课件简单线性规划问题
合集下载
线性规划PPT课件
线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义
线 性 规 划ppt课件
第3页
生产计划问题
某工厂用三种原料生产三种产品,已知的条件如表 2.1.1所示,试制订总利润最大的生产计划
单位产品所需原 产品 料数量(公斤) Q1
产品 Q2
产品 原料可用量 Q3 (公斤/日)
原料P1
2
3
0 1500
原料P2
0
2
4
800
原料P3
3 2 5 2000
单位产品的利润 3
5
4
(千元)
第4页
剩余变量
第18页
不等式变不等式
a i1 x 1 a i 2 x 2 a in x n b i
a i1 x 1 a i 2 x 2 a in x n b i
或
a i1 x 1 a i 2 x 2 a in x n b i
a i1 x 1 a i 2 x 2 a in x n b i
最 优 解 ( 1, 4)
2x1 x2 2 x1 2x2 2
x1 x2 5
第24页
注释
可能出现的情况:
可行域是空集 可行域无界无最优解 最优解存在且唯一,则一定在顶点上达到 最优解存在且不唯一,一定存在顶点是最优解
第25页
可行域的几何结构
基本假设 凸集 可行域的凸性
第26页
中运 筹 帷 幄 之
运筹学课件
线性规划
Linear Programming
外决 胜 千 里 之
第1页
线性规划
线性规划问题 可行区域与基本可行解 单纯形算法 初始可行解 对偶理论 灵敏度分析 计算软件 案例分析
第2页
线性规划问题
线性规划实例
生产计划问题 运输问题
线性规划模型
一般形式 规范形式 标准形式 形式转换 概念
生产计划问题
某工厂用三种原料生产三种产品,已知的条件如表 2.1.1所示,试制订总利润最大的生产计划
单位产品所需原 产品 料数量(公斤) Q1
产品 Q2
产品 原料可用量 Q3 (公斤/日)
原料P1
2
3
0 1500
原料P2
0
2
4
800
原料P3
3 2 5 2000
单位产品的利润 3
5
4
(千元)
第4页
剩余变量
第18页
不等式变不等式
a i1 x 1 a i 2 x 2 a in x n b i
a i1 x 1 a i 2 x 2 a in x n b i
或
a i1 x 1 a i 2 x 2 a in x n b i
a i1 x 1 a i 2 x 2 a in x n b i
最 优 解 ( 1, 4)
2x1 x2 2 x1 2x2 2
x1 x2 5
第24页
注释
可能出现的情况:
可行域是空集 可行域无界无最优解 最优解存在且唯一,则一定在顶点上达到 最优解存在且不唯一,一定存在顶点是最优解
第25页
可行域的几何结构
基本假设 凸集 可行域的凸性
第26页
中运 筹 帷 幄 之
运筹学课件
线性规划
Linear Programming
外决 胜 千 里 之
第1页
线性规划
线性规划问题 可行区域与基本可行解 单纯形算法 初始可行解 对偶理论 灵敏度分析 计算软件 案例分析
第2页
线性规划问题
线性规划实例
生产计划问题 运输问题
线性规划模型
一般形式 规范形式 标准形式 形式转换 概念
福建省福鼎市第二中学人教A版高中数学必修五《3-3 简单的线性规划问题》课件(共18张PPT)
设获得的利润为z,则有
2
4
z 2x 3y
6
8
x -4y≤ - 3
例1、画出不等式组 3x+5y≤ 25 表示的平面区域
x≥1
x-4y≤-3
在该平面区域上
3x+5y≤25 x≥1
y x=1
问题 1:x有无最大(小)值? 问题2:y有无最大(小)值? 问题3:2x+y有无最大(小)值?
