湖北省武汉市七年级上学期期末数学试卷
湖北省武汉市七年级(上)期末数学试卷
七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列是一元一次方程的是()A. B. C. D.2.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.已知a=b,下列变形不一定成立的是()A. B. C. D.4.已知x=1是关于x的一元一次方程2x-a=0的解,则a的值为()A. B. C. 1 D. 25.下列运算正确的是()A. B.C. D.6.如图是正方体的一个平面展开图,则原正方体上与“周”相对的面上的字是()A. 七B. 十C. 华D. 诞7.某车间28名工人生产螺栓螺母,每人每天平均生产螺栓12个或螺母18个.现有x名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1:2配套,为求x列的方程是()A. B.C. D.8.如图,一直线段AB:BC:CD=3:2:4,点E、F分别是AB、CD的中点,且EF=22cm,则线段BC的长为()cm.A. 8B. 9C. 11D. 129.不相等的有理数a,b,c在数轴上的对应点分别是A、B、C,如果|a-b|+|b-c|=|a-c|,那么点B()A. 在A、C点的左边B. 在A、C点的右边C. 在A、C点之间D. 上述三种均可能10.如图,射线OB、OC在∠AOD的内部,下列说法:①若∠AOC=∠BOD=90°,则与∠BOC互余的角有2个;②若∠AOD+∠BOC=180°,则∠AOC+∠BOD=180°;③若OM、ON分别平分∠AOD,∠BOD,则∠MON=∠AOB;④若∠AOD=150°、∠BOC=30°,作∠AOP=∠AOB、∠DOQ=∠COD,则∠POQ=90°其中正确的有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.若|a|=2,则a=______.12.一个角的补角是它本身的3倍,则这个角的度数为______.13.在同一平面内,三条直线两两相交,交点的个数为______.14.若关于x的方程mx|m+1|-2=0是一元一次方程,则m=______.15.一文具店在某一时间以每件30元的价格卖出两个笔袋,其中一个盈利25%,另一个亏损25%.卖这两个笔袋总的盈亏情况是______元(填盈利或亏损多少)16.如图,数轴上线段AB及可移动的线段CD(点A在点B的左侧,点C在点D的左侧),已知线段AB覆盖8个整数点(数轴上对应整数的点),线段CD覆盖2个整数点,点M,点N分别为AC、BD的中点,则线段MN覆盖______个整数点.三、计算题(本大题共5小题,共40.0分)17.计算:(1)48°39′+67°31′(2)18.解方程:19.先化简,再求值:,其中x=-3,y=2.20.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?21.已知a、b、c在数轴上对应的点如图所示,(1)化简:2|b-c|-|b+c|+|a-c|-|a-b|;(2)若(c+4)2与|a+c+10|互为相反数,且b=|a-c|,求(1)中式子的值.四、解答题(本大题共3小题,共32.0分)22.为了支持囤货,大智路某手机卖场本月计划用9万元购进某国产品牌手机,从卖场获知该品牌3中不同型号的国产手机的进价及售价如下表:若该手机卖场同时购进两种不同型号的手机共50台,9万元刚好用完.(1)请你确定该手机卖场的进货方案,并说明理由;(2)该卖场老板准备把这批手机销售的利润的50%捐给公益组织,在同时购进两种不同型号的手机方案中,为了使捐款最多,你选择哪种方案?23.已知,直线l上线段AB=8、线段CD=4(点A在点B的左侧,点C在点D的左侧)(1)若线段BC=2,则线段AD=______;(2)如图2,点P、Q分别为AD、BC的中点,求线段PQ的长度;(3)若线段CD从点B开始以1个单位/秒的速度向右运动,同时,点M从点A开始以2个单位/秒的速度向右运动,点N是线段BD的中点,若MN=2DN,求线段CD运动的时间.24.已知∠AOB、∠COD,射线OE平分∠AOD(1)如图1,已知∠AOB=180°、∠COD=90°,若∠DOB=40°,则∠COE=______度;(2)∠AOB、∠COD的位置如图所示,已知∠AOB=2∠COD,求的值;(3)射线OC、OD在直线OA的右侧按顺时针方向分布,已知∠COD=30°,OF为∠AOD的三等分线且靠近射线OD,设∠COF=α,将∠COD绕点O顺时针旋转,满足45°<∠AOD<135°且∠AOD≠90°,若∠BOD=3α,求∠AOB(可用α表示)答案和解析1.【答案】C【解析】解:A.属于整式,不符合一元一次方程的定义,即A项错误,B.属于二元一次方程,不符合一元一次方程的定义,即B项错误,C.符合一元一次方程的定义,是一元一次方程,即C项正确,D.属于一元二次方程,不符合一元一次方程的定义,即D项错误,故选:C.依次分析各个选项,选出符合一元一次方程定义的选项即可.本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.2.【答案】A【解析】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选:A.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【答案】D【解析】解:由等式a=b,可得:a-n=b-n,an=bn,a2=b2,但b=0时,无意义,故选:D.分别利用等式的基本性质判断得出即可.此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加同一个数(或整式)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数(或整式),结果仍得等式是解题关键.4.【答案】D【解析】解:把x=1代入方程2x-a=0得:2-a=0,解得:a=2,故选:D.把x=1代入方程2x-a=0得到关于a的一元一次方程,解之即可.本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.5.【答案】D【解析】解:A、-2(a-b)=-2a+2b,故此选项错误;B、-2(a-b)=-2a+2b,故此选项错误;C、-2(a-b)=-2a+2b,故此选项错误;D、-2(a-b)=-2a+2b,故此选项正确.故选:D.分别根据去括号法则整理得出判断即可.此题主要考查了去括号法则,正确去括号得出是解题关键.6.【答案】C【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“十”与“年”是相对面,“七”与“诞”是相对面,“周”与“华”是相对面.故原正方体上与“周”相对的面上的字是华.故选:C.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.【答案】D【解析】解:设x名工人生产螺栓,则生产螺母的工人为28-x名.每天生产螺栓12x个,生产螺母18×(28-x);根据“恰好每天生产的螺栓和螺母按1:2配套”,得出方程:2×12x=18(28-x)故选:D.要列方程首先要根据题意找出题中存在的等量关系:每天生产的螺母=每天生产的螺栓的2倍,从而列出方程.列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.8.【答案】A【解析】解:∵AB:BC:CD=3:2:4,∴设AB=3x,BC=2x,CD=4x,∵点E、F分别是AB、CD的中点,∴BE=AB=x,CF=CD=2x,∵EF=BE+BC+CF=x+2x+2x=22cm∴x=4cm∴BC=2x=8cm故选:A.设AB=3x,BC=2x,CD=4x,由线段和差关系列出方程,可求解.本题考查了两点间距离,线段中点的定义,熟练运用线段和差关系求线段的长度是本题的关键.9.【答案】C【解析】解:∵|a-b|+|b-c|=|a-c|,∴点B在A、C点之间.故选:C.根据|a-b|+|b-c|表示数b的点到a与c两点的距离的和,|a-c|表示数a与c两点的距离即可求解.本题主要考查了绝对值的定义,就是表示两点之间的距离.10.【答案】C【解析】解:①∵∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴与∠BOC互余的角有2个;正确;②∵∠AOD+∠BOC=∠AOB+∠BOC+∠COD+∠BCO=∠AOC+∠BOD=180°,∴∠AOC+∠BOD=180°;故正确;③如图1,∵OM、ON分别平分∠AOD,∠BOD,∴∠DOM=∠AOD,∠DON=∠BOD,∴∠MON=∠DOM-∠DON=(∠AOD-∠BOD)=∠AOB,故正确;④如图2,∵∠AOD=150°、∠BOC=30°,∴∠AOB+∠COD=150°-30°=120°,∵∠AOP=∠AOB、∠DOQ=∠COD,∴∠AOP+∠DOQ=(∠AOB+∠COD)=60°,∴∠POQ=150°-60°=90°,如图3,∵∠AOD=150°、∠BOC=30°,∴∠AOB+∠COD=150°-30°=120°,∵∠AOP=∠AOB、∠DOQ=∠COD,∴∠AOP+∠DOQ=(∠AOB+∠COD)=60°,∴∠POQ=150°+60°=210°,综上所述,∠POQ=90°或210°,故错误.故选:C.根据余角和补角的定义和角平分线的定义即可得到结论.本题考查了余角和补角,角平分线的定义,正确的识别图形是解题的关键.11.【答案】±2【解析】解:∵|a|=2,∴a=±2.故本题的答案是±2.理解绝对值的意义:一个数的绝对值表示在数轴上表示这个数的点到原点的距离.显然根据绝对值的意义,绝对值等于2的数有两个,为2或-2.理解绝对值的意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.【答案】45°【解析】解:设这个角的度数为x,则它的补角为(180°-x),依题意,得180°-x=3x,解得x=45°答:这个角的度数为45°.故答案为:45°.首先根据补角的定义,设这个角为x°,则它的补角为(180°-x),再根据题中给出的等量关系列方程即可求解.本题考查的是余角和补角的定义,如果两个角的和是一个直角,那么称这两个角互为余角.如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角.13.【答案】1或3个【解析】解:如图,三条不同的直线两两相交交点个数有1或3个.故答案为:1或3个分三点共线和三点不共线两种情况作出图形即可.本题考查了直线、射线、线段,作出图形,利用数形结合的思想求解更加简便.14.【答案】-2【解析】解:根据题意得:|m+1|=1,即m+1=1或m+1=-1,解得:m=0或-2,∵m≠0,∴m=-2,故答案为:-2.根据一元一次方程的定义,得到关于m的方程,结合m≠0,即可得到答案.本题考查了一元一次方程的定义,正确掌握一元一次方程的定义是解题的关键.15.【答案】亏损4元【解析】解:设两个笔袋的成本分别为a元、b元,由题意可知a(1+25%)=30,b(1-25%)=30解得a=24,b=40∴30×2-(24+40)=-4故答案为亏损了4元.尽管是同样的价格卖出,但是由于两个笔袋的成本不一样,所以这是解决问题的出发点,于是分别设两个笔袋的成本来列式计算,求出成本即可.本题考查的是一元一次方程在利润计算上的应用,计算利润问题抓住成本是关键,此题应该注意盈利25%与亏损25%的基数不一样.16.【答案】4,5,6【解析】解:MN=CB-CM-BN=CB-CA-BD=(2BC-CA-BD)=(CD+AB)∵线段AB覆盖8个整数点,7≤AB<9,∵线段CD覆盖2个整数点,1≤CD<3,4≤(CD+AB)<6,则线段MN覆盖个整数点为4,5,6故答案:4,5,6分析AB,CD,MN三者之间的关系,在通过长度推算整点的个数的范围这题的难度较大,综合考察了线段的运算和线段覆盖的整点问题,一个典型的压轴题17.【答案】解:(1)原式=115°70′=116°10′;(2)原式=×(-)×÷=-×=-.【解析】(1)根据角度的计算方法计算可得;(2)根据有理数的混合运算顺序和运算法则计算可得.本题主要考查角度的计算和有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.【答案】解:2(x-1)-4=x+1,2x-2-4=x+1,2x-x=1+2+4,x=7.【解析】依次去分母、去括号、移项、合并同类项、系数化为1即可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.19.【答案】解:原式=x-=x+3,当x=-3时,原式=×(-3)+3=.【解析】首先计算乘除,再合并同类项,将整式化为最简形式,然后把x的值代入即可.本题考查了整式的混合运算-化简求值.先按运算顺序把整式化简,再把对应字母的值代入求整式的值.20.【答案】解:设应先安排x人工作,根据题意得:解得:x=2,答:应先安排2人工作.【解析】由一个人做要40小时完成,即一个人一小时能完成全部工作的,就是已知工作的速度.本题中存在的相等关系是:这部分人4小时的工作+增加2人后8小时的工作=全部工作.设全部工作是1,这部分共有x人,就可以列出方程.本题考查了一元一次方程的应用,是一个工作效率问题,理解一个人做要40小时完成,即一个人一小时能完成全部工作的,这一个关系是解题的关键.21.【答案】(1)解:观察数轴可知a<c<0<b,且|a|>|c|>|b|∴b-c>0,b+c<0,a-c<0a-b<0∴原式=2(b-c)+(b+c)+(c-a)+(a-b)=2b故化简结果为2b.(2)解:∵(c+4)2与|a+c+10|互为相反数,∴(c+4)2+|a+c+10|=0∴c+4=0,a+c+10=0∴c=-4,a=-6而b=|a-c|,∴b=2∴2b=4故(1)式的值为4.【解析】(1)通过数轴判断a,c,b的相对大小,从而确定绝对值里代数式的值的符号,再去掉绝对值,最后实现化简;(2)两个非负数互为相反数,只能各自为零.求出a、b、c的值再计算代数式的值.本题考查的是利用数轴比较数的大小,并进行化简,利用数轴判断绝对值内代数式的符号是解题关键.22.【答案】解:(1)①当购进A和B两种品牌手机时,设买进A品牌手机a台时,则买进B品牌手机(50-a)台时,根据题意:1500a+2100(50-a)=90000,解得a=25,故可购进A品牌手机25台时,则买进B品牌手机25台.②当购进B和C两种品牌手机时,设买进B品牌手机b台时,则买进C品牌手机(50-b)台时,根据题意:2100b+2500(50-b)=90000,解得b=87.5>50,故舍去;③当购进A和C两种品牌手机时,设买进C品牌手机c台时,则买进A品牌手机(50-c)台时,根据题意:1500(50-c)+2500c=90000,解得c=15,故可购进C品牌手机15台时,则买进A品牌手机35台.故有两种进货方案,方案一:可购进A品牌手机25台时,则买进B品牌手机25台;方案二:可购进C品牌手机15台时,则买进A品牌手机35台.(2)方案一的利润:25(1650-1500)+25(2300-2100)=8750元,捐款数额:8750×50%=4375元;方案二的利润:15(2750-2500)+35(1650-1500)=9000元,捐款数额:9000×50%=4500元;故选择方案二,即可购进C品牌手机15台时,则买进A品牌手机35台.【解析】(1)分成三种分案进行讨论,列出一元一次方程组,即可求出方案;(2)根据(1)的方案算出每一种方案的利润,然后计算出捐出给工艺的钱,即可求出方案.本题考查了一元一次方程的应用题,根据已知问题,列出一元一次方程使解答此题的关键.23.【答案】10或14【解析】解:(1)①当点C在点B的左侧时,∵AB=8,BC=2,CD=4,∴AC=6,∴AD=AC+CD=10,②当点C在点B的右侧时,∵AB=8,BC=2,CD=4,∴AD=AB+BC+CD=14,故线段AD=10或14;故答案为:10或14;(2)设BC=x,则AD=AB+BC+CD=12+x,∵点P、Q分别为AD、BC的中点,∴PD=AD=6+x,CQ=x,∴PQ=PD-CD-CQ=6+x-4-x=2;(3)线段CD运动的时间为t,则AM=2t,BC=t,∴BM=AB-AM=8-2t,BD=BC+CD=t+4,∵点N是线段BD的中点,∴DN=BN=BD=t+2,∵MN=2DN,∴8-2t+t+2=2(t+2),解得:t=,故线段CD运动的时间为s.(1)①当点C在点B的左侧时,②当点C在点B的右侧时,根据线段的和差即可得到结论;(2)设BC=x,则AD=AB+BC+CD=12+x,根据线段中点的定义得到PD=AD=6+x,CQ=x,于是得到结论;(3)线段CD运动的时间为t,则AM=2t,BC=t,列方程即可得到结论.本题主要考查了两点间的距离,解决问题的关键是依据线段的和差关系列方程.24.【答案】20【解析】解:(1)∵∠AOB=180°,∠DOB=40°,∴∠AOD=140°,∵射线OE平分∠AOD,∴∠DOE=∠AOD=70°,∵∠COD=90°,∴∠COE=∠COD-∠DOE=20°,故答案为:20;(2)∵∠AOB=2∠COD,∴设∠COD=x,∠BOC=y,则∠AOB=2x,∴∠BOD=x-y,∠AOD=3x-y,∵射线OE平分∠AOD,∴∠DOE=∠AOD=(3x-y),∴∠COE=∠DOE-∠COD=(3x-y)-x=(x-y),∴==;(3)由题意可知:∠DOF=30°-α,=20,此时,当OB在OD下方时,此时;当OB在OD上方时,此时.(1)先求出∠AOD,然后计算出∴∠DOE,即可求出∠COE=∠COD-∠DOE;(2)通过设出已知角∠COD,∠BOC,然后根据题意,表示出∠COE和∠DOB;(3)分情况讨论,当OB在OD下方和OB在OD上方,进行计算.本题主要考查学生在学习过程中对角度关系及运算的灵活运用和掌握.此类题目的练习有利于学生更好的对角的理解.。
武汉市人教版七年级上册数学期末试卷及答案
武汉市人教版七年级上册数学期末试卷及答案一、选择题1.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 2.﹣3的相反数是( ) A .13-B .13C .3-D .33.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .4.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b 5.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10- B .10 C .5- D .56.一周时间有604800秒,604800用科学记数法表示为( ) A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯7.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠8.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( )A .23(30)72x x +-=B .32(30)72x x +-=C .23(72)30x x +-=D .32(72)30x x +-=9.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( ) A .410 +415x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15x=1 10.将图中的叶子平移后,可以得到的图案是()A .B .C .D .11.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 12.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式13.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45°14.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=215.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟二、填空题16.把53°30′用度表示为_____.17.把5,5,35按从小到大的顺序排列为______.18.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 19.若3750'A ∠=︒,则A ∠的补角的度数为__________.20.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 21.16的算术平方根是 .22.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.23.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.24.若a 、b 是互为倒数,则2ab ﹣5=_____.25.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.26.数字9 600 000用科学记数法表示为 .27.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.28.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 29.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.30.单项式()26a bc -的系数为______,次数为______.三、压轴题31.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ? 32.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?33.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.34.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积; (3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的13?直接写出此时点P 的坐标.35.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a . 请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A 点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C 点. (1)请你在图②的数轴上表示出A ,B ,C 三点的位置.(2)若点A 以每秒1个单位长度的速度向左移动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t 秒. ①当t =2时,求AB 和AC 的长度;②试探究:在移动过程中,3AC -4AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.36.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”. (1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”) (2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)37.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.38.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______; (2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据选项进行一一排除即可得出正确答案. 【详解】解:A 中、34y 0x +=,可得34y x =-,故A 错; B 中、8-6y=0x ,可得出43x y =,故B 错; C 中、3+4x y y x =+,可得出23x y =,故C 错;D 中、43x y=,交叉相乘得到34x y =,故D 对. 故答案为:D. 【点睛】本题考查等式的性质及比例的性质,熟练掌握性质定理是解题的关键.2.D解析:D 【解析】 【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 【详解】根据相反数的定义可得:-3的相反数是3.故选D. 【点睛】本题考查相反数,题目简单,熟记定义是关键.3.A解析:A 【解析】 【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形. 【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形, ∴从正面看到的平面图形是,故选:A . 【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.4.D解析:D 【解析】 【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论. 【详解】解:∵由图可知a <0<b , ∴ab <0,即-ab >0 又∵|a |>|b |, ∴a <﹣b . 故选:D . 【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.5.D解析:D 【解析】 【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k 的值. 【详解】解:∵方程2k-3x=4与x-2=0的解相同, ∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5. 故选:D . 【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.6.B解析:B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】604800的小数点向左移动5位得到6.048, 所以数字604800用科学记数法表示为56.04810⨯, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值. 7.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.8.A解析:A 【解析】 【分析】设女生x 人,男生就有(30-x )人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可. 