电磁场与电磁波复习题(含问题详解)
《电磁场与电磁波》期末复习题及答案
《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
电磁场与电磁波复习题(简答题)
电磁场与电磁波复习题第一部分矢量分析1、请解释电场与静电场的概念。
静止电荷产生的场表现为对于带电体有力的作用,这种场称为电场。
不随时间变化的电场称为静电场。
2、请解释磁场与恒定磁场的概念。
运动电荷或电流产生的场表现为对于磁铁和载流导体有力的作用,这种物质称为磁场。
不随时间变化的磁场称为恒定磁场。
3、请解释时变电磁场与电磁波的概念。
如果电荷及电流均随时间改变,它们产生的电场及磁场也是随时变化的,时变的电场与时变的磁场可以相互转化,两者不可分割,它们构成统一的时变电磁场。
时变电场与时变磁场之间的相互转化作用,在空间形成了电磁波。
4、请解释自由空间的概念。
电磁场与电磁波既然是一种物质,它的存在和传播无需依赖于任何媒质。
在没有物质存在的真空环境中,电磁场与电磁波的存在和传播会感到更加“自由”。
因此对于电磁场与电磁波来说,真空环境通常被称为“自由空间”。
5、举例说明电磁场与波的应用。
静电复印、静电除尘以及静电喷漆等技术都是基于静电场对于带电粒子具有力的作用。
电磁铁、磁悬浮轴承以及磁悬浮列车等,都是利用磁场力的作用。
当今的无线通信、广播、雷达、遥控遥测、微波遥感、无线因特网、无线局域网、卫星定位以及光纤通信等信息技术都是利用电磁波作为媒介传输信息的。
6、请解释常矢与变矢的概念。
若某一矢量的模和方向都保持不变,此矢量称为常矢,如某物体所受到的重力。
而在实际问题中遇到的更多的是模和方向或两者之一会发生变化的矢量,这种矢量我们称为变矢,如沿着某一曲线物体运动的速度v等。
7、什么叫矢性函数?设t是一数性变量,A为变矢,对于某一区间G[a,b]内的每一个数值t,A 都有一个确定的矢量A(t)与之对应,则称A为数性变量t的矢性函数。
8、请解释静态场和动态场的概念。
如果在某一空间区域内的每一点,都对应着某个物理量的一个确定的值,则称在此区域内确定了该物理量的一个场。
换句话说,在某一空间区域中,物理量的无穷集合表示一种场。
电磁场与电磁波试题与答案
电磁场与微波技术基础试题一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。
每小题2分,共20分)1.设一个矢量场 =x x+2y y+3z z,则散度为( )A. 0B. 2C. 3D. 62.人们规定电流的方向是( )运动方向。
A.电子B.离子C.正电荷D.负电荷3.在物质中没有自由电子,称这种物质为( )A.导体B.半导体C.绝缘体D.等离子体4.静电场能量的来源是( )A.损耗B.感应C.极化D.做功5.对于各向同性介质,若介电常数为ε,则能量密度we为( )A. •B. E2C. εE2D. εE26.电容器的大小( )A.与导体的形状有关B.与导体的形状无关C.与导体所带的电荷有关D.与导体所带的电荷无关7.电矩为的电偶极子在均匀电场中所受的作用力和库仑力矩为( )A. =0,Tq= •B. =0, = ×C. = • ,= ×D. = • , =08.在 =0的磁介质区域中的磁场满足下列方程( )A. × =0, • =0B. × ≠0, • ≠0C. × ≠0, • =0D. × =0, • ≠09.洛伦兹条件人为地规定的( )A.散度B.旋度C.源D.均不是10.传输线的工作状态与负载有关,当负载短路时,传输线工作在何种状态?( )A.行波B.驻波C.混合波D.都不是二、填空题(每空2分,共20分)1.两个矢量的乘法有______和______两种。
2.面电荷密度ρs( )的定义是______,用它来描述电荷在______的分布。
3.由库仑定律可知,电荷间作用力与电荷的大小成线性关系,因此电荷间的作用力可以用______原理来求。
4.矢量场的性质由它的______决定。
5.在静电场中,电位相同的点集合形成的面称为______。
6.永久磁铁所产生的磁场,称之为______。
7.在电场中电介质在外电场的作用下会产生______,使电场发生变化。
电磁场与电磁波试题及答案
电磁场与电磁波试题及答案导言:电磁场和电磁波是电磁学领域中的重要概念,对于理解电磁现象、电磁波传播及应用都具有重要意义。
本文将针对电磁场和电磁波相关的试题进行解答,帮助读者巩固对这一知识点的理解。
一、电磁场概念及特点1. 试题:电磁场是指什么?电磁场有哪些特点?答案:电磁场指的是电荷或电流所产生的周围空间的物理场。
具体包括静电场和磁场。
电磁场的特点有以下几个方面:- 电磁场具有源极性:任何一个电磁场的产生都必须由电荷或电流来产生。
- 电磁场具有传递性:当源增大或减小时,电磁场的强度也会相应变化。
- 电磁场具有辐射性:电磁场会以电磁波形式向外传播。
- 电磁场具有叠加性:多个电磁场可以在同一空间中叠加。
二、电磁场强度及电磁波的传播1. 试题:电磁场强度的概念是指什么?电磁波的传播过程是怎样的?答案:电磁场强度是指单位电荷所受到的电磁力的大小,通常用矢量表示,其方向为电荷所受电磁力的方向。
电磁波的传播过程主要包括以下几个阶段:- 在电磁场中,源电荷或电流激发出电磁波。
- 电磁波在空间中以垂直波动的方式传播。
- 电磁波的传播过程中,电场和磁场相互垂直、交替变化。
- 电磁波传播速度为光速,即3×10^8 m/s。
三、电磁波的频率和波长1. 试题:电磁波的频率和波长有什么关系?请列举几种常见电磁波的频率和波长范围。
答案:电磁波的频率和波长之间有以下关系:频率 = 光速 / 波长以下是几种常见电磁波的频率和波长范围:- α射线:频率高,波长短,一般范围为10^18 - 10^20 Hz,波长约为10^(-12) - 10^(-10) m。
- 紫外线:频率较高,波长较短,一般范围为10^14 - 10^16 Hz,波长约为10^(-8) - 10^(-7) m。