C 设z=2x+y
y x≥1 2x-y=0
当z=0时,设直线 l0:2x-y=0 3x+5y=25
平移:l0, 当l0经过可行域上点A时,
C (1,4.4)
-z 最小,即z最大。
x-4y=-3
平移l0 ,当l0经过可行域上点C时,
o
-z最大,即z最小。
B
x=1
A
(5,2)
x
由
x-4y=-3 3x+5y=25得A点坐标__(5_,_2_);由
4
N
作日出满生约足产束条件所表8示的平面区1域6,如图所1示2
应用举例
【引例】:
某工厂用A、B两种配件生 产甲、乙两种产品,每生 产一件甲产品使用4个A配 件并耗时1h,每生产一件 乙产品使用4个B配件并耗 时2h,该厂每天最多可从 配件厂获得16个A配件和 12个B配件,按每天工作 8h计算,该厂所有可能的 日生产安排是什么?
y
或 最小值 的可 行 解。
C
设Z=2x+y,式中变量x、y
x-4y≤-3
满足下列条件 3x+5y≤25 ,
B
x≥1
o
x-4y=-3
A
3x+5y=25
第一部分 第三章 3.3 第二课时 简单的线性规划问题
返回
5.某公司租赁甲、乙两种设备生产A、B两类产品,甲种设 备每天能生产A类产品5件和B类产品10件,乙种设备每 天能生产A类产品6件和B类产品20件.已知设备甲每天 的租赁费为200元,设备乙每天的租赁费为300元,现该 公司至少要生产A类产品50件,B类产品140件,所需租 赁费最少为__________元.
3.3
第 三 章
二元 一次 不等 式组
第二 课时
简单
不 等 式
与简 单的 线性 规划
的线 性规 划问 题
问题
理解教材新知 把握热点考向 应用创新演练
考点一 考点二 考点三
返回
返回
第二课时 简单的线性规划问题 返回
返回
现在是信息时代,广告可以给公司带来效益.某公 司计划在甲、乙两个电视台做总时间不超过300分钟的 广告,广告总费用不超过9万元,甲、乙两个电视台的 收费标准分别为500元/分钟和200元/分钟. 问题1:设在甲、乙两个电视台做广告的时间分别为x分 钟,y分钟,试ห้องสมุดไป่ตู้出满足条件的不等关系.
答案:9
返回
2.在如下图所示的可行域内(阴影部分且包括边界), 目标函数z=x-y,则使z取得最小值的点的坐标 为____________.
解析:对直线y=x+b进行平移,注意b越大,z越 小故,四个点中,过点A(1,1)时 z取最小值0. 答案:(1,1)
返回
返回
[例 2]
0≤x≤1 (2011·苏 北 四 市 三 调 )在 约 束 条 件 0≤y≤2 2y-x≥1
返回
[一点通] 解答线性规划应用题的一般步骤: (1)审题——仔细阅读,对关键部分进行“精读”,准 确理解题意,明确有哪些限制条件,起关键作用的变量 有哪些,由于线性规划应用题中的量较多,为了理顺题 目中量与量之间的关系,有时可借助表格来理顺. (2)转化——设元.写出约束条件和目标函数,从而 将实际问题转化为数学上的线性规划问题. (3)求解——解这个纯数学的线性规划问题. (4)作答——就应用题提出的问题作出回答.
5.某公司租赁甲、乙两种设备生产A、B两类产品,甲种设 备每天能生产A类产品5件和B类产品10件,乙种设备每 天能生产A类产品6件和B类产品20件.已知设备甲每天 的租赁费为200元,设备乙每天的租赁费为300元,现该 公司至少要生产A类产品50件,B类产品140件,所需租 赁费最少为__________元.
3.3
第 三 章
二元 一次 不等 式组
第二 课时
简单
不 等 式
与简 单的 线性 规划
的线 性规 划问 题
问题
理解教材新知 把握热点考向 应用创新演练
考点一 考点二 考点三
返回
返回
第二课时 简单的线性规划问题 返回
返回
现在是信息时代,广告可以给公司带来效益.某公 司计划在甲、乙两个电视台做总时间不超过300分钟的 广告,广告总费用不超过9万元,甲、乙两个电视台的 收费标准分别为500元/分钟和200元/分钟. 问题1:设在甲、乙两个电视台做广告的时间分别为x分 钟,y分钟,试ห้องสมุดไป่ตู้出满足条件的不等关系.
答案:9
返回
2.在如下图所示的可行域内(阴影部分且包括边界), 目标函数z=x-y,则使z取得最小值的点的坐标 为____________.
