北师大版高中数学必修五模块测试卷

合集下载

高中数学 模块综合测试(A)北师大版必修5(2021年整理)

高中数学 模块综合测试(A)北师大版必修5(2021年整理)

2016-2017学年高中数学模块综合测试(A)北师大版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学模块综合测试(A)北师大版必修5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学模块综合测试(A)北师大版必修5的全部内容。

模块综合测试(A)(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等差数列{a n}中,a2=7,a4=15,则前10项和S10=( )A.100 B.210C.380 D.400答案:B1.在等差数列{a n}中,若a3+a4+a5+a6+a7=450,则a2+a8的值等于( )A.45 B.75C.180 D.300解析: ∵a2+a8=a3+a7=a4+a6=2a5,∴由已知得5a5=450,∴a5=90∴a2+a8=2a5=180。

答案:C2.在△ABC中,若b=2a sin B,则角A为( )A.30°或60° B.45°或60°C.120°或60° D.30°或150°解析:根据正弦定理sin B=2sin A sin B,所以sin A=错误!,所以A=30°或150°。

答案:D3.a∈R,且a2+a<0,那么-a,-a3,a2的大小关系是( )A.a2>-a3>-a B.-a>a2>-a3C.-a3>a2>-a D.a2>-a>-a3解析:由a2+a<0得-1<a<0,∴-a>a2>-a3。

北师大版高中数学必修5综合测试试题及答案

北师大版高中数学必修5综合测试试题及答案

北师大版高中数学必修5综合测试试题及答案必修模块5试题.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共3页.满分为150分。

考试时间120分钟.第Ⅰ卷选择题共50分一.选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一项是符合题目要求的)1.已知等差数列{an}中,a7a916,a41,则a12的值是A.15B.30C.31D.6422.若全集U=R,集合M=某某4,S=某3某0,则MðUS=某1A.{某某2}B.{某某2或某3}C.{某某3}D.{某2某3}3.若1+2+22+……+2n>128,nN某,则n的最小值为A.6B.7C.8D.94.在ABC中,B60,bac,则ABC一定是2A、等腰三角形B、等边三角形C、锐角三角形D、钝角三角形115.若不等式a某2b某20的解集为某|某,则a-b值是23A.-10B.-14C.10D.146.在等比数列{an}中,S4=1,S8=3,则a17a18a19a20的值是A.14B.16C.18D.207.已知某2y1,则2某4y的最小值为A.8B.6C.22D.28.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n个图案中有白色地面砖的块数是A.4n2B.4n2C.2n4D.3n3第1个第2个第3个某4y309.已知变量某,y满足3某5y25,目标函数是z2某y,则有某1A.zma某12,zmin3C.zmin3,z无最大值B.zma某12,z无最小值D.z既无最大值,也无最小值10.在R上定义运算:某y某(1y),若不等式(某a)(某a)1对任意实数某成立,则实数a的取值范围是A.1a1B.0a2C.1331aD.a2222第Ⅱ卷非选择题共100分二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在答题卡的横线上)11.已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为.12.b克糖水中有a克糖(b>a>0),若再加入m克糖(m>0),则糖水更甜了,将这个事实用一个不等式表示为.13.在数列an中,a11,且对于任意正整数n,都有an1ann,则a100=________________.14.把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个数):设ai,j(i、j∈N某)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,23456如a4,2=8.若ai,j=2006,则i、j的值分别为________,__________78910…………………………三、解答题:(本大题共6小题,共80分。

高二数学必修五模块试题(北师大版含答案和解释)

高二数学必修五模块试题(北师大版含答案和解释)

高二数学必修五模块试题(北师大版含答案和解释)模块学习评价 (时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若a>b>c,则一定成立的不等式是( ) A.a|c|>b|c| B.ab>ac C.a-|c|>b-|c| D.1a<1b<1c 【解析】∵a>b,∴a-|c|>b-|c|. 【答案】 C 2.在△ABC中,若sin A∶sin B∶sin C=3∶2∶4,则cos C的值为( ) A.-14 B.14 C.-23 D.23 【解析】由正弦定理知,a∶b∶c=sin A∶sin B∶sin C=3∶2∶4,设a=3k,b=2k,c=4k,(k>0),由余弦定理得 cos C=a2+b2-c22ab =9k2+4k2-16k22×3k×2k=-14. 【答案】 A 3.(2013•洋浦高二检测)在△ABC中,若a=2,b=23,A=30°,则B为( ) A.60° B.60°或120° C.30° D.30°或150° 【解析】根据正弦定理得sin B=bsin Aa=23×sin30°2=32,∴B=60°或120°,∵b>a,故两解都符合题意.【答案】 B 4.不等式ax2+2x+c>0的解集是(-2,3),则a+c的值是( ) A.10 B.-10 C.14 D.-14 【解析】不等式ax2+2x+c>0的解集是(-2,3),即方程ax2+2x+c=0的解为x=-2或x=3. ∴-2+3=-2a,-2×3=ca,∴a=-2,c=12,∴a+c=10. 【答案】 A 5.设{an}是等差数列,且a2=-6,a8=6,Sn是数列{an}的前n项和,则( ) A.S4<S5 B.S4=S5 C.S6<S5 D.S6=S5 【解析】设公差为d,则a1+d=-6,a1+7d=6解得d=2,a1=-8.则a4=-2,a5=0,a6=2,∴S4=S5. 【答案】 B 6.(2013•乌鲁木齐高二检测)已知U 为实数集,M={x|x2-2x<0},N={x|y=x-1},则M∩(∁UN)等于( ) A.{x|0<x<1} B.{x|0<x<2} C.{x|x<1} D.∅【解析】不等式x2-2x<0可化为x(x-2)<0,所以M={x|0<x<2},又因为N={x|x≥1},所以∁UN={x|x<1},M∩(∁UN)={x|0<x<2}∩{x|x<1}={x|0<x<1}.【答案】 A 7.不等式组(x-y+5)(x+y)≥0,0≤x≤3表示的平面区域是( ) A.矩形 B.三角形 C.直角梯形D.等腰梯形【解析】画出图形可知:不等式组(x-y+5)(x+y)≥00≤x≤3表示的平面区域是等腰梯形.【答案】 D 8.(2013•惠州高二检测)若AB→•BC→+AB→2=0,则△ABC是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰直角三角形【解析】由AB→•BC→+AB→2=0,得c2=-ac•cos(π-B),∴cos B=ca,根据余弦定理得a2+c2-b22ac=ca,整理得a2=c2+b2,所以该三角形为直角三角形.【答案】 A 9.等比数列{an}是递增数列,若a5-a1=60,a4-a2=24,则公比q为( ) A.12 B.2 C.12或-2 D.2或12 【解析】由已知得a1q4-a1=60,a1q3-a1q=24,两式相除得q=2或12,经检验q=2或12均满足{an}是递增数列,故选D. 【答案】 D 10.(2013•丰台高二检测)已知数列{an}中,a1=35,an=1-1an-1(n≥2),则a2 012=( ) A.-12 B.-23 C.35 D.52 【解析】由an=1-1an-1及a1=35得a2=-23,a3=52,a4=35,a5=-23,…,所以数列中的项呈周期出现,周期为3,于是a2 012=a670×3+2=a2=-23. 【答案】 B 11.(2012•辽宁高考)设变量x,y满足x-y≤10,0≤x+y≤20,0≤y≤15,则2x+3y的最大值为( ) A.20 B.35 C.45 D.55 【解析】不等式组表示的区域如图所示,所以过点A(5,15)时2x+3y 的值最大,此时2x+3y=55. 【答案】 D 图1 12.如图1,某汽车运输公司刚买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y(单位:10万元)与营运年数x(x∈N)为二次函数关系,若使营运的年平均利润最大,则每辆客车应营运( ) A.3年 B.4年 C.5年 D.6年【解析】由图像知,函数过点(6,11),可设y=a(x-6)2+11,把点(4,7)代入得7=a(4-6)2+11,解得a=-1,∴y=-(x-6)2+11=-x2+12x-25. ∴平均利润yx=-x2+12x-25x=-(x+25x)+12≤-2x×25x+12=2.这时x=25x即x=5. 【答案】 C 二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.若关于x的不等式x-ax+1>0的解集为(-∞,-1)∪(12,+∞),则实数a=________.【解析】由题意知 x=-1和x=12是方程(x-a)•(x+1)=0的两个根,∴a =12. 【答案】12 14.等比数列{an}的前n项和为2n-1,则数列{an2}的前n项和为________.【解析】设{an}的前n项和为Sn,则Sn=2n-1,∴n≥2时Sn-1=2n-1-1,∴an=Sn-Sn-1=2n-1,n=1时也适合上式,∴an=2n-1(n∈N+),故an2=4n -1. 易知{an2}为以1为首项,以4为公比的等比数列,∴其前n 项和为1-4n1-4=4n-13. 【答案】13(4n-1) 15.设x,y为正实数,且x+y=2,则2x+1y的最小值为________.【解析】2x +1y=(2x+1y)×1=(2x+1y)•(x+y2)=32+yx+x2y≥32+2 yx•x2y=3+222,当且仅当x+y=2,yx=x2y,即x=4-22,y=22-2,时等号成立.【答案】3+222 16.(2013•哈师大附中高二检测)如图2,在某灾区的搜救现场,一条搜救犬从A点出发沿正北方向行进x m到达B处发现生命迹象,然后向右转105°,行进10 m到达C处发现另一生命迹象,这时它向右转135°回到出发点,那么x=________.图2 【解析】∠ABC=180°-105°=75°,∠BCA=180°-135°=45°,∠BAC=180°-75°-45°=60°,又AB=x,BC=10,∴xsin 45°=10sin 60°. 得x=10sin 45°sin 60°=1063. 【答案】1063 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知a、b、c分别是△ABC的三个内角所对的边,若△ABC面积S△ABC=32,c=2,A=60°,求a、b的值.【解】∵32=12b×2×sin 60°,∴b=1,又a2=b2+c2-2bccos A,∴a2=3,即a=3. 18.(本小题满分12分)(2013•福州高二检测)已知不等式mx2+nx-1m<0的解集为{x|x<-12,或x>2}. (1)求m,n的值; (2)解关于x的不等式:(2a-1-x)(x+m)>0,其中a是实数.【解】(1)依题意m<0,-12+2=-nm,-12×2=-1m2得m=-1,n=32.(2)原不等式为(2a-1-x)(x-1)>0即[x-(2a-1)](x-1)<0. ①当2a-1<1,即a<1时,原不等式的解集为{x|2a-1<x<1}.②当2a-1=1即a=1时,原不等式的解集为∅. ③当2a-1>1即a>1时,原不等式的解集为{x|1<x<2a-1}. 19.(本小题满分12分)某货轮在A处看灯塔B在货轮北偏东75°,距离为126 n mile;在A处看灯塔C在货轮的北偏西30°,距离为83 n mile.货轮由A处向正北航行到D处时,再看灯塔B在北偏东120°,求: (1)A处与D处之间的距离; (2)灯塔C与D处之间的距离.【解】(1)在△ABD中,由已知得∠ADB=60°,B=45°. 由正弦定理得 AD=ABsinBsin∠AD B=126×2232 =24(n mile). (2)在△ADC中,AC=83,AD=24,∠CAD=30°,由余弦定理得 CD2=AD2+AC2-2AD•ACcos 30° =242+(83)2-2×24×83cos 30° =3×64,∴CD=83(n mile).所以A处与D处之间的距离为24n mile,灯塔C与D处之间的距离为83 n mile. 20.(本小题满分12分)某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时,又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?【解】设每天生产A型桌子x张,B型桌子y张,则x+2y≤8,3x +y≤9,x≥0,y≥0,目标函数为:z=2x+3y. 作出可行域:把直线l:2x+3y=0向右上方平移至l′的位置时,直线经过可行域上的点M,且与原点距离最大,此时z=2x+3y取最大值,解方程x +2y=83x+y=9,得M的坐标为(2,3).故每天应生产A型桌子2张,B型桌子3张才能获得最大利润. 21.(本小题满分12分)(2013•黄冈高二检测)已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn. (1)求an及Sn; (2)令bn=1an2-1(n∈N+),求数列{bn}的前n项和Tn. 【解】(1)设等差数列{an}的公差为d,因为a3=7,a5+a7=26,所以有a1+2d=7,2a1+10d=26,解得a1=3,d=2,所以an=3+2(n-1)=2n+1;Sn=3n+n(n-1)2×2=n2+2n. (2)由(1)知an=2n+1,所以bn=1an2-1=1(2n+1)2-1=14•1n(n+1)=14•(1n-1n+1),所以Tn=14•(1-12+12-13+…+1n-1n+1)=14•(1-1n+1)=n4(n+1),即数列{bn}的前n项和Tn=n4(n +1). 22.(本小题满分12分)某投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元.设f(n)表示前n年的纯利润总和f(n)=(前n年的总收入-前n年的总支出-投资额). (1)该厂从第几年开始盈利? (2)若干年后,投资商为开发新项目,对该厂有两种处理方案:①年平均纯利润达到最大时,以48万元出售该厂;②纯利润总和达到最大时,以10万元出售该厂,问哪种方案更合算?【解】由题意知, f(n)=50n-12n+n(n-1)2×4-72 =-2n2+40n-72. (1)由f(n)>0,即-2n2+40n-72>0,解得2<n <18. 由n∈N+知,从第三年开始盈利. (2)方案①:年平均纯利润f(n)n=40-2n+36n≤16当且仅当n=6时等号成立.故方案①共获利6×16+48=144(万元),此时n=6. 方案②:f(n)=-2(n -10)2+128.当n=10,f(n)max=128. 故方案②共获利128+10=138(万元).比较两种方案,选择第①种方案更合算.。

北师大版高中数学必修五模块综合测试(a).docx

北师大版高中数学必修五模块综合测试(a).docx

模块综合测试(A)(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等差数列{a n }中,a 2=7,a 4=15,则前10项和S 10=( ) A .100 B .210 C .380 D .400答案: B1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8的值等于( ) A .45 B .75 C .180D .300 解析: ∵a 2+a 8=a 3+a 7=a 4+a 6=2a 5, ∴由已知得5a 5=450,∴a 5=90 ∴a 2+a 8=2a 5=180. 答案: C2.在△ABC 中,若b =2a sin B ,则角A 为( ) A .30°或60° B .45°或60° C .120°或60°D .30°或150°解析: 根据正弦定理sin B =2sin A sin B , 所以sin A =12,所以A =30°或150°.答案: D3.a ∈R ,且a 2+a <0,那么-a ,-a 3,a 2的大小关系是( ) A .a 2>-a 3>-a B .-a >a 2>-a 3 C .-a 3>a 2>-aD .a 2>-a >-a 3解析: 由a 2+a <0得-1<a <0,∴-a >a 2>-a 3. 答案: B4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9解析: a 4+a 6=2a 5=-6, ∴a 5=-3, ∴d =a 5-a 15-1=2,∴S n =-11n +n (n -1)2·2=n 2-12n .故n =6时S n 取最小值. 答案: A5.△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,如果a ,b ,c 成等差数列,B =30°,△ABC 的面积为32,那么b =( )A.1+32B .1+ 3 C.2+32D .2+ 3 解析: 2b =a +c ,S =12ac sin B =32,∴ac =6.又∵b 2=a 2+c 2-2ac cos B , ∴b 2=(a +c )2-2ac -2ac cos 30°. ∴b 2=4+23,即b =1+3,故选B. 答案: B6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B =( )A .-12B.12 C .-1D .1 解析: 根据正弦定理,由a cos A =b sin B ,得sin A cos A =sin 2B , ∴sin A cos A +cos 2B =sin 2B +cos 2B =1,故选D. 答案: D7.若数列{x n }满足lg x n +1=1+lg x n (n ∈N +),且x 1+x 2+x 3+…+x 100=100,则lg(x 101+x 102+…+x 200)的值为( )A .102B .101C .100D .99解析: 由lg x n +1=1+lg x n 得x n +1x n=10,∴数列{x n }是公比为10的等比数列,又x 101=x 1·q 100, x 102=x 2·q 100,…,x 200=x 100·q 100,∴x 101+x 102+…+x 200=q 100(x 1+x 2+…+x 100) =10100·100=10102.∴lg(x 101+x 102+…+x 200)=102. 答案: A8.在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≥0x -y +4≥0x ≤1表示的平面区域面积是( )A .3B .6 C.92D .9解析: 如图所示,不等式组表示的平面区域为△ABC 边界及其内部的部分,由⎩⎪⎨⎪⎧x =1x -y +4=0可得A (1,5),同理可得B (-2,2),C (1,-1),故AC =6,△ABC 的高h =3,所以S △ABC =12·AC ·h =9.答案: D9.已知数列{a n }的前n 项和为S n ,且S n =a n -2(a 为常数且a ≠0),则数列{a n }( ) A .是等比数列B .当a ≠1时是等比数列C .从第二项起成等比数列D .从第二项起成等比数列或等差数列解析: a n =⎩⎪⎨⎪⎧a -2 n =1,a n -1(a -1) n ≥2,当a ≠0,n ≥2,a n =a n -1(a -1),a ≠1是等比数列,当a =1,是等差数列. 答案: D10.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 均成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12解析: ∵(x -a )⊗(x +a )=(x -a )(1-x -a ), ∴不等式(x -a )⊗(x +a )<1对任意实数x 成立, 即(x -a )(1-x -a )<1对任意实数x 成立, 即使x 2-x -a 2+a +1>0对任意实数x 成立,所以Δ=1-4(-a 2+a +1)<0,解得-12<a <32,故选C.答案: C11.已知数列{a n }为等比数列,S n 是它的前n 项和.若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .35B .33C .31D .29解析: 设公比为q ,由题意知⎩⎪⎨⎪⎧a 2·a 3=a 21q 3=2a 1a 4+2a 7=a 1q 3+2a 1q 6=52 即⎩⎪⎨⎪⎧ a 1q 3=2a 1q 3+2a 1·q 3·q 3=52,解得⎩⎪⎨⎪⎧q =12a 1=16, 故S 5=16×⎝⎛⎭⎫1-1251-12=31.答案: C12.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是( ) A .0<a <3 B.32≤a <3 C .2<a ≤3D .1≤a <52解析: ∵三角形为钝角三角形,∴⎩⎪⎨⎪⎧a +a +1>a +2-12≤a 2+(a +1)2-(a +2)22a (a +1)<0,解得32≤a <3.答案: B二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析: 因为cos C =13,得sin C =223.因为S △ABC =12ab sin C =12×32×b ×223=43,所以b =2 3. 答案: 2 314.已知{a n }是等差数列,S n 为其前n 项和,n ∈N *.若a 3=16,S 20=20,则S 10的值为________.解析: 设{a n }的首项,公差分别是a 1,d ,则 ⎩⎪⎨⎪⎧a 1+2d =1620a 1+20×(20-1)2×d =20,解得a 1=20,d =-2, ∴S 10=10×20+10×92×(-2)=110.答案: 11015.设点P (x ,y )在函数y =4-2x 的图像上运动,则9x +3y 的最小值为________. 解析: ∵y =4-2x , ∴9x +3y =9x +34-2x=9x +819x ≥281=18.答案: 1816.若不等式组⎩⎪⎨⎪⎧x ≥0y ≥02x +y -6≤0x -y +m ≤0表示的平面区域是一个三角形,则实数m 的取值范围是________.解析: 先画部分可行域⎩⎪⎨⎪⎧x ≥0y ≥02x +y -6≤0,设直线x -y +m =0与x 轴的交点为(-m,0),另外A (3,0),B (0,6),由图形可知:当m ∈(-∞,-3]∪[0,6)时,可行域为三角形.故实数m 的取值范围是(-∞,-3]∪[0,6). 答案: (-∞,-3]∪[0,6)三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解析: (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d . 由a 1=1,a 3=-3可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n , 所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7.18.(本小题满分12分)在△ABC 中,a ,b ,c 分别是∠A 、∠B 、∠C 的对边长,已知a ,b ,c 成等比数列,且a 2-c 2=ac -bc .求∠A 的大小及b sin Bc的值. 解析: ∵a 、b 、c 成等比数列,∴b 2=ac . 又∵a 2-c 2=ac -bc , ∴b 2+c 2-a 2=bc .在△ABC 中,由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12,∴∠A =60°.在△ABC 中,由正弦定理得sin B =b sin Aa ,∵b 2=ac ,∠A =60°,∴b sin B c =b 2sin 60°ca =sin 60°=32.19.(本小题满分12分)解关于x 的不等式ax 2-(a +1)x +1<0.解析: 若a =0,原不等式可化为-x +1<0,解得x >1; 若a <0,原不等式可化为⎝⎛⎭⎫x -1a (x -1)>0 解得x <1a或x >1;若a >0,原不等式可化为⎝⎛⎭⎫x -1a (x -1)<0, 其解的情况应由1a 与1的大小关系确定,当a =1时,解得x ∈∅; 当a >1时,解得1a <x <1;当0<a <1时,解得1<x <1a.综上所述,当a <0时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a 或x >1; 当a =0时,解集为{x |x >1};当0<a <1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,解集为∅;当a >1时,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1 20.(本小题满分12分)已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.求:(1)4x -3y 的最大值和最小值; (2)x 2+y 2的最大值和最小值. 解析: (1)不等式组⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,表示的平面区域如下图所示,其中A (4,1),B (-1,-6),C (-3,2).设z =4x -3y ,直线4x -3y =0经过原点(0,0),作一组与4x -3y =0平行的直线l :4x -3y =z ,当l 过C 点时,z 值最小;当l 过B 点时,z 值最大.∴z max =4×(-1)-3×(-6)=14,z min =4×(-3)-3×2=-18.(2)设u =x 2+y 2,则u 为点(x ,y )到原点(0,0)的距离.结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.∴(x 2+y 2)max =(-1)2+(-6)2=37; (x 2+y 2)min =0.21.(本小题满分12分)已知不等式x 2-3x +t <0的解集为{x |1<x <m ,x ∈R }. (1)求t ,m 的值;(2)若函数f (x )=-x 2+ax +4在区间(-∞,1]上递增,求关于x 的不等式log a (-mx 2+3x +2-t )<0的解集.解析: (1)∵不等式x 2-3x +t <0的解集为{x |1<x <m ,x ∈R },∴⎩⎪⎨⎪⎧ 1+m =3m =t 得⎩⎪⎨⎪⎧m =2t =2. (2)∵f (x )=-⎝⎛⎭⎫x -a 22+4+a24在(-∞,1]上递增, ∴a2≥1,a ≥2. 又log a (-mx 2+3x +2-t )=log a (-2x 2+3x )<0, 由a ≥2,可知0<-2x 2+3x <1, 由2x 2-3x <0,得0<x <32,由2x 2-3x +1>0得x <12或x >1.所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12或1<x <32.22.(本小题满分14分)如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里,问:(1)乙船每小时航行多少海里?(2)甲、乙两船是否会在某一点相遇,若能,求出甲从A 1处到相遇点共航行了多少海里?解析: (1)如图,连接A 1B 2,A 2B 2=102, A 1A 2=2060×302=102,∴△A 1A 2B 2是等边三角形,∠B 1A 1B 2=105°-60°=45°, 在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2cos 45° =202+(102)2-2×20×102×22=200 B 1B 2=10 2.因此乙船的速度的大小为10220×60=302海里/小时.(2)若能在C 点相遇,则显然A 1C <B 1C .因为甲、乙两船的航速恰好相等,因此不可能相遇.。

