2017年辽宁省葫芦岛市建昌县九年级上学期数学期中试卷与解析

合集下载

2017-2018学年辽宁省葫芦岛市建昌县九年级(上)期中数学试卷(解析版)

2017-2018学年辽宁省葫芦岛市建昌县九年级(上)期中数学试卷(解析版)

2017-2018学年辽宁省葫芦岛市建昌县九年级(上)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)如果(m﹣1)x2+3x﹣2=0是一元二次方程,则()A.m≠0 B.m≠1 C.m=0 D.m=12.(2分)下列方程有两个相等的实数根的是()A.x2+2x+4=0 B.x2+6x﹣9=0 C.x2﹣4x+4=0 D.4x2+2x+1=03.(2分)下列函数是二次函数的是()A.y=x+B.y=3(x﹣1)2C.y=ax2+bx+c D.y=+3x4.(2分)已知方程x2﹣14x+48=0的两根恰好是Rt△ABC的两边的长,则Rt△ABC的第三边长为()A.10 B.2 C.10或2D.85.(2分)在一条直线上有若干个不同的点,共组成45条线段,设共有x个点,则下列方程正确的是()A.x(x﹣1)=45 B.=45 C.x(x+1)=45 D.=456.(2分)抛物线y=﹣2(x+1)2﹣4的顶点坐标是()A.(1,﹣4)B.(1,4) C.(﹣1,﹣4)D.(﹣1,4)7.(2分)二次函数y=﹣(x﹣1)2﹣的最大值为()A.﹣ B.C.1 D.﹣18.(2分)关于x的一元二次方程kx2﹣2x+1=0有两个实数根,那么实数k的取值范围是()A.k≤1 B.k<1且k≠0 C.k≤1且k≠0 D.k≥19.(2分)在抛物线y=﹣2x2﹣x+1上的一个点是()A.(1,0) B.(﹣2,﹣5)C.(2,﹣5)D.(﹣1,3)10.(2分)如图,菱形ABCD中,AB=2,∠B=60°,M为AB的中点.动点P在菱形的边上从点B出发,沿B→C→D的方向运动,到达点D时停止.连接MP,设点P运动的路程为x,MP 2=y,则表示y与x的函数关系的图象大致为()A.B.C.D.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)二次函数y=(x)2+ 的图象的顶点坐标是(1,﹣2).12.(2分)一元二次方程(x﹣2)(x+1)=2x﹣4化为一般形式是.13.(2分)把抛物线y=﹣x2﹣1向右平移2个单位长度,再向上平移3个单位长度,则所得抛物线的解析式为.14.(2分)方程2(x﹣3)2=x﹣3的解是.15.(2分)已知直线y=﹣x+1与抛物线y=x2+k一个交点的横坐标为﹣2,则k=.16.(2分)已知函数y=﹣2x2﹣4x+1,当x时,y随x的增大而增大.17.(2分)从正方形铁片上截去2cm宽的一个长方形,剩余矩形的面积为35cm2,则原来正方形的面积为.18.(2分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下结论:①因为a<0,所以函数y有最小值;②该函数的图象关于直线x=1对称;③当x=0时,函数y的值等于2;④在本题条件下,一元二次方程ax2+bx+c=0的解是x1=﹣1,x2=3.其中正确的结论有.(填序号)三、解答题(本大题共8小题,共64分)19.(6分)用配方法解方程:x2﹣4x﹣1=0.20.(7分)用公式法解方程:x2﹣3x﹣5=0.21.(7分)已知方程x2+x+k=0的一个解是x=﹣5,求k值及另一个解.22.(7分)从现在开始到2020年,是全国建成小康社会的决胜期.某村2016年底人均收入为14400元,计划到2018年底达到22500元,求该村人均纯收入的年平均增长率.23.(7分)如图,要利用一面足够长的墙为一边,其余三边用总长33m的围栏建两个面积相同的生态园,为了出入方便,每个生态园在平行于墙的一边各留了一个宽1.5米的门,能够建生态园的场地垂直于墙的一边长不超过6米(围栏宽忽略不计)(1)每个生态园的面积为48平方米,求每个生态园的边长;(2)每个生态园的面积(填“能”或“不能”)达到108平方米.24.(10分)如图,在△AOB中,∠O=90°,AO=18cm,BO=30cm,动点M从点A开始沿边AO以1cm/s的速度向终点O移动,动点N从点O开始沿边OB以2cm\s 的速度向终点B移动,一个点到达终点时,另一个点也停止运动.如果M、N两点分别从A、O两点同时出发,设运动时间为ts时四边形ABNM的面积为Scm2.(1)求S关于t的函数关系式,并直接写出t的取值范围;(2)判断S有最大值还是有最小值,用配方法求出这个值.25.(10分)某宾馆有30个房间供旅客居住,当每个房间每天的定价为120元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.(1)每个房间每天的定价为多少时,宾馆利润最大?(2)若物价局规定,每个房间每天定价不得超过200元,则该宾馆如何定价,每天能获得最大利润?最大利润是多少?26.(10分)如图,二次函数y=﹣x2+bx+c的图象经过A(1,0),B(0,﹣3)两点.(1)求这个抛物线的解析式及顶点坐标;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.(3)在抛物线的对称轴上是否存在一点P,使得O、B、C、P四点为顶点的四边形是平行四边形?若存在,请直接写出P点坐标;若不存在,请说明理由.2017-2018学年辽宁省葫芦岛市建昌县九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)如果(m﹣1)x2+3x﹣2=0是一元二次方程,则()A.m≠0 B.m≠1 C.m=0 D.m=1【解答】解:由题意m﹣1≠0,∴m≠1,故选B.2.(2分)下列方程有两个相等的实数根的是()A.x2+2x+4=0 B.x2+6x﹣9=0 C.x2﹣4x+4=0 D.4x2+2x+1=0【解答】解:A、方程x2+2x+4=0的判别式△=4﹣4×4=﹣12<0,该方程无实数根;B、方程x2+6x﹣9=0的判别式△=36﹣4×(﹣9)=72>0,该方程有两个不相等的实数根;C、方程x2﹣4x+4=0的判别式△=(﹣4)2﹣4×4=0,该方程有两个相等的实数根;D、方程4x2+2x+1=0的判别式△=4﹣4×4=﹣12<0,该方程无实数根;故选C.3.(2分)下列函数是二次函数的是()A.y=x+B.y=3(x﹣1)2C.y=ax2+bx+c D.y=+3x【解答】解:A、y=x+是一次函数,此选项错误;B、y=3(x﹣1)2是二次函数,此选项正确;C、y=ax2+bx+c不是二次函数,此选项错误;D、y=+3x不是二次函数,此选项错误;故选B.4.(2分)已知方程x2﹣14x+48=0的两根恰好是Rt△ABC的两边的长,则Rt△ABC的第三边长为()A.10 B.2 C.10或2D.8【解答】解:方程x2﹣14x+48=0的两个根是6和8.也就是Rt△ABC的两条边的长是6和8.当6和8都是直角边时,第三边==10.当8为斜边时,第三边==2.故第三边长是10或2.故选:C.5.(2分)在一条直线上有若干个不同的点,共组成45条线段,设共有x个点,则下列方程正确的是()A.x(x﹣1)=45 B.=45 C.x(x+1)=45 D.=45【解答】解:设共有x个点,根据题意,得=45.故选B.6.(2分)抛物线y=﹣2(x+1)2﹣4的顶点坐标是()A.(1,﹣4)B.(1,4) C.(﹣1,﹣4)D.(﹣1,4)【解答】解:∵抛物线的解析式为y=﹣2(x+1)2﹣4,∴抛物线的顶点坐标为(﹣1,﹣4).故选C.7.(2分)二次函数y=﹣(x﹣1)2﹣的最大值为()A.﹣ B.C.1 D.﹣1【解答】解:∵二次函数的解析式是y=﹣(x﹣1)2﹣,∴该抛物线开口方向向上,且顶点坐标是(1,﹣),∴二次函数y=﹣(x﹣1)2﹣的最大值为﹣,故选:A.8.(2分)关于x的一元二次方程kx2﹣2x+1=0有两个实数根,那么实数k的取值范围是()A.k≤1 B.k<1且k≠0 C.k≤1且k≠0 D.k≥1【解答】解:∵关于x的一元二次方程kx2﹣2x+1=0有两个实数根,∴根的判别式△=b2﹣4ac=4﹣4k≥0,且k≠0.即k≤1且k≠0.故选C.9.(2分)在抛物线y=﹣2x2﹣x+1上的一个点是()A.(1,0) B.(﹣2,﹣5)C.(2,﹣5)D.(﹣1,3)【解答】解:A、x=1时,y=﹣2x2﹣x+1=﹣2≠0,点(1,0)不在抛物线上;B、x=﹣2时,y=﹣2x2﹣x+1=﹣5,点(﹣2,﹣5)在抛物线上;C、x=2时,y=﹣2x2﹣x+1=﹣9≠﹣5,点(2,﹣5)不在抛物线上;D、x=﹣1时,y=﹣2x2﹣x+1=0≠3,点(﹣1,3)不在抛物线上.故选B.10.(2分)如图,菱形ABCD中,AB=2,∠B=60°,M为AB的中点.动点P在菱形的边上从点B出发,沿B→C→D的方向运动,到达点D时停止.连接MP,设点P运动的路程为x,MP 2=y,则表示y与x的函数关系的图象大致为()A.B.C.D.【解答】解:(1)当0≤x≤时,如图1,过M作ME⊥BC与E,∵M为AB的中点,AB=2,∴BM=1,∵∠B=60°,∴BE=,ME=,PE=﹣x,在R t△BME中,由勾股定理得:MP2=ME2+PE2,∴y==x2﹣x+1;(2)当<x≤2时如图2,过M作ME⊥BC与E,由(1)知BM=1,∠B=60°,∴BE=,ME=,PE=x﹣,∴MP2=ME2+PE2,∴y==x2﹣x+1;(3)当2<x≤4时,如图3,连结MC,∵BM=1,BC=AB=2,∠B=60°,∴∠BMC=90°,MC==,∵AB∥DC,∴∠MCD=∠BMC=90°,∴MP2=MC2+PC2,∴y==x2﹣4x+7;综合(1)(2)(3),只有B选项符合题意.故选B.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)二次函数y=(x﹣1)2+ (﹣2)的图象的顶点坐标是(1,﹣2).【解答】解:二次函数y=(x﹣1)2﹣2的图象的顶点坐标是(1,﹣2).故答案为﹣1,(﹣2).12.(2分)一元二次方程(x﹣2)(x+1)=2x﹣4化为一般形式是x2﹣3x+2=0.【解答】解:(x﹣2)(x+1)=2x﹣4x2﹣x﹣2=2x﹣4,则一般形式是:x2﹣3x+2=0,故答案为:x2﹣3x+2=0.13.(2分)把抛物线y=﹣x2﹣1向右平移2个单位长度,再向上平移3个单位长度,则所得抛物线的解析式为y=﹣(x﹣2)2+2.【解答】解:原抛物线的顶点为(0,﹣1),向右平移2个单位长度,再向上平移3个单位长度,那么新抛物线的顶点为(2,2),可得新抛物线的解析式为:y=﹣(x﹣2)2+2,故答案为:y=﹣(x﹣2)2+2.14.(2分)方程2(x﹣3)2=x﹣3的解是x=3或x=3.5.【解答】解:∵2(x﹣3)2﹣(x﹣3)=0,∴(x﹣3)(2x﹣7)=0,则x﹣3=0或2x﹣7=0,解得:x=3或x=3.5,故答案为:x=3或x=3.515.(2分)已知直线y=﹣x+1与抛物线y=x2+k一个交点的横坐标为﹣2,则k=﹣1.【解答】解:将x=﹣2代入直线y=﹣x+1得,y=2+1=3,则交点坐标为(﹣2,3),将(﹣2,3)代入y=x2+k得,3=4+k,解得k=﹣1.故答案为:﹣1.16.(2分)已知函数y=﹣2x2﹣4x+1,当x<﹣1时,y随x的增大而增大.【解答】解:∵y=﹣2x2﹣4x+1中,对称轴为x=﹣=﹣=﹣1,开口向下,∴当x<﹣1时y随x增大而增大.故答案为:<﹣1.17.(2分)从正方形铁片上截去2cm宽的一个长方形,剩余矩形的面积为35cm2,则原来正方形的面积为49cm2.【解答】解:设正方形边长为xcm,依题意得x(x﹣2)=35整理x2=2x+35解方程得x1=7,x2=﹣5(舍去)所以正方形的边长是7cm,面积是49cm2故答案是:49cm2.18.(2分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下结论:①因为a<0,所以函数y有最小值;②该函数的图象关于直线x=1对称;③当x=0时,函数y的值等于2;④在本题条件下,一元二次方程ax2+bx+c=0的解是x1=﹣1,x2=3.其中正确的结论有②③④.(填序号)【解答】解:∵抛物线开口向下,∴a<0,函数y有最大值;故选项①错误;由图象可知函数图象对称轴为x=1,故选项②正确;∵当x=0时,y=2,故选项③正确;,∵抛物线与x轴的交点为(﹣1,0)和(3,0)∴当x=﹣1或x=3时,函数y的值都等于0,故选项④正确;故答案为:②③④.三、解答题(本大题共8小题,共64分)19.(6分)用配方法解方程:x2﹣4x﹣1=0.【解答】解:x2﹣4x+4=1+4(x﹣2)2=5x=2±20.(7分)用公式法解方程:x2﹣3x﹣5=0.【解答】解:a=1,b=﹣3,c=﹣5,△=b2﹣4ac=9﹣4×1×(﹣5)=29,x==,x1=,x2=.21.(7分)已知方程x2+x+k=0的一个解是x=﹣5,求k值及另一个解.【解答】解:∵方程x2+x+k=0的一个解是x=﹣5,∴25﹣5+k=0,解得k=﹣20,∴方程为x2+x﹣20=0,解得x=﹣5或x=4,∴k的值为﹣20,方程的另一个解为x=4.22.(7分)从现在开始到2020年,是全国建成小康社会的决胜期.某村2016年底人均收入为14400元,计划到2018年底达到22500元,求该村人均纯收入的年平均增长率.【解答】解:设该村人均纯收入的年平均增长率为x,根据题意得:14400(1+x)2=22500,解得:x1=0.25=25%,x2=﹣2.25(舍去).答:该村人均纯收入的年平均增长率为25%.23.(7分)如图,要利用一面足够长的墙为一边,其余三边用总长33m的围栏建两个面积相同的生态园,为了出入方便,每个生态园在平行于墙的一边各留了一个宽1.5米的门,能够建生态园的场地垂直于墙的一边长不超过6米(围栏宽忽略不计).(1)每个生态园的面积为48平方米,求每个生态园的边长;(2)每个生态园的面积不能(填“能”或“不能”)达到108平方米.【解答】解:(1)设每个生态园垂直于墙的边长为x米,根据题意,得:x(33+1.5×2﹣3x)=48×2,整理,得:x2﹣12x+32=0,解得:x1=4、x2=8(不合题意,舍去),当x=4时,33+1.5×2﹣3x=24,24÷2=12,答:每个生态园的面积为48平方米时,每个生态园垂直于墙的边长为4米,平行于墙的边长为12米;(2)根据题意,得:x(33+1.5×2﹣3x)=108×2,整理,得:x2﹣12x+72=0,由于△=(﹣12)2﹣4×1×72=﹣144<0,所以方程无解,即每个生态园的面积不能达到108平方米,故答案为:不能.24.(10分)如图,在△AOB中,∠O=90°,AO=18cm,BO=30cm,动点M从点A开始沿边AO以1cm/s的速度向终点O移动,动点N从点O开始沿边OB以2c m\s 的速度向终点B移动,一个点到达终点时,另一个点也停止运动.如果M、N两点分别从A、O两点同时出发,设运动时间为ts时四边形ABNM的面积为Scm2.(1)求S关于t的函数关系式,并直接写出t的取值范围;(2)判断S有最大值还是有最小值,用配方法求出这个值.【解答】解:(1)由题意得,AM=t,ON=2t,则OM=OA﹣AM=18﹣t,四边形ABNM的面积S=△AOB的面积﹣△MON的面积=×18×30﹣×(18﹣t)×2t=t2﹣18t+270(0<t≤15);(2)S=t2﹣18t+270=t2﹣18t+81﹣81+270=(t﹣9)2+189,∵a=1>0,∴S有最小值,这个值是189.25.(10分)某宾馆有30个房间供旅客居住,当每个房间每天的定价为120元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.(1)每个房间每天的定价为多少时,宾馆利润最大?(2)若物价局规定,每个房间每天定价不得超过200元,则该宾馆如何定价,每天能获得最大利润?最大利润是多少?【解答】解:(1)设每个房间的每天的定价为x元时,宾馆的利润为w元,根据题意,得:w=(x﹣20)(30﹣)=﹣x2+44x﹣840=﹣(x﹣220)2+4000,∴每个房间每天的定价为220元时,宾馆利润最大;(2)由(1)知,w=﹣(x﹣220)2+4000,∵a=﹣<0,∴当x<220时,w随x的增大而增大,∴当x=200时,w最大,此时w=﹣(200﹣220)2+4000=3600,答:该宾馆定价为200元时,每天能获得最大利润,最大利润是3600元.26.(10分)如图,二次函数y=﹣x2+bx+c的图象经过A(1,0),B(0,﹣3)两点.(1)求这个抛物线的解析式及顶点坐标;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.(3)在抛物线的对称轴上是否存在一点P,使得O、B、C、P四点为顶点的四边形是平行四边形?若存在,请直接写出P点坐标;若不存在,请说明理由.【解答】解:(1)∵二次函数y=﹣x2+bx+c的图象经过A(1,0),B(0,﹣3)两点,∴,解得,∴抛物线的解析式为y=﹣x2+4x﹣3,即y=﹣(x﹣2)2+1,∴抛物线的顶点坐标为(2,1);(2)由(1)可得,C(2,0),又∵A(1,0),B(0,﹣3),∴OC=2,OA=1,OB=3,∴AC=1,∴△ABC的面积=AC×OB=×1×3=.(3)存在,P点有2个,坐标为P1(2,3),P2(2,﹣3).如图,当四边形OBCP1是平行四边形时,CP1=OB=3,而OC=2,故P1(2,3);当四边形OBP2C是平行四边形时,CP2=OB=3,而OC=2,故P2(2,﹣3).。

