Dimerization of Ferrimagnets on Chains and Square Lattices

合集下载

稀土的英语介绍作文

稀土的英语介绍作文

稀土的英语介绍作文Rare earth elements, also known as rare earth metals or rare earth minerals, are a group of seventeen chemical elements in the periodic table. These elements are crucial for various modern technologies, including electronics, renewable energy, defense systems, and more. Despite their name, rare earth elements are actually relatively abundant in the Earth's crust, but they are rarely found in concentrated deposits, making them challenging to extract and refine.The rare earth elements consist of fifteen lanthanides – cerium, dysprosium, erbium, europium, gadolinium, holmium, lanthanum, lutetium, neodymium, praseodymium, promethium, samarium, scandium, terbium, thulium, ytterbium – as well as two additional elements, yttrium and scandium. These elements have unique properties that make them essential for a wide range of applications.One of the most well-known uses of rare earth elements is in the production of magnets. Neodymium magnets, for example, are incredibly strong and are used in electric motors, headphones, and even wind turbines. Rare earth elements are also used in the production of catalytic converters in cars, fluorescent lighting, and glass polishing.In the field of electronics, rare earth elements play a critical role in the manufacturing of smartphones, computers, and other devices. They are used in the screens, batteries, and circuit boards of these devices, helping to make them smaller, lighter, and more efficient. Without rare earth elements, many of the technologies we rely on today would not be possible.In the renewable energy sector, rare earth elements are essential for the production of solar panels, wind turbines, and electric vehicles. For example, the magnets in electric vehicle motors are made from rare earth elements, making them more efficient and environmentally friendly than traditional combustion engine vehicles. Rare earth elements are also used in the production of lithium-ion batteries, which are used to store energy from renewable sources.In the defense industry, rare earth elements are crucial for the production of advanced weapons systems, including missiles, radar systems, and night vision goggles. Without these elements, the military would not be able to maintain its technological edge over potential adversaries. Rare earth elements are also used in the production of armor plating, communication systems, and other critical components of modern defense systems.Despite their importance, the extraction and processing of rare earth elements can have significant environmental impacts. The mining of rare earth elements can result in the release of harmful chemicals into the soil and water, leading to pollution and ecosystem damage. Additionally, the refining process can produce large amounts of waste that must be carefully managed to prevent further environmental harm.In conclusion, rare earth elements are essential for modern technology and industry, playing a critical role in electronics, renewable energy, defense systems, and more. While they are relatively abundant in the Earth's crust, their extraction and processing present significant environmental challenges. As we continue to rely on rare earth elements for our technological advancement, it is important to develop sustainable practices for their extraction and use to minimize environmental impact.。

一维磁性原子链系统中的Majorana费米子态

一维磁性原子链系统中的Majorana费米子态

一维磁性原子链系统中的Majorana费米子态杨双波【摘要】对处于螺旋形磁场及横向均匀磁场的一维磁性原子链模型,在平均场近似下通过自洽地求解Bogoliubov-de-Genes方程我们计算了系统的能谱.我们发现在一定参数值的范围内能谱随螺旋形磁场振幅值演化呈现能量为零的Majorana 费米子态.我们计算了局域态密度发现对Majorana费米子其态密度的峰值出现在链的两端(或中点)位置.我们计算了波函数其空间分布,发现它与局域态密度的结果一致.%For a model of one dimensional magnetic atomic chain in both a helical magnetic field and a transverse uniform magnetic field,we calculate its energy spectrum by solving Bogoliubov-de-Genes equation selfconsistently in the mean field approximation. We find that for a certain parameter setting,energy spectrum evolving with amplitude of helical magnetic field,appears Majorana fermion eigenstates. We calculate local density of states,and find that the local density of states for Majorana fermion shows peaks at the both ends(or at middle)of the magnetic atomic chain. We calculate wave function,and its spatial distribution agrees with local density of states.【期刊名称】《南京师大学报(自然科学版)》【年(卷),期】2017(040)003【总页数】8页(P110-117)【关键词】Majorana费米子;磁性原子链;BdG方程;局域态密度【作者】杨双波【作者单位】南京师范大学物理科学与技术学院,江苏省大规模复杂系统数值模拟重点实验室,江苏南京210023【正文语种】中文【中图分类】O413.1Majorana fermion[1] which is a particle of the same as its own antiparticle,has been attracting great attention. Firstly,because of Majorana fermion being connected with topological phase concept,secondly because of its topological character,it provides a platform of potential application in topological quantum computing and quantum storing[2-4]. So experimentally and theoretically search for physical system of Majorana fermion has been a very hot research topic. The purpose of all these researches is to generate a topological superconductor,so that the Majorana fermion appears as a single excitation at the boundary. Recently,Majorana fermion has been studied for a model of an atomic chain in a helical magnetic field in close proximity to a s-wave superconductor[5-7],and the result shows that at a certain parameter setting,the Majorana fermion is localized at the both end of the magnetic atomic chain. This is a spatially uniform system,after a gauge transformation,the Hamiltonian of the system will become an invariant form for space displacement. In this paper we modified this system by adding a new Zeeman term in the original Hamiltonian,which correspondsto a uniform magnetic field h perpendicular to the atomic chain being applied to the original system. Because of the new Zeeman term,the system is nonuniform spatially,we will study the structure of the Majorana fermion for the system of h≠0.In this paper,we get the system eigenenergies and eigenvectors by numerically solving BdG equation,and then we study the birth and the localization in space of the Majorana fermion by calculating the spatially resolved local density of states and wave function. The structure of the paper is as the following,the Model and theory is in section 1,the result of numerical calculation and discussion is in section 2,the summary of the paper is in section 3.Consider a N-atom atomic chain in a helical magnetic filed or magnetic structure. The magnetic filed at site n is =B0(cosnθ+sinnθ),where θ is the angle made by the magnetic fields at the adjacent sites of the atomic chain,the whole atomic chain is in proximity to the surface of a s-wave superconductor,and in the transverse direction of the atomic chain a uniform magnetic field h is applied. The Hamiltonian of this magnetic atomic chain in mean field approximation is given byH=tx(cn+1α+h.c.)-μcnα+(cnβ+Δ(n)(+h.c.)+h(σz)ααcnα,where tx is the jumping amplitude for electron between two adjacent sites,μ is chemical potential,Δ(n)is the superconductor pairing potential or order parameter at sit n,h is the weak uniform magnetic field for tuning system energy spectrum. or cnα is the operator to creat or annihilate an electron of spin α respectively at site n, is pauli matrix vec tor,and h.c. standfor complex conjugate. By introducing Nambu spinor representationψi=(ci↑,ci↓,,-)T,then Hamiltonian(1)can be written as BdG form,i.e.H=Hijψj,where Hij is the BdG Hamiltonian at site i,which can be written as where Kij=tx(δi+1,j+δi-1,j)-μδij,γij=(h-B0cosiθ)δij. This is a 4N×4N matrix,whose energy eigenvalue εn and eigenfunctionψn(i)=(un(↑,i),un(↓,i),vn(↓,i),vn(↑,i))T, for i=1,2,…,N,is determined by eigenvalue equationand boundary condition. In mean field approximation the order parameter at site i takes the form[8]and the mean number of electron at site i iswhere fn=1/(1+eεn/kBT) is the Fermi distribution,T is temperature in Kelvin. The total number of electron isincluding spin up and spin down electrons. To determine eigenenergy,eigenfunction,order parameter,we need to selfconsistently solve eigenvalue equation(3)with(4)-(6). In this paper,we deal with the case of temperature T=0,then the order parameter and the mean number of electron in site i are given bySpecial case:h=0 and Δ(i)=Δ0,a constant. The Hamiltonian in(1)can be transformed into spatially unform form by a gauge transformation. The topologically nontrivial region of the parameter set is given bywhere Majorana fermion corresponds to εn=0. As |h|≠0,Hamiltonian in(1)is nonuniform in space,and the nontrivial region of parameter set can not be obtained analytically.In this paper we deal with open boundary condition with and without themiddle magnetic domain wall,and at the magnetic domain wall we replace θ by -θ. We have also studied under the periodic boundary condition,and found the result has no significant changes.We first study the character of the Majorana fermion as the order parameter Δ and chemical potential μ are constants,then we study the influence of nonuniform Δ(i)on the result of Majorana fermion by doing selfconsistent calculation. In calculation,we choose the number of site N for the atomic chain according to the angle θ,so that the magnetic field at the both ends of the atomic chain points to the same direction.2.1 Energy Spectrum and Wave FunctionsFor a one-dimensional magnetic atomic chain with magnetic domain wall in the middle,the parameter set is chosen asΔ0=1.0,tx=1.0,μ=2.5,h=0.1,θ=π/2,and length of the chain is chosen asN=81 sites. For every value of B0 in the interval[1.0,4.0],we diagonalize the 4N×4N BdG Hamiltonian matrix(2),we get 4N energy eigenvalues and 4N eigenvectors. In open boundary condition,the energy spectrum is shown in Fig.1. For B0 in the interval[1.486 6,3.996 8],we can see that thereexists eigenstates whose eigenenergy εn=0,and these eigenstates are Majorana fermions. The interval for the existense of Majorana fermion in the case of h=0.1 is very close to the interval[1.476,4.039]calculatedfrom(9)for the h=0 case. For Majorana fer mion at B0=2.1,εn=0,shown in red dot in Fig.1,we calculate its wave functionun(↑,i),un(↓,i),vn(↑,i),vn(↓,i),the result is shown in Fig.2(a-d). We can see that the amplitude of the wave function concentrates on the both ends and themiddle of the atomic chain. In Fig.3,we show wave function for the same magnetic atomic chain without magnetic domain wall in the middle,the amplitude of the wave function concentrates on both ends of the magnetic atomic chain. This is similar to the previous result for the 1-dimensional magnetic atomic chain without uniform magnetic field,h=0.2.2 Local Density of States and Total Density of StatesIn this subsection,we study the space distribution of density ofstates(DOS),which is called local density of states(LDOS)and is defined as ρ(ε,i)is a function of energy and space position,and the total density of states(TDOS)can be written as,i.e.,the arithmetic mean of local density of states,a function of energy only. In numerical calculation,we replace δ by a Lorentz function. Fo r parameter setting h=0.1,tx=1.0,Δ=1.0,μ=2.5,θ=π/2,N=81,and B0=2.1,the local density of states for a Majorana fermion and the mean number of electrons on each site are shown in Fig.4(a-d)for the magnetic atomic chain with magnetic domain wall in the middle. Fig.4(a)shows the local density of states ρ(ε,i)in a 3D-plot;Fig.4(b)shows the local density of states ρ(ε,i)in a 2D contour plot;Fig.4(c)shows the local density of states for Majorana fermion ρ(ε=0,i);Fig.4(d)shows the mean number of electron on each si te of atomic chain<n(i)>. We can see from the Fig.4 that the Majorana fermion is localized at two ends and middle for the magnetic atomic chain with magnetic domain wall in the middle. The mean number of electrons on each site of the atomic chain is around 1.5. In Fig.5(a-d)we show theresult for the same magnetic atomic chain without magnetic domain wall in the middle,then we see density of states for Majorana fermion is peaked only at both ends of the magnetic atomic chain.2.3 The Self-consistent ResultAs the order parameter Δ(i)is space position i dependent,we calculate the energy spectrum and local density of states by selfconsistently solving the eigenvalue equation(3)with equations(7)and(8). For parameter seth=0.1,tx=1.0,μ=2.5,U0=4.0,θ=π/2,N=81,the selfconsistently calculated energy spectrum is shown in Fig.6,the Majorana fermion region can be seen,is still there,but the interval is shorten. The local density of states and mean numbers of electron on each site for Majorana fermion at B0=1.57 are shown in Fig.7(a-d)and Fig.9(a-d). By comparison with Fig.4(a-d),we find the main characters are same,but peak position for selfconsistent result moved inside a little bit. We calculate the selfconsistent wave function for Majorana fermion,and the results are shown in Fig.8(a-d)and Fig.10(a-d). The amplitude is significiently large at both ends for magnetic atomic chain without magnetic domain wall,and significiently large at both ends and middle for a magnetic chain with magnetic domain wall in the middle. This agrees with the result of local density of states.In mean field approximation,and by numerically solving Bogoliubov-de-Genes(BdG)equation,this paper studies the birth,and the localization in space of the Majorana fermion in a one dimensional atomic chain in helical magnetic field,and a uniform magnetic field h which is perpendicular to the atomic chain. Studies find that at a certain parameter setting,theevolution of the energy spectrum with helical magnetic field amplitude B0 appears the zero energy eigenstates,which corresponding to the Majorana fermion. We calculate the local density of states,and find that the local density of states for the Majorana fermion has two peaks on the both end of the magnetic atomic chain. When a magnetic domain wall is applied at the middle of the maqgnetic atomic chain,the Majorana fermion shows peaks at both ends and the middle of the magnetic chain. As the order parameter is a function of space coordinate,we do selfconsistent calculation,and find that by comparing with the result of nonselfconsistent calculation,the energy spectrum and the shape of the local density of states are changed a little bit,but the main character does not change. [1] MAJORANA E. Symmetric theory of electron and positrons[J]. Nuovo Cimento,1937,14(1):171-181.[2] WILCZEK F. Majorana returns[J]. Nat Phys,2009,5(9):614-618.[3] NAYAK C,SIMON S H,STERN A,et al. Non-Abelian anyons and topological quantum computation[J]. Rev Mod Phys,2008,80(3):1 083-1 159.[4] ALICEA J. New directions in the persuit of Majorana fermions in solid state system[J]. Rep Prog Phys,2012,75(7):076501-1-36.[5] NADJ-PERGE S,DROZDOV I K,BERNEVIG B A,et al. Proposal for realizing Majorana fermions in chain of magnetic atoms on a superconductor [J]. Phys Rev B,2013,88(2):020407-1-5(R).[6] PÖYHÖNEN K,WESTSTRÖM A,RÖNTYNEN J,et al. Majorana state in helical shiba chain and ladders[J]. Phys Rev B,2014,89(11):115109-1-7.[7] VAZIFEH M M,FRANZ M. Self-organized topological state with Majorana fermions[J]. Phys Rev Lett,2013,111(20):206802-1-5.[8] SACRAMENTO P D,DUGAEV V K,VIEIRA V R. Magnetic impurities in a superconductors:effect of domainwall and interference[J]. Phys RevB,2007,76(1):014512-1-21.[9] EBISU H,YADA K,KASAI H,et al. Odd frequency pairing in topological superconductivity in a one dimensional magnetic chain[J]. Phys RevB,2015,91(5):054518-1-15.【相关文献】Received data:2016-11-17.Corresponding author:Yang Shuangbo,professor,majored in nonlinear physics and low dimensionalsystem.E-mail:*********************.cndoi:10.3969/j.issn.1001-4616.2017.03.016CLC number:O413.1 Document codeA Article ID1001-4616(2017)03-0110-08。

纳米金属颗粒物原位催化 英文

纳米金属颗粒物原位催化 英文

纳米金属颗粒物原位催化英文In-situ Catalysis of Nanometal Particles.Nanometal particles, with their unique physicochemical properties, have emerged as promising catalysts in various chemical reactions. The concept of in-situ catalysis, which involves the utilization of these nanoparticles directly at the reaction site, offers significant advantages such as improved activity, selectivity, and efficiency. In this article, we delve into the principles, applications, and challenges associated with in-situ catalysis using nanometal particles.Principles of In-situ Catalysis.In-situ catalysis refers to the use of catalysts that are generated or activated directly within the reaction mixture, rather than being added as preformed entities. In the context of nanometal particles, this approach allowsfor a more intimate interaction between the catalyst andthe reactants, leading to enhanced catalytic activity. The small size of these nanoparticles ensures a high surface-to-volume ratio, which in turn results in a greater numberof active sites available for catalysis.The catalytic activity of nanometal particles isfurther enhanced by their unique electronic and structural properties. The quantum size effects observed in nanoparticles lead to changes in their electronic structure, which can significantly alter their catalytic behavior. Additionally, the high surface energy of nanoparticles promotes their stability and prevents sintering, even at elevated temperatures, maintaining their catalytic activity over extended periods.Applications of In-situ Catalysis.The applications of in-situ catalysis using nanometal particles are diverse and span across various fields of chemistry and engineering. Some of the key applications include:1. Organic Synthesis: Nanometal particles, especially those of platinum, palladium, and gold, have found widespread use in organic synthesis reactions such as hydrogenation, carbon-carbon bond formation, and oxidation reactions. Their use in in-situ catalysis allows for more efficient and selective transformations.2. Fuel Cells: Nanometal particles, particularly those of platinum and palladium, are key components in the electrodes of fuel cells. Their in-situ catalysis promotes the efficient oxidation of fuels such as hydrogen, leading to improved fuel cell performance.3. Photocatalysis: The combination of nanometal particles with photocatalysts such as titanium dioxide offers a powerful tool for solar-driven reactions. The in-situ generation of reactive species at the interface of these materials enhances photocatalytic activity and selectivity.Challenges and Future Directions.While the potential of in-situ catalysis using nanometal particles is immense, there are several challenges that need to be addressed. One of the key challenges is the stability of these nanoparticles under reaction conditions. The aggregation and sintering of nanoparticles can lead to a decrease in their catalytic activity. To address this, strategies such as stabilization by ligands or supports, and the use of bimetallic or core-shell structures have been explored.Another challenge lies in the scale-up of these processes for industrial applications. While laboratory-scale experiments often demonstrate promising results, translating these findings to large-scale operations can be challenging due to factors such as mass transport limitations and heat management.Future research in in-situ catalysis with nanometal particles could focus on developing more robust and stable catalyst systems. The exploration of new nanomaterials with enhanced catalytic properties, as well as the optimization of reaction conditions and reactor designs, are likely tobe key areas of interest. Additionally, the integration ofin-situ catalysis with other technologies such as microfluidics and nanoreactors could lead to more efficient and sustainable catalytic processes.In conclusion, the field of in-situ catalysis using nanometal particles offers significant potential for enhancing the efficiency and selectivity of chemical reactions. While there are still challenges to be addressed, the ongoing research in this area is likely to lead to transformative advancements in catalysis and beyond.。

有机化学专业英语词汇常用前后缀

有机化学专业英语词汇常用前后缀

Synclinal conformation 反错构象 Synclinal conformation 顺错构象 Eclipsed conformation 重叠构象 Gauche conformation, skew con-formation 邻位交叉构象 Staggered conformation 对位交叉构 象 Steric effect 空间效应 Steric hindrance 位阻 Atropismer 阻转异构体 Puckered ring 折叠环 Conformational inversion 构象反转 Chair conformation 椅型构象 Boat conformation 船型构象 Twist conformation 扭型构象 Skew boat conformation 扭船型构象 Half-chair conformation 半椅型构 象 Pseudorotation 假旋转 Envelope conformation 信封[型]构 象 Axial bond 直[立]键 Equatorial bond 平[伏]键 Cisoid conformation 顺向构象 Transoid conformation 反向构象 Retention of configuration 构型保 持 Regioselectivity 区域选择性 Regiospecificity 区域专一性 Stereocelectivity 立体选择性 Stereospecificty 立体专一性 Conformer 构象异构体 Conformational effect 构象效应 Cram’s rube 克拉姆规则 Prelog’rule 普雷洛格规则 Stereochemical orientation 立体 [化学]取向 Conformational transmission 构象 传递 Homolog 同系物 Ipso position 本位 Ortho position 邻位 Meta position 间位 Para position 对位