- 可见光:频率适中,波长适中,范围为4×10^14 - 8×10^14 Hz,波长约为3.75×10^(-7) - 7.5×10^(-7) m。
电磁场与电磁波试题&答案资料
1. 图示填有两层介质的平行板电容器,设两极板上半部分的面积为,下半部分的面积为,板间距离为,两层介质的介电常数分别为与。
介质分界面垂直于两极板。
若忽略端部的边缘效应,则此平行板电容器的电容应为______________。
2.1. 用以处理不同的物理场的类比法,是指当描述场的数学方式具有相似的____________ 和相似的__________,则它们的解答在形式上必完全相似,因而在理论计算时,可以把某一种场的分析计算结果 , 推广到另一种场中去。
2. 微分方程;边界条件1. 电荷分布在有限区域的无界静电场问题中,对场域无穷远处的边界条件可表示为________________________________,即位函数在无限远处的取值为________。
2. 有限值;1. 损耗媒质中的平面波,其电场强度,其中称为___________,称为__________。
2. 衰减系数;相位系数1. 在自由空间中,均匀平面波等相位面的传播速度等于________,电磁波能量传播速度等于________ 。
2. 光速;光速1. 均匀平面波的电场和磁场除了与时间有关外,对于空间的坐标,仅与___________ 的坐标有关。
均匀平面波的等相位面和________方向垂直。
2. 传播方向;传播1. 在无限大真空中,一个点电荷所受其余多个点电荷对它的作用力,可根据___________ 定律和__________ 原理求得。
2. 库仑;叠加1. 真空中一半径为a 的圆球形空间内,分布有体密度为ρ的均匀电荷,则圆球内任一点的电场强度1E =_________()r e r a <;圆球外任一点的电场强度2E =________()r e r a >。
2. 0/3r ρε;220/3a r ρε;1. 镜像法的关键是要确定镜像电荷的个数、_______________ 和_________________。
电磁场与电磁波复习题(含答案)
电磁场与电磁波复习题(含答案)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数,散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。
散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。
2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分,旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。
当S 点P 时,存在极限环量密度。
⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。
4.⽮量的旋度在直⾓坐标系下的表达式。
5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。
梯度的⼤⼩为该点标量函数?的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u的数学表达式是,梯度的表达式8、亥姆霍兹定理的表述在有限区域内,⽮量场由它的散度、旋度及边界条件唯⼀地确定,说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。
9、麦克斯韦⽅程组的积分形式分别为 0()s l s s l sD dS Q BE dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为 020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场,⼀般采⽤时谐场来分析时变电磁场的⼀般规律,是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下,可以使⽤叠加原理。
(完整word版)电磁场与电磁波波试卷3套含答案
《电磁场与电磁波》试卷1一. 填空题(每空2分,共40分)1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场 无漩涡流动 .另一个是环流量不为0,表明矢量场的 流体沿着闭合回做漩涡流动 .2.带电导体内静电场值为 0 ,从电位的角度来说,导体是一个 等电位体 ,电荷分布在导体的 表面 。
3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为 3个 函数的乘积,而且每个函数仅是 一个 坐标的函数,这样可以把偏微分方程化为 常微分方程 来求解。
4.求解边值问题时的边界条件分为3类,第一类为 整个边界上的电位函数为已知 ,这种条件成为狄利克莱条件.第二类为已知 整个边界上的电位法向导数 ,成为诺伊曼条件。
第三类条件为 部分边界上的电位为已知,另一部分边界上电位法向导数已知 ,称为混合边界条件。
在每种边界条件下,方程的解是 唯一的 。
5.无界的介质空间中场的基本变量B 和H 是 连续可导的 ,当遇到不同介质的分界面时,B 和H 经过分解面时要发生 突变 ,用公式表示就是 12()0n B B ⋅-=,12()s n H H J ⨯-=.6.亥姆霍兹定理可以对Maxwell 方程做一个简单的解释:矢量场的 旋度 ,和 散度 都表示矢量场的源,Maxwell 方程表明了 电磁场 和它们的 源 之间的关系。
二.简述和计算题(60分)1.简述均匀导波系统上传播的电磁波的模式。