辽宁省葫芦岛市九年级上学期数学期中考试试卷

辽宁省葫芦岛市九年级上学期数学期中考试试卷

辽宁省葫芦岛市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分) (2016九上·芦溪期中) 已知 = ,则的值是().A .B .C .D .2. (2分)计算× +的结果为()A . -1B . 1C . 4-3D . 73. (2分)(2018·义乌) 学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分别为,,,,,则栏杆端应下降的垂直距离为()A .B .C .D .4. (2分)(2016·深圳模拟) 在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是()A . (﹣2,1)B . (﹣8,4)C . (﹣8,4)或(8,﹣4)D . (﹣2,1)或(2,﹣1)5. (2分) (2019九上·东台期中) 用配方法解方程x2-4x-4=0,下列变形正确的是()A . (x-2)2=2B . (x-2)2=4C . (x-2)2=6D . (x-2)2=86. (2分)在实数,0,,π,,sin45°中,无理数有()A . 1个B . 2个C . 3个D . 4个7. (2分) (2018八上·三河期末) 如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A . ∠D=∠C,∠BAD=∠ABCB . ∠BAD=∠ABC,∠ABD=∠BACC . BD=AC,∠BAD=∠ABCD . AD=BC,BD=AC8. (2分) (2019八上·江岸期中) 如图,在△ABC中,点D是线段AB的中点,DC⊥BC,作∠EAB=∠B,DE∥BC,连接CE.若,设△BCD的面积为S,则用S表示△ACE的面积正确的是()A .B . 3SC . 4SD .9. (2分)(2020·西安模拟) 如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连接DF,则下列四个结论中,错误的是()A . △AEF∽△CABB . CF=2AFC . DF=DCD . tan∠CAD=二、填空题 (共5题;共5分)10. (1分)二次函数的图象如图,若一元二次方程ax2+bx+m=0有实数根,则的最大值为________.11. (1分) (2018·聊城模拟) 2﹣1+ =________.12. (1分)(2017·闵行模拟) 2016年3月完工的上海中心大厦是一座超高层地标式摩天大楼,其高度仅次于世界排名第一的阿联酋迪拜大厦,某人从距离地面高度263米的东方明珠球体观光层测得上海中心大厦顶部的仰角是22.3°.已知东方明珠与上海中心大厦的水平距离约为900米,那么上海中心大厦的高度约为________米(精确到1米).(参考数据:sin22.3°≈0.38,cos22.3°≈0.93.tan22.3°≈0.41)13. (1分)(2017·桥西模拟) 如图,直线l经过平面直角坐标系的原点O,且与x轴正方向的夹角是30°,点A的坐标是(0,1),点B在直线l上,且AB∥x轴,则点B的坐标是________,现将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线l上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线l上,顺次旋转下去…,则点A6的横坐标是________.14. (1分)(2016·铜仁) 将矩形ABCD纸片按如图所示的方式折叠,EF,EG为折痕,试问∠AEF+∠BEG=________.三、解答题 (共8题;共56分)15. (10分) (2017九上·赣州开学考) 计算:(﹣1)﹣2+|1﹣ |﹣.16. (10分) (2015九上·汶上期末) 用规定的方法解方程:(1) x2﹣x﹣2=0;(公式法)(2) x2﹣7=﹣6x.(配方法)17. (5分) (2020八下·海勃湾期末) 若△ABC三边长为a,b,c满足a2+b2+c2+200=12a+16b+20c,试判断△ABC的形状.18. (5分) (2017九下·萧山月考) 如图,某校数学兴趣小组为测得校园里旗杆AB的高度,在操场的平地上选择一点C,测得旗杆顶端A的仰角为30º,再向旗杆的方向前进16米,到达点D处(C,D,B三点在同一直线上),又测得旗杆顶端A的仰角为45º,请计算旗杆AB的高度(结果保留根号) .19. (5分)(2020·岐山模拟) 如图1所示的是宝鸡市文化景观标志“天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分4层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量“天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部O,他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点A,并在点A处安装了测量器AB,在点B处测得该灯的顶点P的仰角为;再在OA的延长线上确定一点C,使米,在D点处测得该灯的顶点P的仰角为 .若测量过程中测量器的高度始终为1.6米,求“天下第一灯”的高度. ,最后结果取整数)20. (10分) (2020八下·宜兴期中) 小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗;(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.21. (10分) (2019九上·长春月考) 如图,直线y=-x+4与x轴交于A点,与y轴交于B点,动点P从A 点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,点E是点B以Q为对称中心的对称点,同时动点Q从B 点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连结PQ,设P,Q两点运动时间为t秒(0<t≤2).(1)直接写出A,B两点的坐标.(2)当t为何值时,PQ∥OB?(3)四边形PQBO面积能否是△ABO面积的;若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△APQ为直角三角形?(直接写出结果)22. (1分)(2020·福州模拟) 综合与探究如图1,抛物线y=ax2+bx﹣3与x轴交于A(﹣2,0),B(4,0)两点,与y轴交于点C .(1)求抛物线的表达式;(2)点N是抛物线上异于点C的动点,若△NAB的面积与△CAB的面积相等,求出点N的坐标;(3)如图2,当P为OB的中点时,过点P作PD⊥x轴,交抛物线于点D .连接BD ,将△PBD沿x轴向左平移m个单位长度(0<m≤2),将平移过程中△PBD与△OBC重叠部分的面积记为S ,求S与m的函数关系式.参考答案一、单选题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共5题;共5分)10-1、11-1、12-1、13-1、14-1、三、解答题 (共8题;共56分)15-1、答案:略16-1、答案:略16-2、17-1、答案:略18-1、答案:略19-1、答案:略20-1、答案:略20-2、答案:略21-1、21-2、答案:略21-3、答案:略21-4、答案:略22-1、答案:略22-2、答案:略22-3、答案:略。

辽宁省葫芦岛市九年级上学期期中数学试卷

辽宁省葫芦岛市九年级上学期期中数学试卷

辽宁省葫芦岛市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)下列命题中,真命题是()A . 一组对边平行,另一组对边相等的四边形一定是等腰梯形B . 对角线互相垂直的四边形是菱形C . 顺次连结菱形各边中点所得的四边形是正方形D . 四个内角均相等的四边形是矩形2. (2分)用配方法解方程x2+2x﹣5=0时,原方程应变形为()A . (x+1)2=6B . (x﹣1)2=6C . (x+2)2=9D . (x﹣2)2=93. (2分)关于x,y的二元二次方程组有且只有一组实数解,则m的值是()A . 1B . 2C . 3D . 44. (2分)下列说法中,错误的是()A . 两个全等三角形一定是相似形B . 两个等腰三角形一定相似C . 两个等边三角形一定相似D . 两个等腰直角三角形一定相似5. (2分)解方程x2−x+2=时,如果设y=x2-x,那么原方程可变形为关于y的整式方程是()A . y2-2y-1=0B . y2-2y+1=0C . y2+2y+1=0D . y2+2y-1=06. (2分)(2020·扶风模拟) 如图,∠ACB=90°,D为AB中点,连接DC并延长到点E,使CE= CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为()A . 12B . 10C . 8D . 5二、填空题 (共17题;共102分)7. (1分)当k满足条件________时,关于x的方程(k-3)+2x-7=0是一元二次方程.8. (1分) (2017八下·老河口期末) 在▱ABCD中,AB=5,AC=6,当BD=________时,四边形ABCD是菱形.9. (1分)若一元二次方程x2﹣(a+1)x+a=0的两个实数根分别是2、b,则a﹣b=________ .10. (1分)(2018·攀枝花) 如图,已知点A在反比例函数y= (x>0)的图象上,作Rt△ABC,边BC在x轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若△BCE的面积为4,则k=________.11. (1分) (2020八下·海安月考) 如图,将矩形纸片ABCD折叠,使点B与点D重合,若AB=3,BC=9,则折痕EF的长度为________.12. (1分) (2019八下·广州期中) 如图,在矩形ABCD中,点E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F,若AB=6,BC=4 ,则FD=________.13. (10分) (2015八上·武汉期中) 如图,在平面直角坐标系中,点A在第二象限且纵坐标为1,点B在x 轴的负半轴上,AB=AO,∠ABO=30°,直线MN经过原点O,点A关于直线MN的对称点A1在x轴的正半轴上,点B 关于直线MN的对称点为B1 .(1)求∠AOM的度数.(2)已知30°,60°,90°的三角形三边比为1::2,求线段AB1的长和B1的纵坐标.14. (5分) (2019九上·龙江期中) 已知关于x的一元二次方程的两个实数根的平方和为12,求m的值.15. (5分)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.16. (10分)(2019·湖州) 如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若∠AFB=90°,AB=6,求四边形BEFD的周长.17. (10分)已知:如图,在中,D是AC上一点,联结BD,且∠ABD =∠ACB.(1)求证:△ABD∽△ACB;(2)若AD=5,AB= 7,求AC的长.18. (10分)(2020·房山模拟) 已知关于x的一元二次方程.(1)当时,求此方程的根;(2)若此方程有两个不相等的实数根,求k的取值范围.19. (5分)若(x+1)2=6,求多项式(x+2)2+(1﹣x)(2+x)﹣3的值.20. (11分) (2017八下·滨海开学考) 如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1 , y2(千米)与行驶时间x (小时)之间的函数关系图象.(1)填空:A,B两地相距________千米;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)客、货两车何时相遇?相遇处离C站的路程是多少千米?21. (10分) (2019八下·灞桥期末) 如图,菱形中,,为中点,,于点,∥ ,交于点,交于点 .(1)求菱形的面积;(2)求的度数.22. (10分)(2017·中山模拟) 学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.23. (10分)(2018·浦东模拟) 如图,已知,在锐角△ABC中,CE⊥AB于点E,点D在边AC上,联结BD交CE于点F,且EF·FC=FB·DF.(1)求证:BD⊥AC;(2)联结AF,求证:AF·BE=BC·EF.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共17题;共102分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、13-2、答案:略14-1、答案:略15-1、答案:略16-1、16-2、答案:略17-1、17-2、答案:略18-1、答案:略18-2、答案:略19-1、答案:略20-1、20-2、答案:略20-3、答案:略21-1、答案:略21-2、答案:略22-1、答案:略22-2、23-1、23-2、答案:略。

2017年葫芦岛市中考数学试题含答案解析-(27592)

2017年葫芦岛市中考数学试题含答案解析-(27592)

2017年辽宁省葫芦岛市中考数学试卷一.选择题(本题共10小题,每小题3分,共30分)1.(3分)(2017•葫芦岛)下列四个数中最小的是()A.3.3 B.C.﹣2 D.0【答案】C考点:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(3分)(2017•葫芦岛)如图所示的几何体的主视图是()A.B.C. D.【答案】B【解析】试题分析:主视图是从正面看到的图,应该是选项B.故答案为B.考点:三视图,解题的关键是理解三视图的意义.3.(3分)(2017•葫芦岛)下列运算正确的是()A.m3•m3=2m3B.5m2n﹣4mn2=mn C.(m+1)(m﹣1)=m2﹣1 D.(m﹣n)2=m2﹣mn+n2【答案】C考点:了同底数幂的乘法,合并同类项,平方差公式,完全平方公式4.(3分)(2017•葫芦岛)下列事件是必然事件的是()A.乘坐公共汽车恰好有空座 B.同位角相等C.打开手机就有未接电话 D.三角形内角和等于180°【解析】试题分析:A.乘坐公共汽车恰好有空座,是随机事件;B.同位角相等,是随机事件;C.打开手机就有未接电话,是随机事件;D.三角形内角和等于180°,是必然事件.故选D。

考点:必然事件、不可能事件、随机事件的概念5.(3分)(2017•葫芦岛)点P(3,﹣4)关于y轴对称点P′的坐标是()A.(﹣3,﹣4)B.(3,4)C.(﹣3,4)D.(﹣4,3)【解析】试题分析:∵点P(3,﹣4)关于y轴对称点P′,∴P′的坐标是:(﹣3,﹣4).故选A。

考点:关于y轴对称点的性质6.(3分)(2017•葫芦岛)下表是某同学周一至周五每天跳绳个数统计表:星期一二三四五160 160 180 200 170 跳绳个数则表示“跳绳个数”这组数据的中位数和众数分别是()A.180,160 B.170,160 C.170,180 D.160,200【答案】B考点:中位数和众数的定义7.(3分)(2017•葫芦岛)一次函数y=(m﹣2)x+3的图象如图所示,则m的取值范围是()A.m<2 B.0<m<2 C.m<0 D.m>2 【答案】A【解析】试题分析:如图所示,一次函数y=(m﹣2)x+3的图象经过第一、二、四象限,∴m﹣2<0,解得m<2.故选A。

辽宁省葫芦岛市九年级上学期数学中考模拟试卷

辽宁省葫芦岛市九年级上学期数学中考模拟试卷

辽宁省葫芦岛市九年级上学期数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·自贡) 下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .2. (2分)下列说法正确的是()A . 掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B . 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定C . “明天降雨的概率为”,表示明天有半天都在降雨D . 了解一批电视机的使用寿命,适合用普查的方式3. (2分)(2020·长春模拟) 一元二次方程2x2﹣4x+1=0的根的情况是()A . 没有实数根B . 只有一个实数根C . 有两个相等的实数根D . 有两个不相等的实数根4. (2分) (2016九上·丰台期末) 如图,点A,B,C,D,E,F为⊙O的六等分点,动点P从圆心O出发,沿OE弧EFFO的路线做匀速运动,设运动的时间为t,∠BPD的度数为y,则下列图象中表示y与t之间函数关系最恰当的是()A .B .C .D .5. (2分) (2015九上·龙华期中) 用配方法解方程x2+8x+7=0,则配方正确的是()A . (x﹣4)2=9B . (x+4)2=9C . (x﹣8)2=16D . (x+8)2=576. (2分) (2020九下·扬中月考) 如图,已知,为线段上的一个动点,分别以,为边在的同侧作菱形和菱形,点,,在一条直线上, . ,分别是对角线,的中点.当点在线段上移动时,点,之间的距离最短为()A .B .C . 4D . 37. (2分) (2019九上·中山期中) 如图,将△ABC绕点C顺时针旋转45°后得到△A′B′C.若∠A=55°,∠B′=105°,则∠BCA′的度数是()A . 60°B . 65°C . 70°D . 75°8. (2分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A .B . 2C . 2D . 89. (2分)某公司的生产利润原来是a元,经过连续两年的增长达到了y万元,如果每年增长的百分数都是x,那么y与x的函数关系是()A . y=x2+aB . y=a(x﹣1)2C . y=a(1﹣x)2D . y=a(1+x)210. (2分) (2019九上·文登期中) 如图1中,,点从点出发以的速度沿折线运动,点从点出发以的速度沿运动,两点同时出发,当某一点运动到点时,两点同时停止运动.设运动时间为,的面积为 ),关于的函数图象由两段组成,如图2所示,有下列结论:① ;② :③图象段的函数表达式为;④ 面积的最大值为8,其中正确的个数有()个A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)11. (1分) (2018九上·兴化期中) 某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,恰好是男生的概率是________.12. (1分) (2019九上·南昌期中) 已知x=﹣1是一元二次方程x2﹣2mx+1=0的一个解,则m的值是________.13. (1分)(2020·温州模拟) 一个圆锥的主视图为边长等于的等边三角形,则这个圆锥的侧面积为________ .14. (1分) (2019九上·大洼月考) 如图,在△ABC中,AB=AC=5,BC=8,将△ABC绕着点B旋转得到△A′BC′,点A的对应点A′,点C的对应点C′.如果点A′在BC边上,那么点C和点C′之间的距离为________.15. (1分) (2018九上·安定期末) 如图所示,小明坐在秋千上,秋千旋转了80°,∠AOE=60°,则∠DOB =________.16. (1分) (2019九上·杭州开学考) 若二次函数y=ax2-bx+5(a≠0)的图象与x轴交于(1,0),则b-a+2014的值是________。