解析:对直线y=x+b进行平移,注意b越大,z越 小故,四个点中,过点A(1,1)时 z取最小值0. 答案:(1,1)
返回
返回
[例 2]
0≤x≤1 (2011·苏 北 四 市 三 调 )在 约 束 条 件 0≤y≤2 2y-x≥1
返回
[一点通] 解答线性规划应用题的一般步骤: (1)审题——仔细阅读,对关键部分进行“精读”,准 确理解题意,明确有哪些限制条件,起关键作用的变量 有哪些,由于线性规划应用题中的量较多,为了理顺题 目中量与量之间的关系,有时可借助表格来理顺. (2)转化——设元.写出约束条件和目标函数,从而 将实际问题转化为数学上的线性规划问题. (3)求解——解这个纯数学的线性规划问题. (4)作答——就应用题提出的问题作出回答.
人教版高中数学必修五第3章 3.3 3.3.3 简单的线性规划问题(二) 课件
(x+2)2+y2=1 上,那么|PQ|的最小值是( A )
A.1
B.2
2 C.
310-1
2 10 D. 3
2x+5y≥10, 4.已知 x,y 满足约束条件2x-3y≥-6, 则 z=x2+y2
2x+y≤10,
100 的最小值为______2_9_____.
题型3 非线性目标函数(面积)
|3x+4y+5| (3)
表示点
P(x,y)与_直__线__3_x+__4_y_+__5_=__0_的距离.
5
题型1 非线性目标函数(斜率) 例1:求 z= yx++11的最大值,其中 x,y 满足约束条件
思维突破:把所求问题看成区域上的点与点(-1,-1)连 线的斜率.
自主解答:作出不等式组表示的可行域如图 D18.
图D23
例 4:若不等式组xx≥ +03, y≥4, 3x+y≤4
所表示的平面区域被直线
y=kx+43分为面积相等的两部分,则 k 的值是( )
欢迎来到二)
1.进一步了解线性规划的意义,了解线性约束条件、线性 目标函数、可行解、可行域、最优解等基本概念.
2.掌握线性规划问题的图解法,会用图解法求目标函数的 最大值、最小值.
3.训练数形结合、化归等常用思想,培养和发展数学应用 意识.
非线性目标函数.
当把 z 看作常数时,它表示点(x,y)与点(-1,-1)所在直
线的斜率,点(x,y)在可行域内.因此当点(x,y)是点 A 时,斜
率 z 最大.
∵点 A 为直线 y=11 与 y 轴的交点,
∴点 A 的坐标为(0,11).
∴zmax=101++11=12.
图 D18
对形如 z=acxy++db(ac≠0)型的目标函数,可先变 形为 z=ac·yx- -- -badc的形式,将问题化为可行域内的点(x,y)与 -dc,-ba连线斜率的ac倍的范围、最值等.
0051数学课件:简单的线性规划
坐标即为最优整解.
2.调整优解法:即先求非整数条件下的最优解,
调整Z的值使不定方程Ax+By=Z存在最大(小) 的整点值,最后筛选出整点最优解.
巩固练习一
设每天应配制甲种饮料x杯,乙种饮料y杯,则
咖啡馆配制两种饮料.甲种饮料每杯含奶粉9g 、咖啡4g、糖 9 x 4 y 3600 4 x 5 y 2000 3g,乙种饮料每杯含奶粉4g 、咖啡5g、糖10g.已知每天原料 的使用限额为奶粉3600g ,咖啡2000g 糖3000g,如果甲种饮 3x 10 y 3000 料每杯能获利0.7元,乙种饮料每杯能获利1.2元,每天在原料 x 0 的使用限额内饮料能全部售出,每天应配制两种饮料各多少 目标函数为:z =0.7x +1.2y y 0 杯能获利最大? 练习一.gsp 解:将已知数据列为下表:
直线x+y=12经过的整点是B(3,9)和C(4,8),它们是最优解. 答(略) 你能否猜测一下Z的最小值可能是多少?
3.最优解的几何意义是什么 (最优解可以转化为什么几何意义)?