北师大版高中数学必修5模块测试试题及答案

北师大版高中数学必修5模块测试试题及答案

数学必修5第一部分(选择题 共50分)一、 选择题(每小题5分,10小题,共50分)1、在ABC ∆中,︒===452232B b a ,,,则A 为( )A .︒︒︒︒︒︒30.15030.60.12060D CB 或或2、在ABC ∆中,bc c b a ++=222,则A 等于( )A ︒︒︒︒30.45.60.120.D C B3、在ABC ∆中,1660=︒=b A ,,面积3220=S ,则a 等于( ) A. 610.B. 75C . 49D. 514、等比数列{}n a 中293a a =,则313239310log log log log a a a a ++++ 等于( ) A .9 B .27 C .81 D .2435、三个数a ,b ,c 既是等差数列,又是等比数列,则a ,b ,c 间的关系为 ( ) A .b-a =c-b B .b 2=a c C .a =b=c D .a =b=c ≠06、等比数列{}n a 的首项1a =1,公比为q ,前n 项和是n S ,则数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和是( )A .1-n SB .n n q S -C .n n q S -1D .11--n n q S7、在等差数列{}n a 中,前四项之和为40,最后四项之和为80,所有项之和是210,则项数n 为( )A .12B .14C .15D .16 8、已知,,a b c R ∈,则下列选项正确的是 ( )A.22a b am bm >⇒>B.a ba b c c>⇒> C .11,0a b ab a b >>⇒< D.2211,0a b ab a b>>⇒<9、已知x y xy +=,则y x +的取值范围是( )A .]1,0(B .),2[+∞C .]4,0(D .),4[+∞10、⎪⎪⎩⎪⎪⎨⎧≥≥-<-<+0011234x y y x y x 表示的平面区域内的整点的个数是( )A .8个B .5个C .4个D .2个第二部分(非选择题 共100分)二、填空题(每小题5分,4小题,共20分)11、已知0,0>>y x ,且191=+yx ,求y x +的最小值 _____________ 12、当x 取值范围是_____________ 时,函数122-+=x x y 的值大于零 13、在等比数列}{n a 中,08,204321=+=+a a a a ,则=10S14、不等式组6003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩表示的平面区域的面积是三、解答题(共六个题,前两题每题10分,后面每题15分,共80分)15、在△ABC 中,BC =a ,AC =b ,a ,b 是方程02322=+-x x 的两个根,且()1cos 2=+B A 。

北师大版高中数学必修五模块测试卷.docx

北师大版高中数学必修五模块测试卷.docx

高中数学学习材料鼎尚图文*整理制作必修五模块测试卷(150分,120分钟)一、选择题(每题5分,共60分)1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos 22A =ccb 2+,则△ABC 是( )A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰直角三角形2.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8等于( ) A.135 B.100 C.95 D.803.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(3b -c )cos A =a cos C ,则cos A 的值等于( ) A.23 B. 33 C. 43 D. 63 4.〈日照模拟〉已知等比数列{a n }的前n 项和S n =t 25-⋅n -51,则实数t 的值为( ) A.4 B.5 C. 54 D. 515.某人向正东方向走x km 后,向右转150°,然后朝新方向走3 km ,结果他离出发点恰好是3 km ,那么x 的值为( )A.3B.23C.3或23D.3 6.设{a n }为各项均是正数的等比数列,S n 为{a n }的前n 项和,则( ) A.44S a =66S a B. 44S a >66S a C. 44S a <66S a D. 44S a≤66S a 7.已知数列{a n }的首项为1,并且对任意n ∈N +都有a n >0.设其前n 项和为S n ,若以(a n ,S n )(n ∈N +)为坐标的点在曲线y =21x (x +1)上运动,则数列{a n }的通项公式为( ) A.a n =n 2+1 B.a n =n 2 C.a n =n +1 D.a n =n8.设函数f (x )=⎪⎪⎩⎪⎪⎨⎧≥-.0,1,0,132<x xx x 若f (a )<a ,则实数a 的取值范围为( )A.(-1,+∞)B.(-∞,-1)C.(3,+∞)D.(0,1) 9.已知a >0,b >0,则a 1+b1+2ab 的最小值是( ) A.2 B.22 C.4 D.510.已知目标函数z =2x +y 中变量x ,y 满足条件⎪⎩⎪⎨⎧≥+-≤-,1,2553,34x y x y x <则( )A.z max =12,z min =3B.z max =12,无最小值C.z min =3,无最大值D.z 无最大值,也无最小值 11.如果函数f (x )对任意a ,b 满足f (a +b )=f (a )·f (b ),且f (1)=2,则)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =( )A.4 018B.1 006C.2 010D.2 014 12.已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,且log c (ab )>1,则c 的取值范围是( ) A.0<c <1 B.1<c <8 C.c >8 D.0<c<1或c >8 二、填空题(每题4分,共16分)13.〈泉州质检〉△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且a cos C ,b cos B ,c cos A 成等差数列,则角B = .14.已知两正数x ,y 满足x +y =1,则z =⎪⎪⎭⎫⎝⎛+⋅⎪⎭⎫ ⎝⎛+y y x x 11的最小值为 . 15.两个等差数列的前n 项和之比为12105-+n n ,则它们的第7项之比为 .16.在数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=31S n (n ≥1),则a n = .三、解答题(解答应写出文字说明,证明过程或演算步骤)(17~20题每题12分,21~22题每题13分,共74分)17.已知向量m =⎪⎭⎫ ⎝⎛21,sin A 与n =(3,sin A +3cos A )共线,其中A 是△ABC 的内角. (1)求角A 的大小;(2)若BC =2,求△ABC 的面积S 的最大值,并判断S 取得最大值时△ABC 的形状.18.已知数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N *) (1)求数列{a n }的通项公式; (2)若数列{b n }满足11144421---n b b b =n b n a )1(+ (n ∈N*),证明:{b n }是等差数列;19.如图1,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船 发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间? 图120.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).21.已知等差数列{a n }的首项a 1=4,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前四项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前三项,记{b n }的前n 项和为T n ,若存在m ∈N +,使对任意n ∈N +总有T n <S m +λ恒成立,求实数λ的最小值.22.某食品厂定期购买面粉,已知该厂每天需用面粉6 t ,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,每次购买面粉需支付运费900元. (1)该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少? (2)若提供面粉的公司规定:当一次性购买面粉不少于210 t 时,其价格可享受9折优惠(即原价的90%),该厂是否应考虑接受此优惠条件?请说明理由.参考答案及点拨一、1.A 点拨:因为cos 22A =c c b 2+及2cos 22A -1=cos A ,所以cos A =c b .而cos A=bca cb 2222-+,∴b 2+a 2=c 2,则△ABC 是直角三角形.故选A.2.A 点拨:由等比数列的性质知a 1+a 2,a 3+a 4,…,a 7+a 8仍然成等比数列,公比q =2143a a a a ++=4060=23,∴a 7+a 8=(a 1+a 2)14-q =40×323⎪⎭⎫ ⎝⎛=135. 3.B 点拨:(3b -c )cos A =a cos C ,由正弦定理得3sin B cos A =sin C cos A +cos C sin A⇒3sin B cos A =sin(C +A )=sin B ,又sin B ≠0,所以cos A =33.故选B. 4.B 点拨:∵a 1=S 1=51t -51,a 2=S 2-S 1=54t ,a 3=S 3-S 2=4t ,∴由{a n }是等比数列.知254⎪⎭⎫ ⎝⎛t =⎪⎭⎫⎝⎛-5151t ×4t ,显然t ≠0,∴t =5. 5.C 点拨:根据题意,由余弦定理得(3)2=x 2+32-2x ·3·cos 30°,整理得x 2-33x +6=0,解得x =3或23.6.B 点拨:由题意得公比q >0,当q =1时,有44S a -66S a =41-61>0,即44S a >66S a ; 当q ≠1时,有44S a -66S a =()41311)1(q a q q a ---()61511)1(qa q q a --=q 3(1-q )()()642111q q q ---⋅=231q q +611q q --⋅>0,所以44S a >66S a .综上所述,应选B. 7.D 点拨:由题意,得S n =21a n (a n +1),∴S n -1=21a n -1(a n -1+1)(n ≥2). 作差,得a n =21()1212---+-n n n n a a a a , 即(a n +a n -1)(a n -a n -1-1)=0.∵a n >0(n ∈N +),∴a n -a n -1-1=0, 即a n -a n -1=1(n ≥2).∴数列{a n }为首项a 1=1,公差为1的等差数列. ∴a n =n (n ∈N +).8.A 点拨:不等式f (a )<a 等价于⎪⎩⎪⎨⎧≥-0,132a a a <或⎪⎩⎪⎨⎧,1,0a aa <<解得a ≥0或-1<a <0,即不等式f (a )<a 的解集为(-1,+∞). 9.C 点拨:依题意得a 1+b 1+2ab ≥2ab 1+2ab ≥4ab ab ⋅1=4,当且仅当a1=b1,且ab 1=ab 时,取等号,故应选C.10.C11.D 点拨:由f (a +b )=f (a )·f (b ),可得f (n +1)=f (n )·f (1),)()1(n f n f +=f (1)=2,所以)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =2×1 007=2 014. 12.B 点拨:因为a ,b ,a +b 成等差数列,所以2b =a +(a +b ),即b =2a .又因为a ,b ,ab 成等比数列,所以b 2=a ×ab ,即b =a 2.所以a =2,b =4,因此log c (ab )=log c 8>1=log c c ,有1<c <8,故选B. 二、13.60° 点拨:依题意得a cos C +c cos A =2b cos B ,根据正弦定理得sin A cos C +sin C cos A =2sin B cos B ,则sin(A +C )=2sin B cos B ,即sin B =2sin B cos B ,所以cos B =21,又0°<B <180°,所以B =60°,14. 425 点拨:z =⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y y x x 11=xy +xy 1+x y +y x =xy +xy 1+xy xy y x 2)(2-+=xy 2+xy -2,令t =xy ,则0<t =xy ≤22⎪⎭⎫ ⎝⎛+y x =41.设f (t )=t +t 2,t ∈⎥⎦⎤ ⎝⎛41,0,设41≥t 2>t 1>0,则f (t 1)-f (t 2)=⎪⎪⎭⎫ ⎝⎛+112t t -⎪⎪⎭⎫ ⎝⎛+222t t =212121)2)((t t t t t t --. 因为41≥t 2>t 1>0, 所以t 2-t 1>0,t 1·t 2<161.则t 1·t 2-2<0. 所以f (t 1)-f (t 2)>0.即f (t 1)>f (t 2).∴f (t )=t +t 2在⎥⎦⎤ ⎝⎛41,0上单调递减,故当t =41时f (t )=t +t2有最小值433,所以当x =y =21时,z 有最小值425. 15.3∶1 点拨:设两个等差数列{a n },{b n }的前n 项和为S n ,T n ,则n n T S =12105-+n n ,而77b a=131131b b a a ++=1313T S =113210135-⨯+⨯=3. 16.21,114,233n n n -=⎧⎪⎨⎛⎫≥ ⎪⎪⎝⎭⎩点拨:∵3a n +1=S n (n ≥1),∴3a n =S n -1(n ≥2). 两式相减,得3(a n +1-a n )=S n -S n -1=a n (n ≥2)⇒n n a a 1+=34(n ≥2) ⇒n ≥2时,数列{a n }是以34为公比,以a 2为首项的等比数列, ∴n ≥2时,a n =a 2234-⎪⎭⎫ ⎝⎛⋅n .令n =1,由3a n +1=S n ,得3a 2=a 1,又a 1=1⇒a 2=31,∴a n =31234-⎪⎭⎫ ⎝⎛⋅n (n ≥2).故⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛⋅=-.2,3431,112n n n , 三、17.解:(1)因为m ∥n , 所以sin A ·(sin A +3cos A )-23=0. 所以22cos 1A -+23sin2A -23=0.即23sin2A -21cos2A =1,即sin ⎪⎭⎫ ⎝⎛-62πA =1. 因为A ∈(0,π),所以2A -6π∈⎪⎭⎫ ⎝⎛-611,6ππ, 故2A -6π=2π,即A =3π. (2)由余弦定理,得4=b 2+c 2-bc , 又S △ABC =21bc sin A =43bc ,而b 2+c 2≥2bc ,bc +4≥2bc ,bc ≤4(当且仅当b =c 时等号成立), 所以S △ABC =21bc sin A =43bc ≤43×4=3.当△ABC 的面积最大时,b =c ,又A =3π,故此时△ABC 为等边三角形. 18.(1)解:∵a n +1=2a n +1(n ∈N *),∴a n +1+1=2(a n +1).∴{a n +1}是以a 1+1=2为首项,2为公比的等比数列.∴a n +1=2n . 即a n =2n -1(n ∈N *). (2)证明:∵114-b 124-b …14-n b =()n bn a 1+.∴nb b b n -+++)(214=nnb 2.∴2[(b 1+b 2+…+b n )-n ]=nb n ,①2[(b 1+b 2+…+b n +b n +1)-(n +1)]=(n +1)b n +1.②②-①,得2(b n +1-1)=(n +1)b n +1-nb n ,即(n -1)b n +1-nb n +2=0,③ ∴nb n +2-(n +1)b n +1+2=0.④ ④-③,得nb n +2-2nb n +1+nb n =0,即b n +2-2b n +1+b n =0,∴b n +2-b n +1=b n +1-b n (n ∈N *).∴{b n }是等差数列.19.解:由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°. 在△DAB 中,由正弦定理得,DAB DB ∠sin =ADBAB∠sin .∴DB =ADBDAB AB ∠∠⋅sin sin =︒︒⋅+105sin 45sin )33(5=︒⋅︒+︒⋅︒︒⋅+45cos 60sin 60sin 45sin 45sin )33(5=213)13(35++=103(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°,BC =203海里,在△DBC 中,由余弦定理得CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC =300+1 200-2×103×203×21=900, ∴CD =30海里.则需要的时间t =3030=1(小时). 答:救援船到达D 点需要1小时.20.解:原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. (1)当a =0时,原不等式化为x +1≤0⇒x ≤-1. (2)当a >0时, 原不等式化为⎪⎭⎫ ⎝⎛-a x 2 (x +1)≥0⇒x ≥a2或x ≤-1; (3)当a <0时,原不等式化为⎪⎭⎫⎝⎛-a x 2 (x +1)≤0. ①当a 2>-1,即a <-2时,原不等式的解集为-1≤x ≤a 2; ②当a 2=-1,即a =-2时,原不等式的解集为x =-1;③当a 2<-1,即-2<a <0时,原不等式的解集为a2≤x ≤-1.综上所述:当a <-2时,原不等式的解集为⎥⎦⎤⎢⎣⎡-a2,1;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎥⎦⎤⎢⎣⎡-1,2a ; 当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎪⎭⎫⎢⎣⎡+∞,2a . 21.解:(1)由a 2+a 7+a 12=-6得a 7=-2, 又a 1=4,所以公差d =-1,所以a n =5-n , 从而S n =2)9(n n -. (2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列的公比为q ,则q =12b b =21,所以T n =2112114-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n =8⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n 211.令f (n )=n⎪⎭⎫ ⎝⎛21.因为f (n )=n⎪⎭⎫⎝⎛21是关于自然数n 的减函数,所以{T n }是递增数列,得4≤T n <8.又S m =2)9(m m -=-22921⎪⎭⎫⎝⎛-m +881,当m =4或m =5时,S m 取得最大值,即(S m )max =S 4=S 5=10,若存在m ∈N +,使对任意n ∈N +总有T n <S m +λ恒成立, 则8≤10+λ,得λ≥-2, 所以λ的最小值为-2.22.解:(1)设该厂应每x 天购买一次面粉,则其购买量为6x t.由题意知,面粉的保管等其他费用为3[6x +6(x -1)+…+6×2+6×1]=9x (x +1)元. 设每天所支付的总费用为y 1元,则 y 1=x 1[9x (x +1)+900]+6×1 800=x900+9x +10 809≥2x x 9900⋅+10 809=10 989, 当且仅当9x =x900,即x =10时取等号. 所以该厂每10天购买一次面粉,才能使平均每天所支付的总费用最少.(2)若该厂接受此优惠条件,则至少每35天购买一次面粉.设该厂接受此优惠条件后,每x (x ≥35)天购买一次面粉,平均每天支付的总费用为y 2元,则y 2=x 1[9x (x +1)+900]+6×1 800×0.90=x900+9x +9 729(x ≥35). 令f (x )=x +x100(x ≥35),x 2>x 1≥35,则f (x 1)-f (x 2)=⎪⎪⎭⎫ ⎝⎛+11100x x -⎪⎪⎭⎫ ⎝⎛+22100x x =212121)100)((x x x x x x --. 因为x 2>x 1≥35,所以x 1-x 2<0,x 1·x 2>100.所以x 1x 2-100>0. 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 所以f (x )=x +x100在[35,+∞)内为增函数. 所以当x =35时,y 2有最小值,约为10 069.7. 此时y 2<10 989,所以该厂应该接受此优惠条件.。

