By Ashok Kumar(Y2102)

合集下载

Avamar备份说明书

Avamar备份说明书

Balaji PanchanathanEMCJayalakshmi SureshEMCPravin Ashok KumarEMCEFFICIENT AVAMAR BACKUPS OVER WAN AND SIZING LINKSTable of ContentsIntroduction (3)New in Avamar 7.1 for WAN (3)Sizing of WAN Links (4)Configuration (5)Type of WAN simulations and their configurations (8)How to measure the traffic on the appliance (9)Performance test results over WAN (10)DTLT (12)AER (12)Observations (13)Recommendations (13)Conclusion (14)Appendix (15)References (20)Disclaimer: The views, processes or methodologies published in this article are those of the authors. They do not necessarily reflect EMC Corporation’s views, processes or methodologies.IntroductionThis article will focus on four things:1. New features in Avamar® 7.1 which help WAN backups2. How to estimate the bandwidth required for WAN links based on the application anddata size. This depends on the dedupe rate for the application and use of a WANemulator to measure it (Linux, open source tools, i.e. netem, etc.)3. Performance number for desktop/laptop (DTLT), Avamar Extended Retention (AER),Data Domain® (DD) with different encryption strengths4. Broad recommendations for the customerNew in Avamar 7.1 for WANStarting with Avamar 7.1, WAN is a supported configuration with Data Domain as the target storage device. With this support, metadata can be stored in Avamar and the data can be moved across the WAN to the Data Domain device.A salient feature is support of a 60-minute outage of the WAN Link and support for over-WAN backup to Data Domain as the target.Figure 1 depicts a type of network configuration that is supported.Figure 1This support provides customers the flexibility to deploy AVE’s in each remote office and have one Data Domain in a central location. Optionally, the customer can have one central Avamar server and deploy Data Domain virtual edition in each branch office.Sizing of WAN LinksThe customer has to estimate the size of the WAN links required for backing up their data. To do so, open source tools like netem, available on any Avamar server or Linux machine, can be used.Customers can use the results of the test shown below to decide where Avamar and Data Domain needs to be deployed, i.e. in a remote location or in a central office.The following set of test equipment will enable customers to easily perform the test decide for themselves.∙ESX Server - host∙Avamar Server – AVE virtual edition∙Data Domain – Virtual Edition∙Linux – SLES 11 SP1∙Windows client∙Linux ClientAvamar server virtual edition, Data Domain virtual edition, and Linux WAN emulator can be installed in a single ESX host.The network diagram will look like that which is shown in Figure 2.Figure 2Configuration∙Client should be in the same network as that of one interface of the network appliance ∙Server should be in the same network as that of one interface of the network appliance ∙Server and client should be on different network∙Data Domain should be on a different network on the same ESX hostFollow the steps below:1.ESX Configuration: Step to add new network to the ESX.o Log in to the ESX host using vSphere Cliento Click on Configurationo Click on Networkingo Click on Add networking (which will be displayed on the right side)o Select Virtual machineo Use the network label as VM Network 1o Repeat the above steps again and add VM Network 2, 3, 4, and 52.ESX VM Appliance Configuration: We need to add four interfaces to the SLES machine.The interfaces can be added by following the steps below.o Log in to the ESX host using vSphere Cliento Deploy the VM using the vmdk fileo Add disk capacityo Power Ono Right click on the VMo Edit Settingso Click on ADDo Select Ethernet Adaptero Select the VM network (for the second interface, select VM network 1 (by default first interface will be added). For the third interface, select VM Network 2)Shown below is the sample snapshot after the interfaces are added.3.ESX Configuration for client and server:o Log in in to the ESX host using vSphere Cliento Right click on the Client VMo Edit Settingso Click on the Network Adaptor and then change the label to VM Network 1o In a similar way, click on the Server VM (AVE) and then change the label to VM Network 24.IP Address on the network appliance:o Give the command ifconfig –a and get the list of interfaces (ex: eth0, eth2, eth5, etc. and then configure the IPs using the commands below (replacing theinterface respectively)i. Ifconfig eth0 10.110.209.230 netmask 255.255.252.0ii. Ifconfig eth1 192.168.2.11 netmask 255.255.255.0iii. Ifconfig eth2 192.168.1.3 netmask 255.255.255.0iv. Ifconfig eth3 192.168.3.1 netmask 255.255.255.0After configuring the IP address, the configs can be checked by using the ifconfigcommand.5.Routing-related configo Sysctl –p net.ipv4.ip_forward=1o On Client sidei. route add –net 192.168.1.0 netmask 255.255.255.0 gw 192.168.2.11ii. route add –net 192.168.3.0 netmask 255.255.255.0 gw 192.168.2.11b. On Server sidei. route add –net 192.168.2.0 netmask 255.255.255.0 gw 192.168.1.3ii. route add –net 192.168.3.0 netmask 255.255.255.0 gw 192.168.1.3c. On Data Domain sidei. route add –net 192.168.1.0 netmask 255.255.255.0 gw 192.168.3.1ii. route add –net 192.168.2.0 netmask 255.255.255.0 gw 192.168.3.1d. Route-related config can be checked using route –n commandNote: In the above sample ifconfig and route commands, the ipaddress/netmask should be replaced by your ip/netmask, respectivelyType of WAN simulations and their configurations1. Drop, delay, out-of-order(TCP Level)2. Bandwidth throttlework impairments can be done on both client/server interfacesCommands to simulate Network impairments:After executing the command, we can check whether those settings are in effect using the tc filter show dev <interface>command.How to measure the traffic on the applianceThe iptraf tool, installed and running the iptraf command, will help monitor traffic on the appliance.Follow the steps below:∙On the command line, run the command iptraf∙Enter a key to continue∙Select General Interface statistics∙Select a file to which you want to log the statsThe screen will display the traffic flowing through each of the interfaces.Below is the snapshot of how it will look after following the steps above.Performing the test set up above and using those commands, customers can simulate different WAN conditions, i.e. Drop rate, bandwidth throttle, etc.Customers can also disable WAN conditions on Avamar® and have only WAN condition for Data Domain (and vice versa), enabling them to check which application offers better results and decide on the architecture .Performance test results over WANOur testing on filesystem backup over WAN delivered the results below.Bandwidth Throttle results: With 1MbpsWith 10MbpsResults for different WAN profiles we have tested in desktop laptop environment (DTLT) are shown below.AERThe Avamar Extended Retention (AER) feature is used for Avamar backup retention to tape and restore those retained backups to clients. Formerly called Direct-to-Tape Out (DTO), it is an archiving solution for Avamar.Main tasks involved in AER are∙Exports (Identifying the backups and pushing it to tape libraries which is attached to AER Node),∙Imports (Moves the backup from Tape to AER Node (physical storage).∙Restore (Registering the client to AER and restoring the respective backups to Client).Observations∙Impact of delay on restore is greater compared to backup in exports. Additionally, there is 50% greater impact on restore compared to backup.∙Impact of bandwidth throttle is greater in restore, at least 10x worse. These things should be taken into account when the customer wants to restore (import) from AERnode.Recommendations∙WAN throughput different between medium and high encryption is minimal∙Backup window required for different clients/applications∙Test with different CPU throttles and test whether CPU usage has any impact on WAN throughput. Our assumption is that the bottleneck is only the network and thisassumption needs to be validated.Broad recommendations based on the tests conducted∙Data Domain performs better if the delay is less, in the range of 5-100ms. If the delay is 500ms, Avamar performance is much better, by at least 2x. However, with bandwidthless than 1Mbps, even with 500ms delay, Data Domain is better.∙The impact of delay when the available bandwidth is 1Mbps is much less, roughly a 20% drop in performance for Avamar and 5% for Data Domain when the delay increases from 5ms to 500ms. Hence, with bandwidth throttle, it is better to use Data Domain as storage target rather than Avamar.ConclusionPerformance numbers in WAN conditions are given in this article. The same can be used for sizing the WAN links. Customers can also easily test their numbers using open source tools like netem/tc, etc. This will help customers avoid surprises and evaluate the different products available to select the best product. This set of WAN tools cannot only be used with Avamar but also with other backup products to select the right product and right WAN size.AppendixBelow is the bandwidth script which can be used on the Linux SLES box (WAN Emulator). Using the script, bandwidth throttle can be applied and tests can be conducted.#!/bin/bash## tc uses the following units when passed as a parameter.# kbps: Kilobytes per second# mbps: Megabytes per second# kbit: Kilobits per second# mbit: Megabits per second# bps: Bytes per second# Amounts of data can be specified in:# kb or k: Kilobytes# mb or m: Megabytes# mbit: Megabits# kbit: Kilobits# To get the byte figure from bits, divide the number by 8 bit### Name of the traffic control command.TC=tc# The network interface we're planning on limiting bandwidth.IF=eth5 # Interface4# Download limit (in mega bits)DNLD=10mbit # DOWNLOAD Limit# Upload limit (in mega bits)UPLD=10mbit # UPLOAD Limitit# IP address of the machine we are controllingIP=192.168.4.12 # Host IP# Filter options for limiting the intended interface.U32="$TC filter add dev $IF protocol ip parent 1:0 prio 1 u32" start() {# We'll use Hierarchical Token Bucket (HTB) to shape bandwidth. # For detailed configuration options, please consult Linux man# page.$TC qdisc add dev $IF root handle 1: htb default 30$TC class add dev $IF parent 1: classid 1:1 htb rate $DNLD $TC class add dev $IF parent 1: classid 1:2 htb rate $UPLD$U32 match ip dst $IP/32 flowid 1:1$U32 match ip src $IP/32 flowid 1:2# The first line creates the root qdisc, and the next two lines# create two child qdisc that are to be used to shape download# and upload bandwidth.## The 4th and 5th line creates the filter to match the interface. # The 'dst' IP address is used to limit download speed, and the # 'src' IP address is used to limit upload speed.}stop() {# Stop the bandwidth shaping.$TC qdisc del dev $IF root}restart() {# Self-explanatory.stopsleep 1start}show() {# Display status of traffic control status. $TC -s qdisc ls dev $IF}case "$1" instart)echo -n "Starting bandwidth shaping: " startecho "done";;stop)echo -n "Stopping bandwidth shaping: " stopecho "done";;restart)echo -n "Restarting bandwidth shaping: " restartecho "done";;show)echo "Bandwidth shaping status for $IF:" showecho "";;*)pwd=$(pwd)echo "Usage: tc.bash {start|stop|restart|show}" ;;esacexitReferences/collaborate/workgroups/networking/netem/linux/man-pages/man8/tc-netem.8.html/index.php/tag/traffic-shaping//2.2/manual.htmlhttp://www.slashroot.in/linux-iptraf-and-iftop-monitor-and-analyse-network-traffic-and-bandwidth https:///watch?v=Y5un7JTGp3ohttps:///jterrace/1895081/man/8/ifconfig/od/commands/l/blcmdl8_route.htm/vsphere-50/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-server-50-networking-guide.pdf/tools/traffic-control.phpEMC believes the information in this publication is accurate as of its publication date. The information is subject to change without notice.THE INFORMATION IN THIS PUBLICATION IS PROVIDED “AS IS.” EMC CORPORATION MAKES NO RESPRESENTATIONS OR WARRANTIES OF ANY KIND WITH RESPECT TO THE INFORMATION IN THIS PUBLICATION, AND SPECIFICALLY DISCLAIMS IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Use, copying, and distribution of any EMC software described in this publication requires an applicable software license。

