【附答案或解析】2015秋九年级数学上册19.5+相似三角形的判定课后零失误训练+北京课改版
【附答案或解析】九年级数学上册19.5相似三角形的判定课后零失误训练(北京课改版)
19.5 相似三角形的判定基础能力训练★回归教材 注重基础◆相似三角形的判定1.(2008·哈尔滨)已知菱形ABCD 的边长是6,点E 在直线AD 上,DE=3,联结BE 与对角线AC 相交于点M,则AMMC 的值是______. 2.如图19-5-4所示,E 是平行四边形ABCD 的一边BA 延长线上的一点,CE 交AD 于点F,图中共有______对相似三角形,按对应顶点写出图中的相似三角形____________________.3.如图19-5-5所示,已知△ABC 中,AB=AC,∠A=36°,BD 平分∠ABC,则BD=_______=_______.4.如图19-5-6所示,∠l=∠2,若再增加一个条件就能使结论“AB·DE=AD·BC”成立,则这个条件可以是_______.5.如图19-5-7所示,△ACD 和△ABC 具备下列哪个条件时,它们相似( ) A.BC AB CD AC = B.ACBC AD CD = C.CB 2=AD ·BD D.AC 2=AD ·AB 6.用—个放大镜看一个直角三角形,该直角三角形的边长放大到原来的5倍后,下列结论正确的是( )A.每个内角是原来的5倍B.周长是原来的5倍C.面积是原来的5倍D.两条直角边的比值是原来的5倍7.下列条件能判别△ABC~△DEF 的是( )A.AB=4 cm,AC=3.2 cm,DE=2 cm,DF=1.6 cm,∠B=∠E=50°B.AB=6 cm,BC=9 cm,AC=7.5 cm,DE=8 cm,EF=12 cm.DF=10 cmC.∠A=∠D=70°,∠B =50°,∠E=60°D.∠B=∠E=90°,EFBC DF AB = 8.某班在布置新年联欢会会场时,需要将直角三角形彩纸裁成长度不等的矩形纸条,如图19-5-8所示,在Rt△ABC 中,∠C =90°,AC=30 cm,AB=50 cm,依次裁下宽为1 cm 的纸条a 1、a 2、a 3、…,若使裁得的矩形纸条长度不小于5 cm,则每张直角三角形彩纸能裁成矩形纸条的条数为( )A.24B.25C.26D.279.已知,如图19-5-9,Rt△∠ABC 和Rt△A′B′C′中∠C=∠C′=90°,''''C A AC B A AB =.△ABC 与△A′B′C′是否相似,并说明理由.10.如图19-5-10所示,四边形ABCD 的对角线AC 、BD 相交于点O ,∠1=∠2,∠3=∠4,指出图中哪些三角形相似,并说明理由.11.如图19-5-11所示,点C 、D 在线段AB 上,△PCD 是等边三角形.(1)当AC 、CD 、DB 满足怎样的关系时,△ACP ~△PDB?(2)当△ACP~△PDB 时,求∠APB.12.如图19-5-12所示,在△ABC中,AH是BC边上的高,四边形DEFG是△ABC的内接矩形,DG交AH于点I,则图中相似的三角形共有多少对?分别表示出来.13.如果两个三角形中有两边和其中一边上的高对应成比例,则这两个三角形相似吗?综合创新训练★登高望远课外拓展◆创新训练14.已知:如图19-5-13,在平面直角坐标系中,矩形AOBC有两个顶点的坐标分别是A(0,6),C(8,6),x轴的正半轴上有一动点E(E与B不重合),作直线AE交对角线OC于D,或AE与BC相交于点F.当点E在O、B间运动到某些位置时,作直线AE后,图中会出现相似不全等的三角形,请你把这个相似三角形写出来:_______;当E点运动到B点的右边时,请你写出此时图中三对相似而不全等的三角形:__________________.15.如图19-5-14所示,在△ABC中,AB=8 am,BC=16 cm,点P从点A开始沿AB边向点B以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4 cm/s的速度移动.如果P、Q分别从A、B同时出发,经过几秒钟△PBQ 与原△ABC相似?16.一个圆柱形油桶,半径为1米,高为1.5米,用一根2米长的木棒从桶盖小口斜插桶内,另一端在小口处,抽出木棒后,量得上面没浸油的部分为1.2米,试求:(1)油面的高度是多少?(2)桶内有油多少升?(1立方分米=1升,π取3.14,取后结果精确到1升)◆开放探索17.如图19-5-15,在△ABC 中,∠C=90°,P 为AB 上一点且点不与点A 重合.过点P 作PE⊥AB 交AC 边于E,点E 不与点C 重合.若AB=10,AC=8,设AP 的长为x,四边形PECB 的周长为y,试用x 的代数式表示y.参考答案1答案:2或32 解析:当点E 在线段AD 上时,如图(1),因为AB ∥CD ,所以△ABE~△DFE.所以EDAE DF AB =,故DF=6.又因为△AMB ~△CMF ,所以2612===AB CF AM MC . 当点E 在线段AD 的延长线上时,如图(2),容易得到△BCM ~△EAM , ∴32366=+==AE BC AM MC .2答案:3 △EAF ~△EBC ,△EAF ~△CDF ,△EBC ~△CDF3答案:BC AD4答案:∠B=∠D ,或∠C=∠AED ,或AD :AB=AE :AC解析:本题实质就是构造使△ADE 与△ABC 相似的条件.5答案:D 解析:由AC 2=AD ·AB 可得AC AB AD AC =.又∠A=∠A ,所以△ACD ~△ABC.6答案:B7答案:B 解析:因为43===DF AC EF BC DE AB ,三边对应成比例,所以两三角形相似. 8答案:C 解析:设第n 条的长度恰好为5cm ,且该矩形纸条与AC 的交点为P 点,与AB 的交点为Q 点,则PQ=5cm ,设AP=x cm ,则△APQ ~△ACB,得BC PQ AC AP =,即40530=x ,解得:x=3.75, ∴CP=30-x=26.25.∵矩形宽为1 cm ,取整数,可知矩形纸条为26条.9答案:解析:相似,理由如下:∵''''C A AC B A AB =,∴''''C A B A AC AB =,两边平方,得2222''''C A B A AC AB =,所以222222''''''C A C A B A AC AC AB -=-,由勾股定理得2222C'A'''C B AC BC =,因为AC BC ,''''C A C B 均为正数,则C'A'''C B AC BC =,即''''C A AC C B BC =,而∠C=∠C ′=90°,故Rt △ABC ~Rt △A'B'C'. 10答案:解析:(1)△ABO ~△DCO ,因为∠1=∠2,∠AOB=∠DOC ,所以△ABO ~△DCO. (2)△AOD ~△BOC ,由(1)知△ABO ~△DCO ,则CO BO DO AO =.又因为∠AOD=∠BOC ,所以△AOD ~△BOC. (3)△ACD ~△BCE ,由(2)知△AOD ~△BOC ,则∠DAO=∠CBO ,又因为∠3=∠4,所以△ACD~△BCE.(4)△ABC ~△DEC ,因为∠3=∠4,所以∠3+∠ECO=∠4+∠ECO ,即∠BCA=∠ECD.又因为∠1=∠2,所以△ABC ~△DEC.11答案:解析:(1)∵△PCD 是等边三角形,∴PC=CD=PD ,∠PCD=∠PDC=60°,即∠PCA=∠PDB=120°,∴只要满足BD PC PD AC =,就有△ACP ~△PDB ,∴关系式为BDCD CD AC =或CD 2=AC ·BD. (2)∵△ACP ~△PDB ,∴∠1=∠A ,∠2=∠B.