结论2:
线性规划求最优整数解的一般方法:
1.平移找解法: 即先打网格,描出可行域内的
整点,平移直线,最先经过或最后经过的整点
9 x + 4 y = 3600 _
得点C的坐标为(200,240)
小结
答:每天配制甲种饮料200杯,乙种饮料240杯可获取最大利润.
巩固练习 二
某货运公司拟用集装箱托运甲.乙两种货物,一个大集装箱所装托 3 运货物的总体积不能超过24 m ,总重量不能超过1500kg,甲.乙 两种货物每袋的体积.重量和可获得的利润,列表如下:
原 料 奶粉(g) 咖啡(g) 糖(g) 利 润(元) 每配制1杯饮料消耗的原料 甲种饮料 x 乙种饮料 y 9 4 3 0.7 4 5 10 1.2 原 料限 额 3600 2000 3000
课件—简单线性规划
首页 向上 向下 快退 快进
快速定位
产品 生产甲种产品 1工时 生产乙种产品 1工时
原料A数量 原料B数量 (kg) (kg) 3 2 1 2
利润 (元) 30
限额数量
1200
800
40 复习提问 问题导入 例01解析 例02解析 例03解析 课堂小结 布置作业
快速定位
首页
向上
向下
快退
快进
解析:设计划生产甲种产品x工时,乙种产品y工时, 3x 2 y 1200 x 2 y 800 则x, y满足线性约束条件 : x 0 y 0
货物 甲 每袋体积 每袋重量 每袋利润 (单位:m3) (单位:百千克) (单位:百元) 复习提问 5 1
20 问题导入 例01解析 乙 4 2.5 10 例02解析 例03解析 问:在一个大集装箱内,这两种货物各装多少袋(不一定 都是整袋)时,可获得最大利润? 课堂小结 布置作业
首页 向上 向下 快退 快进
首页 向上 向下 快退 快进
快速定位
即 : M 200,300
3x 2 y 1200 x 200 解方程组 x 2 y 800 y 300
zmax 30 200 40 300 18000 答 : 用200工时生产甲种产品用300工时生产 , 复习提问
快速定位
解析:设购买甲种食物x千克,乙种食物y千克,则购 买丙种食物 10 x y 千克.x, y满足线性约束条件 : 400 x 600 y 400 10 x y 4400 y 2 2 x y 4 800 x 200 y 400 10 x y 4800 复习提问 x 0, y 0 x y 10 10 x y 0 注意考虑问题的实际意义. x 0 问题导入
快速定位
产品 生产甲种产品 1工时 生产乙种产品 1工时
原料A数量 原料B数量 (kg) (kg) 3 2 1 2
利润 (元) 30
限额数量
1200
800
40 复习提问 问题导入 例01解析 例02解析 例03解析 课堂小结 布置作业
快速定位
首页
向上
向下
快退
快进
解析:设计划生产甲种产品x工时,乙种产品y工时, 3x 2 y 1200 x 2 y 800 则x, y满足线性约束条件 : x 0 y 0
货物 甲 每袋体积 每袋重量 每袋利润 (单位:m3) (单位:百千克) (单位:百元) 复习提问 5 1
20 问题导入 例01解析 乙 4 2.5 10 例02解析 例03解析 问:在一个大集装箱内,这两种货物各装多少袋(不一定 都是整袋)时,可获得最大利润? 课堂小结 布置作业
首页 向上 向下 快退 快进
首页 向上 向下 快退 快进
快速定位
即 : M 200,300
3x 2 y 1200 x 200 解方程组 x 2 y 800 y 300
zmax 30 200 40 300 18000 答 : 用200工时生产甲种产品用300工时生产 , 复习提问
快速定位
解析:设购买甲种食物x千克,乙种食物y千克,则购 买丙种食物 10 x y 千克.x, y满足线性约束条件 : 400 x 600 y 400 10 x y 4400 y 2 2 x y 4 800 x 200 y 400 10 x y 4800 复习提问 x 0, y 0 x y 10 10 x y 0 注意考虑问题的实际意义. x 0 问题导入
运筹学课件1-1线性规划问题及其数学模型
上页 下页 返回
• 第三步:确定目标函数 第三步: 以 Z 表示生产甲和乙两种产品各为x1 表示生产甲和乙两种产品各为x 时产生的经济价值, 和x2(吨)时产生的经济价值,总经济价值 最高的目标可表示为: 最高的目标可表示为:
max z=7 x1十5 x2 z=
这就是该问题的目标函数 这就是该问题的目标函数。 目标函数。
上页
下页
返回
• 第1步 -确定决策变量
•设 ——I x1——I的产量 ——II x2 ——II的产量
是问题中要确定的未知量, 是问题中要确定的未知量, 表明规划中的用数量表示的 方案、措施,可由决策者决 方案、措施, 定和控制。 定和控制。
x1
x2
上页
下页
返回
第2步 --定义目标函数
利润
Max Z =
x1 +
x2
上页
下页
返回
第2步 --定义目标函数
Max Z = 2 x1 + 3 x2
上页
下页
返回
对我们有 何限制?
