+1)n-1]上式右端第二个因式是n个奇数的代数和,因而是奇数.所以,2n整除(2k+1)n+(2l+1)n的充要条件是2n整除2(k+l+1).E1-012 (1)考虑20的平方,它与20有着相同个数的非零数字.问除了10、20、30以外,是否存在一个两位数,它的平方与它有相同个数的非零数字?如果你认为存在,找出它,如果你认为不存在,证明你的结论.(2)问除了100、200、300以外,是否存在一个三位数,使它的平方数与它有相同个数的非零数字?【题说】 1992年英国数学奥林匹克题1.【解】(1)设n是满足题意的两位数,个位数字不为0,则n2具55,64,71,78,84,90,95均不满足题意.所以,满足题意的两位数不存在.(2)显然,245满足题意,因为2452=60025.E1-013 设n是奇数.试证:存在2n个整数.a1,a2,…,a n;b1,b2,…,b n,使对任一整数k,0<k<n,下列3n个数a i+a i+1,a i+b i,b i+b i+k(i=1,2,…,n;其中a n+1=a1,b n+j=b j,0<j<n)被3n除所得余数互不相同.【题说】1993年中国数学奥林匹克(第八届数学冬令营)题1.【证】取a i=3i,b i=3i+1(1≤i≤n),则a i+a i+1=6i+3a i+b i=6i+1显然,6i+3,6j+1,6t+3k+2,或6t+3k-3n+2,除以3余数分别为0,1,2.因此它们被3n除后余数各不相同.在1≤i≤j≤n时,(6j+3)-(6i+3)=6(j-i).因为n是奇数,0<j-i<n,所以6(j-i)不被3n整除,即6j+3与6i+3被3n除,余数不同.同样,在1≤i<j≤n时,6j+1与6i+1被3n除,余数不同.6j+3k+2或6j+3k-3n+2与6i+3k+2或6i+3k-3n+2被3n除,余数不同.因此,所取的a i,b i(1≤i≤n)符合要求.E1-014是否存在自然数n,使n!的前四位为1993?【题说】1993年德国数学奥林匹克(第二轮)题4.【解】答案是肯定的.取N=1000100000,当n=N,N+1,…时,考虑数n!的前4位的过不多于10次的乘法运算后将增加1.所以,数n!前四位将跑遍所有的四位数,其中当然会有1993.E1-015证明:在任给的8个不同的实数x1,x2,…,x8中,至少存在两个实数x i和x j使得不等式成立.【题说】1994年四川省高中数学联赛题2.互不相同,且两个θi和θj使得即E1-016对于任何正整数k,f(k)表示集合{k+1,k+2,…,2k}内在二进制表示下恰有3个1的所有元素的个数.(a)求证:对于每个正整数m,至少存在一个正整数k,使得f(k)=m.(b)确定所有正整数m,对每一个m,恰存在一个 k满足f(k)=m.【题说】第三十五届(1994年)国际数学奥林匹克题3.本题由罗马尼亚提供.【解】k=1,2,3时,f(k)=0.k=4=(100)2时,f(k)=1.若k+1的二进制表示中恰有三个1,那么2(k+1)的二进制表示中也恰有三个1,所以f(k+1)≥f(k).当且仅当2k+1的二进制表示恰有三个1时,f(k+1)=f(k)+1,即k=(100…0100…0)2[包括k=(10…01)2在内]时,f(k+1)=f(k)+1.由于这样的k有无穷多个,所以f(k)从1逐一增加至无穷(即(a)成立).并且仅在k=(10…010)2时,f(k),f(k+1)连续(比前一项)增加1,从而当且仅当k=(10…010)2=2n+1+2时,m=f(k)仅出现一次,E1-017求证:存在一个具有下述性质的正整数的集合A:对于任何由无限多个素数组成的集合S,存在k≥2及正整数m∈A和n A,使得m 和n均为S中k个不同元素的乘积.【题说】第三十五届(1994年)国际数学奥林匹克题6.本题由芬兰提供.【证】将素数依大小排列为 p1<p2<p3<….令A i={p i p j1…P j i|i<j1<…j i},i=1,2,…,则A=∪A iE1-018是否存在(1)4个;(2)5个不同的自然数,它们中任意三个数之和是素数?【题说】1995年城市数学联赛高年级普通水平题2.【解】(1)1,3,7,9满足条件.(2)由于任意5个不同的自然数中,必存在3个数,除以3后余数相同,从而这三个数的和是3的倍数,因而是合数.即不存在5个不同的自然数,它们中任意三个数之和是素数E1-019 是否存在100个正整数,使得它们的和与最小公倍数相等?【题说】1995年城市数学联赛低年级普通水平题2.【解】1,2,22,23,…,22n+1与3,3·2,3·23,3·25,…,3·22n-1,这3n+3个数的最小公倍数为3·22n+1,和为(22n+2-1)+(3+22n+1-2)=3·22n+1取n=33,得到102个数1,2,4,8,…,2”与3,6,24,…,3·265,去掉4,8,16,32,增加12,48,如此100个正整数满足条件.E1-020 由同一组数码写成的自然数称之为相似数(例如,对数码组1,1,2,相似数有112,121,211).证明:存在三个不含数码0且有1995位的相似数,使得其中两数之和等于第三个数.【题说】第二十一届(1995年)全用数学奥林匹克九年级题5.【证】因为159十495—954,而1995被3g除,所以三个数459459…459(665个459)495495…495(665个495)954954…954(665个954)合乎要求.E1-021 是否存在正整数n>1,满足下列条件:正整数集可分拆为n 个非空子集,使得从任n-1个子集中各任取一个数,这n-1个数的和在剩下的哪个集中?【题说】第三十六届(1995年)IMO预选题.【解】 n=2显然不满足条件.若n=3满足条件,正整数集分拆成的三个非空子集人A1,A2,A3中必有一个至少含有一个奇数,另一个至少含有一个偶数.设奇数a=2h-1∈A1,偶数b=2k∈A2,则根据已知条件可得a+b∈A3,a+2b∈A1,a+3b∈A3,a+4b∈A1,…以及b+a∈A3, b+2a∈A2, b+3a∈A3, b+4a∈A2,…于是a+2hb∈A1,b+(2k+1)a∈A3,但a+2hb=b+(2k+1)a.与分拆的定义不符,所以 n=3不满足条件(注意我们并没有用到 A1∪A2∪A3=N).若n>3满足条件,正整数集分拆成n个非空子集A1,A2,A3,…,A n.这个集中有两个,不妨设为A1,A2;A1中有一个元a与A2中一个元b的奇偶性不同.从A4,…,A n中各取一个数作成和s,令a'=a+s,b'=b+s,则A'i={x+s|x∈A i},i=1,2,3显然a'、b'奇偶性不同、并且分别属于A1'、A2'.对任意的x∈A i',y ∈A j'(1≤i<j≤3),x+y=(x-s)+(y-s)+s+s∈A'kk是{1,2,3}-{i,j}中的元素.根据上面对n=3的证明,A'1,A'2,A'3中有两个集的交非空,从而A1,A2,A3的交非空.因此,没有满足要求的n.E1-022 Z表示整数集.证明对任意整数A、B可以找到整数C,使得集M1={x2+Ax+B|x∈Z}与M2={2x2+2x+C|x∈Z}不交.【题说】第三十六届(1995年)IMO预选题.【证】2x2+2x+C≡C(mod 4)若A为奇数,则y2+Ay≡y2+y≡0(mod 2)即y2+Ay+B(mod 4)仅有两类.若A为偶数.则y为偶数时,y2+Ay≡0(mod 4),y为奇数时,y2+Ay ≡1+4(mod4).即y2+Ay+B(mod 4)仍仅两类.因此,可取C不属于以上两类(mod 4),这时M1,M2无公共元素.E1-023 k为正整数,证明存在无限多个形如n·2k-7的平方数,这里n是正整数.【题说】第三十六届(1995年)IMO预选题.【证】对k=1,2,3,取m=1+4l,l为正奇数,则m2+7≡0(mod24)对k≥3,设有正整数m,满足m2+7≡0(mod2k+1)(1)显然m为奇数.对任意正整数a,(m+a·2k)2+7≡m2+7+2k+1ma=2k+1(b+ma)(mod2k+2)取a与b的奇偶性相同,则(m+a·2k)2+7≡0(mod2k+2)因此,对任意正整数k,均有无穷多个m满足(1),即有无穷多个正整数n,使n·2k-7为平方数m2.E1-024 是否存在这样的有限非零实数集合M,使得对任意的自然数n,总可求得以M中的数为系数.且次数不低于n的多项式,它的所有实根也属于集合M?【题说】第二十二届(1996年)全俄数学奥林匹克十一年级题7.【解】设存在满足要求的集合M={a1,a2,…,a m}.记a=min {|a1|,|a2|,…,|a m|},A=max{|a1|,|a2|,…,|a m|},显然A≥a>0.考察多项式p(x)=b k x k+b k-1·x k-1+…+b1x+b0它的系数b0,b1,…,b k及根x1,x2,…,x k均属于集合M.由韦达定理,有这说明多项式的次数不可能大于C,矛盾.因此,满足题设条件的集合M不存在.E1-025确定(并证明)是否有整数集的子集X具有下面的性质:对任意整数n,恰有一组a、b∈X,使a+2b=n.【题说】第二十五届(1996年)美国数学奥林匹克题6.【解】这样的X存在.首先令X2={0,1}.假设已有X k={a1,a2,…,a k},使得a1+2a j(1≤i,j≤k)互不相同.令S k={a i+2a j|1≤i,j≤k}.对任一不属于S k的整数n,取正整数a k+1,又令a k+2=-2a k+1+n.只要a k+1充分大,对1≤i,j,s,t≤k,有3a k+1>a s+2a k+1>a k+1+2a i>n >a k+2+2a j>a k+1+2a k+2>a t+2a k+2>3a k+2,而且a k+1+2a i大于S k中一切正数,a k+2+2a j 小于S k中一切负数.于是,对X k+2={a k+1,a k+2}∪X k中任二数a、b,a+2b)互不相同.令X=X2∪X4∪…∪X2k∪2k+2∪…则X满足要求.E1-026求证存在无穷多个自然数n,使得可将3n个数1,2,…,3n列成数表a1 a2…a nb1 b2… b nc1 c2… c n满足条件:(1)a1+b1+c1=a2+b2+c2=…=a n+b n+c n,且为6的倍数;(2)a1+a2+…+a n=b1+b2+…+b n=c1+c2+…+c n,且为6的倍数.【题说】1997年中国数学奥林匹克题3.【解】设 n=12h-3,h为任一自然数,则在1,2,…,3n能排成3×n 的矩阵使每行和都相等,每列和都相等时,每行的和为每列的和为均被6整除.因此只要证明能排成上述矩阵.更一般地,我们证明对奇数m=2k+1,9m个数1,2,…,9m总可以排成3×3m的矩阵使行和都相等,列和也都相等.首先将这些数排列如下:这时行和已经相等.考虑第1,4,7,…,3m-2列.为方便起见,将这些列写成将它调整为0 1 2… 2k-2 2k-1 2kk 2k k-1… 1 k+1 02k k-1 2k-1 …k+1 0 k(第二行自右向左先写0,间隔一个写1,…,写到k再回到右边写k+1,k+2,…,2k.第三行则自右边第二个位置写起.)不难验证此时各列和相等(均为8+3+4+3k×9).对第2,5,8,…,3m-1列以及第3,6,9,…,3m列用同样方法调整,便得到行和都相等,列和也都相等的矩阵.E1-028 图a是由16条线段组成的图形,证明不能画出一条折线,它和图中每条线段都相交一次(这条折线可以是开的,可以是自身相交的,但折线的顶点不能在线段上,而折线的边也不能通过线段的公共端点).【题说】 1961年全俄数学奥林匹克八年级题1.【证】原图有6个区域A、B、C、D、E、F可以看作6个点(图b).如果所说的折线存在,每一段折线就是连结A、B、C、C、D、E、F中某两点的边(边AB表明这段折线的端点为A、B),区域A的边界被分为五段,即点A引出5条边,A是奇顶点.同样,B、D、F是奇顶点(分别引出5、5、9条边).有4个奇顶点的图不能一笔画成.因此所说的折线不存在.E1-029 已知平面上有2n+3(n≥1)个点,其中没有三个点共线,也没有四个点共圆,能不能通过它们之中的某三个点作一个圆,使得其余的2n个点一半在圆内,一半在圆外?证明你的结论.【题说】 1963年北京市赛高三二试题3.【证】结论是肯定的.首先在2n+3个点之中一定可以找到A、B两点,使得其余2n+1个点在直线AB的一侧,事实上,按任意选定方向,通过每一个已知点作一条直线,这样的直线最多有2n+3条,其中有一条最靠外的令为l1.若l1上有两个已知点,则l1为所求的直线;若l1上只有一个已知点A,由A出发通过其余2n+2个点作射线.设其中射线AB与l1的夹角最小,则直线AB即为所求.线段AB对其余2n+1个点的张角各不相等(因为这2n+3个点中没有四点共圆),设为θ1<θ2<…<θn<θn+1<…<θ2n<θ2n+1,对应于θn+1的点为C,则圆ABC即为所求.对应于θ1,θ2,…,θn的n个点在圆ABC外,对应于θn+2,θn+3,…,θ2n+1的n个点在圆ABC之内.E1-030设在一环形公路上有n个汽车站,每一站存有汽油若干桶(其中有的站也可以不存),n个站的总存油量足够一辆汽车沿此公路行驶一周.现在使一辆原来没油的汽车从某站依反时针方向沿公路行驶;每到一站即把该站的存油全部带上(出发的站也如此),试证n站之中至少有一站,可以使汽车从这站出发环行一周,不致在中途因缺油而停车.【题说】 1964年北京市赛高三二试题3.【证】设这n个站依次(逆时针顺序)为A1,A2,…,A n,并且每个站都存有油(否则可将该站取消).当n=1时,显然从唯一的汽车站出发可走完全程.设对n=k时,结论成立.在n=k+1时,由已知条件总油量足够汽车行驶一周,A1,A2,…,A n中必有一个站A i,从它出发可以行驶到下一站A i+1(1≤i≤nA n+1=A1).将A i+1的油全部移到A i并取消A i+1站,则由归纳假设,存在站A i,由它出发可以行驶一周.由于在行驶中,先到A i后到A i+1,所以恢复A i+1站后,从站A j出发仍可以行驶一周.因此结论对一切自然数n均成立.E1-031 在圆内或圆上任取8个点.证明:在这8个点中,必有两个点的距离小于圆的半径.【题说】 1965年匈牙利数学奥林匹克题2.【证】在所取的8个点中至少有7个点不和圆心重合.如果有某两个点在同一条半径上,那么这两点的距离显然不小于圆的半径.设不和圆心重合的7个点在7条不同的半径上.每相邻两条半径构成一个圆心角,7个圆心角合成周角.因此必有两点A、B使∠AOB<60°.在△OAB中,最大边大于边AB(因为一角大于60°).但是边OA和OB都不超过圆的半径,所以AB小于圆的半径.E1-032 一个旅游者乘火车到莫斯科,他在街上逛了一整天,在广场上一个小吃店里吃了晚饭后,决定回火车站.证明:他一定可以沿着来时走过奇数次的街道回火车站.【题说】 1965年全俄数学奥林匹克十年级题3.【证】将交叉口当作点,交叉口之间的街道当作边,除车站与广场外,每一个点都是偶顶点,即引出偶数条边(走过k次的边算作k条).旅游者沿原路退回.在每一点处面临奇数条边,其中必有一条边他来时只走过奇数次,沿这条边前进.这样继续下去,由于边数有限,必在某一点停止,这点就是火车站.E1-033在无限大的方格纸上,有n个方格涂成黑色.证明:一定可以剪掉有限个正方形,满足以下两个条件:1.所有的黑色方格全部在被剪掉的正方形之中.2.在任何一个被剪掉的正方形中,黑色方格的面积不小于这个正方【题说】第五届(1971年)全苏数学奥林匹克九年级题8.【证】从平面上剪掉一个2n×2n的正方形k0,它含有所有黑色方格和至少比它多4倍的白色方格.于是,所有黑方格的面积小于正方则将它再剪成四个正方形k2,等等,直到得到一些2×2的正方形,将所有不含黑色方格的正方形去掉,则剩下的正方形满足题给要求.E1-034 1.假定一个4×7方格的棋盘,如图a所示,各个方格着色为黑或白.求证:对任何一种着色方式,在棋盘中必定包含一个由棋盘上横线和纵线所构成的矩形,它的四角上的方格同色.2.给出一个4×6方格的棋盘上的一种黑白着色,使得在棋盘内每一个如上所说的矩形中,四角上的方格都不是同色的.【题说】第五届(1976年)美国数学奥林匹克题1.题中所说“矩形”,应理解成由平行于棋盘中横线与纵线的线段为四边的矩形,其顶点不与格点重合.【证】 1.可以证明更强的结论:在3×7的棋盘内,存在四角同色的矩形.第一行的7个方格中至少有四个同色.不妨设前4个方格均为白色.第二行(或第三行)的前4个方格中如果有两个白格,那么结论已经成立.如果第二行、第三行的前4个方格中均只有1个白格,那么去掉白格所在的列便得到四角同为黑色的矩形.2.图b即为所求.E1-035线段AB的两个端点,一个标以红色,一个标以蓝色.在线段中间插入n个分点,在各个分点上随意地标上红色或蓝色,这样就把原线段分为n+1个不重叠的小线段.这些小线段的两端颜色不同者叫做标准线段.证明:标准线段的个数都是奇数.【题说】 1979年安徽省赛二试题2.【证】从A到B,经过n个分点,颜色改变奇数次,每改变1次颜色,即有1条标准线段,因此标准线段的条数为奇数.E1-036 一棱柱以五边形A1A2A3A4A5与B1B2B3B4B5为上、下底,这两个多边形的每一条边及每一条线段A i B j(i,j=1,2,3,4,5)分别涂上红色或绿色.若每一个以棱柱顶点为顶点的、以已涂色的线段为边的三角形均有两条边颜色不同.证明上、下底10条边颜色一定相同.【题说】第二十一届(1979年)国际数学奥林匹克题2.本题由保加利亚提供.【证】首先我们证明上底的五条边颜色完全相同.如果上底的五条边颜色不完全相同,那么必有两条相邻的边颜色不同,不妨设A1A2是绿的,A1A5是红的.自A1引出五条线段A1B1、A1B2、A1A3、A1A4、A1A5中,至少有三条有相同的颜色,这三条线段的端点B j中必有两个相邻,不妨设A1B1,A1B2均为绿色,那么B1B2必为红色,但△B1A1A2推出A2B1为红色,由△B2A1A2推出A2B2也为红色,这时得△A2B1B2的三条边都是红色的,与已知条件矛盾.这就证明了上底的五条边的颜色必相同.同理可证下底的五条边的颜色也相同.现在来证明,上、下底的颜色必须是同样的.若不然,上、下底的颜色不同,不妨设上底的五条边全是绿色,下底的五条边全为红色.前述中设A1B1、A1B2颜色相同,由于B1B2是红色的,A1B、A1B2都必须是绿色的.与前面的证明完全一样,△B1A1A2、△B2A1A2、△A2B1B2中必有一个三条边是同一颜色的三角形.而与已知条件矛盾.所以,上、下底10条边颜色一定相同.E1-037试证在2n×2n(n∈N)个相等小方格组成的棋盘上任意挖去一个小方格后,总可以由三个小方格构成的L形块恰好铺满(既不重叠,也不越界).【题说】 1981年上海市赛二试题2.【证】用数学归纳法,(1)当n=1时(图a),命题显然真.(2)设当n=k时(图b),命题真,则当n=k+1时,把挖去一个小方格的2k+1×2k+1棋盘ABCD四等分得四个2k×2k棋盘AEOH、EBFO、OFCG、GDHO,其中必有一个是挖去一个小方格的棋盘,设为GDHO.现将一个L形块放在O处(图c),使它在AEOH、EBFO、OFCG各占一格,则这四个2k×2k的棋盘都成了挖去一个小方格的棋盘了,根据归纳假设它们都能被L形块恰好铺满.由(1)、(2)得,对一切自然数n命题真.E1-038 在3×4cm的长方形中,放置6个点.试证:可以找到两【题说】第十五届(1981年)全苏数学奥林匹克十年级题6.【证】先把长方形分成5个区域(如图),根据抽屉原理,必有E1-039已知平面上两个不同的点O和A,对于平面上不同于O的每一点X,由OA按逆时针方向到OX的角的弧度数用a(X)表示(0≤a(X)<2π),设C(X)是以O为圆心,以OX+a(X)/OX的长为半径的圆.平面的每一个点用有限多的颜色之一来着色,证明存在一个点Y,a(Y)>0.它的颜色出现在圆C(Y)的圆周上.【题说】第二十五届(1984年)国际数学奥林匹克题3.【证】以O为心,半径小于1的圆有无限多个,而圆上所染颜色的种数(n种颜色的子集)至多为2n-1,所以必有两个圆的颜色的种数相同,设它们的半径为r、s,r<s<1.显然r(s-r)∈(0,2π).⊙(O,r)上以r(s-r)为幅角的点Y,它的颜色出现在⊙(O,s)上.而所以⊙(O,S)即圆C(Y),命题成立.E1-040已知空间有1987个点.证明:可以经过其中某点作一个平面,使得其两侧各有993个点.【题说】第十三届(1987年)全俄数学奥林匹克十年级题4.【证】过每两个已知点作一条直线.我们证明存在一个平面,不平行于这有限多条直线中的任何一条.事实上,任取一点O,过O作直线分别与上述直线平行,再过O作一条直线OA 与它们均不相同,则在过OA的平面中,只有有限多个含有其它所作的直线.因此有一个过OA的平面α不含其它所作的直线,即不平行于上述直线中的任何一条.过已知的1987个点,分别作平面α的平行平面.由平面α的上述性质,所作的平面都仅含一个已知点.顺次数过去,这1987个平行平面中,第994个平面即为所求.E1-041设在空间给出20个点,其中某些点涂黄色,其余点涂红色.已知在任何一个平面上同色点不超过3个.求证:存在一个四面体,它的四个顶点同色,且至少有一个侧面内不含异色点.【题说】第一届(1990)希望杯高一赛二试题4.【证】 20个点分为两色,其中必有四点同色.由已知,它们不在一个平面上,因而组成一个四面体.这种四个顶点同色的四面体仅有有限多个,设其中以V的体积为最小.若V的每个侧面均含一个与顶点异色的点,则这四点组成一个体积小于V的四面体,这是不可能的.因此V至少有一个侧面不含与顶点异色的点.E1-O42设圆周上给定1991个点,其中任二点不共有一条直径,证明其中存在一个点.过它所作的直径,将其余1990个点恰好平分在两个半圆上.【题说】 1991年芜湖市赛题5.。

