Free subalgebras of Lie algebras close to nilpotent
全国代数会议日程(定稿)
The 14th National Conference on Algebra
第十四届
全国代数学学术会议
会议程序
扬州大学主办
中国扬州
2016年5月26日——5月31日
注意:各报告场地以本手册为准。
一、会议日程
二、会议日程简表
三、会议日程详单
5月26日(星期四)扬州会议中心报到
5月27日(星期五)开幕式与大会报告地点:杏园楼百畅厅
5月28日(星期六)分组报告(第一组) 地点:群贤楼会议室二
5月28日(星期六)分组报告(第二组) 地点:群贤楼会议室三
5月28日(星期六)分组报告(第三组) 地点:群贤楼贵宾室一
5月28日(星期六)分组报告(第四组) 地点:群贤楼贵宾室二
5月28日(星期六)分组报告(第五组) 地点:群贤楼多功能厅
5月28日(星期六)分组报告(第六组) 地点:群贤楼贵宾室四
5月28日(星期六)分组报告(第七组) 地点:群贤楼会议室六
5月28日(星期六)分组报告(第八组) 地点:群贤楼会议室七
5月29日(星期日上午)分组报告(第二组) 地点:群贤楼会议室三
5月29日(星期日上午)分组报告(第四组) 地点:群贤楼贵宾室二
5月29日(星期日上午)分组报告(第六组) 地点:群贤楼贵宾室四
5月29日(星期日下午)邀请报告(第二组) 地点:群贤楼贵宾室二
5月29日(星期日下午)邀请报告(第三组) 地点:群贤楼贵宾室四
5月30日(星期一)大会报告与闭幕式地点:春晖楼春台庆禧厅。
关于完备布尔代数的一点注解
第27卷 第4期 上海第二工业大学学报 V ol.27 No.4 2010年12月 JOURNAL OF SHANGHAI SECOND POLYTECHNIC UNIVERSITY Dec. 2010 文章编号: 1001-4543(2010)04-0297-03A Note on Complete Boolean AlgebrasSUN Xiang-rong(School of Science, Nanjing University of Post and Telecommunications, Nanjing 210046, P. R. China)Abstract : This paper shows that a complete Boolean algebra is atomic if and only if each subalgebra of it is atomic. Keywords : complete Boolean algebra; atomic algebra; subalgebra 0 Introduction and preliminaries In literature [1], an atomless complete Boolean algebra is called simple if it has no proper atomless complete subalgebra, the equivalence of which to rigid and minimal is proved in literature [2]. As the same time, the question of whether a simple complete Boolean algebra exists is raised firstly in literature [2]. In literature [3], a positive answer is given. Similarly, in the note, we will give some results of the complete atomic Boolean algebra as same as the complete atomless Boolean algebra. It is well known that the properties of complete Boolean algebras correspond to properties of generic models obtained by forcing with these algebras, which the major work on complete Boolean algebra come from. But the ideal of this note comes from locale theory, especially in literature [4]. Recall that a frame or a locale is a complete lattice L, satisfying the infinite distributive law: ,a L S L ∀∈⊆, {:}a S a s s S ∧∨=∨∧∈By Pt(L ) we mean the set of prime elements of a frame L ; a frame L is said to be spatial, if for any a L ∈,{Pt()}a p A p a =∧∈≥. The subframe of Frame L is a subset of it, which is closed under finite meets and arbitrary subalgebra. A complete Boolean algebra is a frame, the complete subalgebra of which is a subframe. The power set of set B is denoted by P(B). Let {}a b L b a ↑=∈≥. All more terminology and notation of locale theory which is not 1 Main ResultDefinition 1 A complete lattice L is said to be generated by a set, if there exists a subset B of L , satisfying the following conditions:(1) Any two elements of L is not compatible (,a b L ∀∈, we have not a b ≥);(2) For any a L ∈, {}a b B b a =∧∈≥ ; (3) For any a L ∈,0b a B ∈↑∩, 0{,}a b B b a b b ≠∧∈≠≥.Lemma 2 Let L be a complete lattice. L is isomorphic to the power set of a set if and only if it is generated by a set.Proof ⇒ It is trivially. ⇐ Suppose L is generated by B. For any ()S P B ⊆, let ()f S S =∧. By the Definition 1(2), f is surjective. In thefollowing we show that f is injective. Assuming there exist 12,()S S P B ∈with 12()()a f S f S ==. If 12S S ≠, it is noproblem to suppose that there exists an element 01b S ∈ such that 02b S ∉and 0b a ≥, then 0{,}a b B b a b b =∧∈≠≥.It is contradictive to condition (3) of Definition 1. Lemma 3 Let L be a complete Boolean algebra. For any a L ∈, if {Pt()}a p L p a =∧∈≥, then for any收稿日期: 2010-04-09; 修回日期: 2010-10-08作者简介: 孙向荣(1976-),男,涟水人,博士,主要研究方向为格上拓扑学,电子邮件:sunxiangrong2002@基金项目: 国家自然科学基金资助项目(No.10926104)、南京邮电大学引进人才基金项目(No.NY217150)上海第二工业大学学报 2010年 第27卷 298 0Pt()p a L ∈↑∩, 0{Pt(),}a p L p a p p ≠∧∈≠≥.Proof Let 0{Pt(),}a p L p a p p =∧∈≠≥. we have0000{Pt()}{Pt(),}{Pt(),}p a p p L p a p p p L p a p L p a p p b →=→∧∈=∧→∈=∧∈≠=≥≥≥Since L is a Boolean algebra, 00(0)p a p a →=→∨. If b=a , then 0(0)p a a →∨=, so 00p a →≤. But 0p a ≥, so 00(0)p p →≥, contradictorily.Lemma 4: If L is a spatial complete Boolean algebra, L is generated by Pt (L ).Proof L is spatial, the condition 1 of the definition 1 is satisfied. Since L is a Boolean algebra, the element of Pt(L )is a co-atom, so any two elements Pt(L ) are not compatible. The condition 3 can be obtained by Lemma 3. Theorem 5: If L is a complete Boolean algebra, then the following properties are equivalence: (1) L is atomic; (2) L is spatial; (3) L is generated by a set;Proof (1)⇔(2) By the duality of Boolean algebras.(2)⇒ (3) By the Lemma 4. (3) ⇒ (1) It is trivially. Remark Some of the theorem can be found in literature [6], here we give an alternative proof of it. Particularly, we pay attention to the property (3). It discovers the essential relation between two elements a and p in L with Pt()p L ∈ and p a ≥, which is called essence prime in literature [4]. In the following, it plays an important role. Lemma 6 A subframe of spatial frame is spatial.Proof Suppose L is a spatial frame, N is a subframe of L . For any Pt()p L ∈, let {}p b N b p ′=∨∈≤. Note that Pt()p N ′∈, for assuming that there exist two elements ,x y N ∈ with x y p ′∧≤, also x y p ∧≤, so x p ≤ or y p ≤,moreover, x p ′≤ or y p ′≤. For any a N ∈, we have {Pt()}{'Pt()Pt(),,'{}}.L N a p L p a p N p L p a p b N b p =∧∈=∧∈∀∈=∨∈≥≥≤i.e. N is spatial. Corollary 7 An atomic complete Boolean algebra has no atomicless complete subalgebra. Lemma 8 Let L be an complete Boolean algebra, each subalgebra of which is atomic. For any a L ∈, if {Pt()}a p L p a ≠∧∈≥, then a is an atom. Proof Suppose that there exists an element a in L with 0{Pt(),}a p L p a p p ≠∧∈≠≥, a is not atomic, then we can find an element b L ∈ with 0< b< a. Let {0}b a x x a =↑→∈↑∪, it is easy to verify that B is a proper complete subalgebra of L . Since Pt(){Pt()}{0}B p L p a a =∈→∪≥ so B is not spatial. By Theorem 5, B is atomicless, contradictorily. Lemma 9: Let L be a complete Boolean algebra. For any a L ∈, if {Pt()}a p L p a ≠∧∈≥ implies that a is an atom, then L is spatial.Proof We only need to show that for any atom a L ∈, {Pt()}a p L p a =∧∈≥. Let {Pt()}b p L p a =∧∈≥. If a b ≠, since {Pt()}a p L p a ≠∧∈≥implies that a is an atom, there no exist element c in L with a < c< b . In the following we prove that b a → is prime in L , i.e. a maximal element of L . Assuming we can find an element x in L with ()b a x →<, also a < x and (0)b x →<, moreover, b x ≤, so x =1, i.e. x is a maximal element of L . Furthermore,第4期 孙向荣:关于完备布尔代数的一点注解 299 ()b a b →≥, so ()b a b b a →∧==, contradictorily.Theorem 10: A complete Boolean algebra is atomic if and only if each subalgebra of it is atomic. References: [1] JECH T. A propos d'algebres de Boole rigides et minimales[J]. C. R. Acad. Sci. Paris Ser. A, 1972, 274:371-372. [2] MCALOON K. Les algebres de Boole rigides et minimales[J]. C. R. Acad. Sci. Paris Ser. A, 1971, 272:89-91. [3] JECH T. A complete Boolean algebra that has no proper atomless complete subalgebra[J]. Journal of Algebra, 1996, 182:748-755. [4] NIEFIELD S B, POSENTHAL K I. Spatial sublocales and essential primes[J]. Topology and Its Applications, 1987, 26:263-269. [5] JOHNSTONE P T. Stone Spaces[M]. Cambridge:Cambridge Univ. Press, 1982. [6] SIKORSKI R. Boolean Algebras[M]. Berlin:Springer-Verlag Press, 1964.关于完备布尔代数的一点注解孙向荣(南京邮电大学理学院,南京210046)摘 要:给出了完备布尔代数是原子的等价刻画。
LEIBNIZ n-ALGEBRAS
1. Introduction
Leibniz algebras were introduced by the second author in [4]. They play an important role in Hochschild homology theory [4], [5] as well as in Nambu mechanics ([6], see also [1]). Let us recall that a Leibniz algebra is a vector space g equipped with a bilinear map [−, −] : g ⊗ g → g satisfying the identity : (1.1) [x, [y, z ]] = [[x, y ], z ] − [[x, z ], y ].
2. Derivations
In the whole paper K is a field. All tensor products are taken over K . Let A be a vector space equipped with an n-linear operation ω : A⊗n → A. A map f : A → A is called a derivation with respect to ω if
LEIBNIZ n-ALGEBRAS
J. M. CASAS,(1) J.-L. LODAY
(1) (2)
and T. PIRASHVILI(3)
(2)
Dpto Matematica Aplicada, Universidad de Vigo, 36005 Pontevedra, Spain IRMA, ULP et CNRS, 7, rue R. Descartes, 67084 Strasbourg, France (3) Math. Inst., Alexidze str. 1, 380093 Tbilisi, Republic of Georgia
Lie algebras, in Infinite-dimensional Lie algebras and groups, Adv. Ser. in Math. Phys. 7,
C1;1;k g ' L0;k (0)
L1;k (1)
M1;k (1): Combining Theorem 4.6 and the statement (ii), we obtain the statement (i). Q.E.D.
References
H0 (g(0; 1; 1); L0 ;k (0)
Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan. Department of Mathematics, Faculty of Science, Osaka University,
[KK] Kac V.G. and Kazhdan D.A., Structure of representations with highest weight of in nite dimensional Lie algebras, Adv. in Math. 34, (1979), 97{108. [KnPZ] Knizhnik V. G., Polyakov A. M. and Zamolodchikov A.B., Fractal structure in 2D quantum gravity, Mod. Phys. Lett. A 3, (1988), 819{826. [KW1] Kac V.G. and Wakimoto M., Modular invariant representations of in nite dimensional Lie algebras and superalgebras, Proc. Natl. Acad. Soc., 35, (1988), 4956{4960. [KW2] Kac V.G. and Wakimoto M., Classi cation of modular invariant representations of ane Lie algebras, in In nite-dimensional Lie algebras and groups, Adv. Ser. in Math. Phys. 7, (1989), 138{177. [KWn] Kac V. G. and Wang W., Vertex operator superalgebras and their representations, Mathematical aspects of conformal and topological eld theories and quantum groups, 161{191, Contemp. Math. 175, Amer. Math. Soc. Providence, RI, (1994). [Mal] Malikov F.G., Verma modules over Kac-Moody algebras of rank 2, Leningrad Math. J., 2, No. 2, (1991), 269{286. [MFF] Malikov F.G., Feigin B.L. and Fuks D.B., Singular vectors in Verma modules over KacMoody algebras, Funkts. Anal. Prilozhen., 20, No. 2, (1988), 25{37. [MW] Mathieu P. and Walton M.A., Fractional-level Kac-Moody Algebras and Nonunitary Coset Conformal Theories, Prog. Theor. Phys. 102, (1990), 229-254. [MP] Moody R.V. and Pianzola A., Lie algebras with triangular decompositions, Wiley-Interscience Publ., New York, 1995. [P] Polyakov A. M., Quantum Gravity in two dimensions, Mod. Phys. Lett. A 2, (1987), 893-898. [Ray] Ray U., A Characterization of Lie superalgebras for a certain class of graded Lie superalgebras, preprint,to appear in Jour. Alg. [RW] Rocha-Caridi A. and Wallach N.R., Highest weight modules over graded Lie algebras: resolutions, ltrations and character formulas, Trans. Amer. Math. Soc. 20, (1983), 133{162. [TUY] Tsuchiya A., Ueno K. and Yamada Y., Conformal eld theory on moduli family of stable curves with gauge symmetry, in Integrable systems in quantum eld theory and statistical mechanics, Adv. Stud. Pure Math. 19, (1989), 459-566. [V] Verlinde E., Fusion rules and modular transformations in 2D conformal eld theory, Nucl. Phys. B 300, (1998), 360-376. (K. Iohara) (Y. Koga)
differential algebras
Discrete Mathematics and Theoretical Computer Science1,1997,229–237On the bialgebra of functional graphs and differential algebrasMaurice GinocchioLaboratoire de Physique Th´e orique et Math´e matique,Universit´e Paris7,Tour Centrale-3`e me´e tage,2,place Jussieu, F-75251Paris Cedex05,FranceE-Mail:mag@ccr.jussieu.fr1IntroductionWe have already described the expansion of∆Σλi∂i,i.e.the powers of a Lie operator in any dimension, in order tofind the expression of theflow of formal nonlinear evolution equations[1–3].In the one-dimensional case,the explicit expansion can be foundfirst in Comtet[4],and other aspects connected to the ordinary differential equations can be found in Leroux and Viennot[5]and Bergeron and Reutenauer [6].On the other hand,Grossman and Larson[7]introduced several Hopf algebras[8–10]of forests of rooted labeled trees to express the product offinite dimensional vectorfields.In this paper we concentrate us on the bialgebra G of functional graphs,i.e.graphs representing mappings offinite sets in themselves [11–15].We give only the results without proofs.In a forthcoming paper[16],we develop Hopf algebra structures,computing the antipode and giving detailed aspects and proofs.In Sect.1we consider a bialgebra structure on G and three interesting subalgebras:T the set of labeled forests;S the set of permutation graphs;and L the set of well labeled forests,i.e.with strictly decreasing labels on the chains toward the roots.Recall that the graded bialgebra L is sufficient for the calculus of the powers of one derivation[1],and it is extendable in a Hopf algebra,the element of which is known in the computer literature as‘heap ordered trees’.This bialgebra is useful to compute products of derivations or to transform differential monomials in differential algebras[17],and it is interesting to note that the elements L n(n edges)can be coded by the words(monomials)of the expansion of Q nq0q0q1q0q1q n1,where Q0q0q1is a noncommutative alphabet.We describe in particular the bialgebra L,first in the polynomial form by the‘factorial’monoid L0L0n n0,where L0n is the set of words in the expansion of Q n,and second,we establish the bijective correspondence between 1365–8050c1997Chapman&Hall230M.Ginocchio L and L.We show that the calculus are easier with L,and that the product on L can be expressed in a very natural way.For example,q0n Q n,hence the(exponential)generating function of all the elements of L.We describe principally the formalism in the general case G,and the calculus uses thefields F201 as well as characteristic zerofields K.In Sect.2,we describe the link with the graded differential algebra K U r0K U r and the graded algebra of differential operators K U D r0K U r D r,where U u1u2uββ1uβαα0β1is a set of indeterminates,D∂0∂1and the differential indeterminates uβασ1σp∂σ1∂σpuβαgenerate K U r[17].This shows that the above Q-calculus,which is a kind of‘dissection’on functional graphs can be used as pre-calculus in differential algebras as well as in discrete dynamical systems[18].2Bialgebra Based on the Semi-group of Functional Graphs2.1T ypes of Functional GraphsIn this paper,a connected functional graph will be called excycle[13,15].In the area of discrete dynamical systems,an excycle is known as a basin of attraction.Consider several graded andfiltered sets of labeled functional graphs(i)E(resp.G)the set of excycles(resp.functional graphs)and designated by G n(resp.G n),the set offunctional graphs having(resp.having at most)n1nodes for n0(ii)R(resp.T)the set of labeled arborescences(resp.forests).(iii)C(resp.S)the set of cycles(resp.permutation graphs).(iv)A(resp.L)the set of well labeled arborescences(resp.forests),i.e.with strictly decreasing labels on the chains toward the root(s).As in(i),we consider for(ii)–(iv)graduations andfiltrations.2.2Free Representation by Q-polynomialsLet G n be the semigroup of mappings of12n in itself(‘Semigroup of endofunctions’), Card G n n n and the subsemigroups,T n f;f G n f n f n1(i.e.f acyclic and Card T n n1n1,S n the symmetric group and Card S n n!L n f;f G n f i i(i.e.f subdiagonal and Card L n n!.We have the well known bijections F F:G n G n T n T n S n S n L n L n.Let Q q0q1be a noncommutative alphabet,Q0q0Q with q0noncommuting with the q i’s,Q n q1q2q n Q0n q0Q n and Q(resp.Q0),the corresponding free monoids.Taking F201as thefield,consider(i)the G n module F2Q n by the F2linear incidence matrix action of f G n as l f q i q f i hence l f l gl f g.On the bialgebra of functional graphs231 (ii)the generating monomial associated with f.By morphism extension,denoted again by l f,we defineQ f q f1q f2q f n l f Qιn1where Qιn q1q2q n is associated with the identityιn of G n and Qι01One again has l f l g l f g.For the following we consider(iii)The graded subsets of Q as G G n n0T T n n0S S n n0L L n n0respectively associated with G,T,S and L,with G0T0S0L01(iv)The corresponding graded F2-modules:F2G F2T F2S F2L admit components of degree n which are,respectively,G n T n S n L n modules,withdimF2G n n n dimF2T n n1n1dimF2S n dimF2L n n!(v)We will denote by R n one of the above subsemi-groups of G n(or of another category). Similarly,let R R n n0resp F2R n0F2R n be the corresponding graded subsets of Q(resp. graded F2-modules ofF2G n0F2G n.2.3Virtual Root and External ProductLet f G n I0be the set offixed points of f and H0a subset of I0,and set p q r;p r q if p q and/0otherwise.Define f0:1n0n such that f0i f i if i H0and f0i0if i H0The‘0’is the label of a virtual root added to the graph representation of f,and we will say that H0is‘confined in0’,which is a fixed point of f0We call‘extended endofunctions’such functions f0,denote by G0n0n1n their set, and we consider G n as a subset of G0n Similarly,we will have T0n T n S0n S n L0n L n Consequently, adding q0,we get the extended graded sets G0G0n n0the extended graded F2-module F2G0 n0F2G0n and their substructures F2T0F2S0F2L0Now letφG0mχ0be the characteristic function of H0φ10,and writeQφlφQιm qφ1qφ2qφmm ∏i1qφi(cf.Figures1and2).WithψG0n,consider the F2-bilinear product in F2G0defined byQφQψQψm∏i1qφi nχ0i q0q1q n12On the right-hand side we have a sum of concatened monomials,and on the right factor the substitutions q0q0q1q n and q h q h n when h0232M.Ginocchio On the other hand,the product belongs to F2G0m n This external product is associated with unit1and F2G0is‘.’graded.To see this consider i j k being0three homogeneous polynomials,A A q0;q i F2G0mB B q0;q j F2G0nC C q0;q k F2G0pthen by(2)A B B q0;q j A q0q1q n;q i n3 and so,using deg B C n p,A q0;q iB q0;q jC B q0;q j A q0q1q n;q i n CCB q0q1q p;q j p A q0q1q p q1p q n p;q i n pA q0;q i CB q0q1q p;q j pA q0;q iB q0;q j CMoreover,because T n S n L n are subsemi-groups of G n one can see that F2R0F2T0F2S0F2L0are‘.’graded subalgebras of F2G0HenceProposition1Let the sequence G0m m1of the sets of the extended endofunctions in12m and Q0q0q1be a noncommutative alphabet.ForφG0m let Qφ∏m i1qφi be the generating monomial ofφand the graded module F2-module F2G0n0F2G0n on F201generated by all the φsThen F2G0is a graded algebra for the associative product with unit1QφQψQψm∏i1qφi nχ0i q0q1q n1whereψG0n andχ0is the characteristic function ofφ10Moreover,if R0m m1is a sequence of subsets associated with subsemi-groups of the sequence G0m m1, then F2R0n0F2R0n is a graded subalgebra of F2G02.4Splitting Operatorδn F2G0This operator substitutes the n-coproduct∆n of the Leibniz–Lie type.Associate to A Q0the left linear operatorτn A acting on B Q0,such that,if A G0m B G0n,then Bτn A BA if degB n,and0 otherwise,where BA is the concatenation of B and A.(i)Now let f G m and H0as in Sect.3,and notefirst that ifτn is viewed as acting on f,then for i1m one hasτn f i n f i n,and by f0i ¯χ0i f i one hasτn f0i n¯χ0i f0i n,where¯χ01χ0According to(2),define forφG0mδn Qφτnm∏i1qφi nχ0i q0q1q n14If d0Card H0the expansion(4)gives a sum of n1d0generating monomials of functionsψκof n1n m into0n1n m,and the corresponding functional graphs factorized in commutative excycles.On the bialgebra of functional graphs233 The operatorδn A is left linear on F2G0,and(2)can be writtenQφQψQψδn Qφ5 (ii)Moreover,δp is a graded antimorphism for‘’δp A Bδp Bδp n A6 where n degB and p N.For this to compute with(5)and A B C as in Sect.3,Cδp A B A B C A B C B Cδp n A Cδp Bδp n A.If p0we recover A B Bδn A and Bδk A0if k degB(iii)Also,δn is a powerδnδnδδ1δ017 For this to compute,δpδn A q0;q iδpτn A q0q1q n;q i nτn p A q0q1q p q1pq n p;q i n pδn p A q0;q i.(iv)Define the left linear operatorµin F2G0by the expansionµ∑n0δn8By left linear action ofµA on F2G0,we get A B BµA for A B F2G0with the antimorphism propertyµA BµBµA9 which express the associativity of‘’.Proposition2Let A F2G0m B F2G0n Then the splitting linear operatorδp defined left linearly by Bδp A A B if p=n,and0otherwise,verifiesδpδp withδδ1δ01andδp A Bδp Bδp n A Moreover,µ∑n0δn is an antimorphism in F2G0such that A B BµA2.5Exponential Generating Function of the Monomials of L0All the words of L0n(i.e.subdiagonals)are obtained from the expansion of Q n q0q0q1q0q1 q n1F2L0and Q01By equation(3),one has Q m Q n Q m n,and if A F2L0m B F2L0n we have A B F2L0m n,and then we recover that F2L0is stable for the product‘’.Because Q1q0,the associativity givesQ n q0n10 With the Q[[t]]-modules on L0,one has the exponential generating functionexp tq0∑n0t nn!Q n11exp sq0exp tq0exp s t q0234M.Ginocchio2.6ExamplesConsider equations (4)and (5)for Q ψq n 0.2.6.1Rooted T rees with n=1δq 20q 1τq 0q 12q 2τq 0q 0q 2τq 0q 1q 2τq 1q 0q 2τq 1q 1q 2(Figure 3)q 20q 1q 0q 0q 0q 12q 2q 30q 2q 20q 1q 2q 0q 1q 0q 2q 0q 1q 1q 2(Figure 4)2.6.2Excycles with n=2δ2q 23q 1q 0τ2q 25q 3q 0q 1q 2τ2q 25q 3q 0τ2q 25q 3q 1τ2q 25q 3q 2(Figure 5)q 23q 1q 0q 20q 20q 25q 3q 0q 1q 2q 20q 25q 3q 0q 20q 25q 3q 1q 20q 25q 3q 2(Figure 6)3Differential Algebra3.1Differential indeterminatesLet D ∂0∂1where ∂α∂∂ξαthe αth canonical derivation in S K ξthe algebra of formal power series in ξξ0ξ1,where K is a characteristic zero field.If S N N is the set U u 1u 2u ββ1u αβα0β1with u αβS consider U as a set of indeterminates,u αβσ1σp ∂σ1∂σp u αβasdifferential indeterminates,replace S N N by KU ,and consider the graded differential algebra K Ur 0K U r and the graded algebra of differential operators K U D r 0K U r D r.To each W F 2R 0we associate the differential operator W U U D ;for example,with W r U K U r one hasW UW 0UW 1Uα∂αW 2Uαβ∂α∂βW 0U∑r 1W r U D r12We will use now the summation convention.3.2Brackets in K UDefine for u v wU the multilinear operations valued in K U .3.2.1Arborescent Brackets (Valued in K U 1)u v uv w u vβu αv βα,henceu v Du αv βα∂β(1fixed point sent to ‘0’)uv wγu αv βw γαβ,henceu v Du αv βw γαβ∂γ13Also,for AK UrBK UsA Bβ1βsA α1αr B β1βsα1αr3.2.2Circular Brackets (Valued in K U 0)uu αα(1fixed point),u vu ααv ββ(2fixed points)u vu αβv βα2cycleu v wu αγv βαw γβ3cycle14On the bialgebra of functional graphs 2353.2.3Mixed Brackets (Valued in K U 0)Let E be a proper excycle (i.e.with no fixed point);we can write it EA i 1A i 2A i p ,where the A i k ’s are arborescences with root i k If in each arborescence A i k is reduced to its root i k ,we recover simply acycle Ei 1i 2i p Now let F k be the forest under i k ,i.e.obtained by cutting the root of A i k ,and defined with F i k U F i k u j ;j N i k ,where N i k is the set of nodes of F i k :E Uu F i 1i 1u F i 2i 2u F i pi pF i 1U u i 1α1αp F i 2U u i 2α2α1F i p U u i p αp αp13.3Action of F 2R 0Moreover,F 2R 0operates K -linearly in K U with values in K U D .For this let φG 0m H 0φ1for j 0m I 1m ,and H u β1u β2u βm U ,a word on U of length m .Then the action isQ φ∏i Iq φiQ φH∏j I∏i H j∂αiu αj βj∏k H 0∂αk15The differential monomial Q φH is such that u βj is associated with j in the domain I of φIf d j is the degree in q j (in-degree of the node labeled by ‘j ’),then u αj βj is derived d j times and the indices of derivation are related to the places of the q j ’s in the word.Similarly,the differential operator D r is characterized by the number r (degree of the root)of the q 0’s and their places.So we can summarize:In a word A R 0where q j is at the place (i),then in A H the j th letter of H is derived according to i,i.e.∂αi acts.One has,in particular,taking H u 1u 2:Arborescent brackets 1U 1q 0U u 1α1∂α1u 1Dq 0q 0U u 1α1u 2α2∂α1∂α2u 1u 2D 2q 0q 1U u 1α1α2u 2α2∂α1u 2u 1D q 3q 3q 0U u 1α1u 2α2u 3α3α1α2∂α3u 1u 2u 3Dq 0q 0q 2q 2U u 1α1u 2α2α3α4u α33u α44∂α1∂α2u 1u 3u 4u 2D 2Circular brackets q 1U u 1α1α1u 1q 1q 2U u 1α1α1u 2α2α2u 1u 2q 2q 1U u 1α1α2u 2α2α1u 1u 2q 3q 1q 2U u 1α1α3u 2α2α1u 3α3α2u 1u 2u 33.4Product of Differential OperatorsThe product (2)on words with correspondence (15)gives the product of differential operators.We state,without proof,Proposition 3Let the graded differential algebra K U r 0K U r and the graded algebra of differ-ential operators K U D r 0K U r D r Let φG 0m I 1m H j φ1j for j 0m and H u β1u β2u βm a word on U of length m.Then the mapping of F 2G 0into K U D which associates to the generating monomial Q φ∏i I q φi of φthe differential operator Q φH ∏j I ∏i H j ∂αi u αj βj ∏k H 0∂αk236M.Ginocchio is a morphism,such that ifψG0n and K is a word on U of length n,one has QφH QψK QφQψKH, where KH is the concatenation of K and H.ExampleA q0B q2q1q0H u4K u1u2u3A B q2q1q0q0q1q2q3q2q1q0q0q2q1q0q1q2q1q0q2q2q1q0q3(Figure7)A H u1DB K u1u2u3DA HB K u1u2u3u4D2u4u1u2u3D u1u2u4u3DObserve that:u4u1u2u3D u1α1α2α4u2α2α1u3α3u4α4∂α3u1α1α2u2α2α1α4u3α3u4α4∂α3which corresponds to q2q1q0q1q2,i.e.the second and third terms in the graph expansion. AppendixTo view Figures1–7,click here.To return to the main paper,click on the red box.References[1]Ginocchio,M.(1995).Universal expansion of the powers of a derivation,Letters in Math.Phys.34(4),343–364.[2]Ginocchio,M.and Irac-Astaud,M.(1985).A recursive linearization process for evolution equations.Reports on Math.Phys.21,245–265.[3]Steeb,W.H.and Euler,N.(1988).Nonlinear Evolution Equations and Painlev´e Test.World Scien-tific.[4]Comtet,L.(1973).Une formule explicite pour les puissances successives de l’op´e rateur de d´e rivationde m.Roy.Acad.Sci.276A,165–168.[5]Leroux,P.and Viennot,G.(1986).Combinatorial resolution of systems of differential equations I:ordinary differential equations.Actes du colloque de combinatoire´e num´e rative,Montr´e al.Lecture Notes in Mathematics1234,pp.210–245.Springer-V erlag.[6]Bergeron, F.and Reutenauer, C.(1987).Une interpr´e tation combinatoire des puissances d’unop´e rateur diff´e rentiel lin´e aire.Ann.Sci.Math.Quebec11,269–278.[7]Grossman,R.and Larson,R.G.(1989).Hopf-algebraic structures of families of trees.J.Algebra126,184–210.[8]Joni,A.A.and Rota,G.C.(1979).Coalgebras and bialgebras in combinatorics.Studies.in Appl.Math.61,93–139.On the bialgebra of functional graphs237 [9]Nichols,W.and Sweedler,M.E.(1980).Hopf algebras and combinatorics,in‘Umbral calculus andHopf algebras’.Contemp.Math.6.[10]Sweedler,M.E.(1969).Hopf Algebras.Benjamin.[11]Berge,C.(1983).Graphes.Gauthier-Villars.[12]Comtet,L.(1974).Advanced Combinatorics.Reidel.[13]Denes,J.(1968).On transformations,transformation-semigroups and graphs.In Erd¨o s-Katona,ed-itor,Theory of Graphs.Academic Press,pp.65–75.[14]Foata,D.and Fuchs,A.(1970).R´e arrangements de fonctions et d´e b.Theory8,361–375.[15]Harary,F.(1959).The number of functional digraphs.Math.Annalen138,203–210.[16]Ginocchio,M.On the Hopf algebra of functional graphs and differential algebras.Discr.Math.Toappear.[17]Kaplansky,I.(1976).Introduction to Differential Algebras.Springer-V erlag.[18]Robert,F.(1995).Les syst`e mes Dynamiques Discrets.Springer-V erlag.。