上页
下页
返回
第3步 --表示约束条件
x1 + 2 x2 ≤ 8 4 x1 ≤ 16 4 x2 ≤ 12 x1、 x2 ≥ 0
设备 原材料A 原材料 原材料B 原材料 利润 I 1 4 0 2 II 2 0 4 3 资源限量 8 台时 16kg 12kg
上页 下页 返回
– 用向量表示
m Z = CX ax n ∑Pj xj = b i=1 x ≥ 0 j =1 2,...n , j 其 : 中 x1 x 2 X= ... xn C = (c1, c2 , ) a1 j a2 j Pj = ... amj b 1 b 2 b= ... bm
• 第三步:确定目标函数 第三步: 以 Z 表示生产甲和乙两种产品各为x1 表示生产甲和乙两种产品各为x 时产生的经济价值, 和x2(吨)时产生的经济价值,总经济价值 最高的目标可表示为: 最高的目标可表示为:
max z=7 x1十5 x2 z=
这就是该问题的目标函数 这就是该问题的目标函数。 目标函数。
上页
下页
返回
• 第1步 -确定决策变量
•设 ——I x1——I的产量 ——II x2 ——II的产量
是问题中要确定的未知量, 是问题中要确定的未知量, 表明规划中的用数量表示的 方案、措施,可由决策者决 方案、措施, 定和控制。 定和控制。
x1
x2
上页
下页
返回
第2步 --定义目标函数
利润
Max Z =
x1 +
x2
上页
下页
返回
第2步 --定义目标函数
Max Z = 2 x1 + 3 x2
上页
下页
返回
对我们有 何限制?
上页
下页
返回
第3步 --表示约束条件
x1 + 2 x2 ≤ 8 4 x1 ≤ 16 4 x2 ≤ 12 x1、 x2 ≥ 0
设备 原材料A 原材料 原材料B 原材料 利润 I 1 4 0 2 II 2 0 4 3 资源限量 8 台时 16kg 12kg
上页 下页 返回
– 用向量表示
m Z = CX ax n ∑Pj xj = b i=1 x ≥ 0 j =1 2,...n , j 其 : 中 x1 x 2 X= ... xn C = (c1, c2 , ) a1 j a2 j Pj = ... amj b 1 b 2 b= ... bm
3.3.2hao简单线性规划(第1课时)_课件
五、课堂作业
P86 练习2 P93 A组4 B组 3
(3)求:通过解方程组求出最优解; (4)答:作出答案。
体 验:
一、先定可行域和平移方向,再找最优解. 二、最优解一般在可行域的顶点处取得.
三、在哪个顶点取得不仅与B的符号有关,而且 还与直线 Z=Ax+By的斜率有关.
四、本课小结
本节主要学习了线性约束下如何求目 标函数的最值问题; 正确列出变量的不等关系式,准确作出 可行域是解决目标函数最值的关健; 线性目标函数的最值一般都是在可行 域的顶点或边界取得; 把目标函数转化为某一直线,其斜率与 可行域边界所在直线斜率的大小关系一定 要弄清楚.
二、概念学习
1.线性约束条件
x 2 y 8, 4 x 16, 4 y 12, x 0, y 0.