专题08 巧辨“任意性问题”与“存在性问题(解析版)

专题08 巧辨“任意性问题”与“存在性问题(解析版)

2020高考数学压轴题命题区间探究与突破专题第一篇 函数与导数专题08 巧辨“任意性问题”与“存在性问题”一.方法综述含有参数的方程(或不等式)中的“任意性”与“存在性”问题,历来是高考考查的一个热点,也是高考复习中的一个难点.破解的关键在于将它们等价转化为熟悉的基本初等函数的最值或值域问题,而正确区分“任意性”与“存在性”问题也是解题的关键.本专题举例说明辨别“任意性问题”与“存在性问题”的方法、技巧.二.解题策略类型一 “∀x ,使得f(x)>g(x)”与“∃x ,使得f(x)>g(x)”的辨析(1)∀x ,使得f (x )>g (x ),只需h (x )min =[f (x )-g (x )]min >0.如图①.(2)∃x ,使得f (x )>g (x ),只需h (x )max =[f (x )-g (x )]max >0.如图②. 【例1】【2020·河南濮阳一中期末】已知函数1()ln (0),()a f x a x a g x x x x=-≠=--. (Ⅰ)求()f x 的单调区间;(Ⅱ)当0a >时,若存在0[1,]x e ∈,使得()()00f x g x <成立,求实数a 的取值范围.【解析】(I )()f x 的定义域为'221(0,),().a a x f x a x x x ++∞=--=- 所以,当0a >时,()'0f x <,()f x 在(0,)+∞上递减;当0a <时,()'0fx >,所以,()f x 在(0,)+∞上递增.(II )在[]1e ,上存在一点0x 使00()()f xg x <成立, 即函数1()ln a h x a x x x x=-++在[]1,e 上的最小值小于0, ()'222(1)1+1()1x x a a a h x x x x x+-⎡⎤⎣⎦=--+-=.①当1+a e ≥,即1a e ≥-时,()h x 在[]1,e 上单调递减, 所以()h x 在[]1,e 上的最小值为()h e ,由()10ah e e a e+=+-<, 得222111,1,111e e e a e a e e e +++>>-∴>---Q ; ②当11a +≤,即0a ≤时,0a >Q ,不合乎题意;③当11a e <+<,即01a e <<-时,()h x 的最小值为()1h a +,0ln(1)1,0ln(1),a a a a <+<∴<+<Q 故(1)2ln(1)2h a a a a +=+-+>. 此时(1)0h a +<不成立.综上所述,a 的取值范围是211e a >e +-. 【指点迷津】(1)这是较为常见的一类恒成立问题,运用数形结合的思想可知,当x 0≥0时,总有f (x 0)≥g (x 0),即f (x 0)-g (x 0)≥0(注意不是f (x )min ≥g (x )max ),可以转化为当x ≥0时,h (x )=f (x )-g (x )≥0恒成立问题.(2)存在x ≥0,使得f (x )≥g (x ),即至少有一个x 0≥0,满足f (x 0)-g (x 0)不是负数,可以转化为当x ≥0时,h (x )=f (x )-g (x )的函数值至少有一个是非负数. 【举一反三】【2020·江西瑞金一中期中】已知函数()()ln f x x x a b =++,曲线()y f x =在点()()1,1f 处的切线为210x y --=.(1)求a ,b 的值;(2)若对任意的()1,x ∈+∞,()()1f x m x ≥-恒成立,求正整数m 的最大值. 【解析】(1)由()()ln f x x x a b =++得:()ln 1f x x a '=++ 由切线方程可知:()1211f =-=()112f a '∴=+=,()11f a b =+=,解得:1a =,0b =(2)由(1)知()()ln 1f x x x =+则()1,x ∈+∞时,()()1f x m x ≥-恒成立等价于()1,x ∈+∞时,()ln 11x x m x +≤-恒成立令()()ln 11x x g x x +=-,1x >,则()()2ln 21x x g x x --'=-. 令()ln 2h x x x =--,则()111x h x x x-'=-=∴当()1,x ∈+∞时,()0h x '>,则()h x 单调递增()31ln30h =-<Q ,()422ln 20h =-> ()03,4x ∴∃∈,使得()00h x =当()01,x x ∈时,()0g x '<;()0,x x ∈+∞时,()0g x '>()()()000min0ln 11x x g x g x x +∴==-()000ln 20h x x x =--=Q 00ln 2x x ∴=- ()()()()0000min 0213,41x x g x g x x x -+∴===∈-()03,4m x ∴≤∈,即正整数m 的最大值为3类型二 “若1122x D x D ∃∈∃∈,,,使得()()12f x g x =”与“1122x D x D ∀∈∃∈,,使得()()12f x g x =”的辨析(1) 1122x D x D ∃∈∃∈,,使得()()12f x g x =等价于函数f (x )在D 1上的值域A 与g (x )在D 2上的值域B 的交集不是空集,即A ∩B ≠∅,如图③.其等价转化的目标是两个函数有相等的函数值.(2) 1122x D x D ∀∈∃∈,,使得()()12f x g x =等价于函数f (x )在D 1上的值域A 是g (x )在D 2上的值域B 的子集,即A ⊆B ,如图④.其等价转化的目标是函数y =f (x )的值域都在函数y =g (x )的值域之中. 说明:图③,图④中的条形图表示函数在相应定义域上的值域在y 轴上的投影. 【例2】【2020河北衡水中月考】已知函数()()()11ln 1f x a x x =---+,()1xg x xe -=.(1)求()g x 在区间(]0,e 上的值域;(2)是否存在实数a ,对任意给定的(]00,x e ∈,在[]1,e 存在两个不同的()1,2i x i =使得()()0i f x g x =,若存在,求出a 的范围,若不存在,说出理由. 【解析】(1)()()1'1xg x x e-=-,()0,1x ∈时,()'0g x >,()g x 单调递增,(]1,x e ∈时,()'0g x <,()g x 单调递减,()00g =,()11g =,()10e g e e e -=⨯>,∴()g x 在(]0,e 上值域为(]0,1. (2)由已知得1()1f x a x='--,且[]1,x e ∈, 当0a ≤时,()'0f x ≥,()f x 在[]1,e 上单调递增,不合题意. 当11a e≥-时,()'0f x ≤,()f x 在[]1,e 上单调递减,不合题意. 当101a e <<-时,()0f x '=得011x a=-.当1(1,)1x a∈-时()'0f x <,()f x 单调递减, 当1()1x e a ,∈-时,()'0f x >,()f x 单调递增,∴()min 11f x f a ⎛⎫= ⎪-⎝⎭.由(1)知()g x 在(]0,e 上值域为(]0,1,而()11f =,所以对任意(]00,x e ∈,在区间[]1,e 上总有两个不同的()1,2i x i =,使得()()0i f x g x =.当且仅当()1101fe f a ⎧≥⎪⎨⎛⎫≤ ⎪⎪-⎝⎭⎩,即()()()()()1111ln 1102a e a a ⎧--≥⎪⎨+-+≤⎪⎩, 由(1)得111a e ≤--. 设()()ln 11h a a a =+-+,10,1a e ⎛⎫∈- ⎪⎝⎭,()1'111a h a a a =-=--, 当10,1a e ⎛⎫∈- ⎪⎝⎭,()'0h a <,()h a 单调递减,∴()11110h a h e e⎛⎫>-=-> ⎪⎝⎭. ∴()0h a ≤无解.综上,满足条件的a 不存在. 【指点迷津】本例第(2)问等价转化的基本思想是:函数g (x )的任意一个函数值都与函数f (x )的某两个函数值相等,即f (x )的值域都在g (x )的值域中. 【举一反三】【2020·河南南阳一中期中】已知函数1()ln 1f x x x=+-, 32()324g x x a x a =--+, []0,1x ∈,其中0a ≥.(1)求函数()f x 的单调区间;(2)若对任意[]11,x e ∈,总存在[]20,1x ∈,使得()()12f x g x =成立,求a 的取值范围. 【解析】(1)函数()f x 的定义域为(0,)+∞,22111()x f x x x x-'=-+=, 令()0f x '>,解得1x >,令()0f x '<,解得01x <<,∴函数()f x 的减区间为(0,1),增区间为(1,)+∞;(2)依题意,函数()f x 在[]1,e 上的值域包含于函数g x ()在[]0,1上的值域,由(1)可知,函数()f x 在[]1,e 上单调递增,故值域为10,e ⎡⎤⎢⎥⎣⎦,由32()324g x x a x a =--+得22()333()()g x x a x a x a '=-=+-, ①当0a =时,()0g x '≥恒成立,故函数g()x 在[]0,1上单调递增,此时值域为[]224,3254,5a a a ⎡⎤-+--+=⎣⎦,故0a =不符合题意;②Q 当0a >时,()0g x '>的解集为(,)a +∞,()0g x '<的解集为(0,)a ,∴ 故函数()g x 在(0,)a 上单调递减,在(,)a +∞上单调递增,且2(0)42,(1)325g a g a a =-=--+,()i 当01a <<时,函数g()x 在(0,)a 上单调递减,在(,1)a 上单调递增,此时值域为{}32224,42,325a a max a a a ⎡⎤--+---+⎣⎦,则此时需要32240a a --+≤,即320a a +-≥,当01a <<时,320a a +-≥不可能成立,故01a <<不符合题意; ()ii 当1a ≥时,()0g x '≤在[]0,1上恒成立,则函数g()x 在[]0,1上单调递减,此时值域为2325,42a a a ⎡⎤--+-⎣⎦,则23250142a a a e ⎧--+≤⎪⎨-≥⎪⎩,解得1122a e ≤≤-; 综上所述,实数a 的取值范围为11,22e ⎡⎤-⎢⎥⎣⎦. 类型三 f (x ),g (x )是闭区间D 上的连续函数,“∀x 1,x 2∈D ,使得f (x 1)>g (x 2)”与“∃x 1,x 2∈D ,使得f (x 1)>g (x 2)”的辨析(1)f (x ),g (x )是在闭区间D 上的连续函数且∀x 1,x 2∈D ,使得f (x 1)>g (x 2),等价于f (x )min >g (x )max .其等价转化的目标是函数y =f (x )的任意一个函数值均大于函数y =g (x )的任意一个函数值.如图⑤.(2)存在x 1,x 2∈D ,使得f (x 1)>g (x 2),等价于f (x )max >g (x )min .其等价转化的目标是函数y =f (x )的某一个函数值大于函数y =g (x )的某些函数值.如图⑥.【例3】【2020·甘肃天水一中月考】已知函数(1)(1ln )()3x x f x m x++=-,()ln g x mx x =-+(R)m ∈.(1)求函数()g x 的单调区间与极值.(2)当0m >时,是否存在[]12,1,2x x ∈,使得12()()f x g x >成立?若存在,求实数m 的取值范围,若不存在,请说明理由.【解析】(1)1()(0)g x m x x =-+>', 当0m ≤时,1()0g x m x=-+>'恒成立,即函数()g x 的单调增区间为∞(0,+),无单调减区间,所以不存在极值.当0m >时,令1()0g x m x =-+=',得1x m =,当10x m <<时,()0g x '>,当1x m>时,()0g x '<,故函数()g x 的单调增区间为10m (,),单调减区间为1m+∞(,),此时函数()g x 在1x m =处取得极大值,极大值为111()ln 1ln g m m m m m=-⨯+=--,无极小值.综上,当0m ≤时,函数()g x 的单调增区间为()0+∞,,无单调减区间,不存在极值.当0m >时,函数()g x 的单调增区间为10m ⎛⎫ ⎪⎝⎭,,单调减区间为1m ⎛⎫+∞⎪⎝⎭,,极大值为1ln m --,无极小值 (2)当0m >时,假设存在[]12,1,2x x ∈,使得12()()f x g x >成立,则对[]1,2x ∈,满足max min ()()f x g x > 由(1)(1ln )()3x x f x m x++=-[]1,2x ∈()可得,221(1ln 1)(1)(1ln )ln ()x x x x x x x f x x x +++-++-=='. 令[]()ln 1,2h x x x x =-∈(),则1()10h x x'=-≥,所以()h x 在[]1,2上单调递增,所以()(1)1h x h ≥=,所以()0f x '>,所以()f x 在[]1,2上单调递增,所以max (21)(1ln 2)3(1ln 2)()(2)3322f x f m m +++==-=-由(1)可知,①当101m<≤时,即m 1≥时,函数()g x 在[]1,2上单调递减,所以()g x 的最小值是(2)2ln 2g m =-+.②当12m ≥,即102m <≤时,函数()g x 在[]1,2上单调递增, 所以()g x 的最小值是(1)g m =-.③当112m <<时,即112m <<时,函数()g x 在11,m ⎡⎤⎢⎥⎣⎦上单调递增,在1,2m ⎡⎤⎢⎥⎣⎦上单调递减.又(2)(1)ln 22ln 2g g m m m -=-+=-,所以当1ln 22m <<时,()g x 在[]1,2上的最小值是(1)g m =-.当ln 21m ≤<时,()g x 在[]1,2上的最小值是(2)ln 22g m =-所以当0ln 2m <<时,()g x 在[]1,2上的最小值是(1)g m =-,故3(1ln 2)32m m +->-, 解得3(1ln 2)4m +>,所以ln 20m >>. 当ln 2m ≤时,函数()g x 在[]1,2上的最小值是(2)ln 22g m =-,故3(1ln 2)3ln 222m m +->-, 解得3ln 22m +>,所以3ln 2ln 22m +≤<.故实数m 的取值范围是3ln 20,2+⎛⎫⎪⎝⎭【指点迷津】1.本例第(2)问从形的角度看,问题的本质就是函数f (x )图象的最低点低于g (x )图象的最高点.2.题设中,使得成立可转化为,进而求出参数.【举一反三】【2020·四川石室中学月考】已知函数()22ln f x x x =-+.(1)求函数()f x 的最大值; (2)若函数()f x 与()ag x x x=+有相同极值点. ①求实数a 的值;②若对于121,,3x x e ⎡⎤∀∈⎢⎥⎣⎦(e 为自然对数的底数),不等式()()1211f xg x k -≤-恒成立,求实数k 的取值范围.【解析】(1)22(1)(1)()2(0)x x f x x x x x+-'=-+=->, 由()0{0f x x >>'得01x <<,由()0{0f x x <>'得1x >,∴()f x 在(0,1)上为增函数,在(1,)+∞上为减函数, ∴函数()f x 的最大值为(1)1f =-; (2)∵()a g x x x=+,∴2()1a g x x =-',(Ⅰ)由(1)知,1x =是函数()f x 的极值点,又∵函数()f x 与()ag x x x=+有相同极值点, ∴1x =是函数()g x 的极值点,∴(1)10g a =-=',解得1a =, 经检验,当1a =时,函数()g x 取到极小值,符合题意;(ⅱ)∵211()2f ee =--,(1)1f =-,(3)92ln 3f =-+, ∵2192ln 321e -+<--<-, 即1(3)()(1)f f f e <<,∴1[,3]x e∀∈,min max ()(3)92ln 3,()(1)1f x f f x f ==-+==-,由(ⅰ)知1()g x x x =+,∴21()1g x x =-',当1[,1)x e∈时,()0g x '<,当(1,3]x ∈时,()0g x '>,故()g x 在1[,1)e 为减函数,在(1,3]上为增函数,∵11110(),(1)2,(3)333g e g g e e =+==+=,而11023e e <+<,∴1(1)()(3)g g g e <<,∴1[,3]x e ∀∈,min max 10()(1)2,()(3)3g x g g x g ====,①当10k ->,即1k >时,对于121,[,3]x x e ∀∈,不等式12()()11f xg x k -≤-恒成立 12max 1[()()]k f x g x ⇔-≥-12max [()()]1k f x g x ⇔≥-+,∵12()()(1)(1)123f x g x f g -≤-=--=-,∴312k ≥-+=-,又∵1k >,∴1k >, ②当10k -<,即1k <时,对于121,[,]x x e e ∀∈,不等式12()()11f xg x k -≤-,12min 1[()()]k f x g x ⇔-≤-12min [()()]1k f x g x ⇔≤-+,∵121037()()(3)(3)92ln 32ln 333f x g x f g -≥-=-+-=-+,∴342ln 33k ≤-+,又∵1k <, ∴342ln 33k ≤-+.