数学专业英语词汇
数学专业英语词汇(C)(转载)c function c类函数c manifold c廖c mapping c类映射ca set 上解析集calculability 可计算性calculable mapping 可计算映射calculable relation 可计算关系calculate 计算calculating automaton 计算自动机calculating circuit 计算电路calculating element 计算单元calculating machine 计算机calculating punch 穿孔计算机calculating register 计算寄存器calculating unit 计算装置calculation 计算calculation of areas 面积计算calculator 计算机calculus 演算calculus of approximations 近似计算calculus of classes 类演算calculus of errors 误差论calculus of finite differences 差分法calculus of probability 概率calculus of residues 残数计算calculus of variations 变分法calibration 校准canal 管道canal surface 管道曲面cancel 消去cancellation 消去cancellation law 消去律cancellation property 消去性质cancelling of significant figures 有效数字消去canonical basis 典范基canonical coordinates 标准坐标canonical correlation coefficient 典型相关系数canonical distribution 典型分布canonical ensemble 正则总体canonical equation 典型方程canonical equation of motion 标准运动方程canonical expression 典范式canonical factorization 典范因子分解canonical flabby resolution 典型松弛分解canonical form 标准型canonical function 标准函数canonical fundamental system 标准基本系统canonical homomorphism 标准同态canonical hyperbolic system 典型双曲线系canonical image 标准象canonical mapping 标准映射canonical representation 典型表示canonical sequence 标准序列canonical solution 标准解canonical system of differential equations 标准微分方程组canonical variable 典型变量canonical variational equations 标准变分方程canonical variational problem 标准变分问题cantor curve 康托尔曲线cantor discontinum 康托尔密断统cantorian set theory 经典集论cap 交cap product 卡积capacity 容量card 卡片card punch 卡片穿孔机card reader 卡片读数器cardinal 知的cardinal number 基数cardinal product 基数积cardioid 心脏线carrier 支柱carry 进位carry signal 进位信号cartan formula 嘉当公式cartan subalgebra 嘉当子代数cartan subgroup 嘉当子群cartesian coordinate system 笛卡儿坐标系cartesian coordinates 笛卡尔座标cartesian equation 笛卡儿方程cartesian folium 笛卡儿叶形线cartesian product 笛卡儿积cartesian space 笛卡儿空间cartography 制图学cascaded carry 逐位进位casimir operator 卡巫尔算子cassini oval 卡吾卵形线casting out 舍去casting out nines 舍九法catastrophe theory 突变理论categorical judgment 范畴判断categorical proposition 范畴判断categorical syllogism 直言三段论categorical theory 范畴论categoricity 范畴性category 范畴category of groups 群范畴category of modules 模的范畴category of sets 集的范畴category of topological spaces 拓扑空间的范畴catenary 悬链线catenary curve 悬链线catenoid 悬链曲面cauchy condensation test 柯微项收敛检验法cauchy condition for convergence 柯握敛条件cauchy criterion 柯握敛判别准则cauchy distribution 柯沃布cauchy filter 柯嗡子cauchy inequality 柯位等式cauchy integral 柯锡分cauchy integral formula 柯锡分公式cauchy kernel 柯嗡cauchy kovalevskaya theorem 柯慰仆吡蟹蛩箍ǘɡ眵cauchy mean value formula 广义均值定理cauchy net 柯硒cauchy principal value 柯蔚cauchy problem 柯问题cauchy process 柯锡程cauchy residue theorem 残数定理cauchy sequence 柯悟列causal relation 因果关系causality 因果律cause 原因cavity 空腔cavity coefficient 空胴系数cayley number 凯莱数cayley sextic 凯莱六次线cayley transform 凯莱变换ccr algebra ccr代数celestial body 天体celestial coordinates 天体坐标celestial mechanics 天体力学cell 胞腔cell complex 多面复形cellular approximation 胞腔逼近cellular automaton 细胞自动机cellular cohomology 胞腔上同调cellular cohomology group 胞腔上同岛cellular decomposition 胞腔剖分cellular homotopy 胞腔式同伦cellular map 胞腔映射cellular subcomplex 胞腔子复形center 中心center of a circle 圆心center of curvature 曲率中心center of expansion 展开中心center of force 力心center of gravity 重心center of gyration 旋转中心center of inversion 反演中心center of mass 质心center of pressure 压力中心center of principal curvature 助率中心center of projection 射影中心center of symmetry 对称中心centered process 中心化过程centered system of sets 中心集系centi 厘centigram 厘克centimetre 厘米central angle 圆心角central confidence interval 中心置信区间central conic 有心圆锥曲线central derivative 中心导数central difference 中心差分central difference operator 中心差分算子central divided difference 中心均差central element 中心元central extension 中心扩张central extension field 中心扩张域central limit theorem 中心极限定理central line 中线central moment 中心矩central point 中心点central processing unit 中央处理器central projection 中心射影central quadric 有心二次曲面central series 中心群列central symmetric vector field 中心对称向量场central symmetry 中心对称centralizer 中心化子centre 中心centre of a circle 圆心centre of gyration 旋转中心centre of projection 射影中心centre of similarity 相似中心centre of similitude 相似中心centrifugal force 离心力centripetal acceleration 向心加速度centroid 形心certain event 必然事件certainty 必然cesaro mean 纬洛平均cesaro method of summation 纬洛总求法chain 链chain complex 链复形chain condition 链条件chain equivalence 链等价chain equivalent 链等价的chain group 链群chain homotopic 链同伦的chain homotopy 链同伦chain index 链指数chain map 链变换chain of prime ideals 素理想链chain of syzygies 合冲链chain rule 链式法则chain transformation 链变换chainette 悬链线chamber complex 箱盒复形chance 偶然性;偶然的chance event 随机事件chance move 随机步chance quantity 随机量chance variable 机会变量change 变化change of metrics 度量的变换change of the base 基的变换change of the variable 变量的更换channel 信道channel width 信道宽度character 符号character group 特贞群character space 特贞空间characteriatic system 特寨characteristic 特征characteristic boundary value problem 特者值问题characteristic class 示性类characteristic cone 特斩characteristic conoid 特沾体characteristic curve 特怔线characteristic derivation 特阵导characteristic determinant 特招列式characteristic differential equation 特闸分方程characteristic direction 特战向characteristic equation 特战程characteristic exponent 特崭数characteristic function 特寨数characteristic functional 特蘸函characteristic group 特蘸characteristic index 特崭标characteristic initial value problem 特挣值问题characteristic linear system 特者性系统characteristic manifold 特瘴characteristic matrix 特肇阵characteristic number 特正characteristic of a logarithm 对数的首数characteristic parameter 特瘴数characteristic polynomial 特锗项式characteristic pontrjagin number 庞德里雅金特正characteristic root 特争characteristic ruled surface 特毡纹曲面characteristic series 特招characteristic set 特寨characteristic state 特宅characteristic strip 特狰characteristic subgroup 特沼群characteristic surface 特怔面characteristic value 矩阵的特盏characteristic vector 特镇量charge 电荷chart 图chebyshev function 切比雪夫函数chebyshev inequality 切比雪夫不等式chebyshev polynomial 切比雪夫多项式check 校验check digit 检验位check routine 检验程序check sum 检查和chevalley group 歇互莱群chi square distribution 分布chi squared test 检验chi squared test of goodness of fit 拟合优度检验choice function 选择函数chord 弦chord line 弦chord of contact 切弦chord of curvature 曲率弦chordal distance 弦距离christoffel symbol 克里斯托弗尔符号chromatic number 色数chromatic polynomial 色多项式cipher 数字circle 圆circle diagram 圆图circle method 圆法circle of contact 切圆circle of convergence 收敛圆circle of curvature 曲率圆circle of inversion 反演圆circle problem 圆内格点问题circuit free graph 环道自由图circuit rank 圈数circulant 循环行列式circulant matrix 轮换矩阵circular 圆的circular arc 圆弧circular cone 圆锥circular correlation 循环相关circular cylinder 圆柱circular disk 圆盘circular domain 圆形域circular frequency 角频率circular functions 圆函数circular helix 圆柱螺旋线circular measure 弧度circular motion 圆运动circular neighborhood 圆邻域circular orbit 圆轨道circular pendulum 圆摆circular permutation 循环排列circular ring 圆环circular section 圆截面circular sector 圆扇形circular segment 圆弓形circular slit domain 圆形裂纹域circular symmetry 圆对称circular transformation 圆变换circulation 循环circulation index 环粮数circulation of vector field 向量场的循环circulatory integral 围道积分circumcenter 外心circumcentre 外心circumcircle 外接圆circumcone 外切圆锥circumference 圆周circumscribe 外接circumscribed circle 外接圆circumscribed figure 外切形circumscribed polygon 外切多边形circumscribed quadrilateral 外切四边形circumscribed triangle 外切三角形circumsphere 外接球cissoid 蔓叶类曲线cissoidal curve 蔓叶类曲线cissoidal function 蔓叶类函数clairaut equation 克莱罗方程class 类class bound 组界class field 类域class field tower 类域塔class frequency 组频率class function 类函数class interval 组距class mean 组平均class number 类数class of conjugate elements 共轭元素类classical groups 典型群classical lie algebras 典型李代数classical mechanics 经典力学classical sentential calculus 经典语句演算classical set theory 经典集论classical statistical mechanics 经典统计力学classical theory of probability 经典概率论classification 分类classification statistic 分类统计classification theorem 分类定理classify 分类classifying map 分类映射classifying space 分类空间clear 擦去clifford group 克里福特群clifford number 克里福特数clockwise 顺时针的clockwise direction 顺时针方向clockwise rotation 顺时针旋转clopen set 闭开集closable linear operator 可闭线性算子closable operator 可闭算子closed ball 闭球closed circuit 闭合电路closed complex 闭复形closed convex curve 卵形线closed convex hull 闭击包closed cover 闭覆盖closed curve 闭曲线closed disk 闭圆盘closed domain 闭域closed equivalence relation 闭等价关系closed extension 闭扩张closed filter 闭滤子closed form 闭型closed formula 闭公式closed geodesic 闭测地线closed graph 闭图closed graph theorem 闭图定理closed group 闭群closed half plane 闭半平面closed half space 闭半空间closed hull 闭包closed interval 闭区间closed kernel 闭核closed linear manifold 闭线性廖closed loop system 闭圈系closed manifold 闭廖closed map 闭映射closed neighborhood 闭邻域closed number plane 闭实数平面closed path 闭路closed range theorem 闭值域定理closed region 闭域closed riemann surface 闭黎曼面closed set 闭集closed shell 闭壳层closed simplex 闭单形closed solid sphere 闭实心球closed sphere 闭球closed star 闭星形closed subgroup 闭子群closed subroutine 闭型子程序closed surface 闭曲面closed symmetric extension 闭对称扩张closed system 闭系统closed term 闭项closeness 附近closure 闭包closure operation 闭包运算closure operator 闭包算子closure property 闭包性质clothoid 回旋曲线cluster point 聚点cluster sampling 分组抽样cluster set 聚值集coadjoint functor 余伴随函子coalgebra 上代数coalition 联合coanalytic set 上解析集coarser partition 较粗划分coaxial circles 共轴圆cobase 共基cobordant manifolds 配边廖cobordism 配边cobordism class 配边类cobordism group 配边群cobordism ring 配边环coboundary 上边缘coboundary homomorphism 上边缘同态coboundary operator 上边缘算子cocategory 上范畴cochain 上链cochain complex 上链复形cochain homotopy 上链同伦cochain map 上链映射cocircuit 上环道cocommutative 上交换的cocomplete category 上完全范畴cocycle 上闭键code 代吗coded decimal notation 二进制编的十进制记数法codenumerable set 余可数集coder 编器codiagonal morphism 余对角射codifferential 上微分codimension 余维数coding 编码coding theorem 编码定理coding theory 编码理论codomain 上域coefficient 系数coefficient domain 系数域coefficient function 系数函数coefficient functional 系数泛函coefficient group 系数群coefficient of alienation 不相关系数coefficient of association 相伴系数coefficient of covariation 共变系数coefficient of cubical expansion 体积膨胀系数coefficient of determination 可决系数coefficient of diffusion 扩散系数coefficient of excess 超出系数coefficient of friction 摩擦系数coefficient of nondetermination 不可决系数coefficient of rank correlation 等级相关系数coefficient of regression 回归系数coefficient of the expansion 展开系数coefficient of thermal expansion 热膨胀系数coefficient of variation 变差系数coefficient of viscosity 粘性系数coefficient problem 系数问题coefficient ring 系数环coercive operator 强制算子cofactor 代数余子式cofiber 上纤维cofibering 上纤维化cofibration 上纤维化cofilter 余滤子cofinal set 共尾集cofinal subset 共尾子集cofinality 共尾性cofinite subset 上有限子集cofunction 余函数cogenerator 上生成元cogredient automorphism 内自同构coherence 凝聚coherence condition 凝聚条件coherent module 凝聚摸coherent ring 凝聚环coherent set 凝聚集coherent sheaf 凝聚层coherent stack 凝聚层coherent topology 凝聚拓扑coherently oriented simplex 协同定向单形cohomological dimension 上同惮数cohomological invariant 上同祷变量cohomology 上同调cohomology algebra 上同碟数cohomology class 上同掂cohomology functor 上同弹子cohomology group 上同岛cohomology group with coefficients g 有系数g的上同岛cohomology module 上同担cohomology operation 上同邓算cohomology ring 上同捣cohomology sequence 上同凋列cohomology spectral sequence 上同底序列cohomology theory 上同帝cohomotopy 上同伦cohomotopy group 上同伦群coideal 上理想coimage 余象coincidence 一致coincidence number 叠合数coincidence point 叠合点coincident 重合的coinduced topology 余导出拓扑cokernel 上核collect 收集collectionwise normal space 成集体正规空间collective 集体collinear diagram 列线图collinear points 共线点collinear vectors 共线向量collinearity 共线性collineation 直射变换collineation group 直射群collineatory transformation 直射变换collocation method 配置法collocation of boundary 边界配置collocation point 配置点colocally small category 上局部小范畴cologarithm 余对数colorable 可着色的column 列column finite matrix 列有限矩阵column matrix 列阵column rank 列秩column space 列空间column vector 列向量combination 组合combination principle 结合原理combination with repetitions 有复组合combination without repetition 无复组合combinatorial analysis 组合分析combinatorial closure 组合闭包combinatorial dimension 组合维数combinatorial geometry 组合几何学combinatorial manifold 组合廖combinatorial method 组合方法combinatorial optimization problem 组合最优化问题combinatorial path 组合道路combinatorial problem 组合最优化问题combinatorial sphere 组合球面combinatorial sum 组合和combinatorial theory of probabilities 概率组合理论combinatorial topology 组合拓朴学combinatorially equivalent complex 组合等价复形combinatories 组合分析combinatory logic 组合逻辑combinatory topology 组合拓朴学combined matrix 组合矩阵comma 逗点command 命令commensurability 可通约性commensurable 可通约的commensurable quantities 可公度量common denominator 公分母common difference 公差common divisor 公约数common factor 公因子common factor theory 公因子论common fraction 普通分数common logarithm 常用对数common measure 公测度common multiple 公倍元common perpendicular 公有垂线common point 公共点common ratio 公比common tangent of two circles 二圆公切线communality 公因子方差communication channel 通讯通道commutant 换位commutation law 交换律commutation relation 交换关系commutative 可换的commutative diagram 交换图表commutative group 交换群commutative groupoid 阿贝耳广群commutative law 交换律commutative lie ring 交换李环commutative ordinal numbers 交换序数commutative ring 交换环commutativity 交换性commutator 换位子commutator group 换位子群commute 交换compact 紧的compact convergence 紧收敛compact group 紧群compact open topology 紧收敛拓扑compact operator 紧算子compact set 紧集compact space 紧空间compact subgroup 紧子群compact support 紧支柱compactification 紧化compactification theorem 紧化定理compactness 紧性compactness theorem 紧性定理compactum 紧统comparability of cardinals 基数的可比较性comparable curve 可比曲线comparable function 可比的函数comparable topology 可比拓扑comparable uniformity 可比一致性comparison function 比较函数comparison method 比较法comparison series 比较用级数comparison test 比较检验comparison theorem 比较定理compass 两脚规compatibile condition 相容性条件compatibility 一致性compatibility condition 相容性条件compatible system of algebraic equations 相容代数方程组compatible topology 相容拓扑学compensate 补偿compensating method 补偿法compensation 补偿compensation of error 误差的补偿compiler 编译程序compiling routine 编译程序complanar line 共面线complele induction 数学归纳法complement 补集complement of an angle 余角complementary 补的complementary angle 余角complementary degree 余次数complementary divisor 余因子complementary event 余事件complementary function 余函数complementary graph 余图complementary ideal 余理想complementary laws 补余律complementary module 补模complementary modulus 补模数complementary set 补集complementary space 补空间complementary submodules 补子模complementary subset 余子集complementary subspace 补子空间complemented lattice 有补格complete abelian variety 完备阿贝耳簇complete accumulation point 完全聚点complete axiom system 完备公理系统complete category 完全范畴complete class 完备类complete continuity 完全连续性complete disjunction 完全析取complete elliptic integral 完全椭圆积分complete field 完全域complete field of sets 集的完全域complete graph 完全图complete group 完全群complete group variety 完备群簇complete homomorphism 完全同态complete induction 数学归纳法complete integral 完全积分complete intersection 完全交叉complete lattice 完全格complete linear system 完备线性系统complete local ring 完全局部环complete measure 完全测度complete measure space 完备测度空间complete metric space 完备度量空间complete normality axiom 完全正规性公理complete ordered field 全序域complete orthogonal sequence 完全正交序列complete orthogonal set 完全正交系complete orthogonal system 完全正交系complete orthonormal sequence 完备标准正交序列complete orthonormal system 完备标准正交系complete probability space 完全概率空间complete quadrangle 完全四点形complete quadrilateral 完全四边形complete reducibility theorem 完全可约性定理complete regularity separation axiom 完全正则性分离公理complete reinhardt domain 完全赖因哈耳特域complete set 完全集complete solution 完全积分complete space 完备空间complete subcategory 完全子范畴complete system 完备系complete system of functions 函数完备系complete system of fundamental sequences 完全基本序列系complete system of invariants 完全的不变量系complete tensor product 完全张量积completed shell 闭壳层completely additive 完全加性的completely additive family of sets 完全加性集族completely additive measure 完全加性测度completely compact set 完全紧集completely continuous function 完全连续函数completely continuous linear operator 完全连续线性算子completely continuous mapping 全连续映射completely continuous operator 全连续映射completely distributive lattice 完全分配格completely homologous maps 完全同党射completely independent system of axioms 完全独立公理系统completely integrable 完全可积的completely integrable system 完全可积组completely integrally closed 完全整闭的completely mixed game 完全混合对策completely monotone 完全单的completely monotonic function 完全单弹数completely monotonic sequence 完全单凋列completely multiplicative 完全积性的completely multiplicative function 完全积性函数completely primary ring 完全准素环completely reducible 完全可约的completely reducible group 完全可约群completely regular filter 完全正则滤子completely regular space 完全正则空间completely regular topology 完全正则拓扑completely separated sets 完全可离集completely specified automaton 完全自动机completely splitted prime ideal 完全分裂素理想completely transitive group 全可迁群completeness 完全性completeness theorem 完全性定理completion 完备化complex 复形complex analytic fiber bundle 复解析纤维丛complex analytic manifold 复解析廖complex analytic structure 复解析结构complex cone 线丛的锥面complex conjugate 复共轭的complex conjugate matrix 复共轭阵complex curve 复曲线complex curvelinear integral 复曲线积分complex domain 复域complex experiment 析因实验complex field 复数域complex flnction 复值函数complex fraction 繁分数complex group 辛群complex line 复线complex line bundle 复线丛complex manifold 复廖complex multiplication 复数乘法complex number 复数complex number plane 复数平面complex plane with cut 有割的复平面complex quantity 复量complex root 复根complex series 复级数complex sphere 复球面complex surface 线丛的曲面complex unit 单位复数complex valued function 复值函数complex variable 复变量complex vector bundle 复向量丛complex velocity potential 复速度位势complexity 复杂性complication 复杂化component 分量component of variance 方差的分量componentwise convergence 分量方式收敛composable 组成的compose 组成composite 合成composite divisor 合成除数composite function 合成函数composite functor 合成函子composite group 合成群composite hypothesis 复合假设composite number 合成数composite probability 复合概率composition 合成composition algebra 合成代数composition factor 合成因子composition homomorphism 合成同态composition of vector subspaces 向量子空间的合成composition operator 合成算子composition series 合成列compound determinant 复合行列式compound event 复合事件compound function 合成函数compound number 合成数compound probability 合成概率compound proportion 复比例compound rule 复合规则computable function 可计算函数computation 计算computational error 计算误差computational formula 计算公式computational mistake 计算误差compute 计算computer 计算机computing center 计算中心computing element 计算单元computing machine 计算机computing time 计算时间comultiplication 上乘法concave 凹的concave angle 凹角concave convex game 凹击对策concave curve 凹曲线concave function 凹函数concave polygon 凹多边形concavity 凹性concavo convex 凹击的concentration 集中;浓度concentration ellipse 同心椭圆concentric circles 同心圆concept 概念conchoid 蚌线conchoidal 蚌线的conclusion 结论concomitant variable 相伴变量concrete number 名数concurrent form 共点形式concurrent planes 共点面concyclic points 共圆点condensation of singularities 奇点的凝聚condensation point 凝聚点condensation principle 凝聚原理condition equation 条件方程condition for continuity 连续性条件condition number 条件数condition of connectedness 连通性条件condition of positivity 正值性条件conditional convergence 条件收敛conditional definition 条件定义conditional density 条件性密度conditional distribution 条件分布conditional entropy 条件熵conditional equation 条件方程conditional event 条件性事件conditional gradient method 条件梯度法conditional inequality 条件不等式conditional instability 条件不稳定conditional instruction 条件指令conditional jump 条件转移conditional mathematical expectation 条件数学期望conditional probability 条件概率conditional probability measure 条件概率测度conditional proposition 条件命题conditional sentence 条件命题conditional stability 条件稳定性conditional transfer of control 条件转移conditionally compact set 条件紧集conditionally complete 条件完备的conditionally convergent 条件收敛的conditionally convergent series 条件收敛级数conditionally well posed problems 条件适定的问题conditioned observation 条件观测conditioning number 条件数conditions of similarity 相似条件conduction 传导conductivity 传导率conductor 导体;前导子conductor ramification theorem 前导子分歧定理cone 锥cone of a complex 复形锥面cone of a simplex 单形锥面confidence belt 置信带confidence coefficient 置信系数confidence ellipse 置信椭圆confidence ellipsoid 置信椭面confidence interval 置信区间confidence level 置信水平confidence limit 置信界限confidence region 置信区域configuration 布局configuration space 构形空间confinal 共尾的confinality 共尾性confirmation 证实confluent divided difference 合六差confluent hypergeometric equation 合镣超几何微分方程confluent hypergeometric function 合连几何函数confluent hypergeometric series 合连几何级数confluent interpolation polynomial 汇合内插多项式confocal conic sections 共焦二次曲线confocal conics 共焦二次曲线confocal quadrics 共焦二次曲面conformable matrices 可相乘阵conformal 保角的conformal curvature tensor 保形曲率张量conformal differential geometry 保形微分几何学conformal geometry 保形几何conformal mapping 保角素示conformal projection 保形射影conformal representation 保角素示conformal transformation 保角映射conformally connected manifold 保形连通廖conformally geodesic lines 保形测地线confounding 混杂confrontation 比较confusion 混乱congruence 同余式congruence group 同余群congruence method 同余法congruence of lines 线汇congruence relation 同余关系congruence subgroup 同余子群congruence zeta function 同余函数congruent 同余的congruent mapping 合同映射congruent number 同余数congruent transformation 合同映射conic 圆锥曲线conic function 圆锥函数conic section 圆锥曲线conical helix 圆锥螺旋线conical surface 锥面conics 圆锥曲线论conjugate 共轭的conjugate axis 共轭轴conjugate class 共轭类conjugate complex 共轭复形conjugate complex number 共轭复数conjugate convex function 共轭击函数conjugate curve 共轭曲线conjugate curve of the second order 共轭二次曲线conjugate diameter 共轭直径conjugate direction 共轭方向conjugate dyad 共轭并向量conjugate element 共轭元素conjugate exponent 共轭指数conjugate field 共轭域conjugate foci 共轭焦点conjugate function 共轭函数conjugate gradient method 共轭梯度法conjugate hyperbola 共轭双曲线conjugate latin square 共轭拉丁平conjugate line 共轭直线conjugate number 共轭数conjugate operator 共轭算子conjugate points 共轭点conjugate quaternion 共轭四元数conjugate root 共轭根conjugate ruled surface 共轭直纹曲面conjugate series 共轭级数conjugate space 共轭空间conjugate transformation 共轭变换conjugate vector 共轭向量conjugation map 共轭映射conjugation operator 共轭算子conjunction 合取conjunctive normal form 合取范式connected 连通的connected asymptotic paths 连通渐近路线connected automaton 连通自动机connected category 连通范畴connected chain 连通链connected complex 连通复形connected component 连通分支connected curve 连通曲线connected domain 连通域connected graph 连通图connected group 连通群connected sequence of functors 函子的连通序列connected set 连通集connected space 连通空间connected sum 连通和connectedness 连通性connecting homomorphism 连通同态connecting morphism 连通同态connecting path 连接道路connection 联络connection component 连通分量connectivity 连通性connex 连通conoid 劈锥曲面conormal 余法线conormal image 余法线象conrol chart technique 控制图法consequence 后承consequent 后项conservation law 守恒律conservation of angular momentum 角动量守恒conservation of energy 能量守恒conservation of mass 质量守恒conservation of momentum 动量守恒conservative extension 守恒扩张conservative field of force 保守力场conservative force 保守力conservative measurable transformation 守恒可测变换conservative vector field 守恒向量场consistency 相容性consistency conditions 相容条件consistency of equations 方程组的相容性consistency problem 相容性问题consistencyproof 相容性的证明consistent axiom system 相容性公理系consistent equations 相容方程组consistent estimator 相容估计consistent system of equations 相容方程组consistent test 相容检验constancy of sign 符号恒性constant 常数constant coefficient 常系数constant field 常数域constant function 常值函数constant mapping 常值映射constant of integration 积分常数constant of proportionality 比例系数constant of structure 构造常数constant pressure chart 等压面图constant pressure surface 等压面constant sheaf 常数层constant sum game 常和对策constant term 常数项constant value 定值constituent 组分constitutional diagram 组分图constrained game 约束对策constrained maximization 约束最大化constrained minimization 约束最小化constrained optimization 约束最优化constraint 约束construct 准constructibility 可构成性constructible 可构成的constructible map 可构成映射constructible set 可构成集construction 构成construction problem 准题constructive dilemma 构造二难推论constructive existence proof 可构造存在证明constructive mathematics 可构造数学constructive ordinal number 可构造序数consumer's risk 用户风险contact 接触contact angle 接触角contact point 接触点contact surface 接触面contact transformation 切变换content 含量context sensitive grammar 上下文有关文法contiguity 接触contiguous confluent hypergeometric function 连接合连几何函数contiguous hypergeometric function 连接超几何函数contiguous map 连接映射contingency 随机性contingency table 列contingent 偶然事故continuability 可延拓性continuation method 连续法continued equality 连等式continued fraction 连分数continued fraction expansion 连分式展开式continued proportion 连比例continuity 连续性continuity axiom 连续性公理continuity condition 连续性条件continuity equation 连续方程continuity in the mean 均方连续性continuity interval 连续区间continuity method 连续法continuity of function 函数的连续性continuity on both sides 双边连续性continuity on the left 左连续性continuity on the right 右连续性continuity principle 连续性原理continuity theorem 连续性定理continuous 连续的continuous analyzer 连续分析器continuous approximation 连续近似continuous curve 连续曲线continuous differentiability 连续可微性continuous distribution 连续分布continuous distribution function 连续分布函数continuous dynamical system 连续动力系统continuous function 连续函数continuous function in the mean 均方连续函数continuous game 连续对策continuous geometry 连续几何continuous group 拓扑群continuous homology 连续同调continuous homology group 连续同岛continuous image 连续象continuous in x 依x连续的continuous limit 连续极限continuous map 连续映射continuous on the left 左方连续的。
代数英语
(0,2) 插值||(0,2) interpolation0#||zero-sharp; 读作零井或零开。
0+||zero-dagger; 读作零正。
1-因子||1-factor3-流形||3-manifold; 又称“三维流形”。
AIC准则||AIC criterion, Akaike information criterionAp 权||Ap-weightA稳定性||A-stability, absolute stabilityA最优设计||A-optimal designBCH 码||BCH code, Bose-Chaudhuri-Hocquenghem codeBIC准则||BIC criterion, Bayesian modification of the AICBMOA函数||analytic function of bounded mean oscillation; 全称“有界平均振动解析函数”。
BMO鞅||BMO martingaleBSD猜想||Birch and Swinnerton-Dyer conjecture; 全称“伯奇与斯温纳顿-戴尔猜想”。
B样条||B-splineC*代数||C*-algebra; 读作“C星代数”。
C0 类函数||function of class C0; 又称“连续函数类”。
CA T准则||CAT criterion, criterion for autoregressiveCM域||CM fieldCN 群||CN-groupCW 复形的同调||homology of CW complexCW复形||CW complexCW复形的同伦群||homotopy group of CW complexesCW剖分||CW decompositionCn 类函数||function of class Cn; 又称“n次连续可微函数类”。
Cp统计量||Cp-statisticC。
[14],[17],[4],[1],[13],[7],[2],[3],[18],[16],[10],[15],[11],[9],[8],[12],and[6].