供应链质量管理及其对绩效的影响:文献综述

供应链质量管理及其对绩效的影响:文献综述

供应链质量管理及其对绩效的影响:文献综述张光明;朱青青【摘要】基于供应链的质量管理已经成为企业竞争优势的重要来源,传统的质量管理是单个企业的视角,缺乏供应链视角的、系统的关注.国内外学者对供应链质量管理进行了大量研究,文章采用文献综述的方法,对供应链质量管理的内涵及构成要素、供应链质量管理与绩效的关系相关文献进行梳理,探究供应链质量管理机理,提出进一步研究的展望.【期刊名称】《物流科技》【年(卷),期】2013(036)011【总页数】3页(P71-73)【关键词】供应链;质量管理;供应链质量管理【作者】张光明;朱青青【作者单位】武汉大学经济与管理学院,湖北武汉430072;武汉大学经济与管理学院,湖北武汉430072【正文语种】中文【中图分类】F273.7世界著名质量管理大师朱兰曾说过:“21世纪是质量的世纪”。

英国学者克里斯托弗又指出:“21世纪的竞争不是企业与企业之间的竞争,而是供应链之间的竞争”。

由此可见,质量与供应链成为了21世纪企业管理的主题,质量管理与供应链管理相结合,是当前企业参与国际竞争和提高绩效的重要途径。

本文就供应链质量管理的内涵及构成要素,供应链质量管理与绩效的关系进行梳理,探究供应链质量的形成机理。

1 供应链质量管理内涵及构成要素1.1 供应链质量管理内涵质量管理经历了质量检验、统计质量管理和全面质量管理三个阶段,供应链质量管理是全面质量管理的深化和发展。

到目前为止,对供应链质量管理还没有一个统一的定义。

一般认为,供应链质量管理是指对供应链各个环节的质量管理,由单一企业质量管理模式转变为多企业协同的质量管理模式。

Kuei&Madu(2001)定义的供应链质量管理(SCQM):SCQM=SC+Q+M,SC=一个生产-配送网络,Q=准确、快速地提供顾客满意的产品,M=保证供应链中的产品质量以及获得顾客信任[1]。

Robinson和Malhotra(2005)将供应链质量管理定义为:通过对包括供应链里所有成员的业务流程进行正式的协调和整合,来测量、分析和持续改进产品、服务和流程质量,以获得中间及最终客户满意和创造价值的流程[2]。

印度电影PPT课件

印度电影PPT课件

Achhut Kanya (Untouchable Girl), with Devika Rani and Ashok Kumar, 1936
India's independence in 19Байду номын сангаас7
The post independence period saw the golden era of Indian cinema with melodious socials & melodramas.
Just like Hollywood, Bollywood, has a group of large studios and some huge stars, capable of making expensive, commercial movies. It has an extensive film market across the twentieth century and a collection of movies regarded as classics.
India has one of the oldest film
industries in the world. The first film advertisement in India appeared in the Times of India on 7 July 1896 by Lumiere brothers. Today Indian films, have already traversed a century!
CARAVAN---1979
•Since 1971, 14 Indian film industry has consecutively ranking the first in the world. •Most of which is still love and song and dance entertainmentoriented films

草酸镁的合成与应用研究

草酸镁的合成与应用研究

草酸镁的合成与应用研究张静;沈国良;马晓雨;刘红宇;徐铁军;陈远南【摘要】The synthesis technology of magnesium oxalate were reviewed respectively to use metal magnesium, magnesium hydroxide, magnesium nitrate, magnesium sulfate, magnesium chloride, magnesium acetate as raw materials. Hie application status on the magnesium oxalate as catalyst and precursor of preparation of magnesium alu-minate spinel and nanometer magnesium oxide were introduced in detail. The magnesium oxalate will find broad of application and development in industry.%分别概述了以金属Mg、氢氧化镁、硝酸镁、硫酸镁、氯化镁、乙酸镁等为原料制取草酸镁的合成方法,详细介绍了草酸镁作为催化剂和作为制取镁铝尖晶石、纳米氧化镁的前驱物等方面的应用现状.草酸镁有着广阔的应用和发展前景.【期刊名称】《化学工程师》【年(卷),期】2013(027)003【总页数】5页(P43-46,50)【关键词】草酸镁;氧化镁;合成;应用【作者】张静;沈国良;马晓雨;刘红宇;徐铁军;陈远南【作者单位】沈阳工业大学石油化工学院,辽宁辽阳111003;沈阳工业大学石油化工学院,辽宁辽阳111003;沈阳工业大学石油化工学院,辽宁辽阳111003;沈阳工业大学石油化工学院,辽宁辽阳111003;沈阳工业大学石油化工学院,辽宁辽阳111003;沈阳工业大学辽阳校区图书馆,辽宁辽阳111003【正文语种】中文【中图分类】TQ262.1草酸盐是草酸根离子与金属离子形成的盐类。

各大学专业及详细介绍书籍

各大学专业及详细介绍书籍

各大学专业及详细介绍书籍概述选择一个适合自己的大学专业对于每位学生来说都至关重要。

通过深入了解各个专业的特点和就业前景,学生们可以更好地做出决策。

但是在咨询顾问或搜索引擎中找到详尽的专业介绍并不容易。

因此,本文将为您介绍各个专业以及相关书籍,帮助您更好地了解不同专业和相关知识。

1. 计算机科学与技术计算机科学与技术专业培养学生的计算机编程和应用能力,培养他们成为计算机软件和硬件领域的高级人才。

以下是该专业的一些经典书籍:•《计算机网络》(Andrew S. Tanenbaum, David J. Wetherall):介绍计算机网络原理和技术,包括数据通信、网络体系结构、传输层、网络层等。

•《算法导论》(Thomas H. Cormen, Charles E. Leiserson, Ronald L.Rivest, Clifford Stein):详细介绍算法设计和分析的基本知识,是计算机科学经典教材之一。

•《深入理解计算机系统》(Randal E. Bryant, David R. O’Hallaron):深入讲解计算机系统的硬件和软件层面,包括处理器结构、内存管理、虚拟化等。

2. 金融学金融学是研究货币和资本市场的学科,旨在培养学生的金融理论和实践能力。

以下是该专业的一些推荐书籍:•《金融市场学》(George E. Allen, Stephen A. Ross, Jeffrey F. K.Reilly):介绍金融市场的理论和实践,包括金融市场的机构、工具和交易等。

•《金融风险管理》(Donald R. Van Deventer, Kenji Imai, Mark Mesler):重点介绍金融风险的管理方法和工具,包括市场风险、信用风险和操作风险等。

•《公司金融学原理》(Richard A. Brealey, Stewart C. Myers, Franklin Allen):详细讲解公司金融的基本理论和方法,包括投资决策、融资决策和股权估值等。

乔布斯的最后一个大项目下一代苹果

乔布斯的最后一个大项目下一代苹果

史蒂夫·乔布斯的最后一个大项目:下一代苹果
iPhone 4S并不是乔布斯的最后一个项目,而是 iphone 5。

“下一代苹果”是史蒂夫·乔布斯从概念到最终设计密切参与的。

因为这个原因,这种产品将为苹果工业区建立一个高水平,“Ashok Kumar,这周在一份研究报告中对进行性Rodman 和Renshaw进行了分析。

他希望iPhone 5因为乔布斯的参与成为iphone的“邪教经典”。

在报告中, Kumar说手机将会有一个苗条的轮廓和更大的屏幕尺寸,和iphone 4S尺度相同(3.5英寸屏幕的iphone 4S最好的功能)。

苹果电脑也会有,或长期的规划——有时被称为4G。

另一个来源,这个星期我跟一个自称是重新设计专家的人聊天,他表示, iPhone 5是一个“完美的设计。

这是一个很大的计划以至于乔布斯奉献了他所有的时间。

他并没有参与到iphone 4S的工作,因为他的时间是有限的。


那我可以理解,包装后的Iphone 4S和iphone 4一样。

没有什么大变化。

而且虽然iphone 4S对机身内部进行了翻新,在某些方面,它在技术携带iPad 2:同样的双核处理器、内存容量相同加速度计陀螺仪,在其他地方也一样。

Iphone 5将会外部和内部进行重新设计(不知道苹果公司在软件上会有什么样的计划: iOS 6?Siri 2 ?)
根据Kumar的研究笔记,2012年的夏天,iPhone 5将首次出现在苹果的开发者大会上。

第一届世界天然药物和传统药物药理学学术会议

第一届世界天然药物和传统药物药理学学术会议

参加“第一届世界天然药物和传统药物药理学学术会议”感想2009年9月9日~9月12日,我在杭州参加了国际药理学联合会天然药物药理学分会和中国药理学会举办的“第一届世界天然药物和传统药物药理学学术会议”。