象这样关于x,y二元一次不等式组 的约束条件称为线性约束条件.
2.线性目标函数 3.线性规划
Z=2x+3y称为目标函数,(因这里目标函数 为关于x,y的一次式,又称为线性目标函数). 在线性约束下求线性目标函数的最值问题, 统称为线性规划.
x
问题:求利润2x+3y的最大值. 若设利润为z,则z=2x+3y,这样上述问题转化为: 当x,y在满足上述约束条件时,z的最大值为多少?
2 z 2 把z =2x +3y变形为y =- x + ,这是斜率为- , 3 3 3 z z 在y轴上的截距为 的直线(x 0时,y = ), 3 3 当点P在可允 z 的最值 求 求 z的最值. 许的取值范 3 围内
4
N(2,3)
x
3
0
4
1 x4 2 1 z y x 3 3 y
3.3《简单的线性规划问题3》课件(苏教版必修5).
{
2x+y≥15, x+2y≥18, x+3y≥27, x≥0 y≥0
目标函数为 z=x+y
作出可行域(如图) 作出可行域(如图)
例题分析
{
2x+y≥15, x+2y≥18, x+3y≥27, x≥0, x∈N ∈ y≥0 y∈N ∈
y 15
调整优值法
作出一组平行直线z=x+y, , 作出一组平行直线
甲产品 消耗量 产品 (1 杯) 资源 奶粉( 奶粉(g) 咖啡(g) 咖啡(g) 糖(g) 利润( 利润(元) 乙产品(1 乙产品 杯) 资源限额( ) 资源限额(g)
9 4 3 0.7
4 5 10 1.2
3600 2000 3000
ቤተ መጻሕፍቲ ባይዱ
设每天应配制甲种饮料x 设每天应配制甲种饮料x杯,乙种饮料y杯,则 乙种饮料y
y
x-y=0 1 x 1
(2,-1)
z=2x+y 叫做
线性目标函数 ;
都叫做可行解 满足 线性约束条件 的解(x,y)都叫做可行解; 都叫做可行解; 取得最大值 使z=2x+y取得最大值的可行解为 (2,-1) 取得最大值的可行解为 且最大值为 3 ; ,
0
(-1,-1)
y=-1
2x+y=0
取得最小值 使z=2x+y取得最小值的可行解 (-1,-1) , 取得最小值的可行解 且最小值为
应 用
简单的线性规划
可行解 可行域
求解方法: 求解方法:画、 移、求、答
最优解
练习巩固
1.某家具厂有方木材 某家具厂有方木材90m3 , 木工板 木工板600m3 , 准备加工成 某家具厂有方木材 书桌和书橱出售, 已知生产每张书桌需要方木料0.1m3 、 书桌和书橱出售 , 已知生产每张书桌需要方木料 木工板2m 生产每个书橱需要方木料0.2m3 , 木工板 木工板 3 ; 生产每个书橱需要方木料 1m3 , 出售一张书桌可以获利 元 , 出售一张书橱可以 出售一张书桌可以获利80元 获利120元; 获利 元 (1)怎样安排生产可以获利最大? )怎样安排生产可以获利最大? (2)若只生产书桌可以获利多少? )若只生产书桌可以获利多少? (3)若只生产书橱可以获利多少? )若只生产书橱可以获利多少?
人教A版高中数学必修五课件3.3.2简单的线性规划问题2.pptx
5.已知线性目标函数 z=3x+2y,在线性约束条件
x+y-3≥0 2x-y≤0 y≤a
下取得最大值时的最优解只有一个,则实数 a
的取值范围是________.
x+y-3≥0
解析: 作出线性约束条件2x-y≤0
y≤a
表示的平面
区域,
如图中阴影部分所示.
• 因为取得最大值时的最优解只有一个,所以目 标函数对应的直线与平面区域的边界线不平行, 根据图形及直线的斜率,可得实数a的取值范 围是[2,+∞).