纳米晶高性能永磁材料 特邀论文

纳米晶高性能永磁材料 特邀论文

Journal of Magnetism and Magnetic Materials242–245(2002)1277–1283Invited paperNanocrystalline high performance permanent magnets O.Gutfleisch*,A.Bollero,A.Handstein,D.Hinz,A.Kirchner,A.Yan,K.-H.M.uller,L.SchultzInstitute of Solid State and Materials Research,IFW Dresden,P.O.Box270016,01171Dresden,GermanyAbstractRecent developments in nanocrystalline rare earth–transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden.Principal synthesis methods include high energy ball milling,melt spinning and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-,PrFeB-and SmCo-type systems with the aim to produce high remanence magnets with high coercivity.Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated.r2002Elsevier Science B.V.All rights reserved.Keywords:Permanent magnets;Nanocrystalline materials;Exchange coupling;Texture;Hydrogen absorption1.IntroductionNanocrystalline materials,including those of mag-netic materials,have been at the centre of numerousR&D activities during the last decade because of theirparticular scientific and technological properties.In thecase of hard magnetic rare earth–transition metal(R–T)compounds,it is the grain size and the presence orabsence of intergranular phases which give rise tounusual magnetic properties because of surface/interfaceeffects different from those of bulk or microcrystallinerge coercivities can be obtained once thegrain size is below a certain threshold where thecrystallites become single domain.In most of the R–T-compounds discussed here,the critical single-domainparticle size d c is a fraction of a micron.Assuming idealized microstructures,three prototypesof NdFeB-type magnets can be distinguished on thebasis of the ternary phase diagram[1]:Type(I)israre earth rich and the individual crystallites are sepa-rated by a thin paramagnetic layer,the rare earth-richintergranular phase.This structure leads to a decouplingof the hard magnetic grains resulting in high coercivities.Type(II)is obtained using the stoichiometric R2Fe14Bcomposition and the hard magnetic grains are in directcontact with each other(‘single-phase exchange coupledmagnets’)[2].Type(III)nanocomposite magnets are Rdeficient(i.e.,R concentrations o11.76at%)and thecoupling occurs between the R2Fe14B grains(to providehigh coercivity)and soft magnetic Fe3B or Fe rich grains(to provide high magnetisation;e.g.J sða2FeÞ¼2:16T).The exchange interaction between the grains of thedifferent phases leads to single-phase demagnetisationcurves despite a multi-phase microstructure providedgrain sizes are below a certain threshold and para-magnetic intergranular phases are absent[3–5].En-hanced remanences of the isotropic hard magneticmaterials,larger than those predicted by the Stoner-Wohlfarth theory[6]for systems of isotropicallyoriented,magnetically uniaxial,non-interacting singledomain particles where M r=M S p0:5;are the conse-quence.The development of melt-spun or rapidly quenchedNd–Fe–B magnets by Croat and Herbst[7]coincidedwith that of sintered magnets by Sagawa[8].Nanocrys-talline structures can also be synthesised by mechanical *Corresponding author.Tel.:+49-351-4659-664;fax+49-351-4659-781.E-mail address:o.gutfleisch@ifw-dresden.de(O.Gutfleisch).0304-8853/02/$-see front matter r2002Elsevier Science B.V.All rights reserved.PII:S0304-8853(01)00989-1alloying [9],intensive milling or hydrogenation dispro-portionation desorption and recombination (HDDR)processing [10,11].These nanostructures,provide energy barriers preserving the metastable,permanently magne-tised state.The resulting isotropic powders are most commonly used for the production of bonded magnets,where they are usually mixed with polymer resin and are then injection or compression moulded.Bonded mag-nets have the advantage of easily accomplished near net-shape processing,the avoidance of eddy-currents and good mechanical properties.The disadvantage being the dilution of magnetic properties due to the polymer binder.The randomly oriented grain structure results in magnetically isotropic magnets,with the remanent polarisation,J r ;and (BH )max limited to 0.5and 0.25,respectively,of the values obtainable for ideal micro-structures consisting of single domain grains and with full crystallographic alignment.Therefore various con-cepts have to be developed in order to increase remanence as shown in Fig.1.The three most relevant ways of maximising the energy density (BH )max are hot deformation [12,13],inducement of texture via ‘aniso-tropic’HDDR [14]or thirdly,remanence enhancement via exchange coupling [3,4].In summary,the task of transferring good intrinsic properties such as high values of Curie temperature (T C >500K),high saturation magnetisation (M s >1T)and high anisotropy field,H A into useful extrinsic properties of nanocrystalline magnets such as coercive field H C ;remanent magnetisation B r and maximum energy density (BH )max by appropriate processing is described in this paper.2.Maximising the energy density (BH)max 2.1.High energy ball millingAs a non-equilibrium processing technique,mechan-ical alloying circumvents,like rapid quenching,many limitations of conventional alloying and thus can be used for the preparation of metastable alloys.The mixing of the elements is achieved by an interdiffusional reaction,enabled by the formation of ultrafine layered composite particles during high energy ball milling.Depending on the thermodynamics of the alloy system,energy input and the mechanical workability of the starting powders,the alloying can take place during milling or during a subsequent heat treatment [9].A variation of this high energy ball milling technique is intensive milling,where an alloy is exposed to high energy ball milling rather than the elemental powders.Here,an example is given for the intensive milling of a Pr–Fe–B-based alloy.Pr 2Fe 14B-type alloys are compar-able in terms of their intrinsic magnetic properties [15]and phase relations with the advantage of a much lower spin reorientation temperature.An alloy with the nominal composition Pr 9Nd 3Dy 1Fe 72Co 8B 6.9Zr 0.1has been milled for 60h (leading to a type II magnet)and also with various amounts of Fe powder (leading to type III magnets)and subsequently annealed at 6001C for 30min.The partly amorphous structure after milling is illustrated in Fig.2.The Curie-temperature of the alloy is T C ¼3801C.The magnetic properties of various annealed powders are shown in Fig.3.Optimised valued for (BH )max were above 175kJ/m 3when adding 20–25wt%Fe (B r ¼1:18T and i H c ¼0:66T).A key issueFig.1.Flow chart illustrating the principal processing routes of high energy density magnets based on micro-and nano-crystalline powders.The right branch shows the three principal ways of maximizing the energy product (BH )max of nanocrystalline magnets.O.Gutfleisch et al./Journal of Magnetism and Magnetic Materials 242–245(2002)1277–12831278for the effectiveness of the exchange coupling and thus the degree of remanence enhancement is the develop-ment of a uniform nanoscale microstructure of hard and soft magnetic grains.This can be realised by micro-alloying using additions such as Zr and Co having grain growth inhibiting effects [16,17]or leading to a modification of the tie lines in the phase diagram and thus changed volume fractions of the different phases [18].An effective coupling occurs when the soft regions with a small anisotropy are no bigger than a few times the exchange length l ex ;i.e.o 20nm and thus a complete coupling of the soft magnetic grain occurs.The crystal-lite size of the annealed sample was evaluated from the broadening of the X-ray diffraction peaks (see Fig.3)using the Williamson-Hall method [19]and it was found to be around 20nm.Remanence enhanced high energy density magnets,synthesised by melt spinning or ball milling techniques,are of great commercial interest because no magnetic alignment and less of the costly rare earth element arerequired and an improved corrosion behaviour can be expected.2.2.Rapid quenchingCurrently,rapidly quenched Nd–Fe–B forms the basis for almost the entire bonded magnet industry.The flexibility of bonded Nd–Fe–B-type magnets in proces-sing,shape and magnetic properties and the highly stable nature of the ribbons contribute to its success in a fast growing permanent magnet market [20–22].De-pending on the wheel speed,ejection conditions and melt temperature substantial undercooling below the equili-brium freezing temperature and,consequently,a very high frequency of crystal nucleation are achieved (‘‘over-quenching’’).Lower wheel speeds can lead directly to nano-crystalline material (‘‘direct-quenching’’).The inset of Fig.4shows the DSC curves on first heating of melt-spun Nd 15DyFe 75.9B 8Zr 0.1and Pr 15Dy-Fe 75.9B 8Zr 0.1alloys.XRD patterns of both melt-spun materials showed a partly amorphous structure which explains the presence of a second order thermodynamic phase transition around 3101C and 2951C,respectively,during first heating corresponding to the Curie-tem-perature of the remaining R 2Fe 14B phase.A comparison of the onset of crystallization of both alloys prepared by this technique and by intensive milling showed lower values in the case of the latter method:5801C for the Nd-based alloy and 5301C for the Pr-based alloy whereas values of 6001C and 5751C,respectively,were obtained when using melt-spinning [23].Annealing of the melt-spun alloys at 6501C leads to the com-plete formation of the R 2Fe 14B phase achieving coerciv-ities as high as 2.7T for PrDyFeBZr and 2.37T for3035404550556065707580••600˚Cafter millingi n t e n s i t y (a .u .)2 theta (degree)Fig.2.XRD patterns of Pr 9Nd 3Dy 1Fe 72Co 8B 6.9Zr 0.1after 60h of intensive milling in argon and after annealing at 6001C for 30min.Intensity peaks of a –Fe ( )are indicated.-1.5-1.0-0.50.00.51.01.5P o l a r i s a t i o n J ( T )Applied field µ0H ( T )Fig.3.Hysteresis loops of intensively milled (with various amounts of Fe)and annealed Pr 9Nd 3Dy 1Fe 72Co 8B 6.9Zr 0.1.P o l a r i s a t i o n J ( T )Applied field µ0H ( T )Fig.4.Demagnetisation curves of melt-spun NdDyFeBZr and PrDyFeBZr materials annealed at 6501C for 10min (inset:DSC curves on first heating (40K/min)of melt-spun NdDyFeBZr and PrDyFeBZr showing Curie temperature,T C ;and crystal-lization onset,T x ).O.Gutfleisch et al./Journal of Magnetism and Magnetic Materials 242–245(2002)1277–12831279NdDyFeBZr (see Fig.4).The room temperature aniso-tropy field of Pr 2Fe 14B is around 25%larger than of its Nd counterpart,and the saturation magnetisation is only slightly lower.Melt-spun precipitation hardened Sm 2(Co,Cu,-Fe,Zr)17magnets have been produced using single roller melt-spinning at low velocity and their magnetic proper-ties in the as-spun state and after hardening are shown in Fig.5.Coercivity is developed only during the complex annealing treatment leading to the formation of a cellular structure (see inset in Fig.5)similar to that in sintered 2:17-type magnets.However,the resulting powder in this case is isotropic.It has been found that this type of material can show an abnormal temperature dependence of the coercivity [24]leading to excellent high temperature magnetic properties also reported for sintered magnets [25,26].Another interesting aspect is the production of magnetically anisotropic SmCo 5-type ribbons also using low wheel speeds [27]and a (BH )max of 146kJ/m 3was obtained for Sm 1.1Co 5[28].The c -axis of the crystallites after direct-quenching were found to be parallel to the longitudinal axis of the ribbon.This phenomenon is shown here for various Sm 2(Co)17-type alloys with the successive addition of Fe,Zr and Cu.XRD patterns of Fig.6show that the degree of texture decreases when adding Zr and Cu.This is illustrated by the weaker (110)and (200)and stronger (111)and (002)peaks for the Sm 2(Co,Cu,Fe,Zr)17alloy.2.3.Hydrogen assisted processingThe HDDR process is established as a processing technique for the production of highly coercive Nd 2Fe 14B [10,11]and Sm 2Fe 17N y magnets [29,30].A special type of powder suitable for bonded magnets is the anisotropic powder made by HDDR [14]which could close the gap in the market for high energyproduct bonded magnets.Very recently,excellent magnetic values of B r ¼1:38T,i H c ¼1122kA/m and (BH )max =342kJ/m 3have been obtained for NdFe-GaNbB using a process which controls the reaction rates during exothermic hydrogen absorption (dispro-portionation)and endothermic desorption (recombina-tion)by pressure adjustments [31,32].This multistage HDDR process is beneficial to optimise remanence and coercivity without expensive additions such as Co.Strictly,HDDR does not lead to nanoscale (usually defined as o 100nm)material,as the final product resulting from the reversible,hydrogen-induced chemi-cal reaction shows typical grain sizes of around 300nm.The disproportionated state is certainly nanoscale and it is this intermediate product which should clarify the mechanism of the inducement of texture.Various models have been suggested and they have been detailed in a recent review [33].Intermediate boride phases have been linked with the transfer of the original cast grain orientation to that of the recombined 2-14-1-type grains in both,NdFeCoGaB [34]and NdFeB [35]alloys.The HRSEM micrograph in Fig.7shows the solid-dispro-portionated state of a Nd 16.2Fe 78.2B 5.6alloy.The eutectoid-type decomposition into NdH 27x rods of appr.20nm and Fe and a build-up of finely dispersed Fe 3B particles of 10–50nm diameter in the intercolony regions due to an ejection of this phase from the rod-like areas can be observed.The principal solid-disproportionation reactions of the R 2Fe 14B (with R=Nd or Pr)phases can be described as follows:R 2Fe 14B þð27x ÞH 2)2RH 27x þ11Fe þFe 3B )2RH 27x þ12Fe þFe 2B :ð1ÞIn the case of a Pr 13.7Fe 63.5Co 16.7Zr 0.1B 6alloy a new intermediate boride phase,Pr(Fe,Co)12B 6(R3m),has been found recently after solid-disproportionation[36]Fig.5.Hysteresis loops of as-spun and precipitation hardened (T h =11601C,1h,T a =8501C,20h,cooling to 4001C with 0.75K/min)Sm(Co 0.74Cu 0.12Fe 0.1Zr 0.04)7.5(inset:TEM bright field image of the latter).3035404550556065707580Sm 2Co 17Sm 2(Co 0.9Fe 0.1)17Sm 2(Co 0.86Fe 0.1Zr 0.04)17Sm 2(Co 0.74Fe 0.1Cu 0.12Zr 0.04)17(201)(002)(111)(110)(200)I n t e n s i t y (a .u .)2 theta (degree)Fig.6.XRD patterns of as-spun (using a low wheel speed)Sm 2(Co)17-type alloys with the successive addition of Fe,Zr and Cu.O.Gutfleisch et al./Journal of Magnetism and Magnetic Materials 242–245(2002)1277–12831280and a high degree of texture has also been reported for this type of alloys after conventional processing [37].The application of the HDDR process to the Nd–Co–B or Sm–Co systems requires more severe hydrogena-tion conditions which is due to the higher thermo-dynamic stability of the R–Co phases against the disproportionation by hydrogen compared to those of the Nd 2Fe 14B and Sm 2Fe 17phases.Recently,it was shown that HDDR in thermodynamically stabilised compounds such as Sm 2Fe 16Ga,SmCo 5,Sm 2Co 17and Nd 2Co 14B is successful when using high hydrogen pressures [38]or reactive milling in hydrogen [39].In case of Sm 2Co 17,the latter mechanically activated gas-solid reaction leads to the disproportionation of the rhombohedral 2:17phase into Sm-hydride and FCC Co according to the following equation:Sm 2Co 17þð27x ÞH 232SmH 27x þ17Co :ð2ÞIntimate mixtures of R-hydride with grain sizes o 10nm and BCC Fe or FCC Co are obtained after reactive milling which is not possible when applying the conventional HDDR process [33].For SmCo-type alloys,the following desorption treatment at tempera-tures as low as 5001C leads to the recombination to the original structure either of CaCu 5and Th 2Zn 17type.In dependence on Sm content,milling parameters and desorption temperature additional phases are synthe-sised,partly of metastable character,such as the Sm 2Co 7phase.The recombined multiphase material exhibits grain sizes of the scale o 30nm (compare Fig.8)which makes an effective exchange coupling and thus rema-nence enhancement possible.Magnetically single phase demagnetisation loops are observed and a clear tendency of increased coercivity and decreased reman-cence with increasing Sm content is found [40].2.4.Hot deformationHot deformation-induced texturing of nano-grained materials is an option for producing fully dense,anisotropic magnets with maximised energy densities.A grain alignment along the c -axis of the tetragonal 2:14:1phase based on either Nd–Fe–B or Pr–Fe–B alloys perpendicular to the plastic flow is achieved after high temperature compressive deformation [12,13].The production of a fully dense isotropic precursor at about 7251C is followed by placing this compact in an oversized die-cavity where die-upsetting is carried out at similar temperatures.After this second step,an anisotropic magnet is obtained with the alignment of the crystallographic c -axis parallel to the pressing direction.Alternatively,backward extrusion [41]can be carried out as a second step to produce near net-shape ring magnets which can show,especially for smaller dimensions,superior magnetic properties to sintered magnets.A radial preferential orientation is obtained,again with the c -axis alignment perpendicular to the material flow.Small variations in the magnetic properties have been observed along the cross-section and along the axial direction of the ring magnets which were attributed to inhomogeneities in material flow inherent to the deformation process [42].Additions of Co are used to improve the thermal stability and to increase the Curie-temperature in sintered NdFeB magnets.Simultaneously the coercivity is reduced,which again can be compensated by small additions of Ga.The same positive effect of Co and Ga was found in hot deformed NdFeB magnets,prepared from melt-spun material (MQU-F).The addition of Ga decreases melting point and viscosity of the Nd-rich grain boundary phase.This accelerates mass transfer through the liquid and improves the isolation of the grains leading to enhanced coercivities.TEM-EDX analysis showed a preferential solution of Ga intotheFig.8.TEM bright field image of reactively milled and recombined Sm 2Co 17powder.Fig.7.Scanning electron microscopy image in the backscat-tered mode showing the rod-like structure of NdH 27x (A)and a –Fe (B)and finely dispersed Fe 3B (C)obtained after 15min of solid-disproportionation at 9001C.O.Gutfleisch et al./Journal of Magnetism and Magnetic Materials 242–245(2002)1277–12831281Nd-rich grain boundary phase,now a neodymium–iron–gallium phase.Ga reduces the surface energy of this phase resulting in smoothed grain boundaries and a more uniform distribution [43].Thus,lower deformation forces are required for hot deformation and higher B r material can be produced because of an increased volume fraction of the hard magnetic 2:14:1phase with a commensurate reduction in the non-ferromagnetic grain boundary material.Demagnetisation curves of hot pressed and die-upset melt-spun NdFeB-type powders are shown in Fig.9.As a comparison,hot pressed and die-upset intensively milled Pr 14.7Fe 77.3B 8.0powder is also included.The already mentioned much lower spin reorientation temperature make them attractive for low temperature applications such as superconducting bearings.Opti-mised deformation conditions were used for the production of MQ-type magnets [43]and remarkably higher coercivities were found in hot pressed and in hot deformed MQU-F magnets.A reduction in coercivity after die-upsetting can be observed which amounts to 25%in MQU-F magnets and to 40%in MQP-A.The higher coercivity in MQU-F magnets is due to the beneficial effect of the additives resulting in smaller grains after hot deformation.A remanence of B r ¼1:3T and a (BH )max =326kJ/m 3were measured for the MQU-F die-upset magnet.The loop shape ((BH )max =307kJ/m 3)and the hot workability of the Pr 14.7Fe 77.3B 8.0die-upset magnet made from intensively milled powder are excellent and it can be expected that compositional modifications will improve the magnetic properties further.3.ConclusionsNowadays about 85%of the limit for the energy density (BH )max (based on the Nd 2Fe 14B phase)can beachieved in commercially produced sintered Nd–Fe–B grades [44,45].Coercivity values however,rarely exceed 20–30%of the anisotropy field H A .Recent exciting developments include excellent anisotropic HDDR powders for polymer bonded magnets and SmCo-type magnets for application temperatures as high as 5501C.In terms of maximised energy densities,there is still a lot of scope for improvement for bonded and fully dense nanocrystalline magnets,especially considering multi-component systems.In this context,it is just to state that computational micromagnetism based on realistic mi-cro-and nano-structures and modelling of phase diagrams will be of increased importance in order to map the vast number of ternary,quaternary,etc.equilibrium and non-equilibrium phases.Novel proces-sing techniques and microalloying should allow more freedom for tailoring magnetic and non-magnetic properties of nanocrystalline high performance perma-nent magnets.AcknowledgementsThe support of parts of this work by the Deutsche Forschungsgemeinschaft (SFB 463),SfP (Science for Peace,Nato)and the EU (HITEMAG)is gratefully acknowledged.References[1]K.H.J.Buschow,in:K.H.J.Buschow (Ed.),Handbook ofMagnetic Materials,Vol.10,Elsevier Science,North Holland,Amsterdam,1997(Chapter 4).[2]G.B.Clemente,K.E.Keem,J.P.Bradley,J.Appl.Phys.64(1988)5299.[3]R.Coehoorn, D.B.Mooji,J.P.Duchateau,K.H.J.Buschow,J.Phys.49(C8)(1988)669.[4]E.F.Kneller,R.Hawig,IEEE Trans.Magn.27(1991)3588.[5]K.H.M .uller,D.Eckert,A.Handstein,M.Wolf,S.Wirth,L.L.M.Martinez,Proceedings of the Eighth International Symposium Magn.Anisotropy and Coercivity in RE-TM Alloys,Birmingham,UK,1994,p.179.[6]E.C.Stoner, E.P.Wohlfarth,Philos.Trans.R.Soc.London,Ser.A 240(1948)599.[7]J.J.Croat,J.F.Herbst,R.W.Lee,F.E.Pinkerton,J.Appl.Phys.55(1984)2078.[8]M.Sagawa,S.Fujimori,M.Togawa,Y.Matsuura,J.Appl.Phys.55(1984)2083.[9]L.Schultz,J.Wecker, E.Hellstern,J.Appl.Phys.61(1987)3583.[10]T.Takeshita,R.Nakayama,Proceedings of the 10thInternational Workshop on RE Magnets and their Appl.,Kyoto,Japan,1989,p.551.[11]P.J.McGuiness,X.J.Zhang,X.J.Yin,I.R.Harris,J.Less-Common Met.158(1990)379.[12]R.K.Mishra,R.W.Lee,Appl.Phys.Lett.48(1986)733.-3.0-2.5-2.0-1.5-1.0-0.50.00.00.20.40.60.81.01.21.4P o l a r i z a t i o n J (T )Applied field µ0H (T)Fig.9.Demagnetisation curves of hot pressed and die-upset melt-spun NdFeB-type and intensively milled PrFeB-type materials.O.Gutfleisch et al./Journal of Magnetism and Magnetic Materials 242–245(2002)1277–12831282[13]J.J.Croat,IEEE Trans.Magn.25(1989)3550.[14]T.Takeshita,R.Nakayama,12th International Workshopon RE Magnets and their Appl.,Canberra,1992,p.670.[15]S.Hirosawa,Y.Matsuura,H.Yamamoto,S.Fujimura,M.Sagawa,H.Yamauchi,J.Appl.Phys.59(1986)873.[16]V.Neu,U.Klement,R.Sch.a fer,J.Eckert,L.Schultz,Mater.Lett.26(1996)167.[17]H.A.Davies,J.Magn.Magn.Mater.157/158(1996)11.[18]N.Sano,T.Tomida,S.Hirosawa,M.Uehara,H.Kanekiyo,Mater.Sci.Eng.A250(1998)146.[19]G.K.Williamson,W.H.Hall,Acta Metall.1(1953)22.[20]V.Panchanathan,Proceedings of the16th InternationalWorkshop on RE Magnets and their Appl.,Sendai,Japan, 2000,p.431.[21]G.C.Hadjipanayis,W.Gong,J.Appl.Phys.64(1988)5589.[22]H.A.Davies,C.L.Harland,J.I.Betancourt,G.Menoza,MRS Symp.Proceedings‘Advanced Hard and Soft Magnets’,Vol.577,1999,p.27.[23]A.Bollero,A.Kirchner,O.Gutfleisch,K.H.M.uller,L.Schultz,IEEE Trans.Magn.37(2001)2483.[24]D.Goll,I.Kleinschroth,W.Sigle,H.Kronm.uller,Appl.Phys.Lett.76(2000)1054.[25]C.Chen,M.S.Walmer,M.H.Walmer,S.Liu,G.E.Kuhl,G.K.Simon,MRS Symp.Proceedings of the‘AdvancedHard and Soft Magnets,’Vol.577,1999,p.277.[26]J.F.Liu,Y.Zhang,D.Dimitrov,G.C.Hadjipanayis,J.Appl.Phys.85(1999)2800.[27]A.Yan,W.Y.Zhang,H.W.Zhang,B.Shen,J.Magn.Magn.Mater.210(2000)L10.[28]A.Yan,W.Y.Zhang,H.W.Zhang,B.Shen,Mater.Sci.Eng.B68(1999)111.[29]H.Nakamura,S.Sugimoto,M.Okada,M.Homma,Mater.Chem.Phys.32(1992)280.[30]C.N.Christodoulou,T.Takeshita,J.Alloys Comp.196(1993)155.[31]C.Mishima,N.Hamada,H.Mitarai,Y.Honkua,Proceedings of the16th International Workshop on RE Magnets and their Appl.,Sendai,Japan,2000,p.873. [32]C.Mishima,N.Hamada,H.Mitarai,Y.Honkua,IEEETrans.Magn.37(2001)2467.[33]O.Gutfleisch,J.Phys.D33(2000)R157.[34]T.Tomida,N.Sano,K.Hanafusa,H.Tomizawa,S.Hirosawa,Acta Metall.47(1999)875.[35]O.Gutfleisch, B.Gebel,N.Mattern,J.Magn.Magn.Mater.210(2000)5.[36]O.Gutfleisch,A.Teresiak,B.Gebel,K.-H.M.uller,N.B.Cannesan,D.N.Brown,I.R.Harris,IEEE Trans.Magn.37(2001)2471.[37]R.N.Faria,A.J.Williams,I.R.Harris,J Alloys Comp.287(1999)L10.[38]M.Kubis,O.Gutfleisch,K.H.M.uller,I.R.Harris,L.Schultz,J.Appl.Phys.83(1998)6905.[39]O.Gutfleisch,M.Kubis,A.Handstein,K.-H.M.uller,L.Schultz,Appl.Phys.Lett.73(1998)3001.[40]O.Gutfleisch,A.Bollero,D.Eckert,B.Gebel,M.Kubis,K.-H.M.uller,L.Schultz,Proceedings of the16th International Workshop on RE Magnets and their Appl., Sendai,Japan,2000,p.883.[41]N.Yoshikawa,H.Yamada,Y.Iwasaki,K.Nagata,Y.Kasai,Proceedings of the13th International Workshop on RE Magnets and their Appl.,Birmingham,UK,1994, p.635.[42]W.Gr.unberger,D.Hinz,D.Schl.a fer,L.Schultz,J.Magn.Magn.Mater.157/158(1996)41.[43]A.Kirchner,D.Hinz,V.Panchanathan,O.Gutfleisch,K.H.M.uller,L.Schultz,IEEE Trans.Magn.36(2000) 3288.[44]Y.Kaneko,IEEE Trans.Magn.36(2000)3275.[45]W.Rodewald,R.Blank,B.Wall,G.W.Reppel,H.D.Zilg,Proceedings of16th International Workshop on RE Magnets and their Appl.,Sendai,Japan,2000,p.119.O.Gutfleisch et al./Journal of Magnetism and Magnetic Materials242–245(2002)1277–12831283。