FORMALIZED MATHEMATICSVolume11,Number4,2003University of BiałystokBanach Space of Absolute SummableReal SequencesYasumasa Suzuki Take,Yokosuka-shiJapanNoboru EndouGifu National College of Technology Yasunari ShidamaShinshu UniversityNaganoSummary.A continuation of[5].As the example of real norm spaces, we introduce the arithmetic addition and multiplication in the set of absolutesummable real sequences and also introduce the norm.This set has the structureof the Banach space.MML Identifier:RSSPACE3.The notation and terminology used here are introduced in the following papers:[14],[17],[4],[1],[13],[7],[2],[3],[18],[16],[10],[15],[11],[9],[8],[12],and[6].1.The Space of Absolute Summable Real SequencesThe subset the set of l1-real sequences of the linear space of real sequences is defined by the condition(Def.1).(Def.1)Let x be a set.Then x∈the set of l1-real sequences if and only if x∈the set of real sequences and id seq(x)is absolutely summable.Let us observe that the set of l1-real sequences is non empty.One can prove the following two propositions:(1)The set of l1-real sequences is linearly closed.(2) the set of l1-real sequences,Zero(the set of l1-real sequences,the linearspace of real sequences),Add(the set of l1-real sequences,the linear space377c 2003University of BiałystokISSN1426–2630378yasumasa suzuki et al.of real sequences),Mult(the set of l1-real sequences,the linear space ofreal sequences) is a subspace of the linear space of real sequences.One can check that the set of l1-real sequences,Zero(the set of l1-real sequences,the linear space of real sequences),Add(the set of l1-real sequences,the linear space of real sequences),Mult(the set of l1-real sequences,the linear space of real sequences) is Abelian,add-associative,ri-ght zeroed,right complementable,and real linear space-like.One can prove the following proposition(3) the set of l1-real sequences,Zero(the set of l1-real sequences,the linearspace of real sequences),Add(the set of l1-real sequences,the linear spaceof real sequences),Mult(the set of l1-real sequences,the linear space ofreal sequences) is a real linear space.The function norm seq from the set of l1-real sequences into R is defined by: (Def.2)For every set x such that x∈the set of l1-real sequences holds norm seq(x)= |id seq(x)|.Let X be a non empty set,let Z be an element of X,let A be a binary operation on X,let M be a function from[:R,X:]into X,and let N be a function from X into R.One can check that X,Z,A,M,N is non empty.Next we state four propositions:(4)Let l be a normed structure.Suppose the carrier of l,the zero of l,theaddition of l,the external multiplication of l is a real linear space.Thenl is a real linear space.(5)Let r1be a sequence of real numbers.Suppose that for every naturalnumber n holds r1(n)=0.Then r1is absolutely summable and |r1|=0.(6)Let r1be a sequence of real numbers.Suppose r1is absolutely summableand |r1|=0.Let n be a natural number.Then r1(n)=0.(7) the set of l1-real sequences,Zero(the set of l1-real sequences,the linearspace of real sequences),Add(the set of l1-real sequences,the linear spaceof real sequences),Mult(the set of l1-real sequences,the linear space ofreal sequences),norm seq is a real linear space.The non empty normed structure l1-Space is defined by the condition (Def.3).(Def.3)l1-Space= the set of l1-real sequences,Zero(the set of l1-real sequences,the linear space of real sequences),Add(the set of l1-realsequences,the linear space of real sequences),Mult(the set of l1-realsequences,the linear space of real sequences),norm seq .banach space of absolute summable (379)2.The Space is Banach SpaceOne can prove the following two propositions:(8)The carrier of l1-Space=the set of l1-real sequences and for every set xholds x is an element of l1-Space iffx is a sequence of real numbers andid seq(x)is absolutely summable and for every set x holds x is a vectorof l1-Space iffx is a sequence of real numbers and id seq(x)is absolutelysummable and0l1-Space=Zeroseq and for every vector u of l1-Space holdsu=id seq(u)and for all vectors u,v of l1-Space holds u+v=id seq(u)+id seq(v)and for every real number r and for every vector u of l1-Spaceholds r·u=r id seq(u)and for every vector u of l1-Space holds−u=−id seq(u)and id seq(−u)=−id seq(u)and for all vectors u,v of l1-Spaceholds u−v=id seq(u)−id seq(v)and for every vector v of l1-Space holdsid seq(v)is absolutely summable and for every vector v of l1-Space holdsv = |id seq(v)|.(9)Let x,y be points of l1-Space and a be a real number.Then x =0iffx=0l1-Space and0 x and x+y x + y and a·x =|a|· x .Let us observe that l1-Space is real normed space-like,real linear space-like, Abelian,add-associative,right zeroed,and right complementable.Let X be a non empty normed structure and let x,y be points of X.The functorρ(x,y)yields a real number and is defined by:(Def.4)ρ(x,y)= x−y .Let N1be a non empty normed structure and let s1be a sequence of N1.We say that s1is CCauchy if and only if the condition(Def.5)is satisfied. (Def.5)Let r2be a real number.Suppose r2>0.Then there exists a natural number k1such that for all natural numbers n1,m1if n1 k1and m1k1,thenρ(s1(n1),s1(m1))<r2.We introduce s1is Cauchy sequence by norm as a synonym of s1is CCauchy.In the sequel N1denotes a non empty real normed space and s2denotes a sequence of N1.We now state two propositions:(10)s2is Cauchy sequence by norm if and only if for every real number rsuch that r>0there exists a natural number k such that for all naturalnumbers n,m such that n k and m k holds s2(n)−s2(m) <r.(11)For every sequence v1of l1-Space such that v1is Cauchy sequence bynorm holds v1is convergent.References[1]Grzegorz Bancerek.The ordinal numbers.Formalized Mathematics,1(1):91–96,1990.[2]Czesław Byliński.Functions and their basic properties.Formalized Mathematics,1(1):55–65,1990.380yasumasa suzuki et al.[3]Czesław Byliński.Functions from a set to a set.Formalized Mathematics,1(1):153–164,1990.[4]Czesław Byliński.Some basic properties of sets.Formalized Mathematics,1(1):47–53,1990.[5]Noboru Endou,Yasumasa Suzuki,and Yasunari Shidama.Hilbert space of real sequences.Formalized Mathematics,11(3):255–257,2003.[6]Noboru Endou,Yasumasa Suzuki,and Yasunari Shidama.Real linear space of real sequ-ences.Formalized Mathematics,11(3):249–253,2003.[7]Krzysztof Hryniewiecki.Basic properties of real numbers.Formalized Mathematics,1(1):35–40,1990.[8]Jarosław Kotowicz.Monotone real sequences.Subsequences.Formalized Mathematics,1(3):471–475,1990.[9]Jarosław Kotowicz.Real sequences and basic operations on them.Formalized Mathema-tics,1(2):269–272,1990.[10]Jan Popiołek.Some properties of functions modul and signum.Formalized Mathematics,1(2):263–264,1990.[11]Jan Popiołek.Real normed space.Formalized Mathematics,2(1):111–115,1991.[12]Konrad Raczkowski and Andrzej Nędzusiak.Series.Formalized Mathematics,2(4):449–452,1991.[13]Andrzej Trybulec.Subsets of complex numbers.To appear in Formalized Mathematics.[14]Andrzej Trybulec.Tarski Grothendieck set theory.Formalized Mathematics,1(1):9–11,1990.[15]Wojciech A.Trybulec.Subspaces and cosets of subspaces in real linear space.FormalizedMathematics,1(2):297–301,1990.[16]Wojciech A.Trybulec.Vectors in real linear space.Formalized Mathematics,1(2):291–296,1990.[17]Zinaida Trybulec.Properties of subsets.Formalized Mathematics,1(1):67–71,1990.[18]Edmund Woronowicz.Relations and their basic properties.Formalized Mathematics,1(1):73–83,1990.Received August8,2003。
Exponential map - Wikipedia, the free encyclopedia
The exponential map of the Earth as viewed from the north pole is the polar azimuthal equidistant projection in cartography.Exponential mapFrom Wikipedia, the free encyclopediaIn differential geometry, the exponential map is ageneralization of the ordinary exponential functionof mathematical analysis to all differentiablemanifolds with an affine connection. Two importantspecial cases of this are the exponential map for amanifold with a Riemannian metric, and theexponential map from a Lie algebra to a Lie group.Contents1 Definition2 Lie theory2.1 Definitions2.2 Examples2.3 Properties3 Riemannian geometry3.1 Properties4 Relationships5 See also6 Notes7 References DefinitionLet M be a differentiable manifold and p a point of M . An affine connection on M allows one to define the notion of a geodesic through the point p .[1]Let v ∈ T p M be a tangent vector to the manifold at p . Then there is a uniquegeodesic γv satisfying γv (0) = p with initial tangent vector γ′v (0) = v . The corresponding exponential map is defined by exp p (v ) = γv (1). In general, theexponential map is only locally defined , that is, it only takes a small neighborhood of the origin at T p M , to a neighborhood of p in the manifold. This is because it relies on the theorem on existence and uniqueness for ordinary differentialequations which is local in nature. An affine connection is called complete if the exponential map is well-defined at every point of the tangent bundle.Lie theoryIn the theory of Lie groups, the exponential map is a map from the Lie algebra ofa Lie group to the group which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one of the primary justifications for the study of Lie groups at the level of Lie algebras.The ordinary exponential function of mathematical analysis is a special case of the exponential map when G is the multiplicative group of positive real numbers (whose Lie algebra is the additive group of all real numbers). The exponential map of a Lie group satisfies many properties analogous to those of the ordinary exponential function, however, it also differs in many important respects.DefinitionsLet be a Lie group and be its Lie algebra (thought of as the tangent space to the identity element of ). The exponential map is a mapwhich can be defined in several different ways as follows:It is the exponential map of a canonical left-invariant affine connection on G, such that parallel transport is given by left translation.It is the exponential map of a canonical right-invariant affine connection onG. This is usually different from the canonical left-invariant connection, butboth connections have the same geodesics (orbits of 1-parameter subgroupsacting by left or right multiplication) so give the same exponential map.It is given by whereis the unique one-parameter subgroup of whose tangent vector at the identity is equal to . It follows easily from the chain rule that .The map may be constructed as the integral curve of either the right- orleft-invariant vector field associated with . That the integral curve exists for all real parameters follows by right- or left-translating the solution near zero.If is a matrix Lie group, then the exponential map coincides with the matrix exponential and is given by the ordinary series expansion:(here is the identity matrix).If G is compact, it has a Riemannian metric invariant under left and righttranslations, and the exponential map is the exponential map of this Riemannianmetric.ExamplesThe unit circle centered at 0 in the complex plane is a Lie group (called the circle group) whose tangent space at 1 can be identified with the imaginary line in the complex plane, The exponential map for this Lie group is given bythat is, the same formula as the ordinary complex exponential.In the split-complex number plane the imaginary line forms the Lie algebra of the unit hyperbola groupsince the exponential map is given byThe unit 3-sphere centered at 0 in the quaternions H is a Lie group(isomorphic to the special unitary group ) whose tangent space at 1 can be identified with the space of purely imaginary quaternions,The exponential map for this Lie group is given byThis map takes the 2-sphere of radius inside the purely imaginaryquaternions to a 2-sphere of radiuswhen . Compare this to the first example above.PropertiesFor all , the map is the unique one-parameter subgroup of whose tangent vector at the identity is . It follows that:The exponential map is a smooth map. Its derivative at theidentity, , is the identity map (with the usual identifications).The exponential map, therefore, restricts to a diffeomorphism from someneighborhood of 0 in to a neighborhood of 1 in .The exponential map is not, however, a covering map in general – it is not alocal diffeomorphism at all points. For example, so(3) to SO(3) is not acovering map; see also cut locus on this failure.The image of the exponential map always lies in the identity component of .When is compact, the exponential map is surjective onto the identitycomponent.The image of the exponential map of the connected but non-compact group SL2(R) is not the whole group. Its image consists of C-diagonalizable matrices with eigenvalues either positive or with module 1, and of non-diagonalizabletrigonalizable matrices with eigenvalue 1.The map is the integral curve through the identity of both the right- and left-invariant vector fields associated to .The integral curve through of the left-invariant vector fieldassociated to is given by . Likewise, the integral curve through of the right-invariant vector field is given by . It follows that the flows generated by the vector fields are given by:Since these flows are globally defined, every left- and right-invariant vector field on is complete.Let be a Lie group homomorphism and let be its derivative at theidentity. Then the following diagram commutes:In particular, when applied to the adjoint action of a group we haveRiemannian geometryIn Riemannian geometry, an exponential map is a map from a subset of a tangent space T p M of a Riemannian manifold (or pseudo-Riemannian manifold) M to M itself. The (pseudo) Riemannian metric determines a canonical affine connection, and the exponential map of the (pseudo) Riemannian manifold is given by the exponential map of this connection.PropertiesIntuitively speaking, the exponential map takes a given tangent vector to the manifold, runs along the geodesic starting at that point and going in that direction, for a unit time. Since v corresponds to the velocity vector of the geodesic, the actual (Riemannian) distance traveled will be dependent on that. We can also reparametrize geodesics to be unit speed, so equivalently we can defineexp p(v) = β(|v|) where β is the unit-speed geodesic (geodesic parameterized by arc length) going in the direction of v. As we vary the tangent vector v we will get, when applying exp p, different points on M which are within some distance from the base point p—this is perhaps one of the most concrete ways of demonstrating that the tangent space to a manifold is a kind of "linearization" of the manifold.The Hopf–Rinow theorem asserts that it is possible to define the exponential map on the whole tangent space if and only if the manifold is complete as a metric space (which justifies the usual term geodesically complete for a manifold having an exponential map with this property). In particular, compact manifolds are geodesically complete. However even if exp p is defined on the whole tangent space,it will in general not be a global diffeomorphism. However, its differential at the origin of the tangent space is the identity map and so, by the inverse function theorem we can find a neighborhood of the origin of T p M on which the exponential map is an embedding (i.e., the exponential map is a local diffeomorphism). The radius of the largest ball about the origin in T p M that can be mapped diffeomorphically via exp p is called the injectivity radius of M at p. The cut locus of the exponential map is, roughly speaking, the set of all points where the exponential map fails to have a unique minimum.An important property of the exponential map is the following lemma of Gauss (yet another Gauss's lemma): given any tangent vector v in the domain of definition of exp p, and another vector w based at the tip of v (hence w is actually in the double-tangent space T v(T p M)) and orthogonal to v, remains orthogonal to v when pushed forward via the exponential map. This means, in particular, that the boundary sphere of a small ball about the origin in T p M is orthogonal to the geodesics in M determined by those vectors (i.e., the geodesics are radial). This motivates the definition of geodesic normal coordinates on a Riemannian manifold.The exponential map is also useful in relating the abstract definition of curvature to the more concrete realization of it originally conceived by Riemann himself—the sectional curvature is intuitively defined as the Gaussian curvature of some surface (i.e., a slicing of the manifold by a 2-dimensional submanifold) through the point p in consideration. Via the exponential map, it now can be precisely defined as the Gaussian curvature of a surface through p determined by the image under exp p of a 2-dimensional subspace of T p M.RelationshipsIn the case of Lie groups with a bi-invariant metric—a pseudo-Riemannian metric invariant under both left and right translation—the exponential maps of the pseudo-Riemannian structure are the same as the exponential maps of the Lie group. In general, Lie groups do not have a bi-invariant metric, though all connected semi-simple (or reductive) Lie groups do. The existence of a bi-invariant Riemannian metric is stronger than that of a pseudo-Riemannian metric, and implies that the Lie algebra is the Lie algebra of a compact Lie group; conversely, any compact (or abelian) Lie group has such a Riemannian metric.Take the example that gives the "honest" exponential map. Consider the positive real numbers R+, a Lie group under the usual multiplication. Then each tangent space is just R. On each copy of R at the point y, we introduce the modified inner product(multiplying them as usual real numbers but scaling by y2). (This is what makes the metric left-invariant, for left multiplication by a factor will just pull out of the inner product, twice — canceling the square in the denominator).Consider the point 1 ∈ R+, and x ∈ R an element of the tangent space at 1. The usual straight line emanating from 1, namely y(t) = 1 + xt covers the same path as a geodesic, of course, except we have to reparametrize so as to get a curve with constant speed ("constant speed", remember, is not going to be the ordinary constant speed, because we're using this funny metric). To do this we reparametrize by arc length (the integral of the length of the tangent vector in the norm induced by the modified metric):and after inverting the function to obtain t as a function of s, we substitute and getNow using the unit speed definition, we have,giving the expected e x.The Riemannian distance defined by this is simply,a metric which should be familiar to anyone who has drawn graphs on log paper. See alsoList of exponential topicsNotes1. ^ A source for this section is Kobayashi & Nomizu (1975, §III.6), which uses the term"linear connection" where we use "affine connection" instead.Referencesdo Carmo, Manfredo P. (1992), Riemannian Geometry, Birkhäuser, ISBN 0-8176-3490-8. See Chapter 3.Cheeger, Jeff; Ebin, David G. (1975), Comparison Theorems in RiemannianGeometry, Elsevier. See Chapter 1, Sections 2 and 3.Hazewinkel, Michiel, ed. (2001), "Exponential mapping"(/index.php?title=p/e036930), Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4Helgason, Sigurdur (2001), Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics 34, Providence, R.I.: AmericanMathematical Society, ISBN 978-0-8218-2848-9, MR 1834454(https:///mathscinet-getitem?mr=1834454).Kobayashi, Shoshichi; Nomizu, Katsumi (1996), Foundations of DifferentialGeometry, Vol. 1 (New ed.), Wiley-Interscience, ISBN 0-471-15733-3.Retrieved from "/w/index.php?title=Exponential_map&oldid=602570281"Categories: Exponentials Lie groups Riemannian geometryThis page was last modified on 3 April 2014 at 12:36.Text is available under the Creative Commons Attribution-ShareAlike License;additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the WikimediaFoundation, Inc., a non-profit organization.。
台球的英语作文
Billiards,a classic and sophisticated sport,has been enjoyed by enthusiasts around the world for centuries.It is a game that combines strategy,precision,and skill,offering a unique challenge to players of all levels.The Origins of BilliardsThe history of billiards dates back to the15th century in France,where it was known as bille.The game evolved over time,with the introduction of the cue stick,the billiard table, and the various types of balls used today.The modern game of billiards,as we know it, was formalized in the19th century.Types of BilliardsThere are several variations of billiards,each with its own set of rules and objectives:1.Snooker:Originating in India,snooker is played on a larger table with21balls, including15reds,6colors,and the white cue ball.The objective is to score points by potting the balls in a specific order.2.Pool:This is perhaps the most common form of billiards,with variations such as8ball and9ball.Pool is played on a table with six pockets and typically involves potting a set of solid or striped balls before the8ball in8ball pool.3.Carom Billiards:This form of the game is played without pockets on the table.The aim is to strike the cue ball so that it touches both the object ball and the rail in a single shot.EquipmentThe essential equipment for billiards includes:A billiard table:Covered in cloth and having six pockets,it provides a smooth and even surface for the balls to roll.Cue sticks:These are used to strike the cue ball and are available in various lengths and weights.Chalk:Applied to the tip of the cue stick to ensure a firm grip on the cue ball.Balls:Made of materials like phenolic resin or composite materials,they come in different sizes and colors depending on the game being played.Skills and TechniquesMastering billiards requires the development of several key skills:Accuracy:The ability to hit the ball with precision,controlling the direction and speed of the shot.Strategy:Planning the sequence of shots to achieve the games objectives while considering potential obstacles and opportunities.Control:Managing the spin and power of the cue ball to influence the movement of the object ball.Health BenefitsPlaying billiards offers numerous health benefits,including:Improved handeye coordination:The game requires players to focus on the ball and the intended target,enhancing this skill over time.Mental stimulation:Billiards is a game of strategy,which can help to improve cognitive function and problemsolving abilities.Physical relaxation:The game can be a calming activity,reducing stress and promoting a sense of wellbeing.ConclusionBilliards is more than just a game it is a sport that fosters mental agility,physical dexterity,and social interaction.Whether you are a casual player or a seasoned competitor,the world of billiards offers endless opportunities for enjoyment and personal growth.So,gather your cue stick,chalk up,and prepare to engage in this timeless sport that has captivated players for generations.。
学校社团英语作文
School clubs are an integral part of the educational experience,offering students a chance to explore their interests,develop new skills,and foster a sense of community. Heres a detailed look at the various aspects of school clubs and their impact on students.Introduction to School ClubsSchool clubs are organized groups that focus on a specific interest or activity.They can range from academic to recreational,and are often run by students with the guidance of a faculty advisor.These clubs provide a platform for students to engage in activities they are passionate about,outside the regular curriculum.Types of School Clubs1.Academic Clubs:These include Math clubs,Science Olympiad teams,Debate clubs, and Language learning groups.They cater to students who wish to delve deeper into their academic interests.2.Arts and Literature Clubs:Drama clubs,Creative Writing groups,and Photography clubs are popular among students who have a flair for the arts.3.Sports Clubs:From traditional sports like football and basketball to more niche activities like chess or martial arts,sports clubs encourage physical fitness and teamwork.4.Social and Community Service Clubs:These clubs focus on giving back to the community,such as volunteering at local shelters or organizing charity events.5.Special Interest Clubs:Clubs like Robotics,Astronomy,or Environmental clubs cater to students with unique interests.Benefits of School Clubs1.Skill Development:Clubs provide an opportunity for students to develop and hone specific skills,whether its public speaking,leadership,or technical skills in a particular field.2.Personal Growth:Participation in clubs can boost selfconfidence,as students take on responsibilities and see the results of their efforts.working:Clubs are a great way to meet likeminded peers and form lasting friendships.4.Leadership Opportunities:Many clubs offer leadership roles,such as club president or treasurer,which can be valuable experience for future career paths.5.College Applications:Involvement in extracurricular activities,including clubs,can make a students college application stand out.Challenges of School Clubs1.Time Management:Balancing club activities with academic responsibilities can be challenging,requiring good time management skills.2.Funding:Some clubs may struggle with securing enough funding for resources orevents,which can limit their activities.3.Member Engagement:Keeping members actively involved and interested can be a challenge,especially as students interests and priorities change.How to Start a School Club1.Identify a Need or Interest:Find a gap or a shared interest among students that isnt currently being addressed by existing clubs.2.Gather Support:Rally a group of interested students to join as founding members.3.Find a Faculty Advisor:A teacher or staff member must support and guide the club.4.Write a Club Constitution:This document outlines the clubs purpose,structure,and rules.5.Apply for Recognition:Submit an application to the school administration for official recognition as a school club.ConclusionSchool clubs are a vibrant part of student life,offering a wealth of opportunities for learning,growth,and enjoyment.They enrich the educational experience by providing a space for students to pursue their passions and interests in a supportive and structured environment.Whether youre a student looking to join a club or someone interested in starting one,theres a world of possibilities waiting to be explored.。
Distributions of discriminants of cubic algebras
TAKASHI TANIGUCHI
arXiv:math/0606109v1 [math.NT] 5 Jun 2006
Abstract. We study the space of binary cubic and quadratic forms over the ring of integers O of an algebraic number field k. By applying the theory of prehomogeneous vector spaces founded by M. Sato and T. Shintani, we can associate the zeta functions for these spaces. Applying these zeta functions, we derive some density theorems on the distributions of discriminants of cubic algebras of O. In the case k is a quadratic field, we give a correction term as well as the main term. These are generalizations of Shintani’s asymptotic formulae of the mean values of class numbers of binary cubic forms over Z.