辽宁省葫芦岛市建昌县九年级数学上学期期中测评试题(扫描版) 新人教版

辽宁省葫芦岛市建昌县九年级数学上学期期中测评试题(扫描版) 新人教版

辽宁省葫芦岛市建昌县2018届九年级数学上学期期中测评试题建昌县2017—2018学年度上学期九年级期中测评数学试题参 考 答 案 及 评 分 标 准说明:1.在阅卷过程中,如考生还有其它正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数,只给正整数分数. 一、选择题(每小题2分,共20分)11.-1,(-2) 12.x 2-3x +2=0 13.2)2(232+--=x y 或46232-+-=x x y 14.31=x ,272=x 15.-1 16. <-1 17. 49cm 218.②③④ 三、解答题(本大题共8个小题,共64分.解答应写出文字说明、证明过程或演算步骤)19.解:过程略251+=x ,252+-=x20.解:过程略22931+=x ,22932-=x 21.解:由已知,把x =-5代入方程x 2+x +k =0, 得25-6+k =0 ……………………1分 ∴k =-20 …………………………………………2分 ∴方程为x 2+x -20=0……………………………3分 解方程,得x 1=-5,x 2=4……………………5分 即k =-20 ,方程的另一个解为x =4……… 7分22. 解:设该村人均纯收入的年平均增长率为x ,根据题意,得 ………………1分22500)1(144002=+x …………………………4分整理,得1625)1(2=+x …………………………5分解方程,得x 1=0.25=25%,x 2=-2.25(或492-=x )(不合题意,舍去)6分 答:该村人均纯收入的年平均增长率为25%…………………7分23. (1)解:每个生态园垂直于墙的边长为x 米,根据题意,得……………1分x (33+1.5×2-3x )= 48×2 ……………………………3分整理,得x 2-12x +32=0 …………………………4分解方程,得x 1=4,x 2=8(不合题意,舍去) …………………5分当x =4时,33+1.5×2-3x =24;24÷2=12 ……………6分答:每个生态园垂直于墙的边长为4米, 平行于墙的边长为12米 ………7分(2)能.24.解:(1)由已知,得 AM=t ,ON = 2t ,∵AO=18∴ OM=AO -AM =18- t ………………………2分又∵∠O=90°,BO=30∴S 四边形ABNM =S △OAB -S △OMN =OA •OB -OM •ON ,∴S =301821⨯⨯- t t 2)18(21⋅-, …………………4分 即270182+-=t t S (0<t ≤15);………………………6分(2)由(1),知270182+-=t t S ∵a =1>0,∴S 有最小值……………7分270182+-=t t S2708181182+-+-=t t 189)9(2+-=t ……………………………9分∴当t =9时,S 最小值=189. …………………10分25.解:(1)每个房间每天的定价为x 元时,宾馆利润为w 元,由题意,得 )1012030)(20(---=x x w ………………………………3分 即840441012-+-=x x w …………………………4分 840)4840048400440(1012--+--=x x 4000220(1012+--=)x 因此,每个房间每天的定价为220元时,宾馆利润最大,最大利润为4000元.……7分(2)由(1),知4000220(1012+--=)x w ∵101-=a <0,∴当x <220时,w 随的增大而增大,…8分 ∴当x ﹦200时,w 最大,这时,36004000220200(1012=+--=)w …9分 因此,在符合规定的前提下,该宾馆每个房间定价为200元时,每天能获得最大利润,最大利润为3600元. ………………………………10分26.(1)解:∵二次函数c bx x y ++-=2的图象经过A (1,0),B (0,3-)两点 ∴⎩⎨⎧-==++-301c c b 解方程组,得⎩⎨⎧-==34c b …………2分 ∴设这个二次函数解析式为342-+-=x x y …………………3分342-+-=x x y 3)444(2--+--=x x 1)2(2+--=x∴这个二次函数图象的顶点坐标为(2,1) …………………5分(也可以用公式求)(2)由(1),知C (2,0)又∵A (1,0),B (0,3-),x 轴⊥y 轴∴OC=2,OA=1,OB=3 ∴AC=1 …………………7分∴△ABC 的面积23312121=⨯⨯=⋅=OB AC …………………8分 (3)存在,符合条件的点P 共有两个,P 1(2,3),P 2(2,-3)……………10分。

2017年辽宁省葫芦岛市中考数学试卷(内含答案详解)

2017年辽宁省葫芦岛市中考数学试卷(内含答案详解)