矿物加工专业英语部分词汇

矿物加工专业英语部分词汇

矿物加工专业英语部分词汇Mineral Processing Technology矿物加工工艺学Principle of magnetism process磁选原理Magnetic force磁力Ratio magnetic force比磁力Compete force竞争力Mineral magnetism矿物的磁性Atomic magnetism moment原子磁矩Molecular magnetism moment分子磁矩Magnetization&magnetic field磁化和磁化磁场Magnetization intensity磁化强度Ratio susceptibility比磁化系数Diamagnetism逆磁性Paramagnetism顺磁性Ferromagnetism铁磁性Magnetic domain磁畴Revers ferromagnetism反铁磁性Subferromagnetism亚铁磁性Coercive force矫顽力Remanence剩磁Magnetization roasting磁化焙烧Deoxidizationroasting还原焙烧Midlle roasting中性焙烧Oxidation roasting氧化焙烧Siderite菱铁矿Hematite赤铁矿Magnetite磁铁矿Unhydrophite magnetization疏水磁化Magnetic process equipment磁选设备Feebleness magnetic separation machine弱磁场磁选机Dry magnetic separation machine干式磁选机Wet feebleness magnetic separation machine湿式弱磁场磁选机High magnetic separation machine强磁场磁选机High grads magnetic sparation machine高梯度磁选机Supercondduct magnetic separation超导电选Concentrator选矿机Electrity process电选Electrity conce ntrator电选机Static separation静电选矿Air-ionization separation电晕分选Friction electric separation摩擦电选Magnetic process practice磁选实践Nonmetal ore非金属矿Diamond process金刚石选矿Heavy medium reclaim重介质回收Primary concentrate粗精矿Graphite gangue石墨尾矿Kaolin magnetic process高岭土磁选Block metal ore黑色金属矿石Manganese ore magnetic process锰矿石磁选Coloured metal&rare metal有色金属和稀有金属Ilmenite钛铁矿Rutile金红石Zircon 锆英石Electric process practice电选实践Tungstate钨酸盐cassiterite锡石hematite.赤铁矿gangue脉石,废石,矸石magnet.磁铁,磁体,磁石conductor mineral导体矿物silicate硅酸盐diatomite硅藻土hysteresis磁滞现象magnetic core.磁铁芯winding绕组,线圈medium介质electrophoresis电泳screening筛分magnetic field磁场flux磁通量ferromagnet铁磁物质ferromagnetism铁磁性reunite团聚magnetic system 磁系magnetic agitate磁搅动permanent magnet永久磁铁solenoid magnet螺管式磁铁pyrite.黄铁矿,硫铁矿limonite褐铁矿reluctivity磁阻率conduct传导induce.诱导,感应,归纳astrict束缚charge电荷electric field.电场interfacial界面的,面间的magnetism吸引力electrode电极,电焊条,电极Strontium&iron oxid锶铁氧体Periodic magnetic field交变磁场Pulsant magnetic field脉动磁场Saturation饱和stainless steel material不锈钢材料polar distance极距mica云母quarte石英stimulate magnetism激磁magnetism circuit磁路magnetic line of force磁力线commutate quality整流性floatation浮选froth flotation泡沫浮选direct flotation正浮选reverse flotation反浮选fineness of grinding磨矿细度fractionation分级mineral wettability矿物润湿性mineral flotability矿物的可浮性equilibrium contact angle平衡接触角three phaseinterface三相界面hydrophobicity of mineral矿物的疏水性hydrophilicity of mineral矿物的亲水性foam adhesion泡沫附着ionic lattice离子晶格covalence lattice共价晶格surface inhomogeneity表面的不均匀性oxidation and dissolution氧化与溶解oxidizing agent氧化剂reduction agent还原剂surface modification of mineral矿物的表面改性electric double layer双电层ionization电离adsorption吸附electrokinetic potential电动电位point of zero charge零电点isoelectric point等电点collecting agent捕收剂semi micelle adsorption半胶束吸附exchange adsorption交换吸附competitiv eadsorption竞争吸附specific adsorption特性吸附modifying agent调整剂depressant抑制剂activating agent活化剂foaming agent起泡剂hydrophilic group亲水基团liberation degree解离度polar group极性基团nonpolar group非极性基团sulphide ore硫化矿物oxidized mineral氧化矿物xanthate黄药hydrolysis水解medicamentous selectivity药剂的选择性catchment action捕收作用electrochemical action电化学作用pyrite黄铁矿calcite方解石alkyl radical烃基含氧酸organic amine有机胺类carboxylate surfactant羧酸盐kerosene煤油amphoteric collector两性两捕收剂alkyl radical sulfonate烃基磺酸盐complex络合物PH modifying agent PH调整剂long-chain molecule长链分子chalcopyrite黄铜矿galena方铅矿blende闪锌矿oxidized ore氧化矿flocculant絮凝剂non-hydronium flocculant非离子型絮凝剂desorption解吸air bladder气泡solubility溶解度specific surface area比表面积mineral resources矿源three phase air bladder三相气泡ore magma electric potential矿浆电位mixed potential model混合电位模型freedom hydrocarbon diversification自由烃变化electrostatic pull静电引力intermolecular force分子间力goethite针铁矿semi micelle ads orption半胶束吸附concentration of solution溶液浓度flotation machine浮选机oxygenation充气作用recovery 回收率concentrate grade精矿品位handling capacity处理能力air bladder collision气泡碰撞flotation column浮选柱ore concentration dressing富集作用floatation process浮选工艺floatation speed浮选速率flotation circuit浮选流程granularity粒度degree of fineness细度pulp density矿浆浓度water quality水质backwater回水middlings中矿run of mine原矿gangue尾矿flotation principle flow浮选原则流程rate of divergence分散程度dispersant分散剂semiconductivity of mineral矿物半导性reagent removal agent脱药剂采矿mining地下采矿underground mining露天采矿open cut mining,open pit mining,surface mining采矿工程mining engineering选矿(学)mineral dressing,orebeneficiation,mineral processing矿物工程mineral engineering冶金(学)metallurgy过程冶金(学)process metallurgy提取冶金(学)extractive metallurgy化学冶金(学)chemical metallurgy物理冶金(学)physical metallurgy金属学Metallkunde冶金过程物理化学physical chemistry of process metallurgy冶金反应工程学metallurgical reaction engineering冶金工程metallurgical engineering钢铁冶金(学)ferrousmetallurgy,metallurgy of iron and steel有色冶金(学)nonferrous metallurgy真空冶金(学)vacuum metallurgy等离子冶金(学)plasma metallurgy微生物冶金(学)microbial metallurgy喷射冶金(学)injection metallurgy钢包冶金(学)ladle metallurgy二次冶金(学)secondary metallurgy机械冶金(学)mechanical metallurgy焊接冶金(学)welding metallurgy粉末冶金(学)powder metallurgy铸造学foundry火法冶金(学)pyrometallurgy湿法冶金(学)hydrometallurgy电冶金(学)electrometallurgy氯冶金(学)chlorine metallurgy矿物资源综合利用engineering of comprehensive utilization of mineral resources中国金属学会The Chinese Society for Metals中国有色金属学会The Nonferrous Metals Society of China 2采矿采矿工艺mining technology有用矿物valuable mineral冶金矿产原料metallurgical mineral raw materials矿床mineral deposit特殊采矿specialized mining海洋采矿oceanicmining,marine mining矿田mine field矿山mine露天矿山surface mine地下矿山underground mine矿井shaft矿床勘探mineral deposit exploration 矿山可行性研究mine feasibility study矿山规模mine capacity矿山生产能力mine production capacity矿山年产量annual mine output矿山服务年限mine life矿山基本建设mine construction矿山建设期限mine construction period矿山达产arrival at mine full capacity开采强度mining intensity 矿石回收率ore recovery ratio矿石损失率ore loss ratio工业矿石industrial ore采出矿石extracted ore矿体orebody矿脉vein海洋矿产资源oceanic mineral resources矿石ore矿石品位ore grade岩石力学rock mechanics岩体力学rock mass mechanics 3选矿选矿厂concentrator,mineral processing plant工艺矿物学process mineralogy开路open circuit闭路closed circuit流程flowsheet方框流程block flowsheet产率yield回收率recovery矿物mineral粒度particle size粗颗粒coarse particle细颗粒fine particle超微颗粒ultrafine particle粗粒级coarse fraction细粒级fine fraction网目mesh原矿run of mine,crude 精矿concentrate粗精矿rough concentrate混合精矿bulk concentrate最终精矿final concentrate尾矿tailings粉碎comminution破碎crushing磨碎grinding团聚agglomeration筛分screening,sieving分级classification富集concentration分选separation手选hand sorting重选gravity separation,gravity concentration磁选magnetic separation电选electrostatic separation浮选flotation化学选矿chemical mineral processing自然铜native copper铝土矿bauxite冰晶石cryolite磁铁矿magnetite赤铁矿hematite假象赤铁矿martite钒钛磁铁矿vanadium titano-magnetite铁燧石taconite褐铁矿limonite菱铁矿siderite镜铁矿specularite硬锰矿psilomelane软锰矿pyrolusite铬铁矿chromite黄铁矿pyrite钛铁矿ilmennite金红石rutile萤石fluorite高岭石kaolinite菱镁矿magnesite重晶石barite discharge opening卸料口discharge outlet卸料口discharge pipe排出管discharge point卸载站discharge time卸载时间discharge trough排矿槽discharger卸载机discharging platform卸料平台discontinuity不连续性discontinuous不连续的discovery发现disintegration粉碎disintegrator粉碎机disk圆盘disk bit盘状冲魂头disk brake盘式制动器disk conveyor盘式运输机disk crusher盘式破碎机disk cutter圆盘式截煤机disk feeder转盘给矿机disk filter圆盘过滤机disk grizzly圆盘滚轴筛disk pulverizer盘式粉磨机disk valve圆盘阀dislocation转位dismantling分解dispatcher等员dispersant分散剂disperse分散dispersing agent分散剂dispersion分散dispersion medium 分散介体dispersity分散度displacement位移display显示装置disposition配置disruption破裂disruptive explosive爆裂性炸药dissemination矿染dissoci ate离解dissociation离解dissolubility溶解性dissoluble可溶的dissolution溶解dissoluvability溶解性dissoluvable可溶的dissolvant溶剂dissolve溶解dissolved gas drive溶解气驱dissolvent溶剂distance control远距控制disthene蓝晶石distillation蒸馏distillator蒸馏器distilled water蒸馏水distiller蒸馏器distortion变形distribute分配distributing conveyor分配输送机distributing trough布料槽distributing valve分配阀distribution分配distributor分配器district地区disulfide二硫化物disulphide二硫化物ditch沟道ditch and trench excavator挖沟机ditch blasting开沟爆破ditch excavator挖沟机ditcher挖沟机divergence发散divergency发散divide分水岭divider罐粱;罐梁;分隔器division分割;区域division surface分界面divisional plane节理do jiargillaceous rock泥质岩do jiarsenolite砷华do jiblastproof防爆的do jibolter筛do jibrittle脆的dobie blasting糊炮dock栈桥dog把手dolerite粗玄岩dolly way栈桥dolomite白云石dolomitization白云石化dolomization白云石化dome穹domeykite砷铜矿donarite道纳瑞特炸药door门door regulator第风门door stoop井筒安全柱door tender看门工door trapper看门工dope吸收剂dopplerite灰色沥青dormant fire潜伏火灾dorr classifier道尔型分级机dorr thickener道尔型浓缩机dosimeter剂量计dosing配量dosing tank计量箱double二重的double bank cage双层式罐笼double barrel复式岩心管double chain conveyor双链刮板输送机double deck cage双层式罐笼doubledeck screen双层筛double drum air driven hoist风动双滚筒绞车double drum hoist双滚筒绞车double drum scraper hoist双滚筒扒矿绞车double drum separator双浓筒磁选机double drum winch双滚筒绞车double entry双平巷double intakes双进风道double parting错车道double reduction gearbox两级减速装置double roll crusher双辊破碎机double stage compressor双级压气机double track haulage roadway双轨运输巷道double track heading双线平巷double tracked incline双轨斜井double tracked plane双轨上山double tube core barrel复式岩心管double union双键double unit双工炸区double up post补充柱dovetail joint鸠尾接合dowel 合缝销down grade下坡down to earth salt production地下岩盐开采downcast air进风downcast shaft进风井downcut下部掏槽downdraft下向通风downhole向下炮眼downpour注下downward下向的downward current下降流下向流downward mining下行开采downward ventilation下向通风downward working下行开采dozer推土机draft通风draft tube吸入管drag bar conveyor刮板运输机drag classifier刮板分级机drag conveyor刮板运输机dragline朔挖掘机dragline excavator朔挖掘机dragline tower excavator塔式朔挖掘机dragscraper刮土铲运机dragshovel刮土铲运机drain排水管drain adit排水平峒drain cock放水旋塞drain line排水管道drain opening排水囗drain outlet排水囗drain pipe排水管drain pump排水泵drain sump集水仓drain tap放水旋塞drain tube排水管drain valve放泄阀drainage排水drainage adit排水平峒drainage area排水面积drainage channel排水沟drainage conveyor脱水输送机drainage elevator 脱水提升机drainage facilities排水设备drainage gallery排水平硐dra inage hole放泄孔drainage level排水平巷drainage network排水网drainage property透水性drainage pump排水泵drainage screen脱水筛drainage shaft排水井drainage sieve脱水筛drainage works排水工作draining排水draught通风draught tube吸管drawbar牵引杆drawing回收drawing back of pillars后退式回采矿柱drawing height提升高度drawing hoist回柱绞车drawing machine提升绞车drawing program放矿计划drawing rate放矿速度drawing shaft提升井drawpoint brow放矿点口dredge挖掘船dredge pump吸泥泵dredger挖掘船dredging挖出dredging engine挖泥机dresser选矿工dressing刃磨dressing expenses选矿费dressing machine锻钎机dressing method连矿法dressing plant选矿厂dressing works选矿厂drier干燥机drift平硐drift angle偏差角drift bed冲积层drift conveyer水平坑道运输机drift drill架式凿岩机drift miner巷道掘进工drift mining平硐开采drift pillar平巷矿柱drift way水平巷道driftage 巷道掘进drifter架式凿岩机drifting巷道掘进drifting machine架式凿岩机drifting method掘进法drill钎杆drill adapter钻杆卡头drill autofeeder自动推进装置drill bar钻杆drill bit钎头drill bit gage loss钻头直径磨损量drill blower钻机吹粉器drill bortz钻用金刚石drill carriage凿岩机drill chuck钻头夹盘drill column钻杆柱drill core钻机岩心drill cuttings钻粉drill hammer凿岩机drill hole排放钻孔drill hole depth钻孔深度drill hole wall钻孔壁drill jumbo凿岩机drill maker锻钎机drill man凿岩工drill mounting钻机架drill pipe钻杆drill pipe cutter套管内切刀drill piston风钻活塞drill point angle钻尖角drill pump钻机泵drill rig钻车drill rod钻杆drill rope钻井钢丝绳drill round炮眼组drill steel钻钢drill stem钻杆drill team钻探队drill tower钻塔drill truck钻车drill unit钻孔设备drill water hose凿岩机供水软管drill water pipe钻机冲洗水管drillability可钻性drillability index可钻性指数driller凿岩工drillhole burden炮眼的负裁drilling穿孔drilling and blasting operation打眼放炮工作drilling cable钻井钢丝绳drilling cost打钻费drilling device钻眼装置drilling dust钻粉drilling equipment钻孔设备drilling exploration钻孔勘探drilling fluid钻孔液体drilling head钻头drilling hole钻孔drilling jumbo钻车drilling line钻井钢丝绳drilling machine钻孔机drilling meal钻粉drilling method钻进方法drilling mud钻泥drilling out fit钻孔设备drilling pattern炮孔排列法drilling pipe钻杆drilling platform 钻井平台drilling rate钻孔速度drilling rope钻井钢丝绳drilling shift 钻眼班drilling speed钻孔速度drilling staging凿岩台drilling steel钻钢drilling time钻孔时间drilling tool钻具drillings钻粉drillmobile钻车drip滴drip proof protection防滴保护drivage巷道掘进drivage efficiency掘进效率drivage method掘进法drive chain传动链drive head 传动机头drive rod传动钻杆drive shaft传动轴drive sprocket传动链轮drive sprocket wheel传动链轮driven pulley从动driven shaft从动轴driver掘进工driving冲击driving belt传动带driving chain传动链driving force传动力driving mechanism传动机构driving openings巷道掘进driving place掘进现场driving pulley织皮带轮driving shaft传动轴driving speed掘进速度driving terminal传动站driving up the pitch倾斜掘进drop滴drop bottom cage落底式罐笼drop bottom car底卸式车drop cage翻转罐笼drop crusher冲唤破碎机drop crushing落锤破碎drop end car端卸车drop hammar打桩落锤drop hammer test落锤试验drop pit溜道drop shaft沉井drop side car侧卸车drop test落锤试验dropper支脉drossy coal劣质煤drowned mine淹没的矿drowned pump浸没泵drum筒drum feeder转筒给料机drum filter鼓式过滤器drum screen滚筒筛drum separator圆筒式分选机drum switch鼓形开关drum to rope ratio筒径绳径比drum type feeder转筒给料机drum winder滚筒式提升机drumlin鼓丘druse晶洞drusy晶洞dry干燥dry assay干法试金dry cleaning干选dry coal preparation干法选煤dry cobbing干法磁选dry compressor气冷压气机dry concentration干选dry concentrator干式选矿机dry digging干料挖掘dry drilling干式钻眼dry feeder干给矿机dry grinding干磨dry magnetic dressing干法磁选dry magnetic separation干法磁选dry method 干式法dry mill干磨机dry milling干磨dry packing干式充填dry separation干选dry sieving干法筛分dry stowing干式充填dry treatment 干处理dryer干燥机dryer drum干燥机滚筒drying干燥drying chamber干燥室drying cylinder干燥筒drying room干燥室ds blasting秒延迟爆破duct 导管ductility延性ductwork通风管道duff dust末煤dufrenite绿磷铁矿dull coal暗煤dumm drift盲道dummy drift独头巷道dummy roadway石垛平巷dummy shaft暗井dumortierite蓝线石dump堆dump body truck自卸式载重汽车dump car翻斗车dump house翻车房dump leaching堆积沥滤dump pocket倾卸仓dump skip倾卸箕斗dump truck自卸式载重汽车dumper翻车机dumping翻卸dumping place倾卸场dumping station倾卸站dumping track倾卸线dumping wagon翻斗车dunite纯橄榄岩dunn bass泥质页岩duplex二倍的duplex compressor双动压气机duplex jig双室跳汰机duplex table双摇床durability耐久性durable耐久的durain暗煤型duration经久duration of cycle循环时间durite暗煤型durometer硬度计dust allayer集尘器dust barrier岩粉棚dust catcher集尘器dust catching efficiency集尘效率dust catching plant集尘装置dust chamber集尘室dust coal粉煤dust collection集尘dust concentration尘末浓度dust consolidation尘末结合dust content含尘率dust control防尘dust counter尘度计dust distributor撒岩粉器dust explosion尘末爆炸dust extraction除尘dust extractor吸尘器dust filter滤尘器dust flotation矿尘浮选dust ladenair含尘空气dust lung尘肺病dust mask防尘面具dust monitor吸尘器dust ore粉状矿石dust phthisis尘肺病dust precipitation煤尘沉降dust prevention防尘dust proof防尘的dust protective mask防尘面具dust recovery收尘dust removal除尘dust separator离尘器dust settli ng尘末沉淀dust tight防尘的dust yield生尘量dustfree drilling无尘钻眼dustiness含尘量dustiness index含尘指数dusting生尘dustless drilling无尘钻眼dusty air含尘空气dusty mine多尘矿井duty能率dyke岩脉dynamic动力的dynamic balance动态平衡dynamic characteristic动态特性dynamic effect动态效应dynamic equillibrium动态平衡dynamic load动负载dynamic pressure动压dynamic stress动力应力dynamics动力学dynamite疵麦特dynamite magazine炸药房dynamomorphism动力变质dynamometer测力计dynamometry测力法dynamon辞蒙炸药dyscrasite锑银矿mineral矿物ore矿石deposit矿床galena方铅矿sphalerite闪锌矿cassiterite锡石isomorphism类质同像olivine橄榄石polymorphism同质多象,多形性graphite石墨chalk白垩clay黏土granite花岗岩rock岩石igneous火成的magma岩浆feldspar长石quartz石英mica云母pyrite黄铁矿gangue脉石nonferrous非铁的tailing尾矿grade品位concentrate精矿,富集,浓缩concentration富集,浓缩bauxite铝土矿fluorite萤石barite重晶石as-mined ore原矿石,采出矿石run-of-mine ore原矿石oredressing矿石拣选,选矿mineral dressing矿物拣选,选矿milling磨,制粉,选矿hydrometallurgical湿法冶金学的recovery回收,回收率liberation解离,释放,解放comminution粉碎crushing破碎,碎矿grinding研磨,磨矿comminute使成粉末,粉碎overgrind过粉碎,过磨sorting拣选,分选hand selection手选froth flotation泡沫浮选specific gravity比重affinity吸引力,亲和力avid亲的,渴望的agitate搅拌pulp矿浆ferromagnetic铁磁的,强磁的magnetite磁铁矿paramagnetic顺磁性的wolframite黑钨矿hematite赤铁矿magnetic separation磁选beneficiation选矿high-tension separation高压分选,高压电选dielectric电介质,绝缘体roasting煅烧,焙烧calcination煅烧colloidal胶质的,胶体的sizing筛分screen筛子,筛分机classifier分级机dewatering脱水thickener浓密机filter过滤机drier干燥机,干燥剂misplaced误选的,混杂的ultra-fine超细的phosphate磷酸盐tin锡chalcopyrite黄铜矿end product最终产品ratio of concentration选矿比carat克拉enrichment ratio富集比excavate挖掘,采掘scraper电铲conveyor运输机carrier矿石搬运quarry采石场,采石blasting爆破compression压力,压缩compressive压力的,压缩的abrasion研磨reduction ratio破碎比tumbling mills滚筒磨矿机slurry矿浆crystalline结晶的array排列,行列configuration构型,排列,轮廓physical bond物理键chemical bond化学键lattice晶格,格子,点阵inter-atomic bond原子键tensile张力,拉力stress应力flaw裂隙matrix矩阵,排列perpendicular垂直的critical临界的crack tip l裂隙末端rupture破裂,断裂propagation传播brittle脆性的elastic弹性amenable改善的,有利于,易于oxidizing氧化strain应变,变形,拉紧plasticflow塑性流动molecule分子surfactant表面活性剂attrition磨损,研磨消耗shear剪切力discern分辨,辨识projection凸出部分corrugated波纹状的gravity separation重力分离reagent药剂incorporate结合,合并ecological生态学地concentration criterion可选性准则quotient商,系数feasible可行的in accordance with与…相一致friction摩擦slime矿泥obscure含糊的,模糊地degradation降低multi-spigot多排矿管的hydrosizer水力分级机jig跳汰机pulp-density矿浆浓度nucleonic density gauge核浓度表settling cones浓密斗hydrocyclone水力旋流器degradation细化magnetic separation磁选ferrous mineral黑色金属矿物non-ferrous mineral有色金属矿物magnetic field磁场magnetic susceptibility磁化率,磁化系数paramagnetic顺磁性的diamagnetic逆磁性的siderite菱铁矿contaminant污染物质,杂质magnetism磁性,磁力,磁性现象remanence剩磁,剩余磁感应magnetic remanence顽磁magnetic induction磁感应强度Oersted奥斯特Tesla特斯拉by convention按照惯例iron-bearing含铁的magnetic permeability磁导率magnetic field gradient磁场梯度intensity of magnetization磁化强度drag force介质阻力levitation浮起,升起bulk-oil floatation全油浮选skin floatation表层浮选froth floatation泡沫浮选sift out淘汰phsico-chemical物理化学的pulp矿浆,纸浆direct flotation正浮选reverse flotation反浮选hydrophobic疏水的affinity亲和力,吸引力contact angle接触角floatability可浮性,浮动性aerophilic亲气的surge tank缓冲槽,振动箱distributor分配器,分矿器flotation circuit浮选回路,浮选流程flowsheet流程peripheral data辅助数据,其他资料batch flotation cell单槽浮选机,挂槽浮选机pneumatic machine充气浮选机flotation column浮选柱cascade cell喷流槽,泄落槽baffle导流板,栅板permeable base有孔底板sub-aeration machine底部充气浮选机impeller叶轮blade叶片,刀刃overflow weir溢流堰overflowlip溢流口scavenger扫选槽scavenge扫选、rougher粗选槽rough粗选cleaner cell精选槽clean精选特别声明:1:资料来源于互联网,版权归属原作者2:资料内容属于网络意见,与本账号立场无关3:如有侵权,请告知,立即删除。