2020-2021学年北师大版高中数学必修五模块测试卷及答案解析

2020-2021学年北师大版高中数学必修五模块测试卷及答案解析

(新课标)最新北师大版高中数学必修五必修五模块测试卷(150分,120分钟)一、选择题(每题5分,共60分)1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos 22A =ccb 2+,则△ABC 是( )A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰直角三角形2.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8等于( ) A.135 B.100 C.95 D.803.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(3b -c)cos A =acos C ,则cos A 的值等于( ) A.23 B. 33 C. 43 D. 63 4.〈日照模拟〉已知等比数列{a n }的前n 项和S n =t 25-⋅n -51,则实数t 的值为( ) A.4 B.5 C. 54 D. 515.某人向正东方向走x km 后,向右转150°,然后朝新方向走3 km ,结果他离出发点恰好是3 km ,那么x 的值为( )A.3B.23C.3或23D.3 6.设{a n }为各项均是正数的等比数列,S n 为{a n }的前n 项和,则( ) A.44S a =66S a B. 44S a >66S a C. 44S a <66S a D. 44S a≤66S a 7.已知数列{a n }的首项为1,并且对任意n ∈N +都有a n >0.设其前n 项和为S n ,若以(a n ,S n )(n ∈N +)为坐标的点在曲线y =21x(x +1)上运动,则数列{a n }的通项公式为( ) A.a n =n 2+1 B.a n =n 2C.a n =n +1D.a n =n8.设函数f(x)=⎪⎪⎩⎪⎪⎨⎧≥-.0,1,0,132<x xx x 若f(a)<a ,则实数a 的取值范围为( )A.(-1,+∞)B.(-∞,-1)C.(3,+∞)D.(0,1)9.已知a>0,b>0,则a 1+b1+2ab 的最小值是( ) A.2 B.22 C.4 D.510.已知目标函数z=2x+y 中变量x,y 满足条件⎪⎩⎪⎨⎧≥+-≤-,1,2553,34x y x y x <则( )A.z max =12,z min =3B.z max =12,无最小值C.z min =3,无最大值D.z 无最大值,也无最小值 11.如果函数f(x)对任意a ,b 满足f(a +b)=f(a)·f(b),且f(1)=2,则)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =( )A.4 018B.1 006C.2 010D.2 014 12.已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,且log c (ab)>1,则c 的取值范围是( ) A.0<c<1 B.1<c<8 C.c>8 D.0<c<1或c>8 二、填空题(每题4分,共16分)13.〈泉州质检〉△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且acosC ,bcosB ,ccosA 成等差数列,则角B=.14.已知两正数x ,y 满足x +y =1,则z =⎪⎪⎭⎫⎝⎛+⋅⎪⎭⎫ ⎝⎛+y y x x 11的最小值为. 15.两个等差数列的前n 项和之比为12105-+n n ,则它们的第7项之比为.16.在数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=31S n (n ≥1),则a n =.三、解答题(解答应写出文字说明,证明过程或演算步骤)(17~20题每题12分,21~22题每题13分,共74分)17.已知向量m =⎪⎭⎫ ⎝⎛21,sin A 与n =(3,sin A +3cos A)共线,其中A 是△ABC 的内角. (1)求角A 的大小;(2)若BC =2,求△ABC 的面积S 的最大值,并判断S 取得最大值时△ABC 的形状.18.已知数列{a n }满足a 1=1,a n+1=2a n +1(n ∈N*) (1)求数列{a n }的通项公式; (2)若数列{b n }满足11144421---n b b b Λ=n b n a )1(+ (n ∈N*),证明:{b n }是等差数列;19.如图1,A,B是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?20.解关于x的不等式ax2-2≥2x-ax(a∈R).21.已知等差数列{a n}的首项a1=4,且a2+a7+a12=-6.(1)求数列{a n}的通项公式a n与前n项和S n;(2)将数列{a n}的前四项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n}的前三项,记{b n}的前n项和为T n,若存在m∈N+,使对任意n∈N+总有T n<S m+λ恒成立,求实数λ的最小值.22.某食品厂定期购买面粉,已知该厂每天需用面粉6 t,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,每次购买面粉需支付运费900元.(1)该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)若提供面粉的公司规定:当一次性购买面粉不少于210 t时,其价格可享受9折优惠(即原价的90%),该厂是否应考虑接受此优惠条件?请说明理由.参考答案及点拨一、1.A 点拨:因为cos 22A =c c b 2+及2cos 22A -1=cos A ,所以cos A =cb .而cos A=bca cb 2222-+,∴b 2+a 2=c 2,则△ABC 是直角三角形.故选A.2.A 点拨:由等比数列的性质知a 1+a 2,a 3+a 4,…,a 7+a 8仍然成等比数列,公比q =2143a a a a ++=4060=23,∴a 7+a 8=(a 1+a 2)14-q =40×323⎪⎭⎫ ⎝⎛=135. 3.B 点拨:(3b -c)cos A =acos C ,由正弦定理得3sin Bcos A =sin Ccos A +cos Csin A⇒3sin Bcos A =sin(C +A)=sin B ,又sin B ≠0,所以cos A =33.故选B. 4.B 点拨:∵a 1=S 1=51t -51,a 2=S 2-S 1=54t ,a 3=S 3-S 2=4t ,∴由{a n }是等比数列.知254⎪⎭⎫⎝⎛t =⎪⎭⎫ ⎝⎛-5151t ×4t ,显然t ≠0,∴t =5.5.C 点拨:根据题意,由余弦定理得(3)2=x 2+32-2x ·3·cos 30°,整理得x 2-33x +6=0,解得x =3或23.6.B 点拨:由题意得公比q>0,当q =1时,有44S a -66S a =41-61>0,即44S a >66S a ; 当q ≠1时,有44S a -66S a =()41311)1(q a q q a ---()61511)1(q a q q a --=q 3(1-q)()()642111q q q ---⋅=231q q +611q q --⋅>0,所以44S a >66S a .综上所述,应选B. 7.D 点拨:由题意,得S n =21a n (a n +1),∴S n -1=21a n -1(a n -1+1)(n ≥2). 作差,得a n =21()1212---+-n n n n a a a a , 即(a n +a n -1)(a n -a n -1-1)=0.∵a n >0(n ∈N +),∴a n -a n -1-1=0,即a n -a n -1=1(n ≥2).∴数列{a n }为首项a 1=1,公差为1的等差数列. ∴a n =n(n ∈N +).8.A 点拨:不等式f(a)<a 等价于⎪⎩⎪⎨⎧≥-0,132a a a <或⎪⎩⎪⎨⎧,1,0a aa <<解得a ≥0或-1<a<0,即不等式f(a)<a的解集为(-1,+∞). 9.C 点拨:依题意得a 1+b 1+2ab ≥2ab 1+2ab ≥4ab ab ⋅1=4,当且仅当a 1=b1,且ab1=ab 时,取等号,故应选C. 10.C11.D 点拨:由f(a +b)=f(a)·f(b),可得f(n +1)=f(n)·f(1),)()1(n f n f +=f(1)=2,所以)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =2×1 007=2 014. 12.B 点拨:因为a ,b ,a +b 成等差数列,所以2b =a +(a +b),即b =2a.又因为a ,b ,ab成等比数列,所以b 2=a ×ab ,即b =a 2.所以a =2,b =4,因此log c (ab)=log c 8>1=log c c ,有1<c<8,故选B. 二、13.60° 点拨:依题意得acos C +ccos A =2bcos B ,根据正弦定理得sin Acos C +sin Ccos A =2sin Bcos B ,则sin(A +C)=2sin Bcos B ,即sin B =2sin Bcos B ,所以cos B =21,又0°<B<180°,所以B =60°,14. 425 点拨:z =⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y y x x 11=xy +xy 1+x y +y x =xy +xy 1+xy xy y x 2)(2-+=xy 2+xy -2,令t =xy ,则0<t =xy ≤22⎪⎭⎫ ⎝⎛+y x =41.设f(t)=t +t 2,t ∈⎥⎦⎤ ⎝⎛41,0,设41≥t 2>t 1>0,则f(t 1)-f(t 2)=⎪⎪⎭⎫ ⎝⎛+112t t -⎪⎪⎭⎫ ⎝⎛+222t t =212121)2)((t t t t t t --. 因为41≥t 2>t 1>0, 所以t 2-t 1>0,t 1·t 2<161.则t 1·t 2-2<0. 所以f(t 1)-f(t 2)>0.即f(t 1)>f(t 2).∴f(t)=t +t 2在⎥⎦⎤ ⎝⎛41,0上单调递减,故当t =41时f(t)=t +t2有最小值433,所以当x =y =21时,z 有最小值425. 15.3∶1 点拨:设两个等差数列{a n },{b n }的前n 项和为S n ,T n ,则n n T S =12105-+n n ,而77b a=131131b b a a ++=1313T S =113210135-⨯+⨯=3. 16.21,114,233n n n -=⎧⎪⎨⎛⎫≥ ⎪⎪⎝⎭⎩ 点拨:∵3a n +1=S n (n ≥1),∴3a n =S n -1(n ≥2). 两式相减,得3(a n +1-a n )=S n -S n -1=a n (n ≥2)⇒n n a a 1+=34(n ≥2) ⇒n ≥2时,数列{a n }是以34为公比,以a 2为首项的等比数列, ∴n ≥2时,a n =a 2234-⎪⎭⎫ ⎝⎛⋅n .令n =1,由3a n +1=S n ,得3a 2=a 1,又a 1=1⇒a 2=31,∴a n =31234-⎪⎭⎫⎝⎛⋅n (n ≥2).故⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛⋅=-.2,3431,112n n n , 三、17.解:(1)因为m ∥n , 所以sinA ·(sinA +3cosA)-23=0. 所以22cos 1A -+23sin2A -23=0.即23sin2A -21cos2A =1,即sin ⎪⎭⎫ ⎝⎛-62πA =1. 因为A ∈(0,π),所以2A -6π∈⎪⎭⎫ ⎝⎛-611,6ππ, 故2A -6π=2π,即A =3π. (2)由余弦定理,得4=b 2+c 2-bc ,又S △ABC =21bcsinA =43bc ,而b 2+c 2≥2bc ,bc +4≥2bc ,bc ≤4(当且仅当b =c 时等号成立), 所以S △ABC =21bcsinA =43bc ≤43×4=3.当△ABC 的面积最大时,b =c ,又A =3π,故此时△ABC 为等边三角形. 18.(1)解:∵a n+1=2a n +1(n ∈N *),∴a n+1+1=2(a n +1).∴{a n +1}是以a 1+1=2为首项,2为公比的等比数列.∴a n +1=2n.即a n =2n -1(n ∈N *). (2)证明:∵114-b 124-b …14-n b =()n bn a 1+.∴nb b b n -+++)(214Λ=nnb 2.∴2[(b 1+b 2+…+b n )-n ]=nb n ,①2[(b 1+b 2+…+b n +b n+1)-(n+1)]=(n+1)b n+1.②②-①,得2(b n+1-1)=(n+1)b n+1-nb n ,即(n -1)b n+1-nb n +2=0,③ ∴nb n+2-(n+1)b n+1+2=0.④④-③,得nb n+2-2nb n+1+nb n =0,即b n+2-2b n+1+b n =0,∴b n+2-b n+1=b n+1-b n (n ∈N *).∴{b n }是等差数列. 19.解:由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°. 在△DAB 中,由正弦定理得,DAB DB ∠sin =ADBAB∠sin .∴DB =ADBDAB AB ∠∠⋅sin sin =︒︒⋅+105sin 45sin )33(5=︒⋅︒+︒⋅︒︒⋅+45cos 60sin 60sin 45sin 45sin )33(5=213)13(35++=103(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°, BC =203海里,在△DBC 中,由余弦定理得CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC =300+1 200-2×103×203×21=900, ∴CD =30海里.则需要的时间t =3030=1(小时). 答:救援船到达D 点需要1小时.20.解:原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. (1)当a =0时,原不等式化为x +1≤0⇒x ≤-1.(2)当a >0时, 原不等式化为⎪⎭⎫ ⎝⎛-a x 2 (x +1)≥0⇒x ≥a2或x ≤-1; (3)当a <0时,原不等式化为⎪⎭⎫⎝⎛-a x 2 (x +1)≤0. ①当a 2>-1,即a <-2时,原不等式的解集为-1≤x ≤a 2; ②当a 2=-1,即a =-2时,原不等式的解集为x =-1;③当a 2<-1,即-2<a <0时,原不等式的解集为a2≤x ≤-1.综上所述:当a <-2时,原不等式的解集为⎥⎦⎤⎢⎣⎡-a2,1;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎥⎦⎤⎢⎣⎡-1,2a ; 当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎪⎭⎫⎢⎣⎡+∞,2a . 21.解:(1)由a 2+a 7+a 12=-6得a 7=-2,又a 1=4,所以公差d =-1,所以a n =5-n , 从而S n =2)9(n n -. (2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列的公比为q ,则q =12b b =21, 所以T n =2112114-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n =8⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n 211.令f(n)=n⎪⎭⎫ ⎝⎛21.因为f(n)=n⎪⎭⎫⎝⎛21是关于自然数n 的减函数,所以{T n }是递增数列,得4≤T n <8.又S m =2)9(m m -=-22921⎪⎭⎫⎝⎛-m +881,当m =4或m =5时,S m 取得最大值, 即(S m )max =S 4=S 5=10,若存在m ∈N +,使对任意n ∈N +总有T n <S m +λ恒成立, 则8≤10+λ,得λ≥-2, 所以λ的最小值为-2.22.解:(1)设该厂应每x 天购买一次面粉,则其购买量为6x t.由题意知,面粉的保管等其他费用为3[6x +6(x -1)+…+6×2+6×1]=9x(x +1)元. 设每天所支付的总费用为y 1元,则 y 1=x 1[9x(x +1)+900]+6×1 800=x900+9x +10 809≥2x x 9900⋅+10 809=10 989, 当且仅当9x =x900,即x =10时取等号. 所以该厂每10天购买一次面粉,才能使平均每天所支付的总费用最少.(2)若该厂接受此优惠条件,则至少每35天购买一次面粉.设该厂接受此优惠条件后,每x(x ≥35)天购买一次面粉,平均每天支付的总费用为y 2元,则y 2=x 1[9x(x +1)+900]+6×1 800×0.90=x900+9x +9 729(x ≥35). 令f(x)=x +x100(x ≥35),x 2>x 1≥35,则f(x 1)-f(x 2)=⎪⎪⎭⎫ ⎝⎛+11100x x -⎪⎪⎭⎫ ⎝⎛+22100x x =212121)100)((x x x x x x --. 因为x 2>x 1≥35,所以x 1-x 2<0,x 1·x 2>100.所以x 1x 2-100>0. 所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2). 所以f(x)=x +x100在[35,+∞)内为增函数. 所以当x =35时,y 2有最小值,约为10 069.7. 此时y 2<10 989,所以该厂应该接受此优惠条件.。