2017年辽宁省葫芦岛市中考数学试卷参考答案与试题解析一.选择题(本题共10小题,每小题3分,共30分)1.下列四个数中最小的是()A.3.3 B.C.﹣2 D.0【考点】18:有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<0<<3.3,∴四个数中最小的是﹣2.故选:C.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.如图所示的几何体的主视图是()A .B .C .D .【考点】U2:简单组合体的三视图.【分析】根据主视图的定义,即可判定、【解答】解:主视图是从正面看到的图,应该是选项B.故答案为B.【点评】本题考查三视图,解题的关键是理解三视图的意义,属于中考常考题型.3.下列运算正确的是()A.m3•m3=2m3B.5m2n﹣4mn2=mnC.(m+1)(m﹣1)=m2﹣1 D.(m﹣n)2=m2﹣mn+n2【考点】4F:平方差公式;35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【分析】根据同底数幂的乘法,合并同类项,平方差公式,完全平方公式的计算法则进行计算即可求解.【解答】解:A、m3•m3=m6,故选项错误;B、5m2n,4mn2不是同类项不能合并,故选项错误;C、(m+1)(m﹣1)=m2﹣1,故选项正确;D、(m﹣n)2=m2﹣2mn+n2,故选项错误.故选:C.【点评】此题主要考查了同底数幂的乘法,合并同类项,平方差公式,完全平方公式,正确掌握相关运算法则是解题关键.4.(3分)(2017•葫芦岛)下列事件是必然事件的是()A.乘坐公共汽车恰好有空座B.同位角相等C.打开手机就有未接电话 D.三角形内角和等于180°【考点】X1:随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可判断它们分别属于那一种类别.根据实际情况即可解答.【解答】解:A.乘坐公共汽车恰好有空座,是随机事件;B.同位角相等,是随机事件;C.打开手机就有未接电话,是随机事件;D.三角形内角和等于180°,是必然事件.故选D.【点评】本题考查了必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)(2017•葫芦岛)点P(3,﹣4)关于y轴对称点P′的坐标是()A.(﹣3,﹣4)B.(3,4)C.(﹣3,4)D.(﹣4,3)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】直接利用关于y轴对称点的性质得出答案.【解答】解:∵点P(3,﹣4)关于y轴对称点P′,∴P′的坐标是:(﹣3,﹣4).故选:A.【点评】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标关系是解题关键.6.(3分)(2017•葫芦岛)下表是某同学周一至周五每天跳绳个数统计表:星期一二三四五跳绳个数160 160 180 200 170则表示“跳绳个数”这组数据的中位数和众数分别是()A.180,160 B.170,160 C.170,180 D.160,200【考点】W5:众数;W4:中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选B.【点评】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.7.(3分)(2017•葫芦岛)一次函数y=(m﹣2)x+3的图象如图所示,则m的取值范围是()A.m<2 B.0<m<2 C.m<0 D.m>2【考点】F7:一次函数图象与系数的关系.【分析】根据图象在坐标平面内的位置关系知m﹣2<0,据此可以求得m的取值范围.【解答】解:如图所示,一次函数y=(m﹣2)x+3的图象经过第一、二、四象限,∴m﹣2<0,解得m<2.故选A.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.8.(3分)(2017•葫芦岛)如图,点A 、B 、C 是⊙O 上的点,∠AOB=70°,则∠ACB 的度数是( ) A .30° B .35° C .45° D .70° 【考点】M5:圆周角定理.【分析】根据圆周角定理得到∠ACB= ∠AOB ,即可计算出∠ACB . 【解答】解:∵∠AOB=70°,∴∠ACB= ∠AO B=35°.故选B .【点评】本题考查了圆周角定理:一条弧所对的圆周角是它所对的圆心角的一半. 9.(3分)(2017•葫芦岛)如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C ′处,点B 落在点B ′处,其中AB=9,BC=6,则FC ′的长为( ) A .310B .4C .4.5D .5 【考点】LB :矩形的性质;KQ :勾股定理.【分析】设FC ′=x ,则FD=9﹣x ,根据矩形的性质结合BC=6、点C ′为AD 的中点,即可得出C ′D 的长度,在Rt △FC ′D 中,利用勾股定理即可找出关于x 的一元 二次方程,解之即可得出结论.【解答】解:设FC ′=x ,则FD=9﹣x ,∵BC=6,四边形ABCD 为矩形,点C ′为AD 的中点, ∴AD=BC=6,C ′D=3.在Rt △FC ′D 中,∠D=90°,FC ′=x ,FD=9﹣x ,C ′D=3,∴FC ′2=FD 2+C ′D 2,即x 2=(9﹣x )2+32, 解得:x=5. 故选D .【点评】本题考查了矩形的性质以及勾股定理,在Rt △FC ′D 中,利用勾股定理找出关于FC ′的长度的一元二次方程是解题的关键. 10.(3分)(2017•葫芦岛)如图,菱形ABCD 的边长为2, ∠A=60°,点P 和点Q 分别从点B 和点C 出发,沿射线BC 向右运动,过点Q 作QH ⊥BD ,垂足为H ,连接PH ,设点P 运动的距离为x (0<x ≤2),△BPH 的面积为s ,则能反映 s 与x 之间的函数关系的图象大致为 ( )A .B .C .D .【考点】E7:动点问题的函数图象.【分析】根据菱形的性质得到∠DBC=60°,根据直角三角形的性质得到BH= BQ=1+ x ,过H 作HG ⊥BC ,得到HG= BH= + x ,根据三角形的面积公式即可得到结论. 【解答】解:∵菱形ABCD 的边长为2,∠A=60°, ∴∠DBC=60°,∵BQ=2+x ,QH ⊥BD , ∴BH= BQ=1+ x , 过H 作HG ⊥BC ,∴HG= BH= + x ,∴s= PB•GH= x 2+ x ,(0<x ≤2),故选A .【点评】本题考查了动点问题的函数图象,菱形的性质,直角三角形的性质,三角形的面积的计算,正确的作出辅助线是解题的关键.二.填空题(本题共8小题,每小题3分,共24分) 11.(3分)(2017•葫芦岛)今年1至4月份,某沿海地区苹果出口至“一带一路”沿线国家约11 000000千克,数据11 000 000可以用科学记数法表示为 1.1×107. 【考点】1I :科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于11 000 000有8位,所以可以确定n=8﹣1=7.【解答】解:11 000 000=1.1×107,故答案为:1.1×107.【点评】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.12.(3分)(2017•葫芦岛)因式分解:m 2n ﹣4mn+4n= n (m ﹣2)2. 【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式n ,再根据完全平方公式进行二次分解.【解答】解:m 2n ﹣4mn+4n ,=n (m 2﹣4m+4),=n (m ﹣2)2.故答案为:n (m ﹣2)2. 【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底. 13.(3分)(2017•葫芦岛)甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,如果甲比赛成绩的方差为S 甲2=16.7,乙比赛成绩的方差为S 乙2=28.3,那么成绩比较稳定的是 甲 (填甲或乙) 【考点】W7:方差.【分析】根据方差的意义即可求得答案.【解答】解:∵S 甲2=16.7,S 乙2=28.3,∴S 甲2<S 乙2,∴甲的成绩比较稳定,故答案为:甲. 【点评】本题主要考查方差的意义,掌握方差的意义是解题的关键,即方差越大其数据波动越大,即成绩越不稳定. 14.(3分)(2017•葫芦岛)正八边形的每个外角的度数为 45° . 【考点】L3:多边形内角与外角.【分析】利用正八边形的外角和等于360度即可求出答案. 【解答】解:360°÷8=45°.故答案为:45°.【点评】本题主要考查了多边形的外角和定理,任何一个多边 形的外角和都是360°. 15.(3分)(2017•葫芦岛)如图是有若干个全等的等边三角 形拼成的纸板,若某人向纸板上投掷飞镖,(每次飞镖均落在 纸板上),则飞镖落在阴影部分的概率是 .【考点】X5:几何概率.【分析】确定阴影部分的面积在整个面积中占的比例,根据这个比例即可求出飞镖落在阴影区域的概率.【解答】解:如图:阴影部分的面积占6份,总面积是16份,∴飞镖落在阴影部分的概率是= ;故答案为:.【点评】本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比.16.(3分)(2017•葫芦岛)一艘货轮又西向东航行,在A处测得灯塔P在它的北偏东60°方向,继续航行到达B处,测得灯塔P在正南方向4海里的C处是港口,点A,B,C在一条直线上,则这艘货轮由A到B 航行的路程为(4﹣4)海里(结果保留根号).【考点】TB:解直角三角形的应用﹣方向角问题;KU :勾股定理的应用.【分析】根据题意得:PC=4海里,∠PBC=45°,∠PAC=30°,在直角三角形APC中,由勾股定理得出AC=PC=4(海里),在直角三角形BPC中,得出BC=PC=4海里,即可得出答案.【解答】解:根据题意得:PC=4海里,∠PBC=90°﹣45°=45°,∠PAC=90°﹣60°=30°,在直角三角形APC中,∵∠PAC=30°,∠C=90°,∴AC=PC=4(海里),在直角三角形BPC中,∵∠PBC=45°,∠C=90°,∴BC=PC=4海里,∴AB=AC=BC=(4﹣4)海里;故答案为:(4﹣4).【点评】本题考查了解直角三角形的应用、勾股定理的应用;求出AC和BC的长度是解决问题的关键.17.(3分)(2017•葫芦岛)如图,点A(0,8),点B(4,0),连接AB,点M,N分别是OA,AB的中点,在射线MN上有一动点P.若△ABP是直角三角形,则点P的坐标是(2+2,4)或(2+2,4).【考点】KQ:勾股定理;D5:坐标与图形性质.【分析】根据勾股定理得到AB=4,根据三角形中位线的性质得到AM=OM=4,MN=2,AN=BN=2,①当∠APB=90°时,根据直角三角形的性质得到PN=AN=2,于是得到P(2+2,4),②当∠ABP=90°时,如图,过P作PC⊥x轴于C,根据相似三角形的性质得到BP=AB=4,根据勾股定理得到PN=2,求得P(2+2,4).【解答】解:∵点A(0,8),点B(4,0),∴OA=8,OB=4,∴AB=4,∵点M,N分别是OA,AB的中点,∴AM=OM=4,MN=2,AN=BN=2,①当∠APB=90°时,∵AN=BN,∴PN=AN=2,∴PM=MN+PN=2+2,∴P(2+2,4),②当∠ABP=90°时,如图,过P作PC⊥x轴于C,则△ABO∽△BPC,∴==1,∴BP=AB=4,∴PN=2,∴PM=2+2,∴P(2+2,4),故答案为:(2+2,4)或(2+2,4).【点评】本题考查了勾股定理,相似三角形的判定和性质,坐标与图形性质,直角三角形的性质,正确的理解题意是解题的关键.18.(3分)(2017•葫芦岛)如图,直线y= x上有点A1,A2,A3,…A n+1,且OA1=1,A1A2=2,A2A3=4,A n A n+1=2n分别过点A1,A2,A3,…A n+1作直线y= x的垂线,交y轴于点B1,B2,B3,…B n+1,依次连接A1B2,A2B3,A3B4,…A n B n+1,得到△A1B1B2,△A2B2B3,△A3B3B4,…,△A n B n B n+1,则△A n B n B n+1的面积为(22n﹣1﹣2n﹣1).(用含有正整数n的式子表示)【考点】F8:一次函数图象上点的坐标特征.【分析】由直线OA n的解析式可得出∠A n OB n=60°,结合A n A n+1=2n可求出A n B n的值,再根据三角形的面积公式即可求出△A n B n B n+1的面积.【解答】解:∵直线OA n的解析式y=x,∴∠A n OB n=60°.∵OA1=1,A1A2=2,A2A3=4,A n A n+1=2n,∴A1B1= ,A2B2=3 ,A3B3=7 .设S=1+2+4+…+2n﹣1,则2S=2+4+8+…+2n,∴S=2S﹣S=(2+4+8+…+2n)﹣(1+2+4+…+2n﹣1)=2n﹣1,∴A n B n=(2n﹣1).∴= A n B n•A n A n+1=×(2n﹣1)×2n=(22n﹣1﹣2n﹣1).故答案:(22n﹣1﹣2n﹣1).【点评】本题考查了一次函数图象上点的坐标特征、三角形的面积、解直角三角形以及规律型中数的变化规律,根据边的变化找出变化规律“A n B n=(2n﹣1)”是解题的关键.三、解答题(第19题10分,第20题12分,共22分)19.(10分)(2017•葫芦岛)先化简,再求值:( +x ﹣1)÷,其中x=( )﹣1+(﹣3)0. 【考点】6D :分式的化简求值;6E :零指数幂;6F :负整数指数幂.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【解答】解:原式= • = ,当x=2+1=3时,原式= . 【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 20.(12分)(2017•葫芦岛)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了 100 名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为 108° ;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率. 【考点】X6:列表法与树状图法;V5:用样本估计总体;VB :扇形统计图;VC :条形统计图. 【分析】(1)根据喜欢电话沟通的人数与百分比即可求出共抽查人数,求出使用QQ 的百分比即可求出QQ 的扇形圆心角度数.(2)计算出短信与微信的人数即可补全统计图. (3)用样本中喜欢用微信进行沟通的百分比来估计1500名学生中喜欢用微信进行沟通的人数即可求出答案;(4)列出树状图分别求出所有情况以及甲、乙两名同学恰好选中同一种沟通方式的情况后,利用概念公式即可求出甲、乙两名同学恰好选中同一种沟通方式的概率 【解答】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%, ∴此次共抽查了:20÷20%=100人喜欢用QQ 沟通所占比例为:10030= , ∴QQ”的扇形圆心角的度数为:360°× =108° (2)喜欢用短信的人数为:100×5%=5人 喜欢用微信的人数为:100﹣20﹣5﹣30﹣5=40补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:10040×100%=40% ∴该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人 (4)列出树状图,如图所示所有情况共有9种情况,其中两人恰好选中同一种沟通方式共有3种情况, 甲、乙两名同学恰好选中同一种沟通方式的概率为: = 故答案为:(1)100;108° 【点评】本题考查统计与概率,解题的关键是熟练运用统计与概率的相关公式,本题属于中等题型. 四、解答题(第21题12分,第22题12分,共24分) 21.(12分)(2017•葫芦岛)在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?【考点】B7:分式方程的应用;C9:一元一次不等式的应用. 【分析】(1)可设降价后每枝玫瑰的售价是x 元,根据等量关系:降价后30元可购买玫瑰的数量=原来购买玫瑰数量的1.5倍,列出方程求解即可;(2)可设购进玫瑰y 枝,根据不等量关系:购进康乃馨的钱数+购进玫瑰的钱数≤900元,列出不等式求解即可.【解答】解:(1)设降价后每枝玫瑰的售价是x 元,依题意有x 30=130 x ×1.5,解得:x=2. 经检验,x=2是原方程的解. 答:降价后每枝玫瑰的售价是多少元? (2)设购进玫瑰y 枝,依题意有2(500﹣x )+1.5x ≤900, 解得:y ≥200.答:至少购进玫瑰200枝.【点评】本题考查分式方程的应用,一元一次不等式的应用,分析题意,找到合适的等量关系和不等关系是解决问题的关键.22.(12分)(2017•葫芦岛)如图,直线y=3x 与双曲线y=xk(k ≠0,且x >0)交于点A ,点A 的横坐标是1.(1)求点A 的坐标及双曲线的解析式;(2)点B 是双曲线上一点,且点B 的纵坐标是1, 连接OB ,AB ,求△AOB 的面积.【考点】G8:反比例函数与一次函数的交点问题. 【分析】(1)把x=1代入直线解析式求出y 的值,确定出A 坐标,将A 坐标代入反比例解析式求出k 的值即可; (2)先求出点B 的坐标,再利用割补法求解可得. 【解答】解:(1)将x=1代入y=3x ,得:y=3, ∴点A 的坐标为(1,3), 将A (1,3)代入y=xk,得:k=3, ∴反比例函数的解析式为y=; (2)在y=中y=1时,x=3, ∴点B (3,1),如图,S △AOB =S 矩形OCED ﹣S △AOC ﹣S △BOD ﹣S △ABE=3×3﹣ ×1×3﹣ ×1×3﹣ ×2×2=4.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了三角形面积公式. 五、解答题(满分12分) 23.(12分)(2017•葫芦岛)“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数y (张)与电影票售价x (元/张)之间满足一次函数:y=﹣4x+220(10≤x ≤50,且x 是整数),设影城每天的利润为w (元)(利润=票房收入﹣运营成本).(1)试求w 与x 之间的函数关系式;(2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元? 【考点】HE :二次函数的应用. 【分析】(1)根据“利润=票房收入﹣运营成本”可得函数解析式;(2)将函数解析式配方成顶点式,由10≤x ≤50,且x 是整数结合二次函数的性质求解可得.【解答】解:(1)根据题意,得:w=(﹣4x+220)x ﹣1000=﹣4x 2+220x ﹣1000;(2)∵w=﹣4x 2+220x ﹣1000=﹣4(x ﹣27.5)2+2025, ∴当x=27或28时,w 取得最大值,最大值为2024,答:影城将电影票售价定为27或28元/张时,每天获利最大,最大利润是2024元.【点评】本题是二次函数的应用,解题的关键是得出函数解析式,并熟练掌握二次函数的性质.六、解答题(满分12分)24.(12分)(2017•葫芦岛)如图,△ABC 内接于⊙O ,AC 是直径,BC=BA ,在∠ACB 的内部作∠ACF=30°,且CF=CA ,过点F 作FH ⊥AC 于点H ,连接BF . (1)若CF 交⊙O 于点G ,⊙O 的半径是4,求的长;(2)请判断直线BF 与⊙O 的位置关系,并说明理由.【考点】MB :直线与圆的位置关系;M2:垂径定理;MA :三角形的外接圆与外心;MN :弧长的计算. 【分析】(1)连接OB ,首先证明四边形BOHF 是矩形,求出AB 、BF 的长,由BF ∥AC , 可得AG BG =AC BF = = ,可得AGAGBG += ,由此即可解决问题; (2)结论:BF 是⊙O 的切线.只要证明OB ⊥BF 即可; 【解答】解:(1)∵AC 是直径, ∴∠CBA=90°,∵BC=BA ,OC=OA ,∴OB ⊥AC , ∵FH ⊥AC ,∴OB ∥FH ,在Rt △CFH 中,∵∠FCH=30°,∴FH= CF , ∵CA=CF ,∴FH= AC=OC=OA=OB , ∴四边形BOHF 是平行四边形,∵∠FHO=90°,∴四边形BOHF 是矩形,∴BF=OH , 在Rt △ABC 中,∵AC=8,∴AB=BC=42, ∵CF=AC=8,∴CH=43,BF=OH=43﹣4, ∵BF ∥AC ,∴AG BG =ACBF= = , ∴AGAGBG += ,∴AG=4 ﹣4 .(2)结论:BF 是⊙O 的切线.理由:由(1)可知四边形OBHF 是矩形, ∴∠OBF=90°, ∴OB ⊥BF ,∴BF 是⊙O 的切线.【点评】本题考查切线的判定、矩形的判定.等腰三角形的性质,直角三角形30度角的性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造特殊四边形解决问题.七、解答题(满分12分)25.(12分)(2017•葫芦岛)如图,∠MAN=60°,AP平分∠MAN,点B是射线AP上一定点,点C在直线AN上运动,连接BC,将∠ABC(0°<∠ABC<120°)的两边射线BC和BA分别绕点B顺时针旋转120°,旋转后角的两边分别与射线AM交于点D和点E.(1)如图1,当点C在射线AN上时,①请判断线段BC与BD的数量关系,直接写出结论;②请探究线段AC,AD和BE之间的数量关系,写出结论并证明;(2)如图2,当点C在射线AN的反向延长线上时,BC交射线AM于点F,若AB=4,AC= ,请直接写出线段AD和DF的长.【考点】RB:几何变换综合题.【分析】(1)①结论:BC=BD.只要证明△BGD≌△BHC即可.②结论:AD+AC= BE.只要证明AD+AC=2AG=2EG,再证明EB= BE即可解决问题;(2)如图2中,作BG⊥AM于G,BH⊥AN于H,AK⊥CF于K.由(1)可知,△ABG≌△ABH,△BGD ≌△BHC,易知BH=GB=2,AH=AG=EG=2 ,BC=BD==,CH=DG=3,推出AD=5,由sin∠ACH==,推出= ,可得AK=,设FG=y,则AF=2﹣y,BF= ,由△AFK∽△BFG ,可得=,可得方程 = ,求出y即可解决问题.【解答】解:(1)①结论:BC=BD.理由:如图1中,作BG⊥AM于G,BH⊥AN于H.∵∠MAN=60°,PA平分∠MAN,BG⊥AM于G,BH⊥AN于H∴BG=BH,∠GBH=∠CBD=120°,∴∠CBH=∠GBD,∵∠BGD=∠BHC=90°,∴△BGD≌△BHC,∴BD=BC.②结论:AD+AC= BE.∵∠ABE=120°,∠BAE=30°,∴∠BEA=∠BAE=30°,∴BA=BE,∵BG⊥AE,∴AG=GE,EG=BE•cos30°= BE,∵△BGD≌△BHC,∴DG=CH,∵AB=AB,BG=BH,∴Rt△ABG≌Rt△ABH,∴AG=AH,∴AD+AC=AG+DG+AH﹣CH=2AG= BE,∴AD+AC= BE.(2)如图2中,作BG⊥AM于G,BH⊥AN于H,AK⊥CF于K.由(1)可知,△ABG≌△ABH,△BGD≌△BHC,易知BH=GB=2,AH=AG=EG=2 ,BC=BD==,CH=DG=3,∴AD=5,∵sin∠ACH==,∴= ,∴AK=,设FG=y,则AF=2﹣y,BF= ,∵∠AFK=∠BFG,∠AKF=∠BGF=90°,∴△AFK∽△BFG,∴=,∴ = ,解得y= 或3(舍弃),∴DF=GF+DG=+3=.【点评】本题考查几何变换综合题、全等三角形的判定和性质、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.八、解答题(满分14分)26.(14分)(2017•葫芦岛)如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C 三点,已知点A(﹣2,0),点C(0,﹣8),点D是抛物线的顶点.(1)求抛物线的解析式及顶点D的坐标;(2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EBP沿直线EP 折叠,使点B的对应点B'落在抛物线的对称轴上,求点P的坐标;(3)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标.【考点】HF:二次函数综合题.【分析】(1)将点A、点C的坐标代入抛物线的解析式可求得a、c的值,从而得到抛物线的解析式,最后利用配方法可求得点D的坐标;(2)将y=0代入抛物线的解析式求得点B的坐标,然后由抛物线的对称轴方程可求得点E的坐标,由折叠的性质可求得∠BEP=45°,设直线EP的解析式为y=﹣x+b,将点E的坐标代入可求得b的值,从而可求得直线EP的解析式,最后将直线EP的解析式和抛物线的解析式联立组成方程组求解即可;(3)先求得直线CD的解析式,然后再求得直线CB的解析式为y=k2x﹣8,从而可求得点F的坐标,设点M的坐标为(a,﹣a﹣8),然后分为MF=MB、FM=FB两种情况列方程求解即可.【解答】解:(1)将点A、点C的坐标代入抛物线的解析式得:,解得:a=1,c=﹣8.∴抛物线的解析式为y=x2﹣2x﹣8.∵y=(x﹣1)2﹣9,∴D(1,﹣9).(2)将y=0代入抛物线的解析式得:x2﹣2x﹣8=0,解得x=4或x=﹣2,∴B(4,0).∵y=(x﹣1)2﹣9,∴抛物线的对称轴为x=1,∴E(1,0).∵将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,∴EP为∠BEF的角平分线.∴∠BEP=45°.设直线EP的解析式为y=﹣x+b,将点E的坐标代入得:﹣1+b=0,解得b=1,∴直线EP的解析式为y=﹣x+1.将y=﹣x+1代入抛物线的解析式得:﹣x+1=x2﹣2x﹣8,解得:x= 或x= .∵点P在第四象限,∴x= .∴y= .∴P(,).(3)设CD的解析式为y=kx﹣8,将点D的坐标代入得:k﹣8=﹣9,解得k=﹣1,∴直线CD的解析式为y=﹣x﹣8.设直线CB的解析式为y=k2x﹣8,将点B的坐标代入得:4k2﹣8=0,解得:k2=2.∴直线BC的解析式为y=2x﹣8.将x=1代入直线BC的解析式得:y=﹣6,∴F(1,﹣6).设点M的坐标为(a,﹣a﹣8).当MF=MB时,(a﹣4)2+(a+8)2=(a﹣1)2+(a+2)2,整理得:6a=﹣75,解得:a=﹣225.∴点M的坐标为(﹣225,).当FM=FB时,(a﹣1)2+(a+2)2=(4﹣1)2+(﹣6﹣0)2,整理得:a2+a﹣20=0,解得:a=4或a=﹣5.∴点M的坐标为(4,﹣12)或(﹣5,﹣3).综上所述,点M的坐标为(﹣225,)或(4,﹣12)或(﹣5,﹣3).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、翻折的性质、两点间的距离公式,依据两点间的距离公式列出关于a的方程是解题的关键.。

辽宁省葫芦岛市九年级上学期数学期中考试试卷

辽宁省葫芦岛市九年级上学期数学期中考试试卷

辽宁省葫芦岛市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018八下·永康期末) 下列各点中,在反比例函数图象上的点是A .B .C .D .2. (2分)(2017·宁城模拟) 如图,有一张直角三角形纸片,两直角边长AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,则CD等于()A . cmB . cmC . cmD . cm3. (2分)若△ABC∽△DEF,△ABC与△DEF的相似比为2︰3,则S△ABC︰S△DEF为()A . 2∶3B . 4∶9C . ∶D . 3∶24. (2分) (2017八下·宁波月考) 一组数据:1,3,2,5,x的平均数是3,则这组数据的标准差为()A . 2B . 4C .D . -25. (2分)(2018·莱芜) 某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A . 平均数是92B . 中位数是92C . 众数是92D . 极差是66. (2分) (2019七上·道里期末) 已知下列方程:① ;② ;③ ;④ ;其中是一元二次方程的有()A . 1个B . 2个C . 3个D . 4个7. (2分)已知x=﹣1是关于x的方程x2﹣x+m=0的一个根,则m的值为()A . -2B . -1C . 0D . 28. (2分)已知方程x2﹣5x﹣1=0的两根分别为x1与x2 ,则2x12﹣x1x2+2x22=()A . ﹣10B . ﹣11C . 55D . 109. (2分)(2014·宜宾) 若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()A . x2+3x﹣2=0B . x2﹣3x+2=0C . x2﹣2x+3=0D . x2+3x+2=010. (2分)已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()A .B .C .D .11. (2分)如右图所示为我市某农村一古老的捣碎器,已知支撑柱AB的高为0.3米,踏板DE长为1.6米,支撑点A到踏脚D的距离为0.6米,现在踏脚着地,则捣头点E上升了()米.A . 0.6B . 0.8C . 1D . 1.212. (2分)已知点C是线段AB上的一个点,且满足,则下列式子成立的是()A . ;B . ;C . ;D .二、填空题 (共8题;共8分)13. (1分)(2018·山西模拟) 在学校组织的“爱我中华,歌唱祖国”歌咏比赛中,共有18名同学参加决赛,他们的成绩如下表:成绩(分)9.409.509.609.709.809.90人数235431这些同学决赛成绩的中位数是________.14. (1分)已知反比例函数y= 的图象经过点(3,-2),则函数解析式为________,x>0时,y随x的增大而________15. (1分)(2018·邵阳) 某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为________人.16. (1分)如图,已知两点A(2,0),B(0,4),且∠1=∠2,则tan∠OCA=________.17. (1分) (2016九上·新泰期中) sin260°+cos260°﹣tan45°=________.18. (1分)如图,在△ABC中,AB=AC , D、E是△ABC内两点,AD平分∠BAC ,∠EBC=∠E=60º,若BE=6 cm,DE=2cm,则BC=________.19. (1分) (2019七下·长春月考) 如图,在△ABC中,∠BAC=70°,将△ABC绕点A逆时针旋转,得到△AB'C',连接C'C .若C'C∥AB ,则∠BAB'=________°.20. (1分)已知 +2y+1=0,则x2=________ .三、解答题 (共5题;共49分)21. (12分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?22. (7分) (2019八下·瑞安期中) 我校举行八年级汉字听写大赛,每班各派五名同学参加(满分为100分).其中八(1)班和八(2)班五位参赛同学的成绩如下图所示:(1)根据条形统计图完成表格平均数中位数众数八(1)班83________90八(2)班________85________(2)已知八(1)班参赛选手成绩的方差为56 ,请计算八(2)班参赛选手成绩的方差,并分析哪一个班级的成绩比较稳定.23. (10分)(2017·赤壁模拟) 如图,点B(3,3)在双曲线y= (x>0)上,点D在双曲线y=﹣(x <0)上,点A和点C分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.(1)求k的值;(2)求点A的坐标.24. (10分)(2018·枣庄) 如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.25. (10分)(2017·平塘模拟) 如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE;而当光线与地面夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13米的距离(B,F,C在一条直线上)(1)求教学楼AB的高度;(2)学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).(参考数据:sin22°≈ ,cos22°≈ ,tan22°≈ )参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共8题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共5题;共49分) 21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、第11 页共11 页。