分子基磁性功能材料研究进展

分子基磁性功能材料研究进展

第42卷 第5期Vol.42 No.5昭通学院学报Journal of Zhaotong University 2020年10月Oct.2020●化学研究分子基磁性功能材料研究进展(昭通学院 化学化工学院,云南 昭通 657000)摘 要:分子基磁性功能材料不仅具有丰富多彩的结构,而且还具有单链磁体、单分子磁体、单离子磁体和磁致冷等特性,引起研究者的广泛关注,成为当前的研究热点。

综述了近年来分子基磁性功能材料在单链磁体、单分子磁体、单离子磁体和磁致冷等领域的应用研究进展。

并对分子基磁性功能材料的应用前景进行了总结和展望。

关键词:单链磁体;单分子磁体;单离子磁体;磁致冷中图分类号:TM271 文献标志码:A 文章编号:2095-7408(2020)05-0011-06李启彭收稿日期:2020-07-21作者简介:李启彭(1987— ),男,云南会泽人,副教授,博士,主要从事配位聚(簇)合物材料的制备及其应用研究。

分子基磁性材料作为一种新型功能材料,涉及化学、物理和材料等交叉学科领域[1-3]。

通过在分子水平上设计和制备分子基磁性材料,可以赋予其丰富多彩的结构和有趣的光、电、磁和催化等性质[3-5]。

分子基磁性材料在高密度信息存储、超低温磁制冷以及量子计算等领域具有潜在的应用前景[6-9]。

分子基磁性材料的研究主要集中在设计和制备单分子磁体、单链磁体、单离子磁体和磁致冷等方面[6-9]。

本文详细地综述了近年来分子基磁性功能材料在单链磁体、单分子磁体、单离子磁体和磁致冷等领域的应用研究进展,并对分子基磁性功能材料的应用前景进行了总结和展望。

1 单链磁体1963年,Glauber 等[10]采用统计学的方法,研究了单轴各向异性的伊辛模型,并预言一维的伊辛模型,在低温下会出现慢弛豫现象,弛豫时间满足阿伦尼乌斯公式。

2001年,Gatteschi 等[10-11]制备了一维链状钴基化合物,实验上对Glauber 提出的理论进行了论证。

磁致多铁性物理与新材料设计

磁致多铁性物理与新材料设计

磁致多铁性物理与新材料设计*董帅1,†向红军2,††(1东南大学物理系南京211189)(2复旦大学物理系计算物质科学教育部重点实验室应用表面物理国家重点实验室上海200433)Physics and design of magnetic multiferroicsDONG Shuai 1,†XIANG Hong-Jun 2,††(1Department of Physics ,Southeast University ,Nanjing 211189,China)(2Department of Physics and Key Laboratory of Computational Physical Sciences (Ministry of Education),State Key Laboratory of Surface Physics ,Fudan University ,Shanghai 200433,China)摘要磁致多铁材料是多铁性材料大家族中的后起之秀,其特色在于其铁电性起源于特定的磁序,因此其铁电性与磁性紧密关联,具有本征的强磁电耦合效应。

目前对磁致多铁性的研究以基础物理为主。

随着对磁致多铁现象背后物理机制认识的不断深入,不断有新的磁致多铁材料被设计、预言和发现,其性能也在不断地提高。

文章简要介绍了磁致多铁材料所涉及的基本物理机制,并根据这些已知的规律,回顾了近年来寻找和设计新的磁致多铁材料的经验。

关键词磁致多铁,Dzyaloshinskii—Moriya作用,交换收缩,磁序诱导铁电性统一极化模型,第一性原理计算Abstract Magnetic multiferroics belong to an important branch of the big multiferroicsfamily.Because the ferroelectric polarizations are directly induced by particular magnetic orders,magnetic multiferroics exhibit strong intrinsic magnetoelectric coupling.Current research on mag-netic multiferroics is mostly focused on their fundamental physics.Benefitting from the progress of research on physical mechanisms,more and more new magnetic multiferroic materials have been designed,predicted,and discovered,with continual improvement in their magnetoelectric per-formance.We review briefly the physical mechanisms involved in magnetic multiferroics,as well as the efforts in recent years to search for and design new magnetic multiferroics.Keywordsmagnetic multiferroics,Dzyaloshinskii —Moriya interaction,exchange stric-tion,unified model of ferroelectricity induced by spin order,first-principles calculation2013-11-15收到†email :sdong@††email :hxiang@DOI :10.7693/wl20140304*国家自然科学基金(批准号:51322206,11274060,11104038)、国家重点基础研究发展计划(批准号:2011CB922101,2012CB921400)、高等学校博士学科点专项科研基金(批准号:20100092120032)、新世纪优秀人才支持计划(批准号:NCET-10-0325,NCET-10-0351)资助项目,上海市东方学者项目1引言2003年,BiFeO 3薄膜[1]和TbMnO 3单晶[2]的发现和研究揭开了多铁性材料的研究序幕,多铁性材料和物理的研究进入了蓬勃发展时期,跻身成为关联电子大家庭中又一重要分支。

Microwave Theory and Technique Electronic Measurements Fundamentals of Electronics Circuit

Microwave Theory and Technique Electronic Measurements Fundamentals of Electronics Circuit