【详解】 设女生x 人, ∵共有学生30名, ∴男生有(30-x )名,∵女生每人种2棵,男生每人种3棵, ∴女生种树2x 棵,男生植树3(30-x )棵, ∵共种树72棵, ∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键. 9.B解析:B【解析】【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.【详解】设乙独做x天,由题意得方程:4 10+415x=1.故选B.【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.10.A解析:A【解析】【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.【详解】解:根据平移不改变图形的形状、大小和方向,将所示的图案通过平移后可以得到的图案是A,其它三项皆改变了方向,故错误.故选:A.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.11.B解析:B【解析】【分析】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟,列出方程即可得.【详解】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,由题意得160 4x -1605x=12,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.12.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.B解析:B【解析】【分析】利用直角和角的组成即角的和差关系计算.【详解】解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,∵∠BOD+∠AOC=∠AOB+∠COD,∵∠AOB=155°,∴∠COD等于25°.故选B.【点睛】本题考查角的计算,数形结合掌握角之间的数量关系是本题的解题关键.14.C解析:C【解析】试题解析:A.不是同类项,不能合并.故错误.B. 不是同类项,不能合并.故错误.C.正确.D.222 532.y y y -=故错误.故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.15.C解析:C【解析】试题解析:设开始做作业时的时间是6点x 分,∴6x ﹣0.5x=180﹣120,解得x≈11; 再设做完作业后的时间是6点y 分,∴6y ﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C .二、填空题16.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.17.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<. 【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 18.4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】解:根据题意得:2n =2,m =3,解得:n =1,m =3,则解析:4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】解:根据题意得:2n =2,m =3,解得:n =1,m =3,则m +n =4.故答案是:4.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.19.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵,∴的补角=180°-=.故填.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.20.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键21.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4 22.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,平分,.故答案为60.【点睛】解析:60【解析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=, BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】 角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到. 23.100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】 5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案解析:100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.故答案为100.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b 是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a 、b 是互为倒数,∴ab =1,∴2ab ﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.25.36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等∴∴x=2,A=14∴数字总和为:9+3+6+6+解析:36【解析】【分析】根据题意和展开图,求出x 和A 的值,然后计算数字综合即可解决.【详解】解:∵正方体的每两个相对面上的数字的和都相等 ∴()934322x x x A +=++=+- ∴x=2,A=14∴数字总和为:9+3+6+6+14-2=36,故答案为36.【点睛】 本题考查了正方体的展开图和一元一次方程,解决本题的关键是正确理解题意,能够找到正方体展开图中相对的面26.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n 的值时,看该数是大于或等于1还是解析:6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.27.140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:14028.【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解x=-解析:5【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解29.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系. 30.【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式的系数为;次数为2+1+1=4;故答案为;4.【点睛】此解析:16-【解析】【分析】根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.【详解】单项式()26a bc-的系数为16-;次数为2+1+1=4;故答案为16 -;4.【点睛】此题主要考查对单项式系数和次数的理解,熟练掌握,即可解题.三、压轴题31.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.32.(1)﹣4,6;(2)①4;②1319,22或 【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a ,b 的值,然后在数轴上表示即可; (2)①根据PA ﹣PB =6列出关于t 的方程,解方程求出t 的值,进而得到点P 所表示的数;②在返回过程中,当OP =3时,分两种情况:(Ⅰ)P 在原点右边;(Ⅱ)P 在原点左边.分别求出点P 运动的路程,再除以速度即可.【详解】(1)∵多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b , ∴a =﹣4,b =6. 如图所示:故答案为﹣4,6;(2)①∵PA =2t ,AB =6﹣(﹣4)=10, ∴PB =AB ﹣PA =10﹣2t . ∵PA ﹣PB =6,∴2t ﹣(10﹣2t )=6,解得t =4,此时点P 所表示的数为﹣4+2t =﹣4+2×4=4; ②在返回过程中,当OP =3时,分两种情况:(Ⅰ)如果P 在原点右边,那么AB+BP =10+(6﹣3)=13,t =132; (Ⅱ)如果P 在原点左边,那么AB+BP =10+(6+3)=19,t =192. 【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.33.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s . 【解析】 【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可. 【详解】解:(1)设经过ts 后,点P Q 、相遇. 依题意,有2330t t +=, 解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=, 解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-,解得:7y =; 或10306y =-, 解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s . 【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.34.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6)【解析】 【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标. 【详解】(1)∵|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c=4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6). (2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4);②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.35.(1)详见解析;(2)①16;②在移动过程中,3AC﹣4AB的值不变【解析】【分析】(1)根据点的移动规律在数轴上作出对应的点即可;(2)①当t=2时,先求出A、B、C点表示的数,然后利用定义求出AB、AC的长即可;②先求出A、B、C点表示的数,然后利用定义求出AB、AC的长,代入3AC-4AB即可得到结论.【详解】(1)A,B,C三点的位置如图所示:.(2)①当t=2时,A点表示的数为-4,B点表示的数为5,C点表示的数为12,∴AB=5-(-4)=9,AC=12-(-4)=16.②3AC-4AB的值不变.当移动时间为t秒时,A点表示的数为-t-2,B点表示的数为2t+1,C点表示的数为3t +6,则:AC=(3t+6)-(-t-2)=4t+8,AB=(2t+1)-(-t-2)=3t+3,∴3AC-4AB=3(4t+8)-4(3t+3)=12t+24-12t-12=12.即3AC﹣4AB的值为定值12,∴在移动过程中,3AC﹣4AB的值不变.【点睛】本题考查了数轴上的动点问题.表示出对应点所表示的数是解答本题的关键.36.(1)是;(2)5cm或7.5cm或10cm;(3)10或607.【解析】【分析】(1)根据“2倍点”的定义即可求解;。
湖北省武汉市 七年级(上)期末数学试卷-(含答案)
2017-2018学年湖北省武汉市武昌区七年级(上)期末数学试卷副标题题号 一 二 三 四 总分 得分一、选择题(本大题共6小题,共18.0分)1. 若x =-1是关于x 的方程2x +5a =3的解,则a 的值为( )A. 15B. 4C. 1D. −1 2. 四个有理数-1,2,0,-3,其中最小的是( )A. −1B. 2C. 0D. −33. 下列运算中,正确的是( )A. 3a +2b =5abB. 3a 2b −3ba 2=0C. 2a 3+3a 2=5a 5D. 5b 2−4b 2=14. 在数轴上表示有理数a ,-a ,-b -1的点如图所示,则( )A. −b <−aB. |b +1|<|a|C. |a|>|b|D. b −1<a 5. 下列是-3的相反数是( )A. 3B. −13C. 13D. −36. 一列数,按一定规律排列成-1,3,-9,27,-81,…,从中取出三个相邻的数,若三个数的和为a ,则这三个数中最大的数与最小的数的差为( )A. 87aB. 87|a|C.127|a| D.127a二、填空题(本大题共6小题,共18.0分) 7. 若一个角比它的补角大36°,则这个角为______°.8. 如图所示的运算程序中,若开始输入的x 值为100,我们发现第1次输出的结果为50,第2次输出的结果为25,…,第2018次输出的结果为______.9. 某市2018年元旦的最低气温为-1℃,最高气温为7℃,这一天的最高气温比最低气温高______℃. 10. 已知点A 、B 、C 在直线l 上,若BC =53AC ,则BCAB =______. 11. 30°30′=______度. 12. 单项式2x 2y 的次数是:______.三、计算题(本大题共5小题,共44.0分) 13. 解方程:(1)3x +2=7-2x .(2)x -x+22=3-x+14.14. 先化简,再求值:12x -2(x -13y 2)+(-32x +13y 2),其中x =-2,y =-1.15. 计算:(1)(-3)+7+8+(-9).(2)(-1)10×2+(-2)3÷4.16. 如图1,已知∠AOB =120°,∠COD =60°,OM 在∠AOC 内,ON 在∠BOD 内,∠AOM =13∠AOC ,∠BON =13∠BOD .(1)∠COD 从图1中的位置绕点O 逆时针旋转到OC 与OB 重合时,如图2,∠MON =______°; (2)∠COD 从图2中的位置绕点O 逆时针旋转n °(0<n <120且n ≠60),求∠MON 的度数; (3)∠COD 从图2中的位置绕点O 顺时针旋转n °(0<n <120),则n =______时,∠MON =2∠BOC .17.如图,∠AOC与∠BOC互余,OD平分∠BOC,∠EOC=2∠AOE.(1)若∠AOD=75°,求∠AOE的度数.(2)若∠DOE=54°,求∠EOC的度数.四、解答题(本大题共3小题,共28.0分)18.如图,点B、C在线段AD上,CD=2AB+3.(1)若点C是线段AD的中点,求BC-AB的值;AD,求BC-AB的值;(2)若BC=14(3)若线段AC上有一点P(不与点B重合),AP+AC=DP,求BP的长.19.笔记本的单价是x元,圆珠笔的单价是y元.小红买3本笔记本,6支圆珠笔;小明买6本笔记本,3支圆珠笔.(1)买这些笔记本和圆珠笔小红和小明一共花费多少元钱?(2)若每本笔记本比每支圆珠笔贵2元,求小明比小红多花费了多少元钱?20.2018年元旦,某商场将甲种商品降价40%,乙种商品降价20%开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,那么商场在这次促销活动中是盈利还是亏损了?如果是盈利,求商场销售甲、乙两种商品各一件盈利了多少元?如果是亏损,求销售甲、乙两种商品各一件亏损了多少元?答案和解析1.【答案】C【解析】解:把x=1代入方程得:-2+5a=3,解得:a=1,故选:C.把x的值代入方程计算即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.【答案】D【解析】解:根据有理数比较大小的方法,可得-3<-1<0<2,∴四个有理数-1,2,0,-3,其中最小的是-3.故选:D.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.【答案】B【解析】解:A、3a+2b无法计算,故此选项错误;B、3a2b-3ba2=0,正确;C、2a3+3a2,无法计算,故此选项错;D、5b2-4b2=b2,故此选项错误;故选:B.直接利用合并同类项法则分别化简得出答案.此题主要考查了合并同类项,正确掌握运算法则是解题关键.4.【答案】D【解析】解:∵a与-a互为相反数,∴根据图示知,a<0<-a<-b-1,∴|-a|=|a|<|-b-1|=|b+1|,则|b+1|>|a|,故B选项错误;∴-b>-a,故A选项错误;∴|a|<|b|,故C选项错误;∴b-1<a,故D选项正确.故选:D.因为a与-a互为相反数,所以根据图示知,a<0<-a<-b-1,由此对选项进行一一分析.此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.5.【答案】A【解析】解:-3的相反数是3.故选:A.根据相反数的定义,即可解答.本题考查了相反数的定义,解决本题的关键是熟记相反数的定义.6.【答案】C【解析】解:设这三个数中第一个数为x,则另两个数分别为-3x、9x,根据题意得:x-3x+9x=a,解得:x=a.∵-3x与9x异号,x与9x同号,∴这三个数中最大的数与最小的数的差为|9x-(-3x)|=12|x|=|a|.故选:C.设这三个数中第一个数为x,则另两个数分别为-3x、9x,根据三个数的和为a,即可得出关于x的一元一次方程,解之即可得出x的值,再根据-3x与9x异号、x与9x同号,即可求出这三个数中最大的数与最小的数的差.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.【答案】108【解析】解:设这个角为x°,则这个角的补角为(180-x)°,x-(180-x)=36,解得:x=108.故答案为:108.设这个角为x°,则这个角的补角为(180-x)°,根据题意可得方程x-(180-x)=36,再解方程即可求解.此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.8.【答案】4【解析】解:由设计的程序,知依次输出的结果是50,25,32,16,8,4,2,1,8,4,2,1…,发现从8开始循环.则2018-4=2014,2014÷4=503…2,故第2018次输出的结果是4.故答案为:4.根据设计的程序进行计算,找到循环的规律,根据规律推导计算.此题主要考查了代数式求值,正确发现循环的规律,根据循环的规律进行推广.该题中除前4次不循环外,后边是4个一循环.9.【答案】8【解析】解:由题意可得:这一天的最高气温比最低气温高7-(-1)=8(℃).故答案为:8.直接利用有理数的加减运算法则计算得出答案.此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键. 10.【答案】58或52【解析】解:当C 点在线段AB 上,如图1, ∵AB=AC+BC ,BC=AC , ∴==;当C 点在线段AB 的反向延长线上,如图2, ∵AB=BC-AC ,BC=AC , ∴==.故答案为:或.分类讨论:C 点在线段AB 上,则AB=AC+BC ;当C 点在线段AB 的反向延长线上,则AB=BC-AC ,然后把BC=AC 代入计算.本题考查了两点间的距离:两点之间的连线段长叫这两点间的距离.也考查了分类讨论思想的运用. 11.【答案】30.5【解析】解:(1)∵30′=°=0.5°,∴30°30′=30°+0.5°=30.5°. 故答案为30.5.根据1度等于60分,1分等于60秒,由大单位转换成小单位乘以60,小单位转换成大单位除以60,按此转化即可.本题主要考查的是度、分、秒的加法计算,相对比较简单,注意以60为进制即可.12.【答案】3【解析】解:根据单项式次数的定义,字母x 、y 的次数分别是2、1,和为3,即单项式的次数为3. 故答案为3.根据单项式次数的定义来确定.单项式中所有字母的指数和叫做这个单项式的次数.本题考查单项式次数的定义,要记清,单项式中所有字母的指数和叫做这个单项式的次数.13.【答案】解:(1)移项合并得:5x =5,解得:x =1;(2)去分母得:4x -2x -4=12-x -1, 移项合并得:3x =15, 解得:x =5. 【解析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.14.【答案】解:12x -2(x -13y 2)+(-32x +13y 2)=12x −2x +23y 2−32x +13y 2=-3x +y 2,当x =-2,y =-1时,原式=-3×(-2)+(-1)2=6+1=7. 【解析】先去括号,然后合并同类项即可化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.本题考查整式的加减-化简求值,解答本题的关键是明确整式化简求值的方法.15.【答案】解:(1)原式=-12+15=3;(2)原式=2-2=0. 【解析】(1)原式结合后,相加即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.【答案】100;50°或70°【解析】解:(1)由题意;∠MON=∠AOB+∠COD=80°+20°=100°,故答案为100;(2)①当0<n<60°时,如图1中,∠AOC=120°-n°,∠BOD=60°-n°,∴∠MON=∠MOC+∠COB+∠BON=(120°-n°)+n°+(60°-n°)=100°,②当60°<n<120°时,如图2中,∠AOC=120°-n°,∠COD=60°,∠BOD=n°-60°M∴∠MON∠MOC+∠COD+∠DON=(120°-n°)+60°+(n°-60°)=100°.综上所述,∠MON=100°(3)①0°<n<60°时,∠BOC=n°,∠MON=2n°,∠MON=(120°+n°)+60°-(60°+n°)=100°,∴n=50°.②当60°<n <120°时,∠AOC=360°-(120°+n°)=240°-n°,∠BOD=60°+n°, ∴∠MON=360°-∠AOM-∠AOB-∠BON=360°-(240°-n°)-120°-(60°+n°)=140° ∴n=70°.综上所述,n 的值为50°或70°.故答案为50°或70°.(1)根据∠MON=∠BOM+∠BON 计算即可;(2)分两种情形分别计算即可;(3)分两种情形分别计算即可;本题考查角的和差定义,解题的关键是学会用分类讨论的思想思考问题,学会利用参数解决问题.17.【答案】解:设∠AOE =x ,∵∠EOC =2∠AOE ,∴∠EOC =2x ,∴∠AOC =∠AOE +∠COE =3x ,∵∠AOC 与∠BOC 互余,∴∠BOC =90°-3x , ∵OD 平分∠BOC ,∴∠COD =12∠BOC =45°-32x , (1)若∠AOD =75°,则∠AOD =∠AOC +∠COD =75°,即3x +45°-32x =75°,解得x =20°,即∠AOE 的度数为20°;(2)若∠DOE =54°,则∠DOE =∠EOC +∠COD =54°,即2x +45°-32x =54°,解得x =18°,2x =36°,即∠EOC 的度数是36°.【解析】设∠AOE=x ,表示出∠EOC ,从而得到∠AOC 和∠BOC ,再根据角平分线的定义表示出∠COD ,(1)根据∠AOD=∠AOC+∠COD 列方程求解即可;(2)根据∠DOE=∠EOC+∠COD 列方程求出x 的值,再求解即可.本题考查了余角和补角,角平分线的定义,准确识图是解题的关键,难点在于表示出∠COD .18.【答案】解:设AB =x ,BC =y ,则CD =2x +3.(1)∵C 是AD 中点,∴AC =CD ,∴x +y =2x +3∴y -x =3,即BC -AB =3.(2)∵BC =14AD ,即AB +CD =3BC ,∴x +2x +3=3y ,∴y -x =1,即BC -AB =1.(3)设AP =m ,∵AP +AC =DP ,∴m +x +y =2x +3+x +y -m ,∴m -x =32,即BP =m -x =32.【解析】设AB=x ,BC=y ,则CD=2x+3.(1)根据AC=CD 构建方程即可解决问题;(2)根据AB+CD=3BC ,构建方程即可解决问题;(3)设BP=m ,根据AP+AC=DP ,构建方程即可解决问题;本题考查两点间距离,线段的中点、线段的和差定义等知识,熟知各线段之间的和、差关系是解答此题的关键,学会利用参数构建方程解决问题. 19.【答案】(1)由题意,得3x +6y +6x +3y=9x +9y答:买这些笔记本和圆珠笔小红和小明一共花费了(9x +9y )元;(2)由题意,得(6x +3y )-(3x +6y )=3x -3y因为每本笔记本比每支圆珠笔贵2元,即x -y =2所以小明比小红多花费:3x -3y=3(x-y)=6(元)答:小明比小红多花费了6元钱.【解析】(1)分别用含x、y的代数式表示出小红、小明的花费,合并它们花费的代数式;(2)用含x、y的代数式表示出小明比小红多花费的钱数,把每本笔记本比每支圆珠笔贵2元代入化简后的代数式.本题考查了列代数式及代数式的化简求值.理解题意是解决本题的关键20.【答案】解:(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(1400-x)元,根据题意得:(1-40%)x+(1-20%)(1400-x)=1000,解得:x=600,∴1400-x=800.答:甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)设甲商品的价格为a元/件,乙商品的进价为b元/件,根据题意得:(1-25%)a=(1-40%)×600,(1+25%)b=(1-20%)×800,解得:a=480,b=512,∴1000-a-b=1000-480-512=8.答:商场在这次促销活动中盈利,盈利了8元.【解析】(1)设甲商品原销售单价为x元,则乙商品的原销售单价为(1400-x)元,根据优惠后购买甲、乙各一件共需1000元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设甲商品的价格为a元/件,乙商品的进价为b元/件,根据甲、乙商品的盈亏情况,即可分别得出关于a、b的一元一次方程,解之即可求出a、b的值,再代入1000-a-b中即可找出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.。
湖北省武汉市 七年级(上)期末数学试卷
题号 得分
一
二
三
四
总分
一、选择题(本大题共 10 小题,共 30.0 分)
1. 四个有理数-3、-1、0、2,其中比-2 小的有理数是( )
A. −3
B. −1
C. 0
D. 2
2. -5 的绝对值为( )
A. −5
B. 5
C.