元.该企业在一个生产周期内消耗A原料不超过 13吨、B原料不超过18吨,那么该企业可获得最 大利润是( )
• A.12万元
B.20万元
• C.25万元D.27万元
解析: 设该企业在一个生产周期内各生产甲、乙产品
x、y 吨,获得利润 z 万元,根据题意,得
3x+y≤13
2x+3y≤18 x≥0
• (3)求:解方程组求最优解,进而求出目标函数的 最大值和最小值.
• [注意] 画可行域时,要特别注意可行域各边 的斜率与目标函数直线的斜率的大小关系,以 便准确判断最优解.
• 2.最优解的确定
• 最优解的确定可有两种方法:
• (1)将目标函数的直线平行移动,最先通过或 最后通过的顶点便是最优解.
交点 A(4,5)时,目标函数 z=200x+300y 取到最小值为 2 300
元,故所需租赁费最少为 2 300 元.
• 答案: 2300
• 2.某企业生产甲、乙两种产品,已知生产每吨 甲产品要用A原料3吨、B原料2吨;生产每吨乙产
品要用A原料1吨、B原料3吨.销售每吨甲产品可 获得利润5万元、每吨乙产品可获得利润3万
规格类型 钢板类型
3.3.2-简单的线性规划问题-课件
[例4] 某人有楼房一幢,室内面积共180 m2,拟分隔成两类 房间作为旅游客房.大房间每间面积为18 m2,可住游客5名,每 名游客每天住宿费为40元;小房间每间15 m2,可住游客3名,每 名游客每天住宿费为50元;装修大房间每间需1000元,装修小房 间每间需600元.如果他只能筹款8000元用于装修,且游客能住满 客房,他应隔出大房间和小房间各多少间,才能获得最大收益?
x≥0
迁移变式 3 已知点 P(x,y)满足条件y≤x
(k
2x+y+k≤0
为常数),若 x+3y 的最大值为 8,则 k=________.
解:作出可行域如图 7 所示, 作直线 l0:x+3y=0, 平移 l0 知当 l0 过点 A 时,x+3y 最大, 由于 A 点坐标为(-3k,-3k). ∴-3k-k=8,从而 k=-6.
[例3] 已知变量x,y满足约束条件1≤x+y≤4,-2≤x-y≤2.若 目标函数z=ax+y(其中a>0)仅在点(3,1)处取得最大值,则a的取值 范围为________.
[分析] 由题目可获取以下主要信息: ①可行域已知; ②目标函数在(3,1)处取得最大值. 解答本题可利用逆向思维,数形结合求解.
解方程组-4x+4x+3y=3y=361. 2, 得 D 点坐标为(3,8) ∴zmax=2x+3y=30 当直线经过可行域上的点 B 时,截距3z最小,即 z 最 小.由已知得 B(-3,-4) ∴zmin=2x+3y=2×(-3)+3×(-4)=-18. (2)同理可求 zmax=40,zmin=-9.
3.3.2 简单的线性规划问题
线性规划问题的有关概念:
1.线性约束条件:不等式组是一组对变量x、y的约束条件, 这组约束条件都是关于x、y的 一次不等式 .
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最优解
M
1 1 1 Q 1 2 1 5x+6y=55x+6y=45 0 2 4 36 8 0
L:200x+300y=0 0 2 4 6 8
x
使目标函数取得最大值或最小值的可行解叫做这个问题的最优
解。
归纳总结:
简单线性规划问题的求解步骤:
1、将已知数据列成表格形式,设出x、y、z;
2、找出约束条件和目标函数;
3、作出可行域,并结合图象求出最优解 4、按照题意作答。
例2:北京2008奥运期间,由清华大学480名学生组 成的北京2008奥运志愿者队伍要前往国家体育场 (“鸟巢”)进行志愿活动。清华大学后勤集团有 7辆小巴、4辆大巴,其中小巴能载16人、大巴能载 32人.前往过程中,每辆客车最多往返次数小巴为 5次、大巴为3次,每次运输成本小巴为48元,大巴 为60元.请问应派出小巴、大巴各多少辆,能使总 费用最少?