RESEARCH INTERESTSPower Electronics, Switching-Mode PWM and Resonant DC/DC Power Converters, DC/AC Inverters, Resonant Rectifiers, RF Tuned Power Transistor Amplifiers and Oscillators, Power Management, Magnetic Devices, Semi-conductor Device Modeling, Power Integrated Circuits, Electronic Ballasts, Lighting Systems, Modeling and Con-trols of Power Converters, Sensors, Electronic Circuits, Integrated Circuits, Energy Harvesting, and CAD.EDUCATION1966-1971 Department of Electronics, Technical University of Warsaw, Warsaw, Poland1972-1973 Post Graduate Study in Engineering Education, Technical University of Warsaw, Warsaw, PolandDEGREES1971M.S.Thesis: "Gunn diode oscillator for X-band with varactor tuning"Advisors: Professor Adam Smolinski and Professor Janusz DobrowolskiDepartment of Electronics, Technical University of Warsaw, Warsaw, Poland 1978Ph.D.Dissertation: "High-efficiency tuned power transistor amplifier"Advisor: Professor Jan EbertDepartment of Electronics, Technical University of Warsaw, Warsaw, Poland 1984D. Sci.Dissertation: "High-efficiency tuned power amplifiers, frequency multipliers, and oscillators," Warsaw Technical University Publisher, pp. 1-143, Warsaw 1984Department of Electronics, Technical University of Warsaw, Warsaw, PolandPROFESSIONAL ACADEMIC EXPERIENCE1972-1978 Instructor, Department of Electronics, Technical University of Warsaw, Warsaw, Poland1978-1984 Assistant Professor, Department of Electronics, Technical University of Warsaw, Warsaw, PolandCourses taught High-Frequency High-Power TechniquesRadio TransmittersElectromagnetic Field TheoryMicrowave Theory and TechniqueElectronic MeasurementsFundamentals of ElectronicsCircuit TheoryElectronic Circuits and SystemsRadio Transmitters LaboratoryRadio Receivers LaboratoryElectronics LaboratoryRadio Electronics Laboratory, Chair, 1978-1984Electronic Apparatus Laboratory, Chair, 1978-1984.MARIAN K. KAZIMIERCZUKProfessor of Electrical EngineeringWright State UniversityDayton, OH 45435Phone: 937 775-5059 Fax: 937-775-3936 mkazim@1984-1985 Visiting Professor, Department of Electrical Engineering, Virginia Polytechnic Institute and State Uni-versity, Blacksburg, VA 24061Courses taught EE3101 Electromagnetic FieldsEE3201 Electronics IEE3202 Electronics IIEE4201 Electronic Circuits and Systems I1985-1990 Assistant Professor, Department of Electrical Engineering, Wright State University, Dayton, OH 45435 1990-1994 Associate Professor, Department of Electrical Engineering, Wright State University, Dayton, OH 45435 1994-pres Professor, Department of Electrical Engineering, Wright State University, Dayton, OH 45435 Courses taught EE 331/531 Electronic DevicesEE 431/631 Electronic CircuitsEE 434/634 Electronic Circuits LaboratoryEE 444/644 Linear Integrated CircuitsEE 449/649 Pulse and Digital CircuitsEE 499/699 Special Problems in EngineeringEE 499 Design Industrial ClinicEE 741 Power Semiconductor DevicesEE 742 Power Electronics IIEE 743 Power Electronics IIIEGR 891 Ph.D. SeminarADVISING11 Ph.D. students81 M.S. students6 post-doctoral positions3 sabbatical positionsPROFESSIONAL NON-ACADEMIC EXPERIENCE1984 Design Automation, Inc., 809 Massachusetts Avenue, Lexington, MA 02173, (617) 862-8998 Project Engineer responsible for designing high-efficiency switching-mode dc/dc converters1991 Wright-Patterson AFB, Wright Laboratory, Dayton, OH, Summer Faculty Fellowship1995 Wright-Patterson AFB, Wright Laboratory, Dayton, OH, Summer Faculty Fellowship1996 Wright-Patterson AFB, Wright Laboratory, Dayton, OH, Summer Faculty Fellowship PROFESSIONAL MEMBERSHIPSIEEE, Fellow 2005-presentIEEE, Senior Member 1991-2004Power Electronics Society 1991-presentCircuit and Systems Society 1991-presentIndustrial Electronics Society 1991-presentAerospace and Electronic Systems Society 1991-presentIndustry Applications Society 1991-presentTau Beta Pi 1992-presentElectrical Manufacturing and Coil Winding Association 1991-presentAWARDS1977 President of the Technical University of Warsaw1978 President of the Technical University of Warsaw1979 President of the Technical University of Warsaw1980 President of the Technical University of Warsaw1981 Minister of Science, University Education, and Technology1982 Minister of Science, University Education, and Technology1983 Polish Academy of Sciences1984 President of the Technical University of Warsaw1985 Minister of Science, University Education, and Technology1990 Harrel V. Noble Award, IEEE Dayton Section1991 Excellence in Research Award, College of Engineering and Computer Science, Wright State University 1991 Presidential Award for Faculty Excellence in Research, Wright State University1993 Excellence in Teaching Award, College of Engineering and Computer Science, Wright State University 1993 Nominated for the Presidential Teaching Excellence Award, Wright State University1994 Nominated for the Presidential Teaching Excellence Award, Wright State University1994 Electrical Manufacturing and Coil Winding for outstanding contribution1995 Award for Outstanding Professional Achievement, the Affiliate Societies Council of the Engineering and Sci-ence Foundation of Dayton1995 Outstanding Faculty Member, College of Engineering and Computer Science, Wright State University1995 Presidential Award, Outstanding Faculty Member, Wright State University1996 Brage Golding Distinguished Professor of Research Award, Wright State University1997 Excellence in Professional Service Award, College of Engineering and Computer Science, Wright State Uni-versity1997 Nominated for the Presidential Professional Service Award, Wright State University2000 Excellence in Teaching Award, College of Engineering and Computer Science, Wright State University 2000 Nominated for the Presidential Teaching Award, Wright State University2002 Excellence in Professional Service Award, College of Engineering and Computer Science, Wright State Uni-versity2002 Nominated for the Presidential Professional Service Award, Wright State University2003 Excellence in Research Award, College of Engineering and Computer Science, Wright State University 2004 Board of Trustees’ Award for Faculty Excellence, Wright State University2005 Nominated for the Excellence in Teaching Award, College of Engineering and Computer Science, Wright State University2006 Nominated for Robert J. Kegerreis Distinguished Professor of Teaching by CECS2007 Nominated for Robert J. Kegerreis Distinguished Professor of Teaching by CECS2007 Nominated for the Excellence in Teaching Award, College of Engineering and Computer Science, Wright State UniversityPUBLICATIONSBooks1. M. K. Kazimierczuk and D. Czarkowski, "Resonant Power Converters," John Wiley & Sons, New York, NY, pp.1-481, 1995 (The text book is intended for graduate courses and practicing engineers).2. M. K. Kazimierczuk and D. Czarkowski, "Solutions for Resonant Power Converters," John Wiley & Sons, NewYork, NY, pp. 1-80, 1995.3. A. Aminian and M. K. Kazimierczuk, “Electronic Devices: A Design Approach,” Prentice Hall, Upper SaddleRiver, NJ, pp. 1-810, 2004 (The text book is intended for undergraduate courses, 3 quarters or 2 semesters). 4. M. K. Kazimierczuk and A. Aminian, “Laboratory Manual to Accompany Electronic Devices: A Design Ap-proach,” Prentice Hall, Upper Saddle River, NJ, pp. 1-149, 2004 (The book is intended for undergraduate courses).5. M. K. Kazimierczuk and A. Aminian, “Instructor’s Solutions Manual to Accompany Electronic Devices: A De-sign Approach,” Prentice Hall, Upper Saddle River, NJ, pp. 1-543, 2004.6. M. K. Kazimierczuk, “Pulse-width DC-DC Power Converters,” John Wiley & Sons, New York, NY, 2008, pp. 1-968 (in press). (The book is intended for graduate students and practicing engineers).7. M. K. Kazimierczuk, “Solutions Manual for Pulse-width WM DC-DC Power Converters,” John Wiley & Sons,New York, NY, 2008 (in press).Journal Articles1. M. K. Kazimierczuk and J. M. Modzelewski, "Drive-transformerless Class-D voltage switching tuned poweramplifier," Proceedings of the IEEE, Vol. 68, pp. 740-741, June 1980.2. M. K. Kazimierczuk, "Class E tuned power amplifier with shunt inductor," IEEE Journal of Solid-State Circuits,Vol. SC-16, pp. 2-7, February 1981.3. J. Ebert and M. K. Kazimierczuk, "Class E high-efficiency tuned power oscillator," IEEE Journal of Solid-StateCircuits, Vol. SC-16, pp. 62-66, April 1981.4. M. K. Kazimierczuk, "A new approach to the design of tuned power oscillators," IEEE Transactions on Circuitsand Systems, Vol. CAS-29, pp. 261-267, April 1982.5. J. Ebert and M. K. Kazimierczuk, "High-efficiency RF power transistor amplifier," Bull. Polon. Sci., Ser. Sci.Tech., Vol. 25, No. 2, pp. 135-138, 1977.6. J. Ebert and M. K. Kazimierczuk, "Applying the Class E concept to the RF power generator," Bull. Acad.Polon. Sci., Ser. Sci. Tech., Vol. 29, No. 1-2, pp. 79-87, 1981.7. M. K. Kazimierczuk, "Effects of the collector current fall time on the Class E tuned power amplifier," IEEEJournal of Solid-State Circuits, Vol. SC-18, pp. 181-193, April 1983.8. M. K. Kazimierczuk, "Exact analysis of Class E tuned power amplifier with only one inductor and one capacitorin load network," IEEE Journal of Solid-State Circuits, Vol. SC-18, pp. 214-221, April 1983.9. M. K. Kazimierczuk, "Parallel operation of power transistors in switching amplifiers," Proceedings of the IEEE,Vol. 71, pp. 1456-1457, December 1983.10. M. K. Kazimierczuk, "Charge-control analysis of Class E tuned power amplifier with only one inductor and onecapacitor in load network," IEEE Transactions on Electronic Devices, Vol. ED-31, pp. 366-373, March 1984.11. M. K. Kazimierczuk, "Accurate measurements of lifetime of excess base stored charge at high collector cur-rents," IEEE Transactions on Electronic Devices, Vol. ED-31, pp. 374-378, March 1984.12. M. K. Kazimierczuk, "Collector amplitude modulation of Class E tuned power amplifier," IEEE Transactions onCircuits and Systems, Vol. CAS-31, pp. 543-549, June 1984.13. M. K. Kazimierczuk and N. O. Sokal, "Cause of instability of power amplifier with parallel-connected powertransistors," IEEE Journal of Solid-State Circuits, Vol. SC-19, pp. 541-542, August 1984.14. M. K. Kazimierczuk, "Class E tuned power amplifier with nonsinusoidal output voltage," IEEE Journal of SolidState Circuits, Vol. SC-21, pp. 575-581, August 1986.15. M. K. Kazimierczuk, "Generalization of conditions for 100-percent efficiency and nonzero output power inpower amplifiers and frequency multipliers," IEEE Transactions on Circuits and Systems, Vol. CAS-33, pp.805-807, August 1986.16. M. K. Kazimierczuk and K. Puczko, "Exact analysis of Class E tuned power amplifier at any Q and switch dutycycle," IEEE Transactions on Circuits and Systems, Vol. CAS-34, pp. 149-159, February 1987.17. M. K. Kazimierczuk, "High-speed driver for switching power MOSFETs," IEEE Transactions on Circuits andSystems, Vol. CAS-35, pp. 254-256, February 1988.18. M. K. Kazimierczuk, "Design-oriented analysis of boost zero-voltage-switching resonant dc/dc converter,"IEEE Transactions on Power Electronics, Vol. PE-3, pp. 126-136, April 1988.19. M. K. Kazimierczuk, "Steady-state analysis of a buck zero-current-switching resonant dc/dc converter," IEEETransactions on Power Electronics, Vol. PE-3, pp. 286-296, July 1988.20. M. K. Kazimierczuk, "A network theorem dual to Miller's theorem," IEEE Transactions on Education, Vol. E-31,pp. 265-269, November 1988.21. M. K. Kazimierczuk and X. T. Bui, "Class E dc/dc converters with an inductive impedance inverter," IEEETransactions on Power Electronics, Vol. PE-4, pp. 124-135, January 1989.22. J. Jozwik and M. K. Kazimierczuk, "Dual sepic PWM switching-mode dc/dc power converter," IEEE Transac-tions on Industrial Electronics, Vol. IE-36, pp. 64-70, February 1989.23. M. K. Kazimierczuk and W. A. Tabisz, "Class C-E high-efficiency tuned power amplifier," IEEE Transactionson Circuits and Systems, Vol. CAS-36, pp. 421-428, March 1989.24. M. K. Kazimierczuk and W. D. Morse, "State-plane analysis of zero-voltage-switching resonant dc/dc convert-ers," IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-25, pp. 232-239, March 1989.25. M. K. Kazimierczuk and W. D. Morse, "State-plane analysis of zero-current-switching resonant dc/dc powerconverters," IEEE Transactions on Power Electronics, Vol. PE-4, pp. 265-271, April 1989.26. M. K. Kazimierczuk, "Analysis of buck/boost zero-current-switching resonant dc/dc converter," IEE Proceed-ings, Part B, Electric Power Applications, Vol. 136, pp. 127-135, May 1989.27. M. K. Kazimierczuk and J. Jozwik, "Optimal topologies of resonant dc/dc converters," IEEE Transactions onAerospace and Electronic Systems, Vol. AES-25, pp. 362-372, May 1989.28. M. K. Kazimierczuk and J. Jozwik, "Class E zero-voltage-switching rectifier with a series capacitor," IEEETransactions on Circuits and Systems, Vol. CAS-36, pp. 926-928, June 1989.29. M. K. Kazimierczuk and K. Puczko, "Power-output capability of Class E amplifier at any loaded Q and switchduty cycle," IEEE Transactions on Circuits and Systems, Vol. CAS-36, pp. 1142-1143, August 1989.30. M. K. Kazimierczuk and X. T. Bui, "Class E dc/dc converters with a capacitive impedance inverter," IEEETransactions on Industrial Electronics, Vol. IE-36, pp. 425-433, August 1989.31. M. K. Kazimierczuk, "Analysis and design of buck/boost zero-voltage-switching resonant dc/dc converter," IEEProceedings, Pt. G, Circuits, Devices, and Systems, Vol. 136, pp. 157-166, August 1989.32. M. K. Kazimierczuk and K. Puczko, "Class E tuned power amplifier with an antiparallel diode or a series diodeat switch, with any loaded Q and switch duty cycle," IEEE Transactions on Circuits and Systems, Vol. CAS-36, pp. 1201- 209, September 1989.33. M. K. Kazimierczuk and J. Jozwik, "DC/DC converter with Class E zero-voltage-switching inverter and Class Ezero-current-switching rectifier," IEEE Transactions on Circuits and Systems, Vol. CAS-36, pp. 1485-1488, November 1989.34. M. K. Kazimierczuk and J. Jozwik, "Resonant dc/dc converter with Class-E inverter and Class-E rectifier,"IEEE Transactions on Industrial Electronics, Vol. IE-36, pp. 568-578, November 1989.35. M. K. Kazimierczuk, "Class E low dv D/dt rectifier," IEE Proceedings, Pt. B, D Electric Power Applications, Vol.136, pp. 257-262, November 1989.36. M. K. Kazimierczuk and J. Jozwik, "Class E2 narrow-band resonant dc/dc converters," IEEE Transactions onInstrumentation and Measurement, Vol. IM-38, pp. 1064-1068, December 1989.37. M. K. Kazimierczuk and J. Jozwik, "Class E zero-voltage-switching and zero-current-switching rectifiers," IEEETransactions on Circuits and Systems, Vol. CAS-37, pp. 436-444, March 1990.38. M. K. Kazimierczuk and X. T. Bui, "Class-E amplifier with an inductive impedance inverter," IEEE Transactionson Industrial Electronics, Vol. IE-37, pp. 160-166, April 1990.39. J. Jozwik and M. K. Kazimierczuk, "Analysis and design of Class-E2 dc/dc converter," IEEE Transactions onIndustrial Electronics, Vol. IE-37, pp. 173-183, April 1990.40. M. K. Kazimierczuk, "Analysis of Class E zero-voltage-switching rectifier," IEEE Transactions on Circuits andSystems, Vol. CAS-37, pp. 747-755, June 1990.41. M. K. Kazimierczuk and J. Jozwik, "Class E2 resonant dc/dc power converter," IEE Proceedings, Pt. G, Cir-cuits, Devices and Systems, Vol. 137, pp. 193-196, June 1990.42. M. K. Kazimierczuk and J. Jozwik, "Analysis and design of Class E zero-current-switching rectifier," IEEETransactions on Circuits and Systems, Vol. CAS-37, pp. 1000-1009, August 1990.43. M. K. Kazimierczuk and K. Puczko, "Class E low dv/dt synchronous rectifier with controlled duty ratio and out-put voltage," IEEE Transactions on Circuits and Systems, Vol. CAS-38, pp. 1165-1172, October 1991.44. M. K. Kazimierczuk, "Class D current-driven rectifiers for resonant dc/dc converter applications," IEEE Trans-actions on Industrial Electronics, Vol. IE-38, pp. 344-354, October 1991.45. M. K. Kazimierczuk, "Class D voltage-switching MOSFET power amplifier," IEE Proceedings, Part B, ElectricPower Applications, Vol. 138, pp. 285-296, November 1991.46. M. K. Kazimierczuk, W. Szaraniec, and S. Wang, "Analysis and design of parallel resonant converter at highQ L," IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-28, pp. 35-50, January 1992.47. M. K. Kazimierczuk and S. Wang, "Frequency-domain analysis of series resonant converter for continuousconduction mode," IEEE Transactions on Power Electronics, Vol. PE-6, pp. 270-279, April 1992.48. M. K. Kazimierczuk and W. Szaraniec, "Analysis of Class E rectifier with a series capacitor," IEE Proceedings,Part G, Circuits, Devices and Systems, Vol. 139, pp. 269-276, June 1992.49. M. K. Kazimierczuk, "Synthesis of phase-modulated dc/ac inverters and dc/dc converters," IEE Proceedings,Pt. B, Electric Power Applications, Vol. 139, pp. 387-394, July 1992.50. A. Ivascu, M. K. Kazimierczuk, and S. Birca-Galateanu, "Class E resonant low dv/dt rectifier," IEEE Transac-tions on Circuits and Systems, Vol. CAS-39, pp. 604-613, August 1992.51. D. Czarkowski and M. K. Kazimierczuk, "Linear circuits models of PWM flyback and buck/boost converters,"IEEE Transactions on Circuits and Systems, Vol. CAS-39, pp. 688-693, August 1992.52. M. K. Kazimierczuk and W. Szaraniec, "Class D zero-voltage switching inverter with only one shunt capacitor,"IEE Proceedings, Part B, Electric Power Applications, Vol. 139, pp. 449-456, September 1992.53. D. Czarkowski and M. K. Kazimierczuk, "Static- and dynamic-circuit models of PWM buck-derived dc-dc con-verters," IEE Proceedings, Part G, Circuits, Devices and Systems, Vol. 139, pp. 669-679, December 1992. 54. M. K. Kazimierczuk, N. Thirunarayan, and S. Wang, "Analysis of series-parallel resonant converter," IEEETransactions on Aerospace and Electronic Systems, Vol. AES-29, pp. 88-99, January 1993.55. M. K. Kazimierczuk and W. Szaraniec, "Analysis of Class E low di/dt rectifier with a series inductor," IEEETransactions Aerospace and Electronic Systems, Vol. AES-29, pp. 278-287, January 1993.56. M. Mikolajewski and M. K. Kazimierczuk, "Zero-voltage-ripple rectifiers and dc/dc resonant converters," IEEETransactions on Power Electronics, Vol. PE-6, pp. 12-17, January 1993.57. A. Reatti, M. K. Kazimierczuk, and R. Redl, "Class E full-wave low dv/dt rectifier," IEEE Transactions on Cir-cuits and Systems, Vol. CAS-40, pp. 73-85, February 1993.58. M. K. Kazimierczuk and N. Thirunarayan, "Class D voltage-switching inverter with tapped resonant inductor,"IEE Proceedings, Pt. B., Electric Power Applications, Vol. 140, pp. 177-185, May 1993.59. D. Czarkowski and M. K. Kazimierczuk, "Single-capacitor phase-controlled series resonant converter," IEEETransactions on Circuits and Systems, Vol. CAS-40, pp. 383-391, June 1993.60. M. K. Kazimierczuk and W. Szaraniec, "Class D-E resonant dc/dc converter," IEEE Transactions on Aero-space and Electronics Systems, Vol. AES-29, pp. 963-976, July 1993.61. D. Czarkowski and M. K. Kazimierczuk, "Energy-conservation approach to modeling PWM dc-dc converters,"IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-29, pp. 1059-1063, July 1993.62. D. Czarkowski and M. K. Kazimierczuk, "Phase-controlled series-parallel resonant converter," IEEE Transac-tions on Power Electronics, Vol. PE-8, pp. 309-319, July 1993.63. M. K. Kazimierczuk and M. K. Jutty, "Phase-modulated series-parallel resonant converter with series load,"IEE Proceedings, Pt. B, Electric Power Applications, Vol. 140, pp. 297-306, September 1993.64. M. K. Kazimierczuk and W. Szaraniec, "Electronic ballast for fluorescent lamps," IEEE Transactions on PowerElectronics, Vol. PE-8, pp. 386-395, October 1993.65. A. Ivascu, M. K. Kazimierczuk, and S. Birca-Galateanu, "Class E resonant low di/dt rectifier," IEE Proceedings,Part G, Circuits, Devices and Systems, Vol. 140, pp. 417-423, December 1993.66. M. K. Kazimierczuk, D. Czarkowski, and N. Thirunarayan, "A new phase-controlled parallel resonant con-verter," IEEE Transactions on Industrial Electronics, Vol. IE-40, pp. 542-552, December 1993.67. D. Czarkowski and M. K. Kazimierczuk, "Application of state feedback with integral control to pulse-widthmodulated push-pull dc-dc converter," IEE Proceedings, Part D, Control Theory and Applications, Vol. 141, pp. 99-103, March 1994.68. M. K. Kazimierczuk, B. Tomescu, and A. Ivascu, "Class E resonant rectifier with a series capacitor," IEEETransactions on Circuits and Systems, Vol. 41, pp. 885-890, December 1994.69. M. K. Kazimierczuk and R. Cravens II, "Closed-loop characteristics of voltage-mode-controlled PWM boost dc-dc converter with an integral-lead controller," Journal of Circuits, Systems and Computers, Vol. 4, No. 4, pp.429-458, December 1994.70. M. K. Kazimierczuk and N. Thirunarayan, "Dynamic performance of MCTs under inductive load conditions,"Journal of Circuits, Systems and Computers, Vol. 4, No. 4, pp. 471-485, December 1994.71. M. K. Kazimierczuk and M. Jutty, "Fixed-frequency phase-controlled full-bridge resonant converter with a se-ries load," IEEE Transactions on Power Electronics, Vol. PE-10, pp. 9-18, January 1995.72. D. Czarkowski, L. R. Pujara, and M. K. Kazimierczuk, "Robust stability of state-feedback control of PWM dc-dcpush-pull converter," IEEE Transactions on Industrial Electronics, Vol. IE-41, pp. 108-111, February 1995.73. M. K. Kazimierczuk and A. Abdulkarim, "Current-source converter with parallel-resonant circuit," IEEE Trans-actions on Industrial Electronics, Vol. IE-42, pp. 199-208, April 1995.74. D. Czarkowski and M. K. Kazimierczuk, "Static characteristics of MOS-controlled thyristors - Analysis, simula-tion and experimental results," Journal of Circuits, Systems and Computers, Vol. 5, No. 1, pp. 65-80, March 1995.75. M. K. Kazimierczuk and R. Cravens II, "Open and closed-loop dc and small-signal characteristics of PWMbuck-boost converter for CCM," Journal of Circuits, Systems and Computers, Vol. 5, No. 3, pp. 261-303, Sep-tember 1995.76. M. K. Kazimierczuk, N. Thirunarayan, B. T. Nguyen, and J. A. Weimer, "Experimental static and dynamiccharacteristics of MOS-controlled thyristors for resistive loads," Journal of Circuits, Systems and Computers, Vol. 5, No. 3, pp. 393-410, September 1995.77. R. E. Siferd, R. C. Cravens II, and M. K. Kazimierczuk, "CMOS PWM control circuit with programmable deadtime," Journal of Circuits, Systems and Computers, Vol. 5, No. 3, pp. 429-441, September 1995.78. M. K. Kazimierczuk, "Reverse recovery of power pn junction diodes," Journal of Circuits, Systems and Com-puters, Vol. 5, No. 4, pp. 589-606, December 1995.79. M. Bartoli, N. Neferi, A. Reatti, and M. K. Kazimierczuk, "Modeling winding losses in high-frequency powerinductors," Journal of Circuits, Systems and Converters, Vol. 5, No. 4, pp. 607-626, December 1995.80. M. K. Kazimierczuk and R. C. Cravens II, "Experimental results for the small-signal study of the PWM boostDC-DC converter with an integral-lead controller," Journal of Circuits, Systems and Computers, Vol. 5, No. 4, pp. 747-755, December 1995.81. M. K. Kazimierczuk and R. S. Geise, "Single-loop current-mode control of a PWM boost dc-to-dc converterwith a non-symmetric phase control," Journal of Circuits, Systems and Computers, Vol. 5, No. 4, pp. 699-734, December 1995.82. M. K. Kazimierczuk and R. C. Cravens II, "Current-source parallel-resonant dc/ac inverter with transformer,"IEEE Transactions on Power Electronics, Vol. PE-11, pp. 275-284, March 1996.83. M. K. Kazimierczuk, M. J. Mescher, and R. P. Prenger, "Class D current-driven center-topped transformercontrollable synchronous rectifier," IEEE Transactions on Circuits and Systems, Part I, Vol. 43, pp. 670-680, August 1996.84. M. K. Kazimierczuk and A. Massarini, "Feedforward control of dc-dc PWM boost converter," IEEE Transac-tions on Circuits and Systems, Part I, Vol. 44, pp. 143-148, February 1997.85. M. K. Kazimierczuk and C. Wu, "Frequency-controlled series-resonant converter with center-topped synchro-nous rectifier," IEEE Transactions of Aerospace and Electronic Systems, Vol. 33, No. 3, pp. 939-947, July 1997.86. A. Massarini and M. K. Kazimierczuk, "Self-capacitance of inductors," IEEE Transactions on Power Electron-ics, Vol. 12, pp. 671-676, July 1997.87. A. Massarini, U. Reggiani, and M. K. Kazimierczuk, “Analysis of networks with ideal switches by state equa-tions,” IEEE Transactions on Circuits and Systems, Part I, Vol. 44, No. 8, pp. 692-697, August 1997.88. D. Czarkowski and M. K. Kazimierczuk, “ZVS Class D series resonant inverter − Time state space simulationand experimental results,” IEEE Transactions on Circuits and Systems, Part I, Vol. 45, No. 11, pp. 1141-1147, November 1998.89. M. K. Kazimierczuk, G. Sancineto, U. Reggiani, and A. Massarini, “Small-signal high-frequency model of ferriteinductors,” IEEE Transactions on Magnetics, Vol. 35, pp. 4185-4191, September 1999.90. G. Grandi, M. K. Kazimierczuk, A. Massarini, and U. Reggiani, “Stray capacitance of single layer solenoid air-core inductors,” IEEE Transactions on Industry Applications, Vol. 35, pp. 1162-1168, September/October 1999.91. M. K. Kazimierczuk and L. A. Starman, “Dynamic performance of PWM dc-dc boost converter with input volt-age feedforward control,” IEEE Transactions on Circuits and Systems, Part I, Vol. 46, No. 12, pp. 1473-1481, December 1999.92. A. J. Frazier and M. K. Kazimierczuk, “DC-AC power inversion using sigma-delta modulation,” IEEE Transac-tions on Circuits and Systems, Part I, Vol. 46, No.1, pp. 79-82, January 2000.93. M. K. Kazimierczuk and A. J. Edstrom, “Open-loop peak voltage feedforward control of a PWM buck con-verter,” IEEE Transactions on Circuits and Systems, Part I, Vol. 47, pp. 740-746, May 2000.94. M. K. Kazimierczuk, “Transfer function of current modulator in PWM converters with current-mode control,”IEEE Transactions on Circuits and Systems, Part I, Vol. 47, No. 9, pp. 1407-1412, September 2000.95. W. Pietrenko, W. Janke, and M. K. Kazimierczuk, “Application of semianalytical recursive convolution algo-rithms for large-signal time-domain simulation of switch-mode power converters,” IEEE Transactions on Cir-cuits and Systems, Part I, Vol. 48, No. 10, pp. 1246-1252, October 2001.96. A. Reatti and M. K. Kazimierczuk, “Comparison of various methods for calculating the ac resistance of induc-tors,” IEEE Transactions on Magnetics, Vol. 37, No. 3, pp. 1512-1518, May 2002.97. A. Reatti and M. K. Kazimierczuk, “Small-signal model of PWM converters for discontinuous conduction modeand its application for boost converter,” IEEE Transactions on Circuits and Systems, Part I, Fundamental The-ory and Applications, Vol. 50, No. 1, pp. 65-73, January 2003.98. B. Bryant and M. K. Kazimierczuk, “Effect of a current sensing resistor on required MOSFET size,” IEEETransactions on Circuits and Systems, Part I, Fundamental Theory and Applications, Vol. 50, pp. 708-711, May 2003.99. T. Suetsugu and M. K. Kazimierczuk, “ZVS condition predicting sensor for the Class E amplifier,” IEEE Trans-actions on Circuits and Systems, Part I, Fundamental Theory and Applications, Vol. 50, NO. 6, pp. 763-769, June 2003.100. T. Suetsugu and M. K. Kazimierczuk, “Comparison of Class E amplifier with nonlinear and linear shunt capaci-ties,” IEEE Transactions on Circuits and Systems, Part I, Fundamental Theory and Applications, Vol. 50, pp.1089-1097, August 2003.101. T. Suetsugu and M. K. Kazimierczuk, “Voltage clamped Class E amplifier with Zener diode,” IEEE Transac-tions on Circuits and Systems, Part I, Fundamental Theory and Applications, Vol. 50, No. 10, pp. 1347-1349, October 2003.102. G. Grandi, M. K. Kazimierczuk, A. Massarini, M. Reggiani, and G. Sancineto, “Model of laminated iron-core inductors,” IEEE Transactions on Magnetics, Vol. 40, No. 4, pp. 1839-1845, July 2004.103. T. Suetsugu and M. K. Kazimierczuk, “Analysis and design of Class E amplifier with shunt capacitance com-posed of nonlinear and linear capacitances,” IEEE Transactions on Circuits and Systems, Part I: Regular Pa-pers, Vol. 51, No. 7, pp. 1261-1268, July 2004.104. D. Kessler and M. K. Kazimierczuk, “Power losses and efficiency of Class E power amplifier at any duty cycle,”IEEE Transactions on Circuits and Systems, Part I: Regular Papers, Vol. 51, No. 9, pp. 1675-1689, September 2004.105. T. Suetsugu and M. K. Kazimierczuk, “Design procedure of lossless voltage-clamped Class E amplifier with transformer and diode,” IEEE Transactions on Power Electronics, Vol. 20, No. 1, pp. 56-64, January 2005. 106. M. K. Kazimierczuk, V. G. Krizhanovski, J. V. Rassokhina, and D. V. Chernov, “Class-E MOSFET tuned power oscillator design procedure,” IEEE Transactions on Circuits and Systems, Part I: Regular Papers, Vol. 52, No.6, pp. 1138-1147, June 2005.107. R. Kleismit, G. Kozlowski, R. Bigger, I. Maartense, M. K. Kazimierczuk, and D. B. Mast, “Characterization of local dielectric properties of superconductor YBa2Cu3O7-8using evanescent microwave microscopy,” IEEE Transactions on Applied Superconductivity, Vol. 15, No. 2, pp. 2915-2918, June 2005.108. R. A. Kleismit, M. ElAshry, G. Kozlowski, M. S. Amer, M. K. Kazimierczuk, and R. R. Bigger, “Local dielectric and strain measurements in YBa2Cu3O7-8 thin films by evanescent microscopy and Raman spectroscopy,” Su-perconductor Science and Technology, Vol. 18, pp. 1197-1203, July 2005.109. B. Bryant and M. K. Kazimierczuk, “Open-loop power-stage transfer functions relevant to current-mode control of boost PWM converter operating in CCM,” IEEE Transactions on Circuits and Systems, Part I: Regular Pa-pers, Vol. 52, No. 10, pp. 2158-2164, October 2005.110. B. Bryant and M. K. Kazimierczuk, “Modeling the closed-current loop of PWM DC-DC converters with peak current-mode control converter operating in CCM,” IEEE Transactions on Circuits and Systems, Part I: Regu-lar Papers, Vol. 52, No. 11, pp. 2404-2412, November 2005.111. B. Bryant and M. K. Kazimierczuk, “Voltage loop of boost PWM DC-DC converters with peak current-mode control,” IEEE Transactions on Circuits and Systems, Part I, Regular Papers, Vol. 53, No.1, pp. 99-105, Janu-ary 2006.。