1. Introduction Let k be a number field and O the ring of integers of k. Let r1 and r2 be the number of real and complex places of k. We denote by ∆k , hk and ζk (s) the absolute discriminant, the class number and the Dedekind zeta function of k, respectively. We put Ak := (Ress=1 ζk (s)) · ζk (2) 2r1 +r2 , +1 Bk := (Ress=1 ζk (s)) · 3r1 +r2 /2 ζk (1/3) 5 · 2r1 +r2 ∆k
HOPF ALGEBRAS
θ ⊗θ
/ B⊗B
θ
/B O
uB
k commute.
k
Definition. Let C and D be k -coalgebras. A linear map f : C → D is a k -coalgebra morphism if the diagrams C C ⊗C and C
HOPF ALGEBRAS
5
For example, if A is any associative k -algebra then A is a Lie algebra if we define [a, b] = ab − ba for all a, b ∈ A. In particular, when A = Mn (k ), we write this as gl(n, k ). The universal enveloping algebra of the Lie algebra g is the factor algebra of the tensor algebra T (g) by the ideal I (g) =< [x, y ] − xy + yx : x, y ∈ g > There is a bijective correspondence between left U (g)-modules and representations of the Lie algebra g, where the latter are - by definition - Lie algebra homomorphisms ρ : g → End(V ) for k -vector spaces V . Special case (A): Let n ≥ 1, g =
Jordan李代数的次理想
Jordan李代数的次理想温启军【摘要】The main purpose of the present paper is to give some properties for subideals of Jordan Lie algebras. Every perfect subideal of Jordan Lie algebras is its ideal and solvable subideals are contained in its solvable radical. Moreover, every subalgebra of nilpotent Jordan Lie algebras is its subideal and some necessary conditions under which subideals become ideals for Jordan Lie algebras have been obtained.%研究Jordan李代数的次理想.结果表明:Jordan李代数的完全次理想是理想,可解次理想一定包含可解根基; 幂零的Jordan李代数的任何子代数都是次理想,并得到了次理想变为理想的一些必要条件.【期刊名称】《吉林大学学报(理学版)》【年(卷),期】2011(049)006【总页数】5页(P1014-1018)【关键词】Jordan李代数;Engel定理;次理想;理想【作者】温启军【作者单位】长春大学,理学院,长春,130022【正文语种】中文【中图分类】O152.50 引言基于李代数、李超代数和Jordan代数的研究, Susumu等[1]给出了Jordan李超代数[2]的概念. 设L是一个Z2阶化向量空间, 记为⊕ 设σ(x)是J上的一个阶化函数:为方便, 记(-1)xy∶=(-1)σ(x)σ(y), ∀x,y∈L.如果在J上定义一个[·,·], 满足下列条件, 则当时称J是一个Jordan李代数[3]:1) σ([x,y])={σ(x)+σ(y)} (mod 2);2) [x,y]=-δ(-1)xy[y,x], 其中δ=±1;3) (-1)xz[[x,y],z]+(-1)yx[[y,z],x]+(-1)zy[[z,x],y]=0.易见当δ=1时, Jordan李代数就是通常意义的李代数, 即Jordan李代数更广泛. 目前, 关于李代数次理想的结构与性质的研究已取得许多结果[4-10]. 文献[6,11]也将次理想的概念引入到Jordan代数、交错代数和李三系中. 最近, Siciliano等[12]把次理想引入到李超代数, 得到了次理想的若干重要性质. 本文把次理想的概念引入到Jordan李代数, 给出了Jordan李代数次理想的基本性质和一些必要条件. 本文的可解、根基、幂零等概念和李代数类似, 一些符号和术语与文献[1-7]一致.1 主要结果定义1 设L是Jordan李代数, 若存在L的子代数Li满足如下条件, 则L的子代数A称为次理想:L=L0▷L1▷…▷Lr=A, i=0,1,…,r,其中Li+1是Li的理想, 记为A◁◁L或L▷▷A.引理1[5] 设V是向量空间, f是V的一个自同态, X是多项式且X(f)=0, 则下列结论成立:1) 若X=q1·q2, q1与q2互素, 则V=U⊕W满足q1(f)(U)=q2(f)(W)={0};2) V可以分解为V=V0⊕V1, 这里f|V0是幂零的, f|V1是可逆的. V0和V1分别称为Fitting-0分量和Fitting-1分量.注1 设L是有限维的Jordan李代数, 其中: Bi={x∈L(x)=0}; a∈L; i∈N. 则A=[a,A], 且存在n∈N, 使得(ad a)n(B)={0}. 利用引理1, 可得L=A⊕B.引理2 设L是有限维的Jordan李代数. 若A是L的理想, 则CL(A),C(L)和C(A)都是L的理想.证明: 利用理想的定义易证CL(A),C(L)和C(A)都是 L的理想.引理3(Engel定理)[2] 设J是有限维的Jordan李代数, 则J是幂零的当且仅当∀x∈J, x是ad-幂零元.定理1 设L是有限维的Jordan李代数, L′是L的子代数. 若A和B是L的次理想, C是A的次理想, 则下列结论成立:1) C是L的次理想;2) A∩L′是L′的次理想; 特别地, 若A⊆L′, 则A是L′的次理想;3) A∩B是L的次理想;4) 若f是L的同态, 则f(A)是f(L)的次理想; 反之, 若f(E)是f(L)的次理想, E是f(E)的原像, 则E是L的次理想;5) 若L幂零, 则L′是L的次理想;6) 设∀a∈A, 则L1⊆A.证明: 1) 由于A是L的次理想, 且C是A的次理想, 则存在s,r∈N, 使得C=Cs◁Cs-1◁…◁C1◁A=Ar◁Ar-1◁…◁A1◁L.因此C是L的次理想.2) 设L=A0▷A1▷…▷Ar=A, 且由于Aj▷Aj+1和L′是L的子代数, 所以⊆即▷从而▷▷…▷故A∩L′是L′的次理想.3) 由1)和2)可得.4) 由L=A0▷A1▷…▷Ar=A和f是L的同态, 可得f(Ai)▷f(Ai+1)(i=0,1,2,…,r-1), 则f(L)=f(A0)▷f(A1)▷…▷f(Ar)=f(A). 因此f(A)是f(L)的次理想. 反之, 若f(E)是f(L)的次理想, 则可得f(L)=f(E0)▷f(E1)▷…▷f(Er)=f(E). 由f([Ei,Ei+1])=[f(Ei), f(Ei+1)]⊆f(Ei+1), i=0,1,…,r-1可得[Ei,Ei+1]⊆Ei+1, 即Ei+1◁Ei. 因此L=E0▷E1▷…▷Er=E, 即E◁◁L.5) 设L是幂零的, 则存在k∈N, 使得Lk={0}. 由Li◁L和L′是L的子代数, 可得[L′+Li,L′+Li-1]⊆L′+[L′,Li-1]+[L′,Li]+[L i,Li-1]⊆L′+Li-1,即L′+Li◁L′+Li-1(i=0,1,…,k). 因此, 有L′◁L′+Lk-1◁L′+Lk-2◁…◁L′+L=L,即L′◁◁L, 故L′是L的次理想.6) 设A是L的次理想, 且a∈A, 则L=A0▷A1▷…▷Ar=A(i=1,2,…,r), 即⊆[A,[Ar-1,[Ar-2,…[A1,L]…]]]⊆A,故L1⊆A.定理2 设L是Jordan李代数, A是L的次理想, 则下列结论成立:◁L;2) 若[A,A]=A, 则A是L的理想;3) 若存在正整数n, 使得A(n)=A(n+1), 则A(n)是L的理想.证明: 1) 设A◁◁L, 则存在L的子代数Ai, 使得L=L0▷L1▷…▷Lr=A(i=0,1,…,r), 从而⊆A. 于是, 存在k∈N, 使得[L,Aw]⊆[L,Ar+k]⊆故存在k∈N, 使得[L,Aw]⊆Ak+1, 即◁L.2) 若[A,A]=A, 则由式(1)知A是L的理想.3) 因为所以故由A(n+1)=A(n)=A(n-1)2及式(1)可知, A(n)是L的理想.定理3 设A是Jordan李代数L的次理想, 则下列结论成立:1) L=Lw+H, 这里H是L的幂零子代数;2) A=Aw+H1, 这里H1是A的幂零子代数.证明: 1) 设L是幂零的, 则由引理3可得Aw={0}, L=H. 若L不是幂零的, 则对dim L用数学归纳法, 由引理3可知, 存在x∈L, 使得ad x不是幂零的. 再由注1可得L=A⊕B, 其中: ad x|A是可逆的; ad x|B是幂零的.显然, A≠{0}且B≠{0}. 由引理3知, B是L的子代数. 因为dim B<dim L, 所以由归纳假设可知, B中存在一个幂零子代数H, 使得B=Bw+H. 再由注1得ad x(A)=A, 从而A⊆Lw. 于是, 由A+Bw⊆Lw, 可得L=A+B=A+Bw+H=Lw+H.2) 由定理2中1)和本定理1)可得结论2)成立.推论1 设L是有限维的Jordan李代数, A是L的次理想. 若M是L的极大理想, 且AwM, 则A⊆M或A/(A∩M)≅L/M.证明: 若AM, 则由M是L的理想可得[A∩M,A]⊆A∩M, 从而A∩M是A的理想. 又由[A+M,A+M]⊆A+M可得A+M是L的子代数. 再利用定理2中1)得◁L, 于是, M+Aw是L的理想.由AwM可得Aw+M≠M. 因为M是L的极大理想, 所以M+A⊇M+Aw=L, 即A+M=L. 又由第二同构定理可得A/(A∩M)≅A+M/M=L/M. 结论成立.注2 设L是有限维的Jordan李代数, U*为L中所有包含U的次理想的交. 则由定理1中3)可知U*是所有满足条件U*◁◁L和U*⊇U中极小的.推论2 设L是有限维的Jordan李代数, U*为L中所有包含U的次理想的交. 若U 是L的子代数, 则U*=U+U*w也是L的子代数.证明: 由已知和定理3中1)知, U*w是L的理想. 显然, U*⊇U+U*w. 又由定理3中3)可知, (U+U*w)-U*w是幂零代数U*-U*w的子代数; 由定理1中5)可知,(U+U*w)-U*w是U*-U*w的次理想; 由定理1中4)知, (U+U*w)-U*w是L-U*w 的次理想, (U+U*w)是L的次理想, 所以U*⊆U+U*w且U*=U+U*w. 因为U*w是L的理想且U是L的子代数, 所以[U*,U*]=[U+U*w,U+U*w]⊆U+U*w=U*,即U*是L的子代数.引理4 设L是幂零Jordan李代数. 若I≠{0}是L的理想, 则I∩C(L)≠{0}.证明: 由L是幂零Jordan李代数可知, 存在n∈N, 使得且则⊆C(L). I≠{0}是L的理想, 从而⊆I, 故I∩C(L)≠{0}.引理5 设L是幂零Jordan李代数. 若CL(Lw) 则C(L)≠{0}.证明: 由于Lw是L的理想, 所以由引理2知CL(Lw)也是L的理想. 根据定理2中2), L=Lw+H, 这里H是L的幂零子代数. 设L1=H+CL(Lw), 由CL(Lw)是L的理想可得[L1,L1]=[H+CL(Lw),H+CL(Lw)]⊆H+CL(Lw)=L1,即L1是L的子代数.根据定理3中2), 有这里H1是L1的幂零子代数. 由CL(Lw)是L的理想, 得⊆CL(Lw). 若CL(Lw)⊆则由⊆Lw得CL(Lw)⊆Lw. 这与假设矛盾. 因此, 存在x∈CL(Lw)和x∉Lw. 因为CL(Lw)⊆所以可以记则与x的选取矛盾. 因此, 有⊆CL(Lw). 从而h=x-yw∈CL(Lw), 故H1∩CL(Lw)≠{0}.由CL(Lw)是L的理想知H1∩CL(Lw)也是H1的理想. 由H1的幂零性知H1有非零中心Q≠{0}. 根据定理1可得P=(H1∩CL(Lw))∩Q≠{0}. 设L=Lw+H, H⊆由且⊆Lw, 可得H⊆Lw+H1. 利用L=Lw+H⊆⊆Lw+H1和Lw+H1⊆L, 可知L=Lw+H1. 因为P⊆CL(Lw)且P是H1的中心, 所以P是Lw的中心化子. 由P=(H1∩CL(Lw))∩Q⊆CH1(Lw)∩CH1(H1)=CH1(L)可知P是L的中心.定理4 设L是Jordan李代数. 若A是L的次理想, 且CL(A)={0}, 则CL(Aw)⊆Aw, 这里证明: 若A∩CL(Aw)=CA(Aw)⊆Aw不成立, 则由引理5知A有非零中心, 与假设矛盾. 设CL(Aw)Aw. 若CL(Aw)⊆A, 则CL(Aw)=CA(Aw)⊆Aw. 矛盾, 故CL(Aw)A. 根据定理2中1)知, Aw是L的理想, 因此由引理2知, CL(Aw)也是L的理想. 又由CL(Aw)A可知A+CL(Aw)=K是L的子代数, 且A≠K. 因为A是L的次理想, K是L 的子代数, 故由定理1中2)可知, A是K的次理想, 即A◁A1◁◁K, A1≠A. 若a1∈A1且a1∉A, 则有a1=a+z, a∈A, z∈CL(Aw), z∉A. 若B=A+Fz, 则由A是A1的理想可知B是L的子代数. 设则Aw=Bw. 因为A⊆B, 所以Ai⊆Bi(i∈N). 另一方面, 由A是A1的理想及CL(Aw)是L的理想可知, [A,z]⊆A∩CL(Aw). 再利用A∩CL(Aw)⊆Aw及对i进行数学归纳可得, Bi⊆Ai(1<i∈N). 由于z∉Aw, 故利用定理3可知B存在中心, 从而A在L中存在非零的中心化子. 与假设矛盾, 于是CL(Aw)⊆Aw.引理6 设L是Jordan李代数, A是L的可解次理想. 则A⊆R(L), 这里R(L)是L的可解根基.证明: 因为A是L的次理想, 所以存在L的子代数L=Ar▷Ar-1▷…▷A0=A. 设R(Ai)是Ai的可解根基. 由于A是L的可解子代数, 且A是A1的理想, 即A是A1的可解理想, 从而A⊆R(A1). 由于R(Ai)⊆R(Ai+1), 所以A⊆R(L).定理5 设ch F=0. 如果Jordan李代数L的任何一维子空间A都是次理想, 则L是可解的.证明: 对任意的x∈L, x≠0, 由文献[2]中的定理2.8知, Fx是一维交换的Jordan李代数, 从而是L的可解子代数, 于是由已知得Fx是L的可解次理想. 故由引理6可得Fx⊆R(L), 因此x∈R(L). 再由x的任意性可知, 有L⊆R(L), 因此结论成立.定理6 如果Jordan李代数L是幂零的, 则它的任何子代数A都是次理想. 特别地, 若A是L的极大子代数, 则A是L的理想.证明: 由于L是幂零的, 所以存在正整数n, 使得Ln={0}. 则◁故它的任何子代数A都是次理想.特别地, 若A是L的极大子代数, 则A+Ln-1=L. 利用可得[A,L]=[A,A+Ln-1]⊆A, 即A是L的理想.引理7 如果L是可解Jordan李代数, 且A是L的极小理想, 则A是可交换的.证明: 若L是可解Jordan李代数, 且A是L的极小理想, 则A是可解的, 且[[A,A],L]⊆[A,[A,L]]⊆[A,A]. 因此[A,A]是L的理想, 且[A,A]⊆A, 从而由A是L的极小理想可得[A,A]={0}或[A,A]=A. 又由于A是可解的, 所以有[A,A]≠A. 因此[A,A]={0}, 故结论成立.定理7 如果Jordan李代数L是可解的, 且A是它的子代数. 若L=ad x(L), ∀x∈A. 则A是L的次理想.证明: 设B是L的极小理想, 则由引理4知B是可交换的, 从而ad x(∀x∈A)是B+A的幂零导子. 由引理3可得B+A是幂零的, 且A是B+A的次理想. 由于B+A/A在L/A也满足此条件, 故从而A是L的次理想.定理8 如果Jordan李代数L是可解的, 且M,B,C是它的子代数. 若B,C是M的次理想, 且L=〈B,C〉, 则M是L的次理想.证明: 利用定理2中1)可得且则由于L/Mw也满足此条件, 故可以假设Mw={0}. 因此M是幂零的, 且L=ad x(L), ∀x∈D=〈B,C〉. 于是由引理4知, M是L的次理想.参考文献【相关文献】[1] Susumu Okubo, Kamiya N. Jordan-Lie Super Algebra and Jordan-Lie Triple System [J]. Journal of Algebra, 1997, 198(2): 388-411.[2] Grishkov A N, Shestakov I P. Speciality of Lie-Jordan Algebra [J]. Journal of Algebra, 2001, 237(2): 621-636.[3] WEN Qi-jun, QIAN Ling, CHEN Liang-yun. On the Decomposition and Frattini Theory of Jordan Lie Algebras [J]. Journal of Northeast Normal University: Natural Science Edition, 2010, 42(4): 12-15. (温启军, 钱玲, 陈良云. Jordan李代数的分解与Frattini理论 [J]. 东北师大学报: 自然科学版, 2010, 42(4): 12-15.)[4] 孟道骥. 复半单李代数引论 [M]. 北京: 北京大学出版社, 1998.[5] Strade H, Frasteiner R. Modular Lie Algebras and Their Representations [M]. New York: Marcel Dekker Inc, 1988: 300.[6] LIU Shao-xue. Sub Ideals of Alternative Algebras and Jordan Algebras [J]. Advances in Mathematics, 1964, 7(1): 72-77. (刘绍学. 交错代数与Jordan代数的次理想 [J]. 数学进展, 1964, 7(1): 72-77.)[7] Osamu Marou. Subideals of the Join of Lie Algebras [J]. Hiroshima Math J, 1990, 20(1): 57-62.[8] Schenkman E V. A Theory of Subinvariant of Lie Algebras [J]. Amer J Math, 1951, 73(2): 453-474.[9] Stewart I N. The Minimal Condition for Subideals of Lie Algebras [J]. Math Z, 1969, 111(4): 301-310.[10] Stewart I N. The Minimal Condition for Subideals of Lie Algebras Implies That Every Ascendant Subalgebra Is a Subideal [J]. Hiroshima Math J, 1979, 9(1): 35-36.[11] TIAN Ming-xin, ZHANG Zhi-xue. Radicals and Properties of Subideals for Lie Triple Systems [J]. Advances in Mathematics, 2008, 37(3): 365-373. (田明欣, 张知学. 李三系的根基与次理想 [J]. 数学进展, 2008, 37(3): 365-373.)[12] Siciliano S, Usefi H. Subideals of Lie Superalgebras [J]. Journal of Algebra, 2011,332(1): 469-479.。
Searching for Leviathan An Empirical Study
1
2
RAHIM MOOSA, ANAND PILLAY, AND THOMAS SCANLON
n commuting derivations, DF0,n , has a model completion, DCF0,n , the theory of differentially closed fields of characteristic zero with n commuting derivations. We regard the study of DCF0,n as being synonomous with the study of algebraic differential equations. Even for ordinary algebraic differential equations, it is not the case that every such differential equation is analyzable in terms of linear differential equations. For example, there are many differential equations for which if X ⊆ K is the set of solutions to the equation in some differentially closed field K and L ⊆ K n is a (finite dimensional over the constants) vector space of solutions to a system of linear differential equations, then for any Γ ⊆ X × L defined itself by differential equations, if both projections are surjective, then Γ = X × L. Nevertheless, at least in the case of ordinary differential equations, such a situation is always explained by the geometric simplicity of X . Hrushovski and Sokolovi´ c showed in [5] that if a minimal type in DCF0,1 (their proof immediately generalizes to minimal types of finite transcendence degree in DCF0,n ) is not locally modular, then it must be nonorthogonal to the generic type of the constant field. Here locally modular may be read as geometrically simple. This dichotomy theorem lies at the heart of the model-theoretic proof of the characteristic zero function field version of the Mordell-Lang conjecture [4]. When a group is present, local modularity means that all the generic structure comes from definable groups and when a group is absent, local modularity means that all of the structure is essentially binary. Later in this paper we make heavy use of these and related concepts from geometric stability theory. The reader may wish to consult [11] for the technical details. The Hrushovski-Sokolovi´ c proof relies on the central theorem on Zariski geometries of Hrushovski and Zilber [6]. Recently, Pillay and Ziegler found a direct proof of a strengthening of this theorem based on a theory of jet spaces for algebraic D-varieties [12]. It had been hoped that the jet space technology would adapt to higher dimensional systems of partial differential equations, but technical difficulties obstructed a smooth application of these methods. However, arc spaces of differential varieties work beautifully and we employ them to prove a higher dimensional version of the dichotomy theorem. In particular we define the differential arc spaces Am (X ) of a differential algebraic variety X . The fibre Am (X )a at a point a ∈ X will not be a definable group, but will be obtained by a sequence of fibrations, each fibre of which is isomorphic to the differential tangent space of X at a, which is a definable group. The theory DCF0,n is totally transcendental [9, 15], and in particular, superstable. As such, every type is coordinatized by regular types. If K |= DCF0,n is a differentially closed field, V ⊆ ⊕n i=1 K∂i is a d-dimensional subspace of the Lie algebra spanned by the distinguished derivations, and CV := K V := {x ∈ K | ∂ (x) = 0 for all ∂ ∈ V }, then the generic type of CV has Lascar rank ωn−d . It follows from the Lascar inequalities that this type is regular. We conjecture that every non locally modular regular type in DCF0,n is nonorthogonal to a generic type of such a constant field. We will prove that every non-locally modular regular type is nonorthogonal to a regular type which is the generic type of a definable subgroup of the additive group. As all such groups are defined by linear differential equations, this gives, in particular, a rigorous sense to the assertion that the geometric
Algebra1中英版对照目录
解混合一元一次不等式(一元一次不等式组)P202—P209 Quiz for Chapter 3 第三章小测试 P210—P225 CHAPTER 4—Functions 函数 4—1:Graphing Relationships 关系图(函数关系图)P230—P235 4—2:Relations and Functions 函数的对应关系 P236—P244 4—3:Writing Functions 函数的表达式 P245—251 4—4:Graphing Functions 函数的图像(直线、二次函数)P252—P260 CHAPTER 4—Functions 函数 4—5:Scatter Plots and Trend Lines 点的散布图与趋势线 P262—P271 4—6:Arithmetic Sequences 等差数列 (等差数列的项和通项)P272—P278 Quiz for Chapter 4 第四章小测试 P279—P291 CHAPTER 5— Linear Functions 一次函数 5—1:Identifying Linear Functions 识别一次函数 P296—P302 5—2:Using Intercepts 截距式(一次函数与坐标轴的交点)P303—P309 CHAPTER 5— Linear Functions 一次函数 5—2:Using Intercepts 截距式(一次函数与坐标轴的交点)P303—P309 5—3:Rate of Change and Slope 变化率和斜率 P310—P319 5—4:The Slope Formula 斜率的公式 P320—P325 5—5:Direct Variation 正比例函数 P326—P332 5—6:Slope-Intercept Form 斜截式方程 P334—P340 5—6:Point-Slope Form 点斜式方程 P341—P348 5—8:Slope of Parallel and Perpendicular Lines 相互平行与垂直直线的斜率
Properties of Free Baxter Algebras
a rX iv:mat h /47157v1[mat h.RA]9J u l24Properties of Free Baxter Algebras ∗Li Guo Department of Mathematics and Computer Science Rutgers University Newark,NJ 07102,USA (liguo@)Abstract The study of free Baxter algebras was started by Rota and Cartier thirty years ago.We continue this study by applying two recent constructions of free Baxter algebras.We investigate the basic structure of a free Baxter algebra,and characterize in detail when a free Baxter algebra is a domain or a reduced algebra.We also describe the nilpotent radical of a free Baxter algebra when it is not reduced.1Introduction The study of Baxter operators originated in the work of Baxter [2]on fluc-tuation theory,and the algebraic study of Baxter operators was started by Rota [14].Let C be a commutative ring and let λbe a fixed element in C .A Baxter algebra of weight λis a commutative C -algebra R together with aC -linear operator P on R such that for any x,y ∈R ,P (x )P (y )=P (xP (y ))+P (yP (x ))+λP (xy ).Baxter algebras have important applications in combinatorics [15,16]and are closely related to several areas in algebra and geometry,such as differential algebras [11],difference algebras [6]and iterate integrals in geometry [4].As in any algebraic system,free Baxter algebras play a central role in the study of Baxter algebras.Even though the existence of free Baxter algebras follows from the general theory of universal algebras,in order to get a good understanding of free Baxter algebras,it is desirable tofind concrete constructions of a free Baxter algebra.Two constructions were given in[8, 9],called shuffle Baxter algebras and standard Baxter algebras respectively (see Section2for details).The construction of shuffle Baxter algebras is motivated by the shuffle product of iterated integrals[13]and an earlier construction of Cartier[3].The construction of standard Baxter algebras is motivated by a construction of Rota[14].In this paper,we apply these two constructions of free Baxter algebras to obtain further information about free Baxter algebras.After a brief discus-sion of basic properties of free Baxter algebras,we will focus on the investi-gation of zero divisors and nilpotent elements in a free Baxter algebra.This question has been considered by Cartier[3]and Rota[14,15]for Baxter alge-bras of weight one without an identity.In their case,the free Baxter algebras have very good properties.In fact the algebras are often isomorphic to either polynomial algebras or power series algebras.The explicit descriptions of free Baxter algebras obtained in[8,9]enable us to consider this question for a more general class of Baxter algebras.It is interesting to observe that even if a free Baxter algebra is constructed from an integral domain or a reduced algebra,the free Baxter algebra is not necessarily a domain or a reduced algebra.We show that the obstruction depends on several factors,includ-ing the characteristic of the base algebra,the weight of the Baxter algebra, whether or not the Baxter algebra has an identity and whether or not the Baxter algebra is complete.We provide necessary and sufficient conditions for a free Baxter algebra to be a domain or to be reduced(Theorem4.2and 4.6),and describe the nilpotent radical when a free Baxter algebra is not reduced(Theorem4.8).Wefirst give a brief summary of the concept of Baxter algebras and the two constructions of free Baxter algebras in section2.In section3we study basic properties of free Baxter algebras,such as subalgebras,quotient algebras and limits.In section4we study in detail when a free Baxter algebra is a domain or a reduced algebra.We also consider free complete Baxter algebras.2Free Baxter algebrasFor later application,we will describe the constructions of free Baxter alge-bras[8,9].We will also prove some preliminary results.We write N for the additive monoid of natural numbers and N+for the2positive integers.Any ring C is commutative with identity element1C,and any ring homomorphism preserves the identity elements.For any C-modules M and N,the tensor product M⊗N is taken over C unless otherwise indicated.For a C-module M and n∈N+,denote the tensor power.M⊗n=M⊗...⊗Mn factors2.1Baxter algebrasFor a given ring C,let Alg C denote the category of commutative C-algebras with an identity.For a givenλ∈C and R∈Alg C,•a Baxter operator of weightλon R over C is a C-module endo-morphism P of R satisfyingP(x)P(y)=P(xP(y))+P(yP(x))+λP(xy),x,y∈R;(1)•a Baxter C-algebra of weightλis a pair(R,P)where R is a C-algebra and P is a Baxter operator of weightλon R over C.•a C-algebra homomorphism f:R→S between two Baxter C-algebras (R,P)and(S,Q)of weightλis called a homomorphism of Baxter C-algebras if f(P(x))=Q(f(x))for all x∈R.Denote Bax C,λfor the category of Baxter C-algebras of weightλ.If the meaning ofλis clear,we will suppressλfrom the notation.A Baxter ideal of(R,P)is an ideal I of R such that P(I)⊆I.The concepts of Baxter subalgebras,quotient Baxter algebras can be similarly defined.It follows from the general theory of universal algebras that limits and colimits exist in Bax C[5],[10,p84],[12,p.210].In particular,inverse limits and direct limits exist in Bax C.2.2Shuffle Baxter algebrasFor m,n∈N+,define the set of(m,n)-shuffles byS(m,n)= σ∈S m+n σ−1(1)<σ−1(2)<...<σ−1(m),σ−1(m+1)<σ−1(m+2)<...