又∵∠PDC=∠1+∠B=60°,∴∠1+∠2=60°,∴∠APB=∠1+∠2+∠CPD=60°+60°=120°12答案:解析:7对,分别是△ADG~△ABC,△BDE~△BAH,△ADI~△ABH,△ADI~△DBE,△AIG~△AHC,△AIG~△GFE,△GFC~△AHC.13答案:解析:(1)当△ABC 和△A ′B ′C ′都是锐角三角形时,可得△ABC ~△A ′B ′C ′,如图①.(2)当两个三角形都是直角三角形时,也可得△ABC ~△A'B'C'.(3)当两个三角形都是钝角三角形时,如图②,可得△ABC ~△A'B'C'.(4)当△ABC 为锐角三角形,△A ′B ′C ′为钝角三角形.虽然两个三角形有两边和其中一边上的高对应成比例,但两个三角形不相似.如图③.14答案:△ADC ~△EDO △ADC ~△EDO ,△AOD ~△FCD ,△BEF ~△OEA ,△AFC ~△EAO 等等 15答案:解析:分两种情况,设经过x s △PBQ 与原△ABC 相似.(1)△BPQ ~△BAC ,则BC BQ BA BP =,即164828t t =-得t=2s ; (2)△BQP ~△BAC ,则BC BP BA BQ =,即162884t t -=得t=0.8s. ∴经过0.8s 或2s 时,△PBQ 与原△ABC 相似.16答案:(1)0.6米 (2)1 884升17答案:解析:∵PE ⊥AB ,∠C=90°,∴∠EPA=∠C=90°.又∵∠A 为公共角,∴△AEP~△ABC ,∴BCEP AC AP AB AE ==.又∵∠C=90°,AB=10,AC=8,可知BC=6. ∴6810PE x AE ==,∴x PE 43=,x AE 45=,x EC 458-=, BP=10-x ,∴242310645843+-=-++-+=x x x x y , ∴2423+-=x y . 设点E 与点C 重合,有CP ⊥AB.又∠ACB=90°,∴CA 2=AP ·AB ,即82=10AP ,解之,得532=AP ,故由P 点与A 点不重合,点E 与点C 不重合知x 的取值范围是0<x<532. ∴y 与x 之间的关系式为:)5320(2423<<+-=x x y .。
九年级数学上册第四章图形的相似5相似三角形判定定理的证明判断两个相似三角形中的错误素材北师大版
判断两个相似三角形中的错误判断两个图形相似,应正确理解相似图形的判断方法,若判断方法把握不准确,判断就有可能出错哟!例1下面各组中的两个三角形一定相似的为______①都有一个角是50°的两个等腰三角形 ② 都有一个角是120°的两个等腰三角形 ③都有一个角是60°的 两个等腰三角形 ④都有一个角90°的等腰三角形错解:①,④.分析:要判断两个三角形相似相似,应根据三角形相似的判断方法,判断已知条件中是否具备两个三角形相似的条件.观察①中的两个等腰三角形,由于50°的角可以是底角,也可以是顶角,当作为顶角时,两个底角分别是65°,65°;当作为底角时,两外两个角分别是50°,80°,当第一个三角形中的50°是顶角度数,第二个三角形的50°是底角度数,则这两个三角形不相似。
观察②可知,120°的角只能是等腰三角形的顶角,这样的两个三角形的底角也相等,所以满足这个条件的两个三角形相似;观察③中的两个三角形一定是等边三角形,两个三角形一定形似;观察④中的两个三角形是等腰直角三角形,两个三角形一定相似.正解:②④③ .例 2 在△ABC 和△A′B′C′中,已知AB=6cm ,AC=8cm .BC=10cm, A′B′=24cm, A′C′=18cm,B′C′=30cm,试判断△ABC 与△A′B′C′是否相似,并说明理由. 错解:△ABC 与△A′B′C′不相似.理由:41=''B A AB ,94188==''C A AC ,313010==''C B BC , CB BC C A AC B A AB ''≠''≠'',所以△ABC 与△A′B′C′不相似。
分析:本题已知两个三角形的边长,要判断这两个三角形是否相似,应判断两个三角形的最短边与最短边的比,中等边与中等边的比,最长边与最长边的比是否相等,而不要思维定势把AB 与A′B′,AC 与A′C′,BC 与B′C′是对应边。
九年级数学相似三角形知识点总结及例题讲解
九年级数学相似三角形知识点总结及例题讲解相似三角形基本知识放缩与相似图形的放大或缩小称为图形的放缩运动。
当两个图形形状相同时,我们称它们为相似图形,或者简称相似性。
需要注意的是,相似图形强调形状相同,与它们的位置、颜色、大小等因素无关。
相似图形不仅仅指平面图形,也包括立体图形相似的情况。
我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的。
当两个图形形状和大小都相同时,这时是相似图形的一种特例——全等形。
相似多边形的性质如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。
需要注意的是,当两个相似的多边形是全等形时,它们的对应边的长度比值为1.比例线段有关概念及性质比例线段的概念比指同一单位下两条线段的长度比较,若两线段的长度分别为m和n,则它们的比为a:b=m:n(或bn)。
比的前项为a,后项为b。
比例指两个比相等的式子,如比例线段的性质对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即比例线段的基本性质是两外项的积等于两内项积,即acbd=adbc。
比例线段还有反比性质、更比性质、合比性质等。
其中,反比性质指如果注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项、后项之间发生同样的和差变化比例仍成立。
例如:$\frac{b-ad-c}{ac}=\frac{bd}{a-b+c-d}=\frac{a+bc+d}{ac}$。
5.等比性质:若$\frac{a+c+e+\cdots+m}{a\cdot c\cdote\cdots m}=\frac{b+d+f+\cdots+n}{b\cdot d\cdot f\cdots n}$,其中$b+d+f+\cdots+n\neq 0$,则$\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\cdots=\frac{m}{n}$。
注意:(1)此性质的证明运用了“设$k$法”,这种方法是比例计算和变形中一种常用方法。
相似三角形习题及答案.docx
相似三角形1、要掌握基础知识和基本技能。
2、判定三角形相似的几条思路:(1)条件中若有平行,可采用判定定理1;(2)条件中若有一对角相等,可再找一对角相等或找夹边对应成比例;(3)条件中若有两边对应成比例,可找夹角相等;(4)条件中若有等腰关系,可找顶角相等或底角相等,也可找腰和底对应成比例。
(5)利用相似三角形的传递性证相似。
(6)若是两个直角三角形,可找一对锐角相等或夹直角的两直角边对应成比例,或应用斜边直角边对应成比例来判定相似。
3、在综合题中,注意相似知识的灵活运用,并熟练掌握线段代换、等比代换、等量代换技巧的应用,培养综合运用知识的能力。