磁斯格明子在钉扎作用下的动力学研究进展

磁斯格明子在钉扎作用下的动力学研究进展

Vol. 1, No. 1 第1卷第1期Science and Engineering科学与工程December, 2022 2022年12月基金项目: 西交利物浦大学Key Programme Special Fund (Grant No. KSF-E-22); Research Enhancement Fund (Grant No. REF17-1-7).*通信作者: 于昊, Hao.Y ***********.cn收稿日期: 2022-09-28; 接受日期: 2022-10-24; 在线出版日期: 2023-01-05磁斯格明子在钉扎作用下的动力学 研究进展蒋韫希, 于昊*西交利物浦大学物理系, 江苏苏州 215123摘要: 磁斯格明子由于其具有拓扑保护、尺寸小、驱动电流低的优势,有望应用于下一代存储和计算器件,例如赛道存储、逻辑计算和神经计算器件。

室温下磁斯格明子的发现也为实现基于磁斯格明子的计算和存储器件奠定了基础。

缺陷和杂质等在真实材料中不可避免,这些天然的钉扎中心会对磁斯格明子的动力学,包括临界驱动电流、霍尔角度等产生重要影响。

关于薄膜中室温磁斯格明子的工作表明,钉扎的影响在室温下会非常大。

因此,研究不同温度下的钉扎效应和磁斯格明子-钉扎间的相互作用,对研究磁斯格明子在实际器件中的动力学和实现室温磁斯格明子自旋器件非常重要。

此外,利用这些作用也可人工引入钉扎中心以操控磁斯格明子的运动。

本文介绍了磁斯格明子的动力学模型,特别是在有限温环境、钉扎作用下的理论模型,以及数值模拟。

同时,简要综述了最近关于钉扎和磁斯格明子相互作用的一些研究工作;并展望了该领域的研究方向。

通过替换或增加原子、设置空缺、改变材料厚度或弯曲度、改变磁性参数等方式引入钉扎时,可使磁斯格明子运动时的霍尔角发生变化,也可将磁斯格明子固定在某一区域,或沿着特定轨道运动,克服室温下热扰动,有助于实现室温下磁斯格明子自旋器件。

亚铁磁材料的磁化曲线 英语

亚铁磁材料的磁化曲线 英语

亚铁磁材料的磁化曲线英语英文回答:Ferrimagnetic Materials and Their Magnetization Curves.Ferrimagnetic materials are a type of magnetic material that exhibit a spontaneous magnetic moment, but the magnetic moments of their constituent atoms are not aligned in the same direction. This results in a net magnetic moment that is weaker than that of ferromagnetic materials. Ferrimagnetic materials are commonly used in permanent magnets and magnetic recording devices.The magnetization curve of a ferrimagnetic material is a graph of the material's magnetization as a function of the applied magnetic field. The magnetization curve for a ferrimagnetic material typically has a sigmoidal shape, with a sharp increase in magnetization at low magnetic fields, followed by a gradual increase in magnetization at higher magnetic fields.The initial sharp increase in magnetization is due to the alignment of the magnetic moments of the ferrimagnetic material's constituent atoms with the applied magnetic field. As the magnetic field is increased, the magnetic moments of the atoms become more and more aligned, resulting in an increase in the net magnetization of the material.At high magnetic fields, the magnetization of the ferrimagnetic material reaches a saturation value. This is because all of the magnetic moments of the atoms are aligned with the applied magnetic field, and there is no further increase in magnetization.中文回答:亚铁磁材料及其磁化曲线。

变磁,自旋倾斜,自旋翻转的区别

变磁,自旋倾斜,自旋翻转的区别

变磁体Metamagnets require interchain/interlayer interactions, which serve to induce antiferromagnetic (AF) ordering and are to be overcome by a critical field.11.R. L. Carlin, Magnetochemistry, Springer, Berlin-Heidelberg, 1986.The metamagnet is the one with net moments aligned antiparallelly by weak AF interactions, which are of secondary importance. A large external field could overwhelm the weak AF interactions and turn the system to a ferro-, ferri-, or weak-ferromagnetic (WF) state, depending on the details of the spin alignments in theAFstate.Inorg. Chem. 2010, 49, 5868–5875Metamagnetism is a relatively old but still active topic and metamagnets are a special type of antiferromagnets consisting of 1D or 2D magnetic entities and undergoing field-induced first-order transitions.Spin-canting means the noncollinear spin arrangements on two sublattices of an antiferromagnet. If more sublattices with noncollinearantiferromagnetic (AF) spin arrangements are present and a ferromagnetic moment needs not to occur, it is the hidden spin-canting. Metamagnet is the one with net moments aligned in antiparallel by weak AF interactions, which are of secondary importance. A large external field could overwhelm the weak AF interactions and turn the system to a ferro-, ferri-, or weak-ferromagnetic (WF) state, depending on the details of the spin alignments in the AF state. When a spin-flop happens, a field parallel to the easy-axis of an antiferromagnet causes the spins to flop to the direction perpendicular to it.Chem. Mater. 2005, 17, 6369-6380Inorg. Chem. 2010, 49, 2047–2056三维反铁磁有序单链磁体The goal of such strategies was to avoid inter-SMM or -SCM magnetic interactions responsible for the stabilization of a three-dimensional (3D) magnetic order that was believed to prevent the intrinsic slow dynamics of the magnetization in these SMM or SCM systems. Antiferromagneticinteractions between SCMs stabilize, as planned, a 3D antiferromagnetic order without preventing the slow relaxation of the magnetization induced by the SCM components of the material.φ= (ΔT p/Tp)/Δ(log f) (where T p is the temperature at which χ" reaches a maximum) has been estimated to be φ = 0.15, which is in the range (0.1 ≤φ≤0.3) for superparamagnets, including SCMs and SMMs. Exclude the possibility of a spin-glass (0.01 < φ < 0.08).Single-chain magnets (SCMs) are of high interest because of their unusual physical properties, and they open the possibility of potential use of one-dimensional (1D) magnetic molecular nanowires for information storage.CoII systems usually possess strong magnetic anisotropy. Anisotropy plays important roles in spin canting, metamagnetism, hysteresis (coercivity), and relaxation dynamics.一般来讲,配合物结构的多样性主要取决于三个因素:配体的官能团及分子结构;中心金属原子的配位对称性;分子间弱相互作用。

E物质的磁性

E物质的磁性
(1)Soft magnetic materials 软磁材料: a smaller coercive force 矫顽力小 矫顽力小,意味着磁滞回线狭长,它所包围的面积小, 磁滞损耗小,适合于在交变磁场中应用:变压器,铁芯
(2) Hard magnetic materials 硬磁材料: a larger coercive force 矫顽力大 矫顽力大,意味着磁化后剩余磁感应强度很大,称为永 磁铁permanent magnet 或永磁体 permanent magnet material :磁化后撤去外磁场而仍能长期保持较久磁性 的物质,电表,扬声器和录音机等都离不开永磁体。 碳钢,钨钢,铬钢等各种合金
(2) Additional magnetic moment 附加磁矩 Pm
The motion of electron forms additional magnetic moment 电子的进动,形成附加磁矩 Pm 其方向总是与外磁场相反—抗磁性 diamagnetism 用电磁感应现象可以说明附加磁矩方向与外磁场方 向相反: If the flux through a circuit changes, an electromotive force is induced around it. The polarity of the induced emf is such as to oppose the change that caused it. The induced current always flows to create a magnetic field that opposite the change in flux through the circuit. Using the Lorentz force of electron experienced the diamagnetism can be explained too: 根据电子受力方向判断电子进动形成的电流流向,从而 确定对应的附加磁矩的方向

自旋电子材料详解

自旋电子材料详解
即一个微弱的磁场变化可以在特定系统中产生 很大的电阻变化
巨磁阻将物质磁性与电荷输运结合在一起
从而诞生了磁电子学和自旋电子学
Electron spindependent transport;
Two-channel conduction theory (Fert and Campell, J. Phys. F6, 849(1976);
两个研究团队分別在4.2K温度 和室温下,对各自研制的磁性多 层薄膜系统磁电阻予以测量,
Fert教授在4.2K 的低温,在 (Fe/Cr)n,n = 60系统中测量得 到50% 磁阻变化,
Grunberg教授則在室温下,测 量Fe/Cr/Fe三明治结构,测得大 約1.5% 的磁阻变化,随后又在 低 溫 下 Fe/Cr/Fe/Cr/Fe 系 统 中 测得约10% 的磁阻变化率。
Double-exchange (EF<EAF)
RKKY interaction
eg
simultaneously
t2g
According to Hund rule on the intra atomic exchange, the carriers do not change their spin orientation when hopping from one ion to the next, so they can only hop if the spins of the two ions are parallel. Therefore, this parallel spin alignment induces ferromagnetism。
GaMnAs材料发展 Year
自旋电子现象研究进程
The End!

狄拉克弦自旋冰

狄拉克弦自旋冰

“Crucially, these monopoles are deconfined , they can separate and move essentially independently.” “As the two monopoles of opposite sign separate, they leave a tensionless string of reversed spins connecting them.”--- Dirac Strings
研究人员也在热容量测量中发现了由这些 单极子组成的气体的特征,也表明它们和 电荷一样以同样的方式相互作用。



“Where these tubes end, the resulting defect looks like a magnetic monopole. We demonstrate, by diffuse neutron scattering, the presence of such strings in the spin ice Dy2Ti2O7.” 自旋冰中的磁单极子是由偶极子的特殊排 列促成的,是一种 “准粒子”。
Dirac Strings and Magnetic Monopoles in Spin Ice Dy2Ti2O7


研究材料:钛酸镝单晶体Dy2TiO7 自旋冰结构 如果四面体里的某个磁性离子发生了转向, 那么情况可能就变成,这个四面体里有三个 离子指向内部,与它相邻的四面体里则只有 一个离子指向内部。这样一来,这两个失去 平衡的四面体就像是磁铁的南极和北极了。
Magnetic Monopoles
谷颖宏 07300190065



1)Dirac Strings 狄拉克弦 Spin Ice 自旋冰 2) Dirac Strings and Magnetic Monopoles in Spin Ice Dy2Ti2O7

单分子磁体及其磁学表征

单分子磁体及其磁学表征

收稿:2002年9月,收修改稿:2002年12月 *国家自然科学基金重点资助项目(90101028)**通讯联系人 e -m ail :coo rd @nankai .edu .cn单分子磁体及其磁学表征*王庆伦 廖代正**(南开大学化学系 天津300071)摘 要 单分子磁体是介于分子基磁体和纳米磁性材料的学科交叉点。

对其不同寻常磁特性的研究不仅有助于纳米磁性离子物理学和化学的发展,而且有望最终用于高密度信息储存设备。

本文就单分子磁体的研究背景和意义、单分子磁体的种类、结构及磁学表征作一概述。

关键词 单分子磁体 分子基磁体 纳米磁性材料 磁学表征中图分类号:O 646.8;TB 383 文献标识码:A 文章编号:1005-281X (2003)03-0161-09Single -Molecular Magnets and Their Magnetic CharacterizationW ang Qinglun L iao Daiz heng **(Departm ent of Chemistry ,Nankai Univer sity,Tianjin 300071,China )Abstract T he studies o n single -mo lecular mag nets (SM M ’s )ar e in the interface betw een molecule -based magnets and nanoscale m agnetic m aterials.Study o f their unusual mag netic behavior w ill be not only beneficial for bo th physics and chem istry,but also po tentially used in hig h-density inform ation sto rage de-vices for quantum co mputing .In this paper ,sever al kinds of SMM ’s and their magnetic char acter ization are reviewed.Key words single-mo lecular magnets;m olecule-based m agnets;nanoscale mag netic materials;m ag-netic characterization一、引 言1993年,人们发现单分子[Mn 12O 12(O 2CM e)16(H 2O)4]・2(CH 3COOH)・4H 2O (1)在低温下具有超顺磁的特性,因此可以作为磁体使用[1,2]。