<σ−1(m+n) . Given an(m,n)-shuffleσ∈S(m,n),a pair of indices(k,k+1),1≤k<m+n is called an admissible pair forσifσ(k)≤m<σ(k+1).Denote Tσfor the set of admissible pairs forσ.For a subset T of Tσ,call the pair(σ,T)a3mixable(m,n)-shuffle.Let|T|be the cardinality of T.(σ,T)is identified withσif T is the empty set.Denote¯S(m,n)={(σ,T)|σ∈S(m,n),T⊂Tσ}for the set of(m,n)-mixable shuffles.For A∈Alg C,x=x1⊗...⊗x m∈A⊗m,y=y1⊗...⊗y n∈A⊗n and (σ,T)∈¯S(m,n),the elementσ(x⊗y)=uσ(1)⊗uσ(2)⊗...⊗uσ(m+n)∈A⊗(m+n),whereu k= x k,1≤k≤m,y k−m,m+1≤k≤m+n,is called a shuffle of x and y;the elementσ(x⊗y;T)=uσ(1)ˆ⊗uσ(2)ˆ⊗...ˆ⊗uσ(m+n)∈A⊗(m+n−|T|),where for each pair(k,k+1),1≤k<m+n,uσ(k)ˆ⊗uσ(k+1)= uσ(k)uσ(k+1),(k,k+1)∈Tuσ(k)⊗uσ(k+1),(k,k+1)∈T,is called a mixable shuffle of x and y.Fix aλ∈C.LetX C(A)=X C,λ(A)= k∈N A⊗(k+1)=A⊕A⊗2⊕...be the Baxter C-algebra of weightλ[8]in which•the C-module structure is the natural one,•the multiplication is the mixed shuffle product,defined byx⋄y= (σ,T)∈¯S(m,n)λ|T|x0y0⊗σ(x+⊗y+;T)∈ k≤m+n+1A⊗k(2)for x=x0⊗x1⊗...⊗x m∈A⊗(m+1)and y=y0⊗y1⊗...⊗y n∈A⊗(m+1), where x+=x1⊗...⊗x m and y+=y1⊗...⊗y n,•the weightλBaxter operator P A on X C(A)is obtained by assigning P A(x0⊗x1⊗...⊗x n)=1A⊗x0⊗x1⊗...⊗x n, for all x0⊗x1⊗...⊗x n∈A⊗(n+1).4(X C(A),P A)is called the shuffle Baxter C-algebra on A of weightλ. When there is no danger of confusion,we often suppress⋄in the mixed shuffle product.To distinguish the C-submodule A⊗k of X C(A)from the tensorpower C-algebra A⊗k,we sometimes denote X k−1C (A)for A⊗k⊆X C(A).For a given set X,we also let(X C(X),P X)denote the shuffle Baxter C-algebra(X C(C[X]),P C[X]),called the shuffle Baxter C-algebra on X (of weightλ).Let j A:A→X C(A)(resp.j X:X→X C(X))be the canonical inclusion map.Theorem2.1[3,8](X C(A),P A),together with the natural embedding j A, is a free Baxter C-algebra on A of weightλ.In other words,for any Baxter C-algebra(R,P)and any C-algebra homomorphismϕ:A→R,there exists a unique Baxter C-algebra homomorphism˜ϕ:(X C(A),P A)→(R,P)such that the diagramA j ARcommutes.Further,any f:A→B in Alg C extends uniquely toX C(f):X C(A)→X C(B)in Bax C.More precisely,X C(f)=⊕n∈N f⊗(n+1)with f⊗(n+1):A⊗(n+1)→B(n+1)being the(n+1)-th tensor power of the C-module homomorphism f. Similarly,(X C(X),P X),together with the natural embedding j X,is a free Baxter C-algebra on X of weightλ.Taking A=C,we getX C(C)=∞n=0C⊗(n+1)=C1⊗(n+1).where1⊗(n+1)=1C⊗ (1)(n+1)−factors.In this case the mixable shuffle product formula(2)givesProposition2.2For any m,n∈N,1⊗(m+1)⋄1⊗(n+1)=mk=0(m+n−k n)(n k)λk1⊗(m+n+1−k).52.3Complete shuffle Baxter algebrasWe now consider the completion of X C(A).Recall that we denote X k C(A) for the C-submodule A⊗(k+1)of X C(A).Given k∈N+,Fil k X C(A)def= n≥k X n C(A),is a Baxter ideal of X C(A). Denote X C(A)=lim←−X C(A)/Fil k X C(A),called the complete shuffle Bax-ter algebra on A,with the Baxter operator denoted byˆP.It naturally contains X C(A)as a Baxter subalgebra and is a free object in the category of Baxter algebras that are complete with respect to a canonicalfiltration defined by the Baxter operator[9].On other hand,consider the infinite prod-uct of C-modules k∈N X k C(A).It contains X C(A)as a dense subset with respect to the topology defined by thefiltration Fil k X C(A).All operations of the Baxter C-algebra X C(A)are continuous with respect to this topology, hence extend uniquely to operations on k∈N X k C(A),making k∈N X k C(A) a Baxter algebra of weightλ,with the Baxter operator denoted by¯P. Theorem2.3[9]1.The mapψA: X C(A)→ k∈N X k C(A),((x(n)k)k+Fil n X C(A))n→(x(k)k)kis an isomorphism of Baxter algebras extending the identity map on X C(A).2.Given a morphism f:A→B in Alg C,we have the following commu-tative diagramX C(A)ψA−→ k∈N X k C(A)↓ X C(f)↓ k f kX C(B)ψB−→ k∈N X k C(B) where X C(f)is induced from X C(f)in Theorem2.1by taking com-pletion,and f k:X k C(A)→X k C(B)is the tensor power morphism of C-modules f⊗(k+1):A⊗(k+1)→B⊗(k+1)induced from f.2.4The internal constructionWe now describe the construction of a standard Baxter algebra[9],general-izing Rota[14].For each n∈N+,denote A⊗n for the tensor power algebra.Denote the direct limit algebrawhere the transition map is given byA⊗n→A⊗(n+1),x→x⊗1A.Note that the multiplication on A⊗n here is different from the multiplicationon A⊗n when it is regarded as the C-submodule X n−1C (A)of X C(A).LetA(A)be the set of sequences with entries inA= (a n)n|a n∈A-algebra,with the all1sequence(1,1,...)as the identity.DefineP′A=P′A,λ:A(A)→A(A)byP′A(a1,a2,a3,...)=λ(0,a1,a1+a2,a1+a2+a3,...).Then(A(A),P′A)is in Bax C.For each a∈A,define t(a)=(t(a)k )k in A(A)by takingt(a) k =⊗k i=1a i,a i= a,i=k,1,i=k.Let S(A)be the Baxter subalgebra of A(A)generated by the sequences t(a),a∈A.Theorem2.4[9,14]Assume that the annihilator ofλ∈C in the C-moduleTheorem2.6[9]Assume that the annihilator ofλ∈C inC=lim−→C⊗n∼=C and A(C)= ∞n=1C with componentwise addition andmultiplication.Proposition2.7Let C be a domain and letλ∈C be non-zero.Then for any b= ∞n=0b n1⊗n∈X C(C),we haveΦ(b)= n−1 i=0(n−1i)λi b i n∈N+∈S(C).The same formula holds forˆΦ.Proof:SinceΦis C-linear,we only to show that,for each n∈N,Φ(1⊗n)=((k−1n)λn)k.(3)Note that,by convention,(ji)=0for j<i.We prove equation(3)by induction.When n=0,1⊗0=1(def=1C)∈C. SinceΦis a C-algebra homomorphism,we haveΦ(1C)=(1,1,...)=((k−1)1)k.This verifies equation(3)for n=0.Assume that equation(3)is true for n. Then we haveΦ(1⊗(n+1))=Φ(P C(1⊗n))=P′C(Φ(1⊗n))=P′C(((k−1n)λn1)k)=λ(k−1i=1(i−1n)λn1)k=((k−1n+1)λn+11)k.This completes the induction and verifies thefirst equation in the proposition. The second equation follows from thefirst equation and Theorem2.6.83Basic propertiesWe willfirst consider subalgebras,quotient algebras and colimits.Further properties of Baxter algebras will be studied in later sections.3.1SubalgebrasProposition3.1Let f:A→B be an injective C-algebra homomorphism, and let A and B beflat as C-modules.Then the induced Baxter C-algebra homomorphisms X C(f):X C(A)→X C(B)and X C(f): X C(A)→ X C(B) are injective.A⊗n,X C(f)is defined to be Proof:By the construction of X C(A)=⊕n∈N+n∈N+f⊗n: n∈N+A⊗n→ n∈N+B⊗nwhere f⊗n:A⊗n→B⊗n is the tensor power of the C-module map f.Also by Theorem2.3, X C(f)can be described asf⊗n: n∈N+A⊗n→ n∈N+A⊗n.Thus we only need to prove that f⊗n is injective for all n≥1.f⊗1=f is injective by assumption.Assume that f⊗n is injective.Since A isflat,A⊗n is alsoflat.So f:A→B is injective implies thatid A⊗n⊗f:A⊗(n+1)=A⊗n⊗A→A⊗n⊗Bis injective.By inductive assumption,f⊗n:A⊗n→B⊗n is injective.Since B isflat,f⊗n⊗id B:A⊗n⊗B→B⊗n⊗B=B⊗(n+1)is injective.Thus we have thatf⊗(n+1)=(id A⊗n⊗f)◦(f⊗n⊗id B):A⊗(n+1)→B⊗(n+1)is injective,finishing the induction.3.2Baxter idealsWe now study Baxter ideals of X C(A)generated by ideals of A.Let I be an ideal of A.For each n∈N,let I(n)be the C-submodule of X C(A)generated by the subset{⊗n i=0x i|x i∈A,x i∈I for some0≤i≤n}.9Proposition3.2Let I be an ideal of A.Let˜I be the Baxter ideal of X C(A) generated by I and letˆI be the Baxter ideal of X C(A)generated by I.Then˜I= k∈N I(n)⊆X C(A)andˆI= k∈N I(n)⊆ X C(A)Proof:DenoteS={⊗n i=0x i|x i∈A,0≤i≤n,and x i∈I for some0≤i≤n,n∈N}. Then clearly k∈N I(n)= x∈S Cx.So to prove˜I⊆⊕k∈N I(n),we only need to prove˜I⊆ x∈S Cx.Let J denote the sum on the right hand side.Since clearly I⊆J,we only need to prove that J is an Baxter ideal.Clearly J is a C-submodule of X C(A)and is closed under the Baxter operator P A.For any x∈S and y=⊗m j=0y j∈A⊗(m+1),we havexy=x0y0⊗ (σ,T)∈¯S(n,m)λ|T|σ((⊗n i=1x i)⊗(⊗m j=1y j);T).From the definition of S,either x0∈I or x i∈I for some1≤i≤n.Thus in each term of the above sum,either x0y0∈I or one of the tensor factors of σ((⊗n i=1x i)⊗(⊗m j=1y j))is in I.This shows that xy∈J.Thus J is an Baxter ideal of X C(A).This proves˜I⊆⊕k∈N I(n).We next prove by induction on n that each I(n)is in˜I.When n=0,then x∈I(n)means that x∈I.So the claim is true.Assuming that the claim istrue for n and let x=⊗n+1i=0x i∈I(n+2).Then one of x i,0≤i≤n+1is inI.If x0∈I,then x=x0(1⊗x1⊗...⊗x n+1)is in˜I since˜I is the ideal of X C(A)generated by I.If x i∈I for some1≤i≤n+1,then inx=x0(1⊗x1⊗...⊗x n+1)=x0P A(x1⊗...⊗x n+1),x1⊗...⊗x n+1∈˜I by induction.Thus we again have x∈˜I.Since˜I is a C-submodule,we have I(n+1)⊆˜I.This completes the induction.Therefore,⊕n∈N I(n)⊆˜I.This proves thefirst equation in the proposition.10To prove the second equation,note that by the construction of the iso-morphism(X C(A)/Fil n X C(A))→ k∈N A⊗(k+1)ψA:lim←−in Theorem2.3,k∈N I(k)∼=lim←−(⊕k∈N I(k)+Fil n X C(A))/Fil n X C(A)=lim(˜I+Fil n X C(A))/Fil n X C(A).←−So we only need to prove that(˜I+Fil n X C(A))/Fil n X C(A)L def=lim←−(X C(A)/Fil n X C(A))generated by I.For each is the Baxter idealˆI′of lim←−n∈N,(˜I+Fil n X C(A))/Fil n X C(A)is a Baxter ideal of X C(A)/Fil n X C(A). So the inverse limit lim(˜I+Fil n X C(A))/Fil n X C(A)is a Baxter ideal of←−(X C(A)/Fil n X C(A)).Therefore,ˆI′⊆L.lim←−On the other hand,sinceˆI′is a Baxter ideal of lim(X C(A)/Fil n X C(A))←−containing I,its imageˆI′n in X C(A)/Fil n X C(A)is a Baxter ideal containing (I+Fil n X C(A))/Fil n X C(A).By the same argument as in the proof of thefirst equation,we obtain that the Baxter ideal of X C(A)/Fil n X C(A) containing(I+Fil n X C(A))/Fil n X C(A)is(⊕k≤n I(k)+Fil n X C(A))/Fil n X C(A)=(˜I+Fil n X C(A))/Fil n X C(A). Therefore,ˆI′n⊇(˜I+Fil n X C(A))/Fil n X C(A).Taking the inverse limit,we obtainˆI′⊇L,proving the second equation.3.3Quotient algebrasWe can now describe how quotients are preserved under taking free Baxter algebras.Proposition3.3Let I be an ideal of A.Let˜I be the Baxter ideal of X C(A) generated by I and letˆI be the Baxter ideal of X C(A)generated by I.ThenX C(A/I)∼=X C(A)/˜IandˆX(A/I)∼=ˆX C(A)/ˆICas Baxter C-algebras.11Proof:Let π:A →A/I and ˜π:X C (A )→X C (A )/˜Ibe the natural surjections.The composite mapA j A −→X C (A )˜π−→X C (A )/˜Ihas kernel I by Proposition 3.2.Let j ′A :A/I →X C (A )/˜I be the induced embedding.We only need to verify that X C (A )/˜Iwith the Baxter operator P ′A induced from P A ,and the embedding j ′A satisfies the universal property for a free Baxter C -algebra on A/I .Let (R,P )be an Baxter C -algebra and let ϕ:A/I →R be a C -algebra homomorphism.By the universal property of X C (A ),the C -algebra homo-morphismηdef =ϕ◦π:A →Rextends uniquely to an Baxter C -algebra homomorphism˜η:(X C (A ),P A )→(R,P ).Since I is in the kernel of η,˜I is in the kernel of ˜η,thus ˜ηinduces uniquelyan Baxter C -algebra homomorphism˜η′:(X C (A ),P ′A )→(R,P ).We can summarize these maps in the following diagramA πw w w w w w w w w η////////////////j AϕR R R R R R R R R R R R R R R R X C (A )/˜I˜η′i i i i i i i i i i i i i i i i i i i i R We haveϕ◦π=η(by definition)=˜η◦j A (by freeness of X C (A )on A )=˜η′◦˜π◦j A (by definition)=˜η′◦j ′A ◦π(by definition).Since πis surjective,we have ϕ=˜η′◦j A .If there is another ˜η′′such that ϕ=˜η′′◦j A ,then we have12˜η′◦j A=˜η′′⇒˜η′◦j A◦π=˜η′′◦π⇒˜η′◦˜π◦j A=˜η′′◦˜π◦j A(by definition)⇒˜η′◦˜π=˜η′′◦˜π(by freeness of X C(A)on A)⇒˜η′=˜η′′(by surjectivity of˜π).This proves thefirst equation of the proposition.To prove the second equation,consider the following commutative dia-gram0→˜I→X C(A)X C(π)−→X C(A/I)→0↓↓↓0→ˆI→ X C(A) X C(π)−→ X C(A/I)→0in which the vertical maps are injective.From thefirst part of the proposi-tion,the top row is exact.The desired injectivity of the bottom row is clear, and the desired surjectivity follows from the definition of X C(π).Also from the description ofˆI in Proposition3.2,ˆI⊆ker( X C(π)).On the other hand, (x n)n∈ker( X C(π))⇔(π⊗(n+1)(x n))n=0⇔π⊗(n+1)(x n)=0,∀n≥0⇔x n∈ker(π⊗(n+1)),∀n≥0⇒x n∈ker(X C(π)),∀n≥0⇒x n∈I(n),∀n≥0⇒(x n)∈ˆI.This proves the exactness of the bottom row,hence the second equation in the proposition.3.4ColimitsProposition3.4LetΛbe a category whose objects form a set.Let F:Λ→Alg C be a functor.Denote Aλfor F(λ),and denote colimλfor the colimit overΛ.Then colimλ(X C(Aλ,P Aλ))exists andcolimλ(X C(Aλ),P Aλ)∼=(X C(colimλAλ),P colimλAλ).In particular,for C-algebras A and B,X C(A⊗B)is the coproduct of X C(A) and X C(B).13Proof:It is well-known that colimits exist in Alg C.The proposition then follows from the dual of[12,Theorem1,p114],stated in page115.Similar statement for the complete free Baxter algebra is not true.For example,letΛ=N+and for each n∈Λ,let A n=C[x1,...,x n].With the natural inclusion,{A n}is a direct system,with colim n A n=C[x1,...,x n,...]. We have colim n( X C(A n),P A n)=∪n( X C(A n),P A n)and X C(colim n A n)= X C(∪n A n).The element(⊗k+1i=1x i)k∈N is in X C(∪n A n).But it is not in any X C(A n),and hence is not in∪n( X C(A n),P A n).4Integral domains and reduced algebrasIn this section,we investigate the question of when a free Baxter C-algebra or a free complete Baxter C-algebra is a domain and when it is a reduced algebra.We also study the nilpotent elements when the free Baxter algebra is not reduced.We will consider the case when C has characteristic zero in Section4.1,and consider the case when C has positive characteristic in Section4.2.4.1Case1:C has characteristic zeroWe begin with the special case when C is afield.The general case will be reduced to this case.4.1.1X C(A)and X C(A)when C is afieldProposition4.1Let C be afield of characteristic zero.Assume that A isa C-algebra and an integral domain.1.X C(A)is an integral domain for anyλ.2. X C(A)is an integral domain if and only ifλ=0.Proof:1.LetΣbe a basis set of A as a vector space over C,and let≺be a linear order onΣ,assuming the axiom of choice.ThusA= µ∈ΣCµand consequently,A⊗n= µ∈Σn Cµ14whereµ=(µ1,...,µn)∈Σn.LetΣ∞= n≥1Σn andΣ∞A⊗µ= µ∈Σ∞with the following variant of the lexicographic order induced from the order≺onΣ.We define the empty setφto be the smallest element and,forµ∈Σm andν∈Σn,m,n>0,defineµ≺νif m<n,or m=n and for some1≤m0≤m we haveµm0≺νmandµi=νi form0+1≤i≤m.We also denote this order onΣ∞,max{ξ|ξ∈S(µ,ν)}≺max{ξ|ξ∈S(µ′,ν)}.(4) HereS(µ,ν)={σ(µ⊗ν)|σ∈S(m,n)}denotes the set of shuffles ofµandν.Now letx= µ∈Σ∞bν(1A⊗ν),bν∈Abe two non-zero elements in X C(A).Whenλ=0,only admissible pairs (σ,T)∈¯S(m,n)with empty T contribute to the mixable shuffle product defined in equation(2).So we havexy= µ,ν∈Σ∞cξ(1A⊗ξ).15With these notations,we defineµ0=max{µ|aµ=0},ν0=max{ν|bν=0} andξ0=max{ξ|cξ=0}. Then from the inequality(4),we havecξ0=aµbνn0where n0is the number of times thatξ0occurs as a shuffle ofµ0andν0. Ifλ=0,then there are extra terms in the equation(2)of xy that come from the mixable shuffles with admissible pairs in which T is non-empty. But these terms will have shorter lengths and hence are smaller in the order ≺than the terms from shuffles without any admissible pairs.So cξgiven above is still the coefficient for the largest term.Note that n0is a positiveinteger by definition.Since A is a domain,we have aµ0bν=0.Since A hascharacteristic zero,we further have aµ0bνn0=0.Sincexy= ξ∈Σ∞of the free A-module X C(A)= ξ∈So X C(A)is not an integral domain.4.1.2X C(A)for a general ring CNow let C be any ring.For a C-module N,denoteN tor={x∈N|rx=0for some r∈C,r=0}for the C-torsion submodule of N.For a domain D,denote Fr(D)for the quotientfield of D.Theorem4.2Let A be a C-algebra of characteristic zero,with the C-algebra structure given byϕ:C→A.Denote I0=kerϕ.The following statements are equivalent.1.X C(A)is a domain.2.A is a domain and(A⊗n)tor=I0,for all n≥1.3.A is a domain and the natural map A⊗n→Fr(C/I0)⊗A⊗n is injectivefor all n≥1.Proof:Let¯C=C/I0.Then A is also a¯C-algebra.It is well-known that the tensor product A⊗C A is canonically isomorphic to A⊗¯C A as C-modules and as¯C-modules.It follows that,as a ring,the C-algebra X C(A)is canonically isomorphic to the¯C-algebra X¯C(A).Since being an integral domain is a property of a ring,X C(A)is a domain if and only if X¯C(A)is one.Similarly, X C(A)is a domain if and only if X¯C(A)is one.Thus we only need prove the theorem in the case whenϕ:C→A is injective.So we can assume that I0=0.We will make this assumption for the rest of the proof.First note that if A is a domain,then C is also a domain.In this case we denote S=C−{0}and F=Fr(C).(2⇔3).This follows from the fact[1,Exercise3.12]that,for each n≥1,(A⊗n)tor=ker{A⊗n→F⊗C A⊗n}.Therefore the second and the third statement are equivalent.(3⇒1).We have the natural isomorphisms F∼=S−1C,F⊗A∼=S−1A andS−1(A⊗n)∼=(S−1A)⊗nF def=S−1A⊗F...⊗F S−1An−factors∼=(S−1A)⊗n.(5)Here thefirst isomorphism is from[1,Proposition3.3.7]and the last iso-morphism follows from the definition of tensor products and the assump-tion that C and A are domains.By the universal property of X C(A)as a17free Baxter algebra,the natural C-algebra homomorphism f:A→S−1A gives a C-algebra homomorphism X C(f):X C(A)→X C(S−1A).In fact, X C(f)=⊕∞n=1f⊗n where f⊗n is the tensor power of f.By equation(5),∼=F⊗(A⊗n).f⊗n:A⊗n→(S−1A)⊗n∼=(S−1A)⊗nFThus we have a C-algebra homomorphism˜f:X C(A)→X F(S−1A)and,by the third statement of the proposition,f⊗n is injective.Therefore X C(A)is identified with a C subalgebra of X F(S−1A)via˜f,and hence is a domain since X F(S−1A)is a domain by Proposition4.1.(1⇒2).If X C(A)is a domain,then its subring A is a domain.Since C is a subring of A and hence of X C(A),we have X C(A)tor=0.Since X C(A)=⊕n∈N+A⊗n,(A⊗n)tor=0for all n∈N+.Corollary4.3Let C be a domain of characteristic zero.1.If A is aflat C-algebra,i.e.,A is a C-algebra and isflat as a C-module,then X C(A)is a domain.In particular,for any set X,X C(X)is a domain.2.If C is a Dedekind domain,then for a C-algebra A,the free Baxteralgebra X C(A)is a domain if and only if A is torsion free.Proof:As in the proof of Theorem4.2,we can assume that C is a subring of A.1.If A is aflat C-module,then A⊗n,n≥1areflat C-modules,so from the injective map C→F of C-modules,we obtain the injective map A⊗n= C⊗A⊗n→F⊗A⊗n.Hence by Theorem4.2,X C(A)is a domain.2.If C is a Dedekind domain,then A is aflat C-module if and only if A is torsion free.Hence the statement.Corollary4.4Let A be a C algebra given by the ring homomorphismϕ: C→A.Let I be a prime ideal of A.The Baxter ideal˜I(see Proposition3.2) of X C(A)generated by I is a prime ideal if and only if A/I has characteristic zero and((A/I)⊗n)tor=kerϕfor all n≥1.Proof:By Proposition3.3,˜I is a prime ideal if and only if X C(A/I)is a domain.If A/I has characteristic zero and((A/I)⊗n)tor=kerϕfor all n≥1, then by Theorem4.2,X C(A/I)is a domain.Conversely,if A/I has non-zero characteristic,then by Theorem4.8(the proof of which is independent of Theorem4.2),X C(A/I)is not a domain.If A/I has zero characteristic, but((A/I)⊗n)tor=kerϕfor some n≥1,then by Theorem4.2,X C(A/I)is not a domain.This proves the corollary.184.1.3X C (A )for a general ring CWe now consider complete Baxter algebras.Lemma 4.5Let C be a UFD and let x ∈ XC (X )be non-zero.1.Let λ∈C be a prime element.There is m ∈N such that x =λm x ′and such that x ′∈λ X C (X ).2.Let λ∈C be non-zero.If λx =0,then x =0.Proof:1.By Theorem 2.3,any element x ∈ XC (X )has a unique expression of the formx =∞ n =0x n ,x n ∈X n C (X )=C [X ]⊗(n +1).So x =0if and only if x n 0=0for some n 0∈N .Let M (X )be the free commutative monoid on X .DefineX n +1Cuand x n 0can be uniquely expressed as x n 0= u ∈X n 0+1.Since C is a UFD,there is m 0∈N +such that c u 0∈λm 0C .Then x n 0∈λm 0C [X ]⊗(n 0+1)and x ∈λm 0 XC (X ).Therefore the integermax {k |k ∈N ,x ∈λk XC (X )}exists.This integer can be taken to be the m in the first statement of the lemma.2.Assume that x ∈ XC (X )is non-zero.Then as in the proof of the first part of the lemma,there is n 0∈N such thatx =∞ n =0x n ,x n ∈X n C (X )=C [X ]⊗(n +1)and x n 0=0.Also,there is u 0∈X n 0+1c u u,c u ∈Cand c u 0=0.Since C is a domain and λ=0,we have λc u 0=0.SinceC [X ]⊗(n 0+1)is a free C -module with the setTheorem4.6Let C be a Q-algebra and a domain with the property that for every maximal ideal M of C,the localization C M of C at M is a UFD.Let X be a set.Forλ∈C, X C(X)is a domain if and only ifλis not a unit. Remarks: 1.If C is the affine ring of a nonsingular affine variety on a field of characteristic zero,then C is locally factorial[7,p.257].Hence Theorem4.6applies.2.If C is not a Q-algebra,the statement in the theorem does not hold.See the example after the proof.Proof:Assume thatλis a unit.Consider the elements x=1⊗2C ,y=∞n=0(−λ)−n1⊗(n+1)C in X C(X).As in the proof of Proposition4.1,we verify that xy=0.So X C(X)has zero divisors and is not a domain. Now assume thatλ∈C is not a unit.We will prove that X C(X)is a domain.We will carry out the proof in four steps.Step1:Wefirst assume that C is a Q-algebra and a domain,and assume thatλ∈C is zero.We do not assume that,for every maximal ideal M of C,C M is a UFD.We clearly have(C[X]⊗n)tor=0.Thus from the proof of2⇔3and3⇒1in Theorem4.2,the natural mapC[X]⊗n→(Fr(C)[X])⊗nFr(C)is injective.SoX C(X)→ X Fr(C)(X)is injective.By Proposition4.1, X Fr(C)(X)is a domain.Therefore, X C(X) is a domain.Step2:Next assume that C is a UFD andλ∈C is a prime element. Then the idealλC of C is a prime ideal.Hence C/λC is a domain.Then C[X]/λC[X]∼=(C/λC)[X]is also a domain.Note thatX C(C[X]/λC[X])∼= X C/λC(C[X]/λC[X])∼= X C/λC((C/λC)[X])= X C/λC(X)as Baxter C-algebras.C/λC is a Q-algebra and a domain.So from the first step of the proof,the weight0Baxter C/λC-algebra X C/λC(X)is a domain.So X C(C[X]/λC[X])is a domain.On the other hand,by Proposi-tion3.2,λ X C(X)is the Baxter ideal of X C(X)generated byλC[X].So by Proposition3.3,X C(C[X]/λC[X])∼= X C(X)/λ X C(X).20。
