山东省菏泽市2015届高三下学期一模考试数学(文) 试题
山东省2015届高考模拟试题数学(文)试题 Word版含答案
山东省2015届高考模拟试题数学(文)试题20140410第Ⅰ卷 选择题(共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1.已知集合{}{}R x y y N x x x M x ∈==≥=,2,2,则MN = ( )A .)(1,0 B .]1,0[ C .)1,0[D .]1,0(2.已知复数(1i)(12i)z =-+,其中i 为虚数单位,则z 的实部为A .3-B .1C .1-D .3 3.下列命题中的真命题是( )A .对于实数a 、b 、c ,若a b >,则22ac bc >B .x 2>1是x >1的充分而不必要条件C .,R αβ∃∈ ,使得sin()sin sin αβαβ+=+成立D .,R αβ∀∈,tan tan tan()1tan tan αβαβαβ++=-⋅成立4.已知圆22:68210C x y x y ++++=,抛物线28y x =的准线为,设抛物线上任意一点P 到直线的距离为m ,则||PC m +的最小值为A .5B .41C .41-2D .45.在A ,B 两个袋中都有6张分别写有数字0,1,2,3,4, 5的卡片,现从每个袋中任取一张卡片,则两张卡片上数字之和为7的概率为A .19B .118C .16 D .136.下图是计算10181614121++++值的一个程序框图,其中判断框内应填入的条件是A .5≥kB .5<kC .5>kD .6≤k7.设等差数列{}n a 的前n 项和为n S ,若201312014a a a -<<-,则必定有A .201320140,0S S ><且B .201320140,0S S <>且C .201320140,0a a ><且D .201320140,0a a <>且8.已知O,A,M,B 为平面上四点,且(1)OM OB OA λλ=+-,实数(1,2)λ∈,则A .点M 在线段AB 上 B .点B 在线段AM 上C .点A 在线段BM 上D .O,A,M,B 一定共线9.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,其中120,1A b ==,且ABC ∆,则sin sin a bA B+=+ABC .D .10.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,连接,AF BF ,若410,6,cos ABF 5AB AF ==∠=,则椭圆C 的离心率e =A .57B .54C .74D .65第Ⅱ卷 非选择题(共100分)二、填空题(本大题共5小题,每小题5分,满分25分,把答案填写在答题卡相应的位置) 11.复数4+3i 1+2i的虚部是__ ___.12.函数1()1f x x x =+-(1)x >的最小值为__ ___. 13.一个几何体的三视图如图所示,则该几何体的体积为__ ___.14.在ABC ∆中,不等式1119A B C π++≥成立;在凸四边形ABCD 中,不等式1111162A B C D π+++≥成立;在凸五边形ABCDE 中,不等式11111253A B C D E π++++≥成立,…,依此类推,在凸n 边形n A A A 21中,不等式12111nA A A +++≥__ ___成立.15.选做题(请考生在以下三个小题中任选一题做答,如果多做,则按所做的第一题评阅记分)A .(坐标系与参数方程)已知直线的参数方程为,1x y ⎧=⎪⎪⎨⎪=⎪⎩ (为参数),圆C 的参数方程为cos 2sin x y θθ=+⎧⎨=⎩(θ为参数), 则圆心C 到直线的距离为_________.B .(几何证明选讲)如图,直线PC 与圆O 相切于点C ,割线经过圆心O ,弦CD ⊥AB 于点E ,4PC =,8PB =,则CE =_________.C .(不等式选讲)若存在实数x 使12x m x -++≤成立,则实数m 的取值范围是_________.三、解答题:解答应写出文字说明,证明过程或演算步骤(本答题共6小题,共75分) 16.(本小题满分12分)已知函数()⎪⎭⎫ ⎝⎛--=672sin cos 22πx x x f . (Ⅰ)求函数)(x f 的最大值,并写出)(x f 取最大值时x 的取值集合; (Ⅱ)已知ABC ∆中,角C B A ,,的对边分别为.,,c b a 若3(),2f A = 2.b c +=求实数a 的最小值.17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,211,(1),1,2,.2n n a S n a n n n ==--=(Ⅰ)证明:数列⎭⎬⎫⎩⎨⎧+n S nn 1是等差数列,并求n S ; (Ⅱ)设233nn S b nn +=,求证:125.12n b b b +++<18.(本小题满分12分)在直三棱柱ABC -A 1B 1C 1中,已知AB=5,AC=4,BC=3,AA 1=4,点D 在棱AB 上. (Ⅰ)求证:AC ⊥B 1C ;(Ⅱ)若D 是AB 中点,求证:AC 1∥平面B 1CD .19.(本小题满分12分)已知关于x 的一元二次函数.14)(2+-=bx ax x f(Ⅰ)设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数)(x f y =在区间[),1+∞上是增函数的概率;(Ⅱ)设点(a ,b )是区域⎪⎩⎪⎨⎧>>≤-+008y x y x 内的随机点,求函数),1[)(+∞=在区间x f y 上是增函数的概率. 20.(本小题满分13分)已知函数x a x x f ln )1()(--=(0)x >. (Ⅰ)求函数)(x f 的单调区间和极值;(Ⅱ)若0)(≥x f 对),1[+∞∈x 上恒成立,求实数a 的取值范围. 21.(本小题满分14分)如下图所示,椭圆22:1(01)y C x m m+=<<的左顶点为A ,M 是椭圆C 上异于点A 的任意一点,点P 与点A 关于点M 对称.(Ⅰ)若点P 的坐标为9(5,求m 的值;(Ⅱ)若椭圆C 上存在点M ,使得OP OM ⊥,求m 的取值范围.山东省2015届高考模拟试题数学(文)参考答案20140410一、选择题:二、填空题:11.-1; 12.3; 13.23; 14.; 15.A ; B .512; C .[3,1]-.三、解答题∴函数)(x f 的最大值为2.要使)(x f 取最大值,则sin(2)1,6x π+=22()62x k k Z πππ∴+=+∈ ,解得,6x k k Z ππ=+∈.故x 的取值集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. ………6分 (Ⅱ)由题意,3()sin(2)162f A A π=++=,化简得 1sin(2).62A π+=()π,0∈A ,132(,)666A πππ∴+∈,∴5266A ππ+=, ∴.3π=A在ABC ∆中,根据余弦定理,得bc c b bc c b a 3)(3cos 22222-+=-+=π.由2=+c b ,知1)2(2=+≤c b bc ,即12≥a . ∴当1==c b 时,实数a 取最小值.1 ………12分 17.(本小题满分12分)解:(Ⅰ)证明:由)1(2--=n n a n S n n 知,当2≥n 时:)1()(12---=-n n S S n S n n n , 即)1()1(122-=---n n S n S n n n ,∴1111=--+-n n S n nS n n ,对2≥n 成立. 又⎭⎬⎫⎩⎨⎧+∴=+n S n n S 1,11111是首项为1,公差为1的等差数列. 1)1(11⋅-+=+n S n n n ,∴12+=n n S n . ………6分(Ⅱ))3111(21)3)(1(1323+-+=++=+=n n n n n n S b n n ,………8分∴)311121151314121(2121+-+++-+⋯+-+-=+⋯⋯++n n n n b b b n =125)312165(21<+-+-n n .………12分 18.(本小题满分12分)解: (Ⅰ)证明:在△ABC 中,因为 AB=5,AC=4,BC=3, 所以 AC 2+ BC 2= AB 2, 所以 AC ⊥BC .因为 直三棱柱ABC-A 1B 1C 1,所以 C C 1⊥AC , 因为 BC ∩AC =C ,所以 AC ⊥平面B B 1C 1C . 所以 AC ⊥B 1C . ……… 6分 (Ⅱ)连结BC 1,交B 1C 于E ,连接DE .因为直三棱柱ABC-A 1B 1C 1,D 是AB 中点,所以 侧面B B 1C 1C 为矩形, DE 为△ABC 1的中位线,所以DE// AC 1.因为 DE ⊂平面B 1CD ,AC 1⊄平面B 1CD ,所以 AC 1∥平面B 1CD .……… 12分 19.(本小题满分12分)解:(Ⅰ)∵函数14)(2+-=bx ax x f 的图象的对称轴为,2abx =要使14)(2+-=bx ax x f 在区间),1[+∞上为增函数,当且仅当a >0且a b ab ≤≤2,12即, 若a =1则b =-1;若a =2则b =-1,1;若a =3则b =-1,1; ∴事件包含基本事件的个数是1+2+2=5, ∴所求事件的概率为51153=. ………6分 (Ⅱ)由(1)知当且仅当a b ≤2且a >0时,函数),1[14)(2+∞+-=在区是间bx ax x f 上为增函数,依条件可知试验的全部结果所构成的区域为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧>>≤-+0008|),(b a b a b a ,构成所求事件的区域为三角形部分.由),38,316(208得交点坐标为⎪⎩⎪⎨⎧==-+ab b a ∴所求事件的概率为31882138821=⨯⨯⨯⨯=P .………12分 20.(本小题满分13分)解:(Ⅰ)xa x xa x f -=-=1)(')0(>x ,当0≤a 时,0)('>x f ,在),0(+∞上增,无极值; 当0>a 时,a x xax x f ==-=得由,0)(', )(x f 在),0(a 上减,在),(+∞a 上增, )(x f 有极小值a a a a f ln )1()(--=,无极大值; ……… 6分(Ⅱ)xax x a x f -=-=1)(', 当1≤a 时,0)('≥x f 在),1[+∞上恒成立,则)(x f 是单调递增的, 则只需0)1()(=≥f x f 恒成立,所以1≤a ,当1>a 时,)(x f 在上),1(a 减,在),(+∞a 上单调递增,所以当),1(a x ∈时,0)1()(=≤f x f 这与0)(≥x f 恒成立矛盾,故不成立,综上:1≤a .……… 13分21.(本小题满分14分)解:(Ⅰ)依题意,M 是线段AP 的中点, 因为A (-1,0),P ⎪⎪⎭⎫ ⎝⎛534,59,所以点M 的坐标为⎪⎪⎭⎫⎝⎛532,52 由点M 在椭圆C 上,所以,12512254=+m ,解得74=m (II )解:设M ()11-,1,020200<<-+x myx y x 且,则① 因为M 是线段AP 的中点,所以P ()002,12y x + 因为OP ⊥OM ,所以()02122000=++y x x ②由①②,消去0y ,整理得22220020-+=x x x m所以()4321826221100-≤-++++=x x m。
山东省菏泽市2015届高三第一次模拟语文试卷 Word版含答案
资料概述与简介 菏泽市2015届高三第一次模拟 语文试题 2015.3 第Ⅰ卷(共36分)一、(每小题3分,共15分)....2.下列词语中,没有错别字的一项是A.B.C.D.3.依次填入下列横线处的词语,最恰当的一项是A.B.C.D.4.下列各句中,加点的成语使用正确的一句是A.B.。
C.D.。
5下列各句中,没有语病、句意明确的一句是A.B.。
.。
D.。
二、(每小题3分,共9分)阅读下面的文字,完成6~8题。
6.下列对本文主旨的,的一项是A.。
B.。
C.。
.D.A.B.。
C.。
D.8.下列表述的一项是A.。
B.。
C.。
D.三、(每小题3分,共12分)阅读下面的文言文,完成9~12题。
(选自《》)?【注释】①三室同宇:三个祭室同在一个庙宇中。
②作主于第:在家中做好牌位。
③存:指乌氏先祖乌存。
下文中的“余”、“枝鸣”、“获”、“察”等都是乌氏先祖的名字。
④是生赠尚书:他生养了获赠尚书的乌承玼。
⑤捺禄:山名。
⑥可突干:契丹将领的名字。
9.对下列句子中加点词的解释,不正确的一项是A.:B.:C.:D.:10.下列各组句子中,加点词的意义和用法相同的一组是A.? 使杞子、逢孙、杨孙戍之,乃还 B.C.? D.11.以下六句话分别编为四组,全属于体现的一组是①中贵人承璀即诱而缚之②天子有命,从有赏,敢违者斩 ③先夫人无加命,号名差卑④乌氏自莒、齐、秦大夫以来,皆以材力显 ⑤从战捺禄,走可突干⑥积粟厉兵,出入耕战 A.①②④? B .②⑤⑥? C.①③⑤ D.③④⑥ 12.对原文有关内容的理解和分析,下列表述不正确的一项是A.。
B.。
C.。
D.。
第Ⅱ卷(共114分)四、(24分)13.把文言文阅读材料中加横线的句子翻译成现代汉语。
(10分)(1)(5分)(2)(5分)①朝天②独掩扉。
清露已凋秦塞柳,白云空长越山③薇。
病中送客难为别,梦里还家不当归。
惟有寄书书未得,卧闻燕雁向南飞。
【注】①珮马:饰有佩环之马,官员所乘。
2015高考一模 数学★山东省2015年高考模拟冲刺卷(六)文科数学word含答案
绝密★启用前 试卷类型A山东省2015年高考模拟冲刺卷(六)文科数学说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第I 卷(选择题 共50分)一、选择题:在每小题给出的四个选项中,只有一个是符合题目要求的(本大题共10小题,每小题5分,共50分).1.已知集合1={R| 2},{R| 1}xA x eB x x∈<=∈>则A B = ( )A .2{|0log }x R x e ∈<<B .{|01}x R x ∈<<C .2{|1log }x R x e ∈<<D .2{|log }x R x e ∈< 2.以下判断正确的是( )A .函数()y f x =为R 上的可导函数,则'0()0f x =是0x 为函数()f x 极值点的充要条件. B .命题“2,10x R xx ∈+-<存在”的否定是“2,10x R x x ∈+->任意”.C .命题“在ABC ∆中,若,sin sin A B A B >>则”的逆命题为假命题.D .“0b =”是“函数2()f x ax bx c =++是偶函数”的充要条件.3.已知复数2320131i i i i z i++++=+,则复数z 在复平面内对应的点位于( )A .第一像限B .第二像限C .第三像限D .第四像限 4.函数331x x y =-的图象大致是( )A B C D6 7 758 8 8 6 84 0 93甲乙俯视图5.甲、乙两位歌手在“中国好声音”选拔赛中,5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别为x 甲、x 乙,则下列判断正确的是 ( ) A .x x <甲乙,甲比乙成绩稳定B .x x <甲乙,乙比甲成绩稳定C .x x >甲乙,甲比乙成绩稳定D .x x >甲乙,乙比甲成绩稳定6.右图是函数y =A sin (ωx +φ)(00,ω>>A ,||2πϕ≤)图像的一部分.为了得到这个函数的图像,只要将y =sin x (x ∈R )的图像上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变.B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变.D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.7.在ABC ∆中,点M 是BC 中点.若 120=∠A ,12⋅=-AB AC ,则AM的最小值是 ( )A . BC .32D .128.若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于( )A .310cm B .320cm C .330cmD .340cm9.曲线21:2(0)=>C y px p 的焦点F 恰好是曲线22222:1-=x yC a b 的右焦点,且曲线1C 与曲线2C 交点连线过点F ,则曲线2C 的离心率是( )A .1BC D .110.定义在R 上的函数()f x 满足:()()1(0)4f x f x f '+>=,,则不等式()3xx e f x e >+(其中e 为自然对数的底数)的解集为( )A .()0,+∞B .()(),03,-∞+∞C .()(),00,-∞+∞ D .()3,+∞第Ⅱ卷(非选择题 共100分)二、填空题:把答案填在相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.在平面直角坐标系xOy 中,设D 是由不等式组⎪⎩⎪⎨⎧≥≤-+≥+-0101y y x y x 表示的区域,E 是到原点的距离不大于1的点构成的区域,若向E 中随机投一点,则所投点落在D 中的概率是 .12.设集合{}|01A x x =≤<,{}|12B x x =≤≤,2,()42,x x Af x x x B⎧∈=⎨-∈⎩,0x A ∈ 且0[()]f f x A ∈,则0x 的取值范 围是 .13.如右上所示框图,若2()31f x x =-,取0.1ε=,则输出的值为 . 14.若关于x 的不等式a x x ≤-+1无解,则实数a 的取值范围为 . 15.已知函数[][]x x x f =)(,其中[]x 表示不超过实数x 的最大整数,如[][]1999.1,301.2=-=-.若3322x -≤≤,则)(x f 的值域为 .三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分). 16.