(10分)答:(1)在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内,这种模式的电磁波称为横电磁波,简称TEM 波.(2)在电磁波传播方向上有电场和但没有磁场分量,即磁场在横平面内,这种模式的电磁波称为横磁波,简称TM 波。
因为它只有纵向电场分量,又成为电波或E 波.(3)在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内,这种模式的电磁波称为横电波,简称TE 波。
因为它只有纵向磁场分量,又成为磁波或M 波。
电磁场与电磁波第一章复习题练习答案
电子信息学院电磁场与电磁波第一章复习题练习姓名学号班级分数1-7题,每题5分;8-15题,每题5分,16题10分,17题15分。
8:解:不总等于,讨论合理即可9. 已知直角坐标系中的点P1(-3,1,4)和P2(2,-2,3):(1)在直角坐标系中写出点P1、P2的位置矢量r1和r2;(2)求点P1到P2的距离矢量的大小和方向;(3)求矢量r1在r2的投影;解:(1)r1=-3a x+a y+4a z;r2=2a x-2a y+3a z(2)R=5a x-3a y-a z(3) [(r1•r2)/ │r2│] =(17)½10.用球坐标表示的场E=a r 25/r2,求:(1)在直角坐标系中的点(-3,4,-5)处的|E|和E z;(2)E与矢量B=2a x-2a y+a z之间的夹角。
解:(1)0.5;2½/4;(2)153.611.试计算∮s r·d S的值,式中的闭合曲面S是以原点为顶点的单位立方体,r为空间任一点的位置矢量。
解:学习指导书第13页12.从P(0,0,0)到Q(1,1,0)计算∫cA·d l,其中矢量场A的表达式为A=ax 4x-ay14y2.曲线C沿下列路径:(1) x=t,y=t2;(2)从(0,0,0)沿x轴到(1,0,0),再沿x=1到(1,1,0);(3)此矢量场为保守场吗?解:学习指导书第14页13.求矢量场A =a x yz+a y xz+a z xy 的旋度。
A ∇⨯=x a (x -x )+y a (y -y )+z a (z -z )=0 14.求标量场u=4x 2y+y 2z-4xz 的梯度。
u ∇=x a u x ∂∂+y a u y ∂∂+z a u z ∂∂=x a (8xy-4z)+y a (42x +2yz)+z a (2y -4x)15.求矢量场A =a x x 2y+a y yz+a z 3z 2在点P (1,1,0)的散度。
《电磁场与电磁波》期末复习题及答案
《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
电磁波与电磁场期末复习题(试题+答案)
电磁波与电磁场期末复习题(试题+答案)电磁波与电磁场期末试题一、填空题(20分)1.旋度矢量的散度恒等与零,梯度矢量的旋度恒等与零。
2.在理想导体与介质分界面上,法线矢量n r由理想导体2指向介质1,则磁场满足的边界条件:01=?B n ρρ,s J H n =?1ρρ。
3.在静电场中,导体表面的电荷密度σ与导体外的电位函数?满足的关系式n ??=?εσ-。
4.极化介质体积内的束缚电荷密度σ与极化强度P 之间的关系式为P ?-?=σ。
5.在解析法求解静态场的边值问题中,分离变量法是求解拉普拉斯方程的最基本方法;在某些特定情况下,还可用镜像法求拉普拉斯方程的特解。
6.若密绕的线圈匝数为N ,则产生的磁通为单匝时的N 倍,其自感为单匝的2N 倍。
7.麦克斯韦关于位移电流的假说反映出变化的电场要产生磁场。
8.表征时变场中电磁能量的守恒关系是坡印廷定理。
9.如果将导波装置的两端短路,使电磁波在两端来回反射以产生振荡的装置称为谐振腔。
10.写出下列两种情况下,介电常数为ε的均匀无界媒质中电场强度的量值随距离r 的变化规律:带电金属球(带电荷量为Q )E = 24r Qπε;无限长线电荷(电荷线密度为λ)E =r2。
11.电介质的极性分子在无外电场作用下,所有正、负电荷的作用中心不相重合,而形成电偶极子,但由于电偶极矩方向不规则,电偶极矩的矢量和为零。
在外电场作用下,极性分子的电矩发生转向,使电偶极矩的矢量和不再为零,而产生极化。
12.根据场的唯一性定理在静态场的边值问题中,只要满足给定的边界条件,则泊松方程或拉普拉斯方程的解是唯一的。
二、判断题(每空2分,共10分)1.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。
(×)2.一个点电荷Q 放在球形高斯面中心处。
如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。
(×)3.在线性磁介质中,由IL ψ=的关系可知,电感系数不仅与导线的几何尺寸、材料特性有关,还与通过线圈的电流有关。
电磁场与电磁波(必考题)
1 / 91.已知自由空间中均匀平面波磁场强度瞬时值为:())]43(cos[31,,z x t-e t z x H +=πωπy A/m ,求①该平面波角频率ω、频率f 、波长λ ②电场、磁场强度复矢量③瞬时坡印廷矢量、平均坡印廷矢量。