【2017中考数学真题】辽宁葫芦岛市试卷及解析【2017数学中考真题系列】

【2017中考数学真题】辽宁葫芦岛市试卷及解析【2017数学中考真题系列】

2017年辽宁省葫芦岛市中考数学试卷一.选择题(本题共10小题,每小题3分,共30分)1.(3分)下列四个数中最小的是()A.3.3 B.C.﹣2 D.02.(3分)如图所示的几何体的主视图是()A.B.C.D.3.(3分)下列运算正确的是()A.m3•m3=2m3B.5m2n﹣4mn2=mnC.(m+1)(m﹣1)=m2﹣1 D.(m﹣n)2=m2﹣mn+n24.(3分)下列事件是必然事件的是()A.乘坐公共汽车恰好有空座B.同位角相等C.打开手机就有未接电话D.三角形内角和等于180°5.(3分)点P(3,﹣4)关于y轴对称点P′的坐标是()A.(﹣3,﹣4)B.(3,4)C.(﹣3,4)D.(﹣4,3)6.(3分)下表是某同学周一至周五每天跳绳个数统计表:则表示“跳绳个数”这组数据的中位数和众数分别是()A.180,160 B.170,160 C.170,180 D.160,2007.(3分)一次函数y=(m﹣2)x+3的图象如图所示,则m的取值范围是()A.m<2 B.0<m<2 C.m<0 D.m>28.(3分)如图,点A、B、C是⊙O上的点,∠AOB=70°,则∠ACB的度数是()A.30°B.35°C.45°D.70°9.(3分)如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为()A.B.4 C.4.5 D.510.(3分)如图,菱形ABCD的边长为2,∠A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为s,则能反映s与x之间的函数关系的图象大致为()A.B.C.D.二.填空题(本题共8小题,每小题3分,共24分)11.(3分)今年1至4月份,某沿海地区苹果出口至“一带一路”沿线国家约11 000 000千克,数据11 000 000可以用科学记数法表示为.12.(3分)因式分解:m2n﹣4mn+4n=.13.(3分)甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,如果甲比赛成绩的方差为S甲2=16.7,乙比赛成绩的方差为S乙2=28.3,那么成绩比较稳定的是(填甲或乙)14.(3分)正八边形的每个外角的度数为.15.(3分)如图是有若干个全等的等边三角形拼成的纸板,若某人向纸板上投掷飞镖,(每次飞镖均落在纸板上),则飞镖落在阴影部分的概率是.16.(3分)一艘货轮又西向东航行,在A处测得灯塔P在它的北偏东60°方向,继续航行到达B处,测得灯塔P在正南方向4海里的C处是港口,点A,B,C 在一条直线上,则这艘货轮由A到B航行的路程为海里(结果保留根号).17.(3分)如图,点A(0,8),点B(4,0),连接AB,点M,N分别是OA,AB的中点,在射线MN上有一动点P.若△ABP是直角三角形,则点P的坐标是.18.(3分)如图,直线y=x上有点A1,A2,A3,…A n+1,且OA1=1,A1A2=2,A2A3=4,A n A n+1=2n分别过点A1,A2,A3,…A n+1作直线y=x的垂线,交y轴于,依次连接A1B2,A2B3,A3B4,…A n B n+1,得到△A1B1B2,△点B1,B2,B3,…B n+1A2B2B3,△A3B3B4,…,△A n B n B n+1,则△A n B n B n+1的面积为.(用含有正整数n的式子表示)三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:(+x﹣1)÷,其中x=()﹣1+(﹣3)0.20.(12分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12分)在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?22.(12分)如图,直线y=3x与双曲线y=(k≠0,且x>0)交于点A,点A 的横坐标是1.(1)求点A的坐标及双曲线的解析式;(2)点B是双曲线上一点,且点B的纵坐标是1,连接OB,AB,求△AOB的面积.23.(12分)“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数:y=﹣4x+220(10≤x≤50,且x是整数),设影城每天的利润为w(元)(利润=票房收入﹣运营成本).(1)试求w与x之间的函数关系式;(2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元?六、解答题(满分12分)24.(12分)如图,△ABC内接于⊙O,AC是直径,BC=BA,在∠ACB的内部作∠ACF=30°,且CF=CA,过点F作FH⊥AC于点H,连接BF.(1)若CF交⊙O于点G,⊙O的半径是4,求的长;(2)请判断直线BF与⊙O的位置关系,并说明理由.25.(12分)如图,∠MAN=60°,AP平分∠MAN,点B是射线AP上一定点,点C在直线AN上运动,连接BC,将∠ABC(0°<∠ABC<120°)的两边射线BC 和BA分别绕点B顺时针旋转120°,旋转后角的两边分别与射线AM交于点D和点E.(1)如图1,当点C在射线AN上时,①请判断线段BC与BD的数量关系,直接写出结论;②请探究线段AC,AD和BE之间的数量关系,写出结论并证明;(2)如图2,当点C在射线AN的反向延长线上时,BC交射线AM于点F,若AB=4,AC=,请直接写出线段AD和DF的长.八、解答题(满分14分)26.(14分)如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C(0,﹣8),点D是抛物线的顶点.(1)求抛物线的解析式及顶点D的坐标;(2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,求点P的坐标;(3)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标.2017年辽宁省葫芦岛市中考数学试卷参考答案与试题解析一.选择题(本题共10小题,每小题3分,共30分)1.(3分)(2017•葫芦岛)下列四个数中最小的是()A.3.3 B.C.﹣2 D.0【考点】18:有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<0<<3.3,∴四个数中最小的是﹣2.故选:C.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(3分)(2017•葫芦岛)如图所示的几何体的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图的定义,即可判定、【解答】解:主视图是从正面看到的图,应该是选项B.故答案为B.【点评】本题考查三视图,解题的关键是理解三视图的意义,属于中考常考题型.3.(3分)(2017•葫芦岛)下列运算正确的是()A.m3•m3=2m3B.5m2n﹣4mn2=mnC.(m+1)(m﹣1)=m2﹣1 D.(m﹣n)2=m2﹣mn+n2【考点】4F:平方差公式;35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【分析】根据同底数幂的乘法,合并同类项,平方差公式,完全平方公式的计算法则进行计算即可求解.【解答】解:A、m3•m3=m6,故选项错误;B、5m2n,4mn2不是同类项不能合并,故选项错误;C、(m+1)(m﹣1)=m2﹣1,故选项正确;D、(m﹣n)2=m2﹣2mn+n2,故选项错误.故选:C.【点评】此题主要考查了同底数幂的乘法,合并同类项,平方差公式,完全平方公式,正确掌握相关运算法则是解题关键.4.(3分)(2017•葫芦岛)下列事件是必然事件的是()A.乘坐公共汽车恰好有空座B.同位角相等C.打开手机就有未接电话D.三角形内角和等于180°【考点】X1:随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可判断它们分别属于那一种类别.根据实际情况即可解答.【解答】解:A.乘坐公共汽车恰好有空座,是随机事件;B.同位角相等,是随机事件;C.打开手机就有未接电话,是随机事件;D.三角形内角和等于180°,是必然事件.故选D.【点评】本题考查了必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)(2017•葫芦岛)点P(3,﹣4)关于y轴对称点P′的坐标是()A.(﹣3,﹣4)B.(3,4)C.(﹣3,4)D.(﹣4,3)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】直接利用关于y轴对称点的性质得出答案.【解答】解:∵点P(3,﹣4)关于y轴对称点P′,∴P′的坐标是:(﹣3,﹣4).故选:A.【点评】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标关系是解题关键.6.(3分)(2017•葫芦岛)下表是某同学周一至周五每天跳绳个数统计表:则表示“跳绳个数”这组数据的中位数和众数分别是()A.180,160 B.170,160 C.170,180 D.160,200【考点】W5:众数;W4:中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选B.【点评】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.7.(3分)(2017•葫芦岛)一次函数y=(m﹣2)x+3的图象如图所示,则m 的取值范围是()A.m<2 B.0<m<2 C.m<0 D.m>2【考点】F7:一次函数图象与系数的关系.【分析】根据图象在坐标平面内的位置关系知m﹣2<0,据此可以求得m的取值范围.【解答】解:如图所示,一次函数y=(m﹣2)x+3的图象经过第一、二、四象限,∴m﹣2<0,解得m<2.故选A.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y 轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.8.(3分)(2017•葫芦岛)如图,点A、B、C是⊙O上的点,∠AOB=70°,则∠ACB的度数是()A.30°B.35°C.45°D.70°【考点】M5:圆周角定理.【分析】根据圆周角定理得到∠ACB=∠AOB,即可计算出∠ACB.【解答】解:∵∠AOB=70°,∴∠ACB=∠AOB=35°.故选B.【点评】本题考查了圆周角定理:一条弧所对的圆周角是它所对的圆心角的一半.9.(3分)(2017•葫芦岛)如图,将矩形纸片ABCD沿直线EF折叠,使点C 落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为()A.B.4 C.4.5 D.5【考点】LB:矩形的性质;KQ:勾股定理.【分析】设FC′=x,则FD=9﹣x,根据矩形的性质结合BC=6、点C′为AD的中点,即可得出C′D的长度,在Rt△FC′D中,利用勾股定理即可找出关于x的一元二次方程,解之即可得出结论.【解答】解:设FC′=x,则FD=9﹣x,∵BC=6,四边形ABCD为矩形,点C′为AD的中点,∴AD=BC=6,C′D=3.在Rt△FC′D中,∠D=90°,FC′=x,FD=9﹣x,C′D=3,∴FC′2=FD2+C′D2,即x2=(9﹣x)2+32,解得:x=5.故选D.【点评】本题考查了矩形的性质以及勾股定理,在Rt△FC′D中,利用勾股定理找出关于FC′的长度的一元二次方程是解题的关键.10.(3分)(2017•葫芦岛)如图,菱形ABCD的边长为2,∠A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为s,则能反映s与x之间的函数关系的图象大致为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】根据菱形的性质得到∠DBC=60°,根据直角三角形的性质得到BH=BQ=1+x,过H作HG⊥BC,得到HG=BH=+x,根据三角形的面积公式即可得到结论.【解答】解:∵菱形ABCD的边长为2,∠A=60°,∴∠DBC=60°,∵BQ=2+x,QH⊥BD,∴BH=BQ=1+x,过H作HG⊥BC,∴HG=BH=+x,∴s=PB•GH=x2+x,(0<x≤2),故选A.【点评】本题考查了动点问题的函数图象,菱形的性质,直角三角形的性质,三角形的面积的计算,正确的作出辅助线是解题的关键.二.填空题(本题共8小题,每小题3分,共24分)11.(3分)(2017•葫芦岛)今年1至4月份,某沿海地区苹果出口至“一带一路”沿线国家约11 000 000千克,数据11 000 000可以用科学记数法表示为 1.1×107.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于11 000 000有8位,所以可以确定n=8﹣1=7.【解答】解:11 000 000=1.1×107,故答案为:1.1×107.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.12.(3分)(2017•葫芦岛)因式分解:m2n﹣4mn+4n=n(m﹣2)2.【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式n,再根据完全平方公式进行二次分解.【解答】解:m2n﹣4mn+4n,=n(m2﹣4m+4),=n(m﹣2)2.故答案为:n(m﹣2)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.13.(3分)(2017•葫芦岛)甲、乙两名同学参加“古诗词大赛”活动,五次比2=16.7,乙比赛成绩的赛成绩的平均分都是85分,如果甲比赛成绩的方差为S甲2=28.3,那么成绩比较稳定的是甲(填甲或乙)方差为S乙【考点】W7:方差.【分析】根据方差的意义即可求得答案.【解答】解:∵S甲2=16.7,S乙2=28.3,∴S甲2<S乙2,∴甲的成绩比较稳定,故答案为:甲.【点评】本题主要考查方差的意义,掌握方差的意义是解题的关键,即方差越大其数据波动越大,即成绩越不稳定.14.(3分)(2017•葫芦岛)正八边形的每个外角的度数为45°.【考点】L3:多边形内角与外角.【分析】利用正八边形的外角和等于360度即可求出答案.【解答】解:360°÷8=45°.故答案为:45°.【点评】本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.15.(3分)(2017•葫芦岛)如图是有若干个全等的等边三角形拼成的纸板,若某人向纸板上投掷飞镖,(每次飞镖均落在纸板上),则飞镖落在阴影部分的概率是.【考点】X5:几何概率.【分析】确定阴影部分的面积在整个面积中占的比例,根据这个比例即可求出飞镖落在阴影区域的概率.【解答】解:如图:阴影部分的面积占6份,总面积是16份,∴飞镖落在阴影部分的概率是=;故答案为:.【点评】本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比.16.(3分)(2017•葫芦岛)一艘货轮又西向东航行,在A处测得灯塔P在它的北偏东60°方向,继续航行到达B处,测得灯塔P在正南方向4海里的C处是港口,点A,B,C在一条直线上,则这艘货轮由A到B航行的路程为(4﹣4)海里(结果保留根号).【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】根据题意得:PC=4海里,∠PBC=45°,∠PAC=30°,在直角三角形APC 中,由勾股定理得出AC=PC=4(海里),在直角三角形BPC中,得出BC=PC=4海里,即可得出答案.【解答】解:根据题意得:PC=4海里,∠PBC=90°﹣45°=45°,∠PAC=90°﹣60°=30°,在直角三角形APC中,∵∠PAC=30°,∠C=90°,∴AC=PC=4(海里),在直角三角形BPC中,∵∠PBC=45°,∠C=90°,∴BC=PC=4海里,∴AB=AC=BC=(4﹣4)海里;故答案为:(4﹣4).【点评】本题考查了解直角三角形的应用、勾股定理的应用;求出AC和BC的长度是解决问题的关键.17.(3分)(2017•葫芦岛)如图,点A(0,8),点B(4,0),连接AB,点M,N分别是OA,AB的中点,在射线MN上有一动点P.若△ABP是直角三角形,则点P的坐标是(2+2,4)或(2+2,4).【考点】KQ:勾股定理;D5:坐标与图形性质.【分析】根据勾股定理得到AB=4,根据三角形中位线的性质得到AM=OM=4,MN=2,AN=BN=2,①当∠APB=90°时,根据直角三角形的性质得到PN=AN=2,于是得到P(2+2,4),②当∠ABP=90°时,如图,过P作PC⊥x轴于C,根据相似三角形的性质得到BP=AB=4,根据勾股定理得到PN=2,求得P (2+2,4).【解答】解:∵点A(0,8),点B(4,0),∴OA=8,OB=4,∴AB=4,∵点M,N分别是OA,AB的中点,∴AM=OM=4,MN=2,AN=BN=2,①当∠APB=90°时,∵AN=BN,∴PN=AN=2,∴PM=MN+PN=2+2,∴P(2+2,4),②当∠ABP=90°时,如图,过P作PC⊥x轴于C,则△ABO∽△BPC,∴==1,∴BP=AB=4,∴PN=2,∴PM=2+2,∴P(2+2,4),故答案为:(2+2,4)或(2+2,4).【点评】本题考查了勾股定理,相似三角形的判定和性质,坐标与图形性质,直角三角形的性质,正确的理解题意是解题的关键.18.(3分)(2017•葫芦岛)如图,直线y=x上有点A1,A2,A3,…A n+1,且OA1=1,A1A2=2,A2A3=4,A n A n+1=2n分别过点A1,A2,A3,…A n+1作直线y=x的,依次连接A1B2,A2B3,A3B4,…A n B n+1,得垂线,交y轴于点B1,B2,B3,…B n+1到△A1B1B2,△A2B2B3,△A3B3B4,…,△A n B n B n+1,则△A n B n B n+1的面积为(22n ﹣1﹣2n﹣1).(用含有正整数n的式子表示)【考点】F8:一次函数图象上点的坐标特征.【分析】由直线OA n的解析式可得出∠A n OB n=60°,结合A n A n+1=2n可求出A n B n的值,再根据三角形的面积公式即可求出△A n B n B n+1的面积.【解答】解:∵直线OA n的解析式y=x,∴∠A n OB n=60°.∵OA1=1,A1A2=2,A2A3=4,A n A n+1=2n,∴A1B1=,A2B2=3,A3B3=7.设S=1+2+4+…+2n﹣1,则2S=2+4+8+…+2n,∴S=2S﹣S=(2+4+8+…+2n)﹣(1+2+4+…+2n﹣1)=2n﹣1,∴A n B n=(2n﹣1).∴=A n B n•A n A n+1=×(2n﹣1)×2n=(22n﹣1﹣2n﹣1).故答案为:(22n﹣1﹣2n﹣1).【点评】本题考查了一次函数图象上点的坐标特征、三角形的面积、解直角三角形以及规律型中数的变化规律,根据边的变化找出变化规律“A n B n=(2n﹣1)”是解题的关键.三、解答题(第19题10分,第20题12分,共22分)19.(10分)(2017•葫芦岛)先化简,再求值:(+x﹣1)÷,其中x=()﹣1+(﹣3)0.【考点】6D:分式的化简求值;6E:零指数幂;6F:负整数指数幂.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=2+1=3时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(12分)(2017•葫芦岛)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了100名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为108°;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)根据喜欢电话沟通的人数与百分比即可求出共抽查人数,求出使用QQ的百分比即可求出QQ的扇形圆心角度数.(2)计算出短信与微信的人数即可补全统计图.(3)用样本中喜欢用微信进行沟通的百分比来估计1500名学生中喜欢用微信进行沟通的人数即可求出答案;(4)列出树状图分别求出所有情况以及甲、乙两名同学恰好选中同一种沟通方式的情况后,利用概念公式即可求出甲、乙两名同学恰好选中同一种沟通方式的概率【解答】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,∴此次共抽查了:20÷20%=100人喜欢用QQ沟通所占比例为:=,∴QQ”的扇形圆心角的度数为:360°×=108°(2)喜欢用短信的人数为:100×5%=5人喜欢用微信的人数为:100﹣20﹣5﹣30﹣5=40补充图形,如图所示:(3)喜欢用微信沟通所占百分比为:×100%=40%∴该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人(4)列出树状图,如图所示所有情况共有9种情况,其中两人恰好选中同一种沟通方式共有3种情况,甲、乙两名同学恰好选中同一种沟通方式的概率为:=故答案为:(1)100;108°【点评】本题考查统计与概率,解题的关键是熟练运用统计与概率的相关公式,本题属于中等题型.四、解答题(第21题12分,第22题12分,共24分)21.(12分)(2017•葫芦岛)在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)可设降价后每枝玫瑰的售价是x元,根据等量关系:降价后30元可购买玫瑰的数量=原来购买玫瑰数量的1.5倍,列出方程求解即可;(2)可设购进玫瑰y枝,根据不等量关系:购进康乃馨的钱数+购进玫瑰的钱数≤900元,列出不等式求解即可.【解答】解:(1)设降价后每枝玫瑰的售价是x元,依题意有=×1.5,解得:x=2.经检验,x=2是原方程的解.答:降价后每枝玫瑰的售价是多少元?(2)设购进玫瑰y枝,依题意有2(500﹣x)+1.5x≤900,解得:y≥200.答:至少购进玫瑰200枝.【点评】本题考查分式方程的应用,一元一次不等式的应用,分析题意,找到合适的等量关系和不等关系是解决问题的关键.22.(12分)(2017•葫芦岛)如图,直线y=3x与双曲线y=(k≠0,且x>0)交于点A,点A的横坐标是1.(1)求点A的坐标及双曲线的解析式;(2)点B是双曲线上一点,且点B的纵坐标是1,连接OB,AB,求△AOB的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把x=1代入直线解析式求出y的值,确定出A坐标,将A坐标代入反比例解析式求出k的值即可;(2)先求出点B的坐标,再利用割补法求解可得.【解答】解:(1)将x=1代入y=3x,得:y=3,∴点A的坐标为(1,3),将A(1,3)代入y=,得:k=3,∴反比例函数的解析式为y=;(2)在y=中y=1时,x=3,∴点B(3,1),如图,S=S矩形OCED﹣S△AOC﹣S△BOD﹣S△ABE△AOB=3×3﹣×1×3﹣×1×3﹣×2×2=4.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了三角形面积公式.五、解答题(满分12分)23.(12分)(2017•葫芦岛)“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数:y=﹣4x+220(10≤x≤50,且x是整数),设影城每天的利润为w(元)(利润=票房收入﹣运营成本).(1)试求w与x之间的函数关系式;(2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元?【考点】HE:二次函数的应用.【分析】(1)根据“利润=票房收入﹣运营成本”可得函数解析式;(2)将函数解析式配方成顶点式,由10≤x≤50,且x是整数结合二次函数的性质求解可得.【解答】解:(1)根据题意,得:w=(﹣4x+220)x﹣1000=﹣4x2+220x﹣1000;(2)∵w=﹣4x2+220x﹣1000=﹣4(x﹣27.5)2+2025,∴当x=27或28时,w取得最大值,最大值为2024,答:影城将电影票售价定为27或28元/张时,每天获利最大,最大利润是2024元.【点评】本题是二次函数的应用,解题的关键是得出函数解析式,并熟练掌握二次函数的性质.六、解答题(满分12分)24.(12分)(2017•葫芦岛)如图,△ABC内接于⊙O,AC是直径,BC=BA,在∠ACB的内部作∠ACF=30°,且CF=CA,过点F作FH⊥AC于点H,连接BF.(1)若CF交⊙O于点G,⊙O的半径是4,求的长;(2)请判断直线BF与⊙O的位置关系,并说明理由.【考点】MB:直线与圆的位置关系;M2:垂径定理;MA:三角形的外接圆与外心;MN:弧长的计算.【分析】(1)连接OB,首先证明四边形BOHF是矩形,求出AB、BF的长,由BF∥AC,可得===,可得=,由此即可解决问题;(2)结论:BF是⊙O的切线.只要证明OB⊥BF即可;【解答】解:(1)∵AC是直径,∴∠CBA=90°,∵BC=BA,OC=OA,∴OB⊥AC,∵FH⊥AC,∴OB∥FH,在Rt△CFH中,∵∠FCH=30°,∴FH=CF,∵CA=CF,∴FH=AC=OC=OA=OB,∴四边形BOHF是平行四边形,∵∠FHO=90°,∴四边形BOHF是矩形,∴BF=OH,在Rt△ABC中,∵AC=8,∴AB=BC=4,∵CF=AC=8,∴CH=4,BF=OH=4﹣4,∵BF∥AC,∴===,∴=,∴AG=4﹣4.(2)结论:BF是⊙O的切线.理由:由(1)可知四边形OBHF是矩形,∴∠OBF=90°,∴OB⊥BF,∴BF是⊙O的切线.【点评】本题考查切线的判定、矩形的判定.等腰三角形的性质,直角三角形30度角的性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造特殊四边形解决问题.七、解答题(满分12分)25.(12分)(2017•葫芦岛)如图,∠MAN=60°,AP平分∠MAN,点B是射线AP上一定点,点C在直线AN上运动,连接BC,将∠ABC(0°<∠ABC<120°)的两边射线BC和BA分别绕点B顺时针旋转120°,旋转后角的两边分别与射线AM交于点D和点E.(1)如图1,当点C在射线AN上时,①请判断线段BC与BD的数量关系,直接写出结论;②请探究线段AC,AD和BE之间的数量关系,写出结论并证明;(2)如图2,当点C在射线AN的反向延长线上时,BC交射线AM于点F,若AB=4,AC=,请直接写出线段AD和DF的长.【考点】RB:几何变换综合题.【分析】(1)①结论:BC=BD.只要证明△BGD≌△BHC即可.②结论:AD+AC=BE.只要证明AD+AC=2AG=2EG,再证明EB=BE即可解决问题;(2)如图2中,作BG⊥AM于G,BH⊥AN于H,AK⊥CF于K.由(1)可知,△ABG≌△ABH,△BGD≌△BHC,易知BH=GB=2,AH=AG=EG=2,BC=BD==,CH=DG=3,推出AD=5,由sin∠ACH==,推出=,可得AK=,设FG=y,则AF=2﹣y,BF=,由△AFK∽△BFG,可得=,可得方程=,求出y即可解决问题.【解答】解:(1)①结论:BC=BD.理由:如图1中,作BG⊥AM于G,BH⊥AN于H.∵∠MAN=60°,PA平分∠MAN,BG⊥AM于G,BH⊥AN于H∴BG=BH,∠GBH=∠CBD=120°,∴∠CBH=∠GBD,∵∠BGD=∠BHC=90°,∴△BGD≌△BHC,∴BD=BC.②结论:AD+AC=BE.∵∠ABE=120°,∠BAE=30°,∴∠BEA=∠BAE=30°,∴BA=BE,∵BG⊥AE,∴AG=GE,EG=BE•cos30°=BE,∵△BGD≌△BHC,∴DG=CH,∵AB=AB,BG=BH,∴Rt△ABG≌Rt△ABH,∴AG=AH,∴AD+AC=AG+DG+AH﹣CH=2AG=BE,∴AD+AC=BE.(2)如图2中,作BG⊥AM于G,BH⊥AN于H,AK⊥CF于K.由(1)可知,△ABG≌△ABH,△BGD≌△BHC,易知BH=GB=2,AH=AG=EG=2,BC=BD==,CH=DG=3,∴AD=5,∵sin∠ACH==,∴=,∴AK=,设FG=y,则AF=2﹣y,BF=,∵∠AFK=∠BFG,∠AKF=∠BGF=90°,∴△AFK∽△BFG,∴=,∴=,解得y=或3(舍弃),∴DF=GF+DG=+3=.【点评】本题考查几何变换综合题、全等三角形的判定和性质、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.八、解答题(满分14分)26.(14分)(2017•葫芦岛)如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴。