核专业英语词汇

核专业英语词汇

核专业英语词汇d d reaction d d反应d d reactor d d反应器d t fuel cycle d t燃料循环d t reactor d t反应堆daily fuel consumption 燃料日消耗量dalitz pair 达立兹对damage 损伤damage criteria 危害判断准则damp 湿气damp proof 防潮的damped oscillations 阻尼震荡damped vibration 阻尼震荡damped wave 阻尼波damper 减震器damping 衰减的damping factor 衰减系数danger coefficient 危险系数danger dose 危险剂量danger range 危险距离danger signal 危险信号dark current 暗电流dark current pulse 暗电瘤冲data 数据data acquisition and processing system 数据获得和处理系统data base 数据库data communication 数据通信data processing 数据处理data reduction equipment 数据简化设备dating 测定年代daughter 蜕变产物daughter atom 子体原子daughter element 子体元素daughter nucleus 子体核daughter nuclide 子体核素davidite 铈铀钛铁矿dc 直流dc amplifier 直僚大器dc generator 直立电机dc motor 直羚动机dc voltage 直羚压de broglie equation 德布罗意方程de broglie frequency 德布罗意频率de broglie relation 德布罗意方程de broglie wave 德布罗意波de broglie wavelength 德布罗意波长de excitation 去激发de exemption 去免除deactivation 去活化dead ash 死灰尘dead band 不灵敏区dead space 死区dead time 失灵时间dead time correction 死时间校正deaerate 除气deaeration 除气deaerator 除气器空气分离器deaquation 脱水debris 碎片debris activity 碎片放射性debuncher 散束器debye radius 德拜半径debye scherrer method 德拜谢乐法debye temperature 德拜温度decade counter tube 十进计数管decade counting circuit 十进制计数电路decade counting tube 十进管decade scaler 十进位定标器decagram 十克decalescence 相变吸热decalescent point 金属突然吸热温度decan 去掉外壳decanning 去包壳decanning plant 去包壳装置decantation 倾析decanter 倾析器decanting vessel 倾析器decarburization 脱碳decascaler 十进制定标器decatron 十进计数管decay 衰减decay coefficient 衰变常数decay constant 衰变常数decay factor 衰变常数decay heat 衰变热decay heat removal system 衰变热去除系统decay kinematics 衰变运动学decay out 完全衰变decay period 冷却周期decay power 衰减功率decay rate 衰变速度decay series 放射系decay storage 衰变贮存decay table 衰变表decay time 衰变时间decelerate 减速deceleration 减速decigram 分克decimeter wave 分米波decladding 去包壳decladding plant 去包壳装置decommissioning 退役decompose 分解decomposition 化学分解decomposition temperature 分解温度decontaminability 可去污性decontamination 净化decontamination area 去污区decontamination factor 去污因子decontamination index 去污指数decontamination plant 去污装置decontamination reagent 去污试剂decontamination room 去污室decoupled band 分离带decoupling 去耦解开decrease 衰减decrement 减少率dee d形盒dee gap d形盒间空隙dee lines d形盒馈线deep dose equivalent index 深部剂量当量指标deep irradiation 深部辐照deep therapy 深部疗deep underwater nuclear counter 深水放射性计数器deep water isotopic current analyzer 深海水连位素分析器defecation 澄清defect 缺陷defect level 缺陷程度defective fuel canning 破损燃料封装defective fuel element 破损元件defectoscope 探伤仪defence 防护deficiency 不足define 定义definite 确定的definition 分辨deflagration 爆燃deflecting coil 偏转线圈deflecting electrode 偏转电极deflecting field 偏转场deflecting plate 偏转板deflecting system 偏转系统deflecting voltage 偏转电压deflection 负载弯曲deflection angle 偏转角deflection plate 偏转板deflection system 偏转系统deflector 偏转装置deflector coil 偏转线圈deflector field 致偏场deflector plate 偏转板deflocculation 解凝defoamer 去沫剂defoaming agent 去沫剂defocusing 散焦deform 变形deformation 变形deformation bands 变形带deformation energy 变形能deformation of irradiated graphite 辐照过石墨变形deformed nucleus 变形核deformed region 变形区域degas 除气degassing 脱气degeneracy 简并degenerate configuration 退化位形degenerate gas 简并气体degenerate level 简并能级degenerate state 简并态degeneration 简并degradation 软化degradation of energy 能量散逸degraded spectrum 软化谱degree of acidity 酸度degree of anisotropic reflectance 蛤异性反射率degree of burn up 燃耗度degree of cross linking 交联度degree of crystallinity 结晶度degree of degeneration 退化度degree of dispersion 分散度degree of dissociation 离解度degree of enrichment 浓缩度degree of freedom 自由度degree of hardness 硬度degree of ionization 电离度degree of moderation 慢化度degree of polymerization 聚合度degree of purity 纯度dehumidify 减湿dehydrating agent 脱水剂dehydration 脱水deionization 消电离deionization rate 消电离率deionization time 消电离时间dejacketing 去包壳delay 延迟delay circuit 延迟电路delay line 延迟线delay line storage 延迟线存储器delay system 延迟系统delay tank 滞留槽delay time 延迟时间delay unit 延迟单元delayed alpha particles 缓发粒子delayed automatic gain control 延迟自动增益控制delayed coincidence 延迟符合delayed coincidence circuit 延迟符合电路delayed coincidence counting 延迟符合计数delayed coincidence method 延迟符合法delayed coincidence unit 延迟符合单元delayed critical 缓发临界的delayed criticality 缓发临界delayed fallout 延迟沉降物delayed fission neutron 缓发中子delayed gamma 延迟性射线delayed neutron 缓发中子delayed neutron detector 缓发中子探测器delayed neutron emitter 缓发中子发射体delayed neutron failed element monitor 缓发中子破损燃料元件监测器delayed neutron fraction 缓发中子份额delayed neutron method 缓发中子法delayed neutron monitor 缓发中子监测器delayed neutron precursor 缓发中子发射体delayed reactivity 缓发反应性delayedneutron 缓发中子delineation of fall out contours 放射性沉降物轮廓图deliquescence 潮解deliquescent 潮解的delivery dosedose 引出端delta electron 电子delta metal 合金delta plutonium 钚delta ray 电子demagnetization 去磁demagnetize 去磁dematerialization 湮没demineralization 脱盐demineralization of water 水软化demonstration 示范demonstration reactor 示范反应堆dempster mass spectrograph 登普斯特质谱仪denaturalization 变性denaturant 变性剂denaturation 变性denaturation of nuclear fuel 核燃料变性denature 变性denaturize 变性denitration 脱硝dense 稠密的dense plasma focus 稠密等离子体聚焦densimeter 光密度计densimetry 密度测定densitometer 光密度计densitometry 密度计量学density analog method 密度模拟法density bottle 密度瓶density effect 密度效应density gradient instability 密度梯度不稳定性density of electrons 电子密度deoxidation 脱氧deoxidization 脱氧departure from nucleate boiling 偏离泡核沸腾departure from nucleate boiling ratio 偏离泡核沸腾比dependability 可靠性dependence 相依dependency 相依dephlegmation 分凝酌dephlegmator 分馏塔depilation 脱毛depilation dose 脱毛剂量deplete uranium tail storage 贫化铀尾料储存depleted fraction 贫化馏分depleted fuel 贫化燃料depleted material 贫化材料depleted uranium 贫化铀depleted uranium shielding 贫铀屏蔽depleted water 贫化水depleted zone 贫化区域depletion 贫化;消耗depletion layer 耗尽层depolarization 去极化depolymerization 解聚合deposit 沉淀deposit dose 地面沉降物剂量deposited activity 沉积的放射性deposition 沉积depression 减压depressurization accident 失压事故depressurizing system 降压系统depth dose 深部剂量depth gauge 测深计depth of focus 焦点深度depthometer 测深计derby 粗锭derivant 衍生物derivate 衍生物derivative 衍生物derived estimate 导出估价值derived unit 导出单位derived working limit 导出工撰限desalinization 脱盐desalting 脱盐descendant 后代desensitization 脱敏desensitizer 脱敏剂desiccation 干燥desiccator 干燥器防潮器design 设计design basis accident 设计依据事故design basis depressurization accident 设计依据卸压事故design basis earthquake 设计依据地震design dose rate 设计剂量率design of the safeguards approach 保障监督方法设计design power 设计功率design pressure 设计压力design safety limit 设计安全限design temperature rise 设计温度上升design transition temperature 设计转变温度desmotropism 稳变异构desmotropy 稳变异构desorption 解吸desquamation 脱皮destruction test 破坏性试验destructive distillation 干馏detailed decontamination 细部去污detect 探测;检波detectable 可检测的detectable activity 可探测的放射性detection 探测detection efficiency 探测效率detection limit 探测限detection of neutrons from spontaneous fission 自发裂变中子探测detection of radiation 辐射线的探测detection probability 探测概率detection time 探测时间detector 1/v 1/v探测器detector 探测器敏感元件detector efficiency 探测僻率detector foil 探测骗detector noise 探测齐声detector shield 探测屏蔽detector tube 检波管detector with internal gas source 内气源探测器detergent 洗涤剂determination 确定deterrence of diversion 转用制止detonating gas 爆鸣气detonation 爆炸detonation altitude 爆炸高度detonation point 爆炸点detonation yield 核爆炸威力detoxifying 净化detriment 损害detted line 点线deuteride 氘化物deuterium 重氢deuterium alpha reaction 氘反应deuterium critical assembly 重水临界装置deuterium leak detector 重水检漏器deuterium moderated pile low energy 低功率重水慢化反应堆deuterium oxide 重水deuterium oxide moderated reactor 重水慢化反应堆deuterium pile 重水反应堆deuterium sodium reactor 重水钠反应堆deuterium target 氘靶deuterium tritium fuel 氘氚燃料deuterium tritium reaction 氘氚反应deuteron alpha reaction 氘核反应deuteron binding energy 氘核结合能deuteron induced fission 氘核诱发裂变deuteron neutron reaction 氘核中子反应deuteron proton reaction 氘核质子反应deuteron stripping 氘核涎deuterum moderated pile 重水反应堆deuton 氘核development 发展development of uranium mine 铀矿开发deviation 偏差deviation from the desired value 期望值偏差deviation from the index value 给定值偏差dew point 露点dewatering 脱水dewindtite 水磷铅铀矿dextro rotatory 右旋的di neutron 双中子di proton 双质子diagnostic radiology 诊断放射学diagnostics 诊断diagram 线图dial 度盘dialkyl phosphoric acid process 磷酸二烷基酯萃取法dialysis 渗析diamagnet 抗磁体diamagnetic effect 抗磁效应diamagnetic loop 抗磁圈diamagnetic substance 抗磁体diamagnetic susceptibility 抗磁化率diamagnetism 反磁性diamagnetism of the plasma particles 等离子体粒子反磁性diameter 直径diamond 稳定区;金刚石diaphanous 透媚diaphragm 薄膜diaphragm gauge 膜式压力计diaphragm type pressure gauge 膜式压力计diapositive 透谬片diascope 投影放影器投影仪diathermance 透热性diathermancy 透热性diatomic gas 双原子气体diatomic molecule 二原子分子dibaryon 双重子diderichite 水菱铀矿dido 重水慢化反应堆dido type heavy water research reactor 迪多型重水研究用反应堆dielectric 电介质dielectric after effect 电介质后效dielectric breakdown 绝缘哗dielectric constant 介电常数dielectric hysteresis 电介质滞后dielectric polarization 电介质极化dielectric strain 电介质变形dielectric strength 绝缘强度diesel engine 柴油机diesel oil 柴油difference ionization chamber 差分电离室difference linear ratemeter 差分线性计数率计difference number 中子过剩difference of potential 电压difference scaler 差分定标器differential absorption coefficient 微分吸收系数differential absorption ratio 微分吸收系数differential albedo 微分反照率differential control rod worth 控制棒微分价值differential cross section 微分截面differential discriminator 单道脉冲幅度分析器differential dose albedo 微分剂量反照率differential energy flux density 微分能通量密度differential galvanometel 差绕电疗differential particle flux density 粒子微分通量密度differential pressure 压差differential range spectrum 射程微分谱differential reactivity 微分反应性differential recovery rate 微分恢复率differential scattering cross section 微分散射截面differentiator 微分器diffraction 衍射diffraction absorption 衍射吸收diffraction analysis 衍射分析diffraction angle 衍射角diffraction grating 衍射光栅diffraction instrument 衍射仪diffraction pattern 衍射图diffraction peak 衍射峰值diffraction scattering 衍射散射diffraction spectrometer 衍射谱仪diffraction spectrum 衍射光谱diffractometer 衍射仪diffusate 扩散物diffuse 扩散diffuse band 扩散带diffuse reflection 漫反射diffuse scattering 漫散射diffused 散射的diffused junction semiconductor detector 扩散结半导体探测器diffuseness parameter 扩散性参数diffuser 扩散器diffusion 扩散diffusion approximation 扩散近似diffusion area 扩散面积diffusion barrier 扩散膜diffusion cascade 扩散级联diffusion chamber 扩散云室diffusion coefficient 扩散系数diffusion coefficient for neutron flux density 中子通量密度扩散系数diffusion coefficient for neutron number density 中子数密度扩散系数diffusion column 扩散塔diffusion constant 扩散常数diffusion cooling 扩散冷却diffusion cooling effect 扩散冷却效应diffusion cross section 扩散截面diffusion current 扩散电流diffusion current density 扩散淋度diffusion energy 扩散能diffusion equation 扩散方程diffusion factory 扩散工厂diffusion kernel 扩散核diffusion layer 扩散层diffusion length 扩散长度diffusion mean free path 扩散平均自由程diffusion plant 扩散工厂diffusion pump 扩散泵diffusion rate 扩散速率diffusion stack 务马堆diffusion theory 扩散理论diffusion time 扩散时间diffusivity 扩散系数digital analog converter 数模转换器digital computer 数字计算机digital data acquisition and processing system 数字数据获取与处理系统digital data handling and display system 数字数据处理和显示系统digital recorder 数字记录器digital time converter 数字时间变换器dilation 扩胀dilatometer 膨胀计diluent 稀释剂dilute 冲淡dilute solution 稀溶液dilution 稀释dilution analysis 稀释分析dilution effect 稀释效应dilution method 稀释法dilution ratio 稀释比dimension 尺寸dimensional change 尺寸变化diminishing 衰减dimorphism 双晶现象dineutron 双中子dingot 直接铸锭dip counter tube 浸入式计数管dipelt 双重线dipole 偶极子dipole dipole interaction 偶极子与偶极子相互酌dipole layer 偶极子层dipole moment 偶极矩dipole momentum 偶极矩dipole radiation 偶极辐射dipole transition 偶极跃迁dirac electron 狄拉克电子dirac equation 狄拉克方程dirac quantization 狄拉克量子化dirac theory of electron 狄拉克电子论direct action of radiation 辐射直接酌direct and indirect energy conversion 直接和间接能量转换direct contact heat exchanger 直接接触式换热器direct conversion reactor 直接转换反应堆direct conversion reactor study 直接转换反应堆研究direct current 直流direct current amplifier 直僚大器direct current resistance 直羚阻direct cycle 直接循环direct cycle integral boiling reactor 直接循环一体化沸水堆direct cycle reactor 直接循环反应堆direct digital control 直接数字控制direct energy conversion 能量直接转换direct exchange interaction 直接交换相互酌direct exposure 直接辐照direct fission yield 原始裂变产额direct interaction 直接相互酌direct isotopic dilution analysis 直接同位素稀释分析direct measurement 直接测量direct radiant energy 直接辐射能direct radiation 直接辐射direct radiation proximity indicator 直接辐射接近指示器direct reaction 直接反应direct use material 直接利用物质direct voltage 直羚压direct x ray analysis 直接x射线分析direction 方向directional 定向的directional correlation of successive gamma rays 连续射线方向相关directional counter 定向计数器directional distribution 方向分布directional focusing 方向聚焦directly ionizing particles 直接电离粒子directly ionizing radiation 直接电离辐射dirft tube 飞行管道dirt column 尘土柱dirty bomb 脏炸弹disadvantage factor 不利因子disagreement 不一致disappearence 消失disc operating system 磁盘操椎统discharge 放电discharge chamber 放电室discharge current 放电电流discharge in vacuo 真空放电discharge potential 放电电压discharge tube 放电管discharge voltage 放电电压discomposition 原子位移discontinuity 非连续性discontinuous 不连续的discrepancy 差异discrete 离散的discrete energy level 不连续能级discrete spectrum 不连续光谱discrete state 不连续态discrimination coefficient 甄别系数discriminator 鉴别器disinfectant 杀菌剂disintegrate 蜕衰disintegration 蜕变disintegration chain 放射系disintegration constant 衰变常数disintegration curve 衰变曲线disintegration energy 衰变能disintegration heat 衰变热disintegration of elementary particles 基本粒子衰变disintegration particle 衰变粒子disintegration probability 衰变概率disintegration product 蜕变产物disintegration rate 衰变速度disintegration scheme 蜕变图disintegration series 蜕变系disintegrations per minute 衰变/分disintegrations per second 衰变/秒disk source 圆盘放射源dislocation 位错dislocation edge 位错边缘dislocation line 位错线dismantling 解体disorder 无序disorder scattering 无序散射dispersal 分散dispersal effect 分散效应disperser 分散剂dispersing agent 分散剂dispersion 分散dispersion fuel 弥散体燃料dispersion fuel element 弥散体燃料元件dispersive medium 色散媒质displace 位移;代替displacement 替换displacement current 位移电流displacement kernel 位移核displacement law 位移定律displacement law of radionuclide 放射性核素位移定律displacement spike 离位峰disposal of radioactive effluents 放射性瘤液处置disposition 配置disproportionation 不均disruption 破坏disruptive instability 破裂不稳定性disruptive voltage 哗电压dissipation 耗散dissipation of energy 能消散dissociation 离解dissociation constant 离解常数dissociation energy 离解能dissociation pressure 离解压dissociative ionization 离解电离dissolution 溶解dissolver 溶解器dissolver gas 溶解气体dissolver heel 溶解泣滓distance control 遥控distant collision 远距离碰撞distillate 蒸馏液distillation 蒸馏distillation column 蒸馏塔distillation method 蒸馏法distillation tower 蒸馏塔distilled water 蒸馏水distiller 蒸馏器distilling apparatus 蒸馏器distilling flask 蒸馏瓶distorted wave 畸变波distorted wave impulse approximation 畸变波冲动近似distorted wave theory 畸变波理论distortion 畸变distortionless 不失真的distributed ion pump 分布式离子泵distributed processing 分布式处理distributed source 分布源distribution 分布distribution coefficient 分配系数distribution factor 分布因子distribution function 分布函数distribution law 分配定律distribution of dose 剂量分布distribution of radionuclides 放射性核素分布distribution of residence time 停留时间分布distribution ratio 分配系数distrubited constant 分布常数disturbance 扰动disturbation 扰动diuranium pentoxide 五氧化二铀divergence 发散divergence of ion beam 离子束发散divergence problem 发散问题divergent lens 发射透镜divergent reaction 发散反应diversing lens 发射透镜diversion 转向diversion assumption 转用假定diversion box 转换箱diversion hypothesis 转用假设diversion path 转用路径diversion strategy 转用战略divertor 收集器divider 分配器division 刻度division of operating reactors 反应堆运行部djalmaite 钽钛铀矿document information system 文献情报体系doerner hoskins distribution law 德尔纳霍斯金斯分配定律dollar 元domain 磁畴dome 圆顶水柱domestic receipt 国内接收domestic shipment 国内装货dominant mutation 显性突变donator 施止┨鬻donor 施止┨鬻donut 环形室doping control of semiconductors 半导体掺杂物第doppler averaged cross section 多普勒平均截面doppler broadening 多普勒展宽doppler coefficient 多普勒系数doppler effect 多普勒效应doppler free laser spectroscopy 无多普勒激光光谱学doppler shift method 多普勒频移法doppler width 多普勒宽度dosage 剂量dosage measurement 剂量测定dosage meter 剂量计dose 剂量dose albedo 剂量反照率dose build up factor 剂量积累因子dose commitment 剂量负担dose effect curve 剂量效应曲线dose effect relationship 剂量效应关系dose equivalent 剂量当量dose equivalent commitment 剂量当量负担dose equivalent index 剂量当量指标dose equivalent limit 剂量当量极限dose equivalent rate 剂量当量率dose fractionation 剂量分割dose limit 剂量极限dose measurement 剂量测量dose meter 剂量计dose modifying factor 剂量改变系数dose of an isotope 同位素用量dose prediction technique 剂量预报技术dose protraction 剂量迁延dose rate 剂量率dose rate meter 剂量率测量计dose ratemeter 剂量率表dose reduction factor 剂量减低系数dose response correlation 剂量响应相关dose unit 剂量单位dosifilm 胶片剂量计dosimeter 剂量计dosimeter charger 剂量计充电器dosimetry 剂量测定法dosimetry applications research facility 剂量测定法应用研究设施dotted line 点线double 双double beam 双射束double beta decay 双衰变double bond 双键double charged 双电荷的double clad vessel 双层覆盖容器double compton scattering 双康普顿散射double container 双层容器double contingency principle 双偶然性原理double decomposition 复分解double differential cross section 二重微分截面double focusing 双聚焦double focusing mass spectrometer 双聚焦质谱仪double ionization chamber 双电离室double precision 双倍精度double probe 双探针double pulse 双脉冲double resonance 双共振double resonance spectroscopy 双共振光谱学double scattering method 双散射法double walled heat exchanger 双层壁换热器doublet 电子对doublet splitting 双重线分裂doubling dose 加倍剂量doubling time 燃料倍增时间doubling time meter 倍增时间测量计doubly charged 双电荷的doubly closed shell nuclei 双闭合壳层核doughnut 环形室down time 停机时间downcomer 下降管downwards coolant flow 下行冷却剂流downwind fall out 下风放射性沉降物draft 通风drain tank 排水槽draught 通风drell ratio 多列尔比dressing 选矿dressing of uranium ore 铀矿石选矿drier 干燥器drift instability 漂移不稳定性drift mobility 漂移率drift speed 漂移速度drift transistor 漂移晶体管drift velocity 漂移速度drive voltage 控制电压driven magnetic fusion reactor 从动磁核聚变反应堆driver fuel 驱动燃料drop 点滴drop reaction 点滴反应dry active waste 干放射性废物dry analysis 干法分析dry box 干箱dry criticality 干临界dry distillation 干馏dry friction 干摩擦dry ice 干冰dry out 烧干dry reprocessing 干法再处理dry way process 干法过程dry well 干井dryer 干燥器drying 干燥drying oil 干性油drying oven 烘干炉dual cycle boiling water reactor system 双循环沸水反应堆系统dual cycle reactor 双循环反应堆dual decay 双重放射性衰变dual energy use system 能量双重利用系统dual purpose nuclear power station 两用核电站dual purpose reactor 两用反应堆dual temperature exchange 双温度交换dual temperature exchange separation process 双温度交换分离法duality 二重性duant d形盒duct 管ductile brittle transition temperature 延性脆性转变温度ductility 延伸性dummy load 仿真负载dumontite 水磷铀铅矿dump 烧毁元件存放处dump condenser 事故凝汽器dump tank 接受槽dump valve 事故排放阀dunkometer 燃料元件包壳破损探测器duplet 电子对duration 持续时间duration of a scintillation 闪烁持续时间dust chamber 集尘室dust cloud 尘埃云dust collector 集尘器dust cooled reactor 粉尘冷却反应堆dust monitor 灰尘监测器dust sampler 灰尘取样器dust trap 集尘器dye laser 染料激光器dynamic behaviour 动态dynamic characteristic 动特性dynamic equilibrium 动态平衡dynamic equilibrium ratio 动态平衡比dynamic pressure 动压dynamic process inventory determination 动态过程投料量测定dynamic stabilization 动力稳定dynamic viscosity 动力粘滞系数dynamical friction 动摩擦dynamitron 地那米加速器并激式高频高压加速器dynamo 发电机dynamometer 测力计dyne 达因dynode 倍增电极dysprosium 镝dystectic mixture 高熔点混合物e layer e 层e. m. f 电动势early fallout 早期放射性落下灰earth 接地earth metals 土金属earthquake proof site 抗地震试验场ebulliometer 沸点计ebullition 沸腾ecdysis 脱皮ecology 生态学economizer 节约器ecosystem 生态系eddy 涡流eddy current 涡电流eddy diffusion 涡俩散edge break 边缘裂缝edge crack 边缘裂缝edge dislocation 刃型位错edwardsite 独居石efd 电铃动力学effective 有效的effective absorption coefficient 有效吸收系数effective atomic charge 有效原子电荷effective atomic number 有效原子序数effective bohr magneton 有效玻尔磁子effective cadmium cut off 有效镉截止值effective capture cross section 有效俘获截面effective charge 有效电荷effective collision cross section 有效碰撞截面effective cross section 有效截面effective cross section for resonance 有效共振截面effective decontamination factor 有效去污因子effective delayed neutron fraction 有效缓发中子份额effective dose 有效剂量effective energy 有效能量effective full power days 有效满功率天数effective full power hours 有效满功率小时数effective half life 有效半衰期effective interaction 有效互酌effective ionic charge 有效离子电荷effective kilogram 有效公斤effective life 有效寿命effective macroscopic cross section 有效宏观截面effective mass 有效质量effective mass absorption coefficient 有效质量吸收系数effective mean pressure 平均有效压力effective multiplication constant 有效增殖系数effective multiplication factor 有效倍增系数effective nuclear charge 有效核电荷effective particle velocity 有效粒子速度effective power 有效功率effective radiation power 有效辐射功率effective radium content 有效镭含量effective radius of a control rod 控制棒有效半径effective range 有效范围effective relaxation length 有效张弛长度effective removal cross section 有效移出截面effective resonance integral 有效共振积分effective simple process factor 单级过程有效系数effective source area 有效源面积effective stack height 有效烟囱高度effective standard deviation 有效标准偏差effective target area 有效靶面积effective thermal cross section 有效热中子截面effective value 