解:① z x z k y k x k z y x ππ43+=++;π3=x k ,0=yk ,π4=z k ;)/(5)4()3(22222m rad k k k k z y x πππ=+=++=;λπ2=k ,)(4.02m k ==πλ c v f ==λ(因是自由空间),)(105.74.010388Hz c f ⨯=⨯==λ;)/(101528s rad f ⨯==ππω②)/(31),()43(m A e e z x H z x j y +-=ππ; )/()243254331120),(),(),()43()43(m V e e e e e e e k k z x H e z x H z x E z x j z x z x z x j y n +-+--=+⨯⨯=⨯=⨯=πππππππηη(③ ()[])/()43(cos 2432),,(m V z x t e e t z x E z x +--=πω())]43(cos[31,,z x t-e t z x H +=πωπy (A/m ) ()[]()[])/()43(cos 322431)]43(cos[31)43(cos 243222m W z x t e e z x t-e z x t e e H E S z x z x +-+=+⨯+--=⨯=πωππωππωy ())43(2432),(z x j z x e e e z x E +--=π,)43(31),(z x j y e e z x H +-=ππ()())/(322461312432Re 21Re 212*)43()43(*m W e e e e e e e H E S z x z x j y z x j z x av +=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⨯-=⎪⎭⎫ ⎝⎛⨯=+-+-ππππ2.横截面为矩形的无限长接地金属导体槽,上部有电位为 的金属盖板;导体槽的侧壁与盖板间有非常小的间隙以保证相互绝缘。
电磁场与电磁波精彩试题问题详解
《电磁场与电磁波》试题1一、填空题(每小题1分,共10分)1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B ϖ和磁场H ϖ满足的方程为: 。
2.设线性各向同性的均匀媒质中,02=∇φ称为 方程。
3.时变电磁场中,数学表达式H E S ϖϖϖ⨯=称为 。
4.在理想导体的表面, 的切向分量等于零。
5.矢量场)(r A ϖϖ穿过闭合曲面S 的通量的表达式为: 。
6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。
7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。
8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。
二、简述题 (每小题5分,共20分)11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇ϖϖ,试说明其物理意义,并写出方程的积分形式。
12.试简述唯一性定理,并说明其意义。
13.什么是群速?试写出群速与相速之间的关系式。
14.写出位移电流的表达式,它的提出有何意义?三、计算题 (每小题10分,共30分)15.按要求完成下列题目 (1)判断矢量函数y x e xz ey B ˆˆ2+-=ϖ是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。
16.矢量z y x e e e A ˆ3ˆˆ2-+=ϖ,z y x e e eB ˆˆ3ˆ5--=ϖ,求(1)B A ϖϖ+ (2)B A ϖϖ⋅17.在无源的自由空间中,电场强度复矢量的表达式为 ()jkz y x e E e E eE --=004ˆ3ˆϖ(1) 试写出其时间表达式; (2)说明电磁波的传播方向;四、应用题 (每小题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。
试求(1) 球任一点的电场强度 (2)球外任一点的电位移矢量。
电磁场和电磁波复习题
《电磁场和电磁波》复习题一、选择题1.图所示两个载流线圈,所受的电流力使两线圈间的距离扩大缩小不变2.毕奥—沙伐定律在任何媒质情况下都能应用在单一媒质中就能应用必须在线性,均匀各向同性媒质中应用。
3. 真空中两个点电荷之间的作用力A. 若此两个点电荷位置是固定的,则不受其他电荷的引入而改变B. 若此两个点电荷位置是固定的,则受其他电荷的引入而改变C. 无论固定与不固定,都不受其他电荷的引入而改变4.真空中有三个点电荷、、。
带电荷量,带电荷量,且。
要使每个点电荷所受的电场力都为零,则:A. 电荷位于、电荷连线的延长线上,一定与同号,且电荷量一定大于B. 电荷可位于连线的任何处,可正、可负,电荷量可为任意大小C. 电荷应位于、电荷连线的延长线上,电荷量可正、可负,且电荷量一定要大于5.静电场中电位为零处的电场强度A. 一定为零B. 一定不为零C. 不能确定6.空气中某一球形空腔,腔内分布着不均匀的电荷,其电荷体密度与半径成反比,则空腔外表面上的电场强度A. 大于腔内各点的电场强度B. 小于腔内各点的电场强度C. 等于腔内各点的电场强度7.图示长直圆柱电容器中,内圆柱导体的半径为,外圆柱导体的半径为,内、外导体间的上、下两半空间分别充有介电常数为与的电介质,并外施电压源。
若以外导体圆柱为电位参考点,则对应该问题电位的唯一正确解是A.B.C.8.电源以外恒定电流场基本方程微分形式说明它是有散无旋场无散无旋场无散有旋场9.设半径为a 的接地导体球外空气中有一点电荷Q,距球心的距离为,如图所示。
现拆除接地线,再把点电荷Q移至足够远处,可略去点电荷Q对导体球的影响。
若以无穷远处为电位参考点,则此时导体球的电位A.B.C.10.图示一点电荷Q与一半径为a 、不接地导体球的球心相距为,则导体球的电位A. 一定为零B. 可能与点电荷Q的大小、位置有关C. 仅与点电荷Q的大小、位置有关11.以位函数为待求量的边值问题中,设、、都为边界点的点函数,则所谓第二类边值问题是指给定12.以位函数为待求量的边值问题中,设、、都为边界点的点函数,则所谓第三类边值问题是指给定13.以位函数为待求量边值问题中,设、、都为边界点的点函数,则所谓第一类边值问题是指给定(为在边界上的法向导数值)14.在无限大被均匀磁化的磁介质中,有一圆柱形空腔,其轴线平行于磁化强度, 则空腔中点的与磁介质中的满足15.两块平行放置载有相反方向电流线密度与的无限大薄板,板间距离为, 这时A. 两板间磁感应强度为零。
(完整版)电磁场与电磁波试题及答案.