数学专业英语词汇(C)
数学专业英语词汇(C)c function c类函数c manifold c廖c mapping c类映射ca set 上解析集calculability 可计算性calculable mapping 可计算映射calculable relation 可计算关系calculate 计算calculating automaton 计算自动机calculating circuit 计算电路calculating element 计算单元calculating machine 计算机calculating punch 穿孔计算机calculating register 计算寄存器calculating unit 计算装置calculation 计算calculation of areas 面积计算calculator 计算机calculus 演算calculus of approximations 近似计算calculus of classes 类演算calculus of errors 误差论calculus of finite differences 差分法calculus of probability 概率calculus of residues 残数计算calculus of variations 变分法calibration 校准canal 管道canal surface 管道曲面cancel 消去cancellation 消去cancellation law 消去律cancellation property 消去性质cancelling of significant figures 有效数字消去canonical basis 典范基canonical coordinates 标准坐标canonical correlation coefficient 典型相关系数canonical decomposition 标准分解canonical distribution 典型分布canonical ensemble 正则总体canonical equation 典型方程canonical equation of motion 标准运动方程canonical expression 典范式canonical factorization 典范因子分解canonical flabby resolution 典型松弛分解canonical form 标准型canonical function 标准函数canonical fundamental system 标准基本系统canonical homomorphism 标准同态canonical hyperbolic system 典型双曲线系canonical image 标准象canonical mapping 标准映射canonical representation 典型表示canonical sequence 标准序列canonical solution 标准解canonical system of differential equations 标准微分方程组canonical variable 典型变量canonical variational equations 标准变分方程canonical variational problem 标准变分问题cantor curve 康托尔曲线cantor discontinum 康托尔密断统cantorian set theory 经典集论cap 交cap product 卡积capacity 容量card 卡片card punch 卡片穿孔机card reader 卡片读数器cardinal 知的cardinal number 基数cardinal product 基数积cardioid 心脏线carrier 支柱carry 进位carry signal 进位信号cartan decomposition 嘉当分解cartan formula 嘉当公式cartan subalgebra 嘉当子代数cartan subgroup 嘉当子群cartesian coordinate system 笛卡儿坐标系cartesian coordinates 笛卡尔座标cartesian equation 笛卡儿方程cartesian folium 笛卡儿叶形线cartesian product 笛卡儿积cartesian space 笛卡儿空间cartography 制图学cascaded carry 逐位进位casimir operator 卡巫尔算子cassini oval 卡吾卵形线casting out 舍去casting out nines 舍九法catastrophe theory 突变理论categorical judgment 范畴判断categorical proposition 范畴判断categorical syllogism 直言三段论categorical theory 范畴论categoricity 范畴性category 范畴category of groups 群范畴category of modules 模的范畴category of sets 集的范畴category of topological spaces 拓扑空间的范畴catenary 悬链线catenary curve 悬链线catenoid 悬链曲面cauchy condensation test 柯微项收敛检验法cauchy condition for convergence 柯握敛条件cauchy criterion 柯握敛判别准则cauchy distribution 柯沃布cauchy filter 柯嗡子cauchy inequality 柯位等式cauchy integral 柯锡分cauchy integral formula 柯锡分公式cauchy kernel 柯嗡cauchy kovalevskaya theorem 柯慰仆吡蟹蛩箍ǘɡ眵cauchy mean value formula 广义均值定理cauchy net 柯硒cauchy principal value 柯蔚cauchy problem 柯问题cauchy process 柯锡程cauchy residue theorem 残数定理cauchy sequence 柯悟列causal relation 因果关系causality 因果律cause 原因cavity 空腔cavity coefficient 空胴系数cayley number 凯莱数cayley sextic 凯莱六次线cayley transform 凯莱变换ccr algebra ccr代数celestial body 天体celestial coordinates 天体坐标celestial mechanics 天体力学cell 胞腔cell complex 多面复形cellular approximation 胞腔逼近cellular automaton 细胞自动机cellular cohomology 胞腔上同调cellular cohomology group 胞腔上同岛cellular decomposition 胞腔剖分cellular homotopy 胞腔式同伦cellular map 胞腔映射cellular subcomplex 胞腔子复形center 中心center of a circle 圆心center of curvature 曲率中心center of expansion 展开中心center of force 力心center of gravity 重心center of gyration 旋转中心center of inversion 反演中心center of mass 质心center of pressure 压力中心center of principal curvature 助率中心center of projection 射影中心center of symmetry 对称中心centered process 中心化过程centered system of sets 中心集系centi 厘centigram 厘克centimetre 厘米central angle 圆心角central confidence interval 中心置信区间central conic 有心圆锥曲线central derivative 中心导数central difference 中心差分central difference operator 中心差分算子central divided difference 中心均差central element 中心元central extension 中心扩张central extension field 中心扩张域central limit theorem 中心极限定理central line 中线central moment 中心矩central point 中心点central processing unit 中央处理器central projection 中心射影central quadric 有心二次曲面central series 中心群列central symmetric vector field 中心对称向量场central symmetry 中心对称centralizer 中心化子centre 中心centre of a circle 圆心centre of gyration 旋转中心centre of projection 射影中心centre of similarity 相似中心centre of similitude 相似中心centrifugal force 离心力centripetal acceleration 向心加速度centroid 形心certain event 必然事件certainty 必然cesaro mean 纬洛平均cesaro method of summation 纬洛总求法chain 链chain complex 链复形chain condition 链条件chain equivalence 链等价chain equivalent 链等价的chain group 链群chain homotopic 链同伦的chain homotopy 链同伦chain index 链指数chain map 链变换chain of prime ideals 素理想链chain of syzygies 合冲链chain rule 链式法则chain transformation 链变换chainette 悬链线chamber complex 箱盒复形chance 偶然性;偶然的chance event 随机事件chance move 随机步chance quantity 随机量chance variable 机会变量change 变化change of metrics 度量的变换change of the base 基的变换change of the variable 变量的更换channel 信道channel width 信道宽度character 符号character group 特贞群character space 特贞空间characteriatic system 特寨characteristic 特征characteristic boundary value problem 特者值问题characteristic class 示性类characteristic cone 特斩characteristic conoid 特沾体characteristic curve 特怔线characteristic derivation 特阵导characteristic determinant 特招列式characteristic differential equation 特闸分方程characteristic direction 特战向characteristic equation 特战程characteristic exponent 特崭数characteristic function 特寨数characteristic functional 特蘸函characteristic group 特蘸characteristic index 特崭标characteristic initial value problem 特挣值问题characteristic linear system 特者性系统characteristic manifold 特瘴characteristic matrix 特肇阵characteristic number 特正characteristic of a logarithm 对数的首数characteristic parameter 特瘴数characteristic polynomial 特锗项式characteristic pontrjagin number 庞德里雅金特正characteristic root 特争characteristic ruled surface 特毡纹曲面characteristic series 特招characteristic set 特寨characteristic state 特宅characteristic strip 特狰characteristic subgroup 特沼群characteristic surface 特怔面characteristic value 矩阵的特盏characteristic vector 特镇量charge 电荷chart 图chebyshev function 切比雪夫函数chebyshev inequality 切比雪夫不等式chebyshev polynomial 切比雪夫多项式check 校验check digit 检验位check routine 检验程序check sum 检查和chevalley group 歇互莱群chi square distribution 分布chi squared test 检验chi squared test of goodness of fit 拟合优度检验choice function 选择函数chord 弦chord line 弦chord of contact 切弦chord of curvature 曲率弦chordal distance 弦距离christoffel symbol 克里斯托弗尔符号chromatic number 色数chromatic polynomial 色多项式cipher 数字circle 圆circle diagram 圆图circle method 圆法circle of contact 切圆circle of convergence 收敛圆circle of curvature 曲率圆circle of inversion 反演圆circle problem 圆内格点问题circuit free graph 环道自由图circuit rank 圈数circulant 循环行列式circulant matrix 轮换矩阵circular 圆的circular arc 圆弧circular cone 圆锥circular correlation 循环相关circular cylinder 圆柱circular disk 圆盘circular domain 圆形域circular frequency 角频率circular functions 圆函数circular helix 圆柱螺旋线circular measure 弧度circular motion 圆运动circular neighborhood 圆邻域circular orbit 圆轨道circular pendulum 圆摆circular permutation 循环排列circular ring 圆环circular section 圆截面circular sector 圆扇形circular segment 圆弓形circular slit domain 圆形裂纹域circular symmetry 圆对称circular transformation 圆变换circulation 循环circulation index 环粮数circulation of vector field 向量场的循环circulatory integral 围道积分circumcenter 外心circumcentre 外心circumcircle 外接圆circumcone 外切圆锥circumference 圆周circumscribe 外接circumscribed circle 外接圆circumscribed figure 外切形circumscribed polygon 外切多边形circumscribed quadrilateral 外切四边形circumscribed triangle 外切三角形circumsphere 外接球cissoid 蔓叶类曲线cissoidal curve 蔓叶类曲线cissoidal function 蔓叶类函数clairaut equation 克莱罗方程class 类class bound 组界class field 类域class field tower 类域塔class frequency 组频率class function 类函数class interval 组距class mean 组平均class number 类数class of conjugate elements 共轭元素类classical groups 典型群classical lie algebras 典型李代数classical mechanics 经典力学classical sentential calculus 经典语句演算classical set theory 经典集论classical statistical mechanics 经典统计力学classical theory of probability 经典概率论classification 分类classification statistic 分类统计classification theorem 分类定理classify 分类classifying map 分类映射classifying space 分类空间clear 擦去clifford group 克里福特群clifford number 克里福特数clockwise 顺时针的clockwise direction 顺时针方向clockwise rotation 顺时针旋转clopen set 闭开集closable linear operator 可闭线性算子closable operator 可闭算子closed ball 闭球closed circuit 闭合电路closed complex 闭复形closed convex curve 卵形线closed convex hull 闭凸包closed cover 闭覆盖closed curve 闭曲线closed disk 闭圆盘closed domain 闭域closed equivalence relation 闭等价关系closed extension 闭扩张closed filter 闭滤子closed form 闭型closed formula 闭公式closed geodesic 闭测地线closed graph 闭图closed graph theorem 闭图定理closed group 闭群closed half plane 闭半平面closed half space 闭半空间closed hull 闭包closed interval 闭区间closed kernel 闭核closed linear manifold 闭线性廖closed loop system 闭圈系closed manifold 闭廖closed map 闭映射closed neighborhood 闭邻域closed number plane 闭实数平面closed path 闭路closed range theorem 闭值域定理closed region 闭域closed riemann surface 闭黎曼面closed set 闭集closed shell 闭壳层closed simplex 闭单形closed solid sphere 闭实心球closed sphere 闭球closed star 闭星形closed subgroup 闭子群closed subroutine 闭型子程序closed surface 闭曲面closed symmetric extension 闭对称扩张closed system 闭系统closed term 闭项closeness 附近closure 闭包closure operation 闭包运算closure operator 闭包算子closure property 闭包性质clothoid 回旋曲线cluster point 聚点cluster sampling 分组抽样cluster set 聚值集coadjoint functor 余伴随函子coalgebra 上代数coalition 联合coanalytic set 上解析集coarser partition 较粗划分coaxial circles 共轴圆cobase 共基cobordant manifolds 配边廖cobordism 配边cobordism class 配边类cobordism group 配边群cobordism ring 配边环coboundary 上边缘coboundary homomorphism 上边缘同态coboundary operator 上边缘算子cocategory 上范畴cochain 上链cochain complex 上链复形cochain homotopy 上链同伦cochain map 上链映射cocircuit 上环道cocommutative 上交换的cocomplete category 上完全范畴cocycle 上闭键code 代吗coded decimal notation 二进制编的十进制记数法codenumerable set 余可数集coder 编器codiagonal morphism 余对角射codifferential 上微分codimension 余维数coding 编码coding theorem 编码定理coding theory 编码理论codomain 上域coefficient 系数coefficient domain 系数域coefficient function 系数函数coefficient functional 系数泛函coefficient group 系数群coefficient of alienation 不相关系数coefficient of association 相伴系数coefficient of covariation 共变系数coefficient of cubical expansion 体积膨胀系数coefficient of determination 可决系数coefficient of diffusion 扩散系数coefficient of excess 超出系数coefficient of friction 摩擦系数coefficient of nondetermination 不可决系数coefficient of rank correlation 等级相关系数coefficient of regression 回归系数coefficient of the expansion 展开系数coefficient of thermal expansion 热膨胀系数coefficient of variation 变差系数coefficient of viscosity 粘性系数coefficient problem 系数问题coefficient ring 系数环coercive operator 强制算子cofactor 代数余子式cofiber 上纤维cofibering 上纤维化cofibration 上纤维化cofilter 余滤子cofinal set 共尾集cofinal subset 共尾子集cofinality 共尾性cofinite subset 上有限子集cofunction 余函数cogenerator 上生成元cogredient automorphism 内自同构coherence 凝聚coherence condition 凝聚条件coherent module 凝聚摸coherent ring 凝聚环coherent set 凝聚集coherent sheaf 凝聚层coherent stack 凝聚层coherent topology 凝聚拓扑coherently oriented simplex 协同定向单形cohomological dimension 上同惮数cohomological invariant 上同祷变量cohomology 上同调cohomology algebra 上同碟数cohomology class 上同掂cohomology functor 上同弹子cohomology group 上同岛cohomology group with coefficients g 有系数g的上同岛cohomology module 上同担cohomology operation 上同邓算cohomology ring 上同捣cohomology sequence 上同凋列cohomology spectral sequence 上同底序列cohomology theory 上同帝cohomotopy 上同伦cohomotopy group 上同伦群coideal 上理想coimage 余象coincidence 一致coincidence number 叠合数coincidence point 叠合点coincident 重合的coinduced topology 余导出拓扑cokernel 上核collect 收集collectionwise normal space 成集体正规空间collective 集体collinear diagram 列线图collinear points 共线点collinear vectors 共线向量collinearity 共线性collineation 直射变换collineation group 直射群collineatory transformation 直射变换collocation method 配置法collocation of boundary 边界配置collocation point 配置点colocally small category 上局部小范畴cologarithm 余对数colorable 可着色的column 列column finite matrix 列有限矩阵column matrix 列阵column rank 列秩column space 列空间column vector 列向量combination 组合combination principle 结合原理combination with repetitions 有复组合combination without repetition 无复组合combinatorial analysis 组合分析combinatorial closure 组合闭包combinatorial dimension 组合维数combinatorial geometry 组合几何学combinatorial manifold 组合廖combinatorial method 组合方法combinatorial optimization problem 组合最优化问题combinatorial path 组合道路combinatorial problem 组合最优化问题combinatorial sphere 组合球面combinatorial sum 组合和combinatorial theory of probabilities 概率组合理论combinatorial topology 组合拓朴学combinatorially equivalent complex 组合等价复形combinatories 组合分析combinatory logic 组合逻辑combinatory topology 组合拓朴学combined matrix 组合矩阵comma 逗点command 命令commensurability 可通约性commensurable 可通约的commensurable quantities 可公度量common denominator 公分母common difference 公差common divisor 公约数common factor 公因子common factor theory 公因子论common fraction 普通分数common logarithm 常用对数common measure 公测度common multiple 公倍元common perpendicular 公有垂线common point 公共点common ratio 公比common tangent of two circles 二圆公切线communality 公因子方差communication channel 通讯通道commutant 换位commutation law 交换律commutation relation 交换关系commutative 可换的commutative diagram 交换图表commutative group 交换群commutative groupoid 阿贝耳广群commutative law 交换律commutative lie ring 交换李环commutative ordinal numbers 交换序数commutative ring 交换环commutativity 交换性commutator 换位子commutator group 换位子群commute 交换compact 紧的compact convergence 紧收敛compact group 紧群compact open topology 紧收敛拓扑compact operator 紧算子compact set 紧集compact space 紧空间compact subgroup 紧子群compact support 紧支柱compactification 紧化compactification theorem 紧化定理compactness 紧性compactness theorem 紧性定理compactum 紧统comparability of cardinals 基数的可比较性comparable curve 可比曲线comparable function 可比的函数comparable topology 可比拓扑comparable uniformity 可比一致性comparison function 比较函数comparison method 比较法comparison series 比较用级数comparison test 比较检验comparison theorem 比较定理compass 两脚规compatibile condition 相容性条件compatibility 一致性compatibility condition 相容性条件compatible system of algebraic equations 相容代数方程组compatible topology 相容拓扑学compensate 补偿compensating method 补偿法compensation 补偿compensation of error 误差的补偿compiler 编译程序compiling routine 编译程序complanar line 共面线complele induction 数学归纳法complement 补集complement of an angle 余角complementary 补的complementary angle 余角complementary degree 余次数complementary divisor 余因子complementary event 余事件complementary function 余函数complementary graph 余图complementary ideal 余理想complementary laws 补余律complementary module 补模complementary modulus 补模数complementary set 补集complementary space 补空间complementary submodules 补子模complementary subset 余子集complementary subspace 补子空间complemented lattice 有补格complete abelian variety 完备阿贝耳簇complete accumulation point 完全聚点complete axiom system 完备公理系统complete category 完全范畴complete class 完备类complete continuity 完全连续性complete disjunction 完全析取complete elliptic integral 完全椭圆积分complete field 完全域complete field of sets 集的完全域complete graph 完全图complete group 完全群complete group variety 完备群簇complete homomorphism 完全同态complete induction 数学归纳法complete integral 完全积分complete intersection 完全交叉complete lattice 完全格complete linear system 完备线性系统complete local ring 完全局部环complete measure 完全测度complete measure space 完备测度空间complete metric space 完备度量空间complete normality axiom 完全正规性公理complete ordered field 全序域complete orthogonal sequence 完全正交序列complete orthogonal set 完全正交系complete orthogonal system 完全正交系complete orthonormal sequence 完备标准正交序列complete orthonormal system 完备标准正交系complete probability space 完全概率空间complete quadrangle 完全四点形complete quadrilateral 完全四边形complete reducibility theorem 完全可约性定理complete regularity separation axiom 完全正则性分离公理complete reinhardt domain 完全赖因哈耳特域complete set 完全集complete solution 完全积分complete space 完备空间complete subcategory 完全子范畴complete system 完备系complete system of functions 函数完备系complete system of fundamental sequences 完全基本序列系complete system of invariants 完全的不变量系complete tensor product 完全张量积completed shell 闭壳层completely additive 完全加性的completely additive family of sets 完全加性集族completely additive measure 完全加性测度completely compact set 完全紧集completely continuous function 完全连续函数completely continuous linear operator 完全连续线性算子completely continuous mapping 全连续映射completely continuous operator 全连续映射completely distributive lattice 完全分配格completely homologous maps 完全同党射completely independent system of axioms 完全独立公理系统completely integrable 完全可积的completely integrable system 完全可积组completely integrally closed 完全整闭的completely mixed game 完全混合对策completely monotone 完全单的completely monotonic function 完全单弹数completely monotonic sequence 完全单凋列completely multiplicative 完全积性的completely multiplicative function 完全积性函数completely primary ring 完全准素环completely reducible 完全可约的completely reducible group 完全可约群completely regular filter 完全正则滤子completely regular space 完全正则空间completely regular topology 完全正则拓扑completely separated sets 完全可离集completely specified automaton 完全自动机completely splitted prime ideal 完全分裂素理想completely transitive group 全可迁群completeness 完全性completeness theorem 完全性定理completion 完备化complex 复形complex analytic fiber bundle 复解析纤维丛complex analytic manifold 复解析廖complex analytic structure 复解析结构complex cone 线丛的锥面complex conjugate 复共轭的complex conjugate matrix 复共轭阵complex curve 复曲线complex curvelinear integral 复曲线积分complex domain 复域complex experiment 析因实验complex field 复数域complex flnction 复值函数complex fraction 繁分数complex group 辛群complex line 复线complex line bundle 复线丛complex manifold 复廖complex multiplication 复数乘法complex number 复数complex number plane 复数平面complex