1
−5
D.
1 5
3. 改革开放 40 年来,我国贫困人口从 1978 年的 7.7 亿人减少到 2017 年的 30460000 人,30460000 用科学记数法表示为( )
A. 0.3046 × 108 B. 3.046 × 107
C. 3.46 × 107
D. 3046 × 104
4. 下列图形中可以作为一个正方体的展开图的是( )
A.
B.
C.
D.
5. 单项式 2a3b2c 的次数是( )
A. 2
B. 3
C. 5
D. 6
6. 若 x=-2 是关于 x 的方程 2x+a=3 的解,则 a 的值为( )
15.
已知点 A、B、C 在直线 l 上,AB=a,BC=b,AC=������,则������=______.
2
������
16. 如图,下列各正方形中的四个数之间具有相同的规律,根据此规律,第 n 个正方形 中,d=2564,则 n 的值为______.
三、计算题(本大题共 3 小题,共 26.0 分) 17. 计算:
A. 5
B. 6
C. 7
D. 8
二、填空题(本大题共 6 小题,共 18.0 分)
11. 2-(-6)=______. 12. 36°45′=______°. 13. 若单项式 3xm-5y2 与 x3y2 的和是单项式,则常数 m 的值是______. 14. 若∠A 与∠B 互为补角,并且∠B 的一半比∠A 小 30°,则∠B 为______°.
2023-2024学年湖北省武汉市武昌区七年级(上)期末数学试卷及答案解析
2023-2024学年湖北省武汉市武昌区七年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一一个正确,请在答题卷上将正确答案的代号涂黑.1.(3分)四个有理数﹣3,2,0,﹣2,其中最小的是()A.﹣3B.2C.0D.﹣22.(3分)2的相反数是()A.B.C.﹣2D.23.(3分)据武汉市统计局发布的武汉统计年鉴记录,截止到2022年末全市常住人口1373.90万人.将1373.90万用科学记数法表示应为()A.1373.9×104B.0.13739×108C.1.3739×108D.1.3739×107 4.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“学”字一面的相对面上的字是()A.核B.心C.数D.养5.(3分)下列说法正确的是()A.πxy2的系数是1B.x2+3x﹣4的常数项为﹣4C.是单项式D.2x﹣3xy是一次二项式6.(3分)已知x=2是关于x的方程3x+2a=0的一个解,则a的值是()A.﹣6B.﹣3C.﹣4D.﹣57.(3分)有理数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.a>﹣2B.|a+b|=﹣a+b C.|b﹣a|=a﹣b D.﹣a>b8.(3分)下列运算正确的是()A.(2x﹣3y)﹣(3x﹣4y)=5x﹣7y B.(5a﹣3b)﹣(3a﹣5b)=2a+3b C.(5a2+2a﹣1)﹣4(2+a2)=a2+2a﹣9D.(3x﹣2x2)﹣(3x﹣7)+(x2﹣1)=x2﹣89.(3分)在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有凫(凫:野鸭)起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞,7天飞到北海;大雁从北海起飞,9天飞到南海.野鸭与大雁从南海和北海同时起飞,经过几天相遇.设野鸭与大雁从南海和北海同时起飞,经过x天相遇,根据题意,下面所列方程正确的是()A.(9﹣7)x=1B.(9+7)x=1C.(+)x=1D.(﹣)x=110.(3分)如图,在2024年1月的日历表中用图形框出10,18,19,24四个数,它们的和为71.若保持图形框的整体形状不变,在日历表中平移,还是框出四个数,则它们的和不可能是()A.35B.63C.99D.119二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定位置.11.(3分)某药品的说明书上注明保存温度是(20±2)℃,则合适该药品保存的最低温度是℃.12.(3分)18°24′=°.13.(3分)若单项式2x m﹣3y2与x2y n+1的差是单项式,则m n的值是.14.(3分)已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段AC的中点,则线段AM的长是.15.(3分)按规律排列的一列数依次为:,﹣,…,则第9个数是.16.(3分)钟表是日常生活中的计时工具,我们观察钟表可以发现钟表中有许多数学内容.例如,我们可以思考在3时到5时之间,钟表上的时针与分针的夹角问题.从3时开始到5时之间,当经过t分钟后,钟表上的时针与分针刚好成110°的角,则t的值为.三、解答题(共8小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7);(2)|﹣3|÷(3﹣)+(﹣2)2×(﹣12).18.(8分)解方程:(1)3x+7=32﹣2x;(2).19.(8分)先化简,再求值:3(2ab2﹣3a2b)﹣2(ab2﹣4a2b),其中a=2,.20.(8分)如图,有一扇窗户,其上部是半圆形,下部由正方形ABCD、正方形CEFG和三个宽相等的长方形构成,AM=a cm,HP=PF=EN=b cm.(1)用含a,b的式子表示半圆的直径AH;(2)若π取3,用含a,b的式子表示窗户的外框的总长.21.(8分)如图,点O在直线AB上,OE平分∠BOC,OF平分∠BOD,∠EOF=45°,求∠COD的度数.22.(10分)某超市为清库存,以每件96元的价格销售甲、乙两种商品.已知销售一件甲商品盈利20%,销售一件乙商品亏损20%.(1)甲商品每件进价为元,乙商品每件进价为元;(2)若超市同时购进甲、乙两种商品共84件,总进价为7600元,则购进甲、乙两种商品各多少件?(3)在元旦期间,超市所有商品有优惠促销活动,方案如下:①购买商品不超过400元,不优惠;②购买商品超过400元,但不超过800元,按照售价九折优惠;③购买商品超过800元时,按照售价的八折优惠;按照以上优惠条件,若小明一次性购买乙商品实际付款691.2元,则小明此次购买了多少件乙商品?23.(10分)数轴上点A表示的数是a(a<0),点B表示的数是b(b>0),点C是线段AB 的中点.知识准备:因为点A表示的数是a(a<0),点B表示的数是b(b>0),则OA=﹣a,OB=b,所以AB=OB+OA=b+(﹣a)=b﹣a.因为点C是线段AB的中点,则.那么点C表示的数:①当点C在原点右侧时,如图1,则,点C表示的数为.②当点C在原点左侧时,如图2,则,点C表示的数为.综上,点C表示的数为.知识应用:若a=﹣8,b=10,如图3.(1)点C表示的数为;(2)线段DE在射线AB上运动,点D在点E的左边,点M是线段AD的中点,点N 是线段BE的中点,DE=4,求线段MN的长度;(3)点P,Q为数轴上两动点,动点P从点A出发以2个单位长度/秒的速度向右匀速运动,同时动点Q从点B出发以3个单位长度/秒的速度向左匀速运动.当P,Q两点相遇后,PQ=9时,动点P变为以5个单位长度/秒的速度向左匀速运动,动点Q保持原有的速度和方向不变.设运动时间为t秒,在动点P从点A出发后的整个运动过程中,当PQ=6时,t=.24.(12分)对于任意有理数x,规定:当x≥0时,f(x)=x+3;当x<0时,f(x)=|x+2|.(1)填空:f(1)=;f(﹣1)=;f(a2)=;(2)若f(2m﹣4)=6,求m的值;(3)若两个有理数a≠0,b≠0,且a,b异号,满足|f(a)﹣f(b)|=6,请直接写出a,b之间可能存在的数量关系:.2023-2024学年湖北省武汉市武昌区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一一个正确,请在答题卷上将正确答案的代号涂黑.1.【分析】根据“正数>0>负数”;两个负数,绝对值大的其值反而小,比较各数大小即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2<0<2,∴四个有理数﹣3,2,0,﹣2,其中最小的是﹣3.故选:A.【点评】本题考查了有理数大小比较,掌握有理数大小比较方法是解本题的关键.2.【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:1373.90万=13739000=1.3739×107,故选:D.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.4.【分析】根据正方体的表面展开图找相对面的方法:“Z”字两端是对面,即可解答.【解答】解:把展开图折叠成正方体后,有“学”字一面的相对面上的字是“心“,故选:B.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.5.【分析】直接利用单项式的系数以及单项式的定义,多项式的次数、项数的定义分别判断得出答案.【解答】解:A.πxy2的系数是π,故此选项不合题意;B.x2+3x﹣4的常数项为﹣4,故此选项符合题意;C.是多项式,故此选项不合题意;D.2x﹣3xy是二次二项式,故此选项不合题意.故选:B.【点评】此题主要考查了单项式以及多项式,正确掌握相关定义是解题关键.6.【分析】根据方程的解的定义,把方程中的未知数x换成2,再解关于a的一元一次方程即可.【解答】解:根据题意将x=2代入得:6+2a=0,解得:a=﹣3.故选:B.【点评】本题考查方程解的含义,方程的解,就是能使等式成立的未知数的值.7.【分析】观察数轴得到﹣3<a<﹣2,1<b<2,进一步判断出a+b<0,b﹣a>0,﹣a>b,再根据绝对值的性质化简|a+b|、|b﹣a|即可作出判断.【解答】解:由数轴得,﹣3<a<﹣2,1<b<2,∴a+b<0,b﹣a>0,﹣a>b,∴|a+b|=﹣a﹣b,|b﹣a|=b﹣a,故选:D.【点评】本题考查了数轴,绝对值,有理数的加减法,熟练掌握数形结合思想是解题的关键.8.【分析】根据整式加减的运算法则逐项判断即可.【解答】解:(2x﹣3y)﹣(3x﹣4y)=2x﹣3y﹣3x+4y=﹣x+y,故A选项不正确,不符合题意;(5a﹣3b)﹣(3a﹣5b)=5a﹣3b﹣3a+5b=2a+2b,故B选项不正确,不符合题意;(5a2+2a﹣1)﹣4(2+a2)=5a2+2a﹣1﹣8﹣4a2=a2+2a﹣9,故C选项正确,符合题意;(3x﹣2x2)﹣(3x﹣7)+(x2﹣1)=3x﹣2x2﹣3x+7+x2﹣1=﹣x2+6,故D选项不正确,不符合题意.故选:C.【点评】本题考查整式的加减,熟练掌握运算法则是解答本题的关键.9.【分析】此题属于相遇问题,把南海到北海的距离看作单位“1”,野鸭的速度是,大雁的速度为,根据相遇时间=总路程÷速度和,即可列方程.【解答】解:设经过x天相遇,根据题意得:(+)x=1.故选:C.【点评】此题主要考查由实际问题抽象出一元一次方程,相遇问题中的基本数量关系:速度和×相遇时间=总路程,关键是由题目所给信息先分别求出二者的速度,速度=路程÷时间.10.【分析】设最上边的那个数是x,则剩下的那个数为x+8,x+9,x+14,这四个数的和是4x+31,将每个选项逐个代入并根据日历的特点分析即可.【解答】解:设最上边的那个数是x,则剩下的那个数为x+8,x+9,x+14,∴这四个数的和是x+x+8+x+9+x+14=4x+31,当4x+31=35时,解得x=1,则这四个数分别1,9,10,15,符合日历特点;当4x+31=63时,解得x=8,则这四个数分别8,1617,22,符合日历特点;当4x+31=99时,解得x=17,则这四个数分别17,25,26,31,符合日历特点;当4x+31=119时,解得x=22,则这四个数分别22,30,31,36,不符合日历特点;∴四个选项中只有D选项符合题意.故选:D.【点评】本题主要考查了一元一次方程的应用,读懂题意并列出方程是解答本题的关键.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定位置.11.【分析】根据正数和负数的实际意义列式计算即可.【解答】解:20﹣2=18(℃),即合适该药品保存的最低温度是18℃,故答案为:18.【点评】本题考查正数和负数,结合已知条件列得正确的算式是解题的关键.12.【分析】根据度、分、秒是60进制计算即可求解.【解答】解:18°24′=18.4°.故答案为:18.4.【点评】本题考查了度分秒的换算,根据60进制进行计算是解题的关键.13.【分析】根据同类项的定义求出m,n的值,再代入要求的式子进行计算即可.【解答】解:∵单项式2x m﹣3y2与x2y n+1的差是单项式,∴2x m﹣3y2与x2y n+1是同类项,∴n+1=2,m﹣3=2,解得:m=5,n=1,∴m n=5;故答案为:5.【点评】此题主要考查了合并同类项以及单项式,正确得出m,n的值是解题关键.14.【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点B的右侧或点C在点B的左侧两种情况进行分类讨论.【解答】解:①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10﹣4=6cm.∵M是线段AC的中点,∴AM=AC=3cm,②当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=AC=7cm,综上所述,线段AM的长为3cm或7cm.故答案为:3cm或7cm.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.15.【分析】分别从这列数的符号,分子、分母变化规律,得到第n个数的一般形式,即可确定第9个数.【解答】解:由已给出的前6个数可以看出,这列数可表示为:(﹣1)n n+,∴第9个数是:(﹣1)99+=,故答案为:.【点评】本题考查数字变化类规律探究,发现这列数的符号,分子、分母变化规律是解题的关键.16.【分析】时针t分钟转0.5°t,分针t分钟转6°t,3时时针与分针夹角为90°,分三种情况:①从3时开始,不到4时,则6°t﹣90°﹣0.5°t=110°,②4时后,若分针还没追上时针,则6°t﹣90°﹣0.5°t=360°﹣110°,③4时后,若分针已经追上时针,则6°t﹣90°﹣0.5°t=360°+110°,分别解方程可得答案.【解答】解:时针t分钟转0.5°t,分针t分钟转6°t,3时时针与分针夹角为90°,①从3时开始,不到4时,则6°t﹣90°﹣0.5°t=110°,解得t=;②4时后,若分针还没追上时针,则6°t﹣90°﹣0.5°t=360°﹣110°,解得t=;③4时后,若分针已经追上时针,则6°t﹣90°﹣0.5°t=360°+110°,解得t=;综上所述,t的值为或或;故答案为:或或.【点评】本题考查了一元一次方程的应用,解题的关键是分类讨论思想的应用.三、解答题(共8小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.【分析】(1)先去括号,再从左到右依次计算即可;(2)先算括号里面的,再算乘方,乘除,最后算加减即可.【解答】解:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7)=﹣20+3+5﹣7=﹣17+5﹣7=﹣12﹣7=﹣19;(2)|﹣3|÷(3﹣)+(﹣2)2×(﹣12)=3÷+4×(﹣1)=3×﹣4=2﹣4=﹣2.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.18.【分析】(1)方程移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)移项合并得:5x=25,解得:x=5;(2)方程去分母得:6x+3x﹣3=4x+2,移项合并得:5x=5,解得:x=1.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.19.【分析】将原式去括号,合并同类项后代入数值计算即可.【解答】解:原式=6ab2﹣9a2b﹣2ab2+8a2b=4ab2﹣a2b;当a=2,b=﹣时,原式=4×2×(﹣)2﹣22×(﹣)=2+2=4.【点评】本题考查整式的化简求值,熟练掌握相关运算法则是解题的关键.20.【分析】(1)由AH=AD+DH,根据题意得:AD=AB,DH=FE,由AM﹣BM表示出AB,由HN﹣HP﹣PF﹣EN=HN﹣3EN表示出DH,进而表示出AH即可;(2)表示出AM,MN,以及半圆的周长,从而得到窗户外框的总长.【解答】解:(1)由图形性质得:AB=AD=CD=BC=(a﹣b)cm,CG=GF=EF=CE=a﹣b﹣2b=(a﹣3b)cm,∴AH=AD+DH=a﹣b+a﹣3b=(2a﹣4b)cm,∴半圆的直径AH为(2a﹣4b)cm;(2)∵AM=HN=a cm,MN=AH=(2a﹣4b)cm,∴半圆周长为π•AH=π(2a﹣4b)=(πa﹣2πb)cm,∴AM+MN+HN+π•AH=2a+2a﹣4b+πa﹣2πb=(4+π)a﹣(4+2π)b,∵π≈3,∴原式=(7a﹣10b)cm.【点评】此题考查了列代数式,弄清题意是解本题的关键.21.【分析】由OE平分∠BOC,OF平分∠BOD,可得∠BOE=∠COE=∠BOC,∠BOF=∠DOF=∠BOD,已知∠EOF=45°,即∠BOE﹣∠BOF=45°,可得∠COD.【解答】解:∵OE平分∠BOC,OF平分∠BOD,∴∠BOE=∠COE=∠BOC,∠BOF=∠DOF=∠BOD,∵∠EOF=45°,∴∠BOE﹣∠BOF=45°,∴∠COD=∠BOC﹣∠BOD=2(∠BOE﹣∠BOF)=90°.【点评】本题考查了角平分线,关键是计算正确.22.【分析】(1)根据销售一件甲商品盈利20%,销售一件乙商品亏损20%列式计算即可得到答案;(2)设购进甲种商品x件,根据总进价为7600元得:80x+120(84﹣x)=7600,可解得答案;(3)设小明此次购买了m件,分两种情况:①若购买商品超过400元,但不超过800元,96m×0.9=691.2,②若购买商品超过800元,96m×0.8=691.2,解方程即可.【解答】解:(1)∵96÷(1+20%)=80(元),96÷(1﹣20%)=120(元),∴甲商品每件进价为80元,乙商品每件进价为120元;故答案为:80,120;(2)设购进甲种商品x件,则购进乙种商品(84﹣x)件,根据题意得:80x+120(84﹣x)=7600,解得x=62,∴84﹣x=84﹣62=22,∴购进甲种商品62件,购进乙种商品22件;(3)设小明此次购买了m件,①若购买商品超过400元,但不超过800元,由题意可得:96m×0.9=691.2,解得m=8;②若购买商品超过800元,由题意得:96m×0.8=691.2,解得m=9;∴小明此次购买了8件或9件乙商品.【点评】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系列方程.23.【分析】(1)根据中点公式求解;(2)根据中点公式求解;(3)根据两点之间的距离求解.【解答】解:(1)=1,故答案为:1;(2)设点D表示的数为a,则点E表示的数为:a+4,∴点M表示的数为,点N表示的数为=,∴MN=﹣=11,答:线段MN的长度为11;(3)当P,Q两点相遇后,PQ=9时,(﹣8+2t)﹣(10﹣3t)=9,解得:t=5.4,当t<5.4时,PQ=6,即(﹣8+2t)﹣(10﹣3t)||=6,解得:t=2.4或t=4.8,设经过5.4秒后的时间为x,则|(﹣6.2﹣3x)﹣(2.8﹣5x)|=6,解得:x=1.5或x=7.5,∴x+5.4的值为:6.9或12.9,故答案为:2.4或4.8或6.9或12.9.【点评】本题考查了一元一次方程的应用,找到相等关系是解题的关键.24.【分析】(1)根据f(x)的定义求解即可;(2)分两种情形构建方程求解;(3)分两种情形,根据绝对值方程求解.【解答】解:(1)f(1)=1+3=4,f(﹣1)=|﹣1+2|=1,f(a2)=a2+3.故答案为:4,1,a2+3;(2)当2m﹣4≥0时,2m﹣4+3=6,解得m=3.5当2m﹣4<0时,|2m﹣4+2|=6,解得m=﹣2,综上所述,m=3.5或﹣2.(3)当a>0,b<0时,|a+3﹣|b+2||=6,∴a+3﹣|b+2|=6或a+3﹣|b+2|=﹣6,∴|b+2|=a﹣3或|b+2|=a+9,∴b+2=a﹣3或b+2=3﹣a或b+2=﹣a﹣9,∴a﹣b=5∴或a+b=1或a+b=﹣11;当a<0,b>0时,同法可得b﹣a=5或a+b=1或a+b=﹣11;a,b之间可能存在的数量关系:a﹣b=5或a﹣b=﹣5或a+b=1或a+b=﹣11;故答案为:a﹣b=5或a﹣b=﹣5或a+b=1或a+b=﹣11;【点评】本题考查代数式求值,解题的关键是理解题意,学会用转化的思想思考问题。
湖北省武汉市江汉区2023-2024学年七年级上学期期末数学试题及参考答案