(本小题满分12分)在ABC ∆中,角A B C 、、对边分别是a b c 、、,满足222()AB AC a b c ⋅=-+. (Ⅰ)求角A 的大小;(Ⅱ)求24sin()23C B π--的最大值,并求取得最大值时角B C 、的大小.17.(本小题满分12分)已知数列}{n a 中,51=a 且1221n n n a a -=+-(2n ≥且n N +∈)(Ⅰ)证明:数列12n n a -⎧⎫⎨⎬⎩⎭为等差数列; (Ⅱ)求数列}{n a 的前n 项和n S .名义务宣传志愿者,成立环境保护宣传组织.现把该组织的成员按年龄分成5组:第1组[)35,40,第5组[40,45],20,25,第2组[)25,30,第3组[)30,35,第4组[)得到的频率分布直方图如图所示,已知第2组有35人.(Ⅰ)求该组织的人数.(Ⅱ)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加某社区的宣传活动,应从第3,4,5组各抽取多少名志愿者?(Ⅲ)在(Ⅱ)的条件下,该组织决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有一名志愿者被抽中的概率.ABCDEF如图,E 是以AB 为直径的半圆上异于点A B 、的点,矩形ABCD 所在的平面垂直于该半圆所在平面,且AB=2AD=2. (Ⅰ)求证:EA EC ;(Ⅱ)设平面ECD 与半圆弧的另一个交点为F①求证:EF //AB ;②若EF=1,求多面体ABCDEF 的体积V .已知椭圆2222:1(0)x y C a b a b+=>>的离心率为=e ,以原点为圆心,椭圆短半轴长为半径的圆与直线0x y -=相切.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设12(1,0),(1,0)F F -,若过1F 的直线交曲线C 于A B 、两点,求22F A F B 的取值范围.已知函数()ln 3f x a x ax =--(a R ∈). (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若函数()f x 的图像在点(2,(2))f 处的切线的倾斜角为45,且函数32'()()2⎡⎤=++⎢⎥⎣⎦m g x x x f x 在区间(1,3)上不单调,求m 的取值范围;(Ⅲ)试比较ln 2222+ln 3232+…+ln n 2n 2与n -n +n +的大小(n ∈N +,且n ≥2),并证明你的结论.文科数学(六)1---5 BDACB 6----10 ADBDA 11.1π 12.23(log ,1)213.1932 14.1<a 15.{}0,1,2,3 三、解答题:()1112112n n ++⎡⎤=-+⎣⎦1=, …………4分由上可知,数列12n n a -⎧⎫⎨⎬⎩⎭为首项是2、公差是1的等差数列. …………5分(Ⅱ)由(Ⅰ)知,()1111122n n a a n --=+-⨯, 即:()121nn a n =+⋅+. …………7分 ∴()()()()12122132121121n nn S n n -⎡⎤=⋅++⋅+++⋅+++⋅+⎣⎦.即()1212232212n n n S n n n -=⋅+⋅++⋅++⋅+. 令()1212232212n n nT n n -=⋅+⋅++⋅++⋅, ①则()23122232212n n nT n n +=⋅+⋅++⋅++⋅. ② …………9分②-①,得()()12312222212n n n T n +=-⋅-+++++⋅12n n +=⋅.∴()11221n n n S n n n ++=⋅+=⋅+. …………12分A BCD EF(A3,C1),共有12种, …………11分 则第3组至少有一名志愿者被抽中的概率为124155p == …………12分 19.(本题满分12分)解:(Ⅰ)∵E 是半圆上异于A 、B 的点,∴AE ⊥EB, 又∵矩形平面ABCD ⊥平面ABE ,且CB ⊥AB ,由面面垂直性质定理得:CB ⊥平面ABE ,∴平面CBE ⊥平面ABE , 且二面交线为EB ,由面面垂直性质定理得:AE ⊥平面ABE ,又EC 在平面ABE 内,故得:EA ⊥EC …………4分 (Ⅱ) ①由CD//AB ,得CD//平面ABE ,又∵平面CDE ∩平面ABE 于直线EF ,∴根据线面平行的性质定理得:CD//EF ,CD//AB ,故EF//AB …………7分②分别取AB 、EF 的中点为O 、M ,连接OM ,则在直角三角形OME中,OM ===,因为矩形ABCD 所在的平面垂直于该半圆所在平面,,OM AB OM ABCD ⊥∴⊥面,即OM 为M 到面ABCD 之距,又EF //AB , ∴E 到到面ABCD之距也为OM =9分则D-AEF 111V=V +V =1121323E ABCD -⨯⨯+⨯⨯ ……12分 20.(本题满分13分)解:(Ⅰ)由题意可得圆的方程为222x y b +=,∵直线0x y -=与圆相切,∴d b ==,即1b =, …………2分又c e a ==222a b c =+,得2a =,所以椭圆方程为2212x y +=.…………4分 (Ⅱ)①当直线AB 的斜率为0时,A(,0),B,0)时,22F A F B =-1…5分 ②当直线AB 的斜率不为0时,不妨设AB 的方程为:1x my += 由22112x my x y +=⎧⎪⎨+=⎪⎩得:22(2)210m y my +--=,------7分 设11122()()A x y B x y ,,,,则:12222m y y m +=+,12212y y m =-+,22F A F B 11221122(1,)(1,)(2,)(2,)x y x y my y my y =-∙-=-∙-212121212(2)(2)(1)2()4my my y y m y y m y y =--+=+-++2225194122m m m --=+=-+++7(1,2∈-], 由①、②得:22F A F B 的取值范围为[71,2-]. …………13分 21.(本小题满分14)解:(Ⅰ)'(1)()(0)a x f x x x-=> …………1分 当0a >时,()f x 的单调增区间为(]0,1,单调减区间为[)1,+∞; …………2分 当0a <时,()f x 的单调增区间为[)1,+∞,单调减区间为(]0,1 …………3分 当0a =时,()f x 不是单调函数。
2015菏泽一模 山东省菏泽市2015届高三第一次模拟语文试题 Word版含答案
菏泽市2015届高三第一次模拟语文试题2015.3第Ⅰ卷(共36分)一、(每小题3分,共15分)1.下列词语中加点的字,读音全部正确的一项是( )A.间.(jiàn)歇黝.(yǒu)黯血.(xiě)淋淋螳臂当.(dāng)车B.臧.(zāng)否嗔.(chēn)怪黄澄.(dēng)澄载.(zǎi)歌载舞C.粗糙.(zào)结.(jié) 彩大杂烩.(huì) 渐臻.(zhēn)佳境D.蹊.(qī)跷应(yìng)邀供给(jǐ)制踽.(yǔ)踽而行2.下列词语中,没有错别字的一项是( )A.停滞星罗棋布制高点额首称庆B.哑铃秘而不宣三角架啧啧称羡C.坐阵歪门邪道伤元气卷帙浩繁D.荫凉传诵一时混账话察言观色3.依次填入下列横线处的词语,最恰当的一项是( )(1)在党的十八大提出的社会主义核心价值观体系中,“富强、民主、文明、和谐”被确定为国家发展层面的核心价值。
(2)反腐有成绩振奋人心,但是更应该由此看到形势的严峻,历史经验和现实环境都告诉我们,与腐败作斗争没有“完成时”。
(3)世贸组织裁定中国实施的稀土出口限制了自贸原则,日前,中国商务部已经取消了稀土出口配额限制。
A.趋向纵然违反B.取向纵然违犯C.趋向固然违犯D.取向固然违反4.下列各句中,加点的成语使用正确的一句是( )A.至2014年底,微信用户达到3.83亿,已将博客、人人网、微博远远甩在后面,但随着新的社交平台的必然出现,当今如火如荼....的微信也终有衰落之时。
B.旱情在持续,济南泉水面临停喷,将来春灌用水也定会紧张,如果此时为保泉而调用水库存水,以大水漫灌的方式涵养泉源,难免给人暴殄天物....的感觉。
C.青年歌手们演唱了25首原创金曲,这些原汁原味的草原歌曲各有特色,曲尽其妙....,洋溢着浓郁的亲情、友情、爱情,让歌迷们尽情地回味草原风情。
D.去年6月以来,国际油价跌势凶猛,一路势如破竹....,截至今年1月,国际油价已跌至446.39美元∕桶,创下史上首次“十三连跌”。
【山东一模汇总 文数7份】2015届山东省各地市高三一模数学(文)试题及答案(Word版)
山东省各地市2015年3月份高考模拟考试数学(文史类)试题及答案汇编【潍坊一模文数】山东省潍坊市2015届高三3月一模数学(文)试题及答案(Word版)2【济南一模文数】2015年3月济南市高三模拟考试数学试题(文)及答案11【烟台一模文数】山东省烟台市2015年高考诊断性测试文科数学试题及答案(Word版) 22【淄博一模文数】山东省淄博市2014-2015学年度高三模拟考试数学试题(文)及答案(Word版) 31【济宁一模文数】山东省济宁市2015届高三第一次模拟考数学试题(文)及答案(word版本) 42【德州一模文数】山东省德州市2015届高三下学期3月一模考试数学(文)试题Word版含答案51【泰安一模文数】泰安市2015届高三第一次模拟数学试题(文)含答案59【潍坊一模 文数】山东省潍坊市2015届高三3月一模数学(文)试题及答案(Word 版)试卷类型:A高三数学(文史类)本试卷共5页,分第I 卷(选择题)和第II 卷(非选择题)两部分.共150分.考试时间120分钟.第I 卷(选择题 共50分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再改涂其它答案标号.一、选择题:本大题共10小题,每小题5分,共50分.在每小给出的四个选项中,只有一项是符合题目要求的.1.集合(){}11,122xM x N x y g x ⎧⎫⎪⎪⎛⎫=≥==+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则M N ⋂等于A. [)0,+∞B. (]2,0-C. ()2,-+∞D. ()[),20,-∞-⋃+∞2.设复数12,z z 在复平面内的对应点关于虚轴对称,若112z i =-,则21z z 的虚部为 A.35B. 35-C.45D. 45-3.已知抛物线()220y px p =>上横坐标为1的点到焦点F 的距离为2,则抛物线方程为 A. 2y x =B. 22y x =C. 24y x =D. 28y x =4.已知函数()y f x =的定义域为{}0x x Rx ∈≠且,且满足()()0,0f x f x x +-=>当时,()l n 1f x x x =-+,则函数()y f x =的大致图象为5.某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如下22⨯列联表:则可以说其亲属的饮食习惯与年龄有关的把握为 A.90% B.95% C.99% D.99.9%附:参考公式和临界值表6.下列结论中正确的是①命题:()30,2,3xx x ∀∈>的否定是()30,2,3xx x ∃∈≤;②若直线l 上有无数个点不在平面α内,则//l α;③射击比赛中,比赛成绩的方差越小的运动员成绩越不稳定; ④等差数列{}n a 的前n 项和为473=21.n S a S =,若,则 A.①②B.②③C.③④D.①④7.如图,在ABC ∆中,点D 在AC上,,5,sin AB BD BC BD ABC ⊥==∠=5,则CD 的长为A.B.4C.D.58.某几何体的三视图如图所示,其中左视图为半圆,则该几何体的体积是A.3B.2πC.3D.π9.圆()22:125C x y -+=,过点()2,1P -作圆的所有弦中,以最长弦和最短弦为对角线的四边形的面积是A.B.C.D. 10.对于实数,m n 定义运算“⊕”: ()()2221,21m mn m nm n f x x n mnm n ⎧-+-≤⎪⊕==-⊕⎨->⎪⎩设 ()1x -,且关于x 的方程()f x a =恰有三个互不相等的实数根123,,,x x x 则123,,x x x 的取值范围是A. 1,032⎛⎫-⎪⎝⎭B. 1,016⎛⎫-⎪⎝⎭C. 10,32⎛⎫ ⎪⎝⎭D. 10,16⎛⎫⎪⎝⎭第II 卷(非选择题 共100分)注意事项:1.将第II 卷答案用0.5mm 的黑色签字笔答在答题纸的相应位置上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共5小题,每小题5分,共25分. 11.已知0,0,x y >>且满足1221x y x y+=+,则的最小值是_________. 12.运行右面的程序框图,如果输入的x 的值在区间[]2,3-内,那么输出的()f x 的取值范围是_________.13.若变量,x y 满足约束条件20,3260,3x y x y z x y y k +-≥⎧⎪--≤=+⎨⎪≥⎩且的最小值为4,则k=_________.14.对于实数[],x x 表示不超过x的最大整数,观察下列等式:按照此规律第n 个等式的等号右边的结果为______________________.15.设双曲线()222210,0x y a b a b-=>>的左焦点为F ,过点F 作与x 轴垂直的直线l 交两条渐近线于M 、N两点,且与双曲线在第二象限的交点为P.设O 为坐标原点,若()1,,8OP mOM nON m n R mn =+∈=且,则双曲线的离心率为________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16. (本小题满分12分) 已知函数()()2sin 24sin 206f x x x πωωω⎛⎫=--+> ⎪⎝⎭,其图象与x 轴相邻两个交点的距离为2π. (I )求函数()f x 的解析式;(II )若将()f x 的图象向左平移()0m m >个长度单位得到函数()g x 的图象恰好经过点,03π⎛⎫-⎪⎝⎭,求当m 取得最小值时,()7612g x ππ⎡⎤-⎢⎥⎣⎦在,上的单调递增区间. 17. (本小题满分12分)如图,已知平行四边形ABCD 与直角梯形ABEF 所在的平面互相垂直,11,//,2AB BE AF BE AF AB AF ===⊥,4CBA BC π∠==,P 为DF的中点.(I )求证:PE//平面ABCD ; (II )求三棱锥A BCE -的体积.18. (本小题满分12分)某校从参加某次数学能力测试学生中抽出36名学生,并统计了他们的数学成绩(成绩均为整数且满分为120分),成绩的频率分布直方图如图所示,其中成绩分组区间是:[)[)[)[]809090.100100110110120,,,,,,. (I )求实数a 的值并求这36名学生成绩的样本平均数x (同一组中的数据用该组区间的中点值作代表);(II )已知数学成绩为120分有4位同学,从这4位同学中任选两位同学,再从数学成绩在[)8090,中任选一位同学组成“二帮一”小组.已知甲同学的成绩为81分,乙同学的成绩为120分,求甲、乙两同学恰好被安排在同一个“二帮一”小组的概率.19. (本小题满分12分)已知各项都为正数的等比数列{}n a 的前n 项和为n S ,数列{}n b 的通项公式{}n b 的通项公式().1n n n b n N n n *⎧=∈⎨+⎩为偶数为奇数若2352441,S b a a b =+⋅=. (I )求数列{}n a 的通项公式; (II )求数列{}n n a b ⋅的前n 项和n T . 20. (本小题满分13分)椭圆2222:1x y C a b+=的左、右焦点分别为12,F F ,直线1:l x my +=C 的右焦点2F 且与椭圆交于P ,Q 两点,已知1F PQ ∆的周长为8,点O 为坐标原点. (I )求椭圆C 的方程;(II )设直线:l y kx t =+与椭圆C 相交于M,N 两点,以线段OM ,ON 为邻边作平行四边形OMGN ,其中点G 在椭圆C 上,当112t ≤≤时,求OG 的取值范围.21. (本小题满分14分)已知函数()()2ln f x x ax x a R =--∈.(I )当1a =时,求函数()f x 在()1,2-处的切线方程; (II )当0a ≤时,讨论函数()f x 的单调性;(III )问当0a >时,函数()y f x =的图象上是否存在点()()00,P x f x ,使得以P 点为切点的切线()l y f x =将的图象分割成12,C C 两部分,且12,C C 分别位于l 的两侧(仅点P 除外)?若存在,求出0x 的值;若不存在,说明理由.【济南一模 文数】2015年3月济南市高三模拟考试数学试题(文)及答案2015年高考模拟考试(山东卷)数学(文科)本试卷分第I 卷和第Ⅱ卷两部分,共5页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:柱体的体积公式:V Sh =,其中S 是柱体的底面积,h 是柱体的高.第I 卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}2230,1,1,3,M x x x N M N =+-==-⋃=则A.{}1,3-B.{}1,1,3-C.{}1,1,3,3--D.{}1,1,3--2.已知复数z 满足()1i z i -=(i 是虚数单位),则z 在复平面内对应的点所在象限为 A.第一象限B.第二象限C.第三象限D.第四象限3.函数y = A.[)1,+∞B.()1,+∞C.1,2⎛⎫+∞⎪⎝⎭D.1,12⎛⎫⎪⎝⎭4.“1cos 2α=”是“3πα=”的 A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.已知,,a b c R ∈,那么下列命题中正确的是 A.若a b <,则22ac bc < B.若0,0a b c >><,则c c a b< C.若a b >,则()()22a cbc +>+ D.若0ab >,则2a bb a+≥ 6.执行如图所示的程序框图,输出的S 值为 A.9 B.16 C.25 D.367.