plane with cut 有割的复平面complex quantity 复量complex root 复根complex series 复级数complex sphere 复球面complex surface 线丛的曲面complex unit 单位复数complex valued function 复值函数complex variable 复变量complex vector bundle 复向量丛complex velocity potential 复速度位势complexity 复杂性complication 复杂化component 分量component of variance 方差的分量componentwise convergence 分量方式收敛composable 组成的compose 组成composite 合成composite divisor 合成除数composite function 合成函数composite functor 合成函子composite group 合成群composite hypothesis 复合假设composite number 合成数composite probability 复合概率composition 合成composition algebra 合成代数composition factor 合成因子composition homomorphism 合成同态composition of vector subspaces 向量子空间的合成composition operator 合成算子composition series 合成列compound determinant 复合行列式compound event 复合事件compound function 合成函数compound number 合成数compound probability 合成概率compound proportion 复比例compound rule 复合规则computable function 可计算函数computation 计算computational error 计算误差computational formula 计算公式computational mistake 计算误差compute 计算computer 计算机computing center 计算中心computing element 计算单元computing machine 计算机computing time 计算时间comultiplication 上乘法concave 凹的concave angle 凹角concave convex game 凹凸对策concave curve 凹曲线concave function 凹函数concave polygon 凹多边形concavity 凹性concavo convex 凹凸的concentration 集中;浓度concentration ellipse 同心椭圆concentric circles 同心圆concept 概念conchoid 蚌线conchoidal 蚌线的conclusion 结论concomitant variable 相伴变量concrete number 名数concurrent form 共点形式concurrent planes 共点面concyclic points 共圆点condensation of singularities 奇点的凝聚condensation point 凝聚点condensation principle 凝聚原理condition equation 条件方程condition for continuity 连续性条件condition number 条件数condition of connectedness 连通性条件condition of positivity 正值性条件conditional convergence 条件收敛conditional definition 条件定义conditional density 条件性密度conditional distribution 条件分布conditional entropy 条件熵conditional equation 条件方程conditional event 条件性事件conditional gradient method 条件梯度法conditional inequality 条件不等式conditional instability 条件不稳定conditional instruction 条件指令conditional jump 条件转移conditional mathematical expectation 条件数学期望conditional probability 条件概率conditional probability measure 条件概率测度conditional proposition 条件命题conditional sentence 条件命题conditional stability 条件稳定性conditional transfer of control 条件转移conditionally compact set 条件紧集conditionally complete 条件完备的conditionally convergent 条件收敛的conditionally convergent series 条件收敛级数conditionally well posed problems 条件适定的问题conditioned observation 条件观测conditioning number 条件数conditions of similarity 相似条件conduction 传导conductivity 传导率conductor 导体;前导子conductor ramification theorem 前导子分歧定理cone 锥cone of a complex 复形锥面cone of a simplex 单形锥面confidence belt 置信带confidence coefficient 置信系数confidence ellipse 置信椭圆confidence ellipsoid 置信椭面confidence interval 置信区间confidence level 置信水平confidence limit 置信界限confidence region 置信区域configuration 布局configuration space 构形空间confinal 共尾的confinality 共尾性confirmation 证实confluent divided difference 合六差confluent hypergeometric equation 合镣超几何微分方程confluent hypergeometric function 合连几何函数confluent hypergeometric series 合连几何级数confluent interpolation polynomial 汇合内插多项式confocal conic sections 共焦二次曲线confocal conics 共焦二次曲线confocal quadrics 共焦二次曲面conformable matrices 可相乘阵conformal 保角的conformal curvature tensor 保形曲率张量conformal differential geometry 保形微分几何学conformal geometry 保形几何conformal mapping 保角素示conformal projection 保形射影conformal representation 保角素示conformal transformation 保角映射conformally connected manifold 保形连通廖conformally geodesic lines 保形测地线confounding 混杂confrontation 比较confusion 混乱congruence 同余式congruence group 同余群congruence method 同余法congruence of lines 线汇congruence relation 同余关系congruence subgroup 同余子群congruence zeta function 同余函数congruent 同余的congruent mapping 合同映射congruent number 同余数congruent transformation 合同映射conic 圆锥曲线conic function 圆锥函数conic section 圆锥曲线conical helix 圆锥螺旋线conical surface 锥面conics 圆锥曲线论conjugate 共轭的conjugate axis 共轭轴conjugate class 共轭类conjugate complex 共轭复形conjugate complex number 共轭复数conjugate convex function 共轭凸函数conjugate curve 共轭曲线conjugate curve of the second order 共轭二次曲线conjugate diameter 共轭直径conjugate direction 共轭方向conjugate dyad 共轭并向量conjugate element 共轭元素conjugate exponent 共轭指数conjugate field 共轭域conjugate foci 共轭焦点conjugate function 共轭函数conjugate gradient method 共轭梯度法conjugate hyperbola 共轭双曲线conjugate latin square 共轭拉丁平conjugate line 共轭直线conjugate number 共轭数conjugate operator 共轭算子conjugate points 共轭点conjugate quaternion 共轭四元数conjugate root 共轭根conjugate ruled surface 共轭直纹曲面conjugate series 共轭级数conjugate space 共轭空间conjugate transformation 共轭变换conjugate vector 共轭向量conjugation map 共轭映射conjugation operator 共轭算子conjunction 合取conjunctive normal form 合取范式connected 连通的connected asymptotic paths 连通渐近路线connected automaton 连通自动机connected category 连通范畴connected chain 连通链connected complex 连通复形connected component 连通分支connected curve 连通曲线connected domain 连通域connected graph 连通图connected group 连通群connected sequence of functors 函子的连通序列connected set 连通集connected space 连通空间connected sum 连通和connectedness 连通性connecting homomorphism 连通同态connecting morphism 连通同态connecting path 连接道路connection 联络connection component 连通分量connectivity 连通性connex 连通conoid 劈锥曲面conormal 余法线conormal image 余法线象conrol chart technique 控制图法consequence 后承consequent 后项conservation law 守恒律conservation of angular momentum 角动量守恒conservation of energy 能量守恒conservation of mass 质量守恒conservation of momentum 动量守恒conservative extension 守恒扩张conservative field of force 保守力场conservative force 保守力conservative measurable transformation 守恒可测变换conservative vector field 守恒向量场consistency 相容性consistency conditions 相容条件consistency of equations 方程组的相容性consistency problem 相容性问题consistencyproof 相容性的证明consistent axiom system 相容性公理系consistent equations 相容方程组consistent estimator 相容估计consistent system of equations 相容方程组consistent test 相容检验constancy of sign 符号恒性constant 常数constant coefficient 常系数constant field 常数域constant function 常值函数constant mapping 常值映射constant of integration 积分常数constant of proportionality 比例系数constant of structure 构造常数constant pressure chart 等压面图constant pressure surface 等压面constant sheaf 常数层constant sum game 常和对策constant term 常数项constant value 定值constituent 组分constitutional diagram 组分图constrained game 约束对策constrained maximization 约束最大化constrained minimization 约束最小化constrained optimization 约束最优化constraint 约束construct 准constructibility 可构成性constructible 可构成的constructible map 可构成映射constructible set 可构成集construction 构成construction problem 准题constructive dilemma 构造二难推论constructive existence proof 可构造存在证明constructive mathematics 可构造数学constructive ordinal number 可构造序数consumer's risk 用户风险contact 接触contact angle 接触角contact point 接触点contact surface 接触面contact transformation 切变换content 含量context sensitive grammar 上下文有关文法contiguity 接触contiguous confluent hypergeometric function 连接合连几何函数contiguous hypergeometric function 连接超几何函数contiguous map 连接映射contingency 随机性contingency table 列contingent 偶然事故continuability 可延拓性continuation method 连续法continued equality 连等式continued fraction 连分数continued fraction expansion 连分式展开式continued proportion 连比例continuity 连续性continuity axiom 连续性公理continuity condition 连续性条件continuity equation 连续方程continuity in the mean 均方连续性continuity interval 连续区间continuity method 连续法continuity of function 函数的连续性continuity on both sides 双边连续性continuity on the left 左连续性continuity on the right 右连续性continuity principle 连续性原理continuity theorem 连续性定理continuous 连续的continuous analyzer 连续分析器continuous approximation 连续近似continuous curve 连续曲线continuous differentiability 连续可微性continuous distribution 连续分布continuous distribution function 连续分布函数continuous dynamical system 连续动力系统continuous function 连续函数continuous function in the mean 均方连续函数continuous game 连续对策continuous geometry 连续几何continuous group 拓扑群continuous homology 连续同调continuous homology group 连续同岛continuous image 连续象continuous in x 依x连续的continuous limit 连续极限continuous map 连续映射continuous on the left 左方连续的continuous operator 连续算子continuous ordered set 连续有序集continuous part 连续部分continuous random process 连续随机过程continuous random variable 连续随机变量continuous ruin problem 连续破产问题。
一般线性李代数的极大理想
一般线性李代数的极大理想陈丙凯;卞鸿亚;关琦【摘要】Let gln(R)be the general linear Lie algebra of all n×n matrices over a unitary commutative ring R with 2 and n invertible.First This paper constructs the general ideal of gln(R),finds two kinds of maximal ideals from the general ideal of gln(R)and proofs gln(R) only have these two types of maximal ideals with the isomorphism theory.The maximal ideals of gln(R)are classified completely.%假设R是含幺可换环且在2和n处可逆,gln(R)是R上的所有n×n阶矩阵上的一般线性李代数.本文首先构造出gln (R)的一般理想,从中找出了两类极大理想并且用同构理论证明了gln(R)只有这两类极大理想.gln(R)的极大理想分类完全了.【期刊名称】《淮阴师范学院学报(自然科学版)》【年(卷),期】2011(010)005【总页数】6页(P387-392)【关键词】一般线性李代数;极大理想;含幺可换环【作者】陈丙凯;卞鸿亚;关琦【作者单位】中国矿业大学理学院,江苏徐州221008;中国矿业大学理学院,江苏徐州221008;中国矿业大学理学院,江苏徐州221008【正文语种】中文【中图分类】O152.20 引言理想的研究对于李代数结构的研究有重要意义.近些年来,很多文章已经研究了李代数的结构.值得注意的是,从李代数的理想着手研究李代数结构是比较常用的方法,近年来得到研究者们的重视,也获得了不少研究成果[1-8].如Gauger[1]第一次研究了幂零李代数上的2维中心可换理想. Benito.M.P等[2]证明了L是域上的一个李代数,若L的维数大于1并且L不是单李代数,L有唯一的极大理想Benito.M.P[3]证明了在特征为0的代数闭域和实数域上的可解李代数完全分类并且他们的理想最多是5个.Belitskii.G[4]研究了3维的中心可换理想. Fang C Y[5]研究了一类复杂的单李代数的ad-幂零理想.Bartolone.C在文[6]中完全分类了含有2维非中心可换理想的幂零李k-代数.最近Towers[7,8]研究了在域上的李代数的极大子代数.而研究李代数的极大理想问题得文章都比较少,特别是在环上研究李代数的极大理想的工作很少研究.本文受此启发,给出了在含幺可换环且2和n可逆上的一般线性李代数的完全分类.现在给出一些定义.假设R是含幺可换环,I是R的极大理想,则我们定义R/I是R关于I的剩余典型域.Mm×n(R)定义为R上的所有m×n阶矩阵的集合.Mn×n(R)缩写成Mn(R).如果括积运算定义成[x,y]=xy-yx,则Mn(R)变成了李代数,我们称它为一般线性李代数用gln(R)来表示.gln(R)有一组包含矩阵eij的标准基,其中eij表示在(i,j)处是1其他处全是0的矩阵.因为eijekl=δjkeil,所以[eij,ekl]=δjkeil-δliekj.现在假设当i≠j时,Eij=eij,当i=j=n-1时,Eii=eii-ei+1i+1;并且当i=j=n时,所以Eij也是gln(R)的一组基.我们用sln(R)表示包含所有迹为0的n×n阶矩阵的集合,φ(R)表示包含所有n×n阶纯量阵的集合.1 预备知识首先构造某些极大理想.假设X是gln(R)的理想,我们给出以下的定义:|aEij∈X}.引理1假设R是含幺可换环且在2和n处可逆,在基eij上X表示为在基Eij上X 表示为则即当i≠j时,xij=yij;当i=j=n-1时,当i=j=n时,1) 若则2) 所有的是R的理想.证明先证明1),若X.当i≠j时,xij=yij且Eij=eij.由理想的性质我们有[eii,x]∈X,因此我们有xijeij+xjieji=[[eii,x],eij]∈X,从而有xijeij-xjieji=[eii,xijeij+xjieji]∈X.因此我们有2yijEij∈X,即yijEij∈X.所以当i≠j时,因为因此这时有[(xii-xjj)(eii-ejj),eii+1]=(xii-xjj)eii+1∈X,所以[(xii-xjj)eii+1,ei+1i]=(xii-xjj)(eii-ei+1i+1)∈X.当i=j=n-1时,且Eii=eii-ei+1i+1.所以当i=j=n-1时,yiiEii∈X,即当i=j=n-1时,因为由前面得到并且所以ynn Enn ∈X,即当i=j=n时,综上得到对任意的(i,j),都有得证.证明2),当i≠j时,假设R.因为aeij,beij都属于X,所以(a±b)eij∈X,所以由caeij=[ceii,aeij]∈X,有当i≠j时,所有的是R的理想.当i=j=n-1时,假设因为a(eij-ei+1i+1)∈X,b(eij-ei+1i+1)∈X,所以(a±b)(eij-ei+1i+1)∈X,所以由a(eij-ei+1i+1)∈X,所以[a(eij-ei+1i+1),eii+1]=2aeii+1∈X,所以[aeii+1,cei+1i]=ac(eii-ei+1i+1)∈X,即当i=j=n-1时,所以是R的理想.当i=j=n,假设R.因为都属于X,所以由x∈X,cx∈X和所以X.由前面知和我们得到cynnEnn∈X,所以caEnn∈X即..当i=j=n时,所以是R的理想.综上得到对任意的是R的理想.证明3),明显的⊆X.相反的,假设由1)任意的(i,j)得到所有的所以即X⊆我们得到证毕. 现在我们构造两类关于gln(R)的极大理想.假设R是含幺可换环且在2和n处可逆,I是R的极大理想.定义1 M1(Aij)是gln(R)的子集,这里当任意的(i,j)≠(n,n)时,所有的Aij=I其他的当(i,j)=(n,n)时,Ann=R.我们立即能够得到M1(Aij)在基eij可以表示成M1(Aij)=sln(I)+φ(R).定义2 M2(Aij)是gln(R)的子集,这里当任意的(i,j)≠(n,n)时,所有的Aij=R其他的当(i,j)=(n,n)时,Ann=I.我们立即能够得到M2(Aij)在基eij可以表示成M2(Aij)=sln(R)+φ(I).3 主要结果引理2 假设R是含幺可换环且在2和n处可逆,I是R的极大理想.M1(Aij)是gln(R)的子集,这里当任意的(i,j)≠(n,n)时,所有的Aij=I其他的当(i,j)=(n,n)时,Ann=R.则M1(Aij)是gln(R)的极大理想.证明假设在基Eij上的.因为当任意的(i,j)≠(n,n)时,所有的Aij=I.所以并且).即当(i,j)≠(n,n)时,).从而得到M1(Aij)在基Eij是环模.下面证明M1(Aij)是一个理想.假设x=(xij)∈M1(Aij)在基eij上,y=(yij)∈gln(R)在基eij上,这里这里这里我们要证明).当i≠j时).因为,当i≠j时,有xij∈I,当1≤i=j≤n,有xii-xjj∈I.所以当i≠j时,我们能得到zij∈I.i=j时,所以我们能得到zii∈I,zii-zjj∈I.由此我们能够得到[x,y]∈M1(Aij)在基Eij上.下面我们要证明M1(Aij)是一个极大理想.假设X是gln(R)的一个理想满足⊆gln(R),且x∈X\M1(Aij).表示x=(yij)在基Eij.这时存在某些p,q∈n,当p≠q时使得ypq∉I.由引理1知,当p≠q时有ypqEpq=ypqepq∈X.因为I是R的极大理想,我们能找到b∈R,a∈I,使得bypq+a=1.从而能够得到epq=[bepp,ypqepq]+aepq∈X,[epq,eqj]=epj,这里1≤j≠p≤n.所以当1≤i≠j≤n,[eip,epj]=eij=Eij∈X.而当1≤i=j≤n-1,有Eii=[eii+1,eii+1]=(eii-ei+1i+1)∈X.我们知道Enn∈X,即X包含所有的Eij.即X=gln(R).若当p=q使得ypp∉I.我们由引理1知,有yppEpp∈X.所以[ypp(epp-ep+1p+1),epp+1]=2yppepp+1∈X.而我们由前面得证当p≠q时,有X=gln(R). 因此综上可得M1(Aij)是gln(R)一个极大理想.证毕.引理3 假设R是含幺可换环且在2和n处可逆,I是R的极大理想.M2(Aij)是gln(R)的子集,这里当任意的(i,j)≠(n,n)时,所有的Aij=R其他的当(i,j)=(n,n)时,Ann=I.则M2(Aij)是gln(R)的极大理想.证明设在基Eij上的.当(i,j)=(n,n)时,有Ann=I.由所以并且).即当(i,j)=(n,n)时,从而得到M2(Aij)在基Eij是环模.下面证明M2(Aij)是一个理想.假设x=(xij)∈M1(Aij)在基eij上,y=(yij)∈gln(R)在基eij上,这里这里这里我们要证明).由对任意的n×n阶矩阵x,y∈gln(R),都有tr[x,y]=0,因此我们得到I.由此我们能够得到[x,y]∈M2(Aij)在基Eij上.下面我们要证明M2(Aij)是一个极大理想.假设X是gln(R)的一个理想满足⊆gln(R),且x∈X\M2(Aij).表示x=(yij)在基Eij.这时存在当i=j=n,使得ynn≠I.引理1知,y nnEnn∈X.因为I是R的极大理想,我们能找到b∈R,a∈I,使得bypq+a=1.我们要证明Enn∈X,只需证明(bypq+a)Enn∈X.由X是gln(R)的一个理想,所以bypqEnn∈X.又由,我们得到bEnn∈X.所以得到(bypq+a)Enn∈X,即Enn∈X.从而得证X包含所有的Eij.即X=gln(R).因此综上可得M2(Aij)是gln(R)一个极大理想.证毕.下面这个定理考虑当R是一个域上时,我们给出了gln(R)所有的极大理想.定理1 假设R是一个域且在2和n出特征不为0.则X是gln(R)的极大理想当且仅当X=sln(R)或者X=φ(R).其中sln(R)表示包含所有迹为0的n×n阶矩阵的集合,φ(R)表示包含所有n×n阶纯量阵的集合.证明由R是一个域,我们得到0理想是R的唯一的真子域.所以我们由引理2知,M1(Aij)=AnnEnn=φ(R)是gln(R)极大理想.由引理3知,是gln(R)的极大理想. 下面证明只有这两种极大理想.假设X是gln(R)的一个极大理想,由引理1知这里的|aEij∈X}是R的理想.事实上R是一个域,则任意的只能是0或者是R.因为X是真包含于gln(R),我们能找到p,q∈n使得若当p≠q时,由理想的性质我们有[X,gln(R)]∈X.假设X=(xij)在基eij上表示,gln(R)=(yij)在基eij上表示的且[X,gln(R)]=(zij)在基eij上表示,所以zpq=0.而).由任意的yij=R,我们能够得到当1≤i≤n且i≠p,q,所有的xpj=0,xiq=0且xpp-xqq=0.即当p≠q时,在p行q列矩阵X的元素全为0..同理我们能够得到当1≤i≠j≤n时,所有的xij=0,且xii-xjj=0.从而我们得到X⊆φ(R).由X是gln(R)的一个极大理想,所以当p≠q时,X=φ(R).若当1≤p=q≤n-1时,这时假设X=(xij)在基eij上表示,gln(R)=(yij)在基eij上表示的且[X,gln(R)]=(zij)在基eij上表示,所以zpp-zp+1p+1=0.而由任意的yij=R,我们能否得到i≠p,q,所有的xpj=0,xiq=0.由前面内容知X⊆φ(R).由X是gln(R)的一个极大理想,所以当1≤p=q≤n-1时,X=φ(R).若当p=q=n时,X⊆sln(R).由X是gln(R)的一个极大理想,所以当p=q=n时,X=sln(R).证毕.下面这个定理考虑当R是一个含幺可换环上时,我们给出了gln(R)所有的极大理想. 定理2 假设R是含幺可换环且在2和n处可逆,I是R的极大理想.则X是gln(R)的极大理想当且仅当X=M1(Aij)或者X=M2(Aij).其中M1(Aij)是gln(R)的子集,这里当任意的(i,j)≠(n,n)时,所有的Aij=I其他的当(i,j)=(n,n)时,Ann=R,M2(Aij)是gln(R)的子集,这里当任意的(i,j)≠(n,n)时,所有的Aij=R其他的当(i,j)=(n,n)时,Ann=I.证明我们由引理2和引理3知,M1(Aij),M2(Aij)是gln(R)极大理想.下面证明只有这两种极大理想.假设X是gln(R)的一个极大理想,gln(R)=(yij)在基Eij上表示的.由引理1知,这里的|aEij∈X}是R的理想.因为X是真包含于gln(R),我们能找到p,q∈n使得R.当(p,q)≠(n,n),有R.假设I是R的极大理想且包含令π是R到R关于I的剩余典型域R/I得自同构.定义σ是gln(R)到gln(R/I)上的映射,把(yij)映射成其中就是π(yij).显然σ是一个自同构映射到gln(I)的核.而(p,q)处得σ(X)元素是0,则σ(X)是真包含于gln(R/I).假设一个理想M满足σ(X)⊆gln(R/I),我们考虑σ(X),M和gln(R/I)的原像,得到⊆gln(R).所以σ-1(M)是真包含X的关于gln(R)的理想.由此M=gln(R/I).现在我们考虑σ(X)是gln(R/I)的极大理想.应用定理2,当(p,q)≠(n,n),σ(X)=AnnEnn=φ(R),这里Ann=R.应用σ-1我们得到X+gln(I)=AnnEnn+gln(I)=φ(R)+gln(I).事实上AnnEnn+gln(I)=φ(R)+gln(I)就是M1(Aij).所以我们得到X⊆X+gln(I)=M1(Aij).由假设知X是gln(R)的一个极大理想,所以当(p,q)≠(n,n)时,我们得到X=M1(Aij).当(p,q)=(n,n),有R.同理可得(I).而事实上就是M2(Aij).由假设知X是gln(R)的一个极大理想,所以当(p,q)≠(n,n)时,我们得到X=M2(Aij).证毕.反例 1在假设n≥3,R是含幺可换环且的特征是n.明显的当R的特征是n时,tr(φ(R))=0.因此φ(R)⊆sln(R).又因为M1(Aij)=sln(I)+φ(R)而M2(Aij)=sln(R)+φ(I)=sln(R).即这与M1(Aij),M2(Aij)都是gln(R)的极大理想矛盾.参考文献:[1] Gauger M. On the classi-ation of metabelian Lie algebras[J]. Trans Amer Math Soc,1973,179:293-329.[2] Benito M P. Lie algebras in which the lattice formed by the ideals is a chain[J]. Comm Algebra,1992,20(1):93-108.[3] Benito M P. Lie Algebras With a Small Number of Ideals[J]. linear algebra and its applications,1992,177: 233-249 .[4] Belitskii G,Lipyanski R,Sergeichuk V V. Problems of classifying associative or Lie algebras and triples of symmetric or skew-symmetric matrices are wild[J]. Linear Algebra Appl,200,407:249-262.[5] Fang C Y. Ad-nilpotent ideals and equivalence relations[J]. Journal of Algebra,2010,323:2016-2025.[6] Bartolone C,Di Bartolo A,Falcone.G Nilpotent Lie algebras with 2-dimensional commutatorideals[J]. Linear Algebra and its Applications,2011,434:650-656.[7] Towers D A. Maximal subalgebras of Lie algebras containing Engel subalgebras,arXiv:1004-5005v1[R]. 28 Apr,2010.[8] Towers D A,Supplements to maximal subalgebras of Lie algebras,1007-4902v1[R]. 28Jul,2010.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :0805.0723v 2 [m a t h .R A ] 9 M a y 2008FREE SUBALGEBRAS OF LIE ALGEBRAS CLOSE TO NILPOTENTALEXEY BELOV AND ROMAN MIKHAILOVAbstract.We prove that for every automata algebra of exponential growth,the associatedLie algebra contains a free subalgebra.For n ≥1,let L n +2be a Lie algebra with generatorset x 1,...,x n +2and the following relations:for k ≤n ,any commutator of length k whichconsists of fewer than k different symbols from {x 1,...,x n +2}is zero.As an application of thisresult about automata algebras,we prove that for every n ≥1,L n +2contains a free subalgebra.We also prove the similar result about groups defined by commutator relations.Let G n +2bea group with n +2generators y 1,...,y n +2and the following relations:for k =3,...,n ,anyleft-normalized commutator of length k which consists of fewer than k different symbols from{y 1,...,y n +2}is trivial.Then the group G n +2contains a 2-generated free subgroup.Main technical tool is combinatorics of periodical sequences and period switching.1.Introduction Let A be an associative algebra over a commutative ring with identity,generated by a set S .Denote by A ∼the Lie algebra with the same set of generators S and operation [u,v ]=uv −vu,u,v ∈A.In other words A ∼is the Lie subalgebra of A −generated by the given set S .The algebra A ∼clearly depends on the choice of the set of generators of A .For n ≥1,let L n +2be a Lie algebra with generator set x 1,...,x n +2and following relations:for k ≤n ,any commutator of length k which consists of fewer than k different symbols from {x 1,...,x n +2}is zero.For example,the trivial commutators in L n ,which correspond to the case k =3,are:[[x i ,x j ],x i ],i =j.One of the main results of this paper is following:Theorem 1.For every n ≥1,L n +2contains a free Lie subalgebra.The proof of theorem 1is based on the theory of monomial algebras.An algebra with basis X is called monomial if all its defining relations are of the form u =0,where u is a word written in X .Let A be a finitely generated algebra with generators x 1,...,x s .The Growth function V A (n )equal,the dimension of the space generated by words of length ≤n .If V A (n )grows exponentially,then A has exponential growth ;if polynomially,then A has polynomial growth .Intermediate growth is also possible.The polynomial or exponential growth property does not depend on the choice of the generator set.For n ≥1,let A n +2be the monomial algebra with generators x 1,...,x n +2and the followingrelations:u (x 1,...,x n +2)=0if |u |=k (k ≤n )and u consists of fewer than k symbols from {x 1,...,x n +2}.Clearly,the Lie algebra A ∼n +2is a quotient of L n +2.Hence,Theorem 1willfollow if we will be able to prove that A ∼n +2contains a free subalgebra.The algebra A n +2hasan alternative description,based on the following property:u (x 1,...,x n +2)=0in the algebra A n +2if the distance between two occurrences of the same letter in u (x 1,...,x n +2)is less than n +1.Consider a super-word w =(x 1···x n +1)∞.It is clear that w =0and any series of changes x n +1→x n +2will not yield zero,since the distance between two occurrences of the same letter is still ≤n .With the help of above changes it is possible to get 2M different non–zero words.It follows that the number of different non–zero words of length k in the monomial algebra A is not less1than2[kb)The positions of the occurrences of a word v of length≥|u|in u∞differs by a period multiple.c)If|v|≥|u|and v2⊂u∞,then v is cyclically conjugate to a power of u.Therefore, nonnilpotent words in A u∞are exactly those words,which are cyclically conjugate to words of the form u k.Proposition3.If uW=W r,then uW is a subword of u∞and W=u n r,where r is an initial segment in u.Remark.The periodicity of an infinite word means its invariance with respect to a shift.In the one-sided infinite case a pre-period appears;in thefinite case there appear effects related to the truncation.This,together with superword