综上,所求的实数k 的取值范围为34(,2ln 3](1,)3-∞-+⋃+∞. 类型四 “∀x 1∈D 1,∃x 2∈D 2,使f (x 1)>g (x 2)”与“∀x 1∈D 1,∃x 2∈D 2,使f (x 1)<g (x 2)”的辨析(1)∀x 1∈D 1,∃x 2∈D 2,使f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的目标是函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值.如图⑦.(2)∀x 1∈D 1,∃x 2∈D 2,使f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于g (x )在D 2上的最大值,即f (x )max <g (x )max .其等价转化的目标是函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值.如图⑧. 【例4】【2020·江西抚州二中期末】已知函数()42ln af x a x x x-=-++. (1)当4a ≥时,求函数()f x 的单调区间;(2)设()26xg x e mx =+-,当22a e =+时,对任意[)12,x ∈+∞,存在[)21x ∈+∞,,使得()()2122f x e g x +≥,求实数m 的取值范围.【解析】(1)函数()f x 的定义域为(0,)+∞,224()1a a f x x x -'=-++2(2)[(2)]x x a x---=, 由()0f x '=,得2x =或2=-x a .当4a >即22a ->时,由()0f x '<得22x a <<-, 由()0f x '>得02x <<或2x a >-;当4a =即22a -=时,当0x >时都有()0f x '≥;∴当4a >时,单调减区间是(2,2)a -,单调增区间是(0,2),(2,)a -+∞;当4a =时,单调增区间是()0,∞+,没有单调减区间.(2)当22a e =+时,由(1)知()f x 在()22,e 上单调递减,在()2,e +∞上单调递增,从而()f x 在[)2,+∞上的最小值为22()6f e e =--.对任意[)12,x ∈+∞,存在[)21x ∈+∞,,使得()()2212g x f x e ≤+,即存在[)21x ∈+∞,,使()g x 的值不超过()22e f x +在区间[)2,+∞上的最小值26e -.由2266xe e mx ≥+--,22e e xm x-∴≤. 令22()xe e h x x-=,则当[)1,x ∈+∞时,max ()m h x ≤. ()()22222()x x e x e xh x e x ---'=Q ()232x x e xe e x+-=-,当[1,2]x ∈时()0h x '<;当[2,)x ∈+∞时,()22xxe xe e +-20xx xee >-≥,()0h x '<.故()h x 在[1,)+∞上单调递减,从而2max ()(1)h x h e e ==-,从而2m e e ≤-. 【指点迷津】“对任意x 1∈(0,2),总存在x 2∈[1,2],使f (x 1)≥g (x 2)”等价于“f (x )在(0,2)上的最小值大于或等于g (x )在[1,2]上的最小值”. 【举一反三】【2020重庆西南大学附中月考】已知函数()()()11ln x x f x x++=,()()ln g x x mx m R =-∈ .(1)求函数()g x 的单调区间;(2)当0m >时,对任意的[]11,2x ∈,存在[]21,2x ∈,使得()()123f x m g x ->成立,试确定实数m 的取值范围.【解析】(1)由()()ln 0g x x mx x =->,得()'1g x m x=-.当0m ≤时,()'0g x >,所以()g x 的单调递增区间是()0,∞+,没有减区间.当0m >时,由()'0g x >,解得10x m <<;由()'0g x <,解得1x m>,所以()g x 的单调递增区间是10,m ⎛⎫ ⎪⎝⎭,递减区间是1,m ⎛⎫+∞ ⎪⎝⎭.综上所述,当0m ≤时,()g x 的单调递增区间是()0,∞+,无递减区间;当0m >时,()g x 的单调递增区间是10,m ⎛⎫ ⎪⎝⎭,递减区间是1,m ⎛⎫+∞ ⎪⎝⎭. (2)当0m >时,对任意[]11,2x ∈,存在[]21,2x ∈,使得()()123f x m g x ->成立,只需()()min min 3f x m g x ->成立.由()()()11ln ln 1ln 1x x x f x x xxx++==+++,得()'2221ln 11ln x x xf x x xx x--=+-=.令()()ln 0h x x x x =->,则()'1x h x x-=.所以当()0,1x ∈时,()'0h x <,当()1,x ∈+∞时,()'0h x >.所以()h x 在()0,1上递减,在()1,+∞上递增,且()11h =,所以()()()min 110h x h x h ≥==>.所以()'0f x >,即()f x 在()0,∞+上递增,所以()f x 在[]1,2上递增,所以()()min 12f x f ==.由(1)知,当0m >时,()g x 在10,m ⎛⎫ ⎪⎝⎭上递增,在1,m ⎛⎫+∞ ⎪⎝⎭上递减,①当101m<≤即m 1≥时,()g x 在[]1,2上递减,()()min 2ln22g x g m ==-; ②当112m <<即112m <<时,()g x 在11,m ⎡⎫⎪⎢⎣⎭上递增,在1,2m ⎛⎤⎥⎝⎦上递减,()()(){}min min 1,2g x g g =,由()()()21ln22ln2g g m m m -=---=-, 当1ln22m <≤时,()()21g g ≥,此时()()min 1g x g m ==-, 当ln21m <<时,()()21g g <,此时()()min 2ln22g x g m ==-, ③当12m ≥即102m <≤时,()g x 在[]1,2上递增,()()min 1g x g m ==-, 所以当0ln2m <≤时,()()min 1g x g m ==-, 由0ln223m m m<≤⎧⎨->-⎩,得0ln2.m <≤当ln2m >时,()()min 2ln22g x g m ==-,由ln223ln22m m m>⎧⎨->-⎩,得 ln22ln2m <<-.∴ 02ln2m <<-.综上,所求实数m 的取值范围是()0,2ln2-.三.强化训练1.【2020·江西萍乡一中期中】已知函数ln ()xx af x e+=. (1)当1a =时,求()f x 的极值; (2)设()xg x xe a -=-,对任意12,(0,)x x ∈+∞都有()()11112xx e f x ax g x ->成立,求实数a 的取值范围.【解析】(1)当1a =时,ln 1()xx f x e+=,所以函数()f x 的定义域为(0,)+∞, 所以1ln ()xx x xf x xe--'=,且0x xe >, 令()1ln h x x x x =--,所以当01x <<时,10,ln 0x x x -><, 所以()1ln 0h x x x x =-->. 又()2ln h x x '=--,所以当1x >时,()2ln 0h x x '=--<,所以()h x 在(1,)+∞上单调递减,故()(1)0h x h <=. 同理当01x <<时,()0f x '>; 当1x >时,()0f x '<,所以()f x 在(0,1)是单调递增,在(1,)+∞单调递减, 所以当1x =时,()f x 的极大值为1(1)f e=,无极小值. (2)令()()xm x xe f x ax =-,因为对任意12,(0,)x x ∈+∞都有()()11112xx e f x ax g x ->成立,所以()()12min max m x g x >.因为()()ln xm x xe f x ax x x =-=, 所以()1ln m x x '=+.令()0m x '>,即1ln 0x +>,解得1x e>; 令()0m x '<,即1ln 0x +<,解得10x e<<.所以()m x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增, 所以min 11()m x m e e⎛⎫==- ⎪⎝⎭. 因为()xg x xea -=-,所以()(1)xg x x e -'=-,当0x >时0x e ->,令()0g x '>,即10x ->,解得01x <<;令()0g x '<,即10x -<,解得1x >. 所以()g x 在(0,1)上单调递增,在(1,)+∞上单调递减, 所以max 1()(1)g x g a e==-, 所以11a e e->-, 所以2a e >,即实数a 的取值范围为2,e ⎛⎫+∞ ⎪⎝⎭. 2.【2020·河北邯郸期末】已知函数()f x 满足:①定义为R ;②2()2()9xxf x f x e e +-=+-. (1)求()f x 的解析式;(2)若12,[1,1]x x ∀∈-;均有()()21122(2)61x a x x f x -+-+-…成立,求a 的取值范围;(3)设2(),(0)()21,(0)f x xg x x x x >⎧=⎨--+≤⎩,试求方程[()]10g g x -=的解. 【解析】(1)2()2()9xx f x f x e e+-=+-Q ,…① 所以2()2()9xx f x f x ee ---+=+-即1()2()29xx f x f x e e-+=+-…② 由①②联立解得:()3xf x e =-.(2)设2()(2)6x x a x ϕ=-+-+,()()()1333x x x F x x e e xe x =--=+--,依题意知:当11x -≤≤时,min max ()()x F x ϕ≥()()33x x x x F x e e xe xe '+=-+=-+Q又()(1)0xF x x e ''=-+<Q 在(1,1)-上恒成立, 所以()F x '在[1,1]-上单调递减()(1)30min F x F e ∴'='=-> ()F x ∴在[1,1]-上单调递增,max ()(1)0F x F ∴==(1)70(1)30a a ϕϕ-=-≥⎧∴⎨=+≥⎩,解得:37a -≤≤实数a 的取值范围为[3,7]-. (3)()g x 的图象如图所示:令()T g x =,则()1g T =1232,0,ln 4T T T ∴=-==当()2g x =-时有1个解3-,当()0g x =时有2个解:(12)-、ln3,当()ln 4g x =时有3个解:ln(3ln 4)+、12(1ln 2)--. 故方程[()]10g g x -=的解分别为:3-,(12)-、ln3,ln(3ln 4)+、12(1ln 2)--3.【2020·天津滨海新区期末】已知函数()2ln h x ax x =-+.(1)当1a =时,求()h x 在()()2,2h 处的切线方程; (2)令()()22a f x x h x =+,已知函数()f x 有两个极值点12,x x ,且1212x x >,求实数a 的取值范围;(3)在(2)的条件下,若存在0122x ⎡⎤∈+⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对任意a (取值范围内的值)恒成立,求实数m 的取值范围. 【解析】()1当1a =时,()()12ln ,'2h x x x h x x=-+=-+2x =时,()()3'2,24ln 22h h =-=-+()h x ∴在()()2,2h 处的切线方程为()34ln 222y x +-=-- 化简得:322ln 220x y +-+=()2对函数求导可得,()()221'0ax ax f x x x-+=>令()'0f x =,可得2210ax ax -+=20440112a a a a ⎧⎪≠⎪∴->⎨⎪⎪>⎩,解得a 的取值范围为()1,2 ()3由2210ax ax -+=,解得121,1x x a a=-=+而()f x 在()10,x 上递增,在()12,x x 上递减,在()2,x +∞上递增12a <<Q2112x a ∴=+<+()f x ∴在122⎡⎤+⎢⎥⎣⎦单调递增 ∴在12⎡⎤⎢⎥⎣⎦上,()()max 22ln 2f x f a ==-+012x ⎡⎤∴∃∈+⎢⎥⎣⎦,使不等式()()()()20ln 1112ln 2f x a m a a ++>--++对a M ∀∈恒成立等价于不等式2(2ln 2ln 1112))()n (l 2a a m a a -+++>--++恒成立 即不等式2()ln 1ln 210a ma a m +--+-+>对任意的()12a a <<恒成立令()()2ln 1ln 21g a a ma a m =+--+-+,则()()121210,'1ma a m g g a a ⎛⎫-++ ⎪⎝⎭==+ ①当0m ≥时,()()'0,g a g a <在()1,2上递减()()10g a g <=不合题意②当0m <时,()1212'1ma a m g a a ⎛⎫-++ ⎪⎝⎭=+ 12a <<Q若1112m ⎛⎫-+> ⎪⎝⎭,即104m -<<时,则()g a 在()1,2上先递减 ()10g =Q12a ∴<<时,()0g a >不能恒成立若111,2m ⎛⎫-+≤ ⎪⎝⎭即14m ≤-,则()g a 在()1,2上单调递增 ()()10g a g ∴>=恒成立m ∴的取值范围为1,4⎛⎤-∞- ⎥⎝⎦4.【2020·全国高三专题练习】已知函数()321(1)32a x x ax f x +=-+.(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)讨论函数()f x 的单调性;(Ⅲ)对于任意1x ,2[02]x ∈,,都有122()()3f x f x -≤,求实数a 的取值范围.【解析】(Ⅰ)当1a =时,因为()3213x x x f x =-+所以()221x x f x =-+',(0)1f '=.又因为(0)0f =,所以曲线()y f x =在点()0,(0)f 处的切线方程为y x =. (Ⅱ)因为()321(1)32a x x ax f x +=-+,所以2()(1)0f x x a x a '=-++=. 令()0f x '=,解得x a =或1x =. 若1a >,当()0f x '>即1x <或x a >时, 故函数()f x 的单调递增区间为()(),1,,a -∞+∞;当()0f x '<即1x a <<时,故函数()f x 的单调递减区间为()1,a . 若1a =,则22()21(1)0f x x x x '=-+=-≥,当且仅当1x =时取等号,故函数()f x 在(),-∞+∞上是增函数. 若1a <,当()0f x '>即x a <或1x >时, 故函数()f x 的单调递增区间为()(),,1,a -∞+∞;当()0f x '<即1<<a x 时,故函数()f x 的单调递减区间为(),1a .综上,1a >时,函数()f x 单调递增区间为(1)()a -∞∞,,,+,单调递减区间为(1,)a ; 1a =时,函数()f x 单调递增区间为(,)-∞+∞;1a <时,函数()f x 单调递增区间为()(1)a -∞∞,,,+,单调递减区间为(,1)a .