已知,x y 满足约束条件13223x x y z x y x y ≥⎧⎪+≤=+⎨⎪-≤⎩,若的最大值和最小值分别为,a b ,则a b +=A.7B.6C.5D.48.已知函数()y f x =是R 上的偶函数,当()12,0,x x ∈+∞时,都有()()()12120x x f x f x -⋅-<⎡⎤⎣⎦.设()21ln,ln ,ln a b c ππ===,则A.()()()f a f b f c >>B. ()()()f b f a f c >>C. ()()()f c f a f b >>D. ()()()f c f b f a >>9. 已知12,F F 是双曲线()222210,0x y a b a b-=>>的两个焦点,以12F F 为直径的圆与双曲线一个交点是P ,且12F PF ∆的三条边长成等差数列,则此双曲线的离心率是C.2D.510.设函数()f x 的定义域为R ,若存在常数()0f x x ωω>≤,使对一切实数x 均成立,则称()f x 为“条件约束函数”.现给出下列函数:①()4f x x =;②()22f x x =+;③()2225xf x x x =-+;④()f x 是定义在实数集R 上的奇函数,且对一切12,x x 均有()()12124f x f x x x -≤-.其中是“条件约束函数”的有 A.1个 B.2个 C.3个D.4个第II 卷(共100分)二、填空题:本大题共5个小题,每小题5分,共25分.11.100名学生某次数学测试成绩(单位:分)的频率分布直方图如图所示,则模块测试成绩落在[)50,70中的学生人数是_________. 12.已知ABC ∆中,角A,B,C 所对的边分别为,,a b c ,若s i n :s i n :s i n 2:3A B C =C=__________.13.某圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为3π的扇形,则该几何体的体积为__________. 14.设,,a b c r r r是单位向量,且()()0a b a c b c ⋅=-⋅-r r r r r r ,则的最大值为________.15.已知P 是直线34100x y +-=上的动点,PA ,PB 是圆222440x y x y +-++=的两条切线,A,B 是切点,C 是圆心,那么四边形PACB 面积的最小值为________.三、解答题:本大题共6小题,共75分. 16.(本小题满分12分)设函数()22sin f x x x ωω=+0ω>),且()f x 的最小正周期为2π. (I )求ω的值;(II )将函数()y f x =图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()y g x =的图象,求函数()g x 的单调增区间.17. (本小题满分12分)某在元宵节活动上,组织了“摸灯笼猜灯谜”的趣味游戏.已知在一个不透明的箱子内放有大小和形状相同的标号分别为1,2,3的小灯笼若干个,每个灯笼上都有一个谜语,其中标号为1的小灯笼1个,标号为2的小灯笼2个,标号为3的小灯笼n 个.若参赛者从箱子中随机摸取1个小灯笼进行谜语破解,取到标号为3的小灯笼的概率为14. (I )求n 的值;(II )从箱子中不放回地摸取2个小灯笼,记第一次摸取的小灯笼的标号为a ,第二次摸取的小灯笼的标号为b.记“4a b +≥”为事件A ,求事件A 的概率.18. (本小题满分12分)如图,平面PBA ⊥平面ABCD ,90,,DAB PB AB BF PA ∠==⊥o ,点E 在线段AD 上移动. (I )当点E 为AD 的中点时,求证:EF//平面PBD ;(II )求证:无论点E 在线段AD 的何处,总有PE BF ⊥.19. (本小题满分12分)数列{}n a 满足()111,2n n a a a n N *+==∈,n S 为其前n 项和.数列{}n b 为等差数列,且满足1143,b a b S ==. (I )求数列{}{},n n a b 的通项公式; (II )设2221log n n n c b a +=⋅,数列{}n c 的前n 项和为n T ,证明:1132n T ≤<.20. (本小题满分13分)已知函数()()0x f x e ax a a R a =+-∈≠且.(I )若函数()0f x x =在处取得极值,求实数a 的值;并求此时()[]21f x -在,上的最大值; (II )若函数()f x 不存在零点,求实数a 的取值范围.21. (本小题满分14分)在平面直角坐标系xoy 中,椭圆()2222:10x y C a b a b+=>>的焦距为2,一个顶点与两个焦点组成一个等边三角形.(I )求椭圆C 的标准方程;(II )椭圆C 的右焦点为F ,过F 点的两条互相垂直的直线12,l l ,直线1l 与椭圆C 交于P ,Q 两点,直线2l 与直线4x =交于T 点.(i )求证:线段PQ 的中点在直线OT 上; (ii )求TF PQ的取值范围.文科数学参考答案一、选择题 CBABD BACDC二、填空题11.25 12.3π13. 2π 14. 1 三、解答题16. 解:(Ⅰ)()sin 2f x x x ωω=+=2sin(2)3x πω+……………………4分∴2=22ππω,即12ω= ……………………………………6分 (Ⅱ)由(Ⅰ)知()f x =2sin()3x π+,将函数)(x f y =的图象各点的横坐标缩短为原来的12,纵坐标不变,得到函数)(x g y =的图象,即()g x =2sin(2)3x π+ ……………………8分由22+2232k x k πππππ-≤+≤,k Z ∈得:51212k x k ππππ-+≤≤+,k Z ∈,……………………10分 ∴()g x 的单调递增区间是:5[,]1212k k ππππ-++,k Z ∈ …………12分17. 解:(Ⅰ)由题意,1124n n =++,1n ∴=……………………4分(2)记标号为2的小灯笼为1a ,2a ;连续..摸取2个小灯笼的所有基本事件为:(1, 1a ),(1, 2a ),(1,3),(1a ,1),(2a ,1),(3,1),(1a ,2a ), (1a ,3),(2a ,1a ), (3, 1a ),(2a ,3), (3, 2a )共12个基本事件. ……………………8分A 包含的基本事件为: (1,3), (3,1),(1a ,2a ),(2a ,1a ),(1a ,3),(3, 1a ), (2a ,3),(3, 2a ) ……………………10分8()12P A ∴=23= ……………………12分 18. (Ⅰ)证明: 在三角形PBA 中,,PB AB BF PA =⊥, 所以F 是PA 的中点,连接EF , ………………………………2分 在PDA ∆中,点,E F 分别是边,AD PA 的中点, 所以//EF PD …………………………………4分又EF PBD ⊄平面,PD PBD ⊂平面 所以EF //平面PBD .……………………………6分(Ⅱ)因为平面PBA ⊥平面ABCD ,平面PBA平面ABCD AB =, 90DAB ∠=,DA AB ⊥ ,DA ABCD ⊂平面所以DA ⊥平面PBA …………………… 8分又BF PBA ⊂平面 ,所以DA BF ⊥,又BF PA ⊥,PA DA A =,,PA DA PDA ⊂平面,所以BF PDA ⊥面 ……………………………………10分 又PE PDA ⊂平面 所以BF PE ⊥所以无论点E 在线段AD 的何处,总有PE ⊥BF . …………………………12分19. 解:(Ⅰ)由题意,{}n a 是首项为1,公比为2的等比数列,11121--⋅=⋅=∴n n n q a a . ∴12n n a -=,21n n S =-, …………………3分设等差数列{}n b 的公差为d ,111b a ==,4137b d =+=,∴2d = ∴1(1)221n b n n =+-⨯=-. …………………6分 (II )∵212222log =log 221n n a n ++=+, ∴22211111()log (21)(21)22121n n n c b a n n n n +===-⋅-+-+,…………………7分. …………………9分 ∵*N n ∈,…………………10分 当2n ≥∴数列{}n T 是一个递增数列,…………………12分 20. 解:(Ⅰ)函数)(x f 的定义域为R ,a e x f x +=)(',…………………1分0)0(0'=+=a e f ,1-=∴a .…………………2分∴'()1xf x e =-∵在)0,(-∞上)(,0)('x f x f <单调递减,在),0(+∞上)(,0)('x f x f >单调递增, ∴0=x 时)(x f 取极小值.1-=∴a . …………………3分易知)(x f 在)0,2[-上单调递减,在]1,0(上)(x f 单调递增;且;31)2(2+=-e f ;)1(e f =)1()2(f f >-.…………………4分 当2-=x 时,)(x f 在]1,2[-的最大值为.312+e…………………5分(Ⅱ)a e x f x +=)(',由于0>xe .①当0>a 时,)(,0)('x f x f >是增函数,…………………7分 且当1>x 时,0)1()(>-+=x a e x f x .…………………8分 当0<x 时,取a x 1-=,则0)11(1)1(<-=--+<-a aa a f , 所以函数)(x f 存在零点,不满足题意.…………9分 ②当0<a 时,)ln(,0)('a x a e x f x -==+=.在))ln(,(a --∞上)(,0)('x f x f <单调递减,在)),(ln(+∞-a 上)(,0)('x f x f >单调递增, 所以)ln(a x -=时)(x f 取最小值.………………11分函数)(x f 不存在零点,等价于0)ln(2)ln())(ln()ln(>-+-=--+=--a a a a a a e a f a , 解得02<<-a e .综上所述:所求的实数a 的取值范围是02<<-a e .………………13分21. 解:(Ⅰ)由题意1222c a c ⎧=⎪⎨⎪=⎩,………………1分解得3,1,2===b c a ,………………3分所求椭圆C 的标准方程为13422=+y x ;………………4分 (Ⅱ)解法一:(i )设:1PQ l x my =+,221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x ,化简得096)43(22=-++my y m . 09)43(43622>⋅++=∆m m设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则436221+-=+m m y y ,439221+-=m y y ,……………6分 43322210+-=+=m m y y y ,4341200+=+=m my x , 即2243(,)3434mG m m -++,……………7分 4344343322m m m m k OG-=+⋅+-=, 设)1(:--=x m y l FT ,得T 点坐标(m 3,4-),43mk OT -=,所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分 (ii) 当0=m 时,PQ 的中点为F ,)0,4(T .1||||,32||,3||2====PQ TF a b PQ TF .……………10分当0m ≠时,13)3()14(||222+=-+-=m m TF ,||11||122y y k PQ PQ-+==-+⋅+=2122124)(1y y y y m 4394)436(12222+-⋅-+-⋅+m m m m 4311222++⋅=m m .……………11分 )1113(411243113||||22222+++⋅=+⋅++=m m m m m PQ TF令12+=m t .则)1)(13(41||||>+⋅=t tt PQ TF .令)1)(13(41)(>+⋅=t t t t g则函数()g t 在()1,+∞上为增函数,……………13分 所以1)1()(=>g t g .所以||||PQ TF 的取值范围是[1,)+∞.……………14分 解法二:(i )设T 点的坐标为),4(m ,当0=m 时,PQ 的中点为F ,符合题意. ……………5分当0m ≠时,m k m k PQ FT 3,3-==. 3:(1)PQ l y x m -=-⎪⎪⎩⎪⎪⎨⎧--==+)1(313422x m y y x ,消去x 化简得22(12)6270m y my +--=. 027)12(43622>⋅++=∆m m设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则126221+=+m m y y .1227221+-=m y y ,……………6分 12322210+=+=m m y y y ,121231200+=-=m my x , 即)123,1212(22++m mm G ,……………7分 4121212322mm m m k OG=+⋅+=,又4m k OT = .所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分 (ii) 当0m = 时,632PQ == , 413TF =-=,1TF PQ= ……………10分 当0m ≠时,9)14(||222+=+-=m m TF ,||11||12y y k PQ PQ-+=.=-+⋅+=2122124)(91y y y y m 12274)126(912222+-⋅-+⋅+m m m m 129422++⋅=m m .……………11分)939(4141299||||22222+++⋅=+⋅++=m m m m m PQ TF令92+=m t .则)3)(3(41||||>+⋅=t tt PQ TF .令)3)(3(41)(>+⋅=t t t t g则函数()g t 在()3,+∞上为增函数,……………13分所以1)3()(=>g t g .所以当||||PQ TF 的取值范围是[1,)+∞.……………14分 解法三:(i )当直线PQ l 斜率不存在时,PQ 的中点为F ,)0,4(T ,符合题意. ……………5分 当直线PQ l 斜率存在时,若斜率为0,则2l 垂直于 x 轴,与 x=4不能相交,故斜率不为0 设)1(:-=x k y l PQ ,(0k ≠)⎪⎩⎪⎨⎧-==+)1(13422x k y y x ,消去y ,化简得. 2222(34)84120k x k x k +-+-= 4222644(34)(412)144(1)0k k k k ∆=-+-=+>设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则2221438k k x x +=+,222143124kk x x +-=,……………6分 222104342k k x x x +=+=,200433)1(k kx k y +-=-=, 即)433,434(222k kk k G +-+,……………7分 kk k k k k OG43443433222-=+⋅+-=, 设)1(1:--=x k y l FT ,得T 点坐标(k 3,4-),kk OT 43-=,所以OT OG k k =, 线段PQ 的中点在直线OT 上.……………9分(ii) 当直线PQ l 斜率不存在时,PQ 的中点为F ,)0,4(T .1||||,32||,3||2====PQ TF a b PQ TF .……………10分当直线PQ l 斜率存在时,222213)3()14(||kk k TF +=-+-=,||1||122x x k PQ -+=.=-+⋅+=2122124)(1x x x x k 222222431244)438(1kk k k k +-⋅-+⋅+ 2243112k k ++⋅=.……………11分2222||34)||12(1)114TF k k PQ k k +==+++=⋅令211kt +=.则)1)(13(41||||>+⋅=t t t PQ TF .令)1)(13(41)(>+⋅=t t t t g 则函数()g t 在()1,+∞上为增函数,……………13分 所以1)1()(=>g t g .所以||||PQ TF 的取值范围是),1[+∞.……………14分【烟台一模 文数】山东省烟台市2015年高考诊断性测试文科数学试题及答案(Word 版)一. 选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. ) 1. 设i 是虚数单位,R a ∈,若21a ii-+是一个纯虚数,则实数a 的值为( ) A. 12-B. 1-C. 12D. 12. 已知集合()(){}360,x x x x P =--≤∈Z ,{}Q 5,7=,则下列结论成立的是( ) A. Q ⊆PB. Q P =PC. Q Q P =D. {}Q 5P =3. 已知向量()1,2a =,()1,0b =,()4,3c =-. 若λ为实数且()a b c λ+⊥,则λ=( ) A. 14B. 12C. 1D. 24. 若条件:p 2x ≤,条件:q x a ≤,且p 是q 的充分不必要条件,则a 的取值范围是( ) A. 2a ≥B. 2a ≤C. 2a ≥-D.2a ≤-5. 某几何体三视图如图所示,其中三角形的三边长与圆的直径均为2,则该几何体体积为( )C.43+D.43+ 6. 已知点(),x y M 的坐标满足5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,N 点的坐标为()1,3-,点O 为坐标原点,则ON⋅OM 的最小值是( ) A. 12B. 5C. 6-D. 21-7. 将函数2sin 4y x πω⎛⎫=- ⎪⎝⎭(0ω>)的图象分别向左. 向右各平移4π个单位后,所得的两个图象的对称轴重合,则ω的最小值为( ) A. 12B. 1C. 2D.48. 右图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本的平均重量为( ) A. 13B. 12C. 11D. 109. 