北师大版高中数学必修五模块综合测评.docx

北师大版高中数学必修五模块综合测评.docx

模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138B.135C.95 D.23【解析】由a2+a4=4,a3+a5=10得a1=-4,d=3,所以S10=10×(2a1+9d)2=10×(-8+27)2=5×19=95.【答案】 C2.在△ABC中,已知a、b和锐角A,要使三角形有两解,则应该满足的条件是()A.a=b sin A B.b sin A>aC.b sin A<b<a D.b sin A<a<b【解析】当a=b sin A时,有一解,当b sin A<a<b时,有两解,当a>b 时有一解.【答案】 D3.已知不等式x2+ax+4<0的解集为空集,则a的取值范围是()A .-4≤a ≤4B .-4<a <4C .a ≤-4或a ≥4D .a <-4或a >4【解析】 欲使不等式x 2+ax +4<0的解集为空集,则Δ=a 2-16≤0,∴-4≤a ≤4.【答案】 A4.已知等差数列的前n 项和为18,若S 3=1,a n +a n -1+a n -2=3,则n 的值为( )A .9B .21C .27D .36【解析】 ∵S 3=a 1+a 2+a 3=1, 又a 1+a n =a 2+a n -1=a 3+a n -2, ∴3(a 1+a n )=1+3,∴a 1+a n =43.又S n =n (a 1+a n )2=23n =18,∴n =27,故选C.【答案】 C5.关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( )A .(-∞,-1)∪(3,+∞)B .(-1,3)C .(1,3)D .(-∞,1)∪(3,+∞) 【解析】 (ax +b )(x -3)>0等价于 ⎩⎨⎧ ax +b >0,x -3>0或⎩⎨⎧ax +b <0,x -3<0, ∴⎩⎨⎧x >-1,x >3或⎩⎨⎧x <-1,x <3. ∴x ∈(-∞,-1)∪(3,+∞). 【答案】 A6.“神七”飞天,举国欢庆,据科学计算,运载“神舟七号”飞船的“长征2号”系列火箭,点火1分钟内通过的路程为2 km ,以后每分钟通过的路程比前一分钟增加2 km ,在到达离地面240 km 的高度时,火箭与飞船分离,则这一过程大约需要的时间是( )A .10分钟B .13分钟C .15分钟D .20分钟【解析】 由题设条件知,火箭每分钟通过的路程构成以a 1=2为首项,公差d =2的等差数列,∴n 分钟内通过的路程为S n =2n +n (n -1)2×2=n 2+n =n (n +1).检验选项知,n =15时,S 15=240 km.故选C.【答案】 C7.(2016·西安高二检测)在△ABC 中,内角A 、B 、C 满足6sin A =4sin B =3sin C ,则cos B =( )A.154 B .34 C.31510D .1116【解析】 由6sin A =4sin B =3sin C 得sin A ∶sin B ∶sin C =2∶3∶4,设△ABC 中角A 、B 、C 的对边分别为a ,b ,c ,则由正弦定理知a ∶b ∶c =2∶3∶4.不妨设a =2k ,b =3k ,c =4k (k >0), 则cos B =a 2+c 2-b 22ac =(22+42-32)k 22×2k ×4k =1116.【答案】 D8.(2015·四川高考)设实数x ,y 满足⎩⎨⎧2x +y ≤10,x +2y ≤14,x +y ≥6,则xy 的最大值为( )A.252 B .492 C .12D .16【解析】⎩⎨⎧2x +y ≤10,x +2y ≤14,x +y ≥6表示的可行域如图中阴影部分所示.令S =xy ,不妨设在点M (x 0,y 0)处S 取得最大值,且由图象知点M (x 0,y 0)只可能在线段AD ,AB ,BC 上.(1)当M (x 0,y 0)在线段AD 上时,x 0∈[-2,0],此时S =xy ≤0;(2)当M (x 0,y 0)在线段AB 上时,x 0∈[0,2],S =xy =x ·14-x 2=x ⎝ ⎛⎭⎪⎫7-x 2=-x 22+7x =-12(x -7)2+492,当x 0=2时,S max =-12(2-7)2+492=-252+492=12;(3)当M (x 0,y 0)在线段BC 上时,x 0∈[2,4],S =xy =x ·(10-2x )=-2x 2+10x =-2⎝ ⎛⎭⎪⎫x -522+252,当x 0=52时,S max =252. 综上所述,xy 的最大值为252. 【答案】 A9.y =3+x +x 21+x (x >0)的最小值是( )A .2 3B .-1+2 3C .1+2 3D .-2+2 3【解析】 y =3+x +x 21+x =31+x +x =31+x +x +1-1≥23-1,当且仅当31+x =1+x ,即x =3-1时取等号,故y 有最小值23-1.【答案】 B10.对于每个自然数n ,抛物线y =(n 2+n )x 2-(2n +1)x +1与x 轴交于A n ,B n 两点,以|A n B n |表示该两点间的距离,则|A 1B 1|+|A 2B 2|+…+|A 2 015B 2 015|的值是( )A.2 0142 015 B .2 0162 015 C.2 0152 014D .2 0152 016【解析】 |A n B n |=|x 1-x 2|=⎝ ⎛⎭⎪⎫2n +1n 2+n 2-4n 2+n =1n 2+n =1n ·(n +1)=1n -1n +1, ∴|A 1B 1|+|A 2B 2|+…+|A 2 015B 2 015|=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 015-12 016=2 0152 016.【答案】 D11.设f (x )=3ax -2a +1,若存在x 0∈(-1,1)使f (x 0)=0,则实数a 的取值范围是( )A .-1<a <15 B .a <-1 C .a <-1或a >15D .a >15【解析】 由于f (x )=3ax -2a +1,故f (x )一定是一条直线,又由题意,存在x 0∈(-1,1),使得f (x 0)=0,故直线y =3ax -2a +1在x =-1和x =1时的函数值异号,即f (-1)f (1)<0,得(1-5a )(a +1)<0,解得a <-1或a >15.【答案】 C12.(2014·福建高考)已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎨⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49【解析】 作出可行域,如图,由题意知,圆心为C (a ,b ),半径r =1,且圆C 与x 轴相切,所以b =1.而直线y =1与可行域的交点为A (6,1),B (-2,1),目标函数z =a 2+b 2表示点C 到原点距离的平方,所以当点C 与点A 重合时,z 取到最大值,z max =37.【答案】 C二、填空题(本大题共4个小题,每小题5分,共20分.将答案填在题中的横线上)13.已知二次函数f (x )=ax 2-3x +2,不等式f (x )>0的解集为{x |x <1或x >b },则b =________.【解析】 由题意知1,b 是方程ax 2-3x +2=0的两根, 由根与系数的关系得⎩⎪⎨⎪⎧1+b =3a ,1×b =2a ,∴⎩⎨⎧a =1,b =2.【答案】 214.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 【解析】 设AB =c ,BC =a ,AC =b ,由余弦定理b 2=a 2+c 2-2ac cos B ,得49=a 2+25-2×5a ⎝ ⎛⎭⎪⎫-12,解得a =3,∴S △ABC =12ac sin B =12×3×5×sin120°=1534. 【答案】153415.(2015·全国卷Ⅱ)若x ,y 满足约束条件⎩⎨⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.【解析】 画出可行域如图所示.由⎩⎨⎧x -2y =0,x +2y -2=0, 得⎩⎪⎨⎪⎧x =1,y =12.∴A ⎝ ⎛⎭⎪⎫1,12. 由z =x +y ,得y =-x +z ,平移直线l 0:x +y =0. 当直线过点A 时,z 最大,z max =1+12=32. 【答案】 3216.若a >0,b >0,且a 2+14b 2=1,则a 1+b 2的最大值为________.【解析】 a 1+b 2=12·2a 1+b 2≤4a 2+1+b 24=54,当且仅当⎩⎨⎧4a 2=1+b 2,4a 2+b 2=4时等号成立, 即a =104,b =62时成立. 【答案】 54三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知△ABC 的周长为2+1,且sin A +sin B =2sin C . (1)求边AB 的长;(2)若△ABC 的面积为16sin C ,求C 的度数. 【解】 (1)由题意△ABC 的周长为2+1,∴AB +BC +AC =2+1.由正弦定理,得 BC +AC =2AB ,∴AB =1.(2)由△ABC 的面积为12BC ·AC ·sin C =16sin C ,得BC ·AC =13.由(1)知BC +AC =2,由余弦定理,得cos C =AC 2+BC 2-AB 22AC ·BC =12,∴C =60°.18.(本小题满分12分)已知等比数列{a n }中,a 2=2,a 5=128,若b n =log 2a n ,数列{b n }前n 项的和为S n .(1)若S n =35,求n 的值;(2)求不等式S n <2b n 的解集. 【导学号:67940089】 【解】 (1)由a 2=a 1q =2,a 5=a 1q 4=128得q 3=64, ∴q =4,a 1=12,∴a n =a 1q n -1=12·4n -1=22n -3, ∴b n =log 2a n =log 222n -3=2n -3. ∵b n +1-b n =[2(n +1)-3]-(2n -3)=2,∴{b 1}是以b 1=-1为首项,2为公差的等差数列, ∴S n =(-1+2n -3)n 2=35,n 2-2n -35=0,(n -7)(n +5)=0,即n =7.(2)∵S n -2b n =n 2-2n -2(2n -3)=n 2-6n +6<0, ∴3-3<n <3+3, ∵n ∈N +,∴n =2,3,4,即所求不等式的解集为{2,3,4}.19.(本小题满分12分)如图1,矩形ABCD 是机器人踢球的场地,AB =170 cm ,AD =80 cm ,机器图1人先从AD 中点E 进入场地到点F 处,EF =40 cm ,EF ⊥AD .场地内有一小球从点B 向点A 运动,机器人从点F 出发去截小球.现机器人和小球同时出发,它们均作匀速直线运动,并且小球运动的速度是机器人行走速度的2倍.若忽略机器人原地旋转所需的时间,则机器人最快可在何处截住小球?【解】 设该机器人最快可在点G 处截住小球,点G 在线段AB 上.连接FG .设FG =x cm.根据题意,得BG =2x cm.则AG =AB -BG =(170-2x )cm.连接AF ,在△AEF 中,EF =AE =40 cm ,EF ⊥AD , 所以∠EAF =45°,AF =402cm , 于是∠F AG =45°.在△AFG 中,由余弦定理,得 FG 2=AF 2+AG 2-2AF ·AG cos ∠F AG ,所以x 2=(402)2+(170-2x )2-2×402×(170-2x )×cos 45°, 解得x 1=50,x 2=3703.所以AG =170-2x =70 cm 或AG =-2303cm(不合题意,舍去). 即该机器人最快可在线段AB 上离A 点70 cm 处截住小球. 20.(本小题满分12分)解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).【导学号:67940090】【解】 原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. (1)当a =0时,原不等式化为x +1≤0⇒x ≤-1. (2)当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0⇒x ≥2a 或x ≤-1;(3)当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.①当2a >-1,即a <-2时,原不等式的解集为-1≤x ≤2a ; ②当2a =-1,即a =-2时,原不等式的解集为x =-1; ③当2a <-1,即-2<a <0时,原不等式的解集为2a ≤x ≤-1. 综上所述,当a <-2时,原不等式的解集为⎣⎢⎡⎦⎥⎤-1,2a ; 当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎣⎢⎡⎦⎥⎤2a ,-1;当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎣⎢⎡⎭⎪⎫2a ,+∞.21.(本小题满分12分)某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车运营的总利润y (单位:十万元)与运营年数x 满足二次函数的关系:y =-a (x -6)2+11,且该二次函数图像过点(4,7).问每辆客车运营多少年,运营的年平均利润最大?最大值为多少?(年平均利润=总利润年数) 【解】 设年平均利润为z 十万元,依题意, ∵二次函数y =-a (x -6)2+11的图像过点(4,7), ∴7=-a (4-6)2+11, ∴a =1,∴y =-(x -6)2+11,z =y x =-(x -6)2+11x=-x 2+12x -25x =-x -25x +12=-⎝ ⎛⎭⎪⎫x +25x +12.∵x >0,∴x +25x ≥10, ∴-⎝ ⎛⎭⎪⎫x +25x ≤-10,∴-⎝ ⎛⎭⎪⎫x +25x +12≤2,∴z ≤2,当且仅当x =25x 即x =5时,z 有最大值为2十万元.即每辆客车运营5年,运营的年平均利润最大,最大值为2十万元.22.(本小题满分12分)已知数列{a n }是首项为a 1=14,公比q =14的等比数列,设b n +2=3log 14a n (n ∈N +),数列{c n }满足c n =a n ·b n .(1)求证:{b n }是等差数列;(2)求数列{c n }的前n 项和S n ;(3)若c n ≤14m 2+m -1对一切正整数n 恒成立,求实数m 的取值范围.【导学号:67940091】【解】 (1)证明:由题意知,a n =⎝ ⎛⎭⎪⎫14n (n ∈N +), ∵b n =3log 14a n -2,b 1=3log 14a 1-2=1,∴b n +1-b n =3log 14a n +1-3log 14a n =3log 14a n +1a n=3log 14q =3, ∴数列{b n }是首项b 1=1,公差d =3的等差数列.(2)由(1)知,a n =⎝ ⎛⎭⎪⎫14n ,b n =3n -2(n ∈N +), ∴c n =(3n -2)×⎝ ⎛⎭⎪⎫14n (n ∈N +), ∴S n =1×14+4×⎝ ⎛⎭⎪⎫142+7×⎝ ⎛⎭⎪⎫143+…+(3n -5)×⎝ ⎛⎭⎪⎫14n -1+(3n -2)×⎝ ⎛⎭⎪⎫14n ; 于是14S n =1×⎝ ⎛⎭⎪⎫142+4×⎝ ⎛⎭⎪⎫143+7×⎝ ⎛⎭⎪⎫144+…+(3n -5)×⎝ ⎛⎭⎪⎫14n +(3n -2)×⎝ ⎛⎭⎪⎫14n +1,两式相减得34S n =14+3⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫142+⎝ ⎛⎭⎪⎫143+…+⎝ ⎛⎭⎪⎫14n -(3n -2)×⎝ ⎛⎭⎪⎫14n +1=12-(3n +2)×⎝ ⎛⎭⎪⎫14n +1. ∴S n =23-12n +83×⎝ ⎛⎭⎪⎫14n +1(n ∈N +). (3)∵c n +1-c n =(3n +1)·⎝ ⎛⎭⎪⎫14n +1-(3n -2)·⎝ ⎛⎭⎪⎫14n =9(1-n )·⎝ ⎛⎭⎪⎫14n +1(n ∈N +), ∴当n =1时,c 2=c 1=14,当n≥2时,c n+1<c n,即c1=c2>c3>c4>…>c n,∴当n=1或2时,c n取得最大值是1 4.又c n≤14m2+m-1对一切正整数n恒成立,∴14m2+m-1≥14,即m2+4m-5≥0,解得m≥1或m≤-5.故实数m的取值范围为{m|m≥1或m≤-5}.。

北师大版高二数学必修5测试题及答案.doc

北师大版高二数学必修5测试题及答案.doc

高二数学(必修5)命题人:宝鸡铁一中数学组 周粉粉 (全卷满分120分,考试时间100分钟)一、选择题(本大题共10小题,每小题4分,共40分)1.已知数列{n a }的通项公式是n a =252+n n (n ∈*N ),则数列的第5项为( ) (A )110 (B )16 (C )15 (D )122.在ABC ∆中,bc c b a ++=222,则A 等于( )A ︒︒︒︒30.45.60.120.D C B3.不等式0322≥-+x x 的解集为( )A 、{|13}x x x ≤-≥或B 、}31|{≤≤-x xC 、{|31}x x x ≤-≥或D 、}13|{≤≤-x x 4.在ABC ∆中,80,100,45a b A ︒===,则此三角形解的情况是( )A.一解B.两解C.一解或两解D.无解5.某种细菌在培养过程中,每20分钟分裂一次(一个分裂二个)经过3小时,这种细菌由1个可以繁殖成( )A.511个B.512个C.1023个D.1024个 6.数列{n a }的通项公式是n a =122+n n (n ∈*N ),那么n a 与1+n a 的大小关系是( ) (A )n a >1+n a (B )n a <1+n a (C )n a = 1+n a (D )不能确定 7.关于x 的不等式)1,(0-∞>+的解集为b ax ,则关于x 的不等式02>+-x abx 的解集为( ) A .(-2,1) B .),1()2,(+∞-⋃--∞C .(-2,-1)D .),1()2,(+∞⋃--∞8. 两个等差数列}{n a 和}{n b ,其前n 项和分别为n n T S ,,且,327++=n n T S n n 则157202b b a a ++等于 A.49 B. 837 C. 1479 D. 241499.已知点P (x ,y )在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-022,01,02y x y x 表示的平面区域上运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]10. 等差数列}{n a 中,,0,0,020042003200420031<⋅>+>a a a a a 则使前n 项和0>n S 成立的最大自然数n 为A. 4005B. 4006C. 4007D. 4008 二.填空题. (本大题共6小题,每小题5分,共30分)) 11、数列 121, 241, 381, 4161, 5321, …, 的前n 项之和等于 . 12、已知数列{}n a 的前n 项和2n S n n =+,那么它的通项公式为=n a ________13、在△ABC 中,B =135°,C =15°,a =5,则此三角形的最大边长为 . 14、已知232a b +=,则48ab+的最小值是 .15.某人向银行贷款A 万元用于购房。