1.己知,如图,CD是Rt\ABC斜边上的屮线,DE1AB交BC 于F ,交AC的延长线于E,说明:(1) \ADE s \FDB;(2) CD2 = DE DF .2.如图,在AABC中,ZC = 90°,P为4B上一点,且点P不与点A重合,过P作PE丄AB 交AC边于点E ,点E不与点C重合,若p4B = 10,AC = 8,设4P的长为x,四边形PECB周长为y ,求y与兀的函数关系式,并写出自变量兀的取值范围. 上_A ---------- 1A E C3.已知:如图,在平面直角坐标系中,\ABC是直角三角形,ZACB= 90°,点A, C 的坐标分别为A(_3,0),C(l,0), B(l,3). ⑴ 求过点A,B的直线的函数表达式;⑵ 在兀轴上找一点连接DB ,使得\ADB与AA3C相似 (不包括全等),并求点D的坐标;⑶在⑵的条件下,如P,Q分别是AB和AD上的动点,连接PQ ,设AP = DQ = m,问是否存在这样的加使得\APQ与AADB相似,如果存在,请求出加的值;如果不存在,请说明理由.4.(2008年安徽省屮考题)如图3,四边形ABCD和四边形ACED 都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.(1)请写出图屮各对相似三角形(相似比为1除外);(2)求BP :PQ :QR.5、(2008年贵州省中考题)如图4,点D、E分别是等边三角形ABC 的BC、AC边上的点,且BD=CE, AD与BE相交于点F, BD2=AD DF 吗?为什么?6.(2008年福州市中考题)如图6,己知ZXABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,具屮点P的运动速度是lcm/s,点Q的运动速度是2cm/s,当Q 点到达点C时,P、Q两点都停止运动,设运动时间为((s),作QR〃BA 交AC于点R,连接PR,当t为何值时,△APR S/X PRQ?7.(2008年上海市中考题)已知AB=2, AD=4, ZDAB=90,AD〃BC (如图7) .E是射线BC上的动点,(点E与点B 不重合),M是线段DE的中点.连接BD,交线段AM于点N,如果以A、N、D为顶点的三角形1JABME相似,求线段BE的长.图7相似三角形部分习题答案4 J2008年安徽省屮考题)如图3,川边形ABCD 和I 川边形ACED 都是平行四边形,点R 为DE 的中点,BR 分别交AC 、CD 于点 P 、Q.(1) 请写出图中各对相似三角形(相似比为1除外);(2) 求 BP : PQ : QR.解:(1) △BCPs&ER ; △PCQ S &DQ ; △PCD S &AB ;APDQ^APABo(2) I 四边形ABCD 、ACED 都是平行四边形A BC=AD=CEAE 〃DE ・.・RD=RE^~RQ~~RE~2:.RQ=2PQ・•・ PR=RQ+PQ=3PQ・•・ BP=PR=3PQ・・・ BP : PQ : QR=3 : 1 : 2 5、(2008年贵州省中考题)如图4,点D 、E 分别是等边三角形ABC的BC 、AC 边上的点,且BD=CE, AD 与BE 相交于点F, BD 2=AD DF 吗?为什么? 解:BD 2=ADDF 理由是: V BC=AB CE=BD ZBCE=ZABD・・・ ABCE^AABD ZFBD= ZBAD•・• ZBDF= ZADB ABDF^AADB.BD AD "~DF~~BD.e .BD 2=ADDF这是相似知识在解题中的应用,证一条线段的平方等于另两条线段的乘积时,通常是通过证 相似来解决,有时也用勾股定理来证。
相似三角形的判定及习题精讲(含答案)
14.75或27, 提示:当小多边形的周长为45时,大多边形的周长为 ×45=75;当大多边形的周长为45时,小多边形的周长为 ×45=27。 15.100cm和40cm
(二)选择题: 1. D 2.A 。 提示:过E作EG//AD交BD于G,则 = = ,设BG=2k, GD=3k, 则BD=5k, CD=15k,
A、 B、 C、 D、
6.正方形ABCD中,E是AD中点,BM⊥CE于M,AB=6cm, 则BM的长为 ( )。
A、12 cm B、
cm C、3 cm D、 cm 7.要把一个三角形的面积扩大到原来面积的8倍,而它的形状不变, 那么它的边长要增大到原来的( )倍。
A、2 B、4 C、2 D、64 8.梯形ABCD中,AD//BC,AC、BD交于E点,SΔADE∶SΔADC=1∶3, 则SΔADE∶SΔDBC=( )。 A、1∶3 B、1∶4 C、1∶5 D、1∶6 (三)已知:如图,在ΔABC中,AD为中线,E在AB上,AE=AC,CE交 AD于F,EF∶FC=3∶5,
(五)略 (六)提示:过点D作DM//AC交BC于M,证ΔBDM∽ΔBAC及 ΔQDM∽ΔQBD,通过等比代换可得。
(七)本题由正方形在三角形中的位置不同引起分类讨论。提示如 下: 解:直角三角形内接正方形有两种不同的位置。 如下图:
(1)如图(1),作CP⊥AB于P,交GF于H,则CH⊥GF, ∵ GF//AB, ∴ ΔCGF∽ΔCAB, ∴ = , ∵ ∠ACB=90°,AC=8,BC=6由勾股定理得AB=10, ∵ AC·BC=AB·CP, ∴ CP= = = , 设GF=x, 则CH=
∵ EG//PD,∴ = = =
3.C 4. A 5.D
6.B。 提示:如图,易证ΔBMC∽ΔCDE, ∵ ED=
九年级数学相似三角形的判定(教师版)知识点+详细答案
九年级数学相似三⾓形的判定(教师版)知识点+详细答案相似三⾓形的判定【学习⽬标】1、了解相似三⾓形的概念,掌握相似三⾓形的表⽰⽅法及判定⽅法;2、进⼀步探索相似三⾓形的判定及其应⽤,提⾼运⽤“类⽐”思想的⾃觉性,提⾼推理能⼒.【要点梳理】要点⼀、相似三⾓形在和中,如果我们就说与相似,记作∽.k就是它们的相似⽐,“∽”读作“相似于”.要点诠释:(1)书写两个三⾓形相似时,要注意对应点的位置要⼀致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似⽐,要注意顺序和对应的问题,如果两个三⾓形相似,那么第⼀个三⾓形的⼀边和第⼆个三⾓形的对应边的⽐叫做第⼀个三⾓形和第⼆个三⾓形的相似⽐.当相似⽐为1时,两个三⾓形全等.要点⼆、相似三⾓形的判定定理1.判定⽅法(⼀):平⾏于三⾓形⼀边的直线和其他两边相交,所构成的三⾓形和原三⾓形相似.2.判定⽅法(⼆):如果两个三⾓形的三组对应边的⽐相等,那么这两个三⾓形相似. 3.判定⽅法(三):如果两个三⾓形的两组对应边的⽐相等,并且相应的夹⾓相等,那么这两个三⾓形相似.要点诠释:此⽅法要求⽤三⾓形的两边及其夹⾓来判定两个三⾓形相似,应⽤时必须注意这个⾓必需是两边的夹⾓,否则,判断的结果可能是错误的.4.判定⽅法(四):如果⼀个三⾓形的两个⾓与另⼀个三⾓形的两个⾓对应相等,那么这两个三⾓形相似.要点诠释:要判定两个三⾓形是否相似,只需找到这两个三⾓形的两个对应⾓相等即可,对于直⾓三⾓形⽽⾔,若有⼀个锐⾓对应相等,那么这两个三⾓形相似.要点三、相似三⾓形的常见图形及其变换:【典型例题】类型⼀、相似三⾓形1. 下列能够相似的⼀组三⾓形为( ).A.所有的直⾓三⾓形B.所有的等腰三⾓形C.所有的等腰直⾓三⾓形D.所有的⼀边和这边上的⾼相等的三⾓形【答案】C【解析】A中只有⼀组直⾓相等,其他的⾓是否对应相等不可知;B中什么条件都不满⾜;D中只有⼀条对应边的⽐相等;C中所有三⾓形都是由90°、45°、45°⾓组成的三⾓形,且对应边的⽐也相等.答案选C.举⼀反三:下列图形中,必是相似形的是().A.都有⼀个⾓是40°的两个等腰三⾓形B.都有⼀个⾓为50°的两个等腰梯形C.都有⼀个⾓是30°的两个菱形 D.邻边之⽐为2:3的两个平⾏四边形【答案】C类型⼆、相似三⾓形的判定2. 如图所⽰,已知中,E为AB延长线上的⼀点,AB=3BE,DE与BC相交于F,请找出图中各对相似三⾓形,并求出相应的相似⽐.【答案】∵四边形ABCD是平⾏四边形,∴ AB∥CD,AD∥BC,∴△BEF∽△CDF,△BEF∽△AED.∴△BEF∽△CDF∽△AED.∴当△BEF∽△CDF时,相似⽐;当△BEF∽△AED时,相似⽐;当△CDF∽△AED时,相似⽐.3. 梯形ABCD中,AB∥CD,AB=2CD,E、F分别为AB、BC的中点,EF与BD交于M.(1)求证:△EDM ∽△FBM;(2)若DB=9,求MB的长.