会议语言主要为英语,会上来自中国、法国、德国、日本、英国、印度、丹麦、南非、巴基斯坦、美国等十个国家的著名天然药物和传统药物药理学家做了精彩报告,报告的内容如下:1 香港大学教授 Ricky Y.K.Man 天然产物研究和药物发现2 法国路易∙巴斯特大学教授Valérie B. Schini-Kerth 葡萄衍生的多酚对于健康和疾病血管功能的保护作用3 军事医学科学院科技部副部长教授张永祥基于神经内分泌调节网络的中药复方药理研究4 德国癌症研究中心教授Thomas Efferth German 青蒿素衍生物对于癌症治疗的药理基因组学5 首都医科大学药物所所长教授李林中药治疗阿尔茨海默病的药理研究6 日本东北大学药学院教授Yasushi Ohizumi 从柑橘果皮提取的川陈皮素减轻了阿尔茨海默病模型动物的记忆恶化7 南京大学生命科学院副院长、长江学者奖励计划特聘教授徐强从成分缺失的观点阐述中药处方的作用8 英国伦敦国王学院 Peter J Hylands 化学计量学和代谢学在研究中药中的应用9 中国中医科学院研究员刘建勋通过中澳合作研发中草药(维脑康)10 印度药理教授 Ashok Kumar 印度植物抗癌的潜力11 军事医学科学院毒物药物研究所研究员周文霞对于发现和确认筛选和评价抗阿尔茨海默病药物的组合分子靶点的初步研究12 丹麦奥古斯大学教授 Michael John Mulvany 抗高血压治疗:天然药物的治疗应该被推荐吗?13 北京大学医学部基础医学院副院长药理系主任李学军丹酚酸B保护了内皮细胞免受氧化剂介导的损害14 沈阳药科大学校长教授吴春福旋复代赭汤对于胃肠运动的兼容性特征15 英国剑桥大学教授 David Barlow 植物化学信息学和植物虚拟筛选在中药中的应用16 中国中医科学院中药复方新药开发国家工程研究中心主任 OB(WygX&K 叶祖光中药的安全评价、安全使用和上市后的监视17 中国中医科学院中药研究所副所长朱晓新参莲提取物通过抑制炎症反应预防和治疗动脉粥样硬化18 香港大学医学院药理及药剂学系主任 Paul.M.Vanhoutte 中药西方化的挑战19 中国医学科学院北京协和医学院药物研究所国家药物筛选中心杜冠华丹酚酸A通过抑制糖基化终产物和氧化应激,阻止了二型糖尿病大鼠血管内皮细胞的机能障碍20 四川省中医药科学院教授赵军宁用Caco-2细胞模型进行小柴胡汤的毒理研究21 南非夸祖鲁纳塔尔大学John A. O. Ojewole 非洲土豆水提取物抗惊厥活性22 中国医学科学院药用植物研究所副所长孙晓波对于中药处方有效性与关联性评价技术的研究23 巴基斯坦阿格克汉大学生物和生物医学系药理学教授 Anwarul Hassan Gilani 天然药物新的协同或副作用中和的组合24 军事医学科学院放射与辐射医学研究所生物技术研究室副主任马白平草药中类固醇皂苷的研究和开发25 科技部社会发展司生物医药处处长邹健强中药现代化发展策略与现状26 国家食品药品监督管理局张磊中药新药临床前和临床研究——法规、现状和展望27 美国食品药品监督管理局吴魁蒙美国植物药产品研发的监督管理毒理学观点以上大会报告有的是展示对天然药物和传统药物药效和产生这种药效的机制研究,主要涉及神经药理、心血管药理、内分泌药理、免疫药理,我感到国外对天然药物和传统药物的研究非常重视,有一些是仿制我国的中药。

Archive File

Archive File

Financial Accounting DocumentsArchiving Step by StepApplies to:SAP FI Module. For more information, visit the Data Management and Integration homepage. SummaryStep by step approach of Archiving Financial Accounting documents using Archiving Object FI_DOCUMNT is explained in this Article.Author: Ashok Kumar RajagopalCompany:Steria India Limited.Created on: 08 May 2009Author BioI am Ashok Kumar Rajagopal, One of the Senior SAP ABAP Consultant in our companySteria India Limited. Currently I am playing the role of Team Leader. I have worked in USA foraround 4 years and also worked in client place located in Amsterdam, Netherlands.Table of Contents Introduction (3)Configuration for Archiving (3)Step 1 - Creating Archive Files (4)Read Archived File: (6)Step 2 - Deleting files from the Database (8)Conclusion: (10)Disclaimer and Liability Notice (11)IntroductionThe continuous usage of SAP results in huge amounts of enterprise data. This leads to problems such as data overflow, longer transaction processing times, and performance degradation. Data Archiving removes out-of-date data from the SAP database and store offline. This result in•Greater System Availability.•Improved Performance and Response Times.•Save Costs by Optimizing our Available Resources.In Archiving process, at least two steps are mandatory.•Creating Archive Files•Deleting files from the DatabaseThese steps are described in detail for FI Accounting Document in following sections.Configuration for ArchivingConfiguration of Archiving Object is done at transaction AOBJ.Financial accounting documents are archived via the archiving object FI_DOCUMNT.Let us see the configuration done for this.Write and Delete Programs:Some of the Tables from which entries are deleted after Archiving:Customized settings:Logical File name is defined in transaction FILE.Step 1 - Creating Archive FilesGo to Transaction SARA.Specify Archiving Object – FI_DOCUMNTSelect ‘Write’ Button.Maintain Variant and give Variant Name.Maintain ‘Start Date’ & ‘Spool Params.’ .After maintaining, Lights will be Green. Execute.Job will be scheduled.Once the job status becomes ‘Finished’, Select ‘Management’ in SARA.It can be seen that Archiving is under the status of ‘Incomplete Archiving Sessions’.and Archived file can be seen physically through transaction AL11,in the path assigned to Logical Path.Check Table BFIT_A to get the number of entries of the document number to which Archiving was done. This will be used for verification of Deletion of Archived entries later.Read Archived File:Select ‘Read’ Button in SARA and Select Read program and execute.Select Data source.Select the Archived Session and File.The Archived documents can be seen.Step 2 - Deleting files from the Database Select ‘Delete’ button in SARA.Select Archiving Session and File for Deletion.Maintain Start data and Spool Parameters and then execute.Check the entries for the Account number in table BFIT_A.No record is found. This means the Archived records are successfully removed from the database. Select ‘Management’ in SARA.It can be seen that now the Archived record comes under the status of ‘Complete Archiving Sessions’Conclusion:Financial Account documents are Archived and Deleted from the database successfully.Financial Accounting Documents Archiving Step by StepDisclaimer and Liability NoticeThis document may discuss sample coding or other information that does not include SAP official interfaces and therefore is not supported by SAP. Changes made based on this information are not supported and can be overwritten during an upgrade.SAP will not be held liable for any damages caused by using or misusing the information, code or methods suggested in this document, and anyone using these methods does so at his/her own risk.SAP offers no guarantees and assumes no responsibility or liability of any type with respect to the content of this technical article or code sample, including any liability resulting from incompatibility between the content within this document and the materials and services offered by SAP. You agree that you will not hold, or seek to hold, SAP responsible or liable with respect to the content of this document.SAP COMMUNITY NETWORK SDN - | BPX - | BOC - © 2009 SAP AG 11。

小儿气管异物麻醉

小儿气管异物麻醉

谢谢
放映结束!
欢迎批评指导!!
2019 ppt资料 46
THANK YOU FOR WATCHING!
感谢聆听!
• 床旁胸片:左侧气胸,左肺压缩30%,纵隔右移; 全腹皮下积气,即行胸腔引流,暂停手术 • 一周后再行异物取出术
• 麻醉诱导: 8% 七 氟 醚 吸 入 , 氧 流 量 8L/min, 静 注 ketamine20mg,Propofol20mg, norcuron0.5mg • 置镜顺利,术中经支气管镜侧管控制通气, 一次即完整取出花生仁。

[2]黄磊,多排螺旋CT后处理技术对小儿不典型气管异物的诊断价值,浙江医学2007年第 29卷第5期,496-498.
CT检查
尤其三维成像,对某些诊断困难的病例可有助于确定异物有无及其部 位
小儿外科
CT显示气管异物,手术证实为花生
仿真支气管镜检查(无异物患儿)
仿真支气管镜检查 ( 无异物患儿)
2. Oliveira CF, Almeida JFL, Troster EJ, Vaz FA. Complications of tracheobronchial foreign body aspiration in children: report of 5 cases and review of the literature. Rev Hosp Clin Fac Med Sao Paulo 2002; 57:108-11.
要点
• 麻醉医生和术者的合作很重要。术者操作时将 气管镜伸入一侧肺或叶支气管,阻塞健肺加重 缺氧,可及时退镜至主气管充分给氧后再继续 操作。 • 另外,在异物取出的关键时刻,只要氧合足够, 可以暂时不通气。
要点
• 夹住异物后,术者常把气管镜和异物钳一同退

科技行业劣势

科技行业劣势

科技行业存在问题1、企业面临的生产经营压力加大。

近年国家宏观调控力度不断加大,原材料价格居高不下,新劳动合同法实施对加工制造业生产成本和用工又带来连锁反应,从紧的货币政策及人民币的持续升值等多从因素也给以外向型为主的电子企业经营带来跟大的压力。

2、全行业固定资产投资下降。

受宏观经济环境,从紧货币政策、工业用地供应紧张、全球经济趋势等因素制约,电子制造业完成投资不断下降,对行业持平稳增长带来影响,增长后颈不足。

3、家用视听设备制造业萎缩。

家用视听类产品受出口和价格下降、款式、性价比等因素影响,尽管产量增长,但产值和效益指标呈下降态势。

4、电子科技企业规模偏小,普遍都是中小型企业。

5、产品销售,产品推广,可以选择网上发布信息,不过又存在产品单一,网页内容不具体,内容不真实等问题。

6、产品销售渠道单一。

7、消费者和使用者满足感永远不足。

十字路口上的美国科技行业 2011.9.2 10:41 新浪科技 ( 0条评论 )导读:MarketWatch专栏作家普莱蒂(Therese Poletti)撰文指出,由于平板电脑和智能手机的兴起,科技行业中若干不同的领域都发生了地震般的变化,那些在之前的时代当中取得成功的公司会采取怎样的姿态来因应新的风暴,这将最终决定他们的命运。