2023~2024学年度第一学期期末质量检测七年级数学试题考试时间:120分钟 试卷总分:150分第I 卷(本卷满分100分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡.上将正确答案的代号涂黑.1.2024−的倒数是( ) A .2024−B .2024C .12024−D .120242.下列各组中的两个单项式不是同类项的是( ) A .xy 与2xyB .23a b 与23abC .35与12−D .mn −与nm3.下列方程中,属于一元一次方程的是(A .3x y −=B .210x −=C .123x −=D .23x= 4.如图是由4个相同的正方体组成的几何体,从上面看这个几何体,所看到的平面图形是( )A .B .C .D .5.下列运算正确的是( )A .a b ab +=B .222a a a −=C .()2525a a +=+D .()a a b b −−=6.若1x =是方程260x m +−=的解,则m 的值是( ) A .4−B .4C .8−D .87.如图,射线OA 表示的方向是北偏西60°,若90AOB ∠=°,则射线OB 表示的方向是( )第7题 A .南偏西30°B .南偏西60°C .北偏东30°D .北偏东60°8.下列说法正确的是( ) A .射线AB 和射线BA 表示同一条射线B .已知A ,B ,C 三个点,若过其中任意两点作直线,则直线共有3条 C .若线段AP BP =,则P 是线段AB 的中点D .延长线段AB 和反向延长线段BA 的含义相同9.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,若每3人共乘一辆车,则剩余2辆车;若每2人共乘一辆车,则剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程是( ) A .2932x x+=− B .9232x x −+= C .9232x x +−= D .2932x x−=+ 10.如图,两个直角AOB ∠,COD ∠有公共顶点O ,下列结论:第10题①AOC BOD ∠=∠; ②AOD ∠是BOC ∠的补角;③若OC 平分AOB ∠,则OB 平分COD ∠;④AOD ∠的平分线与COB ∠的平分线是同一条射线. 其中正确的个数是( ) A .4B .3C .2D .1二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.11.用四舍五入法取近似值:1.804≈_________(精确到0.01). 12.计算16508432°°′′+=_________(结果用度、分表示).13.若单项式62m x y 与224n x y −的和仍是单项式,则m n +的值是_________.14.把方程534x y −=改写成用含x 的式子表示y 的形式是_________. 15.若α∠的余角比它的补角的14大15°,则α∠=_________. 16.如图,长方形纸片ABCD ,E 为边AD 上一点,将纸片沿EB ,EC 折叠,点A 落在A ′位置,点D 落在D ′位置,若10A ED ′′∠=°,则BEC ∠=_________.第16题三、解答题(共5小题,共52分)下列各题需要在答题卷指定位異写出文字说明、证明过程、计算步骤或作出图形.17.(本小题10分) 计算下列各题:(1)12(18)(7)(15)−−+−+−; (2)321832(2)(4)5+÷−−−×.18.(本小题10分) 解方程:(1)3212(1)x x −=−+; (2)3157146x x −−−=. 19.(本小题10分) 先化简再求值:()()22237427a ab a ab −+−−++,其中a ,b 满足方程组4316,215a b a b +=−=20.(本小题10分) 用方程(组)解决问题:(1)某车间有22名工人,每人每天可以生产1200个螺柱或2000个螺母.1个螺柱需要配2个螺母,为使每天生产的螺柱和螺母刚好配套,应安排生产螺柱和螺母的工人各多少名?(2)2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷? 21.(本小题12分) 如图,已知点A ,B ,C ,D .第21题(1)按要求画图: ①连接AD ; ②画射线BC ; ③画线段AB 的中点E ;④画一点F ,使点F 既在直线CD 上又在直线AB 上.(2)在(1)的基础上,若:2:3BF AB =,14EF =,求线段AB 的长,第II 卷(本卷满分50分)四、填空题(共4小题,每小题4分,共16分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.22.关于x ,y 的二元一次方程组432,3461x y k x y k +=++=− 的解满足5x y +=,则k =_________.23.已知110AOB ∠=°,过点O 作射线OC ,使20AOC ∠=°,OD 平分BOC ∠,则AOD ∠=_________.第23题24.现对某商品降价10%促销,为了使销售总金额增加17%,则促销后销售量比按原价销售时增加的百分比是_________. 25.下列说法: ①若a b =,则2211a bc c =++; ②若23(2)2m m x m −++=是关于x 的一元一次方程,则2m =±;③若有理数a ,b ,c 满足||a b c a b c −+=++,则0ab bc +=;④若我们用min(,)a b 表示a ,b 两数中较小的一个数,则min(,)22a b a ba b +−−=. 其中正确的是_________(填序号).五、解答题(共3小题,共34分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.26.(本小题10分)下表是某次篮球联赛部分球队的积分表:队名 比赛场次 胜场 负场 积分 前进 16 10 6 36 光明 16 9 7 34 远大 16 12 4 40 卫星1661028备注:积分=胜场积分+负场积分(1)直接写出胜一场的积分和负一场的积分;(2)某队说他们的总积分为45分,你认为可能吗?为什么?(3)若某队的负场总积分是胜场总积分的正整数倍,胜一场奖励每个球员5000元,负一场奖励.每个球员1000元,请问这支球队的每个球员所获奖金可能是多少元? 27.(本小题12分)如图(1)所示,已知直线l 上有E ,F 两点,15cm EF =,有一根木棒AB 放在直线l 上,将木棒沿直线l 左右水平移动.当点B 与F 重合时,点A 刚好落在点B 移动前的位置,当点A 与E 重合时,点B 刚好落在点A 移动前的位置.第27题(1)直接写出木棒AB 的长;(2)木棒AB 在射线EF 上移动的过程中,当4AE BF =时,求AE 的长;(3)另一根木棒CD 长为3cm ,AB 和CD 在直线l 上的位置如图(2)所示,其中点D 与E 重合,点B 与F 重合.木棒AB 以3个单位长度/秒的速度向左移动,木棒CD 以2个单位长度/秒的速度向右移动,它们同时出发,设运动时间为t 秒,若式子AD BC +的值为定值,请直接写出此时t 的取值范围,并写出这个定值.28.(本小题12分)定义:一个正整数100010010xa b c d =+++(其中a ,b ,c ,d 均为小于10的非负整数). 若ma b mc d −=−,m 为整数,我们称x 为“m 倍数”.例如,5923:259223×−=×−,则称5923为“2倍数”;1940:319340−×−=−×−,则称1940为“3−倍数”;332548:254822×−=×−,因为32不是整数,所以2548不是“m 倍数”.(1)直接判断3274和2961是否为“m 倍数”,若是,直接写出m 的值; (2)若一个三位数x 为“2−倍数”,且个位数字为7,判断这个三位数是否能被7整除,并说明理由;(3)若一个四位数x 为“1倍数”,且各数位的数字互不相等,将它的千位数字和百位数字组成的两位数记为y (即10a b +),十位数字和个位数字组成的两位数记为z (即10c d +).若8y z−为整数,求这个四位数.(4)若一个四位数x 为“4倍数”,将它的百位数字和十位数字互换,得到的新的四位数仍为“4倍数”,6x +为“4−倍数”,直接写出满足条件的x 的最大值. 2023~2024学年度第一学期期末考试 七年级数学参考答案及评分标准卷I : 一、选择题CBCBDBADBA二、填空题11.1.80 12.10122′° 13.514.543x y −=15.40°16.85°三、解答题17.(1)解:原式1218715=+−−8=.(2)解:原式1832(8)165=+÷−−×18480=−−66=−18.(1)解:32122x x −=−−32212x x +=+−51x = 15x =(2)解:3(31)122(57)x x −−=− 93121014x x −−=−1x −= 1x =−19.解:化简整式得226214427a ab a ab −++−−21047a ab =−+.解方程组得74a b ==−.代入化简后的整式得,原式609=20.(1)解:设应安排x 名工人生产螺柱,()22x −名工人生产螺母.2000(22)21200x x −=×,解得10x =,2212 x −=,答:应安排10名工人生产螺柱,12名工人生产螺母.(2)解:设1台大收割机和1台小收割机每小时分别收割小麦x 公顷,y 公顷, 由题意得,2(25) 3.65(32)8x y x y +=+=,解得0.40.2x y = = .答:1台大收割机和1台小收割机每小时分别收割小麦0.4公顷,0.2公顷.21.(每个作图2分,共8分.) (2)(此问共4分) 解::2:3BF AB = ,∴设2BF x =,3AB x =, 点E AB 的中点,1322BE AB x ∴==, 14EF = ,14BF BE EF ∴+==,32142x x ∴+=, 解得4x =.312AB x ∴==.卷II : 四、填空题22.34723.45°或65°(对一个得2分) 24.30%25.①③④(只写一个得1分,写两个得2分,三个全对得4分,写错一个不得分) 26.(1)3,1.(2)解:设胜x 场,则负()16x −场,31645x x +−=,解得292x =.x 为非负整数,(此处若没有说明原因扣1分) 292x ∴=,不符合题意.∴得分不可能为45分.(3)解:设胜y 场,负16y −场,负场总积分是胜场总积分的m 倍,则316myy =−,1631y m =+,,y m 均为正整数,(此处若没有强调取整扣1分)∴当1m =时,4y =,此时球员的奖金为32000元; 当5m =时,1y =, 此时球员的奖金为20000元.答:每个球员奖励的金额可能有32000元或20000元. 27.(1)5.(2)解:(1)如图1,当A 、B 两点在线段EF 上时4AE BF = ,5515EF AE BF AB BF ∴=++=+=,2BF ∴=,8AE ∴=. ②如图2,当点A 在线段EF 上,点B 在F 右边时,4AE BF = ,3515EF AE AB BF BF ∴=+−=+=.103BF ∴=,403AE ∴=.③如图3,当点A 、B 都在F 右边时,同②3515EF AE AB BF BF =+−=+= 则103BF =,403AE =. 与图形不符,故舍去. 综上:AE 的长为8或403. (另解:如图,以E 为原点构造数轴)设点A 对应的数为x ,点B 对应的数为5x +,则AE x =,|10|BF x =−.4AE BF = ,4|10|x x ∴=−.解得8x =或403,8AE ∴=或403. (3)1825t ≤≤;8. 28.(1)3274不是“m 倍数”;2961是“m 倍数”,2m =−.(2)x 为三位数,0a ∴=,x 为“2−倍数”,且个位数字为7. 2027b c ∴−×−=−−,即27b c =+.10010100(27)1072107077(30101)x b c d c c c c ∴+++++++,730101x c ∴÷=+,c 为非负整数,30101c ∴+为正整数,∴这个三位数一定能被7整除.(也可以直接把三位数算出来,此三位数为917或707,少一个答案扣1分) (4) 四位数x 为“1倍数”,a b c d ∴−=−,且0a ≠,a c b d ∴−=−, 10y a b =+ ,10z c d =+,101010()()11()8888y z a b c d a c b d a c −+−−−+−−∴===, 8y z−为整数,且a ,c 均为小于10的非负整数,8a c ∴−=±或0, ,,,a b c d 互不相等,8a c ∴−=± 当8a c b d −=−=时,9810a b c d = = = = 或8901a b c d = == = .由题意知:0c ≠,9810x ∴=, 当8a c b d −=−=−时,1098a b c d = == = ,1098x ∴= 综上:这个四位数是9810或1098.(此问共4分,每个答案各2分,只要有合理的推导过程即可) (4)8888。
湖北省武汉市部分学校2023-2024学年第一学期七年级期末考试数学试卷(word版含答案)
2023-2024学年度第一学期七年级期末调研考试数 学 试 卷亲爱的同学,在答题前,请认真阅读下面的注意事项:1. 本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,三大题,24小题,全卷共6页,考试时间120分钟,满分120分.2. 试卷选择题及非选择题答案均写在答题卡上,写在试卷上无效.预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、选择题(每小题3分,共30分)本题共10小题,每小题均给出A ,B ,C ,D 四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,填在试题卷上无效.1.数轴上表示的点在原点的左侧,距离原点( )个单位长度.(A )0(B )1(C )2(D )32.下列立体图形,其中圆柱体是( ).(A ) (B ) (C ) (D )3.下列计算正确的是( ).(A ) (B ) (C )(D )4.如图,学校A 在小红家B 南偏西25°的方向上,点C 表示超市所在的位置,∠ABC =90°,则超市C 在小红家B 的( ).(A )南偏东65°的方向上 (B )南偏东55°的方向上(C )北偏东65°的方向上 (D )北偏东55°的方向上5.若是关于x 的一元一次方程,则k 的值不可能是( ).(A )(B )0 (C )2 (D )6.如图,OB 平分∠AOC ,下列结论错误的是( ).3-532a a -=-32a a a -+=232a a a -=235a b ab+=()210k x -+=1-2-D东(A )∠AOB =∠BOC (B )∠COD +∠AOC =∠BOD (C )∠AOD -∠BOC =∠BOD (D )∠BOC +∠AOD =2∠BOD 7.下列变形正确的是( ).(A )若,则 (B )若,则(C )若,则(D )若,则8.我国古代数学著作《增删算法统宗》中记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托”.其大意为:有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设竿子的长为尺,依题意可列方程为( ).(A ) (B ) (C )(D )9.如图,点C ,D 在线段上AB ,O 为AB 上方一点,∠OAB =90°,连接OC ,OD ,OB ,下列结论:①图中互余的角有3对;②图中共有线段10条;③图中共有8个锐角;④若AC =CD =5,BD =3,P 为线段AB 上一点,则点P 到点A,C ,D ,B 的距离之和最小为18.其中正确的说法有( ).(A )①②④(B )③④ (C )①②③ (D )①③④10.如图,张老师要在足够大的磁性黑板上展示数张形状、大小均相同的长方形作业,将这些作业排成一个长方形(作业不完全重合).现需要在每张作业的四个角落都放上磁性贴,如果作业有角落相邻,那么相邻的角落共享一枚磁性贴(例如,4张作业可用9枚磁性贴固定在磁性黑板上).若有25枚磁性贴可供选用,则最多可以展示( )张作业.(A )12(B )14(C )15(D )1612a b =11a b -=+12a b +-=3a b =+a b =22a c b c -=-a b =11a b c c =--x ()15252x x +=-()1552x x +=-1552x x +=-()1552x x -=+(第9题)OD C BA第Ⅱ卷(非选择题 共90分)二、填空题(每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.冬季某一天的温差是3℃,这天最低气温是-2℃,最高气温是℃.12.如图,正方体纸盒上相对两个面上的数互为相反数,则正方体纸盒六个面上的数中,最小的是.13.已知m ,n 为正整数,若多项式合并同类项后只有两项,则的值为.14.数轴上点A 表示的数为,点B ,C 表示的数分别为,,若点B 为线段AC的中点,则的值为.15.如图,P的边BC 上一点,将∠ABP ,∠DCP 分别沿AP ,DP 向上折叠,点B 落在点处,点C 恰好落在AD 边上的处,.下列说法:①∠BPD=135°;②;③若平分,则;④若,则.其中一定正确的结论有(填序号即可).16.从如图1(边长为a )的正方形纸片上剪去两个相同的小长方形,得到如图2的图案(横向、纵向的宽度均为b ),再将剪下的两个小长方形拼成一个新长方形(如图3),若,则图3中新长方形的周长为.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题8分)计算:(1); (2).232123m n a b a b a b --+m n +1-35m -1m +m B 'C 'B PD α'∠=22.52APC α'∠=︒+PC 'APB '∠15α=︒108APD B PC ''∠+∠=︒9α=︒23a b -=902832'︒-︒()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭(第15题)P C /B /DBCA18.(本题8分)解方程:(1);(2).19.(本题8分)先化简,再求值.已知,其中,,.20.(本题8分)根据图中的信息解答下面的问题(单位:cm ).(1)放入一个大球水面升高_____cm ,放入一个小球水面升高_____cm ;(2)若放入大球、小球共8个后水面高度为27 cm ,大球、小球各放入多少个?21.(本题8分)对于有理数a ,b 满足,我们称使等式成立的一对有理数a ,b为“相伴有理数对”,记为(a ,b ).如(,2)满足:;(2,)满足:;所以数对(,2),(2,)都是“相伴有理数对”.(1)数对(,1),(1,0)中,是“相伴有理数对”是________;(2)若(,3)是“相伴有理数对”,求x 的值;(3)若(,)是“相伴有理数对”,则的值为 .的312x x -=+121132x x +--=()()22222322a b ab a b ab a b ab ⎡⎤-+---⎣⎦1a =2b =-1a b ab -=+3-32321--=-⨯+131122133-=⨯+3-131-21x -m n ()1372n mn mn m n ⎡⎤-+-+⎣⎦的3放入体积相同的22.(本题10分)某校组织趣味数学知识竞赛,共设20道选择题,各题分值相同.下表记录了4位参赛者的答题及得分情况.参赛者答题总数答对题数答错题数总得分A 20200100B 2019193C 1714364D1311251(1)从上表可以看出:答对1题得 分,答错1题得 分,未作答1题得 分;(2)参赛者E 完成18道答题得69分,他答对了多少道题?(3)参赛者F 得了67分,请直接写出他答对题;答错题;未作答题.23.(本题10分)如图,已知∠COD =∠AOB=,射线OM 平分∠COD ,ON 平分∠AOD .(1)如图1,若OC 与OB 重合,,请补全图形并直接写出∠MON 的度数为 °;(2)如图2,若∠MON=55°,求∠AOC 的度数;(3)若,将∠COD 从图1的位置以每秒5°的速度绕点O 逆时针方向旋转一周,经过秒能使∠MON=45°(直接写出结果).12α20α=︒25α=︒图1ODB (C )A图2NBM AODC备用图ABO24.(本题12分)数轴上A ,B 三个点表示的数分别是a ,b ,且满足,动点P 从点A 出发,以每秒3个单位长度的速度向右移动秒.(1)直接写出a = ,b = ;(2)如图1,若M 为PA 的中点,N 为PB 的中点,试判断在P 点运动的过程中,线段MN的长度是否发生变化,请说明理由;(3)对于数轴上的点P ,Q ,给出如下定义:记点P 到点A 的距离为m ,点Q 到P的距离为n ,如果,那么称点Q 是点P 的“关联点”.①若m =1,直接写出点P 的“关联点”Q 在数轴上对应的数为 ;②若,试求的值.数学参考答案一、选择题:题号12345678910答案DCBACDCBAD二、填空题:11.1; 12.; 13.6或4; 14.2;15.①②③④;16.12.(说明:13题对一空2分,15题1~2个正确都给1分,3个正确2分)第10题提示:①若所有作业展示成一排,则:……1,最多11张作业;()2620a b ++-=t 2n m -==2BQ BP t 3-()252211-÷=图1备用图②若所有作业展示成两排,则:……1,最多张作业;③若所有作业展示成三排,则:……1,最多张作业;④若所有作业展示成四排,则:……1,最多张作业; ⑤若所有作业展示成五排,则:……1,最多张作业…… 故最多可展示16张作业.第15题提示:依题意,∠BPC=45°,即∠BPD=135°;②因为,,所以;③依题意,,则;④由,又∠BPC=45°,,即∠BPC++45°=108°,所以.第16题提示:新长方形长为:,宽为:,因为,所以新长方形长为:.三、解答题:17.(1)原式=, ……3分= ;……4分(2)原式, ……6分……7分. ……8分18.(1),……3分解得; ……4分(2)去分母,得 ……6分()25337-÷=7214⨯=()25445-÷=5315⨯=()25554-÷=4416⨯=()25663-÷=3515⨯=B PD α'∠=()113567.522APB B PD α'∠=︒-∠=︒-22.52APC α'∠=︒+22.5452APC B PC αα'''∠=∠=︒+=︒-15α=︒108APD B PC ''∠+∠=︒67.5APB α∠=︒-67.52APB α∠=︒-9α=︒a b -3a b -23a b -=()()23424312a b a b a b -+-=-=⨯=89602832''︒-︒6128'︒()111723=--⨯⨯-716=-+16=23x =32x =22636x x +-+=……7分解得 . ……8分19.化简得,……3分=, ……5分=……6分……8分20.(1)2.5,1.5; ……4分(2)设放入大球个,依题意列方程,, ……6分解得;8-5=5. 答:放入大球3个,小球5个.……8分21.(1)(1,0);……3分(2)依题意列方程得,……5分解得; ……6分(3). ……8分22.(1)5,,0;……3分(2)依题意,设参赛者E 答对了道题,依题意列方程得:,……5分解得,,……6分答:设参赛者E 答对了15道题;……7分(3)15,4,1. ……10分23.(1)20°;(正确画图1分)……4分(2)∵OM 平分∠COD ,ON 平分∠AOD ,∠COD =∠AOB=,41x -=14x =-222223222a b ab a b ab a b ab ⎡⎤-+--+⎣⎦2222a b ab a b ⎡⎤-+⎣⎦22ab -()22128-⨯⨯-=-x ()2.5 1.582712x x +-=-3x =()2133211x x --=-+12x =-12-2-x ()521869x x ⨯--=15x =12α∴∠COM =∠DOM =,∠AON =∠DON , ……5分又∠MON=55°,∴∠CON =∠MON -∠COM =, ……6分∴∠AON =∠DON =,……7分∴∠AOC =∠AON+∠CON=+=;……8分(3)8或44……10分依题意∠AON =∠DON ,∠COM =∠DOM =,又∠MON=45°,①如图1,∠CON =∠MON -∠COM =32.5°,∴∠AON =∠DON =45°+12.5°=57.5°,∴∠BON =57.5°-50°=7.5°,∴旋转过的角度∠BOC =∠BON+∠CON =32.5°+7.5°=40°,(秒);②如图2,∴∠AON =∠DON=∠MON -∠DOM =45°-12.5°=32.5°,∴∠BOC =∠COD+∠DON +∠AON+∠AOB =140°,∴旋转过的角度为:360°-140°=220°,(秒).24.(1),2;……2分(2)依题意,AB=8,AP=3t ,,∵M 为PA 的中点,N 为PB 的中点,2α552α︒-552α︒+552α︒+552α︒-110︒12.5︒4058÷=220544÷=6-()23683BP t t =--=-DOM CNBA图1COA BNMD图2,,①如图1,当点P 在AB 之间时,,; ……4分②如图2,当点P 在AB 延长线上时,,;综上所述,线段MN 的长度保持不变. ……6分(说明:学生用绝对值方程分类讨论相应给分)(3)①或;……8分②依题意,,点P 表示的数为,又,即点Q 到P 的距离为,Ⅰ当点Q 在P 的左侧时,点Q 表示的数为; ……9分,,由得,,解得或; ……10分Ⅱ当点Q 在P 的右侧时,点Q 表示的数为;……11分,,由得,, 解得;1322t MP AM AP ===118322PN BN BP t ===-83BP t =-()3183422t MN MP BN t =+=+-=38BP t =-()3138422t MN MP NP t =-=--=2-8-3m t =36t -2n m -=232n m t =+=+()36328t t --+=-10BQ =()23683BP t t =--=-=2BQ BP 28310t -=1t =133t =()363264t t t -++=-()26466BQ t t =--=-()23683BP t t =--=-=2BQ BP 66283t t -=-116t =图1图2七年级数学试卷第11页 (共6页)综上所述,、或. ……12分1t =133t =116t =。
2022-2023学年湖北省武汉市青山区七年级上学期期末数学试卷及参考答案