已知(),x y P 是直线40kx y ++=(0k >)上一动点,PA 是圆C :2220x y y +-=的一条切线,A 是切点,若线段PA 长度最小值为2,则k 的值为( ) A. 3B.2C. D. 210. 已知()2243,023,0x x x f x x x x ⎧-+≤⎪=⎨--+>⎪⎩,不等式()()2f x a f a x +>-在[],1a a +上恒成立,则实数a 的取值范围是( ) A. (),2-∞-B. (),0-∞C. ()0,2D.()2,0-二. 填空题(本大题共5小题,每小题5分,共25分. ) 11. 函数()()21log 2f x x =-的定义域为 .12. 某程序框图如图所示,现依次输入如下四个函数:①()cos f x x =;②()1f x x =;③()lg f x x =;④()2x xe ef x --=,则可以输出的函数的序号是 .13. 已知曲线sin cos y a x x =+在0x =处的切线方程为10x y -+=,则实数a 的值为.14. 已知抛物线22y px =的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A在抛物线上,且F AK =,则F ∆A K 的面积为 .15. 关于方程1sin 102xx ⎛⎫+-= ⎪⎝⎭,给出下列四个命题:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(),0-∞内有且只有一个实数根;④若0x 是方程的实数根,则01x >-,其中所有正确命题的序号是 .三. 解答题(本大题共6小题,共75分. 解答应写出文字说明. 证明过程或演算步骤. )16. (本小题满分12分)汽车是碳排放量比较大的行业之一,某地规定,从2015年开始,将对二氧化碳排放量超过130/g km 的轻型汽车进行惩罚性征税. 检测单位对甲. 乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:/g km ).经测算得乙品牌轻型汽车二氧化碳排放量的平均值为120x =乙/g km .()1求表中x 的值,并比较甲. 乙两品牌轻型汽车二氧化碳排放量的稳定性;()2从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过130/g km 的概率是多少?17. (本小题满分12分)已知函数()f x a b =⋅,其中()2cos ,sin 2a x x =,()cos ,1b x =,R x ∈.()1求函数()y f x =的单调递减区间;()2在C ∆AB 中,角A . B . C 所对的边分别为a . b . c ,()1f A =-,a =向量()3,sin m =B 与()2,sinC n =共线,求边长b 和c 的值.18. (本小题满分12分)如图,CD AB 是正方形,D E ⊥平面CD AB .()1求证:C A ⊥平面D B E ;()2若F//D A E ,D 3F E =A ,点M 在线段D B 上,且1D 3BM =B ,求证://AM 平面F BE .19. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,n a . n S 满足()()12n n t S t a -=-(t 为常数,0t ≠且1t ≠).()1求数列{}n a 的通项公式; ()2设()()3log 1n n n b a S =-⋅-,当13t =时,求数列{}n b 的前n 项和n T .20. (本小题满分13分)已知函数()x f x e =,()2g x ax bx c =++(0a ≠).()1若()f x 的图象与()g x 的图象所在两条曲线的一个公共点在y 轴上,且在该点处两条曲线的切线互相垂直,求b 和c 的值;()2若1a c ==,0b =,试比较()f x 与()g x 的大小,并说明理由.21. (本小题满分12分)已知椭圆:E 22221x y a b +=(0a b >>焦点到直线=y x()1求椭圆E的方程;()2已知点()的直线l交椭圆E于两个不同点A. B,设直线MA与2,1M,斜率为12MB的斜率分别为1k,2k,①若直线l过椭圆E的左顶点,求此时1k,2k的值;②试猜测k,2k的关系,并给出你的证明.1参考答案一.选择题1. C2. D3. B4. A5. D6. D7. C8. B9. D 10. A 二.填空题11. {2x x >且3x ≠} 12. ④ 13. 1 14. 32 15. ②③④ 三. 解答题16. 解:(1)由题可知,120x =乙,所以480+1205x=,解得120x =. 又由已知可得120x =甲,……………2分()()()()()2222221=801201101201201201401201501206005s ⎡⎤-+-+-+-+-=⎣⎦甲 ()()()()()2222221=1001201201201201201001201601204805s ⎡⎤-+-+-+-+-=⎣⎦乙因为x x =甲乙,22s s >甲乙,……………5分所以乙品牌轻型汽车二氧化碳排放量的稳定性好. ……………6分(2)从被检测的5辆甲品牌轻型汽车中任取2辆,共有10种二氧化碳排放量结果:()()80 11080 120,,,,()()80 14080 150,,,,()()110 120110 140,,,, ()()110 150120 140,,,,()()120 150140 150,,,,…………10分 设“至少有一辆二氧化碳排放量超过130/g km ”为事件A , 则7()0.710P A ==, 所以至少有一辆二氧化碳排放量超过130/g km 的概率是0.7. ………12分 17. 解:(1)2()=2cos 21cos 2212cos(2)3f x x x x x x π-=+=++, (3)分令2223k x k ππ≤+≤π+π,解得)63k x k k πππ-≤≤π+∈Z (,所以()f x 的单调递减区间为 )63k k k ππ⎡⎤π-π+∈⎢⎥⎣⎦Z ,(. ………6分 (2)∵()12cos 213f A A π⎛⎫=++=- ⎪⎝⎭,∴cos 213A π⎛⎫+=- ⎪⎝⎭,MFDCBAEG又72333A πππ<+<,∴23A ππ+=,即3A π=,…………8分∵a =()22222cos 37a b c bc A b c bc =+-=+-=. ……①因为向量(3,sin )B =m 与(2,sin )C =n 共线,所以2sin 3sin B C =, 由正弦定理得23b c =,……②………11分 解①②得3b =,2c =. …………12分18. (1)证明:因为DE ⊥平面ABCD ,所以AC DE ⊥. ……………2分 因为ABCD 是正方形,所以BD AC ⊥,又=BD DE D , 从而AC ⊥平面BDE . ……………5分 (2)解:延长EF DA 、交于点G , 因为DE AF //,AF DE 3=,所以13GA AF GD DE ==,…………7分 因为13BM BD =,所以13BM BD =,所以13BM GA BD GD ==,所以//AM GB ,……10分又AM ⊄平面BEF ,GB ⊂平面BEF , 所以//AM 平面BEF . …………12分19. 解:(1)由(1)(2)n n t S t a -=-,及11(1)(2)n n t S t a ++-=-,作差得1n n a ta +=, 即数列{}n a 成等比数列,11n n a a t -=,当1n =时,11(1)(2)t S t a -=-,解得12a t =,故2n n a t =. …5分(2)当13t =时,123nn a =⋅(),113n n S -=, ()()32log =31n n n n nb S a -=-⋅,………8分2324623333n n n T =++++, 234+112462 33333n n n T =++++,作差得234+1+1+122222221223+113333333333n n n n n n n n n T +=++++-=--=-, 所以323223n n n T +=-⋅.………12分 20. 解:(1)由已知(0)1f =,'()e x f x =,'(0)1f =,(0)g c =,'()2g x ax b =+,'(0)g b =,……2分依题意:⎧⎨⎩(0)(0)'(0)'(0)1f g f g ==-,所以⎧⎨⎩1,1c b ==-;……5分(2)1a c ==,0b =时,2()1g x x =+,①0x =时,(0)1f =,(0)1g =,即()()f x g x =;………6分 ②0x <时,()1f x <,()1g x >,即()()f x g x <;………7分 ③0x >时,令2()()()e 1x h x f x g x x =-=--,则'()e 2x h x x =-. 设()'()=e 2x k x h x x =-,则'()=e 2x k x -,当ln 2x <时,'()0,()k x k x <在区间ln 2)-∞(,单调递减; 当ln 2x >时,'()0,()k x k x >在区间ln 2+)∞(,单调递增.所以当ln 2x =时,()k x 取得极小值,且极小值为ln 2(ln 2)e 2ln 22ln 40k =-=-> 即()'()=e 20x k x h x x =->恒成立,故()h x 在R 上单调递增,又(0)0h =, 因此,当0x >时,()(0)=0h x h >,即()g()f x x >. ……12分 综上,当0x <时,()()f x g x <;当0x =时,()()f x gx =; 当0x>时,()g()f x x >.……13分21. 解:(1)设椭圆的右焦点( 0)c ,,由右焦点到直线y x =,解得c =又由椭圆的离心率为,ca ∴=228,2ab ==,所以椭圆E 的方程为22182x y +=. …………4分(2)①若直线过椭圆的左顶点,则直线的方程是1:2l y x =+,联立方程组2212182y x x y ⎧=⎪⎪⎨⎪+=⎪⎩,解得121200x x y y =⎧⎧=-⎪⎪⎨⎨==⎪⎪⎩⎩故12k k ==. ………7分 ②猜测:120k k +=. 证明如下:………8分设直线在y 轴上的截距为m ,所以直线的方程为12y x m =+.由2211282x y y x m ⎧=+⎪+⎨=⎪⎪⎪⎩,得222240x mx m ++-=. 设11(,)A x y . 22(,)B x y ,则122x x m +=-,21224x x m =-. ………10分 又1111,2y k x -=-2221,2y k x -=- 故1212121122y y k k x x --+=+--122112(1)(2)(1)(2)(2)(2)y x y x x x --+--=--. 又1112y x m =+,2212y x m =+, 所以1221(1)(2)(1)(2)y x y x --+--122111=1)(2)1)(2)22x m x x m x +--++--(( 1212(2)()4(1)x x m x x m =+-+-- 224(2)(2)4(1)0m m m m =-+----=故120k k +=. ………14分【淄博一模 文数】山东省淄博市2014-2015学年度高三模拟考试数学试题(文)及答案(Word 版)淄博市2014—2015学年度高三模拟考试试题文 科 数 学本试卷分第I 卷和第Ⅱ卷两部分,共6页.满分150分,考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么P(A+B)=P(A)+P(B)第I 卷(共50分)一、选择题:本大题共10小题。
2015山东高考文科数学真题及答案
2015山东高考文科数学真题及答案第Ⅰ卷(共50分)一、 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的1. 已知集合A={x|2<x<4},B={x|(x-1)(x-3)<0},则A ⋂B=( ) (A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4) 【答案】C 【解析】试题分析:因为B ={x|1<x<3},所以(2,3)A B ⋂=,故选C. 考点:1.集合的基本运算;2.简单不等式的解法. 2. 若复数Z 满足1zi-=i ,其中i 为虚数单位,则Z=( ) (A )1-i (B )1+i (C )-1-i (D )-1+i 【答案】C考点:1.复数的运算;2.共轭复数.3. 设a=0.60.6,b=0.61.5,c=1.50.6,则a ,b ,c 的大小关系是( ) (A )a <b <c (B )a <c <b (C )b <a <c (D )b <c <a 【答案】C 【解析】试题分析:由0.6xy =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C.考点:1.指数函数的性质;2.函数值比较大小. 4. 要得到函数y=sin (4x-3π)的图象,只需要将函数y=sin4x 的图象( ) (A ).向左平移12π个单位 (B )向右平移12π个单位(C ).向左平移3π个单位 (D )向右平移3π个单位 【答案】B考点:三角函数图象的变换.5. 设m R ∈,命题“若m>0,则方程20x x m +-=有实根”的逆否命题是( ) A.若方程20x x m +-=有实根,则>0 B.若方程20x x m +-=有实根,则.若方程20x x m +-=没有实根,则>0 .若方程20x x m +-=没有实根,则0【答案】D 【解析】试题分析:一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D.考点:命题的四种形式.6. 为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的标号为( ) (A )①③ (B) ①④ (C) ②③ (D) ②④ 【答案】B考点:1.茎叶图;2.平均数、方差、标准差.7. 在区间[0,2]上随机地取一个数x,则事件“121-1log 2x ≤+≤()1”发生的概率为( ) (A )34 (B )23 (C )13 (D )14【答案】A 【解析】试题分析:由121-1log 2x ≤+≤()1得,11122211113log 2log log ,2,022222x x x ≤+≤≤+≤≤≤(),所以,由几何概型概率的计算公式得,3032204P -==-,故选A.考点:1.几何概型;2.对数函数的性质.8. 若函数21()2x x f x a+=-是奇函数,则使f (x )>3成立的x 的取值范围为( )(A )( ) (B)() (C )(0,1) (D )(1,+)【答案】C 【解析】试题分析:由题意()()f x f x =--,即2121,22x x xxa a --++=---所以,(1)(21)0,1x a a -+==,21(),21x x f x +=-由21()321x x f x +=>-得,122,01,x x <<<<故选C.考点:1.函数的奇偶性;2.指数运算.9. 已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) ()()()22π()42π【答案】B考点:1.旋转体的几何特征;2.几何体的体积. 10. 设函数3,1()2,1xx b x f x x -<⎧=⎨≥⎩,若5(())46f f =,则b=( ) (A )1 (B )78 (C )34 (D)12【答案】D 【解析】试题分析:由题意,555()3,662f b b =⨯-=-由5(())46f f =得,51253()42b b b ⎧-<⎪⎪⎨⎪--=⎪⎩或5251224bb -⎧-≥⎪⎨⎪=⎩,解得12b =,故选D. 考点:1.分段函数;2.函数与方程.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分11. 执行右边的程序框图,若输入的x 的值为1,则输出的y的值是.【答案】13考点:算法与程序框图.12. 若x,y 满足约束条件13,1y x x y y -≤⎧⎪+≤⎨⎪≥⎩则3z x y =+的最大值为 .【答案】7 【解析】试题分析:画出可行域及直线30x y +=,平移直线30x y +=,当其经过点(1,2)A 时,直线的纵截距最大,所以3z x y =+最大为1327z =+⨯=.考点:简单线性规划.13. 过点P (1,)作圆的两条切线,切点分别为A ,B ,则=.【答案】32考点:1.直线与圆的位置关系;2.平面向量的数量积.14. 定义运算“⊗”: 22x y x y xy-⊗=(,0x y R xy ∈≠,).当00x y >>,时,(2)x y y x ⊗+⊗的最小值是 .2 【解析】试题分析:由新定义运算知,2222(2)4(2)(2)2y x y x y x y x xy --⊗==,因为,00x y >>,,所以,2222224222(2)222x y y x x y xyx y y x xy xy xy --+⊗+⊗=+=≥=2x =时,(2)x y y x ⊗+⊗2.考点:1.新定义运算;2.基本不等式.15. 过双曲线C :22221x y a a-=0,0a b >>()的右焦点作一条与其渐近线平行的直线,交C于点P .若点P 的横坐标为2a ,则C 的离心率为 . 【答案】23+考点:1.双曲线的几何性质;2.直线方程. 三、解答题:本大题共6小题,共75分 16. (本小题满分12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团 8 5 未参加演讲社团 230(1) 从该班随机选1名同学,求该同学至少参加上述一个社团的概率; (2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.【答案】(1) 13;(2)215. 