为了巩固课堂内容
作业:课本91页
第1、2 、3题
(四)课堂小结
1、简单线性规划问题的求解步骤:
(1)将已知数据列成表格形式,设出x、y、z;
(2)找出约束条件和目标函数;
(3)作出可行域,并结合图象求出最优解 (4)按照题意作答。
2、确定线性规划最优解的方法
y
7
6
A(1.2,4)
5
4
3
l0 : 4 x 3 y 0
B(2,4)
2 1
0
1
2
3
ቤተ መጻሕፍቲ ባይዱ
4
5
6
5x 6 y 30
7
8
9
x
归纳总结:
确定最优整数解的方法:
1.若可行域的“顶点”处恰好为整点,那么它就是最优解; (在包括边界的情况下) 2.若可行域的“顶点”不是整点或不包括边界时,可以采 用网格法,即先在可行域内打网格、描整点、平移直线l、 最先经过或最后经过的整点坐标是整数最优解;这种方法 依赖作图,所以作图应尽可能精确,图上操作尽可能规 范.
布各取多少张,才能完成任务,并使得总的用料面积最省?
材料类型
帐篷类型
A规格
3
B规格
6 6
需求量
>=45 >=55
大帐篷 小帐篷
5
y
14 12 10
P
(5,5)
8
6
3x 6 y 45 5 x 6 y 55 x0 y0 x, y N z 200x 300y
辆数(辆) 每辆载 运送次 人数(个) 数(次)
每次成 本(元)
学生人 数(个)
小巴 大巴
7 4
16 32
5 3
48 60
≥480
解:设每天应派出小巴 x辆,大巴 y辆, 总运费为z元; 80 x 96 y 480; 0 x 7; 0 y 4; x, y N .
z 240 x 180 y
M
4 2
Q
0
2 4 6 L:200x+300y=0
8
10
12
14
16
18
20
5x+6y=55
3x+6y=45
x
解:设A、B塑料布各取x、y张,总用料面积为z平方米。 则z的约束条件为 3 x 6 y 45
5 x 6 y 55 x0 y0
目标函数为z=200x+300y,作出可行域,如上图 由图知,当z=200x+300y过可行域上点M时,z最小
解方程组3 x 6 y 45 得M(5,5),此时 zmin 2500
5 x 6 y 55
答:两种塑料布各用5张,总用料面积最省。
基本概念
一组关于变量x、y的一次不等式,称为线性约束条件。
把求最大值或求最小值的的函数称为目标函数,因为它是关 于变量x、y的一次解析式,又称线性目标函数。
简单 的线性规划问题
(二)例题讲解
例1:汶川地震中各种应急器械物资紧缺,今急需大、小 两种帐篷,至少分别需要45个和55个,为解决困难,今 用A、B两种规格的蓬布抓紧制作,每张面积分别为200、 300平方米,用A规格的蓬布可作大帐篷3个,小帐篷5个; 用B规格的蓬布可作大小帐篷各6个。问A、B两种规格蓬
在线性约束条件下求线性目标函数的最大值或最小值问题, y 统称为线性规划问题。 可行域 3 x 6 y 45
满足线性约束的解
(x,y)叫做可行解。 可行解
1 4 1 2 1 P 0 8
由所有可行解组成的集 6 4 合叫做可行域。
2
(5,5)
5 x 6 y 55 x0 y0 x, y N z 200x 300y
(三)课堂练习 练习:央视为改版后的《非常6+1》栏目播放 两套宣传片.其中宣传片甲播映时间为3分30 秒,广告时间为30秒,收视观众为60万,宣传 片乙播映时间为1分钟,广告时间为1分钟,收 视观众为20万.广告公司规定每周至少有3.5 分钟广告,而电视台每周只能为该栏目宣传片 提供不多于16分钟的节目时间.电视台每周应 播映两套宣传片各多少次,才能使得收视观众 最多?
播放片甲 片集时间 (min) 广告时间 (min) 收视观众 (万)
播放片乙
节目要求
解:设电视台每周应播映片甲x次, 片乙y次 总收视观众为z万人.
4 x 2 y 16 0.5 x y 3.5 x, y N
z 60 x 20 y
由图解法可得: 当x=3, y=2时,Zmax=220. 答:电视台每周应播映甲种 片集3次,乙种片集2次才能 使得收视观众最多.