1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ=、20n E ⨯=、2s n H J ⨯=、20n B =)1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。
2. 答矢量位,0B A A =∇⨯∇⋅=;动态矢量位A E t ϕ∂=-∇-∂或AE tϕ∂+=-∇∂。
库仑规范与洛仑兹规范的作用都是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。
1. 简述穿过闭合曲面的通量及其物理定义 2.sA ds φ=⋅⎰⎰ 是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。
2. 证明在直角坐标系里计算 ,则有()()xy z x y z r r e e e e x e y e z x y z ⎛⎫∂∂∂∇⋅=++⋅++ ⎪∂∂∂⎝⎭3x y z x y z∂∂∂=++=∂∂∂ 若在球坐标系里计算,则 232211()()()3r r r r r r r r r∂∂∇⋅===∂∂由此说明了矢量场的散度与坐标的选择无关。
《电磁场与电磁波》课后习题解答(全)
等式左边
等号右边为闭合回路穿过的总电流
所以
写成矢量式为
将 代入得
【习题3.18】
解:当 时, ,
当 时, ,
这表明 和 是理想导电壁得表面,不存在电场的切向分量 和磁场的法向分量 。
在 表面,法线
所以
在 表面,法线
所以
【习题3.19】
证明:考虑极化后的麦克斯韦第一方程
【习题4.6】
解:由麦克斯韦方程 ,
引入 ,令 .在库仑规范下, ,所以有
即得
而 的解为
可得
对于线电流,有
所以
习题及参考答案
因为该齐次波动方程是麦克斯韦方程在代入 的条件下导出的,所以 作为麦克斯韦方程的解的条件是:
【习题3.22】
解:已知所给的场存在于无源( )介质中,场存在的条件是满足麦克斯韦方程组。
由 得
所以
积分得
由 ,可得
根据 ,可得
对于无源电介质,应满足 或
比较可知: ,但 又不是x的函数,故满足
同样可以证明: 也可满足
则有
而
前一式表明磁场 随时间变化,而后一式则得出磁场 不随时间变化,两者是矛盾的。所以电场 不满足麦克斯韦方程组。
(2)若
因为
两边对t积分,若不考虑静态场,则有
因此
可见,电场 和磁场 可以满足麦克斯韦方程组中的两个旋度方程。很容易证明他们也满足两个散度方程。
【习题2.7】
解:由传导电流的电流密度 与电场强度 关系 = 知:
取一线元:
则有
则矢量线所满足的微分方程为
或写成
求解上面三个微分方程:可以直接求解方程,也可以采用下列方法
电磁场与电磁波期末考试复习试题4套(部分含答案)
电磁场与电磁波期末考试复习资料11.圆柱坐标系中单位矢量,。
2.对于矢量A ,若,则=+∙y x a y x a x )(2,=⨯x z a y a x 2。
3.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为,矢量B A ⋅=。
4.已知直角坐标系中点P 1(5,-2,1),P 2(3,1,2),则P1的位置矢量为,P1到P2的距离矢量为。
5.已知球坐标系中单位矢量。
6.在两半无限大导电平面组成的直角劈形中间放置一点电荷,此时点电荷的镜像电荷个数为。
7.点电荷q 在自由空间任一点r 处电场强度为。
8.静电场中导体内的电场为,电场强度与电位函数的关系为。
9.高斯散度定理的积分式为,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。
10.已知任意一个矢量场A ,则其旋度的散度为。
11.真空中静电场的基本方程的微分形式为、、。
12.分析恒定磁场时,在无界真空中,两个基本场变量为,它们之间的关系为。
13.斯托克斯定理为,它表明矢量场A 的旋度沿曲面S 的方向分量的面积分等于该矢量沿围绕此面积曲线边界的线积分。
14.任意一个标量场u ,则其梯度的旋度为。
15.对于某一矢量 ,它的散度定义式为,用哈密顿算子表示为。
16.介质中静电场的基本方程的积分式为,,。
17.介质中恒定磁场的基本方程的微分形式为、、。
18.介质中恒定磁场的基本方程的积分式为,,。
19.静电场中两种介质分界面的边界条件是,。
20.在无限大的导体平面上方d 处放一点电荷q ,则其镜像电荷电量为,位置位于;如果一个点电荷置于两平行导体中间,则此点电荷有镜像电荷。
21.矢量场223z a yz a y x a A z y x ++=在点P(1,1,0)的散度为。
22.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为,位置位于;当点电荷q 向无限远处运动时,其镜像电荷向运动。
电磁场与电磁波复习题(含答案)
电磁场与电磁波复习题 一、填空题1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任意一点处通量对体积的变化率。
散度与通量的关系是矢量场中任意一点处通量对体积的变化率。
2、 散度在直角坐标系的表达式 z A y A x A z yxA A ∂∂∂∂∂∂++=⋅∇= div ;散度在圆柱坐标系下的表达;3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。
当S 点P 时,存在极限环量密度。
二者的关系n dS dC e A ⋅=rot ;旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该点最 大环量密度的方向。
4.矢量的旋度在直角坐标系下的表达式。
5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。
梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与梯度的关系是梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e 的表达式 ; 7、直角坐标系下方向导数u ∂的数学表达式是cos cos cos l αβγ∂∂∂∂∂∂∂∂uuuu=++xyz ,梯度的表达式x y z G e e e grad x y z φφφφφ∂∂∂=++=∇=∂∂∂;8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。