【答案】(1)证明:为AB中点,,.⼜,四边形BCDE是平⾏四边形,,△EDM ∽△FBM.(2)解:由(1)知,.⼜,.4. 已知:如图,△ABC中,AB=AC,AD是中线,P是AD上⼀点,过C作CF∥AB,延长BP交AC于E,交CF于F.求证:BP2=PE·PF.【答案】连接,,,是的中垂线,,,,.,.⼜,∽,,.举⼀反三:1、如图,AD 、CE 是△ABC 的⾼,AD 和CE 相交于点F ,求证:AF ·FD=CF ·FE .【答案】∵ AD 、CE 是△ABC 的⾼, ∴∠AEF=∠CDF=90°, ⼜∵∠AFE=∠CFE, ∴△AEF ∽△CDF. ∴AF EFCF FD=, 即AF ·FD=CF ·FE . 2、如图,F 是△ABC 的AC 边上⼀点,D 为CB 延长线⼀点,且AF=BD,连接DF, 交AB 于E. 求证:DE ACEF BC=.【答案】过点F 作FG ∥BC,交AB 于G.则△DBE ∽△FGE △AGF ∽△ABC∵DE DBEF GF=, ⼜∵AF=BD,∴.DE AFEF GF= ∵△AGF ∽△ABC∴AF AC GF BC=,即DE AC EF BC=.3、已知:如图正⽅形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.【答案】在正⽅形ABCD中,∵Q是CD的中点,∴=2∵=3,∴=4 ,⼜∵BC=2DQ,∴=2 ,在△ADQ和△QCP中,=,∠C=∠D=90°,∴△ADQ∽△QCP.4、如图,弦和弦相交于内⼀点,求证:.【答案】连接,.在中,,,∴∽。
九年级相似三角形知识点总结及例题讲解
相似三角形基本知识 知识点一:放缩与相似1.图形的放大或缩小,称为图形的放缩运动。
2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。
注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。
⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。
⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。
注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1.知识点二:比例线段有关概念及性质(1)有关概念1、比:选用同一长度单位量得两条线段。
a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m :n (或n m b a =)2、比的前项,比的后项:两条线段的比a :b 中。
a 叫做比的前项,b 叫做比的后项。
说明:求两条线段的比时,对这两条线段要用同一单位长度。
3、比例:两个比相等的式子叫做比例,如d c b a =4、比例外项:在比例d c b a =(或a :b =c :d )中a 、d 叫做比例外项。
5、比例内项:在比例d c b a =(或a :b =c :d )中b 、c 叫做比例内项。
6、第四比例项:在比例d c b a =(或a :b =c :d )中,d 叫a 、b 、c 的第四比例项。
7、比例中项:如果比例中两个比例内项相等,即比例为a b b a =(或a:b =b:c 时,我们把b 叫做a 和d 的比例中项。
8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dc b a =(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。
(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)(2)比例性质1.基本性质: bc ad d c b a =⇔= (两外项的积等于两内项积)2.反比性质: c d a b dc b a =⇒= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项):4.合比性质:d d c b b a d c b a ±=±⇒=(分子加(减)分母,分母不变).注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间 发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a . 5.等比性质:(分子分母分别相加,比值不变.)如果)0(≠++++====n f d b nm f e d c b a ,那么b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.知识点三:黄金分割1)定义:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBC AB AC =,即AC 2=AB×BC,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。
九年级数学相似三角形的判定知识讲解(含解析)
九年级数学相似三角形的判定知识讲解(含解析)1、了解相似三角形的概念,掌握相似三角形的表示方法及判定方法;2、进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力。
一、相似三角形的概念如图所示:在△ABC 和△A'B'C' 中,如果则△ABC 和△A'B'C' 相似,记作:△ABC ∽ △A'B'C' ,k 是相似比,“∽” 读作“相似于” 。
注:当相似比为1 时,两个三角形全等.(相似不一定全等,但全等一定相似!)。
二、相似三角形的判定方法(4种方法)1、平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似;2、如果两个三角形的三组对应边的比相等,那么这两个三角形相似;3、如果两个三角形的两组对应边的比相等,并且对应边所包含的夹角相等,那么这两个三角形相似.;4、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
三、相似三角形的常见图形及其变换四、例题讲解例题1、下列说法错误的是( C )A、有一对锐角对应相等的两个直角三角形相似;B、全等的两个三角形一定相似;C、对应角相等的两个多边形相似;D、两条邻边对应成比例的两个矩形相似。
例题2、如图,在正方形 ABCD 中,E、F 分别是边 AD、CD上的点,AE = ED , DF = 1/4DC,连接 EF 并延长交 BC 的延长线于点G 。
① 求证:△ABE∽△DEF;② 若正方形的边长为 4,求线段 BG 的长。
注:此题考查了相似三角形的判定、正方形的性质、平行线分线段成比例定理等知识的综合应用。
例题3、如图,小正方形边长均为 1,则图中的三角形(阴影部分)与△ABC 相似的是哪一个?解题思路:图中的三角形为格点三角形,可根据勾股定理求出各边的长,然后根据三角形三边的长度的比是否相等来判断哪两个三角形相似。
相似三角形的判定及性质学案及答案