2022-2023学年湖北省武汉市青山区初一数学第一学期期末试卷一、选择题(共10小题,每小题3分,共30分)1.2的倒数是( )A .12−B .2−C .12D .22.数据40000000用科学记数法表示为( )A .80.410⨯B .7410⨯C .6410⨯D .9410⨯3.如图,是由五个相同的小正方体搭成的几何体,则从左面看得到的平面图形是( )A .B .C .D .4.已知2x =是方程35x m −=的解,则m 的值是( )A .3−B .3C .1−D .15.如图所示的四条射线中,表示北偏东60︒的是( )A .射线OAB .射线OBC .射线OCD .射线OD6.下列关于多项式33452a b b −+−的说法中,正确的是( ) A .它是七次三项式B .它是四次二项式C .它的最高次项系数是12−D .它的常数项是57.小明将一副三角板摆成如图形状,下列结论不一定正确的是( )A .COA DOB ∠=∠B .COA ∠与DOA ∠互余C .AOD B ∠=∠ D .AOD ∠与COB ∠互补8.明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时1斤16=两,故有“半斤八两”这个成语).设有x 人分银子,根据题意所列方程正确的是( )A .7498x x +=−B .7(4)9(8)x x +=−C .7498x x −=+D .7(4)9(8)x x −=+ 9.如图,射线OB 、OC 为锐角AOD ∠的三等分线,若图中所有锐角度数之和为200︒,则AOC ∠的度数为( )A .45︒B .40︒C .30︒D .20︒10.如图,在探究“幻方”、“幻圆”的活动课上,学生们感悟到我国传统数学文化的魅力.一个小组尝试将数字5−,4−,3−,2−,1−,0,1,2,3,4,5,6这12个数填入“六角幻星”图中,使6条边上四个数之和都相等,部分数字已填入圆圈中,则a 的值为( )A .4−B .3−C .3D .4二、填空题(共6小题,每小题3分,共18分)11.2023的相反数是 .12.若25xy 与2m xy −是同类项,则m = .13.若6620A ∠=︒',则A ∠的补角= .14.已知A 、B 、C 、D 为直线l 上四个点,且6AB =,2BC =,点D 为线段AB 的中点,则线段CD 的长为 .15.下列四个说法:①直线AB 与直线BA 是同一条直线;②如图,a ∠可以用O ∠表示;③多项式23323835x y x x x y x −−+++的值与x ,y 都无关;④植树时栽下两棵树,就可以把同一行树栽在同一条直线上,依据的数学原理是两点确定一条直线.其中正确的是 .(填写序号)16.一商店在某一时间以每件80元的价格卖出两件衣服,其中一件盈利60%,另一件亏本20%,卖这两件衣服总的盈亏情况是 元.(填盈利或者亏损多少元) 三、解答题(共8小题,共72分)17.计算:(1)12(18)(7)(15)−−+−+−;(2)3222(5)|3|5−+−⨯−−. 18.解方程:(1)214x x +=−;(2)311510x x +=−. 19.先化简下式,再求值:22222232()a b ab a b ab ab +−++,其中12a =,3b =−. 20.制作一张桌子要用一个桌面和4条桌腿,31m 木材可制作15个桌面,或者制作300条桌腿,现有318m 的木材,应怎样计划用料才能制作尽可能多的桌子?21.如图,A ,B ,C 是平面上三个点,按要求画出图形,并回答问题.(1)作直线BC ,射线AB ,线段AC ;(2)请用适当的语句表述点A 与直线BC 的关系: ;(3)从点A 到点C 的所有线中,线段AC 最短,其理论依据是 ;(4)若点D 是平面内异于点A 、B 、C 的点,过其中任意两点画直线,一共可以画 条.22.某购物网站上的一种小礼品按销售量分三部分制定阶梯销售单价,如表:销售量单价 不超过120件的部分3.5元/件 超过120件但不超过300件的部分3.2元/件 超过300件的部分 3.0元/件(1)若购买70件,花费 元;若购买120件,花费 元;若购买300件,花费 元.(2)陈老师购买这种小礼品共花了612元,求陈老师购买这种小礼品多少件?(3)王老师和李老师各自单独在该网站购买这种小礼品共400件,其中王老师购买的数量大于李老师购买的数量,他们一共花费1331元,请直接写出王老师购买这种小礼品的件数.23.如图,过点O 在AOB ∠内部作射线OC .OE ,OF 分别平分AOC ∠和BOC ∠,AOC ∠与AOB ∠互补,AOC a ∠=︒. (1)如图1,若70a =,则AOB ∠= ︒,AOF ∠= ︒,EOF ∠= ︒;(2)如图2,若OD 平分AOB ∠.①当(32)3a COD −︒∠=时,求EOF ∠度数; ②试探索:12AOB COD DOE∠−∠∠是否为定值,若是,请求出这个定值;若不是,请说明理由.24.已知a 、b 满足:2(8)|4|0a b ++−=,2c a b =+.且有理数a 、b 、c 在数轴上对应的点分别为A 、B 、C .(1)则a = ,b = ,c = ;(2)点P 从点C 出发,以每秒1个单位长度的速度向左运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左运动,当点Q 到达点A 时,两点停止运动.求点P 、Q 在运动过程中,当t 为何值时3AP CQ =?(3)点D 是直线AB 上一点,若||2AD BD CD −=,则:AB BD 的值为 .答案与解析一、选择题(共10小题,每小题3分,共30分)1.解:2的倒数是:12. 故选:C .2.解:740000000410=⨯.故选:B .3.解:该几何体从左面看到的平面图形是故选:A .4.解:2x =是方程35x m −=的解,∴把2x =代入方程可得65m −=,解得1m =,故选:D .5.解:表示北偏东60︒的是射线OA .故选:A .6.解:多项式33452a b b −+−是四次三项式,它的最高次项系数是12−,常数项是5−. 故选:C .7.解:A 、90COD AOB ∠=∠=︒,COD AOD AOB AOD ∴∠−∠=∠−∠,即AOC DOB ∠=∠,故选项A 不符合题意;B 、90COA DOA ∠+∠=︒,COA ∴∠与DOA ∠互余,故选项B 不符合题意;C 、当AB OD ⊥时,AOD B ∠=∠,故选项C 符合题意;D 、9090180AOD COB AOD COA AOB COD AOB ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,AOD ∴∠与COB ∠互补,故选项D 不符合题意;故选:C .8.解:设有x 人分银子,依题意,得:7498x x +=−.故选:A .9.解:射线OB 、OC 为锐角AOD ∠的三等分线,AOB BOC COD ∴∠=∠=∠,设AOB x ∠=,图中所有锐角度数之和为200︒,200AOB AOC AOD BOC BOD COD ∴∠+∠+∠+∠+∠+∠=︒,232200x x x x x x ∴+++++=︒,解得20x =︒,240AOC x ∴∠==︒,故选:B .10.解:设右下边为x ,由满足6条边上四个数之和都相等,他们的和为1x −,如图所示:观察图形还有4−,3−,0,3,4,6五个数字,观察“六角幻星”图可知3a −+与3a −−相差6,只有3−,3或0,6满足,则33a −−=−或30a −−=,解得0a =或3a =−,当0a =时,(4)4x x a −+−=,x 或4x a +−又有1个为0(不合题意舍去),当3a =−时,符合题意.故选:B .二、填空题(共6小题,每小题3分,共18分)11.解:2023的相反数是2023−.故答案为:2023−.12.解:25xy 与2m xy −是同类项,2m ∴=.故答案为:2.13.解:6620A ∠=︒',A ∴∠的补角180662011340=︒−︒'=︒'.故答案为:11340︒'.14.解:点D 是线段AB 的中点,3BD AB ∴==,分两种情况:①当点C 在线段AB 上时,321CD BD BC =−=−=,②当点C 在线段AB 的延长线上时,325CD BD BC =+=+=.故答案为:1或5.15.解:直线AB 与直线BA 是同一条直线,所以①正确;点O 处有三个角,α∠可以用BOC ∠表示,所以②错误;2332322333835()(835)0x y x x x y x x y x y x x x −−+++=−++−++=,∴多项式的值与x ,y 都无关,所以③正确; 植树时栽下两棵树,就可以把同一行树栽在同一条直线上,依据的数学原理是两点确定一条直线,所以④正确. 故正确是①③④.故答案为:①③④.16.解:设盈利60%的那件衣服的进价是x 元,根据题意得:0.6080x x +=,解得:50x =,设另一件亏损衣服的进价为y 元,它的商品利润是20%y −元,根据题意得:(20%)80y y +−=,解得:100y =.那么这两件衣服的进价是150x y +=元,而两件衣服的售价为80元.16015010∴−=元,所以,这两件衣服盈利10元.故答案为:盈利10元.三、解答题(共8小题,共72分)17.解:(1)12(18)(7)(15)−−+−+−1218(7)(15)=++−+−8=;(2)3222(5)|3|5−+−⨯−− 282535=−+⨯− 8103=−+−1=−.18.解:(1)移项得,241x x −=−−,合并同类项得,5x =−;(2)去分母得:23110x x =+−移项得:23110x x −=−,合并得:9x −=−,解得:9x =.19.解:原式22222223222a b ab a b ab ab ab =+−−+=, 当12a =,3b =−时,原式212(3)92=⨯⨯−=. 20.解:设共做了x 张桌子,则需要的桌面的材料为115x 3m ,桌腿需要木材为14300x ⨯3m .由题意,得 1141815300x x +⨯=, 解得:225x =.则31122515()1515x m =⨯=, 318153()m −=.答:用318m 木材作桌面,33m 木材作桌腿,才能尽可能多的制作桌子.21.解:(1)如图,直线BC ,射线AB ,线段AC .(2)点A 在直线BC 外.故答案为:点A 在直线BC 外;(3)从点A 到点C 的所有线中,线段AC 最短,依据是:两点之间线段最短; 故答案为:两点之间线段最短;(4)点D 是平面内异于点A 、B 、C 的点,过其中任意两点画直线,一共可以画4条或6条. 如果点D 与A 、B 、C 任意两点共线,此时可画出4条, 如果点D 与A 、B 、C 任意两点不共线,此时可画出6条, 故答案为:4或6.22.解:(1)购买70件,花费70 3.5245⨯=(元),购买120件,花费120 3.5420⨯=(元),购买300件,花费120 3.5(300120) 3.2996⨯+−⨯=(元), 故答案为:245,420,996;(2)设陈老师购买了这种小礼品x 件,由420612996<<可知,120300x <<,根据题意得,120 3.5(120) 3.2612x ⨯+−⨯=,解得,180x =.答:陈老师购买这种小礼品180件;(3)设李老师购买x 件,则王老师购买(400)x −件,①当120x <时,由题意 3.5120 3.5 3.2(400120)1331x x +⨯+−−=或3.5120 3.5(300120) 3.23(400120180)1331x x +⨯+−⨯+−−−=, 解得50x =或70x =,经检验,50x =是原方程的解,但400350300x −=>,此时不符合题意,舍去, 70x =是原方程的解,且符合题意,70x ∴=,②当120x >时,由题意得:120 3.5 3.2(120)120 3.5(400120)840 3.21601331x x ⨯+−+⨯+−−=+⨯≠,不符合题意. 答:李老师购买70件,王老师购买330件.23.解:(1)AOC ∠和AOB ∠互补,180********AOB AOC ∴∠=︒−∠=︒−︒=︒,1107040BOC AOB AOC ∴∠=∠−∠=︒−︒=︒, OE ,OF 分别平分AOC ∠和BOC ∠,11402022COF BOC ∴∠=∠=⨯︒=︒,11703522AOE AOC ∠=∠=⨯=︒, 207090AOF COF AOC ∴∠=∠+∠=︒+︒=︒,903555EOF AOF AOE ∴∠=∠−∠=︒−︒=︒,故答案为:110︒、90︒、55︒;(2)①AOC α∠=,AOC ∠与AOB ∠互补,180AOB α∴∠=︒−, OE ,OF 分别平分AOC ∠和BOC ∠,11(180)22AOD AOB α∴∠=∠=−︒, 由AOC AOD COD ∠−∠=∠得,132(180)23ααα−−−=,68α∴=, 18068112AOB ∴∠=︒−︒=︒,1342AOE AOC ∠=∠=︒, 1126844BOC AOB AOC ∴∠=∠−∠=︒−︒=︒,1222BOF BOC ∴∠=∠=︒, 112342256EOF AOB AOE BOF ∴∠=∠−∠−∠=︒−︒−︒=︒; ②12AOB COD DOE∠−∠∠是定值,理由如下: 12COD AOC AOD AOC AOB ∠=∠−∠=∠−∠, ∴111()222AOB COD AOB AOC AOB AOB AOC ∠−∠=∠−∠−∠=∠−∠, 111()222DOE AOD AOE AOB AOC AOB AOC ∠=∠−∠=∠−∠=∠−∠, ∴122AOB COD DOE∠−∠=∠. 24.解:(1)2(8)|4|0a b ++−=,2(8)0a +,|4|0b −, 80a +=,40b −=,8a ∴=−,4b =,2c a b =+,8240c ∴=−+⨯=,故答案为:8−,4,0;(2)设P 表示的数是t −,Q 表示的数是42t −,3AP CQ =,(8)3|42|t t ∴−−−=−, 解得45t =或207t =, ∴当t 为45或207时,3AP CQ =; (3)设D 表示的数是x ,①当8x −时,||2AD BD CD −=,(4)(8)2()x x x ∴−−−−=−,解得:6x=−(不符合题意,舍去);②当84x−<<时,||2AD BD CD−=,|(8)(4)|2||x x x∴−−−−=,解得1x=−,12AB∴=,5BD=,:12:5AB BD∴=;③当4x>时,||2AD BD CD−=,|8(4)|2x x x∴+−−=.212x∴=,6x∴=.12AB∴=,2BD=,:6AB BD∴=.综上,:AB BD的值为125或6.故答案为:125或6.第11页(共11页)。
湖北省武汉市七年级(上)期末数学试卷
湖北省武汉市七年级(上)期末数学试卷七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.某种食品保存的温度是-10℃。
以下几个温度中,不适合储存这种食品的是()A.−6℃B.−8℃C.−10℃D.−12℃2.下列各式中,不相等的是()A.(−2)2和22B.|−2|3和|−23|C.(−2)2和−22D.(−2)3和−2333.港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长约m,集桥、岛、隧于一体,是世界最长的跨海大桥,数据用科学记数法表示为()A.5.5×105B.55×104C.5.5×104D.5.5×1064.若单项式3xm+1y4与-23x2y4-3n是同类项,则m•n的值为()A.2B.1C.−1D.05.下列运算中,正确的是()A.3a+2b=5abB.2a3+3a2=5a5C.−4a2b+3ba2=−a2bD.5a2−4a2=16.如图是一个正方体的展开图,则“数”字的对面的字是()A.核B.心C.素D.养7.如图,甲从A点出发向XXX方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80∘B.100∘C.120∘D.140∘8.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第10个图形中花盆的个数为()A.110B.120C.132D.1409.已知有理数a,b,c,d在数轴上对应的点如图所示,每相邻两个点之间的距离是1个单位长度.若3a=4b-3,则c-2d为()A.−3B.−4C.−5D.−610.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了()天.A.10B.20C.30D.25二、填空题(本大题共6小题,共18.0分)11.计算:-6+4=______.答案:-212.若(3-m)x|m|-2-1=0是关于x的一元一次方程,则m 的值为______.答案:213.若点A、B是数轴上的两个点,点A表示的数是-4,点B与点A的距离是2,点B表示的数是______.答案:-214.某同学误解了一道数学题,将“A-B”看成了“A+B”,导致求出了错误的答案。
武汉市人教版七年级上册数学期末试卷及答案
武汉市人教版七年级上册数学期末试卷及答案一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线2.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线 C .垂线段最短 D .两点之间直线最短3.在0,1-, 2.5-,3这四个数中,最小的数是( ) A .0 B .1- C . 2.5- D .3 4.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( )A .1B .2C .3D .4 5.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3 B .π,2C .1,4D .1,36.下列选项中,运算正确的是( )A .532x x -=B .2ab ab ab -=C .23a a a -+=-D .235a b ab +=7.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π8.计算32a a ⋅的结果是( ) A .5a ;B .4a ;C .6a ;D .8a .9.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A.1005006 2x x+=B.1005006 x2x+=C.1004006 2x x+=D.1004006 x2x+=10.96.已知a<0,-1<b<0,则a,ab,ab2之间的大小关系是()A.a>ab>ab2 B.ab>ab2>a C.ab>a>ab2 D.ab<a<ab211.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC+∠ABD=90°;④∠BDC=∠BAC;其中正确的结论有()A.1个B.2个C.3个D.4个12.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.1202013.如图是由下列哪个立体图形展开得到的?()A.圆柱B.三棱锥C.三棱柱D.四棱柱14.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是()A.2(30+x)=24﹣x B.2(30﹣x)=24+xC.30﹣x=2(24+x)D.30+x=2(24﹣x)15.下列调查中,调查方式选择正确的是( )A.为了了解1 000个灯泡的使用寿命,选择全面调查B .为了了解某公园全年的游客流量, 选择抽样调查C .为了了解生产的一批炮弹的杀伤半径,选择全面调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查二、填空题16.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 17.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.18.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.19.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.20.5535______.21.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.22.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________.23.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________24.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.25.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.26.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 27.4是_____的算术平方根.28.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.29.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______.30.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.三、压轴题31.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ? 32.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.33.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________ (3)用含n 的式子列式,并计算第n 个图的钢管总数.34.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”. (1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”) (2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)35.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示). (4)直接写出点B 为AC 中点时的t 的值.36.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.37.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.38.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______; (2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB 的长小于点A 绕点C 到B 的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短, 故选C . 【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB 的长小于点A 绕点C 到B 的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B.3.C解析:C 【解析】 【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.4.B解析:B 【解析】 【分析】根据线段中点的性质,可得AC 的长. 【详解】解:由线段中点的性质,得AC =12AB =2. 故选B . 【点睛】本题考查了两点间的距离,利用了线段中点的性质.5.A解析:A 【解析】 【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项. 【详解】解:单项式2r hπ的系数和次数分别是π,3;故选:A.【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.6.B解析:B【解析】【分析】根据整式的加减法法则即可得答案.【详解】A.5x-3x=2x,故该选项计算错误,不符合题意,B.2ab ab ab-=,计算正确,符合题意,C.-2a+3a=a,故该选项计算错误,不符合题意,D.2a与3b不是同类项,不能合并,故该选项计算错误,不符合题意,故选:B.【点睛】本题考查整式的加减,熟练掌握合并同类项法则是解题关键.7.D解析:D【解析】【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94aπ,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.8.A解析:A【解析】此题考查同底数幂的乘法运算,即(0)m n m n a a a a +⋅=>,所以此题结果等于325a a +=,选A ;9.D解析:D 【解析】 【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程. 【详解】设该厂原来每天加工x 个零件, 根据题意得:1004006x 2x+= 故选:D . 【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.10.B解析:B【解析】先根据同号得正的原则判断出ab 的符号,再根据不等式的基本性质判断出ab 2及a 的符号及大小即可. 