以下即普莱蒂的评论文章全文:在刚刚过去的艾琳飓风灾害之后,许多人都在谈论那些拒绝搬家的东海岸人,辩论他们究竟是勇敢,还是愚蠢,抑或只不过是不相信政府的话语。

或许,以同样的逻辑,我们也可以审视一下近期的科技市场,看看那些十字路口上的科技玩家该如何选择,是留下来和传统逻辑进行针锋相对的抗争,还是在看到最初的风吹草动后就逃之夭夭。

事实上,这正是Research In Motion Ltd(RIMM)和惠普(HPQ)眼下最应该考虑的问题。

无论是个人电脑还是移动电话,市场的变化都是日新月异。

个人电脑的需求至多只能说是止步不前,唯一的增长点只存在于iPad这样的平板电脑身上。

氧化还原法制备纳米铜研究报告综述

氧化还原法制备纳米铜研究报告综述

纳米铜粉制备工艺研究报告2011年10月18日,欧盟定义纳米材料是指一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1纳米至100纳米之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。

这种材料由于量子尺寸效应,表面效应,体积效应等特性而具备特殊的性能。

近些年来,随着金属及其合金制备方法的提高,越来越纯及越来越小的金属颗粒被制备出来,纳米金属的研究迅速发展。

研究发现,纳米金属材料具有较好的机械性能如屈服强度、拉伸强度等[1],以及优异的电学性能,磁学性能,光学性能等等。

1铜在材料方面的应用1.1 氧化铜的应用铜是与人类关系非常密切的有色金属,铜是唯一能大量天然产出的金属,存在于各种矿石中;它在有色金属材料的消费中仅次于铝。

其氧化物—CuO有着广泛的应用,除作为制铜盐的原料外,它还广泛应用于其他领域:如在催化领域,它对高氯酸钱的分解,一氧化碳、乙醇、乙酸乙醋以及甲苯的完全氧化都具有较高的催化活性,且对前4种反应的催化活性均排在金属氧化物之前列;在传感器方面,用CuO作传感器的包覆膜,能够大大提高传感器对CO的选择性和灵敏度;近年来,由于含铜氧化物在高温超导领域的异常特性,使CuO又成为重要的模型化合物,用于解释复杂氧化物的光谱特征。

此外,它还用于玻璃、陶瓷的着色剂,油漆的防皱以及有机分析中测定化合物含碳量的助氧剂,甚至有望用作汽车尾气的净化材料[2]。

1.2纳米铜的应用由于纳米铜粉具有小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效应及介电限域效应等特点,因此它的物理化学性质也与传统材料大不相同。