9、麦克斯韦方程组的积分形式分别为0()s l s s l s D dS Q B E dl dS t B dS D H dl J dS t ⋅=∂⋅=-⋅∂=∂=+⋅∂⎰⎰⎰⎰⎰⎰其物理描述分别为10、麦克斯韦方程组的微分形式分别为20E /E /tB 0B //tB c J E ρεε∇⋅=∇⨯=-∂∂∇⋅=∇⨯=+∂∂其物理意义分别为 11、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场, 一般采用时谐场来分析时变电磁场的一般规律,是因为任何时变周期函数都可以用正弦函数表示的傅里叶级数来表示;在线性条件下,可以使用叠加原理。
教科版 高中物理 选修3-4 第三章 电磁场与电磁波 寒假复习题(解析版)
绝密★启用前教科版高中物理选修3-4 第三章电磁场与电磁波寒假复习题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共100分,考试时间150分钟。
分卷I一、单选题(共10小题,每小题4.0分,共40分)1.下列说法正确的是()A.电磁波在真空中以光速c传播B.在空气中传播的声波是横波C.声波只能在空气中传播D.光需要介质才能传播【答案】A【解析】电磁波在真空中的传播速度与光在真空中的传播速度相同,故A正确;空气中的声波是纵波,故B错误;声波不仅能在空气中传播,也能在固体、液体中传播,但不能在真空中传播,故C错误;光可以在真空中的传播,不需要介质,故D错误.2.根据电磁波谱选出下列各组电磁波,其中频率互相交错重叠,且波长顺序由短到长排列的是()A.微波、红外线、紫外线B.γ射线、X射线、紫外线C.紫外线、可见光、红外线D.紫外线、X射线、γ射线【答案】B【解析】微波和红外线,红外线与紫外线在电磁波谱中不相邻,更不会频率重叠,A错误.紫外线、可见光、红外线虽相邻,但它们三者间有明确的界线,频率也不相重叠,C错误.在电磁波谱中紫外线、X射线、γ射线有重叠,γ射线波长最短,紫外线波长最长,故B正确,D错误.3.关于电磁波的应用,下列说法错误的是()A.在医院里常用X射线对病房和手术室进行消毒B.家用微波炉是利用电磁波对食物进行加热的C.验钞机中发出的紫外线使得钞票上的荧光物质发光D.卫星利用红外遥感技术拍摄云图照片,因为红外线衍射能力较强【答案】A【解析】在医院里常用紫外线对病房和手术室进行消毒,并不是X射线,故A错误;微波炉是利用电磁波对食物进行加热的,故B正确;验钞机中发出的紫外线,使得钞票上的荧光物质发光,故C正确;利用红外遥感技术拍摄云图照片,因为红外线波长较长,则衍射能力较强,故D正确;本题选择错误的,故选A.4.关于电磁波的应用下列说法正确的是()A.医院中透视和照相用的是可见光B.太阳辐射的能量大部分集中在可见光附近的区域C.光和电磁波的性质完全不同D.振荡电路产生的电磁波是紫外线【答案】B【解析】医院中透视和照相用的是X射线,故A错误.太阳辐射的能量大部分集中在可见光附近的区域,故B正确.光也是一种电磁波,性质相同,故C错误.振荡电路产生的电磁波是无线电波,故D错误.5.以下场合能用移动电话的是()A.正在起飞的飞机上B.加油站中C.面粉加工厂的厂房里D.运动的汽车里【答案】D【解析】飞机上不让用移动电话,是因为怕干扰通讯,电子通讯中最怕相近频率引起的干扰.所以A错.加油站不让用移动电话,是因为怕引燃油雾,加油站内空气中的汽油分子浓度很高,很容易引燃.所以B错.面粉加工厂的厂房里空气中弥漫着高浓度的面粉颗粒,用移动电话,很容易引燃,而导致爆炸.所以C错.运动的汽车里使用移动电话无任何影响.所以D正确.6.关于电磁波的传播速度,以下说法正确的是()A.电磁波的频率越高,传播速度越大B.电磁波的波长越长,传播速度越大C.电磁波的能量越大,传播速度越大D.所有的电磁波在真空中的传播速度都相等【答案】D【解析】电磁波的传播速率由频率和介质共同决定,A、B描述比较片面,错误;电磁波的速度与能量无关,C错;所有电磁波在真空中传播速度都等于光速,D对.7.微波是()A.一种机械波,只能在介质中传播B.一种电磁波,只能在介质中传播C.一种机械波,其在真空中传播速度等于光速D.一种电磁波,比可见光更容易产生衍射现象【答案】D【解析】微波属于电磁波,它可以在真空中传播,传播速度等于光速;它的波长大于可见光,故比可见光更容易发生衍射现象.8.关于电磁波,下列说法中正确的是()A.紫外线具有杀菌作用B.无线电波是波长最短的电磁波C. X射线是频率最小的电磁波D.医学上利用红外线对人体进行透射【答案】A【解析】紫外线具有杀菌作用,故A正确;无线电波是波长最长的电磁波,故B错误;γ射线是频率最高的电磁波,X射线次于γ射线,同样具有很高的频率,故C错误;医学上利用X射线对人体进行透射,故D错误.9.下列说法中正确的是()A.各种电磁波中最容易表现出干涉和衍射现象的是γ射线B.红外线有显著的热效应,紫外线有显著的化学作用C. X射线的穿透本领比γ射线更强D.低温物体不能辐射红外线【答案】B【解析】干涉和衍射现象是光的波动性的体现,波长越长,越容易产生,而γ射线波长最短,故A 选项错误;频率越高,穿透本领越强,故C选项错误;一切物体都能辐射红外线,故D错误,正确选项为B.10.一台简单收音机的收音过程至少要经过那两个过程()A.调幅和检波B.调谐和解调C.调制和检波D.调谐和调幅【答案】B【解析】一台简单收音机的收音过程至少要经过调谐和解调两个过程。
电磁波期末考试题集及答案详解
电磁场与电磁波练习1、 一半径为a 的均匀带电圆环,电荷总量为q ,求圆环轴线上离环中心o 点为z 处的电场强度E 。