解:∵a <0,b <0, ∴ab >0,又∵-1<b <0,ab >0, ∴ab 2<0. ∵-1<b <0, ∴0<b 2<1, ∴ab 2>a , ∴a <ab 2<ab . 故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.11.C解析:C 【解析】①∵AD 平分△ABC 的外角∠EAC , ∴∠EAD=∠DAC ,∵∠EAC=∠ACB+∠ABC ,且∠ABC=∠ACB , ∴∠EAD=∠ABC , ∴AD ∥BC , 故①正确.②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴12∠BAC+12∠ABC=12∠ACF,∵∠BDC+∠DBC=12∠ACF,∴12∠BAC+12∠ABC=∠BDC+∠DBC,∵∠DBC=12∠ABC,∴12∠BAC=∠BDC,即∠BDC=12∠BAC.故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.12.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是1 2020 ,故选:B.【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.13.C解析:C【解析】【分析】三棱柱的侧面展开图是长方形,底面是三角形.【详解】解:由图可得,该展开图是由三棱柱得到的,故选:C.【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.14.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.15.B解析:B【解析】选项A、C、D,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B.二、填空题16.两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.解析:两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.17.80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 18.【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC 的中点求出AD的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴B解析:【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴BC=8.∴AC=AB+BC=12.∵D是AC的中点,∴AD=12AC=6.∴BD=AD﹣AB=6﹣4=2.故答案为:2.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.19.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【解析】【分析】根据图和题意可得出答案.【详解】解:,A B表示的数互为相反数,且4AB=,则A表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.20.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 21.-3【解析】【分析】根据题意将代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将代入方程得到,变形得到,所以=故填-3.【点睛】本题考查利用方程的对代数式求值,将方解析:-3【解析】【分析】根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.【详解】解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以241a b -+=2(2)1 3.a b -+=-故填-3.【点睛】本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可.22.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.23.6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,解析:6【解析】【分析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.24.3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把代入方程组得:,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【解析:3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把12xy=⎧⎨=⎩代入方程组得:2722a bb a+=⎧⎨+=⎩,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.25.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元.26.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.27.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.28.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.29.8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2c解析:8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2cm=4cm②当C在AB延长线时,如图所示,AC=AB+BC=6cm+2cm=8cm综上所述,A、C两点间的距离是8cm或4cm故答案为:8cm或4cm.【点睛】本题考查线段的和差计算,分情况讨论是解题的关键.30.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.三、压轴题31.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.32.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032.(4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.33.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n 项的钢管数.【详解】(1)3456;45678S S =+++=++++(2)方法不唯一,例如:。
武汉市七年级上册数学期末试题及答案解答
武汉市七年级上册数学期末试题及答案解答一、选择题 1.4 =( )A .1B .2C .3D .42.当x 取2时,代数式(1)2x x -的值是( ) A .0B .1C .2D .33.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠4.在223,2,7-四个数中,属于无理数的是( ) A .0.23B 3C .2-D .2275.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个6.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( ) A .3 B .4 C .5 D .67.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x--= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1 C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2 D .方程23t=32,未知数系数化为 1,得t=1 8.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个9.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式 10.点()5,3M 在第( )象限. A .第一象限 B .第二象限C .第三象限D .第四象限11.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-412.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是( )A .设B .和C .中D .山13.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-14.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人15.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上二、填空题16.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 17.若|x |=3,|y |=2,则|x +y |=_____. 18.=38A ∠︒,则A ∠的补角的度数为______.19.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.20.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.21.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.22.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 23.若a 、b 是互为倒数,则2ab ﹣5=_____.24.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______. 25.数字9 600 000用科学记数法表示为 .26.当x= 时,多项式3(2-x )和2(3+x )的值相等.27.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.28.-2的相反数是__.29.观察“田”字中各数之间的关系:则c 的值为____________________.30.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .三、压轴题31.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值. 32.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.33.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.34.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯.()1观察发现()1n n1=+______;()1111122334n n1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m,记2个数的和为1a;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a;⋯⋯如此进行了n次.na=①______(用含m、n的代数式表示);②当na6188=时,求123n1111a a a a+++⋯⋯+的值.35.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k •AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.36.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线. (1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.37.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)38.(阅读理解)若A ,B ,C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:4=2,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.2.B解析:B【解析】【分析】把x等于2代入代数式即可得出答案.【详解】解:根据题意可得: 把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B. 【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.3.C解析:C 【解析】 【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果. 【详解】解:由图知:∠1+∠2=180°, ∴12(∠1+∠2)=90°, ∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1). 故选:C . 【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.4.B解析:B 【解析】 【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可. 【详解】0.23是有限小数,是有理数,不符合题意,是开方开不尽的数,是无理数,符合题意,-2是整数,是有理数,不符合题意,227是分数,是有理数,不符合题意, 故选:B.【点睛】本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.5.C解析:C【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.C解析:C【解析】【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解.【详解】解:∵﹣2xy n+2与 3x3m-2y 是同类项,∴3m-2=1,n+2=1,解得:m=1,n=-1,∴|n﹣4m|=|-1-4|=5,故选C.【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.7.C解析:C【解析】【分析】各项中方程变形得到结果,即可做出判断.【详解】解:A、方程x1x10.20.5--=化成10x1010x25--=1,错误;B、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误;C、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D、方程23t32,系数化为1,得:t=94,错误;所以答案选C.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.8.C解析:C【解析】①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确.②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴12∠BAC+12∠ABC=12∠ACF,∵∠BDC+∠DBC=12∠ACF,∴12∠BAC+12∠ABC=∠BDC+∠DBC , ∵∠DBC=12∠ABC , ∴12∠BAC=∠BDC ,即∠BDC=12∠BAC. 故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.9.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A .为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意; B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意; C .为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D .为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意; 故选:B .【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.A解析:A【解析】【分析】根据平面直角坐标系中点的坐标特征判断即可.【详解】∵5>0,3>0,∴点()5,3M 在第一象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.11.B解析:B【解析】【分析】把5x y =⎧⎨=⎩x=5代入方程x-2y=3可求得y 的值,然后把x 、y 的值代入2x+y=口即可求得答案. 【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.12.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“设”是相对面,“和”与“中”是相对面,“建”与“山”是相对面.故选:A .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.13.C解析:C【解析】【分析】根据相反数的定义进行判断即可.【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意;C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意;【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.14.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.15.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题16.﹣.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.解:把x=3代入方程得1+1+=,解得:m=﹣.故答案为:﹣.【点睛】本题考查一元一次方程的解,解题的解析:﹣83.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+mx(31)4=23,解得:m=﹣83.故答案为:﹣83.【点睛】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.17.1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3解析:1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x=±3,y=±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y=±2,(1)x=3,y=2时,|x+y|=|3+2|=5(2)x=3,y=﹣2时,|x+y|=|3+(﹣2)|=1(3)x=﹣3,y=2时,|x+y|=|﹣3+2|=1(4)x=﹣3,y=﹣2时,|x+y|=|(﹣3)+(﹣2)|=5故答案为:1或5.【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.18.【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:,的补角的度数为:,故答案为:.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.解析:142︒【解析】【分析】根据两个角互补的定义对其进行求解.【详解】解:∠=,A38∴A∠的补角的度数为:18038142-=,故答案为:142︒.【点睛】本题考查互补的含义,解题关键就是用180度直接减去即可.19.2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5,n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8【点睛】绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键20.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键21.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式22.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.23.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.24.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.25.6×106试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n 的值时,看该数是大于或等于1还是解析:6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.26.【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.27.72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 28.2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.解析:2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.29.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。
武汉市人教版七年级上册数学期末考试试卷及答案
+33
-12
+21
+54
(1)若服装店每天的营业时间为8:00~18;00,请你估算一周(不休假)的客流量;(单位:人)(精确到百位)
(2)若服装店在某天内男女装共卖出135套,据统计,每15名女顾客购买一套女装,每20名男顾客购买一套男装,则这一天卖出男、女服装各多少套?
(3)若每套女装的售价为80元,每套男装的售价为120元,则此店一周的营业额约为多少元?
29.计算与解方程:
(1)﹣32+(﹣3)2+3×(﹣2)+|﹣4|;
(2)12°24′17″×4﹣30°27′8″;
(3) .
30.已知 四点如图所示,请按要求画图.
(1)画直线 ;
(2)若所画直线 表示一条河流,点 分别表示河流两旁的两块稻田,要在河岸边某一位置开渠引水灌溉稻田,请在河流 上确定点 ,使得在点 处开渠到两块稻田 的距离之和最短,并说明理由.
四、压轴题
31.借助一副三角板,可以得到一些平面图形
(1)如图1,∠AOC=度.由射线OA,OB,OC组成的所有小于平角的和是多少度?
(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;
(3)利用图3,反向延长射线OA到M,OE平分∠BOM,OF平分∠COM,请按题意补全图(3),并求出∠EOF的度数.
17.在灯塔 处观测到轮船 位于北偏西 的方向,同时轮船 在南偏东 的方向,那么 的大小为______.
18. ,则 的补角的度数为______.
19.当a=_____时,分式 的值为0.
20.16的算术平方根是.
21.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.