(Ⅲ) 由题设,只要()()max min 23f x f x -≤即可. 令2()(1)0f x x a x a '=-++=,解得x a =或1x =.当0a ≤时,随x 变化,(),()f x f x ' 变化情况如下表:由表可知(0)0(1)f f =>,此时2(2)(1)3f f ->,不符合题意.当01a <<时,随x 变化,()()'f x f x , 变化情况如下表:由表可得3211112(0)0()(1)(2)62263f f a a a f a f ==-+=-=,,,,且(0)()f f a <,(1)(2)f f <,因()()2203f f -=,所以只需()(2)(1)(0)f a f f f ≤⎧⎨≥⎩,即3211262311026a a a ⎧-+≤⎪⎪⎨⎪-≥⎪⎩ ,解得113a ≤<. 当1a =时,由(Ⅱ)知()f x 在[]0,2为增函数, 此时()()()()max min 2203f x f x f f -=-=,符合题意. 当12a <<时,同理只需(1)(2)()(0)f f f a f ≤⎧⎨≥⎩,即3211226311062a a a ⎧-≤⎪⎪⎨⎪-+≥⎪⎩ ,解得513a <≤. 当2a ≥时,2()(1)32f f >=,()2()0(311)f f f =->,不符合题意. 综上,实数a 的取值范围是15,33⎡⎤⎢⎥⎣⎦.5.【2020·河南安阳期末】已知函数()ln f x x x x =+,()x xg x e=. (1)若不等式()()2f xg x ax ≤对[)1,x ∈+∞恒成立,求a 的最小值; (2)证明:()()1f x x g x +->.(3)设方程()()f x g x x -=的实根为0x .令()()()00,1,,,f x x x x F x g x x x ⎧-<≤⎪=⎨>⎪⎩若存在1x ,()21,x ∈+∞,12x x <,使得()()12F x F x =,证明:()()2012F x F x x <-.【解析】(1)()()2f xg x ax ≥,即()2ln x x x x x ax e +⋅≥,化简可得ln 1x x a e+≤. 令()ln 1xx k x e +=,()()1ln 1xx x k x e -+'=,因为1x ≥,所以11x ≤,ln 11x +≥. 所以()0k x '≤,()k x 在[)1,+∞上单调递减,()()11k x k e≤=.所以a 的最小值为1e.(2)要证()()1f x x g x +->,即()ln 10x xx x x e+>>.两边同除以x 可得11ln x x x e+>.设()1ln t x x x =+,则()22111x t x x x x-'=-=.在()0,1上,()0t x '<,所以()t x 在()0,1上单调递减.在()1,+∞上,()0t x '>,所以()t x 在()1,+∞上单调递增,所以()()11t x t ≥=. 设()1x h x e=,因为()h x 在()0,∞+上是减函数,所以()()01h x h <=. 所以()()t x h x >,即()()1f x x g x +->.(3)证明:方程()()f x g x x -=在区间()1,+∞上的实根为0x ,即001ln x x e=,要证()()2012F x F x x <-,由()()12F x F x =可知,即要证()()1012F x F x x <-.当01x x <<时,()ln F x x x =,()1ln 0F x x '=+>,因而()F x 在()01,x 上单调递增. 当0x x >时,()x x F x e =,()10xxF x e -'=<,因而()F x 在()0,x +∞上单调递减. 因为()101,x x ∈,所以0102x x x ->,要证()()1012F x F x x <-.即要证01011122ln x x x x x x e--<. 记()0022ln x xx xm x x x e--=-,01x x <<. 因为001ln x x e =,所以0000ln x x x x e =,则()00000ln 0x xm x x x e =-=.()0000022212121ln 1ln x x x x x xx x x xm x x x e e e---+--'=++=++-. 设()t t n t e =,()1t tn t e-'=,当()0,1t ∈时,()0n t '>.()1,t ∈+∞时,()0n t '<,故()max 1n t e=.且()0n t >,故()10n t e <<,因为021x x ->,所以002120x x x xe e ---<<.因此()0m x '>,即()m x 在()01,x 上单调递增.所以()()00m x m x <=,即01011122ln x x x x x x e --<.故()()2012F x F x x <-得证.6.【2020·山东邹平一中期末】已知函数()()sin ,ln f x x a x g x x m x =-=+. (1)求证:当1a ≤时,对任意()()0,,0x f x ∈+∞>恒成立; (2)求函数()g x 的极值; (3)当12a =时,若存在()12,0,x x ∈+∞且12x x ≠,满足()()()()1122f x g x f x g x +=+,求证:12249x x m <. 【解析】(1)()()sin 1cos f x x a x f x a x '=-∴=-,1cos 1x -≤≤Q ,()11cos 0a f x a x '∴≤=-≥,, ()sin f x x a x =-在()0+∞,上为增函数,所以当()0,x ∈+∞时,恒有()()00f x f >=成立; (2)由()()()ln ,10m x mg x x m x g x x x x+'=+∴=+=> 当()00m g x '≥>,()g x 在()0+∞,上为增函数,无极值 当()()0,00;0m x m g x x m g x ''<<<-<>->,,()g x 在()0m -,上为减函数,在(),m -+∞上为增函数,()x m x ∴=-,g 有极小值()ln m m m -+-,无极大值,综上知:当()0m g x ≥,无极值,当()0m g x <,有极小值()ln m m m -+-,无极大值. (3)当()11sin 22a f x x x ==-,在()0+∞,上为增函数, 由(2)知,当0m ≥,()g x 在()0+∞,上为增函数, 这时,()()f x g x +在()0+∞,上为增函数, 所以不可能存在()12,0,x x ∈+∞,满足()()()()1122f x g x f x g x +=+且12x x ≠ 所以有0m <现不防设()()()()1211220x x f x g x f x g x <<+=+,得:111222112sin ln 2sin ln 22x x m x x x m x -+=-+()()()2121211ln ln 2sin sin 2m x x x x x x --=---①1122sin sin x x x x -<-()()212111sin sin 22x x x x -->--② 由①②式可得:()()()2121211ln ln 22m x x x x x x -->--- 即()()21213ln ln 02m x x x x -->-> 又1221ln ln ,ln ln 0x x x x <->2121302ln ln x x m x x -∴->⨯>-③ 又要证12249x x m <,即证21294m x x > 120,0m x x <<<Q即证m ->④所以由③式知,只需证明:2121ln ln x x x x ->-2121ln 1x x x x -> 设211x t x =>,只需证1ln t t->即证()ln 01t t >> 令()()ln 1h t t t =-> 由()()()2101h t t h t '=>>,在()1+∞,上为增函数, ()()10h t h∴>=2121ln ln x x x x -∴>-,所以由③知,0m ->>成立, 所以12249x x m <成立. 7.【2020·陕西西安中学高三期末】已知函数21()ln 1()2f x x a x a R =-+∈. (1)讨论函数()f x 的单调性;(2)若20a -≤<,对任意[]12,1,2x x ∈,不等式121211()()f x f x m x x -≤-恒成立,求实数m 的取值范围.【解析】(1)∵依题意可知:函数()f x 的定义域为()0,∞+,∴2()a x af x x x x-'=-=,当0a ≤时,()0f x '>在()0,∞+恒成立,所以()f x 在()0,∞+上单调递增. 当0a >时,由()0f x'>得x ()0fx '<得0x <<综上可得当0a ≤时,()f x 在()0,∞+上单调递增; 当0a >时,()f x 在(上单调递减;在)+∞上单调递增.(2)因为20a -≤<,由(1)知,函数()f x 在[]1,2上单调递增,不妨设1212x x ≤≤≤,则121211()()f x f x mx x -≤-, 可化为2121()()m m f x f x x x +≤+, 设21()()ln 12m mh x f x x a x x x=+=-++,则12()()h x h x ≥, 所以()h x 为[]1,2上的减函数, 即2()0a mh x x x x=--≤'在[]1,2上恒成立,等价于3m x ax ≥-在[]1,2上恒成立, 设3()g x x ax =-,所以max ()m g x ≥,因20a -≤<,所以2()30>'=-g x x a ,所以函数()g x 在[]1,2上是增函数,所以max ()(2)8212g x g a ==-≤(当且仅当2a =-时等号成立) 所以12m ≥.8.【2020·浙江温州期末】已知函数()()2log ln a f x x x x =+-,1a >. (1)求证:()f x 在()1,+∞上单调递增;(2)若关于x 的方程()1f x t -=在区间()0,∞+上有三个零点,求实数t 的值;(3)若对任意的112,,x x a a -⎡⎤∈⎣⎦,()()121f x f x e -≤-恒成立(e 为自然对数的底数),求实数a 的取值范围.【解析】(1)()()2ln 1'21ln x f x xx a =⋅+-,∵1x >,∴()'0f x >,故()f x 在()1,+∞上单调递增.(2)()()()()2222ln ln ln 'ln x x a a f x x a +-=,令()()()222ln ln ln g x x x a a =+-,()()22'ln 0g x a x=+>,()10g =, 故当()0,1x ∈,()'0g x <,()1,x ∈+∞,()'0g x >,即()f x 在()0,1x ∈上单调递减;在()1,x ∈+∞上单调递增.()11f =, 若()()11f x t f x t -=⇔=±在区间()0,∞+上有三个零点,则11t -=,2t =.(3)()f x 在1,1x a -⎡⎤∈⎣⎦上单调递减;在(]1,x a ∈上单调递增.故()()min 11f x f ==,()()max 1max ,f x f f a a ⎧⎫⎛⎫=⎨⎬⎪⎝⎭⎩⎭, 令()()112ln h a f f a a a a a ⎛⎫=-=+-⎪⎝⎭,∴()0h a <, 故()max 1ln f x a a =+-,∴ln 1ln 1a a e a a e -≤-⇒-≤-, 因为1a >,设()ln a a a ϕ=-则1'()10a aϕ=->,故()ln a a a ϕ=-为增函数, 又()ln 1e e e e ϕ=-=-. ∴(]1,a e ∈.9.【2020·浙江台州期末】已知函数()ln f x a x x b =-+,其中,a b ∈R . (1)求函数()f x 的单调区间;(2)使不等式()ln f x kx x x a ≥--对任意[]1,2a ∈,[]1,x e ∈恒成立时最大的k 记为c ,求当[]1,2b ∈时,b c +的取值范围.【解析】(1)因()f x 的定义域为()0,∞+,()()'10af x x x=->, 当0a ≤时,()'0f x <,∴()f x 在()0,∞+上单调递减; 当0a >时,()'f x 在()0,∞+上单调递减,()'0f a =, ∴()f x 在()0,a 上单调递增,在(),a +∞单调递减; (2)()()l ln n f x kx x x f x x x a k x a ++⇒≤≥--()1ln ln a x x x x bx+-++=. ∵[]1,2a ∈,[]1,x e ∈,∴()1ln ln 1ln ln a x x x x b x x x x bx x+-+++-++≥, 令()()21ln ln ln 'x x x x b x x b g g x x x x+-++-+-=⇒=, 由(1)()ln p x x x b ⇒=-+-在()1,+∞上递增;(1)当()10p ≥,即1b =时[]1,x e ∈,()()0'0p x g x ≥⇒≥,∴()g x 在[]1,e 上递增;∴()()min 122c g x g b b c b ===⇒+==.(2)当()0p e ≤,即[]1,2b e ∈-时[]1,x e ∈,()()0'0p x g x ≤⇒≤,∴()g x 在[]1,e 上递减; ∴()()min 22b b c g x g e b c b e e ++===⇒+=+14,2e ee ⎡⎤∈++⎢⎥⎣⎦.(3)当()()10p p e <时,()ln p x x x b =-+-在上递增; 存在唯一实数()01,x e ∈,使得()00p x =,则当()01,x x ∈时()()0'0p x g x ⇒<⇒<.当()0,x x e ∈时()()0'0p x g x ⇒>⇒>. ∴()()00000mi 000n 1ln ln 1ln x x x x b x x x c g x g x +-++=+===.∴00000011ln ln b c x x x x x x +=++-=+.此时00ln b x x =-. 令()()()11ln '10x h x x x h x h x x x-=-⇒=-=>⇒在[]1,e 上递增, ()()01,11,b e x e ∈-⇒∈,∴12,b c e e ⎛⎫+∈+ ⎪⎝⎭.综上所述,42,2b c e ⎡⎤+∈+⎢⎥⎣⎦. 10.【2020·蒙阴实验中学期末】设函数()212ln 222af x ax x x -=+++,a R ∈. (1)当2a =时,求函数()f x 在点()()1,1f 处的切线方程; (2)2x =是函数()f x 的极值点,求函数()f x 的单调区间; (3)在(2)的条件下,()217ln 422g x x x x ⎛⎫=-++-⎪⎝⎭,若[)11,x ∀∈+∞,()20,x ∃∈+∞,使不等式()()1122mf xg x x x -≥+恒成立,求m 的取值范围. 【解析】(1)()f x 的定义域为()0,∞+,2a =时,()2ln 2f x x x =++,()12f x x x'=+, ()13f '=,()13f =,所以切线方程为()331y x -=-,即30x y -=.(2)()()22221222ax a x a f x ax x x+-+-'=++=, 2x =是函数的极值点,()8422204a a f +-+'==,可得1a =-,所以()2232(0)2x x f x x x-++'=>,令()0f x '>,即22320x x --<,解得1,22x ⎛⎫∈-⎪⎝⎭,结合定义域可知()f x 在()0,2上单调递增,在()2,+∞上单调递减. (3)令()()()2ln ln 26h x f x g x x x x x =-=+++,[)11,x ∀∈+∞,[)20,x ∃∈+∞, 使得()()1122m f x g x x x -≥+恒成立,等价于()()2min 21mh x x x x ≥+≥⎡⎤⎣⎦, ()12ln 2h x x x x x'=++-,因为1x ≥,所以2ln 0x x ≥,12x x+≥,即()'0h x ≥, 所以()h x 在[)1,+∞上单调递增,()()14h x h ≥=, 即()20,x ∃∈+∞使得函数4mx x+≤,即转化为240x x m -+≤在()0,∞+有解, ()22424x x m x m -+=--+,所以40m -+≤,4m ≤.。