相似三角形的判定及性质学习目标:1.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).2.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.3.掌握两个直角三角形相似的判定条件,并能解决简单的问题.4.掌握相似三角形的性质定理,并能解决简单的问题.知识梳理:(1)相似三角形的判定定义:对应角________,对应边_________的两个三角形叫做相似三角形.相似三角形对应边的比值叫做_________.预备定理:_____于三角形一边的直线和_________(或两边的_________)相交,所构成的三角形与原三角形相似.引理:如果一条直线截三角形的两边(或两边的延长线)所的的线段______________那么这条直线平行于__________.判定定理1:如果一个三角形的__________与另一个三角形的两个角__________,那么这两个三角形相似.(简叙为:______________________________).判定定理2:如果一个三角形的__________与另一个三角形的两边__________,并且__________,那么这两个三角形相似.(简叙为:___________________________________).判定定理3:如果一个三角形的__________与另一个三角形的三条边__________,那么这两个三角形相似.(简叙为:______________________________).直角三角形相似的判定定理1:①如果两个直角三角形_____________________,那么它们相似.②如果两个直角三角形_____________________,那么它们相似.定理2:①如果一个直角三角形的________________与另一个直角三角形的斜边和一条直角边__________,那么这两个直角三角形相似.(2)相似三角形的性质①相似三角形的对应线的比,对应线的比和对应线的比都等于相似比;②相似三角形的的比等于相似比;③相似三角形的的比等于相似比的.④相似三角形外接圆的直径比、周长比等于,外接圆的面积比等于.三角形相似的关系证明:AD2=DC·AC例2.如图所示,已知在△ABC中,AB=AC,AD是BC边上的中线,CF∥BA,BF交AD 于点P,交AC于点E.求证:BP2=PE·PF.例3.如图所示,在△ABC中,∠ACB=90°,CD⊥AB于点D,AE是∠CAB的角平分线,CD与AE相交于点F,EG⊥AB于点G. 求证:EG2=FD·EB例4.如图所示,在△ABC中,DE∥BC,S△ADE∶S△ABC =4∶9.(1)求AE∶EC.(2)求S△ADE∶S△CDE.A.有两边成比例及一个角相等的两个三角形相似B.有两边成比例的两个等腰三角形相似C.有三边分别对应平行的两个三角形相似D.有两边及一边上的高对应成比例的两个三角形相似2.如图所示,△ABC∽△AED∽△AFG,DE是△ABC的中位线,△ABC与△AFG的相似比是3∶2,则△ADE与△AFG的相似比是()A.3∶4B.4∶3C.8∶9D.9∶83.如图所示,在△ABC中,点M在BC上,点N在AM上,CM=CN,且AM BM= AN CN下列结论正确的是()A.△ABM∽△ACBB.△ANC∽△AMBC.△ANC∽△ACMD.△CMN∽△BCA4.如图所示,BD、CE是△ABC的高,BD、CE交于点F,写出图中所有与△ACE相似的三角形:__________.5.如图所示,AB=8,AD=3,AC=6,当AE=____时,△ADE∽△ACB.6.在△ABC中,点D、E分别是边AB、AC上的点,且DE∥BC,若AE∶EC=1∶2,且AD=4 cm,则DB等于()A.2 cm B.6 cmC.4 cm D.8 cm7.在△ABC中,AB=9,AC=12,BC=18,D为AC上一点,DC=AC,在AB上取一点E,得到△ADE,若△ADE与△ABC相似,则DE的长为()A.6 B.8C.6或8 D.148.如图所示,已知在△ABC中,∠C=90°,正方形DEFG内接于△ABC,DE∥AC,EF∥BC,AC=1,BC=2,则AF∶FC等于()A.1∶3B.1∶4C.1∶2D.2∶39.两相似三角形的相似比为1∶3,则其周长之比为______,内切圆面积之比为______.10.如图所示,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE =______.11.如图所示,已知边长为12的正三角形ABC,DE∥BC,S△BCD∶S△BAC=4∶9,求CE的长.相似三角形的判定和性质答案 例1. 证明:∵∠A =36°,AB =AC ,∴∠ABC =∠C =72°.又∵BD 平分∠ABC ,∴∠ABD =∠CBD =36°.∴AD =BD =BC ,且△ABC ∽△BCD .∴BC ∶AB =CD ∶BC .∴BC 2=AB ·CD , ∴AD=BC,AB=AC.∴AD 2=AC ·CD例2. 证明:如图,连接PC ,在△ABC 中,∵AB =AC ,D 为BC 中点,∴AD 垂直平分BC .∴PB =PC ,∠1=∠2.∵AB =AC ,∴∠ABC =∠ACB .∴∠ABC -∠1=∠ACB -∠2.∴∠3=∠4.∵CF ∥AB ,∴∠3=∠F .∴∠4=∠F .又∵∠EPC =∠CPF .∴△PCE ∽△PFC .∴ = .∴PC 2=PE ·PF .∵PC =PB .∴PB 2=PE ·PF例3.证明:∵∠ACE =90°,CD ⊥AB ,∴∠CAE +∠AEC =90°,∠F AD +∠AFD =90°. ∵∠AFD =∠CFE ,∴∠F AD +∠CFE =90°.又∵∠CAE =∠F AD ,∴∠AEC =∠CFE ,∴CF =CE .∵AE 是∠CAB 的平分线,EG ⊥AB ,EC ⊥AC ,∴EC =EG ,∴CF =EG .∵∠B +∠CAB =90°,∠ACF +∠CAB =90°,∴∠ACF =∠B .PC PE PFPC ∵∠CAF =∠BAE ,∴△AFC ∽△AEB ,AF AE =CF EB . ∵CD ⊥AB ,EG ⊥AB ,∴Rt △ADF ∽Rt △AGE . ∴AF AE =FD EG ,∴CF EB =FD EG.例4.当堂检测:1.C2.A3.B4. △FCD 、△FBE 、△ABD5.46.D7.C8.C9.1:3 1:9 10. 211. 如图所示,过点D 作DF ⊥BC 于点F ,过点A 作AG ⊥BC 于点G ,S △BCD = BC ·DF ,S △BAC = BC ·AG ,∵S △BCD ∶S △BAC =4∶9,∴DF ∶AG =4∶9.∵△BDF ∽△BAG ,∴BD ∶BA =DF ∶AG =4∶9.∵AB =12,∴CE =BD =解析:(1)∵DE ∥BC , ∴△ADE ∽△ABC . ADE ABC S S =2AE AC ⎛⎫ ⎪⎝⎭=49, ∴AE AC =23,∴AE EC =21=2. (2)如图所示,作DF ⊥AC ,垂足为F .则S △ADE =12DF ⋅AE ,S △CDE =12DF ⋅EC . ∴ADE CDE S S =1212DF AE DF EC ⋅⋅=AE EC=21=2.。
中考试题相似三角形的判定课后练习一及详解.docx