【解析】试题分析:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有453015-=人,所以从该班级随机选1名同学,利用公式计算即得.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:111213212223313233{,},{,},{,},{,},{,},{,},{,},{,},{,},A B A B A B A B A B A B A B A B A B 414243515253{,},{,},{,},{,},{,},{,}A B A B A B A B A B A B ,共15个.根据题意,这些基本事件的出现是等可能的.事件“1A 被选中且1B 未被选中”所包含的基本事件有:1213{,},{,}A B A B ,共2个. 应用公式计算即得.试题解析:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有453015-=人,所以从该班级随机选1名同学,该同学至少参加上述一个社团的概率为151.453P == (2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:111213212223313233{,},{,},{,},{,},{,},{,},{,},{,},{,},A B A B A B A B A B A B A B A B A B 414243515253{,},{,},{,},{,},{,},{,}A B A B A B A B A B A B ,共15个.根据题意,这些基本事件的出现是等可能的.事件“1A 被选中且1B 未被选中”所包含的基本事件有:1213{,},{,}A B A B ,共2个. 因此1A 被选中且1B 未被选中的概率为215P =. 考点:1.古典概型;2.随机事件的概率. 17. (本小题满分12分)ABC ∆中,角A ,B ,C 所对的边分别为a,b,c.已知cos ()B A B ac =+==求sin A 和c 的值.【答案】3由正弦定理可得23a c =,结合23ac =即得.试题解析:在ABC ∆中,由3cos B =6sin B =因为A B C π++=,所以6sin sin()9C A B =+=, 因为sin sin C B <,所以C B <,C 为锐角,3cos 9C =, 因此sin sin()sin cos cos sin A B C B C B C =+=+653362239393=⨯+⨯=. 由,sin sin a c A C =可得2sin 33sin 6cc A a c C ===,又23ac =1c =. 考点:1.两角和差的三角函数;2.正弦定理.18. 如图,三棱台DEF ABC -中,2AB DE G H =,,分别为AC BC ,的中点. (I )求证://BD 平面FGH ;(II )若CF BC AB BC ⊥⊥,,求证:平面BCD ⊥平面EGH .【答案】证明见解析思路二:在三棱台DEF ABC -中,由2,BC EF H =为BC 的中点, 可得HBEF 为平行四边形, //.BE HF 在ABC ∆中,G H ,分别为AC BC ,的中点, 得到//,GH AB 又GH HF H ⋂=, 得到平面//FGH 平面ABED .(II)证明:连接HE .根据 G H ,分别为AC BC ,的中点,得到 //,GH AB 由,AB BC ⊥得GH BC ⊥,又H 为BC 的中点,得到四边形EFCH 是平行四边形,从而//.CF HE又CF BC ⊥,得到 HE BC ⊥.试题解析:(I )证法一:连接,.DG CD 设CD GF M ⋂=,连接MH ,在三棱台DEF ABC -中,2AB DE G =,分别为AC 的中点,可得//,DF GC DF GC =,所以四边形DFCG 是平行四边形,则M 为CD 的中点,又H 是BC 的中点,所以//HM BD , 又HM ⊂平面FGH ,BD ⊄平面FGH ,所以//BD 平面FGH .证法二:在三棱台DEF ABC -中,由2,BC EF H =为BC 的中点, 可得//,,BH EF BH EF =所以HBEF 为平行四边形,可得//.BE HF 在ABC ∆中,G H ,分别为AC BC ,的中点, 所以//,GH AB 又GH HF H ⋂=, 所以平面//FGH 平面ABED , 因为BD ⊂平面ABED , 所以//BD 平面FGH.(II)证明:连接HE .因为G H ,分别为AC BC ,的中点,所以//,GH AB 由,AB BC ⊥得GH BC ⊥,又H 为BC 的中点,所以//,,EF HC EF HC =因此四边形EFCH 是平行四边形,所以//.CF HE又CF BC ⊥,所以HE BC ⊥.又,HE GH ⊂平面EGH ,HE GH H ⋂=,所以BC ⊥平面EGH , 又BC ⊂平面BCD ,所以平面BCD ⊥平面.EGH 考点:1.平行关系;2.垂直关系. 19. (本小题满分12分)已知数列{}n a 是首项为正数的等差数列,数列11n n a a +⎧⎫⎨⎬•⎩⎭的前n 项和为21nn +.(I )求数列{}n a 的通项公式;(II )设()12n an n b a =+⋅,求数列{}n b 的前n 项和n T .【答案】(I )2 1.n a n =- (II) 14(31)4.9n n n T ++-⋅=【解析】试题分析:(I )设数列{}n a 的公差为d , 令1,n =得12113a a =,得到 123a a =. 令2,n =得12231125a a a a +=,得到 2315a a =. 解得11,2a d ==即得解.(II )由(I )知24224,n n n b n n -=⋅=⋅得到 121424......4,n n T n =⋅+⋅++⋅ 从而23141424......(1)44,n n n T n n +=⋅+⋅++-⋅+⋅利用“错位相减法”求和.试题解析:(I )设数列{}n a 的公差为d , 令1,n =得12113a a =,所以123a a =. 令2,n =得12231125a a a a +=,所以2315a a =. 解得11,2a d ==,所以2 1.n a n =-(II )由(I )知24224,n n n b n n -=⋅=⋅所以121424......4,n n T n =⋅+⋅++⋅ 所以23141424......(1)44,n n n T n n +=⋅+⋅++-⋅+⋅ 两式相减,得121344......44n n n T n +-=+++-⋅114(14)13444,1433n n n n n ++--=-⋅=⨯--所以113144(31)44.999n n n n n T ++-+-⋅=⨯+=考点:1.等差数列的通项公式;2.数列的求和、“错位相减法”. 20. (本小题满分13分)设函数. 已知曲线在点(1,(1))f 处的切线与直线平行.(Ⅰ)求a 的值;(Ⅱ)是否存在自然数k ,使得方程()()f x g x =在(,1)k k +内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(Ⅲ)设函数()min{(),()}m x f x g x =(min{p ,q}表示,p ,q 中的较小值),求m(x)的最大值.【答案】(I )1a = ;(II) 1k = ;(III) 24e. 【解析】试题分析:(I )由题意知, '(1)2f =,根据'()ln 1,af x x x=++即可求得. (II )1k =时,方程()()f x g x =在(1,2)内存在唯一的根.设2()()()(1)ln ,x x h x f x g x x x e=-=+-通过研究(0,1]x ∈时,()0h x <.又2244(2)3ln 2ln8110,h e e =-=->-= 得知存在0(1,2)x ∈,使0()0h x =.应用导数研究函数()h x 的单调性,当(1,)x ∈+∞时,()h x 单调递增. 作出结论:1k =时,方程()()f x g x =在(,1)k k +内存在唯一的根.(III )由(II )知,方程()()f x g x =在(1,2)内存在唯一的根0x ,且0(0,)x x ∈时,()()f x g x <,0(,)x x ∈+∞时,()()f x g x >,得到020(1)ln ,(0,](),(,)xx x x x m x x x x e +∈⎧⎪=⎨∈+∞⎪⎩.当0(0,)x x ∈时,研究得到0()().m x m x ≤当0(,)x x ∈+∞时,应用导数研究得到24()(2),m x m e ≤=且0()(2)m x m <. 综上可得函数()m x 的最大值为24e. 试题解析:(I )由题意知,曲线在点(1,(1))f 处的切线斜率为2,所以'(1)2f =,又'()ln 1,af x x x=++所以1a =. (II )1k =时,方程()()f x g x =在(1,2)内存在唯一的根.设2()()()(1)ln ,x x h x f x g x x x e=-=+-当(0,1]x ∈时,()0h x <. 又2244(2)3ln 2ln8110,h e e=-=->-= 所以存在0(1,2)x ∈,使0()0h x =. 因为1(2)'()ln 1,x x x h x x x e -=+++所以当(1,2)x ∈时,1'()10h x e>->,当(2,)x ∈+∞时,'()0h x >,所以当(1,)x ∈+∞时,()h x 单调递增.所以1k =时,方程()()f x g x =在(,1)k k +内存在唯一的根.(III )由(II )知,方程()()f x g x =在(1,2)内存在唯一的根0x ,且0(0,)x x ∈时,()()f x g x <,0(,)x x ∈+∞时,()()f x g x >,所以020(1)ln ,(0,](),(,)xx x x x m x x x x e+∈⎧⎪=⎨∈+∞⎪⎩. 当0(0,)x x ∈时,若(0,1],()0;x m x ∈≤若0(1,),x x ∈由1'()ln 10,m x x x=++>可知00()();m x m x <≤故0()().m x m x ≤ 当0(,)x x ∈+∞时,由(2)'(),xx x m x e-=可得0(,2)x x ∈时,'()0,()m x m x >单调递增;(2,)x ∈+∞时,'()0,()m x m x <单调递减;可知24()(2),m x m e≤=且0()(2)m x m <.综上可得函数()m x 的最大值为24e . 考点:1.导数的几何意义;2.应用导数研究函数的单调性、最值. 21. (本小题满分14分)平面直角坐标系xOy 中,已知椭圆C :2222+=1(>>0)x y b bαα,且点12)在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222+=144x y a b,P 为椭圆C 上任意一点,过点P 的直线=+y kx m交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q. (i )求||||OQ OP 的值; (ii)求ABQ ∆面积的最大值.【答案】(I )2214x y +=;(II )(i )||2||OQ OP =;(ii ) 【解析】试题分析:(I )由题意知22311,4a b+==,解得224,1a b ==. (II )由(I )知椭圆E 的方程为221164x y +=. (i )设00||(,),,||OQ P x y OP λ=由题意知00(,)Q x y λλ--. 根据2200 1.4x y +=及 2200()()1164x y λλ--+=,知2λ=. (ii )设1122(,),(,),A x y B x y 将y kx m =+代入椭圆E 的方程,可得222(14)84160k x kmx m +++-=,由0,∆>可得22416m k <+……………………①应用韦达定理计算12||x x -=及OAB ∆的面积12212|||||214m S m x x k =-==+= 设22.14m t k =+将直线y kx m =+代入椭圆C 的方程,可得222(14)8440k x kmx m +++-=,由0,∆≥可得2214m k ≤+……………………②由①②可知01,t S <≤==当且仅当1t =,即2214m k =+时取得最大值由(i )知,ABQ ∆的面积为3S 即得ABQ ∆面积的最大值为试题解析:(I )由题意知22311,4a b+==,解得224,1a b ==, 所以椭圆C 的方程为22 1.4x y += (II )由(I )知椭圆E 的方程为221164x y +=. (ii )设00||(,),,||OQ P x y OP λ=由题意知00(,)Q x y λλ--. 因为2200 1.4x y +=又2200()()1164x y λλ--+=,即22200() 1.44x y λ+= 所以2λ=,即||2.||OQ OP = (ii )设1122(,),(,),A x y B x y 将y kx m =+代入椭圆E 的方程,可得222(14)84160k x kmx m +++-=,由0,∆>可得22416m k <+……………………①则有21212228416,.1414km m x x x x k k-+=-=++所以12||x x -=因为直线y kx m =+与y 轴交点的坐标为(0,)m ,所以OAB ∆的面积121||||2S m x x =-=== 设22.14m t k=+将直线y kx m =+代入椭圆C 的方程,可得222(14)8440k x kmx m +++-=,由0,∆≥可得2214m k ≤+……………………②由①②可知01,t S <≤==故S ≤当且仅当1t =,即2214m k =+时取得最大值由(i )知,ABQ ∆的面积为3S ,所以ABQ ∆面积的最大值为考点:1.椭圆的标准方程及其几何性质;2.直线与椭圆的位置关系;3.距离与三角形面积;4.转化与化归思想.。
2015菏泽一模 山东省菏泽市2015届高三第一次模拟考试试题及答案 语文
1234高三语文试题参考答案一、(15分)1.A(B.“载”读zài;C.“糙”读cāo;D.“踽”读jǔ)2.D(A.额手称庆B.三脚架C.坐镇)3.D(“趋向”指朝某个方向发展,“取向”指选择确定事物的某个部分或方面、方向;句子意在表现“核心价值”的内涵,即所做出的取舍,故应使用“取向”。
“纵然”的意思是“即使”,表假设关系;“固然”表示承认某个事实,引起下文转折。
“违反”指不遵守、不符合,多与法则、规程、制度、政策等搭配;“违犯”指违背触犯,多与法规、法令等搭配。
)4.B(“暴殄天物”指任意糟蹋东西,不知爱惜。
A.“如火如荼”形容旺盛、热烈或激烈;用以表现微信发展迅猛不合语境,可使用“如日中天”。
C.“曲尽其妙”是指把其中微妙之处委婉细致地充分表达出来,形容表达能力很强;在句中不能用来陈述“歌曲”,属望文生义。
D.“势如破竹”比喻节节胜利,毫无阻碍;属对象误用。
)5.C(A.成分残缺,应删除“随着”。
B.句式杂糅,应在“建议”后加逗号断开,并在“很快被中央采纳”前加“这一建议”;或者在“联合提出”后加“的”字。
D.搭配不当,应将“问题”改为“局面、困境”等,或者将“大大缓解”改为“解决”。
)二、(9分)6.B(文章首段提出文化高度的问题,第二段论述满足于“传统文化”的表现及危害,第三段论述弘扬传统文化的原则和方法,第四段论述如何让传统文化“粗壮高大起来”,得出结论。
全文以破促立,多方举例,首尾呼应,通过对传统文化长度与高度的辩证分析,表明了作者对提升民族文化高度问题的鲜明态度,故B项符合题意。
)7.B(夸大范围,“非常可怕”的不是“用传统文化影响和浸润国民的精神世界”,而是不加辨别的弘扬活动。
从第二段来看,作者的表述是“所谓”的“传统文化”。
)8.C(A.因果失当,文化的“高度和宽度”并非因其“国史较短”,“产品和技术”的发达只能是文化高度的结果而非原因。
B.夸大范围,作者反对的是“只要是…传统‟都在大力弘扬之列”的做法。
2015年山东省19所名校联考高考一模数学试卷(文科)【解析版】
2. (5 分)已知 a,b,c∈R,且 a<b,则( A.a3>b3 B.a2<b2 C.
3. (5 分)已知正数组成的等比数列{an},若 a1•a20=100,那么 a7+a14 的最小值 为( A.20 ) B.25 C.50 D.不存在
4. (5 分)若变量 x,y 满足约束条件 别为( A.4 和 3 ) B.4 和 2
【解答】解:由 x2﹣2x﹣3≤0,解得:﹣1≤x≤3. ∴A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3}. 由 ∴B={x| ,解得:﹣2<x<2. }={x|﹣2<x<2}.
∴A∩B={x|﹣1≤x≤3}∩{x|﹣2<x<2}=[﹣1,2) . 故选:A. 2. (5 分)已知 a,b,c∈R,且 a<b,则( A.a3>b3 B.a2<b2 C. ) D.ac2≤bc2
A. (﹣∞,e4)
二、填空题:本大题共 5 小题,每小题 5 分,共 25 分. 11. (5 分)已知 tan(π﹣α)=﹣ ,则 tanβ= . .
12. (5 分)已知正数 x,y 满足 3x+4y=xy,则 x+3y 的最小值为 13. (5 分)已知幂函数 f(x)=
(m∈Z)在(0,+∞)上为增函数,
第 4 页(共 17 页)
2015 年山东省 19 所名校联考高考数学一模试卷(文科)
参考答案与试题解析
一、选择题:本大题共 10 小题.每小题 5 分,共 50 分.在每小题给出的四个 选项中.只有一项是符合题目要求的. 1. (5 分)已知集合 A.[﹣1,2) B. (﹣2,2) C. (﹣1,3) ,则 A∩B=( D. (2,3] )
. (把你认为正确的命题的序号都填
(2)令 bn=an•an+1,求{bn}的前 n 项的和 Sn. 17. (12 分)已知向量 =(cosωx,sinωx) , =(cosωx, <ω<2) .函数, 其图象的一条对称轴为 cosωx) ,其中(0 .