北师大版高中数学必修五模块检测.docx

北师大版高中数学必修五模块检测.docx

高中数学学习材料鼎尚图文*整理制作模块检测(时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题5分,共50分)1.已知数列{a n }的前n 项和S n =n 3,则a 5+a 6的值为 ( ).A .91B .152C .218D .279 解析 a 5+a 6=S 6-S 4=63-43=152.答案 B2.在△ABC 中,sin A ∶sin B ∶sin C =4∶3∶2,则cos A 的值是 ( ).A .-14 B.14 C .-23 D.23 解析 由正弦定理得a ∶b ∶c =4∶3∶2,设a =4k ,b =3k ,c =2k ,则cos A = 9k 2+4k 2-16k 22×3k ×2k=-14. 答案 A3.在正项等比数列{a n }中,a 1和a 19为方程x 2-10x +16=0的两根,则a 8·a 10·a 12等于 ( ).A .16B .32C .64D .256 解析 ∵{a n }是等比数列且由题意得a 1·a 19=16=a 102(a n >0),∴a 8·a 10·a 12=a 103=64. 答案 C4.等差数列{a n }满足a 42+a 72+2a 4a 7=9,则其前10项之和为 ( ).A .-9B .-15C .15D .±15 解析 a 42+a 72+2a 4a 7=(a 4+a 7)2=9.∴a 4+a 7=±3,∴a 1+a 10=±3,∴S 10=10(a 1+a 10)2=±15. 答案 D5.在坐标平面上,不等式组⎩⎪⎨⎪⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为 ( ). A. 2 B.32 C.322D .2解析 |CD |=1+1=2,⎩⎨⎧ y =x -1,y =-3x +1,∴x A =12. ⎩⎪⎨⎪⎧y =x -1,y =3x +1,∴x B =-1, ∴S △CDA =12×2×12=12, S △CDB =12×2×1=1. 故所求区域面积为32. 答案 B6.如果不等式2x 2+2mx +m 4x 2+6x +3<1对一切实数x 均成立,则实数m 的取值范围是 ( ). A .(1,3) B .(-∞,3)C .(-∞,1)∪(2,+∞)D .(-∞,+∞)解析 ∵4x 2+6x +3=⎝⎛⎭⎫2x +322+34>0,∴原不等式⇔2x 2+2mx +m <4x 2+6x +3⇔2x 2+ (6-2m )x +(3-m )>0,x ∈R 恒成立⇔Δ=(6-2m )2-8(3-m )<0,∴1<m <3.答案 A7.△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且cos 2B +3cos(A +C )+2=0,b =3,则c ∶sin C 等于 ( ).A .3∶1 B.3∶1C.2∶1 D .2∶1解析 cos 2B +3cos(A +C )+2=2cos 2B -3cos B +1=0, ∴cos B =12或cos B =1(舍).∴B =π3. ∴c sin C =b sin B =332=2. 答案 D8.已知各项都为正数的等比数列{a n }的公比不为1,则a n +a n +3与a n +1+a n +2的大小关系是( ).A .a n +a n +3<a n +1+a n +2B .a n +a n +3=a n +1+a n +2C .a n +a n +3>a n +1+a n +2D .不确定的,与公比有关解析 因为a n +a n +3=a n (1+q 3),a n +1+a n +2=a n (q +q 2),a n +a n +3-(a n +1+a n +2)=a n (1+q 3-q -q 2)=a n (1-q )(1-q 2)=a n (1-q )2(1+q )>0.答案 C9.已知公差不为0的等差数列的第4,7,16项恰好分别是某等比数列的第4,6,8项,则该等比数列的公比是 ( ). A. 3 B. 2 C .±3 D .±2 解析 等差数列记作{a n },等比数列记作{b n },则q 2=b 8b 6=b 6b 4=b 8-b 6b 6-b 4=a 16-a 7a 7-a 4=9d 3d=3,∴q =±3. 答案 C10.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧ x +3y -3≥0,2x -y -3≤0,x -my +1≥0,且x +y 的最大值为9,则实数m 等于( ).A .-2B .-1C .1D .2解析 如图,作出可行域,由⎩⎪⎨⎪⎧x -my +1=0,2x -y -3=0,得A ⎝ ⎛⎭⎪⎫1+3m -1+2m ,5-1+2m ,平移y =-x ,当其经过点A 时,x +y 取得最大值,即1+3m -1+2m +5-1+2m=9,解得m = 1.答案 C二、填空题(本大题共5小题,每小题5分,共25分)11.正项等比数列{a n }满足a 2a 4=1,S 3=13,b n =log 3a n ,则数列{b n }的前10项和是________. 解析 ∵{a n }成等比数列,a n >0,∴a 2a 4=a 32=1.∴a 3=1,∴a 1q 2=1.①∵S 3=a 1+a 2+1=13,∴a 1(1+q )+1=13.②由①②得,a 1=9,q =13,a n =33-n . ∴b n =3-n .∴S 10=-25.答案 -2512.如图所示,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m ,则树高的高度为________.解析 ∵∠A =30°,∠ABP =45°,∴∠APB =15°,AB sin ∠APB =P A sin ∠PBA ,60sin 15°= P A sin 135°,∴P A =60(3+1),PQ =P A ·sin ∠A =60(3+1)·sin 30°=30(3+1). 答案 (30+303)m13.设,x ,y 满足约束条件⎩⎪⎨⎪⎧ 2x -y +2≥0,8x -y -4≤0,x ≥0,y ≥0,若目标函数z =abx +y (a >0,b >0)的最大值为8,则a +b 的最小值为________.解析 如图所示,线性约束条件表示的区域为图中的阴影部分,A (0,2),B ⎝⎛⎭⎫12,0,C (1,4),当直线l :y =-abx+z 过点C 时,z 取最大值8,即8=ab +4,∴ab =4.又∵a >0,b >0,∴a +b ≥2ab =24=4(a =b =2时取等号).答案 414.在△ABC 中,D 为BC 边上一点,BC =3BD ,AD =2,∠ADB =135°,若AC =2AB ,则BD =________.解析 如图,设AB =k ,则AC =2k ,再设BD =x ,则DC =2x .在△ABD 中,由余弦定理得 k 2=x 2+2-2·x ·2·⎝⎛⎭⎫-22=x 2+2+2x ,①在△ADC 中,由余弦定理得2k 2=4x 2+2-2·2x ·2·22=4x 2+2-4x , ∴k 2=2x 2+1-2x .②由①②得x 2-4x -1=0,解得x =2+5(负值舍去).答案 2+ 515.设x ,y ∈R ,a >1,b >1,若a x =b y =3,a +b =23,则1x +1y的最大值为________. 解析 因为a >1,b >1,a x =b y =3,a +b =23,所以x =log a 3,y =log b 3.1x +1y =1log a 3+1log b 3=log 3 a +log 3 b =log 3 ab ≤ log 3⎝⎛⎭⎫a +b 22=log 3⎝⎛⎭⎫2322=1,当且仅当a =b 时,等号成立. 答案 1三、解答题(本大题共6小题,共75分)16.(12分)已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和.(1)求通项a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及前n 项和T n . 解 (1)∵{a n }是首项为a 1=19,公差为d =-2的等差数列,∴a n =19-2(n -1)=21-2n ,S n =19n +12n (n -1)×(-2)=20n -n 2. (2)由题意得b n -a n =3n -1,即b n =a n +3n -1, ∴b n =3n -1-2n +21, ∴T n =S n +(1+3+…+3n -1)=-n 2+20n +3n -12. 17.(12分)已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b },(1)求a ,b ;(2)解不等式ax 2-(ac +b )x +bc <0.解 (1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且b >1.由根与系数的关系,得⎩⎨⎧ 1+b =3a ,1×b =2a.解得⎩⎪⎨⎪⎧a =1,b =2. 所以a =1,b =2.(2)所以不等式ax 2-(ac +b )x +bc <0,即x 2-(2+c )x +2c <0,即(x -2)(x -c )<0.当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c };当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2};当c =2时,不等式(x -2)(x -c )<0的解集为∅,综上,当c >2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |2<x <c };当c <2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |c <x <2};当c =2时,不等式ax 2-(ac +b )x +bc <0的解集为∅.18.(12分)在△ABC 中,a 比b 长2,b 比c 长2,且最大角的正弦值是32,求△ABC 的面积.解 据题意知a -b =2,b -c =2,∴边长a 最大,∴sin A =32, ∴cos A =±1-sin 2A =±12. ∵a 最大,∴cos A =-12.又a =b +2,c =b -2, ∴cos A =b 2+c 2-a 22bc =b 2+(b -2)2-(b +2)22b (b -2)=-12, 解得b =5,∴a =7,c =3,∴S △ABC =12bc sin A =12×5×3×32=1534. 19.(12分)已知某地今年年初拥有居民住房的总面积为a (单位:m 2),其中有部分旧住房需要拆除.当地有关部门决定每年以当年年初住房面积的10%建设新住房,同时也拆除面积为b (单位:m 2)的旧住房.(1)分别写出第一年末和第二年末的实际住房面积的表达式.(2)如果第五年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b 是多少?(计算时取1.15=1.6)解 (1)第一年末的住房面积为a ·1110-b =(1.1a -b )(m 2). 第二年末的住房面积为⎝⎛⎭⎫a ·1110-b ·1110-b =a ·⎝⎛⎭⎫11102-b ⎝⎛⎭⎫1+1110=(1.21a -2.1b )(m 2). (2)第三年末的住房面积为⎣⎡⎦⎤a ·⎝⎛⎭⎫11102-b ⎝⎛⎭⎫1+1110·1110-b=a ·⎝⎛⎭⎫11103-b ⎣⎡⎦⎤1+1110+⎝⎛⎭⎫11102, 第四年末的住房面积为a ·⎝⎛⎭⎫11104-b ⎣⎡⎦⎤1+1110+⎝⎛⎭⎫11102+⎝⎛⎭⎫11103, 第五年末的住房面积为a ·⎝⎛⎭⎫11105-b ⎣⎡⎦⎤1+1110+⎝⎛⎭⎫11102+⎝⎛⎭⎫11103+⎝⎛⎭⎫11104 =1.15a -1-1.151-1.1b =1.6a -6b . 依题意可知1.6a -6b =1.3a ,解得b =a 20,所以每年拆除的旧住房面积为a 20m 2. 20.(13分)已知1≤x +y ≤5,-1≤x -y ≤3,求2x -3y 的取值范围.解 法一 作出一元二次方程组⎩⎪⎨⎪⎧1≤x +y ≤5-1≤x -y ≤3所表示的 平面区域(如图)即可行域.考虑 z =2x -3y ,把它变形为y =23x -13z ,得到斜率为23, 且随z 变化的一组平行直线,-13z 是直线在y 轴上的截距, 当直线截距最大且满足约束条件时目标函数z =2x -3y 取得最小值;当直线截距最小且 满足约束条件时目标函数z =2x -3y 取得最大值.由图可知,当直线z =2x -3y 经过可行域上的点A 时,截距最大,即z 最小.解方程组⎩⎪⎨⎪⎧x -y =-1,x +y =5,得A 的坐标为(2,3). 所以z min =2x -3y =2×2-3×3=-5.解方程组⎩⎪⎨⎪⎧x -y =3,x +y =1,得B 的坐标为(2,-1), 所以z max =2x -3y =2×2-3×(-1)=7.∴2x -3y 的取值范围是[-5,7].法二 设2x -3y =m (x +y )+n (x -y )=mx +my +nx -ny =(m +n )x +(m -n )y则⎩⎪⎨⎪⎧ m +n =2,m -n =-3,⇒⎩⎨⎧ m =-12,n =52.则2x -3y =-12(x +y )+52(x -y )∵1≤x +y ≤5,-1≤x -y ≤3,∴-52≤-12(x +y )≤ -12,-52≤52(x -y )≤152,∴-5≤2x -3y ≤7. 即2x -3y 的取值范围为[-5,7].21.(14分)某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.解 (1)若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.如图所示,设小艇与轮船在C 处相遇.在Rt △OAC 中,OC =20cos 30°=103,AC =20sin 30°=10.又AC =30t ,OC =v t .此时,轮船航行时间t =1030=13, v =10313=303,即小艇以303海里/时的速度航行,相 遇时小艇的航行距离最小.(2)如图所示,设小艇与轮船在B 处相遇.由题意,可得(v t )2=202+(30t )2-2·20·30t ·cos(90°-30°),化简,得v 2=400t 2-600t+900= 400⎝⎛⎭⎫1t -342+675.由于0<t ≤12,即1t≥2, 所以当1t =2时,v 取得最小值1013,即小艇航行速度的最小值为1013海里/时.。

北师大版高中数学必修五模块测试卷

北师大版高中数学必修五模块测试卷

必修五模块测试卷(150分,120分钟)一、选择题(每题5分,共60分)1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos 22A =ccb 2+,则△ABC 是()A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰直角三角形2.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8等于() A.135B.100C.95D.803.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(3b -c )cos A =a cos C ,则cos A 的值等于() A.23B.33C.43D.63 4.〈日照模拟〉已知等比数列{a n }的前n 项和S n =t 25-⋅n -51,则实数t 的值为() A.4B.5C.54D.51 5.某人向正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好是3km ,那么x 的值为()A.3B.23C.3或23D.36.设{a n }为各项均是正数的等比数列,S n 为{a n }的前n 项和,则() A.44S a =66S a B.44S a >66S a C.44S a <66S a D.44S a≤66S a7.已知数列{a n }的首项为1,并且对任意n ∈N +都有a n >0.设其前n 项和为S n ,若以(a n ,S n )(n ∈N +)为坐标的点在曲线y =21x (x +1)上运动,则数列{a n }的通项公式为() A.a n =n 2+1B.a n =n 2C.a n =n +1D.a n =n8.设函数f (x )=⎪⎪⎩⎪⎪⎨⎧≥-.0,1,0,132<x xx x 若f (a )<a ,则实数a 的取值范围为()A.(-1,+∞)B.(-∞,-1)C.(3,+∞)D.(0,1) 9.已知a >0,b >0,则a 1+b1+2ab 的最小值是() A.2B.22C.4D.510.已知目标函数z =2x +y 中变量x ,y 满足条件⎪⎩⎪⎨⎧≥+-≤-,1,2553,34x y x y x <则()A.z max =12,z min =3B.z max =12,无最小值C.z min =3,无最大值D.z 无最大值,也无最小值11.如果函数f (x )对任意a ,b 满足f (a +b )=f (a )·f (b ),且f (1)=2,则)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =() A.4018B.1006C.2010D.201412.已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,且log c (ab )>1,则c 的取值范围是()A.0<c <1B.1<c <8C.c >8D.0<c<1或c >8 二、填空题(每题4分,共16分)13.〈泉州质检〉△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且a cos C ,b cos B ,c cos A 成等差数列,则角B = .14.已知两正数x ,y 满足x +y =1,则z =⎪⎪⎭⎫⎝⎛+⋅⎪⎭⎫ ⎝⎛+y y x x 11的最小值为 . 15.两个等差数列的前n 项和之比为12105-+n n ,则它们的第7项之比为 .16.在数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=31S n (n ≥1),则a n = .三、解答题(解答应写出文字说明,证明过程或演算步骤)(17~20题每题12分,21~22题每题13分,共74分)17.已知向量m =⎪⎭⎫ ⎝⎛21,sin A 与n =(3,sin A +3cos A )共线,其中A 是△ABC 的内角. (1)求角A 的大小;(2)若BC =2,求△ABC 的面积S 的最大值,并判断S 取得最大值时△ABC 的形状.18.已知数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N *) (1)求数列{a n }的通项公式; (2)若数列{b n }满足11144421---n b b b Λ=n b n a )1(+(n ∈N*),证明:{b n }是等差数列;19.如图1,A ,B 是海面上位于东西方向相距5(3+3)点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船 发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船 到达D 点需要多长时间?图120.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).21.已知等差数列{a n }的首项a 1=4,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前四项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前三项,记{b n }的前n 项和为T n ,若存在m ∈N +,使对任意n ∈N +总有T n <S m +λ恒成立,求实数λ的最小值.22.某食品厂定期购买面粉,已知该厂每天需用面粉6t ,每吨面粉的价格为1800元,面粉的保管等其他费用为平均每吨每天3元,每次购买面粉需支付运费900元. (1)该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)若提供面粉的公司规定:当一次性购买面粉不少于210t 时,其价格可享受9折优惠(即原价的90%),该厂是否应考虑接受此优惠条件?请说明理由.参考答案及点拨一、1.A 点拨:因为cos 22A =c c b 2+及2cos 22A -1=cos A ,所以cos A =cb .而cos A =bca cb 2222-+,∴b 2+a 2=c 2,则△ABC 是直角三角形.故选A.2.A 点拨:由等比数列的性质知a 1+a 2,a 3+a 4,…,a 7+a 8仍然成等比数列,公比q =2143a a a a ++=4060=23,∴a 7+a 8=(a 1+a 2)14-q =40×323⎪⎭⎫ ⎝⎛=135. 3.B 点拨:(3b -c )cos A =a cos C ,由正弦定理得3sin B cos A =sin C cos A +cos C sin A⇒3sin B cos A =sin(C +A )=sin B ,又sin B ≠0,所以cosA =33.故选B. 4.B 点拨:∵a 1=S 1=51t -51,a 2=S 2-S 1=54t ,a 3=S 3-S 2=4t ,∴由{a n }是等比数列.知254⎪⎭⎫ ⎝⎛t =⎪⎭⎫⎝⎛-5151t ×4t ,显然t ≠0,∴t =5. 5.C 点拨:根据题意,由余弦定理得(3)2=x 2+32-2x ·3·cos30°,整理得x 2-33x+6=0,解得x =3或23.6.B 点拨:由题意得公比q >0,当q =1时,有44S a -66S a =41-61>0,即44S a >66S a ; 当q ≠1时,有44S a -66S a =()41311)1(q a q q a ---()61511)1(qa q q a --=q 3(1-q )()()642111q q q ---⋅=231q q +611q q --⋅>0,所以44S a >66S a .综上所述,应选B. 7.D 点拨:由题意,得S n =21a n (a n +1),∴S n -1=21a n -1(a n -1+1)(n ≥2). 作差,得a n =21()1212---+-n n n n a a a a , 即(a n +a n -1)(a n -a n -1-1)=0.∵a n >0(n ∈N +),∴a n -a n -1-1=0, 即a n -a n -1=1(n ≥2).∴数列{a n }为首项a 1=1,公差为1的等差数列. ∴a n =n (n ∈N +).8.A 点拨:不等式f (a )<a 等价于⎪⎩⎪⎨⎧≥-0,132a a a <或⎪⎩⎪⎨⎧,1,0a aa <<解得a ≥0或-1<a <0,即不等式f (a )<a 的解集为(-1,+∞).9.C 点拨:依题意得a 1+b 1+2ab ≥2ab 1+2ab ≥4ab ab ⋅1=4,当且仅当a 1=b1,且ab1=ab 时,取等号,故应选C. 10.C11.D 点拨:由f (a +b )=f (a )·f (b ),可得f (n +1)=f (n )·f (1),)()1(n f n f +=f (1)=2,所以)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =2×1007=2014. 12.B 点拨:因为a ,b ,a +b 成等差数列,所以2b =a +(a +b ),即b =2a .又因为a ,b ,ab成等比数列,所以b 2=a ×ab ,即b =a 2.所以a =2,b =4,因此log c (ab )=log c 8>1=log c c ,有1<c <8,故选B.二、13.60°点拨:依题意得a cos C +c cos A =2b cos B ,根据正弦定理得sin A cos C +sin C cos A =2sin B cos B ,则sin(A +C )=2sin B cos B ,即sin B =2sin B cos B ,所以cos B =21,又0°<B <180°,所以B =60°,14.425点拨:z =⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y y x x 11=xy +xy 1+x y +y x =xy +xy 1+xy xy y x 2)(2-+=xy 2+xy -2,令t =xy ,则0<t =xy ≤22⎪⎭⎫⎝⎛+y x =41.设f (t )=t +t 2,t ∈⎥⎦⎤ ⎝⎛41,0,设41≥t 2>t 1>0,则f (t 1)-f (t 2)=⎪⎪⎭⎫ ⎝⎛+112t t -⎪⎪⎭⎫ ⎝⎛+222t t =212121)2)((t t t t t t --. 因为41≥t 2>t 1>0, 所以t 2-t 1>0,t 1·t 2<161.则t 1·t 2-2<0. 所以f (t 1)-f (t 2)>0.即f (t 1)>f (t 2).∴f (t )=t +t 2在⎥⎦⎤ ⎝⎛41,0上单调递减,故当t =41时f (t )=t +t 2有最小值433,所以当x =y =21时,z 有最小值425. 15.3∶1点拨:设两个等差数列{a n },{b n }的前n 项和为S n ,T n ,则n n T S =12105-+n n ,而77b a=131131b b a a ++=1313T S =113210135-⨯+⨯=3. 16.21,114,233n n n -=⎧⎪⎨⎛⎫≥ ⎪⎪⎝⎭⎩点拨:∵3a n +1=S n (n ≥1),∴3a n =S n -1(n ≥2). 两式相减,得3(a n +1-a n )=S n -S n -1=a n (n ≥2)⇒n n a a 1+=34(n ≥2)⇒n ≥2时,数列{a n }是以34为公比,以a 2为首项的等比数列, ∴n ≥2时,a n =a 2234-⎪⎭⎫ ⎝⎛⋅n .令n =1,由3a n +1=S n ,得3a 2=a 1,又a 1=1⇒a 2=31,∴a n =31234-⎪⎭⎫⎝⎛⋅n (n ≥2).故⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛⋅=-.2,3431,112n n n , 三、17.解:(1)因为m ∥n , 所以sin A ·(sin A +3cos A )-23=0. 所以22cos 1A -+23sin2A -23=0.即23sin2A -21cos2A =1,即sin ⎪⎭⎫ ⎝⎛-62πA =1. 因为A ∈(0,π),所以2A -6π∈⎪⎭⎫ ⎝⎛-611,6ππ, 故2A -6π=2π,即A =3π. (2)由余弦定理,得4=b 2+c 2-bc , 又S △ABC =21bc sin A =43bc ,而b 2+c 2≥2bc ,bc +4≥2bc ,bc ≤4(当且仅当b =c 时等号成立), 所以S △ABC =21bc sin A =43bc ≤43×4=3.当△ABC 的面积最大时,b =c ,又A =3π,故此时△ABC 为等边三角形. 18.(1)解:∵a n +1=2a n +1(n ∈N *),∴a n +1+1=2(a n +1).∴{a n +1}是以a 1+1=2为首项,2为公比的等比数列.∴a n +1=2n.即a n =2n -1(n ∈N *). (2)证明:∵114-b 124-b …14-n b =()n bn a 1+.∴nb b b n -+++)(214Λ=n nb 2.∴2[(b 1+b 2+…+b n )-n ]=nb n ,①2[(b 1+b 2+…+b n +b n +1)-(n +1)]=(n +1)b n +1.②②-①,得2(b n +1-1)=(n +1)b n +1-nb n ,即(n -1)b n +1-nb n +2=0,③ ∴nb n +2-(n +1)b n +1+2=0.④④-③,得nb n +2-2nb n +1+nb n =0,即b n +2-2b n +1+b n =0,∴b n +2-b n +1=b n +1-b n (n ∈N *).∴{b n }是等差数列.19.解:由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°.在△DAB 中,由正弦定理得,DAB DB ∠sin =ADBAB∠sin .∴DB =ADBDAB AB ∠∠⋅sin sin =︒︒⋅+105sin 45sin )33(5=︒⋅︒+︒⋅︒︒⋅+45cos 60sin 60sin 45sin 45sin )33(5=213)13(35++=103(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°,BC =203海里,在△DBC 中,由余弦定理得CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC =300+1200-2×103×203×21=900, ∴CD =30海里.则需要的时间t =3030=1(小时). 答:救援船到达D 点需要1小时.20.解:原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. (1)当a =0时,原不等式化为x +1≤0⇒x ≤-1. (2)当a >0时, 原不等式化为⎪⎭⎫ ⎝⎛-a x 2(x +1)≥0⇒x ≥a2或x ≤-1; (3)当a <0时,原不等式化为⎪⎭⎫⎝⎛-a x 2(x +1)≤0. ①当a 2>-1,即a <-2时,原不等式的解集为-1≤x ≤a 2; ②当a 2=-1,即a =-2时,原不等式的解集为x =-1;③当a 2<-1,即-2<a <0时,原不等式的解集为a2≤x ≤-1.综上所述:当a <-2时,原不等式的解集为⎥⎦⎤⎢⎣⎡-a2,1;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎥⎦⎤⎢⎣⎡-1,2a ; 当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎪⎭⎫⎢⎣⎡+∞,2a . 21.解:(1)由a 2+a 7+a 12=-6得a 7=-2, 又a 1=4,所以公差d =-1,所以a n =5-n , 从而S n =2)9(n n -. (2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列的公比为q ,则q =12b b =21, 所以T n =2112114-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n =8⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n 211.令f (n )=n⎪⎭⎫ ⎝⎛21.因为f (n )=n⎪⎭⎫⎝⎛21是关于自然数n 的减函数,所以{T n }是递增数列,得4≤T n <8.又S m =2)9(m m -=-22921⎪⎭⎫ ⎝⎛-m +881,当m =4或m =5时,S m 取得最大值,即(S m )max =S 4=S 5=10,若存在m ∈N +,使对任意n ∈N +总有T n <S m +λ恒成立, 则8≤10+λ,得λ≥-2, 所以λ的最小值为-2.22.解:(1)设该厂应每x 天购买一次面粉,则其购买量为6x t.由题意知,面粉的保管等其他费用为3[6x +6(x -1)+…+6×2+6×1]=9x (x +1)元. 设每天所支付的总费用为y 1元,则y 1=x 1[9x (x +1)+900]+6×1800=x900+9x +10809≥2x x 9900⋅+10809=10989, 当且仅当9x =x900,即x =10时取等号. 所以该厂每10天购买一次面粉,才能使平均每天所支付的总费用最少. (2)若该厂接受此优惠条件,则至少每35天购买一次面粉.设该厂接受此优惠条件后,每x (x ≥35)天购买一次面粉,平均每天支付的总费用为y 2元,则y 2=x 1[9x (x +1)+900]+6×1800×0.90=x900+9x +9729(x ≥35). 令f (x )=x +x100(x ≥35),x 2>x 1≥35,则f (x 1)-f (x 2)=⎪⎪⎭⎫ ⎝⎛+11100x x -⎪⎪⎭⎫ ⎝⎛+22100x x =212121)100)((x x x x x x --. 因为x 2>x 1≥35,所以x 1-x 2<0,x 1·x 2>100.所以x 1x 2-100>0. 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 所以f (x )=x +x100在[35,+∞)内为增函数. 所以当x =35时,y 2有最小值,约为10069.7. 此时y 2<10989,所以该厂应该接受此优惠条件.。