辽宁省葫芦岛市2017年中考数学试题(含答案)

辽宁省葫芦岛市2017年中考数学试题(含答案)

2017年中考数学试题(辽宁葫芦岛卷)(本试卷满分120分,考试时间120分钟)一、选择题(本大题共10小题,每小题2分,共20分)每小题都给出的四个选项,其中只有一个是符合 题目要求的,请把符合要求的答案的序号填入下面表格中. 1.(2017辽宁葫芦岛2分)下列各数中,比-1小的是【 】 A . -2 B .0 C .2 D .3 【答案】A 。

2.(2017辽宁葫芦岛2分)如图,C 是线段AB 上一点,M 是线段AC 的中点,若AB =8cm ,BC =2m , 则MC 的长是【 】A . 2 cmB .3 cmC . 4 cmD .6 cm 【答案】B 。

3.(2017辽宁葫芦岛2分)下列运算中,正确的是【 】A .a 3÷a 2=aB . a 2+a 2=a 4C . (ab )3=a 4D .2ab -b =2a 【答案】A 。

4.(2017辽宁葫芦岛2分)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,若AC =8,BD =10, AB =6,则△OAB 的周长为【 】A .12B .13C .15D .16 【答案】C 。

5.(2017辽宁葫芦岛2分)某校关注学生的用眼健康,从九年级500名学生中随机抽取了30名学生进行 视力检查,发现有12名学生近视眼,据此估计这500名学生中,近视的学生人数约是【 】 A .150 B .200 C .350 D .400 【答案】B 。

6.(2017辽宁葫芦岛2分)化简231x 1x 1÷--的结果是【 】A.3x1-B.()23x1-C.3x1+D.3(x+1)【答案】C。

7.(2017辽宁葫芦岛2分)有四张标号分别为①②③④的正方形纸片,按图所示的方式叠放在桌面上,从最上层开始,它们由上到下的标号为【】A.①②③④B.①③②④C.②③①④D.②①③④【答案】D。

8.(2017辽宁葫芦岛2分)下列各数中,是不等式2x-3>0的解的是【】A.-1 B.0 C.-2 D.2【答案】D。

辽宁省葫芦岛市九年级上学期数学期中考试试卷

辽宁省葫芦岛市九年级上学期数学期中考试试卷

辽宁省葫芦岛市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共33分)1. (2分)(2018·辽阳) 下列图形中,是中心对称图形的是()A .B .C .D .2. (2分) (2019九上·巴南期末) 已知是一元二次方程的一个根,若,则下列各数中与最接近的是()A . -4B . -3C . -2D . -13. (5分) (2019九上·鼓楼期中) 方程x2=4的解是()A . x=2B . x=±2C . x=﹣2D . x=4. (2分) (2016九上·宜春期中) 用配方法解方程x2+8x﹣9=0时,此方程可变形为()A . (x+4)2=7B . (x+4)2=25C . (x+4)2=9D . (x+4)2=﹣75. (2分)关于x的一元二次方程(2x-1)2=b的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 无法判定6. (2分)(2020·萧山模拟) 已知点A(x﹣2,3)与点B(x+4,y﹣5)关于原点对称,则()A . x=﹣1,y=2B . x=﹣1,y=8C . x=﹣1,y=﹣2D . x=1,y=87. (2分) (2020九上·玉田期末) 由的图像经过平移得到函数的图像说法正确的是()A . 先向左平移6个单位长度,然后向上平移7个单位长度B . 先向左平移6个单位长度,然后向下平移7个单位长度C . 先向右平移6个单位长度,然后向上平移7个单位长度D . 先向右平移6个单位长度,然后向下平移7个单位长度8. (2分)如图,四边形ABCD为正方形,点O为AC,BD的交点,则三角形COD绕点O经过下列哪种旋转可以得到三角形DOA()A . 顺时针旋转45°B . 顺时针旋转90°C . 逆时针旋转45°D . 逆时针旋转90°9. (2分)如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A . 110°B . 80°C . 40°D . 30°10. (2分)若x1 , x2(x1<x2)是方程(x-a)(x-b)=1(a<b)的两个根,则实数x1 , x2 , a,b 的大小关系为()A . x1<x2<a<bB . x1<a<x2<bC . x1<a<b<x2D . a<x1<b<x211. (2分) (2019九上·白云期中) 下列说法正确的是()A . 等弧所对的圆心角相等B . 平分弦的直径垂直于这条弦C . 经过三点可以作一个圆D . 相等的圆心角所对的弧相等12. (2分)如图,将二次函数y=31x2-999x+892的图形画在坐标平面上,判断方程31x2-999x+892=0的两根,下列叙述何者正确()A . 两根相异,且均为正根B . 两根相异,且只有一个正根C . 两根相同,且为正根D . 两根相同,且为负根13. (2分)在直线y=-2x+b(b为常数)上有两点A(x1,y1)和B(x2,y2),若x1<x2 ,则y1与y2的大小关系是()A . y1>y2B . y1<y2C . y1y2D . 无法确定14. (2分)某市2011年平均房价为每平方米12000元.连续两年增长后,2013年平均房价达到每平方米15500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是()A . 15500(1+x)2=12000B . 15500(1﹣x)2=12000C . 12000(1﹣x)2=15500D . 12000(1+x)2=1550015. (2分) (2017九下·萧山月考) 已知抛物线 ( <<0)与x轴最多有一个交点,现有以下结论:① <0;②该抛物线的对称轴在y轴左侧;③关于x的方程有实数根;④对于自变量x 的任意一个取值,都有,其中正确的为()A . ①②B . ①②④C . ①②③D . ①②③④二、解答题 (共9题;共78分)16. (5分) (2020九上·长兴开学考) 解方程:(1) 2x2-5x+3=0;(2) (x+1)2=4x17. (5分)(2020·顺德模拟) 二次函数y=ax2+bx+c(a≠0)的图象过点A(﹣1,8)、B(2,﹣1),与y 轴交于点C(0,3),求二次函数的表达式.18. (15分) (2017九上·台州期中) 如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(﹣6,12),B(﹣6,0),C(0,6),D(﹣6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.(1)画出旋转后的小旗A′C′D′B′;(2)写出点A′,C′,D′的坐标;(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.19. (5分) (2018九上·三门期中) 如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,求线段OE的长.20. (10分) (2016九下·长兴开学考) 已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,AC=6,求⊙O的半径.21. (2分)(2017·怀化) 为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元;购买3副乒乓球拍和2副羽毛球拍共需204元.(1)求购买1副乒乓球拍和1副羽毛球拍各需多少元;(2)若学校购买乒乓球拍和羽毛球拍共30幅,且支出不超过1480元,则最多能够购买多少副羽毛球拍?22. (10分)根据下列问题,列出关于的方程,并将其化为一元二次方程的一般形式:(1)两连续偶数的积是120,求这两个数中较小的数.(2)绿苑小区住宅设计中,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多11米,那么绿地的长为多少?(3)某种产品原来成本价是25元,后经过技术改进,连续二次降低成本,现在这种产品的成本价仅16元,试问平均每次降低成本的百分率为多少?23. (15分) (2020八下·无锡期中) 在△ABC中,AB=12,AC=BC=10,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为D,点C的对应点为E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:B F⊥AD,AF=DF;③请直接写出BE的长.(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.24. (11分)(2017·集宁模拟) 如图,△ABC的顶点坐标分别为A(﹣6,0),B(4,0),C(0,8),把△ABC 沿直线BC翻折,点A的对应点为D,抛物线y=ax2﹣10ax+c经过点C,顶点M在直线BC上.(1)证明四边形ABCD是菱形,并求点D的坐标;(2)求抛物线的对称轴和函数表达式;(3)在抛物线上是否存在点P,使得△PBD与△PCD的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.参考答案一、单选题 (共15题;共33分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:二、解答题 (共9题;共78分)答案:16-1、答案:16-2、考点:解析:答案:17-1、考点:解析:答案:18-1、答案:18-2、答案:18-3、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:。