technique is the essence of a great many combinatorial arguments(see Proposition3)especially Bernside type problems.Proofs of the Shestakov hypothesis(nilpotency of subalgebra of n×n matrix algebra with all words of length ≤n are nilpotent),of the Shirshov height theorem(the normal basis of associative affine P I-algebra A contains only piece-wise periodic words,number of periodic parts is less then h(A), and length of each period is≤n–maximal dimension of matrix algebra satisfying all identities of A)of the coincidence theorem of the nilradical and the Jacobson radical in a monomial algebra, are examples[4],[1],[3].Lemma1(on overlapping).If a subword of length m+n−1occurs simultaneously in two periodic words of periods m and n,then they are the same,up to a shift.Lemma1implies one technical statement,needed in sequelLemma2.Let r=u n v m,n>k,m>l.Then r has not common subwords with u∞of length ≥n|u|+|u|+|v|−1=(n+1)|u|+|v|−1and has not common subwords with v∞of length ≥(m+1)|v|+|u|−1.2.2.Periods switching.Proposition4.Let u,v are not powers of the same word,l|v|>2|u|and s|u|>2|v|.Then v l u s is not a subword of u∞or v∞.This proposition follows from the following assertion which is follows at once from Lemma 1(see[4]):if two periodical superwords of periods m and n have the common part of length >m+n−2,then these words are identical.In this case,u s v l is a subword v∞and u∞. Proposition5.Let u,v are not powers of the same word,l|v|>2|u|and s|u|>2|v|.Then v l u s is not a proper power.Proof.Without loss of generality we may suppose that both u and v are non-cyclic.Suppose that k>1and z k=v l u s for some non-cyclic word z.Without loss of generality we can assume that|v l|≥|u s|.If k≥4,then v l contains z2and from the other hand,v l is subword of z∞.It follows from overlapping lemma1that v is power of z and hence v=z(both z,v are non cyclic).Then u is also power of z and we are done.If k=2then u s is a subword of z and hence of v l.That contradicts overlapping lemma1. If k=3then because|v l|≥|u s|and s|u|>2|v|we have l≥3.In this case|v|<|z|/2and |v l|≥|v|+|z|.By overlapping lemma1we have that v∞=z∞and hence v=z because both are non cyclic.Then z3=v l u s=z l u s and u s=z3−l.Because u is noncyclic u=z.Hence u=v that contradicts conditions of the proposition5. Lemma3.Let r=u n v m,n>k,m>l.Then r is not a subword of W′=v∞/2u∞/2and hence of v p u q for all p,q.Proof.If r is a subword of W′then either u n(i.e.left part of r)is a subword of v∞or v m(i.e. right part of r)is a subword of u∞.Both cases are excluded by proposition4Proposition6.Consider superword W=u∞/2v∞/2,where u=v are different noncyclic words. Let S=u k v l and suppose|u k−1|>2|v|,|v k−1|>2|u|,k,l≥2.Then S has just one occurrence in W,which is the obvious one(which we call the“standard occurrence”).Proof.Otherwise the extra occurrence of S is either to the left of the standard occurrence,or to the right.Without loss of generality it is enough to consider the left case.In this case,by Proposition2W is shifted respect to the standard occurrence by a distance divisible by|u|.Hence we have:u s W=W R,i.e.u s W starts with W.We can apply Proposition3and so we get that u∞/2starts with W.Then from combining Lemma1and Proposition2we get that v is cyclically conjugate to u,and|u|=|v|.But in that case W=u k v l is subword of u∞,implying that the relative shifts of u and v are divisible by|u|=|v|,and hence u=v.The proposition is proved. This proposition together with Lemmas2and3impliesCorollary1.Let R=r∞=(u n v m)∞,n>k,m>l.Then all the occurrences of S in R are separated by distances divisible by|r|=n|u|+m|v|.Proof.First of all,as in the proposition6one can define notion of standard occurrence of S in R.Consider an occurrence of S in R.Then only following cases are logically possible:(1)It naturally corresponds to occurrence of S in W(i.e.power of v in S starts in on thepower of v in W and similarly power of u in S ends in on the power of u in W).(2)It contains completely either u n or v m.(3)It lies on the position of period switching from v m to u m.Second possibility is excluded due to due to Lemma2,third–to due to Lemma3.First possibility due to proposition6corresponds only to standard occurrences and they are separated by distances divisible by|r|=|u n v m|=n|u|+m|v|. Note that r and t are cyclically conjugate,iffr∞=t∞.Using this observation and the previous corollary we get a proposition needed in the sequel:Proposition7.Let u,v be different non-cyclic words,with|u n|>2|v|and|v n|>2|u|.For all k i,l i≥n,if(k1,l1)=(k2,l2),then u k1v l1and u k2v l2are not cyclically conjugate.Proof.Suppose that r=u k1v l1and t=u k2v l2are cyclically conjugate.Then r∞=t∞and because r,t are not cyclical,|r|=|t|=µ.Let us denote R=(u k2v l2)∞.Let S=u k v l and suppose|u k−1|>2|v|,|v k−1|>2|u|,k,l≥2and also k≤min k1,k2,l≤min(l1,l2).It is clear that such S exist and is a subword of booth r and t.Then due to corollary1all occurrences of S in W are shifted by distance divisible byµ–period of R.It means that any occurrence of S can be extended to occurrence of r as well as to occurrence of t.Hence there exists an occurrences of r=u n1Sv m1and t=u n2Sv m2in W with common part S.If r=t,then n1=n2because|s|=|t|.Without loss of generality we can suppose that n1<n2.In this case m1>m2.Word t is shifted to the left from the word r on the distance d=|u n1|−|u n2|=|v n2|−|v m1|.Consider a unionωof r and t.Thenω=er=ft,|e|=|f|=d.Note that r2is a subword of t∞=W,occurrence of v m1(which is end of r)precedes an occurrence of r.Because|v m2|>d, e=v m2−m1.Similarly f=u n1−n2.From other handωcan be also obtained by extending the subword S of W to the left on the dis-tance|v max(m1,m2)|and to the right on the distance|u max(n1,n2)|andω=u max(n1,n2)v max(m1,m2)= u n1−n2r=tv m2−m1.Hence u n1−n2=v m2−m1;n1=n2;m1=m2.It follows that u,v are powers of the same word s.Because u=v one of this powers is greater than1and booth u and v can not be non cyclic words.But this contradicts to their initial choice.3.Regular Words and Lie bracketsWe shall extend the relation≺by defining the following£-relation(“Ufnarovsky order”): f£g,if,for any two right superwords W1,W2,such that W2(a,b)≻W1(a,b),when ever b≻a, the inequality W2(g,f)≻W1(g,f)holds.This condition is well defined and equivalent to following:f£g ifff∞/2≻g∞/2(i.e.,f m≻g n,for some m and n).It is clear that if f≻g, then f£g.The relation£is a linear ordering on the following set of equivalence classes:f∼g,if for some s,f=s l,g=s k.Let us note that eachfinite word u uniquely corresponds to the right superword u∞.To equivalent words correspond the same superwords.The relation£corresponds to the relation ≻on the set of superwords.It is known([4],[6])that:A word u is called regular,if one of the following equivalent conditions holds:a)u word is greater all its cyclic conjugates:If u1u2=u,then u≻u2u1.b)If u1u2=u,then u£u2.c)If u1u2=u,then u1£u.A word u is called semi-regular in the following case:If u=u1u2,then,either u≻u2,or u2is a beginning of u.(An equivalent definition can be obtained if the relation¡is replaced by the relation¢in the definition of a regular word.)Every semi-regular word is a power of a regular one.It is well-known that every regular word u defines the unique bracket arrangement[u]such that after opening all Lie brackets u will be a highest term in this expression.Moreover,monomials of such type form a basis in the free Lie algebra(so called Hall–Shirshov basis)(see[2],[6]). We shall need some technical statements:Lemma4([4]).Suppose|u k|£|v2|and u k is a subword of v∞.Then there exists S′cyclically conjugate to S,such that u=(S′)m and v=(S2)n.If,moreover,the initial symbols of u and v are at a distance divisible by|S|in v∞,then S=S′.Corollary2.Let u£v be semi-regular words.Then,for sufficiently large k and l,the words u k v l are regular andu k1v l1£u k2v l2for k1>k2.Proof.Letδbe a cyclic conjugate of u k v l.It is clear thatδ¤u k v l,we only need to prove inequalityδ=u k v l.In order to do this,we need only to show that u k v l is not cyclic word,but it follows from the proposition5.The next lemma follows from Lemma4and Corollary2.Lemma 5.Let k i>|d|,l i>|u|,for i=1,2.Then u k1d l1and u k2d l2are not cyclically conjugate,provided that u£d and u,d are not conjugate to proper powers of the same word.4.Words in automata algebrasByΦ x1,...,x s will be denoted the free associativeΦ-algebra with generators x1,...,x s.By A a1,...,a s will be denoted an arbitraryΦ-algebra with afixed set of generators a1,...,a s.A word or a monomial from the set of generators M is an arbitrary product of elements in M. The set of all words constitutes a semigroup,which will be denoted by Wd M .The order a1≺···≺a s generates the lexicographic order on the set of words:The grater of two words is the one whosefirst letter is greater;if thefirst symbols coincide,then the second letter are compared,then the third letters and so on.Two words are incomparable,only if one of them is initial in the other.By a word in an algebra we understand a nonzero word from its generators{a i}.We can-not speak about the value of a superword in an algebra,but can speak about its equality or nonequality to zero(and,in some cases,about linear dependence).A superword W is called zero superword,if it has afinite zero subword,and it is called a nonzero superword,if it has nofinite zero subwords.An algebra A is called monomial,if it has a base of defining relations of the type c=0,where c is a word from a1,...,a s.Obviously,a monomial algebra is a semigroup algebra(it coincides with the semigroup algebra over the semigroup of its words).4.1.Automata algebras.First we recall some well known definitions from[4].Suppose we are given an alphabet(i.e.,afinite set)X.Byfinite automaton(FA)with the alphabet X of input symbols we shall understand an oriented graph G,whose edges are marked with the letters from X.One of the vertices of this graph is marked as initial,and some vertices are marked asfinal.A word w in the alphabet X is called accepted by afinite automaton,if there exists a path in the graph,which begins at the initial vertex andfinishes in somefinal vertex,such that marks on the path edges in the order of passage constitute the word w.By a language in the alphabet X we understand some subset in the set of all words(chains)in X.A language L is called regular or automata,if there exists afinite automaton which accepts all words from L and only them.An automaton is called deterministic,if all edges,which start from one vertex are marked by different letters(and there are no edges,marked by the empty chain).If we reject such restriction and also allow edges,marked by the empty chain,then we shall come to the notion of a non-deterministicfinite automaton.Also we can allow an automaton to have several initial vertices.The following result from the theory offinite automata is well known:For each non-deterministic FA there exists a deterministic FA,which accepts the same set of words(i.e.the same language).It will be convenient for us to consider the class of FA,such that all vertices are initial and final simultaneously.The reason of this is that the language of nonzero words in a monomial algebra has the following property:each subword of a word belonging to the language,also belongs to it.Suppose throughout that G is the graph of a deterministic FA,v is a vertex of G,and w is a word.If the corresponding path C starting from v exist in G,then one can define the vertex vw terminal vertex for C.Let A be a monomial algebra(not necessaryfinitely defined).A is called an automata algebra, if the set of all of its nonzero words from A generators is a regular language.Obviously,a monomial algebra is an automata algebra,only if the set of its nonzero words is the set of all subwords of words of some regular language.It is known that every automata algebra can be given by a certain deterministic graph,and that everyfinitely defined monomial algebra is automata([4],[6]).The Hilbert series for an automata algebra is rational(Proposition5.9[4]).An automata algebra has exponential growth if and only if G has two cycles C1and C2with common vertexv,such that the corresponding words w1,w2(we read them starting from v)are not powers of the same word.In this case the words w1and w2generate a free2-generated associative algebra. If there are no such cycles,A has a polynomial growth.No intermediate growth is possible. The following theorem is the aim of this section:Theorem3.Let A= a1,...,a n be an automata algebra of exponential growth.Then the Lie algebra A∼contains a free2-generator subalgebra.We continue to assume that G is the graph of a deterministic FA.Call a semi-regular word u well–based if it written on a certain cycle C with an initial vertex v;i.e.vu=v.Two semi–regular words u1and u2are pair–wisely well–based if u1and u2are written on cycles C1and C2 with a common initial vertex v and vC1=vC2=v.In this case,for any word W(a,b)the word W(u1,u2)=0in A;in particular u k11u k22=0.Main Lemma.The graph G contains two regular pairwise well–based words u=v. Deduction of Theorem3from the Main Lemma.We may always assume that u£v.Let a≻b and w a regular word.Then(see[4])w(u,v)also is a regular wold.For every regular word u we can choose a unique presentation u=u1u2with regular u1and regular u2of maximal length.In this case[u]=[[u1],[u2]](see[6]).Therefore,w(u,v)can be obtained by setting[u]→a,[v]→b to the word with brackets[w].Since u and v are well-based,for every word R(a,b),one has R(u,v)=0.Let[u],[v]be the results of the regular arrangement of the brackets for u and v respectively.Then[u]=0,[v]=0. Thus we have constructed a one-to-one correspondence between the Hall basis of a Lie algebra, generated by[u],[v]and the Hall basis of a free2-generated Lie algebra with generators a,b. The theorem follows.P4.2.Proof of the Main Lemma.Corollary2implies the following:Proposition8.Suppose the graph G contains two ordered(in the sense of the operation£) pairwise well-based words.Then G contains also two regular pairwise well-based words.It is sufficient tofind two ordered semi-regular pairwise well-based words,i.e.with common final and initial vertices.For that it is enough to prove the existence of a sufficiently large number of well-based ordered semi-regular words.In this case,infinitely many of them will have a common initial vertex,hence pairwise well–based,and the main lemma follows.Lemma6.Let u1be a well-based word and u2a cyclically conjugate word.Then u2is also well-based.Proof.Suppose u1=w1w2,u2=w2w1and v is a base vertex of u1.Then v′=vw1is a base vertex of u2.Indeed,v′u2=vw1(w2w1)=v(w1w2)w1=vw1=v′. Corollary3.If u is well-based,then semi-regular word conjugate to u is also well-based.Let u and d be ordered pairwise well-based words(necessarily not semi-regular).Then,for every w(a,b),the word w(u,d)is non-zero.In particular,u k d l are non-zero for all k,l.Now Lemma5,together with the fact that every non–cyclic word uniquely corresponds to a cyclically conjugated regular word,implies that there are infinitely many well–based words. Infinitely many of them will have the same initial vertex and so will be pairwise well based; hence the Main Lemma follows.5.Group theoretical applicationsId(S)denotes the ideal,generated by the set S.Lemma 7.Suppose a and b are homogenous elements of a graded associative algebra A ,such that the subalgebra generated by a,b is free associative algebra with free generators a,b .Let a ′(resp.b ′)be a linear combination of elements in A with degrees strictly greater than the degree of a (resp.b ).Let ˜a =a +a ′,˜b =b +b ′.Then the algebra generated by ˜a ,˜b is a free associative with free generators ˜a ,˜b .This lemma follows from the fact that for every polynomial h (u,v )with non-zero minimal component h ′(u,v ),the minimal component of h (˜a ,˜b )is h ′(a,b )=0.We call an algebra homogenous if all its defining relations are homogenous respect to the set of generators.Let A be a homogenous algebra,and J be an idealof A ,generated by elements of degree ≥1.We call such algebra good .If A/J ≡k and nJ n =0.Every monomial algebra is good.For any x ∈A,the image of x in A/J n is not zero for some n ,so A can be embedded into the projective limit lim ←−A/J n .Lemma 8.Let B be a good homogenous algebra,such that 1+a and 1+b are invertible,a,b ∈J,and the elements a and b are free generators of a free associative subalgebra C of B .Then the group generated by 1+a and 1+b is free.Remark.Note that the pair of two different pairwise well–based words in a monomial algebra generates a free associative subalgebra.Proof.Suppose W (1+a,1+b )=1for some non-trivial word W (x,y )=1in the free group.Consider free algebra k x,y and its localization by 1+x,1+y .Then W (1+x,1+y )=1,and,for some n 0=n 0(W ),W (1+¯x ,1+¯y )=1in π(k x,y )=k x,y /Id(x,y )n for all n ≥n 0.In each such image,the elements 1+x and 1+y are invertible,so there is no need for localization.On the other hand,because A is good homogenous,the image of J m ∩C under isomorphism φgenerated by a →x,b →y lies in Id(x,y )n 0,and1=π(φ(W (1+a,1+b )))=W (1+¯x ,1+¯y )=1.Contradiction. Let u and v be two pairwise well based words.They have canonical Lie bracket arrangement;let [u ]and [v ]be corresponding Lie elements (obtained via opening the Lie brackets).Notice that[u ]=u +lexicographically smaller terms ,[v ]=v +lexicographically smaller terms .Hence we have followingLemma 9.Let u and v be two pairwise well based words,and [u ]and [v ]be the corresponding Lie elements (obtained via opening Lie brackets).Then [u ],[v ]generate as a free generators 2-generated free associative algebra (and also free Lie algebra via commutator operation).For n ≥1,consider the monomial algebra A n +2with generators x 1,...,x n +2(see the In-troduction).Adjoint a unit A ′n +2=A n +2∪{1}.The elements ¯xi :=1+x i have inverses ¯x −1i :=1−x i .Consider the group A #n +2generated by the elements 1+x i .Consider the config-uration of brackets in the generators of the free subalgebra in the Lie algebra A ∼n +2and writethe correspondent Lie elements in the group A #n +2.Lemmas 7and 8,9imply that the subgroupA #n +2generated by these two elements will be free.It is clear from the construction that all left-normalized commutators of length k in A #n +2which consists of fewer that k different symbols from {¯x 1,...,¯x n +2},are trivial.Hence,Theorem 2follows.References[1]S.A.Amitsur,L.W.Small:Affine algebras with polynomial identities,Suppl.ai Rendiconti del Circolo Mat.di Palermo,Serie2,31(1992),9-43.[2]Bahturin Yu.,A.:Identities in Lie algebras.M.:Nauka,1985.,pages448(Russian).Engl.transl.(by Bakh-turin):Identical relations in Lie algebras.VNU Science Press,b.v.,Utrecht,1987.x+309pp.[3]Belov A.:About height m.in Algebra,1995,vol.23,N9,p.3551–3553.[4]A.Belov,V.Borisenko and tyshev:Monomial algebras.Algebra4,J,Math.Sci.(New York)87(1997),3463-3575.[5]M.Gromov:Entropy and Isoperimetry for Linear and non-Linear Group Actions,preprint.[6]V.Ufnarovskij:Combinatorial and asymptotic methods in algebra.Algebra,VI,1–196,Encyclopaedia Math.Sci.,57,Springer,Berlin,(1995)。