工作主动性方面存在问题及整改措施范文

工作主动性方面存在问题及整改措施范文

工作主动性方面存在问题及整改措施范文工作主动性方面存在问题及整改措施1. 问题分析工作主动性是指员工在工作中自发地积极主动地完成任务,不仅仅是完成领导分配的任务,还包括主动寻找工作机会、提出改进意见、参与项目、学习提升等等。

在实际工作中,很多员工存在工作主动性不足的问题,主要表现为以下几个方面:1.1 缺乏主动意识一些员工缺乏主动意识,只是机械地完成上级交给的任务,没有积极主动地思考和行动,只有被动等待上级指示。

这种缺乏主动意识的员工对于公司来说是一个隐患,因为他们无法主动适应工作环境和工作需求,无法主动发现问题和解决问题,无法主动推动工作的进展和改进。

1.2 缺乏主动积极性有些员工虽然有一定的主动意识,但是缺乏主动积极性,即不愿意主动承担责任和工作压力,只想按部就班、安于现状。

这种缺乏主动积极性的员工虽然不会给公司带来太多的麻烦和问题,但是他们也无法给公司带来太多的价值和突破,他们的工作表现也难以被公司和领导所认可。

1.3 缺乏主动进取心有些员工缺乏主动进取心,即不愿意主动学习、提升和拓展自己的能力和视野。

他们只是会按部就班地完成某个岗位上的工作,没有自我价值实现的渴望和动力,不愿意接触和尝试新的事物和新的工作,缺乏对于发展的追求和对于个人能力的提升。

1.4 缺乏主动沟通能力良好的沟通能力对于工作的顺利进行和团队的协作非常重要。

然而,有些员工缺乏主动沟通能力,不能很好地与同事、领导和客户进行沟通和协作,导致工作进展缓慢、信息不畅通、问题无法得到及时解决。

2. 整改措施针对上述存在的问题,公司可以采取以下措施来增强员工的工作主动性:2.1 建立激励机制建立激励机制是增强员工工作主动性的重要手段之一。

通过设置奖励制度,对于表现出色、主动创新和积极贡献的员工给予相应的奖励和荣誉,来激励员工自发地提高主动性。

同时,也要对于表现不佳的员工进行适当的惩罚和督促,促使他们意识到主动性的重要性。

2.2 提供培训和发展机会通过提供培训和发展机会,激发员工的主动进取心。

专题5 存在性问题

专题5 存在性问题

学大教育科技(北京)有限公司Beijing XueDa Century Education Technology第5专题 存在性问题考点1:与三角形有关的存在性问题例:(2008山东临沂)如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。

⑴求抛物线的解析式;⑵设抛物线的顶点为D ,在其对称轴的右侧的抛物线上是否存在点P ,使得△PDC 是等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由;⑶若点M 是抛物线上一点,以B 、C 、D 、M 为顶点的四边形是直角梯形,试求出点M 的坐标。

练1:(2007福建龙岩)如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.(2008海南)如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C,直线y=-2x-1练2:经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E.(1)求m的值及该抛物线对应的函数关系式;(2)求证:① CB=CE ;② D是BE的中点;(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE,若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.练3:(2010福建龙岩)在平面直角坐标系中,点A、B的坐标分别为(10,0),(2,4).(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的解析式;(2)若P为抛物线上异于C的点,且△OAP是直角三角形,请直接写出点P的坐标;(3)若抛物线顶点为D,对称轴交x轴于点M,探究:抛物线对称轴上是否存在异于D的点Q,使△AQD是等腰三角形,若存在,请求出点Q的坐标;若不存在,请说明理由.考点2:与四边形有关的存在性问题例:(2008山西太原)如图,在平面直角坐标系xOy 中,直线1y x =+与334y x =-+交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点. (1)求点A B C ,,的坐标.(2)当CBD △为等腰三角形时,求点D 的坐标.(3)在直线AB 上是否存在点E ,使得以点E D O A ,,,为顶点的四边形是平行四边形?如果存在,直线写出BECD的值;如果不存在,请说明理由.练1:(2009福建莆田)已知,如图抛物线y=ax 2+3ax+c (a>0) 与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在B 点左侧,点B 的坐标为(1,0),OC=3OB. (1) 求抛物线的解析式;(2) 若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值;(3) 若点E 在x 轴上,点P 在抛物线上,是否存在以A 、C 、E 、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由。