辽宁省葫芦岛市九年级上学期期中考试数学试卷

辽宁省葫芦岛市九年级上学期期中考试数学试卷

辽宁省葫芦岛市九年级上学期期中考试数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分)(2018·肇源模拟) 下列图形中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .2. (2分) (2016九上·临河期中) 下列关于x的方程中,是一元二次方程的有()A . 2x+1=0B . y2+x=1C . x2﹣1=0D . x2+ =13. (2分) (2019九上·江油开学考) 关于x的方程x2+(m2﹣2)x﹣15=0有一个根是x=3,则m的值是()A . 0B . 2C . 2或﹣2D . ﹣24. (2分) (2019七下·北京期中) 若+(y+1)2=0,则x-y的值为()A . -1B . 1C . 2D . 35. (2分) (2019七上·罗湖期中) 已知a=2,b= ,则代数式的值是()A . 0B . 1C . 3D . 46. (2分) (2019九上·梁子湖期中) 在平面直角坐标系中,对于抛物线,下列说法中错误的是()A . y的最小值为1B . 图象顶点坐标为(2,1),对称轴为直线x=2C . 当x<2时,y的值随x值的增大而增大,当x>2时,y的值随x值的增大而减小D . 它的图象可以由的图象向右平移2个单位长度,再向上平移1个单位长度得到7. (2分) (2019九上·大通月考) 对于二次函数的图象,给出下列结论:①开口向上;②对称轴是直线;③顶点坐标是;④ 时,y随x的增大而增大;⑤函数有最大值-4,其中正确的结论有()A . 2个B . 3个C . 4个D . 5个8. (2分) (2017九上·凉山期末) 根据下表中的二次函数的自变量x与函数y的对应值,可判断二次函数的图像与x轴()A . 只有一个交点B . 有两个交点,且它们分别在y轴两侧C . 有两个交点,且它们均在y轴同侧D . 无交点9. (2分) (2019九下·锡山期中) 已知命题“关于x的一元二次方程x2+bx+1=0必有实数解”是真命题,则在下列选项中,b的值可以是()A . b=﹣1D . b=110. (2分)在平面直角坐标系中,把点P(3,-2)绕原点O顺时针旋转180°,所得到的对应点P'的坐标为().A . (3,2)B . (-3,2)C . (-3,-2)D . (2,-3)11. (2分) (2016八上·海门期末) 如图,△ABC中,AB=AC,AD=BD=BC,则∠A的度数是()A . 30°B . 36°C . 45°D . 20°12. (2分) (2018九上·思明期中) ⊙O的半径为5,点A与圆心O的距离为OA=4,则点A与⊙O的位置关系为()A . 点A在⊙O内B . 点A在⊙O上C . 点A在⊙O外D . 以上三种情况都有可能13. (2分) (2019七下·丹江口期末) 如图,在中,,高,交于点则是()C .D .14. (2分)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y 轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为()A . 50B . 50C . 50 -50D . 50 +5015. (2分)(2018·资阳) 已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:① =﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正确的个数是()A . 4个B . 3个C . 2个D . 1个二、解答题 (共9题;共105分)16. (5分) (2020九上·南昌期末) 解方程:(1) x2-4x+2=0;(2) 2(x-3)=3x(x-3).17. (10分) (2016九上·鞍山期末) 已知关于x的一元二次方程mx2-(m-1)x-1=0.(1)求证:这个一元二次方程总有两个实数根;(2)若x1 , x2是关于x的一元二次方程mx2-(m-1)x-1=0的两根,且 + =2x1x2+1,求m的值.18. (10分)(2020·鞍山模拟) 已知如图,抛物线与轴交于点A和点C(2,0),与轴交于点D,将△DOC绕点O逆时针旋转90°后,点D恰好与点A重合,点C与点B重合.(1)直接写出点A和点B的坐标;(2)求和的值;(3)已知点E是该抛物线的顶点,求证:AB⊥EB.19. (10分)如图,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E。

葫芦岛市九年级上学期数学期中考试试卷

葫芦岛市九年级上学期数学期中考试试卷

葫芦岛市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2019·武昌模拟) 抛物线y=x2+2x﹣3的最小值是()A . 3B . ﹣3C . 4D . ﹣42. (2分) (2017八下·宜兴期中) 下列图形中,不是中心对称图形是()A .B .C .D .3. (2分) (2019九上·綦江期末) 如图,在⊙O中,直径AB垂直弦CD,E为BC弧上一点,下列结论:①∠1=∠2;②∠3=2∠4;③∠3+∠5=180°,其中正确的是()A . ①③B . ②③C . ①②③D . ①②4. (2分) (2019九上·宁波期中) 已知圆弧的度数为120°,弧长为6πcm,则圆的半径为()A . 6cmD . 15cm5. (2分)如图,把△ABC沿直线BC方向平移到△DEF,则下列结论错误的是()A . ∠A=∠DB . BE=CFC . AC=DED . AB∥DE6. (2分)如图,在中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ长度的最小值是()A . 4.75B . 4.8C . 5D .7. (2分) (2019七下·莘县期中) 如图,AB∥CD,∠1=70°,∠AEF=90°,则∠A的度数为()A . 70°B . 60°8. (2分)已知抛物线与x轴交于两点,则线段AB的长度为()A . 1B . 2C . 3D . 4二、填空题 (共7题;共7分)9. (1分)(2019·长春模拟) 抛物线y= x2的开口方向________,对称轴是________,顶点是________,当x<0时,y随x的增大而________;当x>0时,y随x的增大而________;当x=0时,y有最________值是________.10. (1分) (2017九上·云梦期中) 将△ABC绕着点C顺时针方向旋转60°后得到△A′B′C′,若∠A=50°,∠B′=100°,则∠BCA′的度数是________.11. (1分) (2016九上·威海期中) 已知抛物线y=x2+x+b2经过点(a,﹣)和(﹣a,y1),则y1的值是________.12. (1分) (2019九上·思明月考) 如图,在平面直角坐标系中,将点绕原点顺时针旋转得到点,则的坐标为________.13. (1分)小宇同学在一次手工制作活动中,先把一张长方形纸片按如图所示的方式进行折叠,使折痕的左侧部分比右侧部分短;展开后按图的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长,再展开后,在纸上形成的两条折痕之间的距离是________14. (1分) (2017·玉林) 如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD,则四边形ABCD的周长是________.15. (1分) (2020八上·邛崃期末) 在平面直角坐标系中,点一定在第________象限.三、解答题 (共13题;共78分)16. (1分) (2017九下·盐城期中) 如图,直线与半径为2的⊙O相切于点是⊙O上点,且,弦,则的长度为________17. (5分)已知如图,AB∥CD,∠AEB=∠ABE=30°,DE平分∠CEB,求∠CDE的度数.18. (2分)已知二次函数为y=x2﹣2x+m(1)写出它的图象的开口方向,对称轴;(2) m为何值时,其图象顶点在x轴上方?19. (2分)如图,在⊙ 中,,,OC分别交AC,BD于E、F,求证:20. (10分) (2016九上·嘉兴期末) 如图,在边长为1的正方形组成的网格中,点A、B、C都在格点上,将△ABC绕点A按逆时针方向旋转90°,得到△AB′C′.(1)画出旋转后的△AB′C′;(2)求边AB在旋转过程中扫过的面积.21. (10分) (2019九上·房山期中) 如图,隧道的截面由抛物线ADC和矩形AOBC构成,矩形的长OB是12m,宽OA是4m.拱顶D到地面OB的距离是10m.若以O原点,OB所在的直线为x轴,OA所在的直线为y轴,建立直角坐标系.(1)画出直角坐标系xOy,并求出抛物线ADC的函数表达式;(2)在抛物线型拱壁E、F处安装两盏灯,它们离地面OB的高度都是8m,则这两盏灯的水平距离EF是多少米?22. (5分) (2020七下·孝感期中) 请你补全证明过程:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:EF∥CD证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=90°,∠ACB=90°(________)∴∠DGB=∠ACB (________)∴DG∥AC(________)∴∠2=________(________)又∠1=∠2(________)∴∠1=∠DCA(________)∴EF∥CD(________)23. (5分)如图,四边形是正方形,对角线AC、BD相交于点O.求证:点、、、在以为圆心的圆上.24. (10分)(2014·苏州) 如图,已知l1⊥l2 ,⊙O与l1 , l2都相切,⊙O的半径为2cm,矩形ABCD 的边AD、AB分别与l1 , l2重合,AB=4 cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为________°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1 ,A1 , C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).25. (11分) (2019九上·灌云月考) 如图,已知抛物线经过两点A(﹣3,0),B(0,3),且其对称轴为直线x=﹣1.(1)求此抛物线的解析式.(2)若点Q是对称轴上一动点,当OQ+BQ最小时,求点Q的坐标.(3)若点P是抛物线上点A与点B之间的动点(不包括点A,点B),求△PAB面积的最大值,并求出此时点P的坐标.26. (5分)如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.27. (10分)(2017·重庆) 如图,在平面直角坐标系中,抛物线y= x2﹣ x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y= x2﹣ x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.28. (2分)(2017·溧水模拟) 如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)如果AB=4,AE=2,求⊙O的半径.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共7题;共7分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共13题;共78分)16-1、17-1、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、23-1、24-1、24-2、24-3、25-1、25-2、25-3、26-1、27-1、27-3、28-1、28-2、。

辽宁省葫芦岛市海滨九年一贯制2017届九年级上期中试题(含答案)

辽宁省葫芦岛市海滨九年一贯制2017届九年级上期中试题(含答案)

2016—2017九年级第一学期期中考试
数学试题
注意:1、试卷共8页,满分150分,考试时间120分钟
一、选择题(每题3分,共30分。


1.方程4x 2=5x+2化为一般形式后的二次项、一次项、常数项分别是( )
A .4x 2, 5x, 2
B .-4x 2, -5x, -2
C .4x 2 , -5x,, -2
D .4x 2, -5x, 2
2.已知m 是方程x 2-x -2=0的一个根,则代数式m 2-m +2的值等于( )
A .4
B .1
C .0
D .-1
3.点.P 的坐标恰好是方程x 2-2x -24=0的两个根,则点P 所在的位置是( )
A .第一象限 B.第二象限
C.第二或第四象限
D.第四象限
4. 已知二次函数y=a(x+1)2-b(a≠0)有最小值1,则a 、b 的大小关系为( )
A.a>b
B.a<b
C.a=b
D.不能确定
5.如图,在正方形ABCD 中,△ABE 经旋转,可与△CBF 重合,AE 的延长线交FC 于点M ,以下结论正确的是( )
A .BE =CE
B .FM =MC
C .AM ⊥FC
D .BF ⊥CF
6.已知关于x 的方程;0)3(41
22=+--m x m x 有两个不相等
的实数根,那么m 可取的最大整数是( )
A. 2
B. -1
C. 0
D. 1。

葫芦岛市九年级上学期期中数学试卷

葫芦岛市九年级上学期期中数学试卷

葫芦岛市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)(2017·潍坊) 定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]= x2的解为()#N.A . 0或B . 0或2C . 1或D . 或﹣2. (2分)关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A . k>﹣1B . k<1C . k>﹣1且k≠0D . k<1且k≠03. (2分)如果4x=5y(y≠0),那么下列比例式成立的是()A . =B . =C . =D . =4. (2分)(2017·石狮模拟) 某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是()A . 袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B . 掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6C . 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”D . 掷一枚质地均匀的硬币,落地时结果是“正面向上”5. (2分)如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是()A . =B . =C . ∠B=∠DD . ∠C=∠AED6. (2分)(2019·北部湾模拟) 如图,△ABC是⊙O的内接三角形,把沿BC折叠后,与弦AB交于点P,恰好OP⊥AB.若OP=1,AB=4,则BC:AC等于()A .B .C .D .二、填空题 (共6题;共7分)7. (1分)(2020·杭州模拟) 已知关于x的方程x+1= 的解满足方程x²+mx-1=k(1<m≤2),则k的取值范围是________ 。