北师大版高中数学必修五模块综合测评 .doc

北师大版高中数学必修五模块综合测评 .doc

高中数学学习材料鼎尚图文*整理制作模块综合测评 必修5(北师大版)(时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,A =π3,a =3,b =1,则c 等于( )A .1B .2 C.3-1D. 3解析:据题意有3sin60°=1sin B 得sin B =12,由于a >b ⇒A >B ,故B =π6,所以C =π-π6-π3=π2,c =2b =2.答案:B2.在△ABC 中,a =2b cos C ,则该三角形一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形解析:∵a =2b cos C ,∴a =2b a 2+b 2-c 22ab ,∴b 2=c 2,即b =c . 答案:A3.已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d =( )A .-23B .-13 C.13D.23解析:设数列的首项为a 1,公差为d ,则S 10=10a 1+10×92×d =70,即2a 1+9d =14.①又a 10=a 1+9d =10.② 由①②解之可得a 1=4,d =23. 答案:D4.已知等差数列的前n 项和为18,若S 3=1,a n +a n -1+a n -2=3,则n 的值为( )A .9B .21C .27D .36解析:∵S 3=a 1+a 2+a 3=1, 又∵a 1+a n =a 2+a n -1=a 3+a n -2, ∴3(a 1+a n )=1+3,∴a 1+a n =43.又∵S n =n (a 1+a n )2=23n =18,∴n =27,故选C. 答案:C5.关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( )A .(-∞,-1)∪(3,+∞)B .(-1,3)C .(1,3)D .(-∞,1)∪(3,+∞)解析:(ax +b )(x -3)>0等价于⎩⎪⎨⎪⎧ax +b >0,x -3>0,或⎩⎪⎨⎪⎧ax +b <0,x -3<0.∴⎩⎪⎨⎪⎧ x >-1,x >3,或⎩⎪⎨⎪⎧x <-1,x <3.∴x ∈(-∞,-1)∪(3,+∞). 答案:A6.若a >0,b >0且a 2+14b 2=1,则a 1+b 2的最大值是( )A.32B.62C.54D.258解析:a 1+b 2=24a 2(1+b 2)4≤4a 2+(1+b 2)4=54,等号当且仅当⎩⎪⎨⎪⎧4a 2=1+b 2,4a 2+b 2=4时成立,即a =104,b =62时成立. 答案:C7.已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( )A .a =b <cB .a =b >cC .a <b <cD .a >b >c解析:a =log 23+log 23=log 233=32log 23>1,b =log 29-log 23=log 233=32log 23>1,c =log 32<log 33=1,故答案为B.答案:B8.对于每个自然数n ,抛物线y =(n 2+n )x 2-(2n +1)x +1与x 轴交于A n ,B n 两点,以|A n B n |表示该两点间的距离,则|A 1B 1|+|A 2B 2|+…+|A 2 011B 2 011|的值是( )A.2 0102 011 B.2 0122 011 C.2 0112 010D.2 0112 012解析:|A n B n |=|x 1-x 2|= ⎝ ⎛⎭⎪⎫2n +1n 2+n 2-4n 2+n =1n 2+n =1n (n +1)=1n -1n +1, ∴|A 1B 1|+|A 2B 2|+…+|A 2011B 2011|=⎝⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 011-12 012=2 0112 012. 答案:D9.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m .如果目标函数z =x -y 的最小值为-1,那么实数m 等于( )A .7B .5C .4D .3解析:由题设可知⎩⎪⎨⎪⎧2x -y -1=0,x +y -m =0⇒⎩⎨⎧x =m +13,y =2m -13⇒m +13-2m -13=-1⇒m =5.答案:B10.设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( )A .X +Z =2YB .Y (Y -X )=Z (Z -X )C .Y 2=XZD .Y (Y -X )=X (Z -X )解析:由题意知S n =X ,S 2n =Y ,S 3n =Z . 又∵{a n }是等比数列.∴S n ,S 2n -S n ,S 3n -S 2n 为等比数列,即X ,Y -X ,Z -Y 为等比数列, ∴(Y -X )2=X ·(Z -Y ),即Y 2-2XY +X 2=ZX -XY . ∴Y 2-XY =ZX -X 2,即Y (Y -X )=X (Z -X ). 答案:D第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.已知等差数列{a n }的公差d ≠0,它的第1、5、17项顺次成等比数列,则这个等比数列的公比是__________.解析:已知等差数列{a n }的公差d ≠0,它的第1、5、17项顺次成等比数列,则a 25=a 1·a 16,则(a 1+4d )2=a 1·(a 1+16d ),整理得a 1=2d ,故这个等比数列的公比是q =a 5a 1=a 1+4d a 1=2d +4d 2d =3.答案:312.△ABC 中,A ,B ,C 分别为a ,b ,c 三条边的对角,如果b =2a ,B =A +60°,那么A =__________.解析:∵b =2a ,∴sin B =2sin A . 又∵B =A +60°,∴sin(A +60°)=2sin A , 即3cos A =3sin A .∴cos 2A =3sin 2A .∴4sin 2A =1.∴sin A =12,∴A =30°. 答案:30°13.若a ,b 是正常数,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =b y 时上式取等号.利用以上结论,可以得到函数f (x )=2x +91-2x (x ∈⎝ ⎛⎭⎪⎫0,12)的最小值为__________,取最小值时x 的值为__________.解析:由已知中的信息,可得f (x )=222x +321-2x ≥(2+3)22x +(1-2x )=25,当且仅当22x =31-2x,即x =15时上式取最小值,即[f (x )]min =25.答案:25 1514.已知实数x ,y 满足2x +y ≥1,则u =x 2+y 2+4x -2y 的最小值为__________.解析:由u =x 2+y 2+4x -2y =(x +2)2+(y -1)2-5知,u 表示点P (x ,y )与定点A (-2,1)的距离的平方与5的差.又由约束条件2x +y ≥1知:点P (x ,y )在直线l :2x +y =1上及其右上方.问题转化为求定点A (-2,1)到由2x +y ≥1所确定的平面区域的最近距离.故A 到直线l 的距离为A 到区域G 上点的距离的最小值.d =|2×(-2)+1-1|22+12=45, ∴d 2=165,∴u min =d 2-5=-95. 答案:-95三、解答题:本大题共4小题,满分50分. 15.(12分)解关于x 的不等式x 2-2ax +2≤0(a ∈R ).解:因为Δ=4a 2-8,所以当Δ<0即-2<a <2时,原不等式的解集为∅;(2分)当Δ=0即a =±2,对应的方程有两个相等实根. (4分)当a =2时,原不等式的解集是{x |x =2}; (6分)当a =-2时,原不等式的解集是{x |x =-2}; (8分)当Δ>0时,对应的方程有两个不等实根,分别为x 1=a -a 2-2,x 2=a +a 2-2,且x 1<x 2,所以不等式的解集是{x |a -a 2-2≤x ≤a +a 2-2}.(12分)16.(12分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,cos B =35,且AB →·BC →=-21.(1)求△ABC 的面积; (2)若a =7,求角C .解:(1)∵AB →·BC →=|AB →||BC →|cos(π-B )=-ac cos B =-35ac =-21,∴ac =35.(2分)又∵cos B =35,且B ∈(0,π), ∴sin B =1-cos 2B =45.∴S △ABC =12ac ·sin B =12×35×45=14. (6分)(2)由(1)知ac =35,又a =7,∴c =5. ∴b 2=49+25-2×7×5×35=32. ∴b =4 2.(8分)由正弦定理得b sin B =c sin C .即4245=5sin C ,∴sin C =22,又∵a >c ,∴C ∈⎝⎛⎭⎪⎫0,π2,∴C =π4.(12分)17.(12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )cos B =b cos C .(1)求内角B 的大小;(2)设m =(sin A ,cos2A ),n =(4k,1)(k >1),m·n 的最大值为5,求k 的值.解:(1)由正弦定理及(2a -c )cos B =b cos C , 得(2sin A -sin C )cos B =sin B cos C ,整理得:2sin A cos B =sin B cos C +sin C cos B =sin(B +C )=sin A ,(4分)∵A ∈(0,π),∴sin A ≠0,故cos B =12,∴B =π3.(6分) (2)m·n =4k sin A +cos2A =-2sin 2A +4k sin A +1, 其中A ∈⎝ ⎛⎭⎪⎫0,2π3,设sin A =t ,t ∈(0,1],则m·n =-2t 2+4kt +1=-2(t -k )2+1+2k 2. (8分)又k >1,故当t =1时,m·n 取得最大值. 由题意得-2+4k +1=5,解得k =32.(12分)18.(14分)已知数列{a n }的前n 项和为S n ,且-1,S n ,a n +1成等差数列,n ∈N *,a 1=1,函数f (x )=log 3x .(1)求数列{a n }的通项公式;(2)设数列{b n }满足b n =1(n +3)[f (a n )+2],记数列{b n }的前n 项和为T n ,试比较T n 与512-2n +5312的大小.解:(1)∵-1,S n ,a n +1成等差数列. ∴2S n =a n +1-1,①当n ≥2时,2S n -1=a n -1,② ①-②,得2(S n -S n -1)=a n +1-a n , ∴3a n =a n +1. ∴a n +1a n=3.(4分)当n =1时,由①得2S 1=2a 1=a 2-1,a 1=1,∴a 2=3.∴a 2a 1=3.∴{a n }是以1为首项,3为公比的等比数列.∴a n =3n -1.(6分) (2)∵f (x )=log 3x , ∴f (a n )=log 33n -1=n -1.∴b n =1(n +3)[f (a n )+2]=1(n +1)(n +3)=12⎝ ⎛⎭⎪⎫1n +1-1n +3.(8分) ∴T n =12⎝⎛12-14+13-15+14-16+15-⎭⎪⎫17+…+1n -1n +2+1n +1-1n +3 =12⎝ ⎛⎭⎪⎫12+13-1n +2-1n +3 =512-2n +52(n +2)(n +3).(10分)比较T n 与512-2n +5312的大小,只需比较2(n +2)(n +3)与312的大小即可. 2(n +2)(n +3)-312=2(n 2+5n +6-156) =2(n 2+5n -150) =2(n +15)(n -10). ∵n ∈N *,∴当1≤n ≤9且n ∈N *时,2(n +2)(n +3)<312,即T n <512-2n +5312; 当n =10时,2(n +2)(n +3)=312,即T n =512-2n +5312; 当n >10且n ∈N *时,2(n +2)(n +3)>312, 即T n >512-2n +5312.(14分)。

最新北师大版高中数学必修五模块测试卷(附答案)

最新北师大版高中数学必修五模块测试卷(附答案)

2.设 a,b,c,d∈R,且 a>b,c>d,则下列结论正确的是( A. a+c>b+d B. a-c>b-d C. ac>bd a b D. d>c
3.已知 a,b,c 分别是△ABC 的三个内角 A,B,C 所对的边,若 A=45°,B=60°,a =6,则 b 等于( A. 3 B. 3 ) C. 3 D. 2 )
第 3 页 共 7 页
a b c 18. 同学们对正弦定理的探索与研究中, 得到sinA=sinB=sinC=2R(R 为△ABC 外接圆 的半径).请利用该结论,解决下列问题:
(1)现有一个破损的圆块如图 1,只给出一把带有刻度的直尺和一个量角器,请你设计 一种方案,求出这个圆块的直径的长度. (2)如图 2,已知△ ABC 三个角满足(sin∠ CBA) +(sin∠ ACB) -(sin∠ CAB) =sin∠
8.已知 0<x<1,则 x(3-3x)取最大值时 x 的值为( 1 A.3 1 B.2 3 C.4 2 D.3
9.在△ABC 中,已知 a4+b4+c4=2c2(a2+b2),则 C 等于( A.30° B.60° C.45°或 135° D.120°
)
10.设{an}是任意等比数列,它的前 n 项和,前 2n 项和与前 3n 项和分别为 X,Y,Z, 则下列等式中恒成立的是( )
2 2 2
CBA·sin∠ACB,AD 是△ABC 外接圆直径,CD=2,BD=3,求∠CAB 和直径的长.
参考答案
一、选择题 a5 1 1 3 3 1.D ∵a5=a2q ,∴q =a2=8,∴q=2. 2.A 3.A
第 4 页 共 7 页
4.B 画出可行域如图,分析图可知当直线 u=x+2y 经过点 A、C 时分别对应 u 的最大 值和最小值. 2 2 5.A 因数列{an}是等比数列,a2a4=a3,a4a6=a5,代入条件 a2a4+2a3a5+a4a6=25,得 2 2 a3+2a3a5+a5=25,(a3+a5)2=25,又 an>0,所以 a3+a5=5. 6.C 设 a+b=t,则 a=t-b;代入 a +2b =6 中得,(t-b) +2b =6,整理得 3b2-2tb+t2-6=0,∵b∈R,∴Δ=4t2-12(t2-6)≥0, ∴-3≤t≤3.即(a+b)min=-3. 7.C ∵运算满足 xy=x(1-y),∴不等式(x-a) (x+a)<1 化为(x-a)(1-x-