难点7 双变量的“任意性”“存在性”问题

难点7 双变量的“任意性”“存在性”问题

难点7 双变量的“任意性”与“存在性”问题1.“存在=存在”型∃x1∈D1,∃x2∈D2,使得f(x1)=g(x2),等价于函数f(x)在D1上的值域A与函数g(x)在D2上的值域B的交集不为空集,即A∩B≠⌀.其等价转化的基本思想:两个函数有相等的函数值,即它们的值域有公共部分.典例1 已知函数f(x)=x2-ax3,a>0,x∈R.g(x)=.若∃x1∈(-∞,-1],∃x2∈,使得f(x1)=g(x2),求实数a的取值范围.解析∵f(x)=x2-ax3,∴f '(x)=2x-2ax2=2x(1-ax).令f '(x)=0,得x=0或x=.∵a>0,∴>0,∴当x∈(-∞,0)时, f '(x)<0,∴f(x)在(-∞,-1]上单调递减, f(x)在(-∞,-1]上的值域为.∵g(x)=,∴g'(x)==.∵当x<-时,g'(x)>0,∴g(x)在上单调递增,∴g(x)<g=,∴g(x)在上的值域为.若∃x1∈(-∞,-1],∃x2∈,使得f(x1)=g(x2),则1+<,a<.故实数a的取值范围是.对点练已知函数f(x)=和函数g(x)=a·sin x-a+1(a>0),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是( )A. B.[1,2)C. D.答案 C 设函数f(x),g(x)在[0,1]上的值域分别为A,B,则“存在x1,x2∈[0,1],使得f(x1)=g(x2)成立”等价于“A∩B≠⌀”.当0≤x≤时, f(x)=-x+单调递减,所以0≤f(x)≤;当<x≤1时, f '(x)=>0,所以f(x)=单调递增,<f(x)≤,故f(x)在[0,1]上的值域A=.当x∈[0,1]时,x∈,y=sin x在[0,1]上单调递增.又a>0,所以g(x)=asin x-a+1在[0,1]上单调递增,其值域B=.由A∩B≠⌀,得0≤1-a≤或0≤1-≤,解得≤a≤2.故选C.2.“任意=存在”型∀x1∈D1,∃x2∈D2,使得f(x1)=g(x2),等价于函数f(x)在D1上的值域A是函数g(x)在D2上的值域B的子集,即A⊆B.其等价转化的基本思想:函数f(x)的任意一个函数值都与函数g(x)的某一个函数值相等,即f(x)的函数值都在g(x)的值域之中.典例2 已知函数f(x)=,x∈[0,1].(1)求f(x)的单调区间和值域;(2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1].若对于任意的x1∈[0,1],总存在x∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.解析(1)f '(x)==-,x∈[0,1].令f '(x)=0,解得x=或x=(舍去).当x变化时, f '(x), f(x)的变化情况如下表所示:x01f '(x)-0+f(x)-↘-4↗-3所以f(x)的递减区间是,递增区间是.f(x)min =f=-4,又f(0)=-, f(1)=-3,所以f(x)max=f(1)=-3.故当x∈[0,1]时, f(x)的值域为[-4,-3].(2)“对于任意的x1∈[0,1],总存在x∈[0,1],使得g(x)=f(x1)成立”等价于“在x∈[0,1]上,函数f(x)的值域B是函数g(x)的值域A的子集,即B⊆A”.因为a≥1,且g'(x)=3(x2-a2)<0,所以当x∈[0,1]时,g(x)为减函数,所以g(x)的值域A=[1-2a-3a2,-2a].由B⊆A,得1-2a-3a2≤-4且-2a≥-3,又a≥1,故1≤a≤.对点练已知函数f(x)=x2-ax3(a>0),x∈R.(1)求f(x)的单调区间和极值;(2)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1.求a的取值范围.解析(1)由已知,有f '(x)=2x-2ax2(a>0).令f '(x)=0,解得x=0或x=.当x变化时, f '(x), f(x)的变化情况如下表:x (-∞,0)f '(x)-0+0-f(x)↘0↗↘所以, f(x)的单调递增区间是;单调递减区间是(-∞,0),.当x=0时, f(x)有极小值,且极小值f(0)=0;当x=时,f(x)有极大值,且极大值f=.(2)由f(0)=f=0及(1)知,当x∈时, f(x)>0;当x∈时, f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B=,则“对于任意的x 1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1”等价于A⊆B.显然,0∉B.下面分三种情况讨论:①当>2,即0<a<时,由f=0可知,0∈A,而0∉B,所以A不是B的子集.②当1≤≤2,即≤a≤时,有f(2)≤0,且此时f(x)在(2,+∞)上单调递减,故A=(-∞, f(2)),因而A⊆(-∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值范围包含(-∞,0),即(-∞,0)⊆B.所以,A⊆B.③当<1,即a>时,有f(1)<0,且此时f(x)在(1,+∞)上单调递减,故B=,A=(-∞,f(2)),所以A不是B的子集.综上,a的取值范围是.3.“任意≥(≤、>、<)任意”型∀x1∈D1,∀x2∈D2,f(x1)>g(x2)恒成立,等价于f(x)min>g(x)max,或等价于f(x)>g(x)max恒成立,或等价于f(x)min>g(x)恒成立.其等价转化的基本思想是函数f(x)的任何一个函数值均大于函数g(x)的任何一个函数值.∀x1∈D1,∀x2∈D2,f(x1)<g(x2)恒成立,等价于f(x)max<g(x)min,或等价于f(x)<g(x)min恒成立,或等价于f(x)max<g(x)恒成立.其等价转化的基本思想是函数f(x)的任何一个函数值均小于函数g(x)的任何一个函数值.∀x1∈D1,∀x2∈D2,f(x1)-g(x2)>k恒成立,等价于[f(x1)-g(x2)]min>k恒成立,也等价于f(x)min -g(x)max>k.∀x1∈D1,∀x2∈D2,f(x1)-g(x2)<k恒成立,等价于[f(x1)-g(x2)]max<k恒成立,也等价于f(x)max -g(x)min<k.典例3 设函数f(x)=x3-x2-3.(1)求f(x)的单调区间;(2)设函数g(x)=+xln x,如果对任意的x1,x2∈,都有f(x1)≤g(x2)成立,求实数a的取值范围.解析(1)f '(x)=3x2-2x.f '(x)>0时,x<0或x>,f '(x)<0时,0<x<.所以, f(x)的递增区间是(-∞,0),;递减区间是.(2)由(1)知,函数f(x)在上单调递减,在上单调递增,而f=-, f(2)=1,故f(x)在区间上的最大值f(x)max=f(2)=1.“对任意的x1,x2∈,都有f(x1)≤g(x2)成立”等价于“对任意的x∈,g(x)≥f(x)max恒成立”,即当x∈时,g(x)=+xln x≥1恒成立,即a≥x-x2ln x恒成立,记u(x)=x-x2lnx,则有a≥u(x)max.u'(x)=1-x-2xln x,可知u'(1)=0.当x∈时,1-x>0,2xln x<0,则u'(x)>0, 所以u(x)在上递增;当x∈(1,2)时,1-x<0,2xln x>0,则u'(x)<0,所以u(x)在(1,2)上递减.故u(x)在区间上的最大值u(x)max=u(1)=1,所以实数a的取值范围是[1,+∞).点拨(1)∀x1∈D1,∀x2∈D2,f(x1)>g(x2)恒成立,通常等价转化为f(x)min>g(x)max.这是两个独立变量——双变量问题,不等式两边f(x1),g(x2)中自变量x1,x2可能相等,也可能不相等;(2)对任意的x∈[m,n],不等式f(x)>g(x)恒成立,通常等价转化为[f(x)-g(x)]min>0.这是单变量问题,不等式两边f(x),g(x)的自变量x相等.对点练函数f(x)=+1(m≠0),g(x)=x 2e ax (a∈R).(1)直接写出函数f(x)的单调区间;(2)当m>0时,若对于任意的x 1,x 2∈[0,2], f(x 1)≥g(x 2)恒成立,求a 的取值范围. 解析 (1)当m>0时,f(x)的递增区间是(-1,1);递减区间是(-∞,-1),(1,+∞). 当m<0时,f(x)的递增区间是(-∞,-1),(1,+∞);递减区间是(-1,1).(2)当m>0时,“对于任意的x 1,x 2∈[0,2],f(x 1)≥g(x 2)恒成立”等价于“对于任意的x∈[0,2],f(x)min ≥g(x)max 成立”.当m>0时,由(1)知,函数f(x)在[0,1]上单调递增,在[1,2]上单调递减,因为f(0)=1,f(2)=+1>1,所以f(x)min =f(0)=1,故应满足1≥g(x)max .因为g(x)=x 2e ax ,所以g'(x)=(ax 2+2x)e ax.①当a=0时,g(x)=x 2,此时g(x)max =g(2)=4,不满足1≥g(x)max .②当a≠0时,令g'(x)=0,得x=0或x=-.(i)当-≥2,即-1≤a<0时,在[0,2]上,g'(x)≥0,g(x)在[0,2]上单调递增,g(x)max =g(2)=4e 2a .由1≥4e 2a ,得a ≤-ln 2,所以-1≤a≤-ln 2.(ii)当0<-<2,即a<-1时,在上,g'(x)≥0,g(x)递增;在上,g'(x)<0,g(x)递减.g(x)max =g =,由1≥,得a≤-,所以a<-1.(iii)当-<0,即a>0时,显然在[0,2]上,g'(x)≥0,g(x)单调递增,于是g(x)max =g(2)=4e 2a >4,此时不满足1≥g(x)max .综上,a 的取值范围是(-∞,-ln 2]. 4.“任意≥(≤、>、<)存在”型∀x 1∈D 1,∃x 2∈D 2,使得f(x 1)>g(x 2)成立,等价于f(x)min >g(x)min .其等价转化的基本思想是函数f(x)的任意一个函数值大于函数g(x)的某一个函数值,但并不要求大于函数g(x)的所有函数值.∀x1∈D1,∃x2∈D2,使得f(x1)<g(x2)成立,等价于f(x)max<g(x)max.其等价转化的基本思想是函数f(x)的任意一个函数值小于函数g(x)的某一个函数值,但并不要求小于函数g(x)的所有函数值.∀x1∈D1,∃x2∈D2,使得f(x1)-g(x2)>k成立,等价于f(x)min-g(x)min>k.∀x1∈D1,∃x2∈D2,使得f(x1)-g(x2)<k成立,等价于f(x)max-g(x)max<k.典例4 函数f(x)=ln x-x+-1,g(x)=x2-2bx+4,若对任意的x1∈(0,2),存在x2∈[1,2],使得f(x1)≥g(x2)成立,求实数b的取值范围.解析“对任意的x1∈(0,2),存在x2∈[1,2],使得f(x1)≥g(x2)成立”等价于“f(x)在(0,2)上的最小值不小于g(x)在[1,2]上的最小值,即f(x)min ≥g(x)min(*)”.f '(x)=--=,当x∈(0,1)时, f '(x)<0, f(x)单调递减;当x∈(1,2)时, f '(x)>0, f(x)单调递增.故当x∈(0,2)时, f(x)min=f(1)=-.又g(x)=(x-b)2+4-b2,x∈[1,2],①当b<1时,g(x)min=g(1)=5-2b>3,此时与(*)矛盾;②当b∈[1,2]时,g(x)min=g(b)=4-b2≥0,同样与(*)矛盾;③当b∈(2,+∞)时,g(x)min=g(2)=8-4b,由8-4b≤-,得b≥.综上,实数b的取值范围是.对点练已知函数f(x)=x3+x2+ax.(1)若f(x)在区间[1,+∞)上单调递增,求a的最小值;(2)若g(x)=,∀x1∈,∃x2∈,使得f '(x1)≤g(x2)成立,求a的取值范围.解析(1)由题设知f '(x)=x2+2x+a≥0,即a≥-(x+1)2+1在[1,+∞)上恒成立,而y=-(x+1)2+1在[1,+∞)上单调递减,则ymax =-3,∴a≥-3,∴amin=-3.(2)“∀x1∈,∃x2∈,使f '(x1)≤g(x2)成立”等价于“x∈时,f '(x)max≤g(x)max恒成立”.∵f '(x)=x2+2x+a=(x+1)2+a-1在上递增,∴f '(x)max=f '(2)=8+a,又g'(x)==,∴g(x)在(-∞,1)上递增,在(1,+∞)上递减.∴当x∈时,g(x)max=g(1)=,由8+a≤得,a≤-8,所以a的取值范围是.5.“存在≥(≤、>、<)存在”型若∃x1∈D1,∃x2∈D2,使得f(x1)>g(x2)成立,等价于f(x)max≥g(x)min.其等价转化的基本思想是函数f(x)的某一个函数值大于函数g(x)的某一个函数值,即只要有这样的函数值即可.若∃x1∈D1,∃x2∈D2,使得f(x1)<g(x2)成立,等价于f(x)min<g(x)max.其等价转化的基本思想是函数f(x)的某一个函数值小于函数g(x)的某一个函数值,即只要有这样的函数值即可.若∃x1∈D1,∃x2∈D2,使得f(x1)-g(x2)>k成立,等价于[f(x1)-g(x2)]max>k,也等价于f(x)max -g(x)min>k.若∃x1∈D1,∃x2∈D2,使得f(x1)-g(x2)<k成立,等价于[f(x1)-g(x2)]min<k,也等价于f(x)min -g(x)max<k.典例5 已知函数f(x)=4ln x-ax+(a≥0).(1)直接写出函数f(x)的单调区间;(2)当a≥1时,设g(x)=2e x-4x+2a,若存在x1,x2∈,使f(x1)>g(x2),求实数a的取值范围.解析(1)当a=0时,函数f(x)的递减区间为,递增区间为.当0<a<1时,函数f(x)的递减区间为,,递增区间为.当a≥1时, f(x)的递减区间为(0,+∞).(2)“存在x1,x2∈,使f(x1)>g(x2)”等价于“ 当x∈时, f(x)max>g(x)min”.由(1)知,当x∈时, f(x)max=f=-4ln 2+a+6, 由g'(x)=2e x-4>0,得x>ln 2,所以g(x)在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增,故当x∈时,g(x)min=g(ln 2)=4-4ln 2+2a,由f(x)max >g(x)min,得-4ln 2+a+6>4-4ln 2+2a,又a≥1,所以1≤a<4.对点练设函数f(x)=-ax.(1)若函数f(x)在(1,+∞)上为减函数,求实数a的最小值;(2)若存在x1,x2∈[e,e2],使f(x1)≤f '(x2)+a成立,求实数a的取值范围.解析(1)由题设知f '(x)=-a≤0在(1,+∞)上恒成立,则只需f '(x)max≤0.又f '(x)=-a=-+-a,所以当=,即x=e2时, f '(x)max=-a,由-a≤0得a≥,故a的最小值为.(2)“存在x1,x2∈[e,e2],使f(x1)≤f '(x2)+a成立”等价于“当x1,x2∈[e,e2]时, f(x1)min≤f'(x2)max+a”.由(1)知,当x∈[e,e2]时, f '(x)max=f '(e2)=-a,所以f '(x)max+a=.则问题等价于“当x∈[e,e2]时, f(x)min≤”.①当a≥时,由(1)得f '(x)max=-a≤0, f(x)在[e,e2]上为减函数,则f(x)min =f(e 2)=-ae 2,由f(x)min ≤,得a≥-.②当a<时, f '(x)=-+-a 在[e,e 2]上的值域为.(i)当-a≥0,即a≤0时, f '(x)≥0在[e,e 2]恒成立,故f(x)在[e,e 2]上为增函数,于是f(x)min =f(e)=e-ae≥e>,与f(x)min ≤矛盾.(ii)当-a<0,即0<a<时,由f '(x)的单调性和值域知,存在唯一的x 0∈(e,e 2),使f '(x)=0,且满足:当x∈(e,x 0)时, f '(x)<0, f(x)为减函数;当x∈(x 0,e 2)时, f '(x)>0, f(x)为增函数,所以f(x)min =f(x 0)=-ax 0≤,x 0∈(e,e 2).所以a≥->->-=,与0<a<矛盾.综上,a 的取值范围是a≥-.。

函数中的任意和存在性问题

函数中的任意和存在性问题

函数中的任意和存在性问题
当数学中的函数$f(x)$在某个定义域内“存在”,常常指的是函数在该定义域内存在定义,即对于该定义域内的每一个$x$,函数$f(x)$都有一个确定的输出值。