解:(1)如图所示,环上任一点电荷元dq 在P 点产生的场强为204RdqE d πε=由对称性可知,整个圆环在P 点产生的场强只有z 分量,即()23220204cos z a zdq Rz R r dq E d E d z +===πεπεθ 积分得到()()()()2322023220232202322042444za qza za z dlza z dq za z E lz +=+=+=+=⎰⎰πεππελλπεπε2、 半径为a 的圆面上均匀带电,电荷面密度为δ,试求:(1)轴线上离圆心为z 处的场强,(2)在保持δ不变的情况下,当0→a 和∞→a 时结果如何?(3)在保持总电荷δπ2a q =不变的情况下,当0→a 和∞→a 时结果如何?解:(1)如图所示,在圆环上任取一半径为r 的圆环,它所带的电荷量为δπdr dq 2=由习题2.1的结果可知该回环在轴线上P 点处的场强为()()23222322024zrrdrz zr zdq E d +=+=εδπε则整个均匀带电圆面在轴线上P 点出产生的场强为()⎪⎪⎭⎫⎝⎛+-=+=⎰220023220122z a zzr rdr z E a z εδεδ (2)若δ不变,当0→a 时,则0)11(20=-=εδz E ; 当∞→a ,则002)01(2εδεδ=-=z E(3)若保持δπ2a q =不变,当0→a 时,此带电圆面可视为一点电荷。
则204z q E z πε=。
当∞→a 时,0→δ,则0=z E。
3、 有一同轴圆柱导体,其内导体半径为a ,外导体内表面的半径为b ,其间填充介电常数为ε的介质,现将同轴导体充电,使每米长带电荷λ。
试证明储存在每米长同轴导体间的静电能量为a b W ln 42πελ=。
证:在内外导体间介质中的电场为)(2b r a rE <<=πελ沿同轴线单位长度的储能为abdr r e dVE edV D E W ln 422222122πελππελ=⎪⎭⎫ ⎝⎛==•=⎰⎰⎰4、 在介电常数为ε的无限大约均匀介质中,有一半径为a 的带电q 的导体球,求储存在介质中的静电能量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与电磁波复习题一、填空题1、矢量的通量物理含义是矢量穿过曲面的矢量线总数.散度的物理意义矢量场中任意一点处通量对体积的变化率。
散度与通量的关系是矢量场中任意一点处通量对体积的变化率。
2、 散度在直角坐标系的表达式zA yA xA z y x A A ∂∂∂∂∂∂++=⋅∇=div ;散度在圆柱坐标系下的表达 ;3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分.旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。
当S 点P 时,存在极限环量密度。
二者的关系 ndS dCe A ⋅=rot ;旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该点最 大环量密度的方向。
4.矢量的旋度在直角坐标系下的表达式。
5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。
梯度的大小为该点标量函数ϕ的最大变化率.即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向.它指向函数的增加方向等值面、方向导数与梯度的关系是梯度的大小为该点标量函数ϕ的最大变化率.即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向.它指向函数的增加方向.;6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e 的表达式 ;7、直角坐标系下方向导数u l∂∂x y z G e e e grad x y z φφφφ∂∂∂=++=∇=∂∂∂8、亥姆霍兹定理的表述在有限区域.矢量场由它的散度、旋度及边界条件唯一地确定.说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。
9、麦克斯韦方程组的积分形式分别为0()sl sslsD dS QB E dl dS t B dS DH dl J dS t⋅=∂⋅=-⋅∂=∂=+⋅∂⎰⎰⎰⎰⎰⎰其物理描述分别为10、麦克斯韦方程组的微分形式分别为020E /E /t B 0B //tB c J E ρεε∇⋅=∇⨯=-∂∂∇⋅=∇⨯=+∂∂其物理意义分别为11、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场. 一般采用时谐场来分析时变电磁场的一般规律.是因为任何时变周期函数都可以用正弦函数表示的傅里叶级数来表示;在线性条件下.可以使用叠加原理。
12、坡印廷矢量的数学表达式20S c E B E H ε=⨯=⨯ .其物理意义表示了单位面积的瞬时功率流或功率密度。
功率流的方向与电场和磁场的方向垂直。
表达式()sE H dS ⨯⎰的物理意义穿过包围体积v 的封闭面S 的功率。
13、电介质的极化是指在外电场作用下.电介质中出现有序排列电偶极子以及表面上出现束缚电荷的现象。
两种极化现象分别是 、 .产生的现象分别有 、 、 。
描述电介质极化程度或强弱的物理量是 P。
14、折射率的定义是 /n c v = .折射率与波速和相对介电常数之间的关系分别为 /n c v = 、2r n ε= 。
15、磁介质是指在外加磁场的作用下.能产生磁化现象.并能影响外磁场分布的物质.磁介质的种类可分别有抗磁质、顺磁质、铁磁质、亚铁磁质。
介质的磁化磁场的现象 。
描述介质磁化程度的物理量是m χ。
16、介质的三个物态方程分别是c D EB HJ E εμσ===。
17、静态场是指静态场是指场量不随时间变化的场.静态场包括 静电场、恒定电场及恒定磁场。
分别是由静止电荷或静止带电体、恒定电流的导体、恒定电流的导体产生的。
18、静电场中的麦克斯韦方程组的积分形式分别为00svl s lsD d s dvE dl B d s H dl J d sρ⋅=⋅=⋅=⋅=⋅⎰⎰⎰⎰⎰⎰ ;静电场中的麦克斯韦方程组的微分形式分别为00D E B H Jρ∇⋅=∇⨯=∇⋅=∇⨯= ;19、对偶原理的容是 如果描述两种物理现象的方程具有相同的数学形式.并且有相似的边界条件或对应的边界条件.那么它们的数学解的形式也将是相同的 ;叠加原理的容是若1φ和2φ分别满足拉普拉斯方程.即012=Φ∇和022=Φ∇,则1φ和2φ的线性组合:21a φφφb +=必然也满足拉普拉斯方程:0a 212=+∇)(φφb 式中a 、b 均为常系数;唯一性定理的容是 唯一性定理可叙述为:对于任一静态场.在边界条件给定后.空间各处的场也就唯一地确定了.或者说这时拉普拉斯方程的解是唯一的。