北师大版高中数学必修五模块质量检测(1).docx

北师大版高中数学必修五模块质量检测(1).docx

高中数学学习材料鼎尚图文*整理制作模块质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果a <0,b >0,那么,下列不等式中正确的是( ) A.1a <1b B.-a <b C .a 2<b 2D .|a |>|b |解析: 如果a <0,b >0,那么1a <0,1b >0,∴1a <1b . 答案: A2.已知两个正数a ,b 的等差中项为4,则a ,b 的等比中项的最大值为( ) A .2 B .4 C .8 D .16 解析:ab ≤a +b2=4,故选B. 答案: B3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a =( )A. 6 B .2 C. 3D. 2解析: 由正弦定理,得6sin 120°=2sin C,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°, △ABC 为等腰三角形,a =c =2,故选D. 答案: D4.在等差数列{a n }中,若a 4+a 6=12,S n 是数列{a n }的前n 项和,则S 9的值为( ) A .48 B .54 C .60D .66解析: 因为a 4+a 6=a 1+a 9=a 2+a 8=a 3+a 7=2a 5=12,所以S 9=a 1+…+a 9=54. 答案: B5.不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b 的值是( ) A .10 B .-10 C .-14D .14解析: 不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,即方程ax 2+bx +2=0的解为x =-12或13, 故⎩⎨⎧-12+13=-b a,-12×13=2a .解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14. 答案: C6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6 B.π3 C.π6或5π6D.π3或2π3解析: 由余弦定理,得a 2+c 2-b 2=2ac cos B .由已知,得2ac cos B ·sin Bcos B =3ac ,即sin B =32,又B 是三角形的内角,所以B =π3或2π3.故选D. 答案: D7.已知等差数列{a n }的公差d ≠0且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10等于( )A.1514B.1213C.1316D.1516解析: 因为a 32=a 1·a 9,所以(a 1+2d )2=a 1·(a 1+8d ). 所以a 1=d .所以a 1+a 3+a 9a 2+a 4+a 10=3a 1+10d 3a 1+13d =1316.答案: C8.数列{a n }满足a 1=1,a 2=2,2a n +1=a n +a n +2,若b n =1a n a n +1,则数列{b n }的前5项和等于( )A .1 B.56 C.16D.130解析: ∵2a n +1=a n +a n +2∴{a n }是等差数列 又∵a 1=1,a 2=2∴a n =n 又b n =1a n ·a n +1=1n (n +1)=1n -1n +1∴b 1+b 2+b 3+b 4+b 5=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫15-16 =1-16=56,故选B. 答案: B9.实数x ,y 满足不等式组⎩⎪⎨⎪⎧y ≥0,x -y ≥0,2x -y -2≥0,则k =y -1x +1的取值范围是( )A.⎣⎡⎦⎤-1,13 B.⎣⎡⎦⎤-12,13 C.⎣⎡⎭⎫-12,+∞ D.⎣⎡⎭⎫-12,1 解析: 作平面区域如图所示,k =y -1x +1表示点(x ,y )与点(-1,1)连线的斜率,故选D.答案: D10.等比数列{a n }中,已知对任意自然数n ,a 1+a 2+a 3+…+a n =2n -1,则a 12+a 22+a 32+…+a n 2=( )A .(2n -1)2 B.13(2n -1) C .4n -1D.13(4n -1) 解析: 由已知等比数列{a n }的前n 项和S n =2n -1,所以a 1=S 1=1,a 2=S 2-a 1=2,所以公比q =2. 又因为a n +12a n 2=⎝⎛⎭⎫a n +1a n 2=q 2=4,所以数列{a n 2}是以q 2=4为公比的等比数列, 所以a 12+a 22+a 32+…+a n 2=1-4n1-4=13(4n -1). 答案: D11.已知x ,y ∈R +,2x +y =2,c =xy ,那么c 的最大值为( ) A .1 B.12 C.22D.14解析: 由已知,2=2x +y ≥22xy =22c ,所以c ≤12.答案: B12.在△ABC 中,已知a 比b 长2,b 比c 长2,且最大角的正弦值是32,则△ABC 的面积是( )A.154B.154 3C.2143 D.3543 解析: 由题可知a =b +2,b =c +2,∴a =c +4. ∵sin A =32,∴A =120°. 又cos A =cos 120°=b 2+c 2-a 22bc =(c +2)2+c 2-(c +4)22c (c +2)=c 2-4c -122c (c +2)=-12,整理得c 2-c -6=0,∴c =3(c =-2舍去),从而b =5, ∴S △ABC =12bc sin A =154 3.故选B.答案: B二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.不等式2x 2+2x -4≤12的解集为________.解析: 由2x 2+2x -4≤12=2-1得x 2+2x -4≤-1即x 2+2x -3≤0 ∴-3≤x ≤1∴原不等式的解集为{x |-3≤x ≤1}. 答案: [-3,1]14.在等比数列{a n }中,若a 9·a 11=4,则数列log 12a n 前19项之和为________.解析: 由题意a n >0,且a 1·a 19=a 2·a 18=…=a 9·a 11=a 102, 又a 9·a 11=4,所以a 10=2, 故a 1a 2…a 19=(a 10)19=219. 故log 12a 1+log 12a 2+…+log 12a 19=log 12(a 1a 2…a 19)=log 12219=-19.答案: -1915.在△ABC 中,若b =1,c =3,∠C =2π3,则a =________.解析: ∵c 2=a 2+b 2-2ab cos ∠C , ∴(3)2=a 2+12-2a ·1·cos 23π,∴a 2+a -2=0, ∴(a +2)(a -1)=0 ∴a =1 答案: 116.设关于x 的不等式ax +b >0的解集为{x |x >1},则关于x 的不等式ax +bx 2-5x -6>0的解集为________.解析: 由题意得: a >0且-ba=1.又原不等式可变为(x -6)(x +1)(ax +b )>0, 故由右图可知{x |-1<x <1或x >6}. 答案: {x |-1<x <1或x >6}三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)解关于x 的不等式x 2-x -a (a -1)>0(a ∈R ). 解析: 原不等式可以化为: (x +a -1)(x -a )>0.若a >-(a -1),即a >12时,则x >a 或x <1-a ; 若a =-(a -1),即a =12时,则⎝⎛⎭⎫x -122>0,即x ≠12,x ∈R ; 若a <-(a -1),即a <12时,则x <a 或x >1-a .综上所述,原不等式的解集是: 当a >12时,{x |x >a 或x <1-a };当a =12时,⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠12,x ∈R ; 当a <12时,{x |x <a 或x >1-a }.18.(12分)某单位在抗雪救灾中,需要在A ,B 两地之间架设高压电线,测量人员在相距6 000 m 的C 、D 两地(A ,B ,C ,D 在同一平面上)测得∠ACD =45°,∠ADC =75°,∠BCD =30°,∠BDC =15°(如图).假如考虑到电线的自然下垂和施工损耗等原因,实际所需电线长度大约是A 、B 两地之间距离的1.2倍,问施工单位至少应该准备多长的电线(精确到0.1 m)?(参考数据:2≈1.4,3≈1.7,7≈2.6)解析: 在△ACD 中∠CAD =180°-∠ACD -∠ADC =60°, CD =6 000,∠ACD =45°, 根据正弦定理,得AD =CD sin 45°sin 60°=23CD . 在△BCD 中,∠CBD =180°-∠BCD -∠BDC =135°,CD =6 000,∠BCD =30°, 根据正弦定理,得BD =CD sin 30°sin 135°=22CD .又在△ABD 中,∠ADB =∠ADC +∠BDC =90°,根据勾股定理,得AB =AD 2+BD 2=23+12CD =1 00042, 而1.2AB ≈7 425.6,则实际所需电线长度约为7 425.6 m. 19.(12分)设集合A 、B 分别是函数y =1x 2+2x -8与函数y =lg(6+x -x 2)的定义域,C={x |x 2-4ax +3a 2<0}.若A ∩B ⊆C ,求实数a 的取值范围.解析: 由x 2+2x -8>0,得x <-4或x >2, 所以A ={x |x <-4或x >2};由6+x -x 2>0,即x 2-x -6<0,得-2<x <3, 所以B ={x |-2<x <3}. 于是A ∩B ={x |2<x <3}.由x 2-4ax +3a 2<0,得(x -a )(x -3a )<0,当a >0时,C ={x |a <x <3a },由A ∩B ⊆C ,得⎩⎪⎨⎪⎧a ≤23a ≥3,所以1≤a ≤2;当a =0时,不等式x 2-4ax +3a 2<0即为x 2<0,解集为空集,此时不满足A ∩B ⊆C ; 当a <0时,C ={x |3a <x <a },由A ∩B ⊆C ,得⎩⎪⎨⎪⎧3a ≤2a ≥3,此不等式组无解. 综上,满足题设条件的实数a 的取值范围为{a |1≤a ≤2}.20.(12分)已知a ,b ,c 是△ABC 的三边长,关于x 的方程ax 2-2c 2-b 2x -b =0(a >c >b )的两根之差的平方等于4,△ABC 的面积S =103,c =7.(1)求角C ; (2)求a 、b 的值.解析: (1)设x 1,x 2为方程ax 2-2c 2-b 2x -b =0的两根, 则x 1+x 2=2c 2-b 2a ,x 1·x 2=-b a ,∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=4(c 2-b 2)a 2+4ba =4.∴a 2+b 2-c 2=ab .又cos C =a 2+b 2-c 22ab ,∴cos C =12,∴C =60°.(2)由S =12ab sin C =103,∴ab =40①由余弦定理:c 2=a 2+b 2-2ab cos C , 即c 2=(a +b )2-2ab (1+cos 60°),∴72=(a +b )2-2×40×⎝⎛⎭⎫1+12, ∴a +b =13②由①②得:a =8,b =5.21.(12分)某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:资金 单位产品所需资金(百元)月资金供应量(百元) 空调机 洗衣机 成本 30 20300 劳动力(工资) 5 10 110 单位利润68试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少? 解析: 设空调机、洗衣机的月供应量分别是x ,y 台,总利润是z ,则z =6x +8y 由题意有⎩⎪⎨⎪⎧30x +20y ≤300,5x +10y ≤110,x ≥0,y ≥0,x ,y 均为整数.由图知直线y =-34x +18z 过M (4,9)时,纵截距最大.这时z 也取最大值z max =6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9 600元. 22.(14分)已知数列{a n }的前n 项和为S n ,S n =2-⎝⎛⎭⎫2n +1a n (n ≥1).(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列;(2)设数列{2n a n }的前n 项和为T n ,A n =1T 1+1T 2+1T 3+…+1T n .试比较A n 与2na n的大小.解析: (1)由a 1=S 1=2-3a 1得a 1=12,当n ≥2时,由S n =2-⎝⎛⎭⎫2n +1a n 得S n -1=2-⎝⎛⎭⎫2n -1+1a n -1,于是a n =S n -S n -1=⎝⎛⎭⎫2n -1+1a n -1-⎝⎛⎭⎫2n +1a n ,整理得a n n =12×a n -1n -1(n ≥2),所以数列⎩⎨⎧⎭⎬⎫a n n 是首项及公比均为12的等比数列.(2)由(1)得a n n =12×⎝⎛⎭⎫12n -1=12n .于是2n a n =n ,T n =1+2+3+…+n =n (n +1)2,1T n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1.A n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=2⎝⎛⎭⎫1-1n +1=2n n +1.又2na n =2n +1n 2,问题转化为比较2n +1n 2与2n n +1的大小,即2n n 2与nn +1的大小. 设f (n )=2n n 2,g (n )=n n +1.∵f (n +1)-f (n )=2n [n (n -2)-1][n (n +1)]2,当n ≥3时,f (n +1)-f (n )>0. ∴当n ≥3时,f (n )单调递增,∴当n ≥4时,f (n )≥f (4)=1,而g (n )<1, ∴当n ≥4时,f (n )>g (n ),经检验n =1,2,3时,仍有f (n )>g (n ), 因此,对任意正整数n ,都有f (n )>g (n ), 即A n <2na n.。

北师大版高中数学必修五模块质量检测2

北师大版高中数学必修五模块质量检测2

高中数学学习材料 (灿若寒星 精心整理制作)模块质量检测(二)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8的值等于( ) A .45 B .75 C .180D .300解析: ∵a 2+a 8=a 3+a 7=a 4+a 6=2a 5, ∴由已知得5a 5=450,∴a 5=90 ∴a 2+a 8=2a 5=180. 答案: C2.在△ABC 中,若b =2a sin B ,则角A 为( ) A .30°或60° B .45°或60° C .120°或60°D .30°或150°解析: 根据正弦定理sin B =2sin A sin B , 所以sin A =12,所以A =30°或150°.答案: D3.a ∈R ,且a 2+a <0,那么-a ,-a 3,a 2的大小关系是( ) A .a 2>-a 3>-a B .-a >a 2>-a 3 C .-a 3>a 2>-aD .a 2>-a >-a 3解析: 由a 2+a <0得-1<a <0,∴-a >a 2>-a 3. 答案: B4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9解析: a 4+a 6=2a 5=-6∴a 5=-3 ∴d =a 5-a 15-1=2∴S n =-11n +n (n -1)2·2=n 2-12n故n =6时S n 取最小值. 答案: A5.△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,如果a ,b ,c 成等差数列,B =30°,△ABC 的面积为32,那么b =( )A.1+32B .1+ 3 C.2+32D .2+ 3解析: 2b =a +c ,S =12ac sin B =32∴ac =6又∵b 2=a 2+c 2-2ac cos B ∴b 2=(a +c )2-2ac -2ac cos 30° ∴b 2=4+23,即b =1+3,故选B. 答案: B6.若数列{x n }满足lg x n +1=1+lg x n (n ∈N +),且x 1+x 2+x 3+…+x 100=100,则lg(x 101+x 102+…+x 200)的值为( )A .102B .101C .100D .99 解析: 由lg x n +1=1+lg x n 得x n +1x n=10,∴数列{x n }是公比为10的等比数列,又x 101=x 1·q 100, x 102=x 2·q 100,…,x 200=x 100·q 100,∴x 101+x 102+…+x 200=q 100(x 1+x 2+…+x 100) =10100·100=10102.∴lg(x 101+x 102+…+x 200)=102. 答案: A7.已知△ABC 中,sin 2 A =sin 2 B +sin 2 C ,b sin B -c sin C =0,则△ABC 为( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形D .等边三角形 解析: ∵sin 2 A =sin 2 B +sin 2 C ,∴a 2=b 2+c 2,∴△ABC 是直角三角形,A =90°.又∵b sin B -c sin C =0,即b sin B =c sin C , ∴sin 2 B =sin 2 C ,又∵A =90°,∴B =C . ∴△ABC 是等腰直角三角形. 答案: C8.在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≥0x -y +4≥0x ≤1表示的平面区域面积是( )A .3B .6 C.92D .9解析: 如图所示,不等式组表示的平面区域为△ABC 边界及其内部的部分,由⎩⎪⎨⎪⎧x =1x -y +4=0可得A (1,5),同理可得B (-2,2),C (1,-1),故AC =6,△ABC 的高h =3,所以S △ABC =12·AC ·h =9.答案: D9.已知数列{a n }的前n 项和为S n ,且S n =a n -2(a 为常数且a ≠0),则数列{a n }( ) A .是等比数列B .当a ≠1时是等比数列C .从第二项起成等比数列D .从第二项起成等比数列或等差数列解析: a n =⎩⎪⎨⎪⎧a -2 n =1,a n -1(a -1) n ≥2,当a ≠0,n ≥2,a n =a n -1(a -1),a ≠1是等比数列,当a =1,是等差数列. 答案: D10.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 均成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12解析: ∵(x -a )⊗(x +a )=(x -a )(1-x -a ), ∴不等式(x -a )⊗(x +a )<1对任意实数x 成立,即(x -a )(1-x -a )<1对任意实数x 成立, 即使x 2-x -a 2+a +1>0对任意实数x 成立,所以Δ=1-4(-a 2+a +1)<0,解得-12<a <32,故选C.答案: C11.已知数列{a n }为等比数列,S n 是它的前n 项和.若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .35B .33C .31D .29解析: 设公比为q ,由题意知⎩⎪⎨⎪⎧a 2·a 3=a 12q 3=2a 1a 4+2a 7=a 1q 3+2a 1q 6=52 即⎩⎪⎨⎪⎧a 1q 3=2a 1q 3+2a 1·q 3·q 3=52 解得⎩⎪⎨⎪⎧q =12a 1=16,故S 5=16×⎝⎛⎭⎫1-1251-12=31.答案: C12.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是( ) A .0<a <3 B.32≤a <3 C .2<a ≤3D .1≤a <52解析: ∵三角形为钝角三角形, ∴⎩⎪⎨⎪⎧a +a +1>a +2-12≤a 2+(a +1)2-(a +2)22a (a +1)<0,解得32≤a <3.答案: B二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析: 因为cos C =13,得sin C =223.因为S △ABC =12ab sin C =12×32×b ×223=43,所以b =2 3. 答案: 2 314.在等比数列{a n }中,若a 3,a 7是方程3x 2-11x +9=0的两根,则a 5的值为________. 解析: 由a 3a 7=3,知a 52=3,所以a 5=±3. 答案: ±315.设点P (x ,y )在函数y =4-2x 的图像上运动,则9x +3y 的最小值为________. 解析: ∵y =4-2x , ∴9x +3y =9x +34-2x=9x +819x≥281=18. 答案: 1816.若不等式组⎩⎪⎨⎪⎧x ≥0y ≥02x +y -6≤0x -y +m ≤0表示的平面区域是一个三角形,则实数m 的取值范围是________.解析: 先画部分可行域⎩⎪⎨⎪⎧x ≥0y ≥02x +y -6≤0,设直线x -y +m =0与x 轴的交点为(-m,0),另外A (3,0),B (0,6),由图形可知:当m ∈(-∞,-3]∪[0,6)时,可行域为三角形.故实数m 的取值范围是(-∞,-3]∪[0,6). 答案: (-∞,-3]∪[0,6)三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)在△ABC 中,已知B =45°,D 是BC 边上的一点,AD =5,AC =7,DC =3,求AB 的长.解析: 在△ACD 中,由余弦定理,得 cos C =AC 2+CD 2-AD 22AC ·CD =72+32-522×7×3=1114.∴sin C =1-cos 2 C =1-⎝⎛⎭⎫11142=514 3.在△ABC 中,由正弦定理,得AB sin C =ACsin B ,∴AB =AC ·sin C sin B =7×5143sin 45°=562.18.(12分)数列{a n }中,a 1=13,前n 项和S n 满足S n +1-S n =⎝⎛⎭⎫13n +1(n ∈N +). (1)求数列{a n }的通项公式a n 以及前n 项和S n ;(2)若S 1,t (S 1+S 2),3(S 2+S 3)成等差数列,求实数t 的值. 解析: (1)由S n +1-S n =⎝⎛⎭⎫13n +1得 a n +1=⎝⎛⎭⎫13n +1(n ∈N *);又a 1=13,故a n =⎝⎛⎭⎫13n (n ∈N *). 从而,S n =13×⎣⎡⎦⎤1-⎝⎛⎭⎫13n 1-13=12⎣⎡⎦⎤1-⎝⎛⎭⎫13n (n ∈N *).(2)由(1)可得S 1=13,S 2=49,S 3=1327.从而由S 1,t (S 1+S 2),3(S 2+S 3)成等差数列可得: 13+3⎝⎛⎭⎫49+1327=2×⎝⎛⎭⎫13+49t , 解得t =2.19.(12分)已知全集U =R ,集合A ={x |x 2+(a -1)x -a >0},B ={x |(x +a )(x +b )>0(a ≠b )},M ={x |x 2-2x -3≤0}.(1)若∁U B =M ,求a ,b 的值; (2)若-1<b <a <1,求A ∩B ;(3)若-3<a <-1,且a 2-1∈∁U A ,求实数a 的取值范围.解析: 由题意,得A ={x |(x +a )(x -1)>0},∁U B ={x |(x +a )(x +b )≤0},M ={x |(x +1)(x -3)≤0}.(1)若∁U B =M ,则(x +a )(x +b )=(x +1)(x -3), 所以a =1,b =-3,或a =-3,b =1. (2)若-1<b <a <1,则-1<-a <-b <1,所以A ={x |x <-a 或x >1},B ={x |x <-a 或x >-b }. 故A ∩B ={x |x <-a 或x >1}. (3)若-3<a <-1,则1<-a <3,所以A ={x |x <1或x >-a },∁U A ={x |1≤x ≤-a }. 又由a 2-1∈∁U A ,得1≤a 2-1≤-a ,即⎩⎪⎨⎪⎧a 2-2≥0a 2+a -1≤0,解得-1-52≤a ≤- 2.20.(12分)已知f (x )=ax 2+(b -8)x -a -ab ,当x ∈(-3,2)时,f (x )>0; x ∈(-∞,-3)∪(2,+∞)时,f (x )<0. (1)求y =f (x )的解析式;(2)c 为何值时,ax 2+bx +c ≤0的解集为R .解析: (1)由x ∈(-3,2)时,f (x )>0;x ∈(-∞,-3)∪(2,+∞)时,f (x )<0知:-3,2是方程ax 2+(b -8)x -a -ab =0的两根⎩⎨⎧-3+2=-b -8a,-3×2=-a -ab a,⇒⎩⎪⎨⎪⎧a =-3,b =5. ∴f (x )=-3x 2-3x +18.(2)由a <0,知二次函数y =ax 2+bx +c 的图像开口向下.要使-3x 2+5x +c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0⇔c ≤-2512.∴当c ≤-2512时,ax 2+bx +c ≤0的解集为R .21.(12分)如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里,问:(1)乙船每小时航行多少海里?(2)甲、乙两船是否会在某一点相遇,若能,求出甲从A 1处到相遇点共航行了多少海里? 解析: (1)如图,连接A 1B 2,A 2B 2=102, A 1A 2=2060×302=102,∴△A 1A 2B 2是等边三角形,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 12+A 1B 22-2A 1B 1·A 1B 2cos 45° =202+(102)2-2×20×102×22=200 B 1B 2=10 2.因此乙船的速度的大小为10220×60=302海里/小时.(2)若能在C 点相遇,则显然A 1C <B 1C .因为甲、乙两船的航速恰好相等,因此不可能相遇.22.(14分)设数列{a n }的前n 项和为S n ,且满足S n =2-a n ,n =1,2,3,…. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,且b n +1=b n +a n ,求数列{b n }的通项公式; (3)设c n =n (3-b n ),数列{c n }的前n 项和为T n ,求证:T n <8. 解析: (1)∵n =1时,a 1+S 1=a 1+a 1=2, ∴a 1=1.∵S n =2-a n ,即a n +S n =2, ∴a n +1+S n +1=2.两式相减:a n +1-a n +S n +1-S n =0. 即a n +1-a n +a n +1=0 故有2a n +1=a n ,∵a n ≠0,∴a n +1a n =12(n ∈N +),∴a n =⎝⎛⎭⎫12n -1.(2)∵b n +1=b n +a n (n =1,2,3,…), ∴b n +1-b n =⎝⎛⎭⎫12n -1.得b 2-b 1=1,b 3-b 2=12,b 4-b 3=⎝⎛⎭⎫122, …b n -b n -1=⎝⎛⎭⎫12n -2(n =2,3,…).将这n -1个等式相加,得b n -b 1=1+12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -2 =1-⎝⎛⎭⎫12n -11-12=2-⎝⎛⎭⎫12n -2. 又∵b 1=1,∴b n =3-⎝⎛⎭⎫12n -2(n =1,2,3…). (3)证明:∵c n =n (3-b n )=2n ⎝⎛⎭⎫12n -1. ∴T n =2⎣⎡⎦⎤⎝⎛⎭⎫120+2×⎝⎛⎭⎫12+3×⎝⎛⎭⎫122+…+(n -1)×⎝⎛⎭⎫12n -2+n ×⎝⎛⎭⎫12n -1.① 而12T n = 2⎣⎡⎦⎤⎝⎛⎭⎫12+2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+…+(n -1)×⎝⎛⎭⎫12n -1+n ×⎝⎛⎭⎫12n .② ①-②得12T n =2⎣⎡⎦⎤⎝⎛⎭⎫120+⎝⎛⎭⎫121+⎝⎛⎭⎫122+…+⎝⎛⎭⎫12n -1-2×n ×⎝⎛⎭⎫12n . T n =4×1-⎝⎛⎭⎫12n1-12-4×n ×⎝⎛⎭⎫12n=8-82n -4×n ×⎝⎛⎭⎫12n =8-8+4n2n (n =1,2,3,…).∴T n <8.。