这意味着函数在该定义域内无未定义的点或不存在的点。

而“任意”则表示在某个条件下可以取任何值,通常出现在数学的定义或定理中。

例如,对于一个实数$x$,我们说“任意大的正实数”,表示该数可以取到比任何一个正实数都要大的值。

在数学中,存在和任意是两个基本的概念。

当我们讨论某个对象“存在”时,常常需要指明其定义域或范围,以确定其是否无未定义的点或是否符合条件。

而当我们使用“任意”时,通常需要指明在什么条件下可以取任意值,以确定其意义和约束条件。

需要注意的是,存在和任意这两个概念在不同的数学领域、分支或场景中可能有不同的定义和使用方式。

因此,在理解数学语言和符号时,需要仔细阅读定义和前提条件,并理解概念的含义和语境。

恒成立和存在性问题

恒成立和存在性问题

恒成⽴和存在性问题⾼⼀函数专题同步拔⾼,难度4颗星!模块导图知识剖析恒成⽴和存在性问题类型(1) 单变量的恒成⽴问题①∀x ∈D ,f (x )<a 恒成⽴,则f (x )max <a②∀x ∈D ,f (x )>a 恒成⽴,则f (x )min >a③∀x ∈D ,f (x )<g (x )恒成⽴,则F (x )=f (x )−g (x )<0,∴f (x )max <0④∀x ∈D ,f (x )>g (x )恒成⽴,则F (x )=f (x )−g (x )>0,∴f (x )min >0(2) 单变量的存在性问题①∃x 0∈D ,使得f (x 0)<a 成⽴,则f (x )min <a②∃x 0∈D ,使得f (x 0)>a 成⽴,则f (x )max >a③∃x 0∈D ,使得f (x 0)<g (x 0)恒成⽴,则F (x )=f (x )−g (x )<0,∴f (x )min <0④∃x 0∈D ,使得f (x 0)>g (x 0)恒成⽴,则F (x )=f (x )−g (x )>0,∴f (x )max >0(3) 双变量的恒成⽴与存在性问题①∀x 1∈D ,∃x 2∈E ,使得f (x 1)<g (x 2)恒成⽴,则f (x )max <g (x )max ;②∀x 1∈D ,∃x 2∈E ,使得f (x 1)>g (x 2)恒成⽴,则f (x )min >g (x )min ;③∀x 1∈D ,∀x 2∈E ,f (x 1)<g (x 2)恒成⽴,则f (x )max <g (x )min ;④∃x 1∈D ,∃x 2∈E , 使得f (x 1)<g (x 2)恒成⽴,则f (x )min <g (x )max ;(4) 相等问题①∃x 1∈D ,∃x 2∈E ,使得f (x 1)=g (x 2),则两个函数的值域的交集不为空集;②∀x 1∈D ,∃x 2∈E ,使得f (x 1)=g (x 2),则f (x )的值域⊆g (x )的值域解题⽅法恒成⽴和存在性问题最终可转化为最值问题,具体的⽅法有直接最值法分类参数法变换主元法数形结合法经典例题【题型⼀】恒成⽴和存在性问题的解题⽅法直接构造函数最值法【典题1】 设函数f (x )=3|x |x 2+9的最⼤值是a ,若对于任意的x ∈[0,2),a >x 2−x +b 恒成⽴,则b 的取值范围是_.【解析】 当x =0时,f (x )=0;当x ≠0时,f (x )=3|x |x 2+9=3|x |+9|x |≤32√9=12,则f (x )max=12,即a =12.由题意知x 2−x+b <12在x ∈[0,2)上恒成⽴,即x 2−x +b −12<0在x ∈[0,2)上恒成⽴(∗),(把不等式中移到右边,使得右边为,从⽽构造函数y =g (x )求最值)令g (x )=x 2−x +b −12,则问题(∗)等价于在x ∈[0,2)上g (x )<0恒成⽴,在x ∈[0,2)上,g (x )<g (2)=4−2+b −12=32+b∴32+b ≤0即b ≤−32.【点拨】① 直接构造函数最值法:遇到类似不等式f (x )<g (x )恒成⽴问题,可把不等式变形为f (x )−g (x )<0,从⽽构造函数h (x )=f (x )−g (x )求其最值解决恒成⽴问题;② 在求函数的最值时,⼀定要优先考虑函数的定义域;③ 题⽬中y =g (x )在x ∈[0,2)上是取不到最⼤值,g (x )<g (2)=32+b ,⽽要使得g (x )<0恒成⽴,32+b 可等于0,即32+b ≤0,⽽不是32+b <0分离参数法【典题1】 已知函数f (x )=3x +8x +a 关于点(0,−12)对称,若对任意的x ∈[−1,1],k ⋅2x −f (2x )≥0恒成⽴,则实数k 的取值范围为_.【解析】 由y =3x +8x 为奇函数,可得其图象关于(0,0)对称,可得f (x )的图象关于(0,a )对称,函数f (x )=3x +8x +a 关于点(0,−12)对称,可得a =−12,对任意的x ∈[−1,1],k ⋅2x −f (2x )≥0恒成⽴,⇔∀x ∈[−1,1],k ⋅2x −3⋅2x +82x −12≥0恒成⽴,【思考:此时若利⽤直接构造函数最值法,求函数f (x )=k ⋅2x −3⋅2x +82x −12,x ∈[−1,1]的最⼩值,第⼀函数较复杂,第⼆函数含参要分即k ⋅2x ≥3⋅2x +82x −12在x ∈[−1,1]恒成⽴,所以k ≥82x 2−122x +3,(使得不等式⼀边是参数k ,另⼀边不含k 关于x 的式⼦,达到分离参数的⽬的)令t =12x ,由x ∈[−1,1],可得t ∈12,2,设h (t )=8t 2−12t +3=8t −342−32,当t =2时,h (t )取得最⼤值11,则k 的取值范围是k ≥11.【点拨】①分离参数法:遇到类似k ⋅f (x )≥g (x )或k +f (x )≥g (x )等不等式恒成⽴问题,可把不等式化简为k >h (x )或k <h (x )的形式,达到分离参数的⽬的,再求解y =h (x )的最值处理恒成⽴问题;② 恒成⽴问题最终转化为最值问题,⽽分离参数法,最好之处就是转化后的函数不含参,避免了⿇烦的分离讨论.【典题2】 已知f (x )=log 21−a ⋅2x +4x ,其中a 为常数(1)当f (1)−f (0)=2时,求a 的值;(2)当x ∈[1,+∞)时,关于x 的不等式f (x )≥x −1恒成⽴,试求a 的取值范围;【解析】 (1)f (1)−f (0)=2⇒log 2(1−2a +4)−log 2(1−a +1)=log 24⇒log 2(5−2a )=log 24(2−a )⇒5−2a =8−4a ⇒a =32;(2)log 21−a ⋅2x +4x ≥x −1=log 22x −1⇒1−a ⋅2x +4x ≥2x −1⇒a ≤2x +12x −12,令t =2x ,∵x ∈[1,+∞)∴t ∈[2,+∞),设h (t )=t +1t −12,则a ≤h (t )min ,∵h (t )在[2,+∞)上为增函数⇒t =2时,h (t )=t +1t −12有最⼩值为2,∴a ≤2.【点拨】 在整个解题的过程中不断的利⽤等价转化,把问题慢慢变得更简单些.变换主元法【典题1】 对任意a ∈[−1,1],不等式x 2+(a −4)x −2a >0恒成⽴,求x 的取值范围.思考痕迹 见到本题中“x 2+(a −4)x −2a >0恒成⽴”潜意识中认为x 是变量,a 是参数,这样会构造函数f (x )=x 2+(a −4)x −2a ,⽽已知条件是a ∈[−1,1],觉得怪怪的做不下去;此时若把a 看成变量,x 看成参数呢?【解析】因为不等式x 2+(a −4)x −2a >0恒成⽴⇔不等式(x −2)a +x 2−4x >0恒成⽴...①,令f (a )=(x −2)a +x 2−4x ,若要使得①成⽴,只需要f (−1)>0f (1)>0⇔x 2−5x +2>0x 2−3x −2>0解得x >5+√172或x <3−√172,故x 的取值范围x ∣x >5+√172 或 x <3−√172.【点拨】 变换主元法,就是要分辨好谁做函数的⾃变量,谁做参数,⽅法是以已知范围的字母为⾃变量.数形结合法【典题1】 已知a >0,f (x )=x 2−a x , 当x∈(−1,1)时,有f (x )<12恒成⽴,求a 的取值范围.思考痕迹本题若⽤直接最值法,求函数f (x )=x 2−a x ,x ∈(−1,1)的最⼤值,就算⽤⾼⼆学到的导数求解也是难度很⼤的事情;⽤分离参数法呢?试试也觉得⼀个硬⾻头.看看简单些的想法吧!【解析】 不等式x 2−a x <12(x ∈(−1,1))恒成⽴等价于x 2−12<a x (x ∈(−1,1))恒成⽴...①,令f (x )=x 2−12,g (x )=a x ,若①成⽴,则当x ∈(−1,1)时,f (x )=x 2−12的图像恒在g (x )=a x 图像的下⽅,则需要g (1)>f (1)g (−1)>f (−1)⇔a >121a >12或a =1(不要漏了a =1,因为a >0,g (x )=a x 不⼀定是指数函数)⼜a >0,所以12<a <2,即实数a 的取值范围为12,2.【点拨】① 数形结合法:∀x ∈D ,f (x )<g (x )恒成⽴⇒在x ∈D 上,函数y =f (x )的图像在函数y =g (x )图像的下⽅.② 遇到h (x )<0不等式恒成⽴,可以把不等式化为f (x )<g (x )⽤数形结合法,⽽函数y =f (x )与y =g (x )最好是熟悉的函数类型,⽐如本题中构造出f (x )=x 2−12,g (x )=a x 两个常见的基本初级函数.【题型⼆】 恒成⽴与存在性问题混合题型【典题1】 已知函数f (x )=x 3+1,g (x )=2−x −m +1.(1)若对任意x 1∈[−1,3],任意x_2∈[0 ,2]都有f(x_1)≥g(x_2)成⽴,求实数m 的取值范围.()[]()()(){{{}{{[](2)若对任意x_2∈[0 ,2],总存在x_1∈[-1 ,3]使得f(x_1)≥g(x_2)成⽴,求实数m的取值范围.【解析】(1)由题设函数f(x)=x^3+1,g(x)=2^{-x}-m+1.对任意x_1∈[-1 ,3],任意x_2∈[0 ,2]都有f(x_1)≥g(x_2)成⽴,知:f\left(x_{1}\right)_{\min } \geq g\left(x_{2}\right)_{\max },∵f(x)在[-1 ,3]上递增,\therefore f\left(x_{1}\right)_{\min }=f(-1)=0⼜∵g(x)在[0 ,2]上递减,\therefore g\left(x_{2}\right)_{\max }=g(0)=2-m∴有0≥2-m,∴m的范围为[2 ,+∞)(2)由题设函数f(x)=x^3+1,g(x)=2^{-x}-m+1.对任意x_2∈[0 ,2],总存在x_1∈[-1 ,3]使得f(x_1)≥g(x_2)成⽴,知f\left(x_{1}\right)_{\max } \geq g\left(x_{2}\right)_{\max },∴有f(3)≥g(0),即28≥2-m,∴M的范围为[-26 ,+∞).【点拨】对于双变量的恒成⽴--存在性问题,⽐如第⼆问中怎么确定f\left(x_{1}\right)_{\max } \geq g\left(x_{2}\right)_{\max },即到底是函数最⼤值还是最⼩值呢?具体如下思考如下,⼀先把g\left(x_{2}\right)看成定值m,那\exists x_{1} \in[-1,3],都有f\left(x_{1}\right) \geq m,当然是要f(x)_{\max } \geq m;⼆再把f\left(x_{1}\right)看成定值n,那\forall x_{2} \in[0,2],都有n \geq g\left(x_{2}\right),当然是n \geq g(x)_{\max };故问题转化为f\left(x_{1}\right)_{\max } \geq g\left(x_{2}\right)_{\max }.其他形式的双变量成⽴问题同理,要理解切记不要死背.【典题2】设f(x)=\dfrac{x^{2}}{x+1},g(x)=ax+3-2a(a>0),若对于任意x_1∈[0 ,1],总存在x_0∈[0 ,1],使得g(x_0)=f(x_1)成⽴,则a的取值范围是\underline{\quad \quad }.【解析】\because f(x)=\dfrac{x^{2}}{x+1},当x=0时,f(x)=0,当x≠0时,f(x)=\dfrac{1}{\dfrac{1}{x^{2}}+\dfrac{1}{x}}=\dfrac{1}{\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^{2}-\dfrac{1}{4}},由0<x≤1,即\dfrac{1}{x} \geq 1,\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^{2}-\dfrac{1}{4} \geq 2,\therefore 0<f(x) \leq \dfrac{1}{2},故0 \leq f(x) \leq \dfrac{1}{2},⼜因为g(x)=ax+3-2a(a>0),且g(0)=3-2a,g(1)=3-a.由g(x)递增,可得3-2a≤g(x)≤3-a,对于任意x_1∈[0 ,1],总存在x_0∈[0 ,1],使得g(x_0)=f(x_1)成⽴,可得\left[0, \dfrac{1}{2}\right] \subseteq[3-2 a, 3-a],可得\left\{\begin{array}{l} 3-2 a \leq 0 \\ 3-a \geq \dfrac{1}{2} \end{array}\right.,\therefore \dfrac{3}{2} \leq a \leq \dfrac{5}{2}.巩固练习1(★★) 已知1+2^x+a\cdot 4^x>0对⼀切x∈(-∞ ,1]上恒成⽴,则实数a的取值范围是\underline{\quad \quad }.2 (★★) 若不等式2x-1>m(x^2-1)对满⾜|m|≤2的所有m都成⽴,求x的取值范围.3 (★★) 若不等式3x^2-\log_a x<0在x\in\left(0, \dfrac{1}{3}\right)内恒成⽴,实数a的取值范围.4 (★★★) 已知函数f(x)=x^2-3x,g(x)=x^2-2mx+m,若对任意x_1∈[-1 ,1],总存在x_2∈[-1 ,1]使得f(x_1)≥g(x_2 ),则实数m的取值范围.5 (★★★) 已知a>0且a≠1,函数f(x)=a^x+a^{-x}(x∈[-1 ,1]),g(x)=ax^2-2ax+4-a(x∈[-1 ,1]).(1)求f(x)的单调区间和值域;(2)若对于任意x_1∈[-1 ,1],总存在x_0∈[-1 ,1],使得g(x_0)=f(x_1)成⽴,求a的取值范围;(3)若对于任意x_0∈[-1 ,1],任意x_1∈[-1 ,1],都有g(x_0)≥f(x_1)恒成⽴,求a的取值范围.答案1.\left(-\dfrac{3}{4},+\infty\right)2.\dfrac{\sqrt{7}-1}{2}<x<\dfrac{\sqrt{3}+1}{2}3.\dfrac{1}{27} \leq a<14.m≤-1或m≥3Processing math: 64%5.(1) \left[2, a+\dfrac{1}{a}\right](2) a>1(3) \left[\dfrac{1}{3}, 1\right)。

三角函数存在性问题总结

三角函数存在性问题总结

三角函数存在性问题总结引言三角函数是数学中常见而重要的概念之一。

然而,尽管其广泛应用于各个领域,三角函数的存在性问题仍然存在一些争议。

本文将对三角函数存在性问题进行总结和讨论。

三角函数的定义三角函数是以单位圆上对应点的坐标值为基础进行定义的。

常见的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。

它们在三角学中有着重要的几何和代数意义。

三角函数存在性问题尽管三角函数的定义看起来简单明了,但在某些情况下,三角函数的存在性可能会引发问题。

以下是一些常见的三角函数存在性问题:1. 除数为零问题:在计算正切函数和余切函数时,如果角度的余弦值或正弦值为零,那么三角函数将无定义。

这种情况下,需要采取特殊的处理方式来解决该问题。

2. 无理数问题:在某些特殊的角度值上,三角函数的计算结果可能是无理数(irrational number)。

无理数是无法用有限小数或分数表示的数,这给计算和使用三角函数带来一定的困扰。

3. 反三角函数的定义域问题:反三角函数(如反正弦函数、反余弦函数、反正切函数等)是三角函数的反函数,它们的定义域和值域有一定的限制。

对于某些角度来说,反三角函数可能无法得到确定的结果。

解决三角函数存在性问题的方法为了解决三角函数存在性问题,我们可以考虑以下简单的策略:1. 特殊处理:对于除数为零的情况,我们可以使用极限理论进行特殊处理,找到合适的逼近值或定义域限定,以确保计算结果的准确性。