辽宁省葫芦岛市九年级上学期期中数学试卷

辽宁省葫芦岛市九年级上学期期中数学试卷

辽宁省葫芦岛市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共6题;共12分)1. (2分) (2019九上·硚口月考) 方程的二次项系数是2,则一次项系数,常数项分别为()A . 6,-9B . -6,9C . -6,-9D . 6,92. (2分)某校计划修建一座既是中心对称图形,又是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、正五边形、等腰梯形、菱形等四种图案,你认为符合条件的是()A . 正三角形B . 正五边形C . 等腰梯形D . 菱形3. (2分) (2017九上·鄞州月考) 一次函数和同一直角坐标系内的图象是()A .B .C .D .4. (2分)如图,在等腰直角△ABC中,,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则=()A . 60°B . 105°C . 120°D . 135°5. (2分)已知⊙O的半径为2cm,弦AB的长为2,则这条弦的中点到弦所对优弧的中点的距离为()A . 1cmB . 3cmC . (2+)cmD . (2+)cm6. (2分) (2018九上·青海期中) 如图为的图象,则()A . ,B . ,C . ,D . ,二、填空题: (共8题;共9分)7. (2分) (2019九上·孝义期中) 如图,抛物线y₁=﹣x2+2向右平移1个单位得到抛物线y2 ,回答下列问题:(1)阴影部分的面积S=________;(2)若再将抛物线y2绕原点O旋转180°得到抛物线y3 ,则顶点坐标为________.8. (1分) (2016九上·大石桥期中) 若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=________.9. (1分) (2018九上·无锡月考) 若关于x的一元二次方程没有实数根,则k的取值范围是________.10. (1分)(2017·玄武模拟) 如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________.11. (1分) (2017九上·天长期末) 如图,四边形ABCD内接于⊙O,∠DAB=130°,连接OC,点P是半径OC 上任意一点,连接DP,BP,则∠BPD可能为________度(写出一个即可).12. (1分) (2020九上·南京月考) 如图,在△ABC中,∠A=90°,∠B=36°,点D为斜边BC的中点,将线段DC绕着点D逆时针旋转任意角度得到线段DE(点E不与A、B、C重合),连接EA,EC,则∠AEC=________°.13. (1分)(2020·徐州模拟) 已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为________.14. (1分)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是________.三、解答题: (共12题;共110分)15. (10分)解下列方程(1) x2﹣x+2=0(2) 2x2﹣3x﹣5=0.16. (5分) (2016九上·抚宁期中) 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?17. (5分)如图所示,已知⊙O的直径AB垂直弦CD于点E,连接CO并延长交AD于点F.若CF⊥AD,AB=2,求CD的长.18. (5分)已知:抛物线y=-+bx+c经过A(-1,0)、B(5,0)两点,顶点为P.求:(1)求b,c的值;(2)求△ABP的面积;(3)若点C(,)和点D(,)在该抛物线上,则当时,请写出与的大小关系.19. (5分) (2016九上·长春月考) 已知2是关于x的方程:x2﹣2mx+3m=0的一个根,而这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长是多少?20. (10分) (2018九上·东台期中) 如图,AB为⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,已知∠D=30°.(1)求∠A的度数;(2)若点F在⊙O上,CF⊥AB,垂足为E,CF=,求图中阴影部分的面积.21. (10分) (2016九上·岳池期中) 如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF为菱形时,求CD的长.22. (10分) (2016九上·阳新期中) 在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用长为28米长的篱笆围成一个矩形花园ABCD(篱笆只围AB、BC两边),设AB=x米,花园面积S.(1)写出S 关于x的函数解析式,当S=192平方米,求x的值;(2)若在P处有一棵树与墙CD、AD的距离分别是15米和6米,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.23. (10分)(2016·梅州) 如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.24. (15分)(2017·阜阳模拟) 为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.王宏按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+400.(1)王宏在开始创业的第一个月将销售单价定为18元,那么政府这个月为他承担的总差价为多少元?(2)设王宏获得的利润为W(元),当销售单价为多少元时,每月可获得最大利润?(3)若物价部门规定,这种节能灯销售单价不得高于24元.如果王宏想要每月获得的利润不低于2000元,那么政府为他承担的总差价最少为多少元?25. (10分)(2018·烟台) 如图【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠AP B的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.(1)请参考小明的思路,任选一种写出完整的解答过程.(2)【类比探究】如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC= ,求∠APB的度数.26. (15分) (2019九上·西城期中) 已知:二次函数y=x2+bx﹣3的图象经过点A(2,5).(1)求二次函数的解析式.(2)求二次函数的图象与y轴的交点坐标.(3)将(1)中求得的函数解析式化成y=(x﹣h)2+k的形式.参考答案一、选择题: (共6题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:二、填空题: (共8题;共9分)答案:7-1、答案:7-2、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、解答题: (共12题;共110分)答案:15-1、答案:15-2、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年辽宁省葫芦岛市建昌县九年级(上)期中数学试卷一、选择题(每小题2分,共20分)1.(2分)下列方程,是一元二次方程的是()①3x2+x=20,②2x2﹣3xy+4=0,③x2﹣=4,④x2=0,⑤x2﹣+3=0.A.①②B.①②④⑤C.①③④D.①④⑤2.(2分)下列函数中,是二次函数的为()A.y=8x2+1 B.y=8x+1 C.y= D.y=3.(2分)方程(x﹣3)2=(x﹣3)的根为()A.3 B.4 C.4或3 D.﹣4或34.(2分)一元二次方程5x2+x﹣13=0的根的情况是()A.有一个实数根B.没有实数根C.有两个相等的实数根D.有两个不相等的实数根5.(2分)下列条件中,使y=ax2+bx+c是二次函数的条件是()A.a≠0 B.b≠0 C.c≠0 D.a、b、c均不为06.(2分)抛物线y=4(x﹣3)2+2的顶点坐标是()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(﹣3,2)7.(2分)解方程x2﹣10x+25=0时,比较简单的解法是()A.配方法B.公式法C.因式分解法D.以上都不对8.(2分)已知两个数的和是﹣7,积是6,则这两个数是()A.﹣4和﹣3 B.4和3 C.6和1 D.﹣6和﹣19.(2分)抛物线y=﹣2(x+3)2是由抛物线y=﹣2x2向()平移()个单位得到的.A.左、3 B.右、3 C.上、3 D.下、310.(2分)用一条长40cm的绳子怎样围成一个面积为75cm2的矩形?设矩形的一边为x米,根据题意,可列方程为()A.x(40﹣x)=75 B.x(20﹣x)=75 C.x(x+40)=75 D.x(x+20)=75二、填空题(每小题2分,共16分)11.(2分)抛物线y=ax2+2x与y=3x2形状相同,开口方向相反,则a=.12.(2分)一元二次方程(3x﹣2)(x+1)=8x﹣3化为一般形式是.13.(2分)方程x2﹣4x+1=0配方后变形为.14.(2分)一元二次方程(x+3)2=4的解是.15.(2分)方程x2=2x的解是.16.(2分)抛物线y=x2﹣ax+a﹣2与x轴交于点(﹣1,0),则抛物线y=ax2+2x 的开口向.17.(2分)已知抛物线y=x2﹣bx+c经过点(3,﹣1),且与y轴交于点C(0,2),则这条抛物线的解析式为.18.(2分)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为.三、解答题(本大题共8小题,满分64分)19.(6分)已知方程x2+kx﹣6=0的一个根是x=2,求k的值及它的另一个根.20.(7分)用配方法确定抛物线y=﹣﹣x+的顶点坐标、对称轴.21.(7分)列方程解应用题:参加一次商品交易会的每两家公司之间都签订一份合同,所有公司共签订了45份合同,共有多少家公司参加商品交易会?22.(7分)阅读下面的材料:∵ax2+bx+c=0(a≠0)的根为:x1=,x2=∴x1+x2=,x1x2==综上得,设ax2+bx+c=0(a≠0)的根为x1、x2,则有x1+x2=﹣,x1x2=请你根据这个结论解答下面问题:(1)x2+bx+c=0的两根为3和﹣5,则b=,c=.(x2﹣1)=.(2)已知x1、x2是方程x2+5x﹣2016=0的两个实数根,则(x1﹣1)23.(7分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?24.(10分)如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.25.(10分)某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少元?(3)在这个前提下,你能提出一个问题吗?26.(10分)已知:如图,已知二次函数图象顶点为C(1,0),直线y=x+m与该二次函数交于A、B两点,其中点A(3,4),点B在y轴上.(1)求m值及这个二次函数解析式;(2)P为线段AB上一动点(P不与A、B重合),过P作x轴垂线与抛物线交于点E,设线段PE长为h,点P横坐标为x(0<x<4),求h与x之间的函数关系.2016-2017学年辽宁省葫芦岛市建昌县九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)1.(2分)下列方程,是一元二次方程的是()①3x2+x=20,②2x2﹣3xy+4=0,③x2﹣=4,④x2=0,⑤x2﹣+3=0.A.①②B.①②④⑤C.①③④D.①④⑤【解答】解:①3x2+x=20,是一元二次方程;②2x2﹣3xy+4=0,含有两个未知数,不是一元二次方程;③x2﹣=4,是一元二次方程;④x2=0,是一元二次方程;⑤x2﹣+3=0不是整式方程,不是一元二次方程,故选:C.2.(2分)下列函数中,是二次函数的为()A.y=8x2+1 B.y=8x+1 C.y= D.y=【解答】解:A、y=8x2+1是二次函数,故本选项正确;B、y=8x+1是一次函数,故本选项错误;C、y=是反比例函数,故本选项错误;D、y=是反比例函数,故本选项错误.故选:A.3.(2分)方程(x﹣3)2=(x﹣3)的根为()A.3 B.4 C.4或3 D.﹣4或3【解答】解:(x﹣3)2=(x﹣3)(x﹣3)2﹣(x﹣3)=0(x﹣3)(x﹣4)=0x1=4,x2=3故选:C.4.(2分)一元二次方程5x2+x﹣13=0的根的情况是()A.有一个实数根B.没有实数根C.有两个相等的实数根D.有两个不相等的实数根【解答】解:∵在方程5x2+x﹣13=0中,△=12﹣4×5×(﹣13)=261>0,∴方程5x2+x﹣13=0有两个不相等的实数根.故选:D.5.(2分)下列条件中,使y=ax2+bx+c是二次函数的条件是()A.a≠0 B.b≠0 C.c≠0 D.a、b、c均不为0【解答】解:∵y=ax2+bx+c是二次函数,∴a≠0,故选:A.6.(2分)抛物线y=4(x﹣3)2+2的顶点坐标是()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(﹣3,2)【解答】解:抛物线y=4(x﹣3)2+2的顶点坐标(3,2),故选:B.7.(2分)解方程x2﹣10x+25=0时,比较简单的解法是()A.配方法B.公式法C.因式分解法D.以上都不对【解答】解:x2﹣10x+25=0,(x﹣5)2=0,x1=x2=5,即最简单的方法是因式分解,故选:C.8.(2分)已知两个数的和是﹣7,积是6,则这两个数是()A.﹣4和﹣3 B.4和3 C.6和1 D.﹣6和﹣1【解答】解:设其中一个数为x,则另一个数为﹣7﹣x,根据题意,得x(﹣7﹣x)=6,解得:x=﹣6或﹣1,当x=﹣6时,﹣7﹣x=﹣1;当x=﹣1时,﹣7﹣x=﹣6.答:这两个数是﹣6和﹣1.故选:D.9.(2分)抛物线y=﹣2(x+3)2是由抛物线y=﹣2x2向()平移()个单位得到的.A.左、3 B.右、3 C.上、3 D.下、3【解答】解:抛物线y=﹣2(x+3)2是由抛物线y=﹣2x2向左平移3个单位得到的.故选:A.10.(2分)用一条长40cm的绳子怎样围成一个面积为75cm2的矩形?设矩形的一边为x米,根据题意,可列方程为()A.x(40﹣x)=75 B.x(20﹣x)=75 C.x(x+40)=75 D.x(x+20)=75【解答】解:设长为xcm,∵长方形的周长为40cm,∴宽为=(20﹣x)(cm),得x(20﹣x)=75.故选:B.二、填空题(每小题2分,共16分)11.(2分)抛物线y=ax2+2x与y=3x2形状相同,开口方向相反,则a=﹣3.【解答】解:∵抛物线y=ax2+2x与y=3x2形状相同,开口方向相反,则a=﹣3,故答案为:﹣3.12.(2分)一元二次方程(3x﹣2)(x+1)=8x﹣3化为一般形式是3x2﹣7x+1=0.【解答】解:方程整理得:3x2+3x﹣2x﹣2=8x﹣3,即3x2﹣7x+1=0,故答案为:3x2﹣7x+1=013.(2分)方程x2﹣4x+1=0配方后变形为(x﹣2)2=3.【解答】解:x2﹣4x=﹣1,x2﹣4x+4=3,(x﹣2)2=3.故答案为(x﹣2)2=3.14.(2分)一元二次方程(x+3)2=4的解是x1=﹣1,x2=﹣5.【解答】解:x+3=±2,所以x1=﹣1,x2=﹣5.故答案为x1=﹣1,x2=﹣5.15.(2分)方程x2=2x的解是x1=0,x2=2.【解答】解:∵x2﹣2x=0,∴x(x﹣2)=0,∴x=0或x﹣2=0,∴x1=0,x2=2.故答案为x1=0,x2=2.16.(2分)抛物线y=x2﹣ax+a﹣2与x轴交于点(﹣1,0),则抛物线y=ax2+2x的开口向上.【解答】解:∵抛物线y=x2﹣ax+a﹣2与x轴交于点(﹣1,0),∴0=1+a+a﹣2,∴a=,∴抛物线y=x2+2x的开口向上,故答案为上.17.(2分)已知抛物线y=x2﹣bx+c经过点(3,﹣1),且与y轴交于点C(0,2),则这条抛物线的解析式为y=x2﹣2x+2.【解答】解:把(3,﹣1)、(0,2)代入y=x2﹣bx+c得,解得,所以抛物线的解析式为y=x2﹣2 x+2.故答案为y=x2﹣2x+2.18.(2分)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为36(1+x)2=48.【解答】解:二月份的营业额为36(1+x),三月份的营业额为36(1+x)×(1+x)=36(1+x)2,即所列的方程为36(1+x)2=48,故答案为:36(1+x)2=48.三、解答题(本大题共8小题,满分64分)19.(6分)已知方程x2+kx﹣6=0的一个根是x=2,求k的值及它的另一个根.【解答】解:将x=2代入原方程,得22+2k﹣6=0,解得:k=1,∴方程为x2+x﹣6=0.∴方程的另一个根为﹣6÷2=﹣3.故k的值为1,方程的另一个根为﹣3.20.(7分)用配方法确定抛物线y=﹣﹣x+的顶点坐标、对称轴.【解答】解:y=﹣x2﹣x+=﹣(x2+3x)+=﹣(x2+3x+﹣)+=﹣(x+)2++=﹣(x+)2+1∴抛物线y=﹣x2﹣x+的顶点坐标是(﹣,1),对称轴是x=﹣.21.(7分)列方程解应用题:参加一次商品交易会的每两家公司之间都签订一份合同,所有公司共签订了45份合同,共有多少家公司参加商品交易会?【解答】解:设共有x家公司参加商品交易会,由题意,得=45,解得:x1=10,x2=﹣9(舍去).答:共有10家公司参加商品交易会.22.(7分)阅读下面的材料:∵ax2+bx+c=0(a≠0)的根为:x1=,x2=∴x1+x2=,x1x2==综上得,设ax2+bx+c=0(a≠0)的根为x1、x2,则有x1+x2=﹣,x1x2=请你根据这个结论解答下面问题:(1)x2+bx+c=0的两根为3和﹣5,则b=﹣2,c=﹣15.(2)已知x1、x2是方程x2+5x﹣2016=0的两个实数根,则(x1﹣1)(x2﹣1)=﹣2010.【解答】解:(1)∵方程x2+bx+c=0的两根为3和﹣5,∴﹣b=3﹣5=﹣2,c=3×(﹣5)=﹣15.故答案为:﹣2;﹣15.(2)∵x1、x2是方程x2+5x﹣2016=0的两个实数根,∴x1+x2=﹣5,x1x2=﹣2016,∴(x1﹣1)(x2﹣1)=x1x2﹣(x1+x2)+1=﹣2016﹣(﹣5)+1=﹣2010.故答案为:﹣2010.23.(7分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【解答】解:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.答:羊圈的边长AB,BC分别是20米、20米.24.(10分)如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.【解答】解:(1)∵S=PB•BQ,PB=AB﹣AP=18﹣2x,BQ=x,△PBQ∴y=(18﹣2x)x,即y=﹣x2+9x(0<x≤4);(2)由(1)知:y=﹣x2+9x,∴y=﹣(x﹣)2+,∵当0<x≤时,y随x的增大而增大,而0<x≤4,=20,∴当x=4时,y最大值即△PBQ的最大面积是20cm2.25.(10分)某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少元?(3)在这个前提下,你能提出一个问题吗?【解答】解:(1)由题意,得:y=(x﹣30)[600﹣10(x﹣40)]=﹣10x2+1300x﹣30000;(2)当y=10000时,10000=﹣10 x2+1300 x﹣30000,解得:x1﹦50,x2﹦80,当x﹦80时,600﹣10×(80﹣40)=200<300(不合题意,舍去)故销售价应定为50元;(3)销售价定为多少时,利润最大?26.(10分)已知:如图,已知二次函数图象顶点为C(1,0),直线y=x+m与该二次函数交于A、B两点,其中点A(3,4),点B在y轴上.(1)求m值及这个二次函数解析式;(2)P为线段AB上一动点(P不与A、B重合),过P作x轴垂线与抛物线交于点E,设线段PE长为h,点P横坐标为x(0<x<4),求h与x之间的函数关系.【解答】解:(1)由题意,可知点A(3,4)在直线y=x+m上,∴4﹦3+m,∴m﹦1.∵二次函数图象顶点为C(1,0),∴设这个二次函数解析式为y﹦a(x﹣h)2+k∴h﹦1,k﹦0.即y﹦a(x﹣1)2又∵二次函数图象经过点A(3,4)∴4﹦a(3﹣1)2或(3﹣1)2 a﹦4∴a﹦1∴这个二次函数解析式为y﹦(x﹣1)2;(2)∵P点在直线y=x+1的图象上∴P点坐标为(x,x+1),∵E点在抛物线y=x2﹣2x+1的图象上,∴E点坐标为(x,x2﹣2x+1),∴h=(x+1)﹣(x2﹣2x+1)=﹣x2+3x(0<x<4).赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

相关文档
最新文档