。
20、电磁场的赫姆鹤兹方程组是22020E E t με∂∇-=∂0. 22020B B t με∂∇-=∂0 。
21、电磁波的极化是指均匀平面波传播过程中.在某一波阵面上.电场矢量的振动状态随时间变化的方式为波的极化(或称为偏振).其三种基本形式分别是线极化波、圆极化波、椭圆极化波。
22、工程上经常用到损耗正切.其无耗介质的表达式是tan /c δγωε=.其表示的物理含义是传导电流和位移电流密度的比值。
损耗正切越大说明 损耗越大 。
有耗介质的损耗介质是个复数.说明均匀平面波中电场强度矢量与磁场强度矢量之间存在相位差。
23、一般用介质的损耗正切不同取值说明介质在不同情况下的性质。
一个介质是良介质的损耗正切远小于1.属于非色散介质;当表现为良导体时.损耗正切为远大于1.属于色散介质。
24、波的色散是指同一媒质中.不同频率的波将以不同的速度传播.其相应的介质为色散媒质。
波的色散是由媒质特性所决定的。
色散介质分为正常色散和非正常色散介质.前者波长大的波.其相速度大.群速 小于 (大于、小于)相速;后者是波长大的波.其相速度小.群速 大于 (大于、小于)相速;在无色散介质中.不同波长的波相速度相等.其群速 等于 (等于、不等于)相速。
25、色散介质与介质的折射率的关系是 指波的传播速度即相速取决于介质折射率的实部,因而随频率而变.不同频率的波将以不同的速率在其中传播。
耗散介质是指 ①实际的介质都是有损耗的.非理想介质是有损耗介质也称为耗散介质.在这里是指电导率但仍然保持均匀、线性及各向同性等特性。
②是指其折射率的虚部为非零值的媒质,这时波在传播的过程中会逐渐衰减。
26、基波的相速为k /ω.群速就是波包或包络的传播速度.其表达式为/g v d dkω=。
一般情况下.相速与群速不相等.它是由于波包通过有色散的媒质.不同单色波分量以不同相速向前传播引起的。
27、趋肤效应是指随着电流变化频率的升高.导体上所流过的电流将越来越集中于导体的表面附近.导体部的电流却越来越小.趋肤深度的定义是当交变电流通过导体时.电流密度在导体横截面上的分布将是不均匀的.并且随着电流变化频率的升高.导体上所流过的电流将越来越集中于导体的表面附近.导体部的电流却越来越小.这种现象称为趋肤效应.趋肤深度的的表达式12δαωμγ==。
二、名词解释1、传导电流、位移电流自由电荷在导电媒质中作有规则运动而形成 电介质部的分子束缚电荷作微观位移而形成 2、电介质的极化、磁介质的磁化在外电场作用下.电介质中出现有序排列电偶极子以及表面上出现束缚电荷的现象 。
在外磁场的作用下.物质中的原子磁矩将受到一个力矩的作用.所有原子磁矩都趋于与外磁场方向一致的排列.彼此不再抵消.结果对外产生磁效应.影响磁场分布.这种现象称为物质的磁化。
3、静电场、恒定电场、恒定磁场静电场是静止电荷或静止带电体产生的场。
恒定电场载有恒定电流的导体部及其周围介质中产生的电场恒定电流的导体周围或者部不仅存在电场.而且存在磁场.这个磁场不随时间变化就是恒定磁场。
4、泊松方程、拉普拉斯方程静电场的电位函数 满足的方程 称为泊松方程。
如果场中某处有ρ=0.即在无源区域.静电场的电位函数满足的方程 将这种形式的方程称为拉普拉斯方程。
5、对偶原理、叠加原理、唯一性定理如果描述两种物理现象的方程具有相同的数学形式.并且有相似的边界条件或对应的边界条件.那么它们的数学解的形式也将是相同的.这就是对偶原理。
2ρφε∇=-20φ∇=叠加原理:唯一性定理:对于任一静态场.在边界条件给定后.空间各处的场也就唯一地确定了.或者说这时拉普拉斯方程的解是唯一的。
6、镜像法、分离变量法、格林函数法、有限差分法镜像法是利用一个与源电荷相似的点电荷或线电荷来代替或等效实际电荷所产生的感应电荷.这个相似的电荷称为镜像电荷.然后通过计算由源电荷和镜像电荷共同产生的合成电场.而得到源电荷与实际的感应电荷所产生的合成电场.这种方法称为镜像法。
分离变量法是求解拉普拉斯方程的基本方法.该方法把一个多变量的函数表示成为几个单变量函数的乘积后.再进行计算。
格林函数法用于求解静态场中的拉普拉斯方程.泊松方程及时变场中的亥姆霍兹方程。
先求出与待解问题具有相同边界形状的格林函数。
知道格林函数后通过积分就可以得到任意分布源的解。
有限积分法在待求场域选取有限个离散点.在各个离散点上以差分方程近似代替各点上的微分方程.从而把以连续变量形式表示的位函数方程.转化为以离散点位函数值表示的方程组。
结合具体边界条件求解差分方程组.即得到所选的各个离散点上的位函数值。
7、电磁波、平面电磁波、均匀平面电磁波变化的电场产生变化的磁场.而变化的磁场又产生变化的电场.这样.变化电场和变化磁场之间相互依赖.相互激发.交替产生.并以一定速度由近及远地在空间传播出去。
这样就产生了电磁波。
平面电磁波:波振面为平面.且垂直于其传播方向的电磁波就是平面电磁波。
在与波传播方向垂直的平面上.各点场量或的大小、方向、位相都相同的电磁波叫做平面电磁波。
在自由空间传播的均匀平面电磁波(空间中没有自由电荷.没有传导电流).电场和磁场都没有和波传播方向平行的分量.都和传播方向垂直。
此时.电矢量 E.磁矢量H和传播方向k两两垂直8、电磁波的极化电磁波极化是指电磁波电场强度的取向和幅值随时间而变化的性质.在光学中称为偏振。
如果这种变化具有确定的规律.就称电磁波为极化电磁波(简称极化波)。
9、相速、群速v 称为相速.每一等相位面沿传播方向运动的速度。
为频率与波长的乘积。
群速定义为/gv d dkω=.群速的定义基于两种情况:①无损耗介质②有损耗介质非常窄的频带。
一般情况下.相速与群速不相等.它是由于波包通过有色散的媒质.不同单色波分量以不同相速向前传播引起的。
10、波阻抗、传播矢量电场与磁场的振幅比11、驻波、行波、行驻波向着Z方向传播的平面电磁波-- 行波幅度随着Z按照正弦变化的电磁振荡波.由入射行波与反射行波叠加形成驻波12、色散介质、耗散介质色散介质指能引起电磁波传播中发生色散现象(电磁波波的传播速度即相速取决于介质折射率的实部,因而随频率而变.不同频率的波将以不同的速率在其中传播)的介质称为色散介质。