学科:数学专题:相似三角形的判定主讲教师:黄炜北京四中数学教师重难点易错点解析题一:题面:如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确...的是()A.∠ABD=∠C B.∠ADB=∠ABC C.AB CBBD CD=D.AD ABAB AC=金题精讲题一:题面:如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,若AD=2,BD=4,则CD为.题二:题面:如图,直角梯形ABCD中,以AD为直径的半圆与BC相切于E,BO交半圆于F,DF的延长线交AB于点P,连DE.以下结论:①DE∥OF;②AB+CD=BC;③PB=PF;④AD2=4AB•DC.其中正确的是()满分冲刺题一:题面:如图,在△ABC中,BC=10,高AD=8,矩形EFPQ的一边QP在边BC上,E、F两点分别在AB、AC上,AD交EF于点H.设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值.题二:=()题面:如图,在△ABC中,AD,BE是两条中线,则S:SEDC ABC∆∆A.1∶2 B.2∶3 C.1∶3 D.1∶4题三:题面:如图,已知E是边长为4cm的正方形ABCD内一点,且DE=3cm,∠AED=90°,DF⊥DE于D,在射线DF上是否存在这样的M,使得以C、D、M为顶点的三角形与△ADE相似?若存在,请求出满足条件的DM长;若不存在,请说明理由.课后练习详解重难点易错点解析题一:答案:C.详解:选项A或B由∠ABD=∠C或∠ADB=∠ABC,加上∠A是公共角,根据两组对应角相等的两三角形相似的判定,可得△ADB∽△ABC;选项D由AD ABAB AC=,加上∠A是公共角,根据两组对应边的比相等,且相应的夹角相等的两三角形相似的判定,可得△ADB∽△ABC;但AB CBBD CD=,相应的夹角不知相等,故不能判定△ADB与△ABC相似.故选C.金题精讲题一:答案:2.详解:Rt△ACB中,∠ACB=90°,CD⊥AB;∴∠ACD=∠B=90°-∠A;又∵∠ADC=∠CDB=90°,∴△ACD∽△CBD;∴CD2=AD•BD=8,即CD=22.题二:答案:①②④.详解:连接AE,∵BA,BE是圆的切线.∴AB=BE,BO是△ABE顶角的平分线.∴OB⊥AE∵AD是圆的直径.∴DE⊥AE∴DE∥OF故①正确;∵CD=CE,AB=BE∴AB+CD=BC故②正确;∴∠ODF=∠OFD=∠BFP若PB=PF,则有∠PBF=∠BFP=∠ODF而△ADP与△ABO不一定相似,故PB=PF不一定成了.故③不正确;连接OC.可以证明△OAB∽△CDO∴OA AB CD OD=即OA•OD=AB•CD∴AD2=4AB•DC故④正确.故正确的是:①②④.满分冲刺题一:答案:当x=5时,S矩形EFPQ有最大值,最大值为20.详解:∵四边形EFPQ是矩形,∴EF∥QP∴△AEF∽△ABC又∵AD⊥BC,∴AH⊥EF;∴AH:AD=EF:BC;∵BC=10,高AD=8,∴AH:8=x:10,∴AH=4 5 x∴EQ=HD=AD-AH=8-45 x,∴S矩形EFPQ=EF•EQ=x(8-45x)= -45x2+8x= -45(x-5)2+20,∵-45<0,∴当x=5时,S矩形EFPQ有最大值,最大值为20.题二:详解:∵△ABC 中,AD 、BE 是两条中线,∴DE 是△ABC 的中位线,∴DE ∥AB ,DE =12AB . ∴△EDC ∽△ABC .∴()2EDC ABC S :S ED :AB =1:4∆∆=.故选D .题三:答案:当DM =3cm 或163cm 时,△CDM 与△ADE 相似. 详解:∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∵∠AED =90°,所以使得△CDM 中有一个直角即可,①∠DMC =90°,DM =DE =3cm ,②∠DCM ′=90°,DM DADC DE'=, 163DM '=cm ,故存在M 点,当DM =3cm 或163cm 时,△CDM 与△ADE 相似.初中数学试卷鼎尚图文**整理制作。
相似三角形习题精讲及答案
相似三角形习题精讲及答案相似三角形是初中几何的重要内容,包括相似三角形的性质、判定定理及其应用,是中考必考内容,以相似三角形为背景的综合题是常见的热点题型,所以掌握好相似三角形的基础知识至关重要,本讲就如何判定三角形相似,以及应用相似三角形的判定、性质来解决与比例线段有关的计算和证明的问题进行探索。
一、如何证明三角形相似例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。
分析:关键在找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。
本例除公共角∠G 外,由BC ∥AD 可得∠1=∠2,所以△AGD ∽△EGC 。
再∠1=∠2(对顶角),由AB ∥DG 可得∠4=∠G ,所以△EGC ∽△EAB 。
评注:(1)证明三角形相似的首选方法是“两个角对应相等的两个三角形相似”。
(2)找到两个三角形中有两对角对应相等,便可按对应顶点的顺序准确地把这一对相似三角形记下来。
例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线, 求证:△ABC ∽△BCD分析:证明相似三角形应先找相等的角,显然∠C 是公共角,而另一组相等的角则可以通过计算来求得。
借助于计算也是一种常用的方法。
证明:∵∠A=36°,△ABC 是等腰三角形,∴∠ABC=∠C=72°又BD 平分∠ABC ,则∠DBC=36°在△ABC 和△BCD 中,∠C 为公共角,∠A=∠DBC=36° ∴△ABC ∽△BCD例3:已知,如图,D 为△ABC 内一点连结ED 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD ,∠BCE=∠BAD求证:△DBE ∽△ABCA B C DEF G 1234ABC D分析:由已知条件∠ABD=∠CBE,∠DBC公用。
九年级数学相似三角形综合练习题及答案[1]
九年级数学相似三角形综合练习题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学相似三角形综合练习题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学相似三角形综合练习题及答案(word版可编辑修改)的全部内容。
九年级数学相似三角形综合练习题及答案1.填空(本题14分)(1)若a=8cm ,b=6cm ,c=4cm ,则a 、b 、c 的第四比例项d=___;a 、c 的比例中项x=__。
(2))x 1(:x x :)x 2(-=-。
则x=__________.(3)在比例尺为1:10000的地图上,距离为3cm 的两地实际距离为______公里。
(4)圆的周长与其直径的比为________。
(5)若35b a =,则bb a -=________。
(6)若a :b:c=1:2:3,且6c b a =+-,则a=________,b=_______,c=________.(7)如图1,23DE BC AE AC AD AB ===,则(1)=AECE ________(2)若BD=10cm,则AD=______cm 。
(3)若△ADE 的周长为16cm ,则△ABC 的周长为________。
(8)若点c 是线段AB 的黄金分割点,且CB AC >,=AC AB ________,=AB BC ________。
2.选择题(本题9分) (1)根据ab=cd ,共可写出以a 为第四比例项的比例式的个数是( )A .0B .1C .2D .3(2)若线段a 、b 、c 、d 成比例,则下列各式中一定能成立的是( )A .c b d a =B .bda c =C .b a c d =D .a b d c = (3)如图:DE//BC,在下列比例式中,不能成立的是( )A .EC AE DB AD = B .EC AE BC DE = C .AE AC AD AB = D .ACAB EC DB = 3.已知:32b b a =-。
初三数学相似三角形典型例题(附含答案解析)
2初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。
2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。