2015年山东省菏泽市高考一模数学试卷(文科)【解析版】
2015年山东省菏泽市高考数学一模试卷(文科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)已知复数z1=1﹣i,z2=1+i,则等于()A.2i B.﹣2i C.2+i D.﹣2+i2.(5分)设集合M={0,1},N={x∈Z|y=),则()A.M∩N=∅B.M∩N={0}C.M∩N{1}D.M∩N=M3.(5分)给定函数①y=x,②y=log x,③y=|x﹣1|,④y=2x,其中在区间(0,1)上单调递减的函数序号是()A.①②B.②③C.③④D.①④4.(5分)在△ABC中,若sin A﹣sin A cos C=cos A sin C,则△ABC的形状是()A.正三角形B.等腰三角形C.直角三角形D.等腰直角三角形5.(5分)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e,众数为m o,平均值为,则()A.m e=m o=B.m e=m o<C.m e<m o<D.m o<m e<6.(5分)已知α,β,直线l,m,且有l⊥α,m⊂β,给出下列命题:①若α∥β,则l⊥m;②若l∥m,则α⊥β;③若α⊥β,则l∥m;④若l⊥m,则α∥β;其中,正确命题个数有()A.1B.2C.3D.47.(5分)若函数f(x)=的图象如图所示,则m的范围为()A.(﹣∞,﹣1)B.(﹣1,2)C.(1,2)D.(0,2)8.(5分)设双曲线+=1的离心率为2,且一个焦点与抛物线x2=8y的焦点相同,则此双曲线的方程为()A.﹣y2=1B.﹣=1C.y2﹣=1D.﹣=19.(5分)已知函数f(x)=(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,0)C.(﹣1,0)D.[﹣1,0)10.(5分)若b>a>3,f(x)=,则下列各结论中正确的是()A.B.C.f()<f()<f(a)D.f(b)<f()<f()二、填空题(共5小题,每小题5分,满分25分)11.(5分)圆心在直线x=2上的圆C与y轴交于两点A(0,﹣4),B(0,﹣2),则圆C的方程为.12.(5分)已知x,y满足不等式组,则z=2x+y的最大值与最小值比为.13.(5分)定义在实数集R上的函数f(x)满足f(x)+f(x+2)=0,且f(4﹣x)=f(x).现有以下三种叙述:①8是函数f(x)的一个周期;②f(x)的图象关于直线x=2对称;③f(x)是偶函数其中正确的序号是.14.(5分)执行如图中的程序框,如果输入的t∈[﹣1,3],则输出的S属于区间.15.(5分)在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”类似的,我们在平面向量集D={|=(x,y),x∈R,y∈R}上也可以定义在一个称“序”的关系,记为“>>”,定义如下:对于任意两个向量=(x1,y1)2=(x2,y2),“1>>2”当且仅当“x1>x2”或“x1=x2”且“y1>y2”,按上述定义的关系“>>”给出如下四个命题:①若1=(1,0),2=(0,1),=(0,0),则1>>2>>②若1>>2,2>>3,则1>>3③若1>>2,则对于任意∈D,1+>>2+④对于任意向量>>,=(0,0),若1>>2,则•1=•2其中真命题的序号为.三、解答题(共6小题,满分75分)16.(12分)已知函数f(x)=2cos2x+2sin x cos x+a,且当x∈[0,]时,f(x)的最小值为2.(1)求a的值,并求f(x)的单调递增区间;(2)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的,再将所得图象向右平移个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0,]上所有根之和.17.(12分)如图,将边长为2的正六边形ABDEF沿对角线BE翻折,连接AC、FD,形成如图所示的多面体,且AC=.(1)证明:平面ABEF⊥平面BCDE;(2)求三棱锥E﹣ABC的体积.18.(12分)某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求x和y的值;(2)计算甲班7位学生成绩的方差s2;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.19.(12分)已知数列{a n}的前n项和为S n,且S n=n(n+1)(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足:,求数列{b n}的通项公式;(Ⅲ)令(n∈N*),求数列{c n}的前n项和T n.20.(13分)设函数f(x)=lnx﹣﹣bx(Ⅰ)当a=b=时,求函数f(x)的单调区间;(Ⅱ)令F(x)=f(x)+<x≤3),其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(Ⅲ)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.21.(14分)椭圆C:+=1过点A(1,),离心率为,左右焦点分别为F1、F2.过点F1的直线l交椭圆于A、B两点.(1)求椭圆C的方程.(2)当△F2AB的面积为时,求l的方程.2015年山东省菏泽市高考数学一模试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)已知复数z1=1﹣i,z2=1+i,则等于()A.2i B.﹣2i C.2+i D.﹣2+i【解答】解:∵复数z1=1﹣i,z2=1+i,则====﹣2i.故选:B.2.(5分)设集合M={0,1},N={x∈Z|y=),则()A.M∩N=∅B.M∩N={0}C.M∩N{1}D.M∩N=M【解答】解:由1﹣x≥0,得x≤1,∴N={x∈Z|y=}={x∈Z|x≤1},又M={0,1},∴M∩N={0,1}=M.故选:D.3.(5分)给定函数①y=x,②y=log x,③y=|x﹣1|,④y=2x,其中在区间(0,1)上单调递减的函数序号是()A.①②B.②③C.③④D.①④【解答】解:选项①y=x在(0,+∞)上单调递增,不存在减区间,故错误;选项②y=log x,在(0,+∞)上单调递减,故正确;选项选项③y=|x﹣1|在(﹣∞,1)单调递减,故正确;选项④y=2x在R上单调递增,无递减区间,故错误.故选:B.4.(5分)在△ABC中,若sin A﹣sin A cos C=cos A sin C,则△ABC的形状是()A.正三角形B.等腰三角形C.直角三角形D.等腰直角三角形【解答】解:∵sin A﹣sin A cos C=cos A sin C,∴sin A=sin A cos C+cos A sin C=sin(A+C)=sin B∴A=B(A+B=π舍去),是等腰三角形故选:B.5.(5分)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e,众数为m o,平均值为,则()A.m e=m o=B.m e=m o<C.m e<m o<D.m o<m e<【解答】解:由图知m0=5,有中位数的定义应该是第15个数与第16个数的平均值,由图知将数据从大到小排第15 个数是5,第16个数是6,所以>5.9故选:D.6.(5分)已知α,β,直线l,m,且有l⊥α,m⊂β,给出下列命题:①若α∥β,则l⊥m;②若l∥m,则α⊥β;③若α⊥β,则l∥m;④若l⊥m,则α∥β;其中,正确命题个数有()A.1B.2C.3D.4【解答】解:有l⊥α,m⊂β,给出下列命题:①若α∥β,∴l⊥β,又m⊂β,则l⊥m,正确;②若l∥m,m⊂β,则α⊥β,正确;③若α⊥β,则l∥m或异面直线,不正确;④若l⊥m,则α∥β或相交,因此不正确.其中,正确命题个数为2.故选:B.7.(5分)若函数f(x)=的图象如图所示,则m的范围为()A.(﹣∞,﹣1)B.(﹣1,2)C.(1,2)D.(0,2)【解答】解:f′(x)==由图知m﹣2<0,且m>0,故0<m<2,又>1,∴m>1,因此1<m<2,故选:C.8.(5分)设双曲线+=1的离心率为2,且一个焦点与抛物线x2=8y的焦点相同,则此双曲线的方程为()A.﹣y2=1B.﹣=1C.y2﹣=1D.﹣=1【解答】解:抛物线x2=8y的焦点为(0,2),则双曲线的焦点在y轴上,方程为﹣=1,则c=2=,双曲线+=1的离心率为2,则=2,解得m=﹣3,n=1.即有双曲线的方程为y2﹣=1.9.(5分)已知函数f(x)=(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,0)C.(﹣1,0)D.[﹣1,0)【解答】解:由解析式可得函数的左半部分为指数函数的一部分,且随着a的变化而上下平移,右半部分为直线的一部分,且是固定的,作图如下:结合图象分析可得,当左半部分的图象介于两红线之间时符合题意,而红线与y轴的焦点坐标为a+1,且只需0≤a+1<1,即﹣1≤a<0即可故选:D.10.(5分)若b>a>3,f(x)=,则下列各结论中正确的是()A.B.C.f()<f()<f(a)D.f(b)<f()<f()【解答】解:∵f(x)=,∴f′(x)=,令f′(x)=0,解得x=e,当x≥e时,f′(x)<0,为减函数,当0<x<e时,f′(x)>0,为增函数,∵b>a>3>e,∴ab>b>>>a>e,∴f(a)>f()>f()>f(b)>f(ab),二、填空题(共5小题,每小题5分,满分25分)11.(5分)圆心在直线x=2上的圆C与y轴交于两点A(0,﹣4),B(0,﹣2),则圆C的方程为(x﹣2)2+(y+3)2=5.【解答】解:根据垂径定理可得AB的垂直平分线y=﹣3过圆心,而圆心过x=2,则圆心坐标为(2,﹣3),圆的半径r=|AC|==,则圆的标准方程为:(x﹣2)2+(y+3)2=5.故答案为:(x﹣2)2+(y+3)2=512.(5分)已知x,y满足不等式组,则z=2x+y的最大值与最小值比为2:1.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即B(2,2),代入目标函数z=2x+y得z=2×2+2=6.即目标函数z=2x+y的最大值为6.当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最小,此时z最小.由,解得,即A(1,1),代入目标函数z=2x+y得z=2+1=3.即目标函数z=2x+y的最小值为3.则z=2x+y的最大值与最小值比为6:3=2:1故答案为:2:113.(5分)定义在实数集R上的函数f(x)满足f(x)+f(x+2)=0,且f(4﹣x)=f(x).现有以下三种叙述:①8是函数f(x)的一个周期;②f(x)的图象关于直线x=2对称;③f(x)是偶函数其中正确的序号是①②③.【解答】解:对于①,由于定义在实数集R上的函数f(x)满足f(x)+f(x+2)=0,则f(x+2)=﹣f(x),即有f(x+4)=﹣f(x+2),则f(x+4)=f(x),即4是函数的最小正周期,故①对;对于②,由于f(x)满足f(4﹣x)=f(x),即有f(2+x)=f(2﹣x),即f(x)的图象关于直线x=2对称,故②对;对于③,由于f(4﹣x)=f(x),即有f(﹣x)=f(x+4),又f(x+4)=f(x),则f(﹣x)=f(x),则f(x)为偶函数,故③对.故答案为:①②③.14.(5分)执行如图中的程序框,如果输入的t∈[﹣1,3],则输出的S属于区间[﹣3,4].【解答】解:执行程序框图,有输入的t∈[﹣1,3],S=输出S的值,画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故答案为:[﹣3,4]15.(5分)在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”类似的,我们在平面向量集D={|=(x,y),x∈R,y∈R}上也可以定义在一个称“序”的关系,记为“>>”,定义如下:对于任意两个向量=(x1,y1)2=(x2,y2),“1>>2”当且仅当“x1>x2”或“x1=x2”且“y1>y2”,按上述定义的关系“>>”给出如下四个命题:①若1=(1,0),2=(0,1),=(0,0),则1>>2>>②若1>>2,2>>3,则1>>3③若1>>2,则对于任意∈D,1+>>2+④对于任意向量>>,=(0,0),若1>>2,则•1=•2其中真命题的序号为①②③.【解答】解:①∵=(1,0),=(0,1),横坐标1>0,∴,而=(0,0),横坐标0=0,纵坐标1>0,则>>;②若>>,则“x>x2”或“x1=x2”且“y1>y2”,若,则“x21>x3”或“x2=x3”且“y2>y3”,可得“x1>x3”或“x1=x3,y1>y3”,则.因此正确.③若>>,则“x 1>x2”或“x1=x2”且“y1>y2”,对于任意=(x,y)∈D,则x1+x>x2+x,或x1+x=x2+x且y1+y>y2+y,因此>>.因此正确;④对于任意向量>>,=(0,0),若>>,取=(4,3),=(2,1),=(1,1),则=7,=3,因此,不正确.其中真命题的序号为①②③.故答案为:①②③.三、解答题(共6小题,满分75分)16.(12分)已知函数f(x)=2cos2x+2sin x cos x+a,且当x∈[0,]时,f(x)的最小值为2.(1)求a的值,并求f(x)的单调递增区间;(2)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的,再将所得图象向右平移个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0,]上所有根之和.【解答】解:(1)化简可得f(x)=2cos2x+2sin x cos x+a=cos2x+1+sin2x+a=2sin(2x+)+a+1,∵x∈[0,],∴2x+∈[,],∴f(x)的最小值为﹣1+a+1=2,解得a=2,∴f(x)=2sin(2x+)+3,由2kπ﹣≤2x+≤2kπ+可得kπ﹣≤x≤kπ+,∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z);(2)由函数图象变换可得g(x)=2sin(4x﹣)+3,由g(x)=4可得sin(4x﹣)=,∴4x﹣=2kπ+或4x﹣=2kπ+,解得x=+或x=+,(k∈Z),∵x∈[0,],∴x=或x=,∴所有根之和为+=.17.(12分)如图,将边长为2的正六边形ABDEF沿对角线BE翻折,连接AC、FD,形成如图所示的多面体,且AC=.(1)证明:平面ABEF⊥平面BCDE;(2)求三棱锥E﹣ABC的体积.【解答】(1)证明:正六边形ABCDEF中,连结AC、BE,交点为G,由边长为2的正六边形ABCDEF的性质得AC⊥BE,且AG=CG=,在多面体中,由AC=,得AG2+CG2=AC2,∴AG⊥GC,又GC∩BE=G,GC,BE⊂平面BCDE,∴AG⊥平面BCDE,又AG⊂平面ABEF,∴平面ABEF⊥平面BCDE.(2)解:连结AE,CE,则AG为三棱锥A﹣BCE的高,GC为△BCE的高,在正六边形ABCDEF中,BE=2AF=4,∴,∴V E﹣ABC =V A﹣BCE==2.18.(12分)某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.(1)求x和y的值;(2)计算甲班7位学生成绩的方差s2;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.【解答】解:(1)∵甲班学生的平均分是85,∴,∴x=5,∵乙班学生成绩的中位数是83,∴y=3;(2)甲班7位学生成绩的方差为s2==40;(3)甲班成绩在90分以上的学生有两名,分别记为A,B,乙班成绩在90分以上的学生有三名,分别记为C,D,E,从这五名学生任意抽取两名学生共有10种情况:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)其中甲班至少有一名学生共有7种情况:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E).记“从成绩在90分以上的学生中随机抽取两名学生,甲班至少有一名学生”为事件M,则.答:从成绩在90分以上的学生中随机抽取两名学生,甲校至少有一名学生的概率为.19.(12分)已知数列{a n}的前n项和为S n,且S n=n(n+1)(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足:,求数列{b n}的通项公式;(Ⅲ)令(n∈N*),求数列{c n}的前n项和T n.【解答】解:(Ⅰ)当n=1时,a1=S1=2,=n(n+1)﹣(n﹣1)n=2n,当n≥2时,a n=S n﹣S n﹣1知a1=2满足该式,∴数列{a n}的通项公式为a n=2n.(2分)(Ⅱ)∵(n≥1)①∴②(4分)②﹣①得:,b n+1=2(3n+1+1),故b n=2(3n+1)(n∈N*).(6分)(Ⅲ)=n(3n+1)=n•3n+n,∴T n=c1+c2+c3+…+c n=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n)(8分)令H n=1×3+2×32+3×33+…+n×3n,①则3H n=1×32+2×33+3×34+…+n×3n+1②①﹣②得:﹣2H n=3+32+33+…+3n﹣n×3n+1=∴,…(10分)∴数列{c n}的前n项和…(12分)20.(13分)设函数f(x)=lnx﹣﹣bx(Ⅰ)当a=b=时,求函数f(x)的单调区间;(Ⅱ)令F(x)=f(x)+<x≤3),其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(Ⅲ)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.【解答】解:(Ⅰ)依题意,知f(x)的定义域为(0,+∞).(1分)当a=b=时,f(x)=lnx﹣x2﹣x,f′(x)=﹣x﹣=.(2分)令f′(x)=0,解得x=1.当0<x<1时,f′(x)>0,此时f(x)单调递增;当x>1时,f′(x)<0,此时f(x)单调递减.(3分)所以函数f(x)的单调增区间(0,1),函数f(x)的单调减区间(1,+∞).(4分)(Ⅱ)F(x)=lnx+,x∈(0,3],所以k=F′(x0)=≤,在x0∈(0,3]上恒成立,(6分)所以a≥(﹣x02+x0)max,x0∈(0,3](7分)当x0=1时,﹣x02+x0取得最大值.所以a≥.(9分)(Ⅲ)当a=0,b=﹣1时,f(x)=lnx+x,因为方程f(x)=mx在区间[1,e2]内有唯一实数解,所以lnx+x=mx有唯一实数解.∴,设g(x)=,则g′(x)=.令g′(x)>0,得0<x<e;g′(x)<0,得x>e,∴g(x)在区间[1,e]上是增函数,在区间[e,e2]上是减函数,g(1)=1,g(e2)=1+=1+,g(e)=1+,所以m=1+,或1≤m<1+.21.(14分)椭圆C:+=1过点A(1,),离心率为,左右焦点分别为F1、F2.过点F1的直线l交椭圆于A、B两点.(1)求椭圆C的方程.(2)当△F2AB的面积为时,求l的方程.【解答】解:(1)∵椭圆过点,∴…(1分)∵离心率为,∴,…(2分)又∵a2=b2+c2…(3分)解①②③得a2=4,b2=3…(4分)∴椭圆…(6分)(2)由(1)得F1(﹣1,0)①当l的倾斜角是时,l的方程为x=﹣1,焦点此时,不合题意.…(7分)②当l的倾斜角不是时,设l的斜率为k,则其直线方程为y=k(x+1)由,消去y得:(4k2+3)x2+8k2x+4k2﹣12=0,设A(x1,y1),B(x2,y2),则…(9分)∴===…(10分)又已知,∴,∴(k2﹣1)(17k2+18)=0,∴k2﹣1=0,解得k=±1,故直线l的方程为y=±1(x+1),即x﹣y+1=0或x+y+1=0.…(13分)。
山东省菏泽市2015届高三第一次模拟考试 数学试题(文)