自1995年IBM的C K HU等指出纳米铜粉由于其低电阻可以用于电子连接后,其性质引起了电子界的很大兴趣。

纳米铜粉作为重要的工业原料,代替贵金属粉末在制作高级润滑油、导电浆料、高效催化剂等方面可大大降低工业成本,有着广阔的应用前景。

在镍氢电池的负极中添加3-10wt.%型号VK-Cu01纳米氧化铜,就可以有效提高电池的比能量和比功率,提高电池的负极性能,还降低了负极电池的质量。

The physical characterization of supermacroporous

The physical characterization of supermacroporous

Materials Science and Engineering A464 (2007) 93–100The physical characterization of supermacroporous poly(N-isopropylacrylamide)cryogel:Mechanical strengthand swelling/de-swelling kineticsAkshay Srivastava,Era Jain,Ashok Kumar∗Department of Biological Sciences and Bioengineering,Indian Institute of Technology,Kanpur208016,IndiaReceived29September2006;received in revised form19January2007;accepted15March2007AbstractPoly(N-isopropylacrylamide)[poly(NiPAAm)]and poly(acrylamide)[poly(AAm)]cryogels were synthesized by radical polymerization at −12◦C for12h using monomers of N-isopropylacrylamide(NiPAAm)and acrylamide(AAm)with N,N-methylene bisacrylamide(MBAAm)as cross-linking agent,respectively.The cryogels synthesized in freezing conditions provided spongy,elastic and supermacroporous character as compared to the hydrogels synthesized at ambient temperatures.Our earlier observations revealed that the elastic deformation of cryogels either by external forces(mechanical deformation)or internal forces(shrinkage-swelling of poly(NiPAAm)cryogels)led to detachment of affinity bound bioparticles to these gels,which promises great potential in understanding cell interactions on elastic matrices[M.B.Dainiak,A.Kumar,I.Y. Galaev,B.Mattiasson,Proc.Natl.Acad.Sci.U.S.A.103(2006)849–854].The deformation characteristic of cryogels as measured by Young’s modulus indicates that the modulus of elasticity of poly(NiPAAm)cryogel(33–65kPa)is comparatively lower than the Young’s modulus for poly(AAm)cryogel(42–86kPa).The Young’s modulus of both the cryogels was found to be dependent on monomer concentration in cryogels and increases with the increase in concentration.Thus,poly(AAm)cryogel are mechanically more rigid than poly(NiPAAm)cryogel.Further,the swelling/de-swelling kinetics study on poly(NiPAAm)cryogel and hydrogel showed,higher swelling ratios for cryogels in the range of13–16as compared to poly(NiPAAm)hydrogels which were in the range of7–10.However,the extent of de-swelling is more in the case of poly(NiPAAm) hydrogels.© 2007 Elsevier B.V. All rights reserved.Keywords:Thermo-responsive cryogels;Swelling/de-swelling;Young’s modulus;Cryogel elasticity;Mechanical strength of gels1.IntroductionPolymeric gel is physically or chemically cross-linked net-work of polymer chains,within which low molecular weight liquid is immobilized and the amount of solvent present within the network is much higher than the amount of polymer con-stituting the network.Specifically,the xerogels which swell in aqueous medium are called as‘hydrogels’.Based on the response to the surrounding medium conditions,hydrogels can be categorized into two classes:(a)conventional hydrogels(b) stimuli-responsive hydrogels.The stimuli-responsive hydrogels demonstrates sensitivity towards various external stimuli such as pH,temperature,light,ions,electricfield,etc.In such class of polymeric gels,the pH and temperature responsive gels have ∗Corresponding author.Tel.:+915122594051;fax:+915122594010.E-mail address:ashokkum@iitk.ac.in(A.Kumar).shown great potential in various biotechnological applications [1].The poly(N-isopropylacrylamide)[poly(NiPAAm)]is a well known reversibly thermo-responsive polymer which exhibits a lower critical solution temperature(LCST)in an aqueous solution generally at32◦C[2].The swelling and de-swelling behavior of poly(NiPAAm)hydrogels is due to the change in temperature that causes changes in thefine balance between the elastic force of chains and the interaction between water and hydrophilic chains[3].This volume transition from swollen to shrunken state of poly(NiPAAm)hydrogels occurs around 34◦C[4].However,such critical temperatures depend on vari-ous factors,including molecular weight and chain tacticity for linear polymers,and on the degree of cross-linking and type of cross-linking agent for poly(NiPAAm)hydrogels.Another category of gels,so called‘cryogels’,are the gels that are formed in moderately frozen media[5–7].Cryogels are polymeric gel matrices that are formed as a result of cryogenic polymerization of low or high molecular weight precursors.The0921-5093/$–see front matter© 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.msea.2007.03.05794 A.Srivastava et al./Materials Science and Engineering A 464 (2007) 93–100cryogels have a continuous system of interconnected macrop-ores.The pore size in cryogels is quite large and pore sizes up to 200␮m have been obtained in spongy cryogels[8].Due to pres-ence of such supermacroporus structure these gels exhibit very lowflow resistance and allow unhindered diffusion of solutes of practically any size.The‘supermacroporous cryogels’synthe-sized from poly(acrylamide)or any other gel forming polymers or polymeric precursors have recently been used for various applications in biotechnology[8].Poly(acrylamide)cryogels have been used successfully in the area of bioseparation[9] specifically for direct recovery of products from fermentation media[10],separation of lymphocytes[11],and also human tumor cells[12],capture of enzyme from crude homogenate [13]and chromatography of microbial cells by affinity and ion-exchange columns[14].Also cryogels have demonstrated their potential in cell[15]and enzyme[16]immobilization,and tissue engineering applications[17].In one of our recent co-works[18]it was shown that elastic deformation of cryogel can be utilized in physical desorption of affinity bound bioparticles—the phenomenon of particle detach-ment upon elastic deformation was shown to be of a generic nature,because it was applicable for a variety of bioparticles of different sizes and nature.This detachment was believed to be caused when either external force like mechanical force or internal forces within the gel caused deformation of the gel and thus the detachment of the particles by multivalent interactions [18].Using poly(NiPAAm)cryogel the shrinkage and swelling of thermosensitive,macroporous hydrogel upon an increase and decrease of the temperature resulted in the deformation of the gel utilizing internal forces[18].The aim of the present study was to optimize the synthesis of cryogel matrix based on poly(NiPAAm)and to characterize the physical properties of the poly(NiPAAm)cryogel.The physical properties,such as porosity,mechanical strength and swelling kinetics of poly(NiPAAm)cryogel were studied and compared with the corresponding hydrogel.Here,we have studied the basic property of poly(NiPAAm),i.e.,temperature responsive-ness in the form of a cryogel.Also the mechanical strength of poly(NiPAAm)and poly(AAm)cryogel were studied and compared.These studies were done to characterize cryogel deformation through internal force like shrinkage of cryogel upon increase in temperature and by external force like mechan-ical pressure.2.Experimental2.1.MaterialsN-isopropylacrylamide(NiPAAm)was purchased from Acr`o s Organics(New Jersey,USA.).Acrylamide(AAm) was purchased from Merck(India).N,N -Methylene-bis (acryalamide)(MBAAm),ammonium persulphate(APS), N,N,N ,N -tetramethylethylenediamine(TEMED)were bought from Sisco Research Laboratories(Mumbai,India).Ethylene diamine tetraacetic acid(EDTA)was purchased from S.D.Fine Chemicals Ltd.(Boisar,India.)All other chemicals used were of analytical grade.2.2.Methods2.2.1.Preparation of NiPAAm hydrogelsThe cross-linked poly(NiPAAm)hydrogels of6,7and8% total monomer concentration were prepared by mixing5,5.84 and6.67g of NiPAAm and1,1.17and1.33g MBAAm,respec-tively,in degassed deionized water to a total volume of100ml. The mixture was again degassed and TEMED(95␮l)and APS (110mg)were then added into the reaction mixture.The reac-tion mixture was then poured into2.5ml syringe and kept at room temperature.2.2.2.Preparation of poly(NiPAAm)cryogel(cryogenic polymerization of NiPAAm)The poly(NiPAAm)cryogels were synthesized by mixing5g (6%),5.84g(7%)and6.67g(8%)of NiPAAm monomer and 1g(6%),1.17g(7%)and1.33g(8%)of MBAAm in degassed deionized water and the mixture was again degassed and kept in ice for30min.TEMED(95␮l)and APS(110mg)were then added and mixed thoroughly.The mixture was then poured into 5and2.5ml syringes and was immediately frozen at−12◦C and incubated at this temperature for12h.After thawing,the gels were immediately washed with distilled water and were vacuum dried and stored at room temperature.Cryogels were synthe-sized by varying monomer concentration of6,7and8%.At each concentration the cross-linking agent ratio was also varied. These were further used for mechanical strength determination and swelling/de-swelling studies.2.2.3.Swelling and de-swelling measurementThe kinetics of swelling was carried out following con-ventional gravimetric procedure[19,20].Briefly,it involved measurement of water uptake by samples placed in deion-ized water,kept in a thermostated water bath at20◦C.The poly(NiPAAm)hydrogels and cryogels of6,7and8%were dried at60◦C for3days and then kept in vacuum desiccate till further use.The dried cryogels were swollen at20◦C in deion-ized water and removed from swelling medium at regular time intervals.The excess water on surface was whipped off byfil-ter paper and the weight of all the gels was taken after regular time intervals until the equilibrium was reached.The samples (hydrogels and cryogels)were of2cm in length and1cm in diameter.At least four samples with similar dimension of each concentration of the gel were used for the study.The water uptake capacity(W u)(%)is given by:W u=100×(M t−M g)M ewhere W u is the water uptake capacity,M t the weight at regular time interval,M g the weight of the xerogel,and M e is the weight of water in swollen hydrogels or cryogels at swelling equilibrium at a particular temperature.The weight-swelling ratio(q w)can also be calculated as:q w=weight of swollen gel(M s)weight of xerogel(M g)A.Srivastava et al./Materials Science and Engineering A 464 (2007) 93–10095Similarly the