2. 近似计算:当遇到无理数时,我们可以采用近似计算的方法,将无理数转化为有理数的近似值,从而简化计算过程。

3. 计算约束:针对反三角函数的问题,我们可以明确定义其定义域,并在计算时进行约束,确保结果在定义范围内。

结论三角函数的存在性问题是数学领域中的一个重要研究方向。

随着计算机科学和数值计算的发展,对于三角函数的存在性问题的解决方法也在不断完善。

通过特殊处理、近似计算和计算约束等策略,我们可以克服三角函数存在性问题,确保计算结果的准确性和可靠性。

小区普遍性存在的问题和不足

小区普遍性存在的问题和不足

小区普遍性存在的问题和不足一、小区普遍性存在的问题1. 小区管理不规范小区管理不规范是普遍存在的问题之一。

许多小区缺乏专业的物业管理团队,导致小区内部的清洁、绿化、维修等方面的工作无法得到有效的监督和协调。

物业公司或业委会不仅需要合理安排小区的维修和保养事项,还应定期组织业主居民参与相关活动,增强小区的凝聚力。

2. 安全设施不完善许多小区在安全设施方面存在不足。

例如,缺乏有效的监控系统、照明设施不齐全,以及消防设备维护不及时等问题。

这些问题对小区居民的生活安全和财产安全构成威胁。

因此,小区管理方应该加强安全设施的设置和维护,确保小区居民的人身和财产安全。

3. 应急处置不力小区在面临突发事件时,应急处置能力薄弱是普遍存在的问题。

在突发事件发生时,小区居民缺乏应急预案和培训,不知道如何正确地应对和处理。

因此,小区管理方应该建立健全的应急预案,组织居民进行相关培训,提高应急处置能力,保障居民的生命安全。

4. 噪音扰民问题小区中存在的噪音扰民问题也是居民普遍关注的一个问题。

例如,楼上楼下住户之间的噪音争议,以及小区内商业设施或社区设施带来的噪音扰扰等。

为了改善居民的生活质量,小区管理方应该加强对噪音扰民的管理,制定相关规定,并积极协调解决噪音纠纷。

二、小区存在的不足1. 绿化环境欠缺许多小区的绿化环境存在不足,缺乏美化和净化空气的花草树木。

这不仅影响了小区居民的居住体验,也不利于居民的身心健康。

小区管理方应该提高对绿化环境的重视,加大绿化投入,增加花草树木的种植,打造一个美丽宜居的小区环境。

2. 缺乏便民设施许多小区在便民设施方面存在不足。

例如,没有足够的停车位、储物空间、健身房、游泳池等。

这会给居民的生活带来不便,并且限制了小区的综合竞争力。

小区管理方应该根据居民的需求,合理规划和增加便民设施,提升小区的居住舒适度和便利性。

3. 社区活动不丰富小区居民希望能有更多的社区活动和互动机会,以促进居民之间的交流和社区凝聚力的提升。

存在性问题难点解疑

存在性问题难点解疑

存在性问题难点解疑张雪梅;梁海靖【期刊名称】《高中数理化》【年(卷),期】2018(000)012【总页数】2页(P12-13)【作者】张雪梅;梁海靖【作者单位】山东省荣成市第二中学;山东省荣成市第二中学【正文语种】中文存在性问题是高考常考的压轴题,由于题型复杂多变,令考生常感不知从何入手.笔者综合多年的教学经验,反复思考,总结了以下几种解题方法,希望对同学们的学习有所帮助.1 转化为函数的值域问题有解问题分为R上有解和给定区间上的有解,形如:1)若在R上存在实数x使等式f(x)=A成立,则等价于A∈[fmin(x),fmax(x)].2)若在区间D上存在实数x使等式f(x)=A成立,则等价于A∈[fmin(x),fmax(x)].3)若在区间D上存在实数x使不等式f(x)>A成立,则等价于在区间D上fmax(x)>A;若在区间D上存在实数x使不等式f(x)<B成立,则等价于在区间D上的fmin(x)<B.例1 已知f(x)=x2-ax+2,∃x∈R,使得f(x)=0,求a的取值范围.此题可以采用将参数a分离的方法,得求出的取值范围就是本题方程有解时a的取值范围.因为x2-ax+2=0,ax=x2+2.当x=0时,不成立;当x≠0时,不妨设此函数为对勾函数,其图象如图1所示,值域为所以或图1此题是R上的有解问题,采用分离参数的方法,在求解过程中要注意对定义域的分情况讨论,当x≠0时,变量a与新函数的值域相同.另外,本题也可以看成二次函数,定义域为R,利用Δ求解.例2 已知f(x)=x2-ax+2,∃x∈[1,5],使得f(x)=0,求a的取值范围.图2此题为给定区间上的有解问题,也可以采用分离参数的方法,得到但x∈[1,5],需要结合图象观察.因为不妨设则g(x)在上单调递减,在上单调递增(如图2),所以给定x的取值范围,构造新函数必须结合图象不能直接代入端点.例3 已知f(x)=x2-ax+2,∃x∈[1,5],使得f(x)>0,求a的取值范围.要使不等式f(x)>0成立,参数分离得设结合存在性命题定义,a小于g(x)的一个值即可,则只需求出x∈[1,5]的g(x)的最大值.观察图所以R上的有解问题与给定区间上的有解问题,若为等式都可以采用分离参数的方法,构造新函数结合定义域观察图象求值域;若为不等式,需要考虑存在性命题的定义“有一个”即可,从函数的最大值或者最小值方面思考问题.2 转化为函数图象的交点问题函数的零点⟺方程的根⟺两个函数图象的交点,形如:若在区间D上存在实数x使等式f(x)=A成立,则等价于y=f(x)与y=A图象有交点问题.例4 已知f(x)=x2-ax+2,∃x∈[1,5],使得f(x)=0,求a的取值范围.图3分离变量构造两个函数y=a和将所求问题转化为2个函数图象有交点问题.因为不妨设观察图象如图3所示,可知从图象中观察交点,也是寻找值域的一种方法,但是要注意定义域端点取值的虚实.3 转化为恒成立问题当题目中含有存在量词“至少”“至多”“存在”,并求变量范围时,可以直接求解,也可以考虑其对立面,把原题看成“若p,则q”的形式,找出其逆否命题,求出范围再求补集.1)若在区间D上存在实数x使不等式f(x)>A成立,则其否定是在区间D上任意实数x使A≥fmax(x);2)若在区间D上存在实数x使不等式f(x)<B成立,则其否定是在区间D上任意实数x使B≤fmin(x).例5 若不等式x2-ax+2>0在区间[1,5]上有解,则a的取值范围是________.∃x∈[1,5],x2-ax+2>0的否定为∀x∈[1,5],x2-ax+2≤0.分离变量不妨设所以综上所述存在性命题的否定是全称命题,结合全称命题的定义“任意”“所有”等关键词,的所有函数值,即a大于等于它的最大值.解题时注意要等价转化,结论要求其补集.4 与全称命题相结合全称命题与存在性命题在解题过程中经常会与函数相结合,形如:1) 设函数f(x)、g(x),对任意的x1∈[a, b],存在x2∈[c, d],使得f(x1)≥g(x2),则fmin(x)≥gmin(x).2) 设函数f(x)、g(x),对任意的x1∈[a, b],存在x2∈[c, d],使得f(x1)≤g(x2),则fmax(x)≤gmax(x).3) 设函数f(x)、g(x),存在x1∈[a, b],存在x2∈[c, d],使得f(x1)≥g(x2),则fmax(x)≥gmin(x).4) 设函数f(x)、g(x),存在x1∈[a, b],存在x2∈[c, d],使得f(x1)≤g(x2),则fmin(x)≤gmax(x).5) 设函数f(x)、g(x),对任意的x1∈[a, b],存在x2∈[c, d],使得f(x1)=g(x2),设f(x)在区间[a,b]上的值域为A,g(x)在区间[c,d]上的值域为B,则A⊂B.例6 设函数若对任意的x1∈[1,5],总存在x2∈[1,4],使得f(x1)>g(x2),求b的取值范围.此题同时含有任意和存在两种量词,首先分析全称命题,将函数g(x)看成一个固定的值C,即所有的f(x)的值都要大于C,求f(x)的最小值,再将f(x)的最小值看成固定的值M,“有一个”g(x)小于M即可,就是求g(x)的最小值.经过分析,问题等价于fmin(x1)>gmin(x2).因为g(x)=bx+5-2b,b>0,所以g(x)单调递增,所以gmin(x2)=g(1)=5-b,所以对于函数不等式问题,不管两个函数变量的任意性与存在性如何变换,都是对函数最值的分析,分析一个变量时,可将另一个变量看成定值,固定不动;对于函数相等关系的理解需要用集合语言加以辅助.总之,存在性命题题目多变且富有新意,在审题时一定要分清基本类型,回归问题本质,把握基本的解题策略,读懂题中量词传达的信息,使存在性问题得以简化.。

存在性问题的三大经典例题

存在性问题的三大经典例题

存在性问题的三大经典例题例1、如图,抛物线经过A (-1,0),B (5,0),)25,0(-C 三点.点M 为x 轴上一动点,点N 是抛物线上一点,若以A ,C ,M ,N 为顶点的四边形为平行四边形,则点N 的坐标为?例2、如图,抛物线4212--=x x y 与x 轴负半轴交于点A ,与y 轴交于点B .若M 是抛物线对称轴上一点,且△ABM 是等腰三角形,则点M 的坐标为?例3、如图,A (0,1),B(4,3)是直线121+=x y 上两点,点P 是x 轴上一点,若△ABP 是直角三角形,则点P 的坐标为?练习:1.如图,直线与坐标轴分别交于A,B两点,点C在y轴上,且,直线CD⊥AB于点P,交x轴于点D.若M为坐标系内一点,且以B,P,C,M为顶点的四边形是平行四边形,则点M的坐标为2、已知抛物线交y轴于点A,点A关于抛物线对称轴的对称点为B(3,-4),直线与抛物线在第一象限的交点为C,连接OB.(1)如图,点P在射线OC上运动,连接BP,设点P的横坐标为m,△OBP的面积为S,则S与m之间的函数关系式为( )(2)如图,点P在直线OC上运动,点Q在抛物线上运动,在点P,Q运动的过程中,当以O,B,P,Q为顶点的四边形是平行四边形时,点P的坐标为3.如图,在平面直角坐标系中,已知点A的坐标为,M是x轴上一点.若△MOA是等腰三角形,则符合条件的点M有4.如图,直线与x轴、y轴分别交于点A,B.若P是直线A B上一点,且△OAP是等腰三角形,则点P的坐标为5.)如图,抛物线与x轴负半轴交于点A,与y轴交于点B.若M是抛物线对称轴上一点,且△ABM是等腰三角形,则点M的坐标为( )6.如图,在平面直角坐标系中,△AOB的三个顶点坐标分别为O(0,0),A(4,2),B(6,-2),动点P从点A出发,以每秒个单位长度的速度向点O运动,动点Q同时从点O出发,以每秒个单位长度的速度向点B运动,当其中一点到达终点时,另一点也随之停止运动.设运动的时间为t秒,当△OPQ为等腰三角形时,t的值为( )7.如图,已知A(1,0),B(0,3),P是直线x=2上一点,若△ABP是以AB为斜边的直角三角形,则点P的坐标为8.如图,已知A(0,2),B(4,0),点C在x轴上,CD⊥x轴,交线段AB于点D,且点D不与A,B两点重合,将△ABO沿CD折叠,使点B落在x轴上的点E处.设点C的横坐标为x,则当△ADE为直角三角形时,x的值为9.)如图,在平面直角坐标系xOy中,矩形OABC的两邻边OA,OC分别在x轴、y轴上,顶点B的坐标为(5,2),D是点A右侧的x轴上一点,E是y轴负半轴上一点,且OE=2AD=2t.连接BD,BE,DE,当△BDE是直角三角形时,t的值为。

存在性问题

存在性问题

存在性问题存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。

这类题目解法的一般思路是:假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。

由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。

一、函数中的存在性问题(相似)1.(枣庄10分)如图,在平面直角坐标系xoy 中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D. (1)写出h k 、的值;(2)判断△ACD 的形状,并说明理由;(3)在线段AC 上是否存在点M ,使△AOM∽△ABC?若存在,求出点M 的坐标;若不存在,说明理由.2.(临沂13分)如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O ,顶点为C .(1)求抛物线的解析式;(2)若点D 在抛物线上,点E 在抛物线的对称轴上,且A 、O 、D 、E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上的第一象限内的动点,过点P 作PMx 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.二、函数中的存在性问题(面积)3. (日照10分)如图,抛物线()20y ax bx a >=+与双曲线ky x=相交于点A ,B .已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan∠AOX=4.过点A作直线AC∥x轴,交抛物线于另一点C.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由.4、(德州12分)在直角坐标系xoy中,已知点P是反比例函数y(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:①求出点A,B,C的坐标.②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的12.若存在,试求出所有满足条件的M点的坐标,若不存在,试说明理由.5.(济宁10分)如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=k x+3。

存在性问题

存在性问题

存在性问题【专题精讲】存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。

这类题目解法的一般思路是:假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。

由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。

例2、22k y kx y P =+-如图:已知在同一坐标系中,直线与轴交于点,抛物 2122(1)4(0)(0)y x k x k x A x B x C =-++线与轴交于,,,两点,是抛物线的顶点(1)求二次函数的最小值(用含k 的代数式表示)(2)若点A 在点B 的左侧,且x 1·x 2<0①当k 取何值时,直线通过点B ;②是否存在实数k ,使S △ABP =S △ABC ?如果存在,求出抛物线的解析式;如果不存在,请说明理由。

【分析】本题存在探究性体现在第(2)问的后半部分。

认真观察图形,要使S △ABP =S △ABC ,由于AB=AB ,因此,只需两个三角形同底上的高相等就可以。

OP 显然是△ABP 的高线,而△ABC 的高线,需由C 作AB 的垂线段,在两个高的长中含有字母k ,就不难找到满足条件的k 值。

例3、已知二次函数y mx m x m =+-->2330()()(1)求证:它的图象与x 轴必有两个不同的交点;(2)这条抛物线与x 轴交于两点A (x 1,0),B (x 2,0)(x 1<x 2),与y 轴交于点C ,且AB=4,⊙M 过A 、B 、C 三点,求扇形MAC 的面积S 。

(3)在(2)的条件下,抛物线上是否存在点P ,使△PBD (PD ⊥x 轴,垂足为D )被直线BC 分成面积比为1:2的两部分?若存在,求出点P 的坐标;若不存在,说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(19年北京中考)在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合).
对于任意矩形ABCD ,下面四个结论中,
①存在无数个四边形MNPQ 是平行四边形;
②存在无数个四边形MNPQ 是矩形;
③存在无数个四边形MNPQ 是菱形;
④至少存在一个四边形MNPQ 是正方形.
所有正确结论的序号是__________.
2.(20年朝阳期末)如图,分别过第二象限内的点P 作x ,y 轴的平行线,与y ,x 轴分别
交于点A ,B ,与双曲线6y x
=
分别交于点C ,D . 下面三个结论,
①存在无数个点P 使AOC BOD S S =△△;
②存在无数个点P 使POA POB S S =△△;
③存在无数个点P 使ACD OAPB S S =△四边形.
所有正确结论的序号是 .
3. 已知长方形ABCD 可以按图示方式分成九部分,在a ,b 变化的过程中,
下面说法正确的有
①图中存在三部分的周长之和恰好等于长方形ABCD 的周长
②存在长方形ABCD 的长宽之比为2
③存在长方形ABCD 分成的九部分为正方形
④当长方形ABCD 的周长为60时,它的面积可能为100
A .①②
B .①③
C .②③④
D .①③④
b b a
a b a C
D B
4.(20年人大附中月考)在□ABCD 中,对角线AC ,BD 交于点O ,E 是边AD 上
的一个动点(与点A ,D 不重合),连接EO 并延长,交BC 于点F ,连接BE ,DF . 下列说法:
① 对于任意的点E ,四边形BEDF 都是平行四边形;
② 当90ABC ∠>︒时,至少存在一个点E ,使得四边形BEDF 是矩形; ③ 当AB AD <时,至少存在一个点E ,使得四边形BEDF 是菱形;
④ 当45ADB ∠=︒时,至少存在一个点E ,使得四边形BEDF 是正方形. 所有正确说法的序号是_________________.
5.我们知道任意三角形都存在内切圆,同样的,一些凸四边形也存在内切圆。

我们规定:存在与凸四边形的三边相切的圆叫伪内切圆,以下结论正确的是:______
①凸四边形必存在伪内切圆
②当平行四边形只存在一个伪内切圆时,它的对角线一定相等
③矩形伪内切圆的个数可能为1,2,4
④当且仅当四边形对角线互相垂直平分且相等时,该四边形的伪内切圆与内切圆重合
6.如图,点A ,B ,C 是⊙O 上的三个点,点D 在BC 的延长线上.有如下四个结论: ①在∠ABC 所对的弧上存在一点E,使得∠BCE =∠DCE ;
②在∠ABC 所对的弧上存在一点E,使得∠BAE =∠AEC ;
③在∠ABC 所对的弧上存在一点E,使得EO 平分∠AEC ;
④在∠ABC 所对的弧上任意取一点E (不与点A,C 重合) ,
∠DCE=∠ABO +∠AEO 均成立.
上述结论中,所有..
正确结论的序号是____________
7.(20年海淀一模)16.如果四边形有一组对边平行,且另一组对边不平行,那么称这样的
四边形为梯形,若梯形中有一个角是直角,则称其为直角梯形.
下面四个结论中,
①存在无数个直角梯形,其四个顶点分别在同一个正方形的四条边上;
②存在无数个直角梯形,其四个顶点在同一条抛物线上;
③存在无数个直角梯形,其四个顶点在同一个反比例函数的图象上;
④至少存在一个直角梯形,其四个顶点在同一个圆上.
所有正确结论的序号是 .
8.(20年通州一模)点A,B,C为平面内不在同一直线上的三个点,点D为平面内一动点,线段AB,BC,CD,DA的中点分别为M,N,P,Q。

在点D的运动过程中,有下列结论:
①存在无数个中点四边形MNPQ是平行四边形
②存在无数个中点四边形MNPQ是菱形
③存在无数个中点四边形MNPQ是矩形
④存在两个个中点四边形MNPQ是正方形
所有正确结论的序号是_______
答案1.①②③ 2.①②③ 3.B 4.①③ 5.①③ 6.①②③④7.①②③
8.①②③④。

相关文档
最新文档