高中数学北师大版必修5习题:模块综合检测含解析

高中数学北师大版必修5习题:模块综合检测含解析

??≥ 0 .
A.3
B.2
C.-2
D.-3
解析 :由约束条件画出可行域 ,如图阴影部分所示 .
线性目标函数 z=ax+y ,即 y=-ax+z.
设直线 l 0:ax+y= 0.
当 -a≥ 1,即 a≤ -1 时 ,l0 过 O(0,0)时 ,z 取得最大值 ,zmax= 0+ 0= 0,不合题意 ;
模块综合检测
(时间 :120 分钟 满分 :150 分)
一、选择题 (本大题共 12 小题 ,每小题 5 分,共 60 分 .在每小题给出的四个选项中
项是符合题目要求的 )
1.已知 a∈R ,且 a2+a< 0,则-a,-a3,a2的大小关系是 (
)
A. a2>-a 3>-a C.-a3>a 2>-a
解析 :画出约束条件对应的平面区域 (如图 ),点 A 为 (1,3),要使 ????最大 ,则 ????--00最大 ,即过点 (x,y),(0,0) 两点的
直线斜率最大 ,由图形知当该直线过点
A

,(
??
??)
max
=
3 -0
1 -0= 3.
答案 :3
16.①数列 { an} 的前
n 项和
Sn=n
即 an+ 1= 4an(n≥ 2).
故 n≥2 时 ,{ an} 是以 a2 为首项 ,以 4 为公比的等比数列 . ∵a2= 3S1= 3a1= 3,∴ ??2 = 3≠4.
??1
∴a1 不在上述等比数列里面 .
∴数列 { an} 的通项公式为
1 (??= 1),
a
n=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学学习材料 (灿若寒星 精心整理制作)必修五模块测试卷(150分,120分钟)一、选择题(每题5分,共60分)1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos 22A =c cb 2+,则△ABC 是( )A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰直角三角形2.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8等于( ) A.135 B.100 C.95 D.803.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(3b -c )cos A =a cos C ,则cos A 的值等于( ) A.23 B. 33 C. 43 D. 63 4.〈日照模拟〉已知等比数列{a n }的前n 项和S n =t 25-⋅n -51,则实数t 的值为( ) A.4 B.5 C. 54 D. 515.某人向正东方向走x km 后,向右转150°,然后朝新方向走3 km ,结果他离出发点恰好是3 km ,那么x 的值为( )A.3B.23C.3或23D.3 6.设{a n }为各项均是正数的等比数列,S n 为{a n }的前n 项和,则( ) A.44S a =66S a B. 44S a >66S a C. 44S a <66S a D. 44S a≤66S a 7.已知数列{a n }的首项为1,并且对任意n ∈N +都有a n >0.设其前n 项和为S n ,若以(a n ,S n )(n ∈N +)为坐标的点在曲线y =21x (x +1)上运动,则数列{a n }的通项公式为( ) A.a n =n 2+1 B.a n =n 2 C.a n =n +1 D.a n =n8.设函数f (x )=⎪⎪⎩⎪⎪⎨⎧≥-.0,1,0,132<x xx x 若f (a )<a ,则实数a 的取值范围为( )A.(-1,+∞)B.(-∞,-1)C.(3,+∞)D.(0,1) 9.已知a >0,b >0,则a 1+b1+2ab 的最小值是( ) A.2 B.22 C.4 D.510.已知目标函数z =2x +y 中变量x ,y 满足条件⎪⎩⎪⎨⎧≥+-≤-,1,2553,34x y x y x <则( )A.z max =12,z min =3B.z max =12,无最小值C.z min =3,无最大值D.z 无最大值,也无最小值 11.如果函数f (x )对任意a ,b 满足f (a +b )=f (a )·f (b ),且f (1)=2,则)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =( )A.4 018B.1 006C.2 010D.2 014 12.已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,且log c (ab )>1,则c 的取值范围是( ) A.0<c <1 B.1<c <8 C.c >8 D.0<c<1或c >8 二、填空题(每题4分,共16分)13.〈泉州质检〉△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且a cos C ,b cos B ,c cos A 成等差数列,则角B = .14.已知两正数x ,y 满足x +y =1,则z =⎪⎪⎭⎫⎝⎛+⋅⎪⎭⎫ ⎝⎛+y y x x 11的最小值为 . 15.两个等差数列的前n 项和之比为12105-+n n ,则它们的第7项之比为 .16.在数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=31S n (n ≥1),则a n = .三、解答题(解答应写出文字说明,证明过程或演算步骤)(17~20题每题12分,21~22题每题13分,共74分)17.已知向量m =⎪⎭⎫ ⎝⎛21,sin A 与n =(3,sin A +3cos A )共线,其中A 是△ABC 的内角. (1)求角A 的大小;(2)若BC =2,求△ABC 的面积S 的最大值,并判断S 取得最大值时△ABC 的形状.18.已知数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N *) (1)求数列{a n }的通项公式; (2)若数列{b n }满足11144421---n b b b =n b n a )1(+ (n ∈N*),证明:{b n }是等差数列;19.如图1,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船 发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?20.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).21.已知等差数列{a n }的首项a 1=4,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前四项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前三项,记{b n }的前n 项和为T n ,若存在m ∈N +,使对任意n ∈N +总有T n <S m +λ恒成立,求实数λ的最小值.22.某食品厂定期购买面粉,已知该厂每天需用面粉6 t ,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,每次购买面粉需支付运费900元. (1)该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少? (2)若提供面粉的公司规定:当一次性购买面粉不少于210 t 时,其价格可享受9折优惠(即原价的90%),该厂是否应考虑接受此优惠条件?请说明理由.参考答案及点拨 一、1.A 点拨:因为cos 22A =c c b 2+及2cos 22A -1=cos A ,所以cos A =cb .而cos A =bca cb 2222-+,∴b 2+a 2=c 2,则△ABC 是直角三角形.故选A.2.A 点拨:由等比数列的性质知a 1+a 2,a 3+a 4,…,a 7+a 8仍然成等比数列,公比q =2143a a a a ++=4060=23,∴a 7+a 8=(a 1+a 2)14-q =40×323⎪⎭⎫ ⎝⎛=135. 3.B 点拨:(3b -c )cos A =a cos C ,由正弦定理得3sin B cos A =sin C cos A +cos C sin A⇒3sin B cos A =sin(C +A )=sin B ,又sin B ≠0,所以cos A =33.故选B. 4.B 点拨:∵a 1=S 1=51t -51,a 2=S 2-S 1=54t ,a 3=S 3-S 2=4t ,∴由{a n }是等比数列.知254⎪⎭⎫ ⎝⎛t =⎪⎭⎫⎝⎛-5151t ×4t ,显然t ≠0,∴t =5. 5.C 点拨:根据题意,由余弦定理得(3)2=x 2+32-2x ·3·cos 30°,整理得x 2-33x +6=0,解得x =3或23.6.B 点拨:由题意得公比q >0,当q =1时,有44S a -66S a =41-61>0,即44S a >66S a ; 当q ≠1时,有44S a -66S a =()41311)1(q a q q a ---()61511)1(qa q q a --=q 3(1-q )()()642111q q q ---⋅=231q q +611q q --⋅>0,所以44S a >66S a .综上所述,应选B. 7.D 点拨:由题意,得S n =21a n (a n +1),∴S n -1=21a n -1(a n -1+1)(n ≥2). 作差,得a n =21()1212---+-n n n n a a a a , 即(a n +a n -1)(a n -a n -1-1)=0.∵a n >0(n ∈N +),∴a n -a n -1-1=0, 即a n -a n -1=1(n ≥2).∴数列{a n }为首项a 1=1,公差为1的等差数列. ∴a n =n (n ∈N +).8.A 点拨:不等式f (a )<a 等价于⎪⎩⎪⎨⎧≥-0,132a a a <或⎪⎩⎪⎨⎧,1,0a aa <<解得a ≥0或-1<a <0,即不等式f (a )<a 的解集为(-1,+∞). 9.C 点拨:依题意得a 1+b 1+2ab ≥2ab 1+2ab ≥4ab ab ⋅1=4,当且仅当a1=b1,且ab 1=ab 时,取等号,故应选C.10.C11.D 点拨:由f (a +b )=f (a )·f (b ),可得f (n +1)=f (n )·f (1),)()1(n f n f +=f (1)=2,所以)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =2×1 007=2 014. 12.B 点拨:因为a ,b ,a +b 成等差数列,所以2b =a +(a +b ),即b =2a .又因为a ,b ,ab 成等比数列,所以b 2=a ×ab ,即b =a 2.所以a =2,b =4,因此log c (ab )=log c 8>1=log c c ,有1<c <8,故选B. 二、13.60° 点拨:依题意得a cos C +c cos A =2b cos B ,根据正弦定理得sin A cos C +sin C cos A =2sin B cos B ,则sin(A +C )=2sin B cos B ,即sin B =2sin B cos B ,所以cos B =21,又0°<B <180°,所以B =60°,14. 425 点拨:z =⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y y x x 11=xy +xy 1+x y +y x =xy +xy 1+xy xy y x 2)(2-+=xy 2+xy -2,令t =xy ,则0<t =xy ≤22⎪⎭⎫⎝⎛+y x =41.设f (t )=t +t 2,t ∈⎥⎦⎤ ⎝⎛41,0,设41≥t 2>t 1>0,则f (t 1)-f (t 2)=⎪⎪⎭⎫ ⎝⎛+112t t -⎪⎪⎭⎫ ⎝⎛+222t t =212121)2)((t t t t t t --. 因为41≥t 2>t 1>0, 所以t 2-t 1>0,t 1·t 2<161.则t 1·t 2-2<0. 所以f (t 1)-f (t 2)>0.即f (t 1)>f (t 2).∴f (t )=t +t 2在⎥⎦⎤ ⎝⎛41,0上单调递减,故当t =41时f (t )=t +t2有最小值433,所以当x =y =21时,z 有最小值425. 15.3∶1 点拨:设两个等差数列{a n },{b n }的前n 项和为S n ,T n ,则n n T S =12105-+n n ,而77b a=131131b b a a ++=1313T S =113210135-⨯+⨯=3. 16.21,114,233n n n -=⎧⎪⎨⎛⎫≥ ⎪⎪⎝⎭⎩点拨:∵3a n +1=S n (n ≥1),∴3a n =S n -1(n ≥2). 两式相减,得3(a n +1-a n )=S n -S n -1=a n (n ≥2)⇒n n a a 1+=34(n ≥2) ⇒n ≥2时,数列{a n }是以34为公比,以a 2为首项的等比数列, ∴n ≥2时,a n =a 2234-⎪⎭⎫ ⎝⎛⋅n .令n =1,由3a n +1=S n ,得3a 2=a 1,又a 1=1⇒a 2=31,∴a n =31234-⎪⎭⎫⎝⎛⋅n (n ≥2).故⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛⋅=-.2,3431,112n n n , 三、17.解:(1)因为m ∥n , 所以sin A ·(sin A +3cos A )-23=0. 所以22cos 1A -+23sin2A -23=0.即23sin2A -21cos2A =1,即sin ⎪⎭⎫ ⎝⎛-62πA =1. 因为A ∈(0,π),所以2A -6π∈⎪⎭⎫ ⎝⎛-611,6ππ, 故2A -6π=2π,即A =3π. (2)由余弦定理,得4=b 2+c 2-bc , 又S △ABC =21bc sin A =43bc ,而b 2+c 2≥2bc ,bc +4≥2bc ,bc ≤4(当且仅当b =c 时等号成立), 所以S △ABC =21bc sin A =43bc ≤43×4=3.当△ABC 的面积最大时,b =c ,又A =3π,故此时△ABC 为等边三角形. 18.(1)解:∵a n +1=2a n +1(n ∈N *),∴a n +1+1=2(a n +1).∴{a n +1}是以a 1+1=2为首项,2为公比的等比数列.∴a n +1=2n . 即a n =2n -1(n ∈N *). (2)证明:∵114-b 124-b …14-n b =()n bn a 1+.∴nb b b n -+++)(214=nnb 2.∴2[(b 1+b 2+…+b n )-n ]=nb n ,①2[(b 1+b 2+…+b n +b n +1)-(n +1)]=(n +1)b n +1.②②-①,得2(b n +1-1)=(n +1)b n +1-nb n ,即(n -1)b n +1-nb n +2=0,③ ∴nb n +2-(n +1)b n +1+2=0.④ ④-③,得nb n +2-2nb n +1+nb n =0,即b n +2-2b n +1+b n =0,∴b n +2-b n +1=b n +1-b n (n ∈N *).∴{b n }是等差数列.19.解:由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°. 在△DAB 中,由正弦定理得,DAB DB ∠sin =ADBAB∠sin .∴DB =ADBDAB AB ∠∠⋅sin sin =︒︒⋅+105sin 45sin )33(5=︒⋅︒+︒⋅︒︒⋅+45cos 60sin 60sin 45sin 45sin )33(5=213)13(35++=103(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°,BC =203海里,在△DBC 中,由余弦定理得CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC =300+1 200-2×103×203×21=900, ∴CD =30海里.则需要的时间t =3030=1(小时). 答:救援船到达D 点需要1小时.20.解:原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. (1)当a =0时,原不等式化为x +1≤0⇒x ≤-1. (2)当a >0时, 原不等式化为⎪⎭⎫ ⎝⎛-a x 2 (x +1)≥0⇒x ≥a2或x ≤-1; (3)当a <0时,原不等式化为⎪⎭⎫⎝⎛-a x 2 (x +1)≤0. ①当a 2>-1,即a <-2时,原不等式的解集为-1≤x ≤a 2; ②当a 2=-1,即a =-2时,原不等式的解集为x =-1;③当a 2<-1,即-2<a <0时,原不等式的解集为a2≤x ≤-1.综上所述:当a <-2时,原不等式的解集为⎥⎦⎤⎢⎣⎡-a2,1;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎥⎦⎤⎢⎣⎡-1,2a ; 当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎪⎭⎫⎢⎣⎡+∞,2a . 21.解:(1)由a 2+a 7+a 12=-6得a 7=-2, 又a 1=4,所以公差d =-1,所以a n =5-n , 从而S n =2)9(n n -. (2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列的公比为q ,则q =12b b =21,所以T n =2112114-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n =8⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n 211.令f (n )=n⎪⎭⎫ ⎝⎛21.因为f (n )=n⎪⎭⎫⎝⎛21是关于自然数n 的减函数,所以{T n }是递增数列,得4≤T n <8.又S m =2)9(m m -=-22921⎪⎭⎫⎝⎛-m +881,当m =4或m =5时,S m 取得最大值,即(S m )max =S 4=S 5=10,若存在m ∈N +,使对任意n ∈N +总有T n <S m +λ恒成立, 则8≤10+λ,得λ≥-2, 所以λ的最小值为-2.22.解:(1)设该厂应每x 天购买一次面粉,则其购买量为6x t.由题意知,面粉的保管等其他费用为3[6x +6(x -1)+…+6×2+6×1]=9x (x +1)元. 设每天所支付的总费用为y 1元,则 y 1=x 1[9x (x +1)+900]+6×1 800=x900+9x +10 809≥2x x 9900⋅+10 809=10 989, 当且仅当9x =x900,即x =10时取等号. 所以该厂每10天购买一次面粉,才能使平均每天所支付的总费用最少.(2)若该厂接受此优惠条件,则至少每35天购买一次面粉.设该厂接受此优惠条件后,每x (x ≥35)天购买一次面粉,平均每天支付的总费用为y 2元,则y 2=x 1[9x (x +1)+900]+6×1 800×0.90=x900+9x +9 729(x ≥35). 令f (x )=x +x100(x ≥35),x 2>x 1≥35,则f (x 1)-f (x 2)=⎪⎪⎭⎫ ⎝⎛+11100x x -⎪⎪⎭⎫ ⎝⎛+22100x x =212121)100)((x x x x x x --. 因为x 2>x 1≥35,所以x 1-x 2<0,x 1·x 2>100.所以x 1x 2-100>0. 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 所以f (x )=x +x100在[35,+∞)内为增函数. 所以当x =35时,y 2有最小值,约为10 069.7. 此时y 2<10 989,所以该厂应该接受此优惠条件.。

相关文档
最新文档