de-swelling kinetics of hydrogels and cryogelswere also performed by the gravimetric method at a constanttemperature of40◦C maintained in a thermostated water bath.The swollen hydrogels equilibrated at20◦C were transferred towater bath maintained at40◦C and weight of all the swollengels were taken before it was transferred to40◦C.After regulartime intervals the gels were removed and water was whipped offfrom the surface byfilter paper.The weight changes of the gelswere recorded during the course of de-swelling at regular timeintervals.The percentage of water retention(W r)is given by:W r=100×M t−M g M ewhere M t is the weight at regular time interval,M g the weight of the xerogel,and M e is the weight of water in hydrogels or cryogel at de-swelling equilibrium at a particular temperature.Poly(NiPAAM)cryogels with varying cross-linking agent concentration ratios were further selected to study swelling/de-swelling kinetics by above-mentioned procedure to determine the effect of cross-linking agent on swelling/de-swelling kinetics of the cryogels.The physical change in dimension of cryogels was also deter-mined by increasing and decreasing the temperatures above and below LCST of poly(NiPAAm).Initial diameter of the cryogel was determined at room temperature that is at25◦C and then the cryogels were placed in water bath at40◦C for a definite time. The decrease in diameter of the cryogel(T)was determined as follows:T=D25◦−D40◦where D25◦is diameter of gel at25◦C and D40◦is diameter at 40◦C.The(T)value,i.e.,decrease in diameter of gels caused due to shrinkage of gels as a result of increase in temperature also deter-mines the thermoresponse of the gels.The greater the change in diameter(T)by increasing the temperature,better the thermore-sponse of the gel.2.2.4.Mechanical strengthThe compression test on poly(NiPAAm)cryogel and poly(AAm)cryogel was performed using uniaxial compression test.The samples were tested by mechanical tester(NI DAQ card USB6009with labview software and load cell from Eltek), where the samples were placed between two arms of load frame and then compressed up to80%of the total length,from where the compressed cryogel can regain its original shape on addition of liquid.The applied force was recorded and change in column length due to compression was measured.The compression modulus of cryogel monolith was estimated using the equation:E=F/Al/l kPawhere E is the elastic modulus,F the applied force,A the cross-sectional area of the test sample,l the initial length of the test sample and l is the change in length under the compressive force.2.2.5.Measurement offlow resistance of cryogel columnTheflow resistance of the cryogel columns(5ml)evaluated atflow rates of1–5ml/min was determined using peristaltic pump,registering theflow rate at given pump settings.In a separateexperiment,the pump settings were calibrated againstflow ratewith no column connected according to Adrados et al.[21]. 2.2.6.Scanning electron microscopic(SEM)analysisPoly(NiPAAm)cryogel and hydrogels of different concen-trations were subjected to SEM analysis.All the samples wereethanol dried[12].The samples were put consecutively inincreasing concentration of ethanol that is20%(v/v),40%(v/v),60%(v/v),80%(v/v)andfinally in100%(v/v)ethanol.The sam-ples were then vacuum dried overnight before gold coating.TheSEM pictures were taken using FEI Quanta200and the porediameters of cryogel column were measured arbitrarily.3.Results and discussion3.1.Synthesis and optimization of poly(NiPAAm)cryogelThe process of poly(NiPAAm)cryogel formation is same asthat for polyacrylamide cryogels.The poly(NiPAAm)cryogelmatrices were synthesized by co-polymerization of monomersof NiPAAm and MBAAm as cross-linking agent.The monomerswere mixed under chilled conditions and the polymerization wasallowed to proceed at sub-zero temperature until completion.The poly(NiPAAm)cryogel columns were made at−12◦C.The gels were formed completely only after12h.The condi-tions employed to make the poly(NiPAAm)cryogel ensuredminimum competition between the factors facilitating gelationand factor decelerating it(low temperature,high viscosity inunfrozen liquid microphase).A temperature regime lower than −12◦C will cause the formation of smaller and numerous sol-vent crystals and hence smaller pore sizes.This has been wellestablished from earlier works published on poly(AAm)cryogel,which defines the optimum range of temperature to lie between −10and−15◦C for formation of supermacroporous structure [5].The synthesis of poly(NiPAAm)cryogel involves cryotropicgelation and polymerization of(NiPAAm)via free radical poly-merization.The principle and mechanism of cryogelation isdiscussed elsewhere[9].The different concentration range ofpoly(NiPAAm)cryogel with varying weight ratio(w/w)ofNiPAAm to MBAAm from5:1to20:1were synthesized inorder to optimize and determine the effect of cross-linking onswelling-shrinkage behavior of poly(NiPAAm)cryogels.Thecryogel were selected such that they have large contractionresponse to temperature and a goodflow rate.Hence,the ther-mal shrinkage andflow rate of all the synthesized gels weredetermined and compared.The comparative study of thermalshrinkage,morphology andflow rates of poly(NiPAAm)cryo-gel made at different ratio of NiPAAm to MBAAm are shownin Table1and visually can be seen in Fig.1.From the physicalobservation of the gels it was shown that as the concentra-tion of the monomer increases from6to8%,the cryogelbecomes more rigid and less spongy.This may be due to forma-96 A.Srivastava et al./Materials Science and Engineering A 464 (2007) 93–100Table 1Physical properties of poly(NiPAAm)cryogels Total monomer concentration (%)Ratio a Flow rate (ml/min)Shrinkage at 40◦C (mm)Physical characteristic 65:121Less spongy 10:1 1.42Spongy 15:1 1.34Spongy 20:1 1.15Very spongy 75:1 4.71Less spongy 10:142Spongy 15:1 3.22Spongy 20:1 2.55Very spongy 85:1 1.81Less spongy 10:1 1.31Spongy 15:1 1.22Spongy 20:113Very spongyaConcentration of NiPAAm/concentration of MBAAm.tion of thicker walls.The thermal shrinkage of cryogel varies within each concentration and increases as the concentration of cross-linking agent decreases.This is shown by the fact that 6and 7%poly(NiPAAm)cryogel shows thermal shrink-age in the range of 1–5mm in diameter for the ratio of 5:1–20:1(NiPAAm:MBAAm)but 8%cryogel at 20:1ratio showed less shrinkage up to 3mm in diameter due to thicker walls of cryogel.The 7%cryogel shows better morphology and flow rate in the range of 2.5–4.7ml/min than 6and 8%cryogel.Fig.1demon-strates the shrinkage of poly(NiPAAm)cryogel in response to increase in temperature above its LCST.On the other hand,the control gel (hydrogel)was allowed to polymerize at room temperature and it has been found that control gel polymerized within 1–2h as compared to poly(NiPAAM)cryogels which need approximately 12h or above to polymerize at −12◦C.The hydrogel adopted transpar-ent,glassy and rigid morphology and all the solvent was bound within polymer network.Contrarily,poly(NiPAAm)cryogels having exactly the same chemical composition had heterophasic non-transparent morphology with spongy and elastic character.In poly(NiPAAm)cryogels solvent is retained within the gel both due to binding by polymer network and entrapment within cap-illary.The binding of solvent molecules on thepoly(NiPAAm)Fig.1.Digital photographs of 7%supermacroporous poly(NiPAAm)cryogel:(A)dried poly(NiPAAm)cryogel,(B)water swollen poly(NiPAAm)cryogel,(C)de-swollen poly(NiPAAm)cryogel after keeping in water at 40◦C.backbone is through hydrogen bonding and single NiPAAm monomer has at least four sites for hydrogen bonding with water (two lone pairs from carbonyl oxygen and one each from nitrogen and hydrogen amide atoms).3.2.Poly(NiPAAm)cryogel morphologyThe mechanism for formation of poly(NiPAAm)cryogel is similar to that of polyacrylamide cryogel.When the polymer-ization of monomer solution is allowed to proceed at sub-zero temperature,cryoconcentration of monomers takes place in non-frozen solvent phase where they polymerize and results in a chemically cross-linked poly(NiPAAm)cryogel [9].The morphology of poly(NiPAAm)cryogel formed at −12◦C is clearly reflected in the SEM picture taken at low vacuum (Fig.2).The poly(NiPAAm)cryogel prepared at 7%total monomer concentration have interconnected and large pore size in the range of 30–99␮m.The interconnectivity of pores determine the convective flow of solvent while large pore size demonstrates the potential of cryogel for particle process-ing,like cells,cell organelles and inclusion bodies [9–12,22].Highly porous structure and sufficiently large pore size of poly(NiPAAm)cryogel provides non-hindered diffusion of all solutes including macromolecules.The porosity,interconnectiv-ity and convective liquid flow of all these poly(NiPAAm)cryogel formed at different monomer concentration deciphers the flow rate of the corresponding poly(NiPAAm)cryogel (Table 1)pression analysis of cryogel monolithThe elastic and compression properties of the cryogel was determined by exerting physical stress on the gel which was in turn used to calculate Young’s modulus,which is a mathematical description of an object or substance’s tendency to be deformed when a force is applied to it.Fig.3shows the Young’s modulus of each cryogel sample of same size as calculated by analyzing the stress and strain values of each cryogel.The Young’s moduli of poly(NiPAAm)cryogel were calculated to be in the range of 33–65kPa which was less than poly(AAm)cryogel which show values in the range of 42–86kPa.The poly(NiPAAm)cryogelA.Srivastava et al./Materials Science and Engineering A 464 (2007) 93–10097Fig.2.Scanning electron microscopy pictures of:(A)supermacroporus poly(NiPAAm)cryogels and (B)poly(NiPAAm)hydrogel.The total monomer concentration was 7%and NiPAAM:MBAAm ratio was 5:1.undergoes more strain up to 90%as compared to 80%com-pression in poly(AAm).It is well demonstrated that the stress required by the poly(NiPAAm)cryogel to undergo compres-sion is less than the poly(AAm)cryogel which infers that the poly(NiPAAm)cryogel is more elastic and soft.It was also seen that with the change