山东省菏泽市2015届高三第一次模拟考试数学试题(文)第Ⅰ卷一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知复数121,1z i z i =-=+,则12z z i等于( ) A .2i B .2i - C .2i + D .2i -+2、设集合{0,1},{|M N x Z y ==∈=,则( )A .M N φ=B .{}0M N =C .{}1M N =D .M N M = 3、给定函数①12y x = ②12log (1)y x =+ ③1y x =- ④12x y +=,其中在区间()0,1上单调递减的函数序号是( )A .①②B .②③C .③④D .①④4、在ABC ∆中,若sin sin cos cos sin A A C A C -=,则ABC ∆的形状是( ) A .等腰三角形 B .正三角形 C .直角三角形 D .等腰直角三角形5、为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(10分制)的频率分布直方图如图所示,假设得分值的中位数为e m ,众数0m ,平均数为x ,则( ) A .0e m m x == B .0e m m x =< C .0e m m x << D .0e m m x <<6、已知平面,αβ,直线,l m ,且有,l m αβ⊥⊂,给出下列命题:①若//αβ,则l m ⊥;②若//l m ,则αβ⊥;③若αβ⊥,则//l m ;④若l m ⊥,则//αβ,其中正确命题个数有( )A .1B .2C .3D .47、若函数()2(2)m xf x x m-=+的图象如图所示,则m 的范围为( )A .(),1-∞-B .()1,2-C .()0,2D .()1,28、设双曲线221x y m n+=的离心率为2,且一个焦点与抛物线28x y =的交点相同,则此双曲线的方程为( )A .2213x y -=B .221412x y -=C .2213x y -= D .221124x y -= 9、已知函数()0()210x e a x f x a R x x ⎧+≤=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( )A .(),1-∞-B .(),0-∞C .()1,0-D .[)1,0- 10、若函数()sin x f x x =,并且233a b ππ<<<,则下列各结论正确的是( ) A .()()2a b f a f f +<< B.()()2a bf f f b +<< C.()()2a b f f f a +<< D .()()2a bf b f f +<<第Ⅱ卷二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。
山东省菏泽市巨野县实验中学2015届高三5月月考数学文
高三数学(文科)试题 2015.05 第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则AB =( )A.1(0,)2 B.(1,1)- C.1(,1)(,)2-∞-+∞ D.(,1)(0,)-∞-+∞2.在复平面内,复数5i2i -的对应点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3.执行如图所示的程序框图.若输出15S =, 则框图中①A.2k <B.3k <C.4k< D.5k <4. 已知函数3,0()2,0xx x f x x ⎧-≤⎪=⎨>⎪⎩,则[(1)]f f -=( ) A .21B . 1-C .1D .2已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件6.若变量x ,y 满足条件0,21,43,y x y x y ≤⎧⎪-≥⎨⎪-≤⎩则35z x y =+A .[)3,+∞ B .[8,3]- C .(],9-∞ D .[8,9]-某四面体的三视图如图所示.该四面体的六条棱的长度中, 最大的是( ) A. B. C. D.8. 已知圆222()()x a y b r -+-=的圆心为抛物线2y 且与直线3420x y ++=相切,则该圆的方程为( ) A.2264(1)25x y -+=B.22(1)1x y -+=C. 2264(1)25x y +-= D.22(1)1x y +-=9. 已知0,0a b >>,且24a b +=,则1ab 的最小值为( )A.41B.4C.21D.210. 设()f x 与()g x 是定义在同一区间[,]a b 上的两个函数,若函数()()y f x g x =-在[,]x a b ∈上有两个不同的零点,则称()f x 和()g x 在[,]a b 上是“联函数”,区间[,]a b 称为“联区间”.若2()34f x x x =-+与()2g x x m =+在[0,3]上是“联函数”,则m 的取值范围为( )A. 9(,2]4--B.[1,0]-C.(,2]-∞-D.9(,)4-+∞第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k =_ .12. 已知函数()sin()2f x x x π=+,则()2f π'=. 13.在区间[]9,0上随机取一实数x ,则该实数x 满足不等式21log 2x ≤≤的概率为 .14.已知椭圆 22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF -=,则△12PF F 的面积是______ .已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称 函数()f x 具有性质P .给定下列三个函数:①()2x f x =; ②()sin f x x =; ③3()f x x x =-.其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)在△ABC21cos 2B B =-. (Ⅰ)求角B 的值;(Ⅱ)若2BC =,4A π=,求△ABC 的面积.17.(本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC , E 为棱PD 的中点.(Ⅰ)求证:PB // 平面EAC ; (Ⅱ)求证:平面PAD ⊥平面ABCD ;18.(本小题满分12分)某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如右图所示. (Ⅰ)下表是年龄的频数分布表,求正整数,a b 的值;(Ⅱ)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.19.(本小题满分12分)已知等差数列{}n a 满足:11(),1n n a a n N a *+>∈=,该数列的前三项分别加上l ,l ,3后顺次成为等比数列{}n b 的前三项.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)设1212...()n n n a a a T n N b b b *=+++∈,若231()2n n n T c c Z n ++-<∈恒成立,求c 的最小值.20.(本小题满分13分)已知函数2()xf x x b =+,其中b ∈R .(Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围.21.(本小题满分14分)已知椭圆:C 22221(0)x y a b a b +=>>的离心率为,定点(2,0)M ,椭圆短轴的端点是1B ,2B ,且12MB MB ⊥.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点M 且斜率不为0的直线交椭圆C 于A ,B 两点.试问x 轴上是否存在定点P ,使PM 平分APB ∠?若存在,求出点P 的坐标;若不存在,说明理由.高三数学(文科)参考答案及评分标准2015.05 一、选择题:本大题共10小题,每小题5分,共50分.1.D ; 2.B ; 3.C ; 4.D; 5.C ; 6.D ; 7.C ; 8.B ; 9.C; 10.A 二、填空题:本大题共5小题,每小题5分,共25分.11.1-; 12.2π-; 13.29; 1415.①③.三、解答题: 16.(本小题满分12分)21cos 2B B =-,所以2cos 2sin B B B =. ………………3分 因为 0B <<π, 所以 sin 0B >,从而tan B = ………………5分所以π3B =. ………………6分解法二: 依题意得2cos21B B +=,所以 2sin(2)16B π+=,即1sin(2)62B π+=. ………………3分 因为 0B <<π, 所以 132666B πππ<+<, 所以5266B ππ+=. ………………5分所以π3B =. ………………6分(Ⅱ)解法一:因为4A π=,π3B =,根据正弦定理得 sin sin AC BCB A =, ………………7分所以sin sin BC BAC A ⋅== ………………8分因为512C A B π=π--=, ………………9分所以5sin sinsin()1246C πππ==+=, ………………11分所以 △ABC的面积1sin 2S AC BC C =⋅=. ………………12分解法二:因为4A π=,π3B =,根据正弦定理得 sin sin AC BCB A =, ……………7分所以sin sin BC BAC A ⋅== ………………8分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, ………………9分化简为 2220AB AB --=,解得1AB = ………………11分所以 △ABC的面积13sin 22S AB BC B =⋅=. ………………12分17.(本小题满分12分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO . 因为四边形ABCD 为正方形,所以O 为BD 中点.因为 E 为棱PD 中点. 所以 EO PB //. ………………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC , 所以直线PB //平面EAC . ………………6分(Ⅱ)证明:因为⊥PA 平面PDC ,所以CD PA ⊥. ………………8分因为四边形ABCD 为正方形,所以CD AD ⊥,所以⊥CD 平面PAD . ………………10分 所以平面PAD ⊥平面ABCD . …………12分 18.(本小题满分12分)解:(Ⅰ)由题设可知,0.085500200a =⨯⨯=, 0.02550050b =⨯⨯=.……………2分 (Ⅱ) 因为第1,2,3组共有50+50+200=300人,利用分层抽样在300名学生中抽取6名学生,每组抽取的人数分别为:第1组的人数为5061300⨯=,第2组的人数为5061300⨯=, 第3组的人数为20064300⨯=,所以第1,2,3组分别抽取1人,1人,4人. ………………6分 (Ⅲ)设第1组的1位同学为A ,第2组的1位同学为B ,第3组的4位同学为1234,,,C C C C ,则从六位同学中抽两位同学有:1234(,),(,),(,),(,),(,),A B A C A C A C A C 1234(,),(,),(,),(,),B C B C B C B C 12(,),C C 13(,),C C 142324(,),(,),(,),C C C C C C 34(,),C C 共15种可能. ………… 9分其中2人年龄都不在第3组的有:(,),A B 共1种可能, ……… ………10分所以至少有1人年龄在第3组的概率为11411515-=. ………………12分19.(本小题满分12分) 解: (Ⅰ)设d q 、分别为数列{}n a 的公差、数列{}n b 的公比.由题意知,11a =,231,12a d a d =+=+,分别加上1,1,3得2,2,2d d ++4,2(2)2(42),2d d d +=+=±所以又1n n a a +>,所以0d >,所以2d =,所以21n a n =-(*n ∈N ),由此可得12b =24b =,2q =,所以2n n b =(*n ∈N ). ……………6分(Ⅱ)12231213521,2222n n nn a a a n T b b b -=+++=++++①∴2341113521.22222n n n T +-=++++②由①-②得231111111121.2222222n n n n T -+-=+++++-∴1211211212321331222212n n n n n n n n n T -----+=+-=--=--, ……………10分∴2+311332n n n T n n +-=-<.∴使2+312n n n T c n +-<()c ∈Z 恒成立的c 的最小值为3.……12分20.(本小题满分13分) (Ⅰ)解:① 当0b =时,1()f x x =.故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ……………1分② 当0b >时,222()()b x f x x b -'=+.………………3分令()0f x '=,得1x =2x =()f x 和()f x '的情况如下:故()f x的单调减区间为(,-∞,)+∞;单调增区间为(.……………5分③ 当0b <时,()f x的定义域为{|D x x =∈≠R .因为222()0()b x f x x b -'=<+在D 上恒成立,故()f x的单调减区间为(,-∞,(,)+∞; 无单调增区间.………………7分(Ⅱ)解:因为0b >,13[,]44x ∈, 所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈. ……………9分 设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =.…………11分 则“13[,]44x ∃∈,使得 2b x x ≤-+”等价于14b ≤. 所以,b 的取值范围是1(0,]4. ………………13分 21.(本小题满分14分)(Ⅰ)解:由 222222519a b b e a a -===-, 得 23b a =. ………2分 依题意△12MB B 是等腰直角三角形,从而2b =,故3a =. ………4分所以椭圆C 的方程是22194x y +=. …………5分(Ⅱ)解:设11(,)A x y ,22(,)B x y ,直线AB 的方程为2x my =+.将直线AB 的方程与椭圆C 的方程联立,消去x 得22(49)16200m y my ++-=. …………7分 所以1221649m y y m -+=+,1222049y y m -=+. ………8分若PF 平分APB ∠,则直线PA ,PB 的倾斜角互补, 所以=+PB PA k k .…………9分设(,0)P a ,则有 12120y yx a x a +=--.将112x my =+,222x my =+代入上式,整理得 1212122(2)()(2)(2)my y a y y my a my a +-+=+-+-,所以12122(2)()0my y a y y +-+=. …………12分将1221649m y y m -+=+,1222049y y m -=+代入上式,整理得 (29)0a m -+⋅=. …………13分由于上式对任意实数m 都成立,所以92a =.综上,存在定点9(,0)2P ,使PM 平分APB ∠. ………14分。
菏泽市2015届高三期末测试文科数学试题
高三数学(文)试卷(B )本试卷分第Ⅰ卷和第Ⅱ卷两部分. 试卷总分为150分. 考试时间120分钟.第Ⅰ卷(选择题 共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目、试卷类型用2B 铅笔涂写在答题卡上。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.复数1iz i+=(i 是虚数单位)在复平面内对应的点在( ) A. 第一象限 B .第二象限 C .第三象限 D .第四象限2.设2()lg()1f x a x =+-是奇函数,则使()0f x <的x 的取值范围是( ).A .(1,0)-B .(0,1)C .(,0)-∞D .(,0)(1,)-∞+∞ 3.一个几何体的三视图及其尺寸(单位:cm)如图所示,则 该几何体的侧面积为( )cm 2. A .50 B .60 C .70D .804.三个数20.310.3120.31,log ,2a b c ===之间的大小关系是( ) A .a c b <<B .b a c <<C .a b c <<D .b c a <<5.设m ,n 为空间两条不同的直线,,αβ为空间两个不同的平面,给出下列命题:①若//,//m m αβ,则//αβ; ②若//,//m m n α则//n α; ③若,//m m αβ⊥,则αβ⊥; ④若,//m ααβ⊥,则m β⊥.其中的正确命题序号是( )俯视图侧(左)视图(第3题图)A .③④B .②④C .①②D . ①③6.等差数列{a n }的前n 项和为S n ,且S 2=10,S 6=36,则过点P (n ,a n )和Q (n +2,a n +2)(n ∈N *)的直线的斜率是( )A .14B .12C .2D .47.函数()sin(2)3cos(2)f x x x θθ=+++(2πθ<)的图像关于点(,0)6π对称,则()f x 的增区间( )A .5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦B .,,63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .7,,1212k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦D .5,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦8.若变量x ,y 满足约束条件1400x x y x y ≥⎧⎪+-≤⎨⎪-≤⎩,则y x 的最大值为 ( )A .2B .3C .43D .59.过抛物线C :22x y =的焦点F 的直线l 交抛物线C 于A 、B 两点,若抛物线C 在点B 处的切线斜率为1,则线段||AF =( ) A .1B .2C .3D .410. 已知定义在实数集R 上的函数()f x 满足(1)f =3,且()f x 的导数()f x '在R 上恒有()2f x '<()x R ∈,则不等式()21f x x <+的解集为( )A .(1,)+∞B .(,1)-∞-C .(1,1)-D .(,1)-∞-∪(1,)+∞第Ⅱ卷(非选择题 共100分)二、填空题:(本大题有5小题,每小题5分,共25分.把答案填在答题卷的相应位置.) 11.执行如右图所示的程序框图,若输入的x 的值为10,则输出的=x . 12.已知抛物线的准线方程为1x =-,则抛物线的标准方程为 .13已知函数2log (1)y ax =-在)4,2(上单调递增, 则a 的取值范围 .14已知球与棱长均为3的三棱锥各条棱都相切, 则该球的表面积为 .15在三角形ABC 中,已知AB=4,AC=3 ,BC=6 , P 为BC 中点,则三角形ABP 的周长为_______.三、解答题:(本大题共6小题,满分75分.解答应写出文字说明,证明过程或演算步骤.) 16.(本题满分12分)已知函数)sin()(ϕω+=x A x f (∈x R ,0>A ,0>ω,20πϕ<<)图象如图,P 是图象的最高点,Q 为图象与x 轴的交点,O 为原点.且2||=OQ ,25||=OP ,213||=PQ . (1)求函数)(x f y =的解析式;(2)将函数)(x f y =图象向右平移1个单位后得到函数)(x g y =的图象,当]2,0[∈x 时,求函数)()()(x g x f x h ⋅=的最大值.17.(本小题满分12分)如图,四棱锥P ABCD -的底面ABCD为正方形,P A ⊥底面ABCD ,E ,F 分别是AC ,PB 的中点. (1)求证:EF ∥平面PCD ;(2)求证:平面PBD ⊥平面P AC ;18.(本小题满分12分)为预防一种强行流感病毒爆发,某生物技术公司研制出一种病毒疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个样本分成三组,测试结果如下表:分组 A 组 B 组C 组疫苗有效 673 ab疫苗无效7790c已知在全体样本中随机抽取1个,抽到B 组疫苗有效的概率是0.33.(1)现用分层抽样的方法在全体样本中抽取360个测试结果,应在C 组抽取样本多少xyPQO(第16题)个?(2)已知465,30,b c ≥≥求通过测试的概率.19.(本小题满分12分)已知等比数列{a n }的前n 项和2,*n n S a n N =-∈.设公差不为零的等差数列{b n }满足:2114282,(5)(5)(5)b a b b b =++=++.(1)求a 及b n ;(2)设数列}n 的前n 项和为T n .求使T n >b n 的最小正整数n 的值.20.(本小题满分13分)已知函数()sin f x x ax =-,()cos g x bx x =(,)a R b R ∈∈,(1)当12a =时,求函数()f x 在区间(0,)π上的单调性; (2)若2a b =且23a ≥,当0x >时,证明()f x <()g x .21.(本小题满分14分)如图,F 1,F 2是椭圆C :2212xy +=的左、右焦点,A ,B 是椭圆C 上的两个动点,且线段AB 的中点M 在直线l :x =-12上.(1)若B 点坐标为(0,1),求点M 的坐标; (2)求22F A F B ⋅的取值范围.高三数学文试题(B )参考答案选择题填空题11.4 12.x y 42= 13.⎢⎣⎡+∞),2114.π29 15. 7+214 16.解(Ⅰ)由余弦定理得51||||2cos 222==∠OQ OP PQ OQ OP POQ ,(第21题图)∴52sin =∠POQ ,得P 点坐标为)1,21(. ………………………………2分∴ 1=A ,6)212(42=-=ωπ,3πω=. 由1)6sin()21(=+=ϕπf ,20πϕ<<得3πϕ=.