2022-2023学年湖北省武汉市东湖高新区七年级(上)期末数学试卷+答案解析(附后)
2022-2023学年湖北省武汉市东湖高新区七年级(上)期末数学试卷1. 2023的相反数是( )A. 2023B.C.D.2. 下列计算正确的是( )A. B. C. D.3. 已知是关于x的方程的解,则a的值是( )A. B. 5 C. 7 D. 24. 在灯塔O处观测到轮船A位于北偏西的方向,同时轮船B在南偏东的方向,那么的大小为( )A.B.C.D.5. 下列说法中错误的是( )A. 数字0是单项式B. 单项式b的系数与次数都是1C. 是四次单项式D. 的系数是6. 将两个三角板按如图所示的位置摆放,已知,则( )A.B.C.D.7. 《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是( )A. B.C. D.8. 如图,已知BC是圆柱底面的直径,AB是圆柱的高,在圆柱的侧面上,过点A,C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是( )A.B.C.D.9. 两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么七条直线最多有( )A. 9个交点B. 15个交点C. 21个交点D. 26个交点10. 如图所示,B在线段AC上,且,D是线段AB的中点,E是BC的三等分点,则下列结论:①,②,③,④,其中正确结论的有( )A. ①②B. ①②④C. ②③④D. ①②③④11. ______;______;的倒数是______.12. 中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,相当于在指甲盖大小的尺寸上塞进了12000000000个晶体管,将12000000000用科学记数法表示为______.13. 小林同学在一个正方体盒子的每个面都写有一个字,分别是:我、喜、欢、数、学、课,其平面展开图如图所示.那么在该正方体盒子中,与“喜”相对的面所写的字是“______”.14. 轮船在顺水中的速度为30千米/时,在逆水中的速度为24千米/时,则水流的速度是______千米/时,轮船在静水中的速度为______千米/时.15. 已知方程是关于x的一元一次方程,则______.16. 以下结论:①一个锐角的补角比它的余角大;②绝对值等于它的相反数的数是负数;③若,,且OM平分,则度数是或;④一列数:1,,5,,9,,…可用一个通式其中n为正整数表示.其中是正确的有______.17. 计算:;18. 解方程:;19. 先化简,再求值:,其中,20. 制作一张桌子要用一个桌面和4条桌腿,木材可制作20个桌面,或者制作400条桌腿,现有木材,应怎样计划用料才能制作尽可能多的桌子?21. 画图,说理题如图,已知四个点A、B、C、D;画射线AD;连接BC;画;画出一点P,使P到点A、B、C、D的距离之和最小;并说明理由.22. 为了加强居民的节水意识合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见下表:每月用水量单价不超出6立方米的部分2元/立方米超出6立方米不超出10立方米的部分4元/立方米超出10立方米的部分8元/立方米请根据上面的表格回答下列问题:①若某户居民一月份用水8立方米,则应向其收水费多少元?②若该用户二月份用水立方米则应向其收水费多少元?③若该用户三、四月份共用水15立方米月份用水量不超过6立方米,共交水费44元,则该用户三、四月份各用水多少立方米?23. 已知O为直线AB上的一点,是直角,OF平分如图1,若,则______;若,则______;与的数量关系为______.在图2中,若,在的内部是否存在一条射线OD,使得与的和等于与的差的三分之一?若存在,请求出的度数;若不存在,请说明理由.当射线OE绕点O顺时针旋转到如图3的位置时,中与的数量关系是否仍然成立?请说明理由,若不成立,求出与的数量关系.24. 如图1,A、B两点在数轴上对应的数分别为和直接写出A、B两点之间的距离;若在数轴上存在一点P,使得,求点P表示的数;如图2,现有动点P、Q,若点P从点A出发,以每秒4个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当时的运动时间t的值.答案和解析1.【答案】C【解析】解:2023的相反数是故选:利用相反数的定义判断.本题考查了相反数,掌握相反数的定义是关键.2.【答案】D【解析】解:A、原式,故本选项错误,B、原式中的两项不是同类项,所以不能进行合并同类项,故本选项错误,C、原式,故本选项错误,D、原式,故本选项正确,故选根据同类项的概念和合并同类项的运算法则进行逐项分析解答,运用排除法即可找到答案.本题主要考查同类项的概念,合并同类项的运算法则,关键在于正确地确定同类项,认真地进行计算.3.【答案】B【解析】【分析】本题主要考查了一元一次方程的解.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.首先根据一元一次方程的解的定义,将代入关于x的方程,然后解关于a的一元一次方程即可.【解答】解:因为是方程的解,所以,解得,故选:4.【答案】C【解析】【分析】此题主要考查了方向角,角的和差计算,关键是根据题意找出图中角的度数.首先计算出的度数,再计算的度数即可.【解答】解:如图所示,由题意得:,,因为,所以,因为,所以,故选5.【答案】D【解析】解:A、数字0是单项式,本选项说法正确,不符合题意;B、单项式b的系数与次数都是1,本选项说法正确,不符合题意;C、是四次单项式,本选项说法正确,不符合题意;D、的系数是,故本选项说法错误,符合题意;故选:根据单项式的系数和次数的概念判断即可.本题考查的是单项式的系数和次数的概念,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.6.【答案】B【解析】解:因为,所以故选:根据余角的性质:等角的余角相等即可求解.考查了余角:如果两个角的和等于直角,就说这两个角互为余角.即其中一个角是另一个角的余角.7.【答案】B【解析】【分析】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.设合伙人数为x人,根据羊的总价钱不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设合伙人数为x人,依题意,得:,故选:8.【答案】B【解析】解:因圆柱的展开面为长方形,AC展开应该是两直线,且有公共点故选:由平面图形的折叠及立体图形的表面展开图的特点解题.此题主要考查圆柱的展开图,以及学生的立体思维能力.9.【答案】C【解析】解:因为3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点,而,,,所以七条直线相交最多有交点的个数是:故选:根据题意,结合图形,发现:3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点,故可猜想,n条直线相交,最多有…个交点.此题主要考查了图形变化类,此题在相交线的基础上,着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.10.【答案】D【解析】解:因为E是BC的三等分点,且,所以,,所以,所以,所以,故①正确;所以,因为D是线段AB的中点,则,所以,所以,故②正确;因为,,所以,故③正确;因为,,所以,故④正确,所以正确的结论①②③④.故选:根据题中的已知条件,结合图形,对结论进行一一论证,从而选出正确答案.本题考查了两点间的距离,根据中点的概念,能够用几何式子正确表示相关线段,还要结合图形进行线段的和差计算是解题的关键.11.【答案】3,3,【解析】解:;;的倒数是故答案为:3,3,直接利用倒数、绝对值、相反数的定义分别分析得出答案.此题主要考查了倒数、绝对值、相反数的定义,正确掌握相关定义是解题关键.12.【答案】【解析】解:将12000000000用科学记数法表示为故答案为:科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正整数;当原数的绝对值时,n是负整数.此题考查了科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n 为整数,表示时关键要正确确定a的值以及n的值.13.【答案】数【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,与“喜”相对的面所写的字是“数”.故答案为:数.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.【答案】3,27【解析】解:设轮船在静水中的速度为x千米/时,根据题意得:,解得所以水流的速度是千米/时,答:水流的速度是千米/时,轮船在静水中的速度为27千米/时.故答案为:3,设轮船在静水中的速度为x千米/时,根据静水速度+水流速度=顺水速度,静水速度-水流速度=逆水速度,可得静水速度顺水速度+逆水速度,依此列方程即可求解.本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.【答案】【解析】解:因为是关于x的一元一次方程,所以,且,解得:故答案为:直接利用一元一次方程的定义得出关于m的方程求出答案.此题主要考查了一元一次方程的定义,正确把握未知数的系数与次数是解题关键.16.【答案】①③④【解析】解:①一个锐角的补角比它的余角大,正确;②绝对值等于它的相反数的数是负数或0,故错误;③若,,且OM平分,则度数是或,正确;④一列数:1,,5,,9,,…可用一个通式其中n为正整数表示,正确.故正确的有①③④.故答案为:①③④.利用余角和补角的定义、绝对值的定义、角平分线的定义和数字的变化规律分别判断后即可确定正确的选项.本题考查了余角和补角的定义、绝对值的定义、角平分线的定义和数字的变化,解题的关键是熟练掌握定义和理解数字的变化规律,难度不大.17.【答案】解:;【解析】先写出省略括号的和的形式,然后再按照从左到右的顺序进行计算,即可解答;先算乘方,再算乘法,后算加减,有括号先算括号里,即可解答.本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.18.【答案】解:去括号得:移项得:并得:解得:;去分母得:,去括号得:,移项得:,合并得:,解得:【解析】方程去括号,移项,合并,把x系数化为1,即可求出解;方程去分母,去括号,移项,合并,把y系数化为1,即可求出解.本题考查了一元一次方程的知识,掌握一元一次方程的解法是关键.19.【答案】解:原式,当,时,原式【解析】直接去括号进而合并同类项,再把已知数据代入得出答案.此题主要考查了整式的加减,正确合并同类项是解题关键.20.【答案】解:设共做了x张桌子,则需要的桌面的材料为,桌腿需要木材为由题意,得,解得:则答:用木材作桌面,木材作桌腿,才能尽可能多的制作桌子.【解析】设共做了x张桌子,则需要的桌面的材料为,桌腿需要木材为根据总木材为建立方程求出其解即可.本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据“桌面的材料+桌腿的材料”建立方程是关键.21.【答案】解:如图所示:点即为所求,理由是:根据线段的性质:两点之间,线段距离最短;结合题意,要使点P到点A、B、C、D的距离之和最小,就要使它在AC与BD的交点处.【解析】本题考查了射线,线段的性质:两点之间,线段距离最短.要求学生能灵活应用所学的知识,解决实际问题.过AD画射线即可.连接B和C即可.分别以C为顶点画射线CA、CD即可.连接BD,AC与BD的交点就是P点位置,根据线段的性质:两点之间,线段距离最短;结合题意,要使它与四个点的距离之和最小,就要使它在AC与BD的交点处.22.【答案】解:①某户居民一月份用水8立方米,则应向其收水费:元;②该用户二月份用水立方米则应向其收水费:元;③设三月份用水x立方米,则四月份用水立方米,由题意得:,解得:,所以三月份用水2立方米,则四月份用水13立方米,此时三月份应交水费:元,四月份应交水费:元,因为,所以不合题意,舍去.或,解得:,所以三月份用水4立方米,则四月份用水11立方米,此时三月份应交水费:元,四月份应交水费:元,元,符合题意,答:三月份用水4立方米,则四月份用水11立方米.【解析】①利用表格中的自来水收费价格计算即可;②利用表格中的自来水收费价格计算即可;③设三月份用水x立方米,则四月份用水立方米,利用已知条件列出方程,解方程即可得出结论.本题主要考查了一元一次方程的应用,准确理解自来水收费价格表的意义是解题的关键.23.【答案】解:;;;存在.理由如下:如图2,因为,所以,所以,而与的和等于与的差的三分之一,所以,所以和的关系不成立.设,则,,所以【解析】解:因为,是直角,所以,又因为OF平分,所以,所以,若,则;故;故答案是;;;见答案;见答案.由,是直角,易求,而OF平分,可求,进而可求,若,则;进而可知;当,得到,并且,再根据与的和等于与的差的三分之一,可得到关于的方程,解方程得到;设,而OF平分,得出,且是直角,得到,由此可得出结论.本题考查了角平分线的定义以及互余互补的含义.24.【答案】解:;设点P表示的数为x,分两种情况:①当点P在线段AB上时,因为,所以,解得;②当点P在线段BA的延长线上时,因为,所以,解得综上所述,点P表示的数为或;分两种情况:①当时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为,P点表示的数为,因为,所以,解得,符合题意;②当时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为,P点表示的数为,因为,所以,所以,或,解得,符合题意;或,不符合题意舍去.综上所述,当时的运动时间t的值为2秒或秒.【解析】【分析】本题考查了一元一次方程的应用,数轴,结合动点考查了两点间的距离,以及路程、速度与时间关系的应用,理解题意,找到相等关系进行正确分类是解题的关键.A、B两点之间的距离是:故答案为见答案;见答案.根据两点间的距离公式即可求出A、B两点之间的距离;设点P表示的数为分两种情况:①点P在线段AB上;②点P在线段BA的延长线上.根据列出关于x的方程,求解即可;根据点Q的运动方向分两种情况:①当时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动;②当时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,根据列出关于t的方程,解方程即可.。
湖北省武汉市青山区2023-2024学年七年级上学期期末数学试题(含解析)
A . .C . .的解,则的值是( ).4.下列解方程的变形中,依据“等式的性质的是( ).由50a -=4-36x =-2374x x -=+A .与表示同一个角C .是与7.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有的字是( )A .少8.《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人与③若a 小于b ,那么a 的倒数大于④多项式有( )A .1个B .210.平面内有五个点,过每两个点作一条直线,可以作的直线条数不可能是(A .5B .6A ∠OAC ∠ACO ∠ACB ∠∠221332x kxy y --+16.“双十二”某主播直播间推出限时付款优惠活动,优惠规则如上表所示,小王在这次活动中,两次购物总共付款次购物原价的总和是原价(1)连接;(2)画射线;(3)作直线;(1)求的度数;(2)①图中的补角是②直接写出图中与AC AB BC BC DOE ∠∠BOE ∠(1)如图1,若,求的度数;(2)将直角三角尺从图1的位置绕O 点逆时针方向旋转,若,求的度数;(1)若.30AOC ∠=︒DOB ∠ODC ()090a a ︒<<4AOD AOC ∠=∠DOB ∠2BC OA =③若a 小于b ,那么a 的倒数不一定大于④多项式221332x kxy y xy --+所以,正确的是②④,共2个,故答案为:B.10.C【分析】本题主要考查了平面上直线的确定方法,由于没有明确平面上五点的位置关系,所以是否全面的类讨论是解答本题的关键;根据5点或4点在一条直线上,3点都不在一条直线上,五点都不在一条直线上,分别画出图形,即可求得画的直线的条数,得出结论.【详解】解:如下图,分以下四种情况:①当五点在同一直线上,如图:故可以画1条不同的直线;②当有四个点在同一直线上,故可以画5不同的直线;③当有两个三点在同一直线上,故可以画6条不同的直线;④当有三个点在同一直线上,∵C 是的中点,,∴,∵C 是的中点,,∴,AB 8AB =14A C B C B A ===AB 8AB =142A CBC B A ===AD BC连接,交直线理由:两点之间,线段最短.20.甲种零件应制作10【分析】可设甲种零件应制作当时,∴,∴,如图,当时,∴,∴,∴;综上:当时,为或4AOD AOC ∠=∠490725AOD ∠=︒⨯=︒9072162BOD ∠=︒+︒=︒4AOD AOC ∠=∠190303AOC ∠=⨯︒=︒9030120AOD ∠=︒+︒=︒36012090150BOD ∠=︒-︒-︒=︒4AOD AOC ∠=∠BOD ∠162︒∵,,∴∵,∴,如图,∵,,∴,∴,即,解得:,如图,AOD n AON ∠=∠AOC n AOM ∠=∠()90AOD AOC n AON AOM n ∠-∠=︒=∠-∠=∠72MON ∠=︒905724n ==AOD n AON ∠=∠AOC n AOM ∠=∠36090270AOD AOC ∠+∠=︒-︒=︒()270n AON AOM ∠+∠=︒72270n ︒=︒154n =∵,,∴,∴,即,解得:,综上:的值为或.24.(1)①,②点P 的速度是个单位长度(2)点C 表示的数是AOD n AON ∠=∠AOC n AOM ∠=∠90AOC AOD ∠-∠=︒()90n AOM AON ∠-∠=︒7290n ︒=︒54n =n 541542-22-73163-。
湖北省武汉市东湖高新区2023-2024学年七年级上学期期末数学试题
湖北省武汉市东湖高新区2023-2024学年七年级上学期期末
数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
A.和
8.(古代问题)某人工作一年的报酬是年终给他一件衣服和
A.30B.55
10.5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,
均数报出来,若报出来的数如图所示,则报
A.7B.8
二、填空题
-的系数是.
11.单项式15ab
三、解答题
(1)在图1中,画直线AC,画射线AB,并连接BC;
(2)在(1)的条件下,在图1中,在射线AB上画一点E,使得
的依据是______;
(3)在图2中,平面已经被分成了______个不同的区域,过点D
平面最多有______个不同的区域.