in total monomer concentration from 6to 8%,the rigidity of cryogels is also altered.As the concentra-tion increases the sponginess and elasticity decreases which in turn decreases the compressibility and squeezability of cryogel.This is due to the fact that at high concentration of monomer,the cross-linking increases the rigidity of cryogel and in turn the elastic behavior decreases.It can be assumed that as the cross-linking agent concentration increases in total monomer concentration,it causes the formation of more compactandFig. parative study of mechanical strength of poly(NiPAAm)and poly(AAm)cryogel.The Young’s modulus of 6,7and 8%poly(NiPAAm)( )and poly(AAm)( )cryogel.The parameters were determined at 80%compres-sion from where the cryogel regains its original shape after swelling in water.For details see Section 2.rigid cryogels.If the compression force applied on cryogel is increased further,the gel gets deformed and the original length cannot be regained.In contrast when hydrogels were tested for compression,it was not possible to apply the compressing force as the gel could not withstand the applied force and broke down.It is observed that poly(NiPAAm)cryogel is more spongy than poly(AAm)cryogel and undergoes greater change in length.One of the potential applications of these cryogels,that has recently been established,is in detachment of bioparticles which are attached/adsorbed to the surface of cryogel [18].This detach-ment of bioparticles is facilitated by elastic deformation of cryogels.Thus,it can be said that elasticity of cryogel is an important factor for such applications.It would be beneficial to know elasticity of cryogels in mathematical terms and the max-imum force up to which they can regain their shape,which is one of the aims of the present study.3.4.Swelling/de-swelling kineticsThe swelling kinetics of poly(NiPAAm)(5:1)cryogels and hydrogels of different monomer concentration studied by gravi-metric method is shown in Fig.4.Both the gel systems were compared on the basis of the time required to reach a particu-lar value of W u (or W r ).It is clearly evident from the obtained data that poly(NiPAAm)cryogel irrespective of the monomer concentration attains swelling equilibrium within 20min,while hydrogels of similar monomer concentration took more than 2days to reach equilibrium.This difference in swelling kinetics of poly(NiPAAm)cryogels and hydrogels is due to the basic difference in their pore morphology and wall thickness.Though the conventional hydrogels consist of an interconnected network of pores (the pore size is rather small and the distance between pores is long)made up of thick walls.In comparison to this,cryogels have pores that are quite large (up to 200␮m)and are interconnected via thin walls.This allows fast transport of sol-vent molecules within thin walls over short distances across the macroporous structure.This phenomenon is quite useful specif-98 A.Srivastava et al./Materials Science and Engineering A464 (2007) 93–100Fig.4.Swelling kinetics of poly(NiPAAm)gels.Water uptake capacity was determined at increasing time interval for(A)poly(NiPAAm)cryogel and(B) poly(NiPAAm)hydrogel at three different monomer concentrations:( )6%, ( )7%and( )8%.For details see Section2.ically in case of responsive gels like that of poly(NiPAAm).One important performance criteria for stimuli-responsive systems is the rate at which they respond to any change in their environ-ment.It is obvious that response time depends upon the size of the system,larger the thermo-sensitive gel slower is its swelling and shrinkage as the response time required depends upon rate of heat and mass transfer process as well as the distance of the periphery of the gel to the center of gel.This response time is greatly reduced in macroporous gel structure as the heat and mass transfer process takes place only at short distance in the thin walls of the macropores contrary to the long distances of the conventional gels[9].One of the characteristic feature of poly(NiPAAm)cryogels is their rapid response to any change in temperature.In response to change in temperature of its envi-ronment poly(NiPAAm)changes its property from hydrophilic to hydrophobic or vice versa above or below its LCST(32◦C), respectively[23].The rapidity of response in such supermacro-porous structure depends upon total monomer concentration, cross-linking density,pore wall thickness,temperature,etc.at which the gels are prepared.The response time is also affected by the thickness of gel,i.e.,the distance between the outer bound-aries to central parts of cryogel,larger the distance slower the rate of swelling and shrinkage due to slow rate of mass andheat Fig.5.Swelling ratio of6,7and8%poly(NiPAAm)hydrogel and cryogel. Swelling ratio of poly(NiPAAm)hydrogel(filled bar)and cryogel(wide upward diagonal bar).Swelling ratio was determined as the ratio of wet weight to dry weight of hydrogel and cryogel.For details see Section2.exchange due to increased distance[24–26].Interconnectivity of pores plays a crucial role in fast swelling and de-swelling of cryogels as solvent molecule could move by convection across this network,while in conventional hydrogels this process is diffusion dependent and thus slower.This difference in pore morphology leads to a faster swelling/de-swelling kinetics in poly(NiPAAm)cryogels.The swelling ratio(q w)of poly(NiPAAm)cryogels ranges from13.5to16,while that of hydrogels is in the range of7–10. The swelling ratio in cryogels decreases slightly as the monomer concentration increases from6to8%with6%gels having the highest swelling ratio of16(Fig.5).This decrease in swelling ratio with concentration can be explained on the basis that as the monomer concentration increases,wall thickness increases and more rigid and less porous cryogel is formed,thus exhibiting reduced swelling.As the porosity of gel increases the swelling ratio increases because large amount of water molecule diffuses inside the gel with high porosity than the low porous gel system. Connectivity of pores plays a crucial role and leads to faster swelling rate of the gels.Water can enter or leave the cryo-gel through interconnected pores by convection.Similar studies on swelling/de-swelling kinetics of ionic poly(AAm)cryogel based on the volume changes of the gel have demonstrated that ionic poly(AAm)cryogel swells and de-swells much faster than poly(AAm)hydrogel[27].The swelling/de-swelling weight ratio of poly(NiPAAm) cryogel with varying concentration of cross-linking agent (MBAAm)was also studied and it was seen that,there is not much difference in swelling/de-swelling ratio on varying cross-linking agent concentration(Fig.6).The swelling ratio of all the cryogel at different cross-linking agent concentration are in the range of17–21,the cryogel with1%cross-linking agent concentration have little higher swelling ratio than other cryo-gels with a higher cross-linking agent concentration.It may beA.Srivastava et al./Materials Science and Engineering A 464 (2007) 93–10099Fig.6.The swelling/de-swelling ratio of poly(NiPAAm)cryogel at different concentration of cross-linking agent.Swelling ratio(A)and de-swelling ratio(B) of poly(NiPAAm)cryogel at cross-linking agent concentration of:( )1wt%, ( )1.25wt%and( )1.5wt%at different time interval during swelling.For details see Section2.probably because the concentration of cross-linking agent effect the cross-linking of polymer at localized concentration which makes the pore wall of the cryogel loose or rigid but it would not affect much on the interconnectivity of pores and pore distri-bution.The solvent molecules still travels through the walls by convection and moves in and out of the gel structure resulting in swelling and de-swelling of cryogel which can be independent of cross-linking agent concentration.These poly(NiPAAm)cryo-gels with different cross-linking agent concentration undergoes about25%de-swelling,which was found to be independent of cross-linking agent concentration.De-swelling kinetics of poly(NiPAAm)cryogel and hydro-gel was determined at40◦C for three different initial monomer concentration.A graph of W r versus time was plotted(Fig.7). It can be clearly seen from these results that de-swelling rate of poly(NiPAAm)cryogels is10–15times faster than the con-ventional hydrogels.Also it can be seen that the cryogels attain their de-swelling equilibrium almost instantaneously while the hydrogels show a two phase response curve,in which maximum de-swelling occurs in thefirst30–50min while the equilibriais Fig.7.De-swelling kinetics of poly(NiPAAm)gels.Water retention capacity was determined at increasing time intervals for:(A)poly(NiPAAm)cryogel and (B)poly(NiPAAm)hydrogel for three different concentrations( )6%,( )7% and( )8%.For details see Section2.achieved slowly over a period of350min.This difference in the de-swelling kinetics of cryogel and hydrogel can be attributed to the mechanism by which the solvent transport occurs in these polymer networks.In conventional hydrogel systems the solvent moves in and out of the polymer network by diffusion while in supermacroporus like structures as found in cryogels the solvent moves by convection through the thin walls around the pore.The biphasic response seen in hydrogels can be explained as follows. Initially as the gel samples are placed above LCST only the outer surface chains attain the surrounding temperature and begun to shrink while due to slow heat transfer by diffusion in hydrogels the inner surface comes in equilibrium with the surroundings only after a lag period.This difference in response time leads to formation of two layers within the hydrogel consisting of an outer layer largely in de-swollen state while the inner layer is constantly decreasing as more and more de-swelling takes place, which is a slow process and thus leads to an extended de-swelling phase after initial rapid response.Further the de-swelling kinetics of poly(NiPAAm)cryogel as shown in Fig.7demonstrates about25%de-swelling or75% water retention capacity.Thermo-induced de-swelling ratio or water retention capacity of the cryogel is found to be smaller。