∴)(x f y =的解析式为)33sin()(ππ+=x x f . …………………………….6分(Ⅱ)x x g 3sin)(π=,x x x x x x g x f x h 3cos 3sin 233sin 213sin )33sin()()()(2ππππππ+=+=⋅=41)632sin(2132sin 43432cos 1+-=+-=ππππx x x……………………………9分. 当]2,0[∈x 时,]67,6[632ππππ-∈-x , ∴ 当2632πππ=-x ,即1=x 时43)(max =x h . ……………………………..12分 17.(1)证明:(2)证明:18、【解】(I )∵33.02000=a,∴ 660=a …………………………………………………1分∵50090660776732000=----=+c b ,………………………………………………2分∴ 应在C 组抽取样个数是902000500360=⨯(个);………………………………………4分 (II )∵500=+c b ,465≥b ,30≥c , ∴(b ,c )的可能性是(465,35),(466,34),(467,33),(468,32), (469,31),(470,30),共6种. ……………………………………………………7分分平面平面平面平面为正方形四边形又底面12................................................................PAC PBD PBDBD PAC BD BDAC ABCD BD PA ABCD PA ⊥⊂⊥∴⊥∴⊥∴⊥ 分平面平面平面又的中位线为的中点为又的中点也是的中点为为正方形,且四边形6.......................................................////PCD EF PCD PD PCD EF PDEF PBD EF PB F BD E AC E ABCD ∴∈∉∴∆∴∴若测试通过,则1800%902000673=⨯≥++b a ,解得467≥b , (b ,c )的可能性是(467,33),(468,32),(469,31),(470,30),共4种……10分 通过测试的概率是3264=. …………………………………………………………………12分 19、解:(Ⅰ) 当n =1时,a 1=S 1=2-a .……………………1分当n ≥2时,a n =S n -S n -1=2n-1. 所以1=2-a ,得a =1,所以a n =2n-1. ……………………………………………….3分 设数列{b n }的公差为d ,由b 1=3,(b 4+5)2=(b 2+5)(b 8+5),得 (8+3d)2=(8+d)(8+7d), 故d =0 (舍去) 或 d =8.所以a =1,b n =8n -5,n ∈N*.………………………….6分 (Ⅱ) 由a n =2n-1,知na =2(n -1).所以T n =n(n -1).………………………………………8分 由b n =8n -5,T n >b n ,得n 2-9n +5>0,……………………………………………10分 因为n ∈N*,所以n ≥9.所以,所求的n 的最小值为9. ………………………12分20.(本小题13分)解:(1),21sin )(x x x f -=则21cos )(-='x x f …………………………….. 2分 且),0(π∈x ,当0<x <3π时,()0f x '>,所以函数()f x 在区间(0,)π上单调递增 ……4分 当3π<x <32π时,()0f x '<,所以函数()f x 在区间(0,)π上单调递减 ……6分(2) 要证明()f x <()g x ,只须证明()()0f x g x -<当2a b =时,()()sin (2cos )02af xg x x x x -=-+< ……………7分等价于sin 2cos 2x ax x <+ …………………………………………………9分 记()M x =sin 2cos 2x ax x -+,则 ……………………………………………10分 ()M x '=22cos 1(2cos )2x ax +-+21113()2cos 323a x =---++ ………………11分 当23a ≥,即123a ≥时,()0M x '≤,()M x 在区间上(0,)+∞单调递减,()(0)0M x M <=所以,当0x >,()f x <()g x 恒成立. …………………………………13分 21.(Ⅰ) 因为点M 是AB 的中点,所以可设点A ),1(m -.代入椭圆方程2212x y +=,得22-=m 或22=m , 则A 点坐标为)22,1(--或)22,1(-,所以M 点坐标为 )422,21(--或)422,21(+-.………………4分 (Ⅱ) 当直线AB 垂直于x 轴时,直线AB 方程为x =-12,此时 22F A F B ⋅=118.,,,,5分 当直线AB 不垂直于x 轴时,设直线AB 的斜率为k ,M(-12,m) (m ≠0),A(x 1,y 1),B(x 2,y 2).由 221122221,21,2x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 得(x 1+x 2)+2(y 1+y 2)1212y y x x -⋅-=0, 则-1+4mk =0,故k =14m. 此时,直线AB 的方程为y -m =14m (x +12), 即y =14mx +2818m m +.联立 2221,2181,48x y m y x m m ⎧+=⎪⎪⎨+⎪=+⎪⎩消去y ,整理得(第18题图)x 2+x + 2222(81)644(18)m m m +-+=0,………………………8分故Δ=1-2222(81)6418m m m +-+>0,即0<m 2<78,……………9分所以x 1+x 2=-1, x 1x 2=2222(81)644(18)m m m +-+. 于是22F A F B ⋅=(x 1-1)(x 2-1)+y 1y 2=x 1x 2+y 1y 2-(x 1+x 2)+1 =x 1x 2+y 1y 2+2=x 1x 2+(14m x 1+2818m m +)(14mx 2+2818m m +)+2= 2223(81)88(18)m m +++.…………………12分令t =1+8m 2,则1<t <8,于是22F A F B ⋅=2388t t + =18(3t +8t).所以,22F A F B ⋅的取值范围为258)………………………14分友情提示:部分文档来自网络整理,供您参考!文档可复制、编辑,期待您的好评与关注!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学(文)试题第Ⅰ卷一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知复数121,1z i z i =-=+,则12z z i等于( ) A .2i B .2i - C .2i + D .2i -+2、设集合{0,1},{|M N x Z y ==∈=,则( ) A .MN φ= B .{}0MN = C .{}1M N = D .MN M =3、给定函数①12y x = ②12log (1)y x =+ ③1y x =- ④12x y +=,其中在区间()0,1上单调递减的函数序号是( )A .①②B .②③C .③④D .①④4、在ABC ∆中,若sin sin cos cos sin A A C A C -=,则ABC ∆的形状是( ) A .等腰三角形 B .正三角形 C .直角三角形 D .等腰直角三角形5、为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(10分制)的频率分布直方图如图所示,假设得分值的中位数为e m ,众数0m ,平均数为x ,则( ) A .0e m m x == B .0e m m x =< C .0e m m x << D .0e m m x <<6、已知平面,αβ,直线,l m ,且有,l m αβ⊥⊂,给出下列命题:①若//αβ,则l m ⊥;②若//l m ,则αβ⊥;③若αβ⊥,则//l m ;④若l m ⊥,则//αβ,其中正确命题个数有( )A .1B .2C .3D .4 7、若函数()2(2)m xf x x m-=+的图象如图所示,则m 的范围为( )A .(),1-∞-B .()1,2-C .()0,2D .()1,28、设双曲线221x y m n+=的离心率为2,且一个焦点与抛物线28x y =的交点相同,则此双曲线的方程为( )A .2213x y -=B .221412x y -=C .2213x y -=D .221124x y -=9、已知函数()0()210x e a x f x a R x x ⎧+≤=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( )A .(),1-∞-B .(),0-∞C .()1,0-D .[)1,0- 10、若函数()sin x f x x =,并且233a b ππ<<<,则下列各结论正确的是( ) A .()()2a b f a f f +<< B.()()2a bf f f b +<<C.()()2a b f f f a +<< D .()()2a bf b f f +<<第Ⅱ卷二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。
.11、圆心在直线2x =上的圆与y 轴交于两点(0,4),(0,2)A B --,则该圆的标准方程为12、已知,x y 满足不等式组22y xx y x ≤⎧⎪+≥⎨⎪≤⎩,则2z x y =+的最大值与最小值的比为13、定义在实数集R 上的函数()f x 满足()()20f x f x ++=, 且()()4f x f x -=现有以下三种叙述①8是函数()f x 的一个周期; ②()f x 的图象关于直线2x =对称;③()f x 是偶函数。
其中正确的序号是14、执行如图中的程序框图,如果输入的[]1,3t ∈-,则输出的S 所在区间是 15、在实数集R 中,我们定义的大小关系“>”为全体实数排了一个“序”类似的,我们在平面向量{|(,),,}D a a x y x R y R ==∈∈上也可以定义一个称“序”的关系,记为“”,定义如下:对于任意两个向量111222(,),(,)a x y a x y ==,“12a a ”当且仅当“12x x >”或“12x x =且12y y =”,按上述定义的关系“”,给出如下四个命题:①若12(1,0),(0,1),0(0,0)e e ===,则120e e②若1223,a a a a ,则13a a ;③对于12a a ,则对于任意12,a D a aa a ∈++;④对于任意向量0,0(0,0)a=,若12a a ,则12a a a a ⋅>⋅其中真命题的序号为三、解答题:本大题共6小题,满分75分,解答应写出文字说明、证明过程或演算步骤 16、(本小题满分12分)已知函数()22cos cos f x x x x a =++,且当[0,]2x π∈时,()f x 的最小值为2,(1)求a 的值,并求()f x 的单调递增区间;(2)先将函数()y f x =的图象上的点纵坐标不变,横坐标缩小到原来的12,再Ian 个所得的图象向右平移12π个单位,得到函数()y g x =的图象,求方程()4g x =在区间[0,]2π上所有根之和。
17、(本小题满分12分)如图,将边长为2的正六边形ABCDEF 沿对角线BE 翻折,连接AC 、FD ,形成如图所示的多面体,且AC =(1)证明:平面ABEF ⊥平面BCDE ; (2)求三棱锥E ABC -的体积18、(本小题满分12分)某高三年级从甲(文)乙(理)两个年级组各选出7名学生参加高校自主招生数学选拔考试,他们取得的成绩(满分:100分)的茎叶图如图所示,其中甲组学生的平均分是85,乙组学生成绩的中位数是83.(1)求x 和y 的值;(2)计算甲组7位学生成绩的方差2s ;(3)从成绩在90分以上的学生中随机取两名学生,求甲组至少有一名学生的概率。
19、(本小题满分12分)数列{}n a 的前n 项和为n S ,且(1)()n S n n n N *=+∈ (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足:3122331313131nn nb b b ba =++++++++,求数列{}n b 的通项公式; (3)令()4n nn a b c n N *=∈,求数列{}n c 的 n 项和n T 。
20、(本小题满分13分) 设函数()21ln 2f x x ax bx =-- (1)当12a b ==时,求函数()f x 的单调区间; (2)令()()21(03)2aF x f x ax bx x x=+++<≤,其图象上任意一点00(,)P x y 处切线的斜率12k ≤恒成立,求实数a 的取值范围。
(3)当0,1a b ==-时,方程()f x mx =在区间21,e ⎡⎤⎣⎦内有唯一实数解,求实数m 的取值范围。
21、(本小题满分14分)椭圆2222:1(0)x y C a b a b +=>>过点3(1,)2A ,离心率为12,左右焦点分别为12,F F ,过点1F 的直线交椭圆于,A B 两点。
(1)求椭圆C 的方程;(2)当2F AB ∆时,求l 的方程。
高三数学(文)试题参考答案一、选择题B D B A D B DCD D 二、填空题11.(x -2)2+(y +3)2=5 12. 2∶1 13. ①②③ 14. []4,3- 15. ①②③三、解答题:16. 解:(1)函数1)62sin(22sin 312cos )(+++=+++=a x a x x x f π,…2分 70,,2,2666x x ππππ⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦,min ()112f x a =-++=,得2a =;…4分即()2sin(2)36f x x π=++,由题意得226222πππππ+≤+≤-k x k ,得,36k x k k Z ππππ-≤≤+∈,所以函数)(x f 的单调递增区间为()Z k k k ∈⎥⎦⎤⎢⎣⎡+-6,3ππππ.…6分(2)由题意得()2sin(2)36f x x π=++,又由()4g x =得21)64sin(=-πx ,…9分解得6526264πππππ++=-k k x 或 , 即 ()Z k k k x ∈++=42122ππππ或, 412,2,0πππ或=∴⎥⎦⎤⎢⎣⎡∈x x ,故所有根之和为3412πππ=+.……12分 17. (1)证明:正六边形ABCDEF 中,连接AC 、BE ,交点为G ,易知AC BE ⊥,且AG CG ==在多面体中,由222AG CG AC +=, 故,AG GC ⊥………………………………2分又,GCBE G =,GC BE ⊂平面BCDE ,故AG ⊥平面BCDE ,……………………….5分又AG ⊂平面ABEF ,所以平面ABEF ⊥平面BCDE ;…6分 (2)连接AE 、CE,则AG 为三棱锥A BCE -的高,GC 为BCE ∆ 的高.在正六边形ABCDEF 中,24BE AF ==, 故142BCE S ∆=⨯=,…………..9分所以 123E ABC A BCE V V --==⨯=.……12分18. 解(1)∵甲组学生的平均分是85, ∴92968080857978857x +++++++=. ∴x=5. ………………………………1分∵乙组学生成绩的中位数是83, ∴y=3. …………………………………… 2分 (2)甲组7位学生成绩的方差为:222222221(6)(7)(5)00711407s ⎡⎤=-+-+-++++=⎣⎦ ……………………………………5分 (3)甲组成绩在90分以上的学生有两名,分别记为A ,B ,乙组成绩在90分以上的学生有三名,分别记为C ,D ,E. ……………………6分 从这五名学生任意抽取两名学生共有10种情况:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)……………………9分其中甲组至少有一名学生共有7种情况:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E) ……………………………………11分记“从成绩在90分以上的学生中随机抽取两名学生,甲组至少有一名学生”为事件M , 则7()10P M =.…………………………………………………………………………12分 19. 解:(1)当n =1时,a 1=S 1=2,当n≥2时,a n =S n -S n -1=n(n +1)-(n -1)n =2n ,a 1=2满足该式,∴数列{a n }的通项公式为a n =2n…………3分 (2)()1221313131n n n b b ba n =+++≥+++,① 11212131313131n n n n n b b b b a +++=++++++++②②-①得,111231n n n n b a a +++=-=+,得b n +1=2(3n +1+1), 又当n=1时,b 1=8,所以b n =2(3n+1)(n∈N *).…………………………7分(3)4n n n a b c ==n(3n +1)=n·3n+n ,…………………8分∴T n =c 1+c 2+c 3+…+c n =(1×3+2×32+3×33+…+n×3n)+(1+2+…+n), 令H n =1×3+2×32+3×33+…+n×3n,① 则3H n =1×32+2×33+3×34+…+n×3n+1②,① -②得,-2H n =3+32+33+ (3)-n×3n +1=3(31)31n ---n×3n +1∴1(21)334n n n H +-⨯+=,……………………………………….10分∴数列{c n }的前n 项和.1(21)3(1)3424n n n n n H +-⨯+=++. ……12分20. 解:(1)依题意,知)(x f 的定义域为),0(+∞,当12a b ==时,211()ln 42f x x x x =--,111(2)(1)()222x x f x x x x-+-'=--=………………………………………….2分 令0)(='x f ,解得1x =或2x =-(舍去), 当01x <<时,0)(>'x f ;当1>x 时,0)(<'x f ,所以)(x f 的单调增区间为)1,0(,减区间为),1(+∞;…………….4分(2)由题意知]3,0(,ln )(∈+=x xa x x F ,则有0021()2x a k F x x -'==≤在(0,3)上恒成立,所以200max 1()2a x x ≥-+,当x 0=1时,20012x x -+取得最大值12, 所以12a ≥;………………………………………………………………………………8分 (3)当0,1a b ==-时,()ln f x x x =+,由()f x mx =,得ln x x mx +=,又0x >,所以ln 1xm x=+, 要使方程()f x mx =在区间2[1,]e 上有唯一实数解,只需ln 1xm x=+有唯一实数解,……………………………………………10分 令ln ()1(0)x g x x x =+>,∴21ln ()xg x x -'=,由()0g x '>得0x e <<;()0g x '<,得x e >, ∴()g x 在区间[1,]e 上是增函数,在区间2[,]e e 上是减函数. 2221g(1)1,g(e )1,g(e)1e e ==+=+ ,故 2211m e ≤<+.……………………13分21. 解:(1) 椭圆2222;1x y C ab+=过点3(1,)2A , 离心率为12,∴12c a=,又222c b a += ,222222219141a 4,3,2a b c b a a b c ⎧+=⎪⎪⎪===⎨⎪⎪=+⎪⎩解 ,得 ∴椭圆C 的方程:22143x y += ; …….5分 (2)由(1)知1(1,0)F -,①当l 的倾斜角是2π时,l 的方程为1x =-,交点33(1,),(1,)22A B --,此时21211||||32322ABF S AB F F ∆=⨯=⨯⨯=≠不合题意. ….7分②当l 的倾斜角不是2π时,设l 的斜率为k,则其直线方程为(1)y k x =+,由22143(1),x y y k x ⎧+=⎪⎨⎪=+⎩消去y 得:2222(43)84120k x k x k +++-=,……….……….9分 设1122(,),(,)A x y B x y ,则221212228412,4343k k x x x x k k -+=-=++,………………10分 ()21212121212y y F F S S S A F F B F F AB F +=+=∴∆∆∆()()112212121+-+=-⨯=x k x k y y ()212212214x x x x kx x k -+=-=341123412443482222222++=+-⨯-⎪⎪⎭⎫ ⎝⎛+-=k k k k k k k k , ……………………...12分又已知2F ABS ∆=4217180k k ∴=⇒+-=, 222(1)(1718)010k k k ⇒-+=⇒-=解得1k =±,故直线l 的方程为1(1)y x =±+,即10x y -+=或10x y ++= . ………….14分。