3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。
4.能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。
本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。
相似三角形是平面几何的主要内容之一, 在中考试题中时常与四边形、 圆的知识相结合 构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在 10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍: 1.比例线段的有关概念:在比例式 ab c (a : bc :d )中, a 、 d 叫外项,db 、c 叫内项, a 、c 叫前项, b 、d 叫后项, d 叫第四比例项,如果 b=c ,那么 b 叫做 a 、 d 的比例中项。
把线段 AB 分成两条线段 AC 和 BC ,使 AC=AB BC ,叫做把线段 AB 黄金分割, C 叫做线段 AB 的黄金分割点。
2. 比例性质:①基本性质: ac b d②合比性质:acb dad bca b c d bd③等比性质:a c⋯b dm (b d ⋯ nn ≠ 0) a c ⋯ m ab d ⋯ nb3.平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥ l 2∥ l 3 。
AB 则BCDE , ABEF AC DE , BCDF AC EF ,⋯DF②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
北师版数学九年级上册相似三角形的判定 课后练习二及详解
工欲善其事,必先利其器。
《论语·卫灵公》翰皓学校陈阵语学科:数学专题:相似三角形的判定重难点易错点解析题一:题面:如图,平行四边形ABCD中,过点B的直线与对角线AC、边AD分别交于点E和F.过点E作EG∥BC,交AB于G,则图中相似三角形有().A.4对 B.5对 C.6对 D.7对金题精讲题一:题面:如图,在△ABC中,AB=5,AC=4,点D在边AB上,∠ACD=∠B,则AD的长为.题二:题面:在直角梯形ABCD中,AD∥BC,以AB为直径作圆O恰好与CD相切于E,连AC、BD相交于F,连EF.(1)求证:AB2=4AD•BC;(2)求证:EF∥BC.满分冲刺题一:题面:如图,在矩形ABCD中,AB=4,AD=10,F是AD上一点,CF⊥EF于点F交AB于点E,12DCCF.求AE的长.题二:题面:如图,在正方形ABCD中,F是CD上一点,AE⊥AF,点E在CB的延长线上,EF交AB于点G.求证:DF•FC=BG•EC.题三:题面:如图,已知边长为2的正方形ABCD 中,E 为CD 的中点,P 为BC 上的一点,问题:添加一个条件,使得△ABP 与以E 、C 、P 为顶点的三角形相似,共有几种添加方法?课后练习详解重难点易错点解析题一:答案:B .详解:根据平行四边形的性质,平行的性质和相似三角形的判定可得:△AGE ∽△ABC ,△BGE ∽△BAF ,△AEF ∽△CEB ,△ACB ∽△CAD ,△AGE ∽△CDA ,5对.故选B .金题精讲题一:答案:3.2.详解:∵∠ACD =∠B ,∠A =∠A ,∴△ABC ∽△ACD .∴AD AC AC AB =. 又∵AB =5,AC =4,∴445AD =,解得AD =3.2.题二:答案:AB 2=4AD •BC ;EF ∥BC .详解:证明:(1)作DH ⊥BC 于H ,如图,∵梯形ABCD 为直角梯形,且AD ∥BC ,∴四边形ABHD为矩形,∴DH=AB,AD=BH,∴CH=CB AD,∵以AB为直径作圆O恰好与CD相切于E,∴DA、CB都是⊙O的切线,∴DE=DA,CE=CB,∴DC=DA+CB,在Rt△DHC中,DH=DC2CH2,∴AB2=(AD+BC)2(BC AD)2,∴AB2=4AD•BC;(2)∵AD∥BC,∴△FDA∽△FBC,∴AD DFBC FB=,而DE=AD,EC=BC,∴DE DFEC FB=,∴EF∥BC.满分冲刺题一:答案:5232-.详解:∵四边形ABCD是矩形,∴∠A=∠D=90°,DC=AB=4,∵CF ⊥EF , ∴∠EFC =90°. ∴∠AFE +∠DFC =90°,∵∠AEF +∠AFE =90°,∴∠AEF =∠DFC ,∴△AEF ∽△DFC .∴AE AF DF DC =, ∵12DCCF =,DC =4,∴∠DFC =30°,∴443tan30tan30DCFD ===︒︒,∴1043AF =-,∴5232AF FDAE CD -==.题二:答案:DF •FC =BG •EC .详解:∵∠EAB +∠BAF =90°,∠DAF +∠BAF =90°,∴∠BAE =∠DAF ,∴tan ∠BAE =tan ∠DAF ,∵AB =AD ,∴DF =BE ,又∵AB ∥CD ,∴BE BG EC FC=, ∴BE •FC =BG •EC ,∴DF •FC =BG •EC .题三:答案:只有一种方法在BC 上的一点使得BP =43. 详解:如图设BP =x ,若△ABP ∽△ECP ,得ABEC BP CP=, 即212x x =-,解得x =43. 若△PBA ∽△ECP ,得BPEC BA CP=, 即122x x =-,化简得x 22x +2=0,此方程无解,故不存在综上,只有一种方法在BC 上的一点使得BP =43.(或延长AB 至M ,使BM =BA ,连接EM ,交BC 与点P ,则P 就是符合条件的点)【素材积累】岳飞应募参军,因战功累累不断升职,宋高宗亲手写了“精忠岳飞”四个字,制成旗后赐给他。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.5 相似三角形的判定基础能力训练★回归教材 注重基础 ◆相似三角形的判定1.(2008·哈尔滨)已知菱形ABCD 的边长是6,点E 在直线AD 上,DE=3,联结BE 与对角线AC 相交于点M,则AMMC的值是______. 2.如图19-5-4所示,E 是平行四边形ABCD 的一边BA 延长线上的一点,CE 交AD 于点F,图中共有______对相似三角形,按对应顶点写出图中的相似三角形____________________.3.如图19-5-5所示,已知△ABC 中,AB=AC,∠A=36°,BD 平分∠ABC,则BD=_______=_______.4.如图19-5-6所示,∠l=∠2,若再增加一个条件就能使结论“AB·DE=AD·BC”成立,则这个条件可以是_______.5.如图19-5-7所示,△ACD 和△ABC 具备下列哪个条件时,它们相似( ) A.BC AB CD AC = B.ACBC AD CD = C.CB 2=AD ·BD D.AC 2=AD ·AB 6.用—个放大镜看一个直角三角形,该直角三角形的边长放大到原来的5倍后,下列结论正确的是( )A.每个内角是原来的5倍B.周长是原来的5倍C.面积是原来的5倍D.两条直角边的比值是原来的5倍7.下列条件能判别△ABC~△DEF 的是( )A.AB=4 cm,AC=3.2 cm,DE=2 cm,DF=1.6 cm,∠B=∠E=50°B.AB=6 cm,BC=9 cm,AC=7.5 cm,DE=8 cm,EF=12 cm.DF=10 cmC.∠A=∠D=70°,∠B =50°,∠E=60°D.∠B=∠E=90°,EFBCDF AB = 8.