2型糖尿病合并冠心病与单纯2型糖尿病患者血脂、心肌酶谱水平比较

2型糖尿病合并冠心病与单纯2型糖尿病患者血脂、心肌酶谱水平比较

以患者为主 的理念,从宏观角度来说这种护理模式是一种爱的延伸,它能站在患者角度制定相应的护理措施[6].放置空肠营养管患者,病情稳定㊁无并发症发生术后24h可以开始早期肠内营养支持.通常先用0.9%生理盐水100m L/6h进行滴管,增加患者耐受性,再遵医嘱使用肠内营养液,注意速度㊁浓度循序渐进,注意营养液应现用现配,用营养泵由20m L/h开始,若无胃肠道或全身不良反应,每6小时再加20m L/h 直至100~150m L/h.使用时抬高床头30o,防止发生误吸[7].管道深度一般在80~100c m,防止滑脱㊁移位,若有滑脱或患者自行拔除,及时汇报医生,不可回纳[7].喂养管应保持通畅,每次输注前后用生理盐水或温开水20~30m L冲管,输注过程中应每4h冲管一次[8].通过本研究表明,行循证护理的胃肠外科管道护理患者护理满意度为94.74%明显高于对照组的满意度78.95%,研究组患者非计划拔管与意外脱管事件发生情况均少于对照组,两组比较差异存在统计学意义.因此,在胃肠外科留置导管患者的管道护理中应用循证护理模式,能够有效减少意外脱管事件的发生,有利于患者恢复,患者满意度高.参考文献[1]李玲玲.浅谈循证护理在胃肠外科管道护理中的应用体会[J].中外女性健康研究,2017,24(2):124G125.[2]杨伟群,邱德龙.探讨循证护理在胃肠外科术后管道护理中的应用[J].实用临床护理学电子杂志,2017,22(1):81G82.[3]王丽,刘红,杨春霞.循证护理在胃肠外科管道护理中的应用[J].实用临床护理学电子杂志,2017,22(1):88G90.[4]A n a n d P r a k a s h,S a n d e e p V e r m a,A s h o k K u m a r,V i n a y K.K a p o o r,R a j a nS a x e n a.S u r g i c a l o u t c o m e o f g a s t r o i n t e s t i n a l l y mGp h o m a:E x p e r i e n c e f r o ma t e r t i a r y c a r e c e n t e r o fN o r t h I n d i a[J].E u r o p e a n J o u r n a l o f S u r g i c a lO n c o l o g y,2016,42(3):290G292.[5]怀文丽.胃肠外科管道护理应用循证护理的临床效果分析[J].当代医学,2016,22(10):90G91.[6]张翠娟,刘彦强.循证护理在胃肠外科管道护理中的应用效果分析[J].临床合理用药杂志,2016,19(02):113G114.[7]A u d r e y C.H.M.J o n g e n,V i c t o rv a n W o e r d e n,J e r o e nL.A.v a n V u g t,P a t r i c kA.I m p r o v i n g O u t c o m e i nG a s t r o i n t e s t i n a l a n dH e pGa t o p a n c r e a t i c o b i l i a r y S u r g i c a lO n c o l o g y b y P r e o p e r a t i v eR i s kA sGs e s s m e n ta n d O p t i m i z a t i o n o f P e r i o p e r a t i v e C a r e[M].I n t eGc h O p e n:2016,25(4):387G388.[8]蒋丽安.循证护理对胃肠外科管道护理的临床价值[J].医学理论与实践,2017,30(11):1683G1685.短篇论著2型糖尿病合并冠心病与单纯2型糖尿病患者血脂㊁心肌酶谱水平比较李佩娟1,田晓红2,任红侠2(1.韩城市人民医院㊀715401;2.澄城县妇幼保健院㊀715200)㊀㊀摘㊀要:目的㊀比较2型糖尿病合并冠心病与单纯2型糖尿病患者血脂㊁心肌酶谱水平.方法㊀选取该院2015年8月至2016年11月期间收治的2型糖尿病患者90例,根据患者是否合并冠心病分为观察组(2型糖尿病合并冠心病)和对照组(单纯2型糖尿病),对所有患者血脂和心肌酶水平进行检测,并比较两组患者血脂和心肌酶水平.结果㊀对照组患者血脂和心肌酶水平均明显低于观察组,差异有统计学意义(P<0.05).结论㊀2型糖尿病合并冠心病患者血脂和心肌酶谱水平明显高于单纯2型糖尿病患者,故早期对2型糖尿病患者血脂和心肌酶水平进行监测和控制,能显著降低糖尿病合并冠心病的发生率,改善患者的生存质量.关键词:2型糖尿病;㊀冠心病;㊀血脂;㊀心肌酶㊀㊀2型糖尿病是临床常见的疾病,约占糖尿病患者的90%以上,是一种以血糖升高为主要症状的慢性代谢性终身疾病[1].冠心病属于常见的心血管疾病,是由冠状动脉血管发生动脉粥样硬化病变而引起的心肌缺氧㊁缺血[2].2型糖尿病和冠心病多发生于中老年人群中,随着老龄化进程的日益加剧,冠心病和2型糖尿病的发病率呈逐年上升趋势,严重威胁患者的生命安全[3].近年来,2型糖尿病合并冠心病患者数量逐年增多,且有60%的2型糖尿病患者最终死于冠心病.据统计[4],2型糖尿病患者冠心病的发病率是非糖尿病者的2G4倍.因此,应早期对2型糖尿病合并冠心病患者的进行诊断和治疗,从而控制患者的病情,降低死亡率.研究发现[5G6],冠心病的发生和发展与血脂和心肌酶的变化密切相关.基于此,本研究比较2型糖尿病合并冠心病与单纯2型糖尿病患者血脂㊁心肌酶谱水平.现报道如下.1㊀资料与方法1.1㊀一般资料㊀选取本院2015年8月至2016年11月期间收治的2型糖尿病患者90例,根据患者是否合并冠心病将患者分为观察组(2型糖尿病合并冠心病)和对照组(单纯2型糖尿病).观察组45例,男25例,女20例;年龄44~76岁,平均年龄(65.32ʃ3.073 国际检验医学杂志2018年第39卷ZⅠ15)岁;糖尿病病程2~11年,平均病程(5.78ʃ3.01)年;冠心病病程1~6年,平均病程(3.15ʃ1.34)年.对照组45例,男26例,女19例;年龄45~75岁,平均年龄(65.29ʃ3.21)岁;糖尿病病程1~12年,平均病程(4.84ʃ2.98)年.两组患者性别㊁年龄等一般资料方面相比较,差异无统计学意义(P>0.05).1.2㊀方法㊀血脂水平检测:采用免疫比浊法对载脂蛋白(A p o B)和脂蛋白(a)进行检测;采用日本奥林巴斯A UG5400全自动生化分析仪对低密度脂蛋白(L D LGC)㊁三酰甘油(T G)和血脂总胆固醇(T C)进行检测.心肌酶检测:于患者入院24h内采集空腹静脉血,对同工酶(C KGM B)和血清肌酸激酶(C K)进行测定,仪器使用日本奥林巴斯A UG5400全自动生化分析仪.1.3㊀统计学处理㊀采用S P S S18.0软件进行数据处理,计量资料以xʃs表示,采用t检验,P<0.05为差异具有统计学意义.2㊀结㊀㊀果2.1㊀血脂水平㊀对照组患者A p o B㊁脂蛋白(a)㊁L D LGC㊁T G和T C明显低于观察组,差异有统计学意义(P<0.05).见表1.表1㊀㊀两组患者血脂水平对比(xʃs)组别n A p o B(g/L)脂蛋白(a)(g/L)L D LGC(m m o l/L)T G(m m o l/L)T C(m m o l/L)对照组450.63ʃ0.14320.87ʃ105.012.65ʃ0.641.84ʃ0.685.44ʃ0.83观察组450.95ʃ0.42397.15ʃ109.583.67ʃ1.202.70ʃ1.365.97ʃ1.51t4.8493.3725.0313.7942.063P<0.05<0.05<0.05<0.05<0.052.2㊀心肌酶水平㊀对照组患者C KGM B和C K水平明显低于观察组,差异有统计学意义(P<0.05).见表2.表2㊀㊀两组患者心肌酶水平对比(xʃs,U/L)组别n C KGM B C K对照组4511.50ʃ6.20134.98ʃ82.89观察组4516.31ʃ10.69212.87ʃ107.30t2.6113.854P<0.05<0.053㊀讨㊀㊀论㊀㊀随着人们饮食习惯和生活方式的改变,2型糖尿病合并冠心病的发病率呈逐年上升趋势,给家庭和社会带来严重的经济负担,已成为严重的公共卫生问题.2型糖尿病是心血管疾病的独立危险因素,绝大多数糖尿病患者死于脑血管和心血管动脉粥样硬化[7].因此,降低糖尿病患者主要致死性和非致死性事件发生的关键在于改善心血管病变相关危险因素.研究表明[8],2型糖尿病合并冠心病患者与血脂和心肌酶水平的变化密切相关,故对2型糖尿病合并冠心病患者早期评估和干预应从血脂和心肌酶等各项指标入手.本研究比较2型糖尿病合并冠心病与单纯2型糖尿病患者血脂㊁心肌酶谱水平,结果显示,对照组血脂和心肌酶水平均明显低于观察组,表明2型糖尿病合并冠心病患者血脂㊁心肌酶谱水平明显高于单纯2型糖尿病患者.分析原因在于2型糖尿病患者的常伴有脂质代谢紊乱,导致T C和L D LGC显著升高,高密度脂蛋白胆固醇水平显著降低,T C水平的升高,从而引起血管受损,加大了冠心病发病几率.C KGM B 和C K是临床上用来检测心肌受损的实验室指标,在2型糖尿病合并冠心病患者体内水平较高.通过早期对2型糖尿病合并冠心病患者血脂和心肌酶水平进行监测,并采取相应措施对血脂和心肌酶水平进行控制,从而能有效降低2型糖尿病并发冠心病的发生,显著改善患者的病情,利于预后,提高患者生存时间.综上所述,2型糖尿病合并冠心病患者血脂和心肌酶谱水平明显高于单纯2型糖尿病患者,故早期对2型糖尿病患者血脂和心肌酶水平进行监测和控制,能显著降低糖尿病合并冠心病的发生率,改善患者的生存质量.参考文献[1]李亚楠.老年股骨转子间骨折合并2型糖尿病的围手术期护理[J].中医正骨,2016,28(2):77G78,80.[2]王飞,李聪,赵婷婷,等.糖化血红蛋白水平与2型糖尿病合并冠心病患者心功能的影响[J].中国药物与临床,2016,16(9):1317G1319.[3]孔曼,罗振钊,卢忠心,等.2型糖尿病中血清G G T与血糖水平的相关性研究[J].中国医师杂志,2016,18(10):1511G1513.[4]朱伟宏,黄柯柯.不同剂量血脂康联合依折麦布对2型糖尿病合并高脂血症患者疗效分析[J].中国循证心血管医学杂志,2016,8(10):1234G1236.[5]孟宪杰,李莉,李会,等.六味地黄丸联合地特胰岛素对2型糖尿病合并冠心病患者的血糖控制及心血管事件的影响[J].中西医结合心脑血管病杂志,2016,14(18):2134G2136.[6]陈灏珠.实用内科学[M].北京:人民卫生出版社,2009:1504G173国际检验医学杂志2018年第39卷ZⅠ1509.[7]朱春海,陈东海.老年冠心病合并2型糖尿病患者血清脂蛋白(a)水平与冠状动脉病变程度的相关性分析[J].中国基层医药,2016,23(3):446G450.[8]郝六一,李学信,贾永平.血清基质金属蛋白酶9与C反应蛋白在冠心病及合并2型糖尿病患者中的相关性研究[J].中国药物与临床,2015,15(03):408G410.短篇论著优质护理对心律失常患者负面情绪的相关影响分析李鑫平,梁洋洋,柴巧英(河北省邯郸市第一医院心内科,河北邯郸056001)㊀㊀摘㊀要:目的㊀分析优质护理对心律失常患者负面情绪的影响.方法㊀以该院2017年6月至2018年2月接收的心律失常患者70例为研究对象,采用随机数字表法将患者分为对照组与研究组,对照组患者给予常规处理,研究组应用优质护理,对患者护理后S A S及S D S评分情况,对比两组患者护理满意度及并发症发生情况.结果㊀护理前,对照组与研究组患者S A S及S D S评分情况相比,差异无统计学意义(P>0.05);护理后,研究组患者S A S及S D S评分与对照组相比,差异存在统计学意义(P<0.05);对照组患者护理满意度77.14%显著低于研究组97.14%,差异存在统计学意义(P<0.05);研究组患者并发症发生率与对照组相比显著较低,差异有统计学意义(P<0.05).结论㊀心律失常患者实施优质护理可改善其负面情绪,并发症少且整体满意度较高,可作为首选护理方案进行推广.关键词:优质护理;㊀心律失常;㊀负面情绪;㊀护理满意度㊀㊀心率失常属于心内科常见多发性心血管疾病,主要临床症状表现为头晕㊁低血压㊁胸闷㊁心悸等,加上该病具有致病因复杂㊁发病率高㊁复发率高等特点,需及时治疗,避免对患者身心健康产生威胁[1].相关研究指出[2],心律失常病程长且易复发,患者多伴有治疗失望㊁脾气暴躁㊁抗拒等负面情绪,对治疗进程产生干扰,需借助护理措施进行干预.本文主要对心律失常患者实施优质护理对其负面情绪产生的相关影响进行分析,现报道如下.1㊀资料与方法1.1㊀一般资料㊀以2017年6月至2018年2月本院接收的70例心律失常患者为研究对象,采用随机数字表法将其分为对照组与研究组,每组患者各位35例.对照组男19例,女16例,年龄44~76岁,平均(52.16ʃ2.76)岁,心功能分级:Ⅰ级14例㊁Ⅱ级17例㊁Ⅲ级4例;研究组男20例,女15例,年龄45~74岁,平均(52.13ʃ2.69)岁,心功能分级:Ⅰ级16例㊁Ⅱ级16例㊁Ⅲ级3例;两组患者心功能分级㊁性别等一般资料情况相比差异不明显(P>0.05),具有可比性.1.2㊀方法㊀对照组患者入院后基于常规护理,指导患者遵医嘱用药㊁健康宣教㊁解答患者疑惑及血压㊁脉搏等指标常规监测等.研究组患者均实施优质护理,方法:①病情问询:患者入院后为其提供舒适㊁安静病房,为满足患者基本需求,可在医院病房㊁走廊内张贴相关标语,为患者创造安全舒适环境.针对患者病情㊁症状等情况进行常规问询,了解其疾病了解程度㊁文化程度㊁作息习惯㊁饮食习惯等,针对其实际情况开展健康宣教,确保患者正确认识疾病,了解疾病治疗发病因素㊁治疗方法等.护理期间密切观察患者病情,若出现头晕㊁气促等症状及时有效干预,避免病情恶化;②用药及生活指导:通过用药知识讲解,使患者了解所用药物药理作用㊁用药剂量㊁次数等重要性,确保其遵医嘱用药,避免随意更换药物或更换用药剂量产生不良影响.根据患者病情及饮食习惯制定健康饮食方案,饮食主要以低脂肪㊁高蛋白㊁高维生素㊁易消化类为主,多吃水果蔬菜确保排便,禁止食用辛辣刺激类食物或咖啡㊁浓茶等,避免心跳加速对疾病产生影响.确保患者每日饮食可摄入充分钾㊁钙㊁钠,确保机体电解质维持均衡水平,叮嘱其一日三餐养成规律,确保每日饮水量;③心理护理:心律失常患者可能因多种因素影响伴有负面情绪,直接加重期心理负担对疾病治疗进程造成干扰,因此护理过程中加强心理护理十分必要.要求护理人员通过交流建立良好护患关系,了解其产生负面情绪的主要原因,针对患者存在的顾虑㊁疑惑等进行解答,向患者介绍多种情绪疏导方法,可联合患者家属对患者进行精神安抚,鼓励患者说出自身感受及想法,通过以往案例分析,提高其依从性及自我信心.为降低患者对医院环境或护理人员存在陌生感而存在心理波动,护理人员可增加访视次数,积极向患者介绍医院情况,做到认真倾听㊁换位思考,加强与患者紧密联系,尽可能早的帮助患者解决问题,提高其依赖性及信任度.根据患者喜好播放舒缓类音乐,调节其情绪状态,若患者存在失273 国际检验医学杂志2018年第39卷ZⅠ。

MINISTRYOFSTEEL

MINISTRYOFSTEEL

MINISTRY OF STEELTelephone List as on 13th January, 2016Officer R.No.EPABXOfficeResidence MINISTER OF STEELNarendra Singh Tomar 192 23061486Fax 23061395 23794696 23794697PS: Nikunj Kumar SrivastavaEmai l: ************************193A 203 23062345 23712178Addl PS : Arun KumarEmail: **************193 298 23061486Addl. P.S. : Kuldeep Singh Rathore 72 205 23062175SM Staff: S.O. : Ankur Verma 199A 205 23062175Parliament House 23014714MINISTER OF STATEVishnu Deo Sai 145 23063810FAX:23062703 24652472 24652473PS: Alok Jha 148 311 23061370 9717100998 Addl PS: Umesh Agrawal 149 312 23061370SECRETARYAruna Sundararajan 291 289 2306348923063912Sr PPS : A.J.K. Menon PS: H C BhattSecy Staff 290290298265265215/335230634892306391223061533ADDITIONAL SECRETARY & FIN ADVBharathi S. Sihag 294 255 23062630 24677145 PPS : Rajesh Sharma 295 266 23062630JOINT SECRETARIESSyedain Abbasi 190 207 23063297 26250224 PS : R. K. Rajpal 199 281 23063297Ms.Urvilla Khati 296 213 23061896 23364317 PS : Shankar Lal 299 299 23061896Sunil Barthwal 289 210 23063170PS: Sarada Behera 300 263 23063170T. Srinivas 289A 228 23063872 49053740 PPS: Kishori Lal 187A 305 23063872CHIEF CONTROLLER OF ACCOUNTSBhupal Nanda 299C 331 23063730PS: Deepak Arora 300 291 23063730ECONOMIC ADVISERSuraj Bhan 118 264 23063020 24616765