有效值effective voltage 有效电压effective wavelength 有效波长effectiveness 有效efficiency 效率efficiency of counter 计数颇效率effluent 瘤液effluent activity meter 瘤液放射性测量计efflux 瘤液effusion 喷出ehrenfest's adiabatic law 厄任费斯脱绝热定律eigenvalue 固有值eight electron shell l 层einstein de broglie formula 爱因斯坦德布罗意公式einstein transition probability 爱因斯坦跃迁几率einstein's equation 爱因斯坦光电方程einstein's mass energy formula 爱因斯坦质能公式einsteinium 锿ejected beam 出射束ejection 喷射ejector 喷射器ejector vacuum pump 喷射真空泵eka actinium 类锕eka cesium 钫eka iodine 砹eka neodymium 钷eka polonium 类钋eka radium 类镭eka radon 类氡elastic 弹性的elastic after effect 弹性后效elastic coefficient 弹性模量elastic collision 弹性碰撞elastic fatigue 弹性疲劳elastic hysteresis 弹性后效elastic limit 弹性极限elastic modulus 弹性模量elastic range 弹性范围elastic recoil analysis 弹性反冲分析elastic scattering 弹性散射elastic scattering cross section 弹性散射截面elastic strain 弹性应变elastic thermal stress 弹性热应力elasticity 弹性elastomer 弹性体electric arc furnace 电弧炉electric charge 电荷electric circuit 电路electric conductance 电导率electric conductivity 电导率electric conductor 导电体electric current 电流electric dipole 电偶极子electric dipole moment 电偶极矩electric dipole radiation 电偶极辐射electric discharge 放电electric double layer 双电层electric field 电场electric field gradient 电场梯度electric field intensity 电场强度electric field strength 电场强度electric force 电力electric furnace 电炉electric heater 电热器electric hydraulic control system 电动液压控制系统electric line of force 电力线electric motor 电动机electric multipole radiation 电多极辐射electric oscillation 电振荡electric potential 电势electric power 电力electric power generating machinery 发电机electric power generation 发电electric power plant 发电站electric power reactor 发电动力堆electric power station 发电站electric power supply 电源electric precipitation 电集尘electric precipitator 静电滤尘器electric quadrupole moment 电四极矩electric resistance 电阻electric screening 电屏蔽electric shielding 电屏蔽electric station 发电厂electric susceptibility 电极化率electric vector 电场矢量electric wave 电波electric wire 电线electrical conductivity in a plasma 等离子体导电率electrical double layer 偶极子层electrical output 电输出electrical prospecting 电法勘探electricity 电electrification 带电electroanalysis 电分析electrochemical energy storage 电化学能量储存electrochemical equivalent 电化当量electrochemical power source 电化学动力源electrochemistry 电化学electroconductibility 电导率electrode 电极electrode potential 电极electrodeposition 电解沉淀electrodialysis 电渗析electrodisintegration 电致衰变electroendosmosis 电渗electrofluid dynamics 电铃动力学electrokinetic effects 电动效应electroluminescence 电致发光electrolysis 电解electrolysis method 电解法electrolyte 电解质electrolytic bath 电解槽electrolytic cell 电解槽electrolytic condenser 电解质电容器electrolytic conduction 电解导电electrolytic dissociation 电解离解electrolytic method 电解法electrolytic plating 电镀electrolytic polarization 电解极化electrolytic polishing 电解抛光electrolytic potential 电极electrolytic separation 电解分离electrolytic solution 电解溶液electrolyze 电解electrolyzer 电解槽electrom flow 电子流electromagnet 电磁铁electromagnetic cascade shower 电磁级联簇射electromagnetic field 电磁场electromagnetic flowmeter 电磁量计electromagnetic force 电磁力electromagnetic induction 电磁感应electromagnetic interaction 电磁相互酌electromagnetic isotope separation unit 电磁同位素分离设备electromagnetic isotope separator 电磁同位素分离器electromagnetic lens 电磁透镜electromagnetic mass 电磁质量electromagnetic mass separator 电磁式质量分离器electromagnetic method of isotope separation 电磁同位素分离法electromagnetic oscillograph 电磁式示波器electromagnetic position measuring assembly 电磁位置测量装置electromagnetic pulse 电磁脉冲electromagnetic pulse hardening 电磁脉冲防护能力electromagnetic pump 电磁泵electromagnetic radiation 电磁辐射electromagnetic safety mechanism 电磁安全机构electromagnetic scattering 电磁散射electromagnetic separation 电磁分离electromagnetic separation of isotopes 电磁同位素分离electromagnetic separation process 电磁分离法electromagnetic separator 电磁分离器electromagnetic uranium isotope enrichment method 电磁铀同位素浓缩法electromagnetic wave 电磁波electrometer 静电计electrometer dosimeter 静电计式剂量计electrometer tube 静电计管electromotive force 电动势electromotor 电动机electron 电子electron absorption coefficient 电子吸收系数electron accelerator 电子加速器electron affinity 电子亲和势electron asymmetry 电子不对称electron atomic mass 电子原子质量electron avalanche 电子雪崩electron beam 电子束electron beam controlled discharge 电子束控制放电electron beam density 电子束密度electron beam machining 电子束加工electron beam welding 电子束焊接electron capture 电子俘获electron catcher 电子捕集器electron charge mass ratio 电子荷质比electron cloud 电子云electron collection 电子收集electron collection time 电子收集时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :c o n d -m a t /0007133v 1 7 J u l 2000Dimerization of Ferrimagnets on Chains and Square Lattices Aiman Al-Omari ∗and A.H.Nayyar †Department of Physics,Quaid-i-Azam University,Islamabad 45320,Pakistan.(1998)AbstractA linear spin wave analysis of dimerization of alternating Heisenberg system with spins s 1and s 2on linear chain as well as square lattice is presented.Among the several possible dimerized configurations considered in two dimensions the plaquette configuration is found to be energetically the most favored one.Inclusion of a variable nearest neighbor exchange coupling J (a )=J∗aiman@ †nayyar@I.INTRODUCTION:Extensive interest is being currently shown in alternating spin systems consisting of two sublattices with unequalspin magnitudes s1and s2with a net non-zero spin per unit cell,as shown in Fig.1.Such systems are realized in bi-metallic chains with the general formula of ACu(pba OH)(H2O)3.2H2O where pba OH is2-hydroxy-1,3-propylenebis(oxamato)and A=Mn,Fe,C,Ni[1].These ferrimagnetic chains are also referred to as alternating or mixed spin chains and are regarded as Heisenberg systems[2–6].Alternating spin systems have been studied extensively by various techniques:by spin wave theory(SWT)[4–10],spin wave expansion(SWE)[11,12],Monte Carlo(MC)method[4,8–10],density matrix renormalization group (DMRG)technique[5,10,12],the method of matrix product(MP)states[3]and by exact diagonalization(ED)method[9,12].For an alternating-spin chain the zero temperature ground state energy and sublattice magnetization were evaluated using SWT[6,5,10],SWE[11],DMRG[5,6,10]and QMC[3].The results are summarized in Table1.The linearspin wave theory gives higher values for the ground state energy and lower values for the sub-lattice magnetization compared to the more exact methods.Recently Ivanov et al.[11,12]used a second-order spin wave expansion to calculate ground state energy as well as sublattice magnetization.Their results differ by0.03%for the ground stateenergy and0.2%for the sublattice magnetization from the DMRG results,as shown in Table1.The thermal behavior was also investigated for ferrimagnetic chains[5,6,8–10].Besides verifying the existence of two (gapped and gapless)excitation modes,the specific heat and magnetic susceptibility of ferrimagnetic chains were alsoshown to depend upon temperature as T1/2and T−2respectively at low temperatures[8,10].It was also shown that this model behaved as a ferromagnet at low temperature,but as a gapped antiferromagnet at moderate temperatures.Modified spin wave theory,which includes Takahashi constraint,was also shown to give results in surprisingly good agreement with those from quantum Monte Carlo method in the thermodynamic limit of this system[8,10].Dimerization of chains with spins s1and s2(s1>s2)on alternating sites was recently[5,6]studied the using the HamiltonianH=J n[(1+δ)S1,n·S2,n+(1−δ)S2,n·S1,n+1],(1)where the total number of sites(or bonds)is2N and the sum is over the total number of unit cells N.δis the dimerization parameter and is taken to vary between0and1.Linear spin wave theory and DMRG were used[5,6] to investigate the ground and low-lying excited states for both uniform and dimerized chains.In both the methods the ground state was found to be ferrimagnetic.One point of focus for us in the study of chains is that the LSW theory with the Hamiltonian in Eq.(1)showed that the energy gap at k=0in the gapped mode did not depend on the dimer parameterδ,while the DMRG predicted an almost linear dependence[5,6].The DMRG results on chains also show that the transition to a spin-Peierls state is conditional in that the ground state energy depends upon the dimerization parameter asδνwithν=2±.01.This has motivated us to investigate a dimerized alternating spin Heisenberg model by using a linear spin wave theory using an ansatz of a variable nearest neighbor exchange coupling that was recently used to study dimerization in a uniform(single spin)Heisenberg system[13].We would also like to extend our work to square lattices.A need for describing nearest neighbor exchange interaction as dimerization sets in two dimensional lattices was recently discussed[13].Among the various lattice deformation modes which allow for dimerization,some require that the effect of the ensuing elongation or contraction of nearest neighbor distances be reflected in the nearest neighbor spin-spin exchange couplings.Since an exchange integral for a nearest neighbor distance a is roughly[14]JJ(a)=.Thus,to linear order inδ,the interaction J1±δ|lnδ|,both in one and two dimensional lattices,can also be a result of using this variable nearest neighbor spin-spinexchange coupling.The form in Eq.(2)gives a logarithmic dependence over not just theδ→0regime,but over the entire range ofδfrom0to1.In what follows,we shall use for exchange interaction the form in Eq.(2).In this paper we will study alternating spin systems formed with different pairs of spin values;12using azero temperature linear spin wave theory.We have considered three alternating spin systems from these spin values:(1,12);(32)and(31+δS1,2i·S2,2i+1+Js1s2(7c) C=−J p s1s2.(7d)HereΛk=(9)1−δ2andJ m=J pδ(10) .The linearized Hamiltonian in Eq.(6)can be diagonalized using Bogoliubov transformationsa k=u kαk+v kβ†k(11a)b k=u kβk+v kα†k(11b) to˜H= k εg+E1(k)α†kαk+E2(k)β†kβk (12)where the coefficients u k,v k are constrained by the condition u2k−v2k=1,αk andβk are the normal mode boson operators,E1(k)and E2(k)are the energies of the two excitation modes andεg is the ground state energy per site, with u(k)and v(k)defined asu(k)= 2ξk(13a)v(k)= 2ξk(13b)ξk=N k v2(k)(17) with k running over half the Brillouin zone.For the three kinds of alternating spin chains,referred to as(1,12,12,1),the ground state energy,theexcitation energies and magnetization can now be calculated as functions of the dimerization parameterδ.Previous calculations invariably took spin-spin exchange couplings alternately as J(1±δ),which,as mentioned above,can be taken as an expansion of the interaction in Eq.(2)to thefirst order inδ,implying that the results are valid only in the critical regimeδ→0.The advantage of taking the variable nearest neighbor exchange coupling is that the results will then be valid also in the limitδ→1.The ground state energiesεg per site for undimerized chains,δ=0,were found,expectedly,to be the same as those found earlier[6]for the three systems.After including dimerization,our calculations also confirm that the ground state energy of all the three systems described above decreases withδ.This is shown in Figure2,where energy gain εg(δ)−εg(0)is plotted againstδ.Numericalfitting shows that,as against earlier results,the magnetic energy gain εg(δ)−εg(0)has a logarithmic dependence onδ,δν2,1)has higher gain than the other two systems.As expected,our calculations alsofind two branches of the excitation spectrum,one gapless and the other with a gap at k=0,in the three systems.As stated above,the LSW theory with the spin-spin exchange coupling J(1±δ)in the presence of dimerization allowed noδ−dependence of the energy gap in the second mode,while the DMRG found almost a linearδ−dependence for these spin systems[5,6].Wefind that by including a variable nearest neighbor coupling constant defined in Eq.(2) the spin wave theory also allows for aδ−dependent energy gap∆(δ)=E2(δ)−εg(δ)in the second mode.This is because theδ-dependent terms do not now cancel out for the gapped excitation mode at k=0as they did with the coupling J(1±δ).The dependence is found to follow the same logarithmic behavior,δν2,1)system than the other two(seefigure3)..The staggered magnetization M(δ)was also found to follow the logarithmicδ-dependence up toδ≤0.5,but follows a different behavior forδ>0.5.M1(δ)against dimerization is shown in Fig.(4)for the three systems.Again we see from Fig.(4)that the chain with(3Ni,j µ=±1[J x,µS1,i,j·S2,i+µ,j+J y,µS1,i,j·S2,i,j+µ](18)where the indices1and2on the spin vectors refer to the two sublattices with spins of magnitude s1and s2.For reasons described earlier,we use variable nearest neighbor exchange couplings.These are defined for different configurations as follows:Configuration(a)J x,µ=JConfiguration(b)J x,µ=J√2)Configuration(c)J x,µ=J y,µ=J(1+µδ)≃J(1−µδ)J y,µ=Jδ2+(1+µδ)2≃J 1−µδ−(1−µ2√2)δ2We would like to investigate thefive configurations resulting from dimerization of a square lattice in order to see(i) which one of these leads to the largest gain in magnetic energy as the dimerization sets in,(ii)if the use of variable exchange coupling leads to a single power law behavior valid for the entire range ofδ,and how the law differs from that in the case of chains,(iii)theδ-dependence of the second mode of excitation E2,(iv)the behavior of staggered magnetization,and(v)the generality of these investigations regarding the three spin systems discussed here.The linear spin wave analysis follows the same procedure as for the chain above.The same equations are applicable in this case,but the various coefficients entering the theory have now the following values:A1=J p s2(19a)A2=J p s1(19b)B(k)=Γ(k)√(J px cos(k x)+J py cos(k y))2+(J mx sin(k x)+J my sin(k y))2andJ p=(J x,+1+J x,−1+J y,+1+J y,−1)/4,J px=(J x,+1+J x,−1)/4,J py=(J y,+1+J y,−1)/4,J mx=(J x,+1−J x,−1)/4,J my=(J y,+1−J y,−1)/4.The ground state energyεg(δ)defined in Eq.(15),energies of the two excitation modes E i(k)in Eq.(14)and stag-gered magnetization M(δ)defined in Eqs.(19)can now be calculated as functions of the dimerization parameterδ. The ground state energyεg(δ=0)is found to be−1.2,−1.7158and−3.3709for the three spin systems(1,12,12,1)respectively.Staggered magnetization M1{M2}on thefirst{second}sublattice is0.8907{−0.3907},1.4241{−0.4241}and1.3597{−0.8597}for the three systems.These values are listed in Table2.Our calculations confirm that,like in chain,the gain in magnetic energy increases withδin all the proposed config-urations.This is shown in Figure6,where the energy gainεg(δ)−εg(0)is plotted againstδfor thefive configurations. It also shows that the plaquette configuration of Fig.5(c)is energetically the most favorable state,while there is hardly a discernible difference among the configurations(a),(b)and(d).It is also interesting to note that the mag-netic energy gain under dimerization of an alternating spin square lattice also varies asδvcoupling defined above.Theδdependence of the energy gap,∆(δ)=E2(δ)−εg(δ),for thefive configurations is shown in Fig.7,showing greater stabilization of the dimerized state with increasingδ.We alsofind that,like the magnetic energy gain,the energy gap increases withδasδv2),(32)and(32.Configuration(e)is peculiar in the sense thatδ=1√2and12.The energy gain increases withδup toδ=1|lnδ|in the smallδregime with the exponentν=1.4−1.6,exactly as the energy gain and the energy gap.However,while for configurations(a-d)in the full range0≤δ<1the magnetization follows the same power law with the exponents asν=1.4−1.6,configuration (e)has a distinctly different behavior in this regime.In summary,we have studied the spin-Peierls dimerization of an alternating spin Heisenberg system on a chain and a square lattice taking variable exchange couplings based on the ansatz J(a)=J2),(32)and(3|lnδ|(i)in chains aswell as in square lattices;(ii)in systems consisting of different pairs of spins s1and s2;(iii)for the magnetic energy gain,the energy gap,the energy of the gapped magnetic excitation mode as well as for the sublattice magnetization; (iv)for all the configurations of the square lattice;and(v)in the entire range0≤δ<1.The variable exchange coupling also allows the energy of the gapped excitation spectrum to beδ-dependent even in the linear spin wave theory.We would like to thank to Dr.D.Sen for providing Refs.5and6.Figure captionsFigure1:A schematic sketch of an alternating spin chain.The larger and smaller arrows indicate the larger(s1) and the smaller(s2)spins.The hollow(filled)circles represent the positions of spins in the undisturbed(dimerized) chain.Figure2:The magnetic energy gainεg(δ)−εg(0)vs the dimerization parameterδfor1D alternating spin chain in the full range of the dimerization parameter0≤δ<1.Figure3:δ-dependence of the energy gap as dimerization sets in for different alternating spin chains.Figure4:δ-dependence of the staggered magnetization for one of the two sublattices,S1,for the three alternating spin chains.Figure5:Five configurations for the dimerization of a square lattice.(a)a columnar configuration caused by a longitudinal(π,0)static phonon;(b)a staggered configuration caused by a(π,π)static phonon with polarization along x-direction.Like(a),the dimerization occurs along one direction only,but the sequence of alternate couplings itself alternates along the other direction;(c)dimerization along both the directions,caused by(π,0)and(0,π) phonons,making a plaquette of four nearest neighbour spins;(d)again,dimerization along both the directions,but taken staggered along the vertical direction;(e)another staggered dimerization that is caused by a longitudinal(π,π) rge arrow belongs to thefirst sublattice and short one belongs to second sublattice.And the open circles indicate the square lattice sites and the solid ones show the dimerized lattice.Figure6:The gain in magnetic energyεg(δ)−εg(0)as dimerization sets in with increasingδfor thefive configu-rations of a square lattice in the range0≤δ<1for(a)spin(1,12,12,1).Figure7:Dependence of the energy gap∆onδfor thefive dimerization configurations of the alternating squarelattices for(a)spin(1,12,12,1).Figure8:δ-dependence of the staggered magnetization of an alternating spin square lattice calculated for thefivedimerization configurations.(a)spin(1,12,12,1).Table 1:Summary of the ground state energy per site and sublattice magnetization values calculated by different methods for alternating spin chains made up of the three spin systems namely (1,12,12,1).Spinεg M 2(1,1MP [3]0.779−0.7275−0.293LSWT[4,6]0.695−0.72709−0.29248SWE[11,12]0.79388−0.72952,1LSWT [6]1.315−0.98362−0.35742SWE [11,12]1.3666(3LSWT [6]1.040−1.93096−0.644SWE [11,12]1.1461εg M 2(1,1−1.2−0.39072,1−1.7158−0.42412,1)1.3597a(1-δ) a(1+δ)Figure 10.00.20.40.60.8 1.01234567891011Fig. 2Spin(1.1/2) Spin(3/2,1/2) Spin(3/2,1) εg (δ) - εg(0)δ0.00.20.40.60.8 1.0246810121416Fig3 Spin(1,1/2) Spin(3/2,1/2) Spin(3/2,1)W 2(δ) - εg (δ)δ0.00.20.40.60.8 1.00.00.10.20.30.40.50.6Fig. 4Spin(1,1/2)Spin(3/2,1/2)Spin(3/2,1)M (0) - M (δ)δa(1-δ) a(1+δ)aa(1-δ)a(1+δ) Figure 5 (a)Figure 5 (b)a√(1+δ2)a(1-δ) a(1-δ)Figure 5 (d)Figure 5 (c)a √(δ2+(1+δ)2)a √(δ2+(1-δ)2)a √(δ2+(1+δ)2)Figure 5 (e)a √(δ2+(1-δ)2)a √(δ2+(1-δ)2)a √(δ2+(1+δ)2)0.00.20.40.60.8 1.0246Fig. 6 (a)For Spin(1,1/2) Config.(a) Config.(b) Config.(c) Config.(d) Config.(e)εg (δ) - εg (0)δ0.00.20.40.60.8 1.0369Fig. 6(b)For Spin(3/2,1/2) Config.(a) Config.(b) Config.(c) Config.(d) Config.(e) εg (δ) - εg(0)δ0.00.20.40.60.8 1.05101520Fig. 6(c)For Spin(3/2,1) Config.(a) Config.(b) Config.(c) Config.(d) Config.(e) εg (δ) - εg (0)δ0.00.20.40.60.8 1.02.55.07.510.0Fig. 7(a)For Spin(1,1/2) Config.(a) Config.(b) Config.(c) Config.(d) Config.(e)W 2(δ) - εg (δ)δ0.00.20.40.60.8 1.0481216Fig. 7(b) For Spin(3/2,1/2) Config.(a) Config.(b) Config.(c) Config.(d) Config.(e)W 2(δ) - εg(δ)δ0.00.20.40.60.8 1.06121824Fig. 7(c)For Spin(3/2,1) Config.(a) Config.(b) Config.(c) Config.(d) Config.(e)W 2(δ) - εg (δ)δ0.00.20.40.60.8 1.00.00.10.20.3Fig. 8(a)For Spin(1,1/2) Config.(a) Config.(b) Config.(c) Config.(d) Config.(e)M (0) - M (δ)δ0.00.20.40.60.8 1.00.000.040.080.120.160.20Fig. 8(b)For Spin(3/2,1/2) Config.(a) Config.(b) Config.(c) Config.(d) Config.(e)M (0) - M (δ)δ0.00.20.40.60.8 1.00.00.10.20.30.4Fig. 8(c)For Spin(3/2,1) Config.(a) Config.(b) Config.(c) Config(d) Config.(e)M (0) - M (δ)δ。

相关文档
最新文档