某班在布置新年联欢会会场时,需要将直角三角形彩纸裁成长度不等的矩形纸条,如图19-5-8所示,在Rt△ABC 中,∠C =90°,AC=30 cm,AB=50 cm,依次裁下宽为1 cm 的纸条a 1、a 2、a 3、…,若使裁得的矩形纸条长度不小于5 cm,则每张直角三角形彩纸能裁成矩形纸条的条数为( )A.24B.25C.26D.27 9.已知,如图19-5-9,Rt△∠ABC和Rt△A′B′C′中∠C=∠C′=90°,''''C A ACB A AB .△ABC 与△A′B′C′是否相似,并说明理由.10.如图19-5-10所示,四边形ABCD 的对角线AC 、BD 相交于点O ,∠1=∠2,∠3=∠4,指出图中哪些三角形相似,并说明理由.11.如图19-5-11所示,点C 、D 在线段AB 上,△PCD 是等边三角形.(1)当AC 、CD 、DB 满足怎样的关系时,△ACP ~△PDB?(2)当△ACP~△PDB 时,求∠APB.12.如图19-5-12所示,在△ABC 中,AH 是BC 边上的高,四边形DEFG 是△ABC 的内接矩形,DG 交AH 于点I,则图中相似的三角形共有多少对?分别表示出来.13.如果两个三角形中有两边和其中一边上的高对应成比例,则这两个三角形相似吗?综合创新训练★登高望远课外拓展◆创新训练14.已知:如图19-5-13,在平面直角坐标系中,矩形AOBC有两个顶点的坐标分别是A(0,6),C(8,6),x轴的正半轴上有一动点E(E与B不重合),作直线AE交对角线OC于D,或AE与BC相交于点F.当点E在O、B间运动到某些位置时,作直线AE后,图中会出现相似不全等的三角形,请你把这个相似三角形写出来:_______;当E点运动到B点的右边时,请你写出此时图中三对相似而不全等的三角形:__________________.15.如图19-5-14所示,在△ABC中,AB=8 am,BC=16 cm,点P从点A开始沿AB边向点B以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4 cm/s的速度移动.如果P、Q分别从A、B同时出发,经过几秒钟△PBQ与原△ABC相似?16.一个圆柱形油桶,半径为1米,高为1.5米,用一根2米长的木棒从桶盖小口斜插桶内,另一端在小口处,抽出木棒后,量得上面没浸油的部分为1.2米,试求:(1)油面的高度是多少?(2)桶内有油多少升?(1立方分米=1升, 取3.14,取后结果精确到1升)◆开放探索17.如图19-5-15,在△ABC中,∠C=90°,P为AB上一点且点不与点A重合.过点P作PE⊥AB 交AC边于E,点E不与点C重合.若AB=10,AC=8,设AP的长为x,四边形PECB的周长为y,试用x的代数式表示y.参考答案1答案:2或32解析:当点E 在线段AD 上时,如图(1),因为AB ∥CD ,所以△ABE~△DFE.所以ED AEDF AB =,故DF=6.又因为△AMB ~△CMF ,所以2612===AB CF AM MC . 当点E 在线段AD 的延长线上时,如图(2),容易得到△BCM ~△EAM , ∴32366=+==AE BC AM MC .2答案:3 △EAF ~△EBC ,△EAF ~△CDF ,△EBC ~△CDF 3答案:BC AD4答案:∠B=∠D ,或∠C=∠AED ,或AD :AB=AE :AC 解析:本题实质就是构造使△ADE 与△ABC 相似的条件. 5答案:D 解析:由AC 2=AD ·AB 可得ACABAD AC =.又∠A=∠A ,所以△ACD ~△ABC. 6答案:B7答案:B 解析:因为43===DF AC EF BC DE AB ,三边对应成比例,所以两三角形相似. 8答案:C 解析:设第n 条的长度恰好为5cm ,且该矩形纸条与AC 的交点为P 点,与AB 的交点为Q 点,则PQ=5cm ,设AP=x cm ,则△APQ ~△ACB,得BCPQ AC AP =,即40530=x ,解得:x=3.75,∴CP=30-x=26.25.∵矩形宽为1 cm ,取整数,可知矩形纸条为26条. 9答案:解析:相似,理由如下:∵''''C A AC B A AB =,∴''''C A B A AC AB =,两边平方,得2222''''C A B A AC AB =,所以222222''''''C A C A B A AC AC AB -=-,由勾股定理得2222C'A'''C B AC BC =,因为AC BC ,''''C A C B 均为正数,则C'A'''C B AC BC =,即''''C A AC C B BC =,而∠C=∠C ′=90°,故Rt △ABC ~Rt △A'B'C'.10答案:解析:(1)△ABO ~△DCO ,因为∠1=∠2,∠AOB=∠DOC ,所以△ABO ~△DCO. (2)△AOD ~△BOC ,由(1)知△ABO ~△DCO ,则COBODO AO =.又因为∠AOD=∠BOC ,所以△AOD ~△BOC.(3)△ACD ~△BCE ,由(2)知△AOD ~△BOC ,则∠DAO=∠CBO ,又因为∠3=∠4,所以△ACD~△BCE.(4)△ABC ~△DEC ,因为∠3=∠4,所以∠3+∠ECO=∠4+∠ECO ,即∠BCA=∠ECD.又因为∠1=∠2,所以△ABC ~△DEC.11答案:解析:(1)∵△PCD 是等边三角形,∴PC=CD=PD ,∠PCD=∠PDC=60°,即∠PCA=∠PDB=120°,∴只要满足BD PCPD AC =,就有△ACP ~△PDB ,∴关系式为BDCD CD AC =或CD 2=AC ·BD.(2)∵△ACP ~△PDB ,∴∠1=∠A ,∠2=∠B.又∵∠PDC=∠1+∠B=60°,∴∠1+∠2=60°,∴∠APB=∠1+∠2+∠CPD=60°+60°=120°12答案:解析:7对,分别是△ADG~△ABC,△BDE~△BAH,△ADI~△ABH,△ADI~△DBE,△AIG~△AHC,△AIG~△GFE,△GFC~△AHC.13答案:解析:(1)当△ABC 和△A ′B ′C ′都是锐角三角形时,可得△ABC ~△A ′B ′C ′,如图①.(2)当两个三角形都是直角三角形时,也可得△ABC ~△A'B'C'.(3)当两个三角形都是钝角三角形时,如图②,可得△ABC ~△A'B'C'.(4)当△ABC 为锐角三角形,△A ′B ′C ′为钝角三角形.虽然两个三角形有两边和其中一边上的高对应成比例,但两个三角形不相似.如图③.14答案:△ADC ~△EDO △ADC ~△EDO ,△AOD ~△FCD ,△BEF ~△OEA ,△AFC ~△EAO 等等15答案:解析:分两种情况,设经过x s △PBQ 与原△ABC 相似.(1)△BPQ ~△BAC ,则BC BQ BA BP =,即164828tt =-得t=2s ; (2)△BQP ~△BAC ,则BC BPBA BQ =,即162884t t -=得t=0.8s. ∴经过0.8s 或2s 时,△PBQ 与原△ABC 相似.16答案:(1)0.6米 (2)1 884升17答案:解析:∵PE ⊥AB ,∠C=90°,∴∠EPA=∠C=90°.又∵∠A 为公共角,∴△AEP~△ABC ,∴BC EPAC AP AB AE ==.又∵∠C=90°,AB=10,AC=8,可知BC=6. ∴6810PE x AE ==,∴x PE 43=,x AE 45=,x EC 458-=,BP=10-x ,∴242310645843+-=-++-+=x x x x y ,∴2423+-=x y .设点E 与点C 重合,有CP ⊥AB.又∠ACB=90°,∴CA 2=AP ·AB ,即82=10AP ,解之,得532=AP ,故由P 点与A 点不重合,点E 与点C 不重合知x 的取值范围是0<x<532. ∴y 与x 之间的关系式为:)5320(2423<<+-=x x y .。