22.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的。
湖北省武汉市七年级上学期数学期末考试试卷
湖北省武汉市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·高邮模拟) 1不是﹣1的()A . 相反数B . 绝对值C . 倒数D . 平方数2. (2分)(2017·河西模拟) 下列各计算题中,结果是零的是()A . (+3)﹣|﹣3|B . |+3|+|﹣3|C . (﹣3)﹣3D . (﹣)3. (2分) (2019七上·深圳期中) 已知下列结论:①若,则互为相反数;②若,则且;③ ;④绝对值小于10的所有整数之和等于0;⑤3与-5是同类项.其中正确的结论有()个.A . 2B . 3C . 4D . 54. (2分) (2018七上·郑州期末) 郑万铁路万州往郑州方向的首座隧道“天城隧道”于2018年11月30日贯通,早上品尝重庆小面,晚上享用北京烤鸭,以后这都不是梦建造隧道的目的用下面哪个数学知识来解释最恰当()A . 经过两点有且只有一条直线B . 过一点可以画多条直线C . 两点之间线段最短D . 连接两点之间线段的长度是两点之间的距离5. (2分) (2019七上·融安期中) 下列各组数中,数值相等的是()A . 32和23B . -23和(-2)3C . -32和(-3)2D . -(3×2)2和-3×226. (2分)下列说法错误的是()A . -2xy与4yx是同类项B . 单项式-x的系数是-1C . 多项式2x-3的次数是1D . 1. 8和1.80的精确度相同7. (2分) (2019七下·凉州期中) 是方程mx-3y=2的一个解,则m为()A . 8B .C . -D . -8. (2分) (2020七上·陆川期末) 已知线段AB=12cm.C是AB的中点.在线段AB上有一点D,且CD=2cm.则AD 的长是()A . 8cmB . 8cm或 2cmC . 8cm或 4cmD . 2cm 或 4cm9. (2分)(2018·陕西) 如图,是一个几何体的表面展开图,则该几何体是()A . 正方体B . 长方体C . 三棱柱D . 四棱锥10. (2分)已知:abc≠0,且M= ,当a、b、c取不同的值时,M有()A . 惟一确定的值B . 3种不同的取值C . 4种不同的取值D . 8种不同的取值二、填空题 (共8题;共8分)11. (1分)(2020·哈尔滨) 将数4790000用科学记数法表示为________.12. (1分) (2017七上·宁河月考) 如果单项式x2yn+2与单项式ab7的次数相等,则n的值为________;13. (1分)从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________.14. (1分) (2016七上·龙湖期末) 如图是一个时钟的钟面,8:00时的分针与时针所成的∠α的度数是________.15. (1分) (2020八上·濉溪期末) 如图,在△ABC中,BI,CI分别平分∠ABC,∠ACF,直线DE过点I,且DE∥BC,BD=8 cm,CE=5 cm,则DE=________.16. (1分) (2019七上·沙雅期末) 已知,则的余角为________.17. (1分)(2019·顺德模拟) 计算:18°30′=________°.18. (1分) (2020九上·丹东月考) 如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA,OC分别在x轴,y轴上,如果以对角线OB为边作第二个正方形,再以对角线为边作第三个正方形,照此规律作下去,则点的坐标为________ .三、解答题 (共8题;共80分)19. (20分) (2018七上·无锡期中) 计算题(1)-7+3-5+12(2)(﹣4)×6+(﹣125)÷(﹣5)(3)(4)20. (10分)解方程(1) 5x+3(2﹣x)=8(2)﹣ =1.21. (5分) (2019八上·哈尔滨期中) 先化简,再求值:(x+4)( x—4) -(2x-3)2 ,其中x=2.22. (10分) (2020七上·方城期末) 如图,已知线段和线段外的一点,请按下列要求画出相应的图形,并计算(不要求写画法):(1)①延长线段到,使;②若,点是直线上一点,且,求线段的长.(2)过点画于点,连结、并用直尺测量线段、、的长,并指出哪条线段可以表示点到线段的距离.(测量数据直接标注在图形上,结果精确到)23. (5分) (2018七上·故城期末) 已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.24. (5分)现用190张铁皮做盒子,每张铁皮能做8个盒身或做22个盒底,而一个盒身和两个盒底配成一个盒子,那么需要多少张铁皮做盒身,多少张铁皮做盒底才能使加工出的盒身与盒底配套?25. (10分) (2020七上·松阳期末) 为弘扬践行“浙西南革命精神”,重温红色印记,传承红色基因,某学校组织七年级师生于某周六赴安岱后开展“红色之旅”的研学活动。
武汉市人教版七年级上册数学期末试卷及答案百度文库
武汉市人教版七年级上册数学期末试卷及答案百度文库一、选择题 1.4 =( )A .1B .2C .3D .42.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟 D .36011分钟3.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10- B .10 C .5- D .5 4.-2的倒数是( )A .-2B .12- C .12 D .25.计算(3)(5)-++的结果是( )A .-8B .8C .2D .-26.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 7.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上8.21(2)0x y -+=,则2015()x y +等于( ) A .-1B .1C .20143D .20143-9.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .110.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >0 11.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513B .﹣511C .﹣1023D .102512.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-13.下列调查中,调查方式选择正确的是( ) A .为了了解1 000个灯泡的使用寿命,选择全面调查 B .为了了解某公园全年的游客流量, 选择抽样调查 C .为了了解生产的一批炮弹的杀伤半径,选择全面调查 D .为了了解一批袋装食品是否含有防腐剂,选择全面调查 14.如果一个有理数的绝对值是6,那么这个数一定是( ) A .6B .6-C .6-或6D .无法确定15.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1二、填空题16.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 17.若523m xy +与2n x y 的和仍为单项式,则n m =__________.18.化简:2xy xy +=__________.19.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________. 20.若方程11222m x x --=++有增根,则m 的值为____.21.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.22.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.23.若α与β互为补角,且α=50°,则β的度数是_____. 24.计算7a 2b ﹣5ba 2=_____.25.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.26.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.27.当12点20分时,钟表上时针和分针所成的角度是___________.28.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.29.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.30.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .三、压轴题31.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒. 32.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.33.已知:A 、O 、B 三点在同一条直线上,过O 点作射线OC ,使∠AOC :∠BOC =1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转至图2的位置,使得ON 落在射线OB 上,此时三角板旋转的角度为 度;(2)继续将图2中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在∠AOC 的内部.试探究∠AOM 与∠NOC 之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM 所在直线恰好平分∠BOC 时,时间t 的值为 (直接写结果). 34.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示). (4)直接写出点B 为AC 中点时的t 的值.35.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.36.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB=,BC=;(2)现有动点M、N都从A点出发,点M以每秒2个单位长度的速度向右移动,当点M 移动到B点时,点N才从A点出发,并以每秒3个单位长度的速度向右移动,求点N移动多少时间,点N追上点M?(3)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC-AB的值是否随着时间的变化而改变?请说明理由.37.(阅读理解)若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?38.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).(1)当甲追上乙时,x = .(2)请用含x的代数式表示y.当甲追上乙前,y= ;当甲追上乙后,甲到达C之前,y= ;当甲到达C之后,乙到达C之前,y= .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:4=2,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解.2.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合.设小强做数学作业花了x分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x分钟,由题意得6x-0.5x=180,解之得x= 360 11.故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.3.D解析:D【解析】【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.【详解】解:∵方程2k-3x=4与x-2=0的解相同,∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.故选:D.【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.4.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握5.C解析:C【解析】【分析】根据有理数加法法则计算即可得答案.【详解】(3)(5)-++=5+-3-=2故选:C.【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.6.B解析:B 【解析】 【分析】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟,列出方程即可得. 【详解】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,由题意得1604x -1605x =12, 故选B. 【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.7.A解析:A 【解析】 【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上. 【详解】 解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A . 【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.8.A解析:A 【解析】(y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代入所求代数式(x+y )2015=(1﹣2)2015=﹣1. 故选A9.B解析:B【解析】【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x=1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.10.C解析:C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<0,b>0,且|a|>|b|,∴a+b<0,ab<0,a﹣b<0,a÷b<0.故选:C.11.D解析:D【解析】【分析】观察数据,找到规律:第n个数为(﹣2)n+1,根据规律求出第10个数即可.【详解】解:观察数据,找到规律:第n 个数为(﹣2)n +1,第10个数是(﹣2)10+1=1024+1=1025故选:D .【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.12.C解析:C【解析】【分析】根据相反数的定义进行判断即可.【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意;C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意;故选:C .【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.13.B解析:B【解析】选项A 、C 、D ,了解1000个灯泡的使用寿命,了解生产的一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,不适于全面调查,适用于抽样调查.选项B ,了解某公园全年的游客流量,工作量大,时间长,需要用抽样调查.故选B .14.C解析:C【解析】【分析】由题意直接根据根据绝对值的性质,即可求出这个数.【详解】解:如果一个有理数的绝对值是6,那么这个数一定是6-或6.故选:C .【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.15.A【解析】【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4,∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.二、填空题16.﹣.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+=,解得:m=﹣.故答案为:﹣.【点睛】本题考查一元一次方程的解,解题的解析:﹣83.【分析】把x =3代入方程得到关于m 的方程,求得m 的值即可.【详解】解:把x =3代入方程得1+1+mx(31)4-=23, 解得:m =﹣83. 故答案为:﹣83. 【点睛】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.17.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.18..【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.19.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.20.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键21.4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 22.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.23.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.24.2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】故答案为:【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.解析:2a 2b【解析】【分析】根据合并同类项法则化简即可.【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 25.72【解析】【分析】用360度乘以C 等级的百分比即可得.【详解】观察可知C 等级所占的百分比为20%,所以C 等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 26.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.27.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.28.6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm,AQ=AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1解析:6cm【解析】【分析】根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=12AM=2cm,AQ=12AB=8cm,从而得到答案.【详解】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q分别为AM,AB的中点,∴AP=12AM=2cm,AQ=12AB=8cm,∴PQ=AQ-AP=6cm;故答案为:6cm.【点睛】本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.29.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系. 30.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.三、压轴题31.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t=152或15;当OI在直线AO的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.32.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257⨯=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.33.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB=90°.故答案为:90°(2)∠AOM﹣∠NOC=30°.理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,∵OM为∠BOC的平分线,∴∠BOM=∠BOC=60°,∴t=60°÷5°=12秒.如图2所示:当OM的反向延长为∠BOC的平分线时,。
湖北省武汉市七年级上学期期末数学试卷
湖北省武汉市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)在﹣(﹣2),(﹣2),+(﹣),﹣|﹣2|这四个数中,负数的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分)下列说法正确的是()A . 球的截面可能是椭圆B . 组成长方体的各个面中不能有正方形C . 五棱柱一共有15条棱D . 正方体的截面可能是七边形3. (2分)如图所示的几何体是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A .B .C .D .4. (2分)(2018·夷陵模拟) 如图,是一个正方体纸盒的展开图,若在其中三个正方形A,B,C中分别填入适当的数使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A,B,C中的三个数依次是()A . 1,﹣3,0B . 0,﹣3,1C . ﹣3,0,1D . ﹣3,1,05. (2分) 2012年3月5日,温家宝总理在“政府工作报告”中说,2012年国家财政性教育经费支出21984.63亿元,占国内生产总值4%以上.21984.63亿元用科学记数法表示为()A . 2.198463×1013元B . 2.198463×1012元C . 21.98463×1012元D . 21.98463×1013元6. (2分)某校为了解本校500名学生的体重情况,从中抽取了50名学生测量体重,下列说法中正确的是()A . 总体是500名学生B . 样本容量是50C . 该调查方式是普查D . 个体是50名学生的体重7. (2分)在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点1000m的A地去,先沿北偏东70°方向到达B地,然后再沿北偏西20°方向走了500m到达目的地C,此时小霞在营地A的A . 北偏东20°方向上B . 北偏东30°方向上C . 北偏东40°方向上D . 北偏西30°方向上8. (2分) (2019七上·博兴期中) 数轴上有两点表示的数为和,则这两点的距离为()A .B .C .D .9. (2分) (2016七上·重庆期中) 下列合并同类项正确的是()①3a+2b=5ab;②3a+b=3ab;③3a﹣a=3;④2R+πR=(2+π)R;⑤7ab﹣7ba=0;⑥4x2y3﹣5x2y3=﹣x2y3;⑦﹣2﹣3=﹣5;⑧3x2+2x3=5x5 .A . ①②③④B . ⑤⑥⑦⑧C . ⑥⑦D . ④⑤⑥⑦10. (2分)整理一批图书,由一个人做要40h完成,现计划有一部分人先做4h,然后增加2人与他们一起做8h,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?如果设安排x人先做4h,下列四个方程中正确的是()A . +=1B . +=1C . +=1D . +=111. (2分)下列式子中不是整式的是()A . -23xB .C . 12x+5yD . 012. (2分)(2020·河南模拟) 如图,已知,以点为圆心,适当长度为半径作弧,分别交边于点,分别以为圆心,大于的长为半径作弧,两弧在内交于点,作射线 .若是上一点,过点作的平行线交于点,且,则直线与之间的距离是()A .B .C . 3D . 6二、填空题 (共4题;共6分)13. (3分)(2019·五华模拟) ﹣6的相反数是________,﹣(+10)的绝对值是________,的倒数是________.14. (1分) (2018七上·江津期末) 比较大小:.-2________-315. (1分) (2018七上·綦江期末) 某服装厂生产某种冬装,9月份销售每件冬装的利润是出厂价的25%(每件冬装的利润=出厂价﹣成本),10份将每件冬装的出厂价降低10%,(每件冬装的成本不变),销售量则比9月份增加80%,那么该厂10份销售这种冬装的利润总额比9月的利润总额增长________%.16. (1分)如果2(x+3)的值与3(1﹣x)的值互为相反数,那么x等于________三、解答题 (共7题;共69分)17. (15分) (2016七上·腾冲期中) 计算:(1)(﹣7.3)﹣(﹣25.7)+(﹣13.7)﹣(﹣7.3)(2)( + ﹣)÷(﹣)(3)﹣32﹣|﹣6|﹣3×(﹣)+(﹣2)2÷ .18. (10分) (2019七上·江汉期中) 化简:(1)(2)19. (10分) (2017七下·商水期末) 解方程(组)(1) 2﹣ =(2).20. (5分) (2019七下·东台期中) 如图,已知,点在的右侧,的平分线相交于点 .探索与之间的等量关系,并说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省武汉市七年级上学期期末数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分)已知数a,b在数轴上表示的点的位置如图所示,则下列结论正确的有()
①a<b<0;②|a|>|b|;③a•b>0;④b﹣a>0;⑤a+b<0.
A . 5个
B . 4个
C . 3个
D . 2个
2. (2分)下列计算结果正确的是()
A . 8x6÷2x3=4x2
B . x2+x3=x5
C . (﹣3x2y)3=﹣9x6y3
D . x•x2=x3
3. (2分)实数a,b在数轴上的位置如图所示,则化简﹣ +b的结果是()
A . 1
B . b+1
C . 2a
D . 1﹣2a
4. (2分) (2016七上·庆云期末) 下列说法中,正确的是()
A . 2不是单项式
B . ﹣ab2的系数是﹣1,次数是3
C . 6πx3的系数是6
D . ﹣的系数是﹣2
5. (2分)直线a上有四个不同的点依次为A、B、C、D.那么到A、B、C、D的距离之和最小的点()
A . 可以是直线AD外的某一点
B . 只是B点和C点
C . 只是线段AD的中点
D . 有无数多个点
6. (2分)如图,把一块含45°角的三角板的直角顶点靠在长尺(两边a∥b)的一边b上,若∠1=30°,则三角板的斜边与长尺的另一边a的夹角∠2的度数为()
A . 10°
B . 15°
C . 30°
D . 35°
7. (2分)(2016·大庆) 由若干边长相等的小正方体构成的几何体的主视图、左视图、俯视图如图所示,则
构成这个几何体的小正方体有()个.
A . 5
B . 6
C . 7
D . 8
8. (2分) (2018七上·罗湖期末) 一收割机收割一块麦田,上午收割了麦田的25%,下午收割了剩下麦田的20%,最后还剩下6公顷麦田未收割.这块麦田一共有()公顷.
A . 10
B . 12
C . 14
D . 16
9. (2分)课外活动中一些学生分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少2组.这些学生共有()
A . 48人
B . 56人
C . 60人
D . 72人
10. (2分)如图图案由边长相等的黑、白两色正方形按一定规律拼接而成,依此规律,第10个图案中白色
正方形的个数为()
A . 50
B . 53
C . 55
D . 60
二、细心填一填 (共8题;共10分)
11. (2分)的相反数是________,绝对值是________.
12. (1分)网上购物已成为现代人消费的趋势.2014年,天猫“双十一”当天交易额已超571亿元.571亿用科学记数法表示为________.
13. (2分) (2016七下·辉县期中) 若(x+y+4)2+|3x﹣y|=0,则x=________,y=________.
14. (1分)在Rt△ABC中,∠C=90°,∠A=65°,则∠B=________
15. (1分)将一张长方形纸片折叠成如图所示的形状,则∠ABC的度数________ .
16. (1分) (2016七下·博白期中) 已知方程mx﹣2=3x的解为x=﹣1,则m=________.
17. (1分) (2020七上·自贡期末) 如图是一个简单的数值运算程序,当输入x的值为一1时,则输出的数值为________.
18. (1分) (2019七上·江都月考) 如图,数轴上 A,B 两点对应的有理数分别为 10 和 15,点 P 从点A 出发,以每秒 1 个单位长度的速度沿数轴正方向运动,点 Q 同时从原点O 出发,以每秒 2 个单位长度的速度沿数轴正方向运动,设运动时间为 t 秒.当时,t=________.
三、解答题 (共8题;共96分)
19. (35分) (2016七上·思茅期中) 计算
(1)﹣40﹣28﹣(﹣19)+(﹣24)
(2)﹣82+3×(﹣2)2+6÷(﹣)2
(3)﹣24×(﹣ + ﹣)
(4)﹣12016﹣(1﹣0.5)× ×[3﹣(﹣3)2]
(5) x+7x﹣5x
(6)﹣4x2y+3xy2﹣9x2y﹣5xy2
(7) 4(2x2﹣y2)﹣5(3y2﹣x2)
20. (10分) (2016七上·莘县期末) 解下列方程
(1) 3x+(﹣2x+1)﹣(4x﹣2)=6
(2)﹣ =﹣1.
21. (10分)(2012·北海) 已知:如图,在△ABC中,∠A=30°,∠B=60°.
(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);
(2)连接DE,求证:△ADE≌△BDE.
22. (15分) (2019七上·杭州月考) 已知数轴上A、B两点对应数分别为-2和4,p为数轴上一点,对应的数为x
(1)若点P到A、B两点的距离相等,求点P对应的数x
(2)数轴上是否存在点P,使得P到点A、B距离之和为10?若存在,求出x的值,若不存在,请说明理由(3)数轴上是否存在点P,使得点P到点A的距离是点P到点B的距离的2倍?若存在,求出x的值,若不存在,请说明理由.
23. (5分)如图,直钱AB、CD相交于点O,OD平分∠AOF,OE⊥CD于O.∠EOA=50°.求∠BOC、∠BOE、∠BOF 的度数.
24. (5分) (2017七下·单县期末) 某儿童服装店欲购进A、B两种型号的儿童服装;经调查:B型号童装的进货单价是A型号童装的进货单价的两倍,购进A型号童装60件和B型号童装40件共用去2100元.求A、B两种型号童装的进货单价各是多少元?
25. (10分) (2018七上·翁牛特旗期末) 如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.
(1)求出∠AOB及其补角的度数;
(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.
26. (6分)如图为一梯级平面图,一只老鼠沿长方形的两边A﹣B﹣C的路线逃跑,一只猫同时沿梯级(折线)A﹣C﹣D的路线追,结果在距离C点0.6m的D点处,猫捉住了老鼠,已知老鼠的速度是猫的,求梯级(折线)A﹣C的长度,
(1)请将下表中每一句话“译成”数学语言(在表格中写出对应的代数式):
设梯级(折线)A→C的长度为xm
AB+BC的长度为________
A→C→D的长度为________
A→B→D的长度为________
设猫捉住老鼠所用时间为ts
猫的速度是________
老鼠的速度是________
(2)根据表格中代数式列出一个你认为正确的方程(不要求解):________.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、细心填一填 (共8题;共10分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共8题;共96分)
19-1、19-2、19-3、
19-4、19-5、19-6、19-7、20-1、
20-2、21-1、
21-2、22-1、
22-2、
22-3、
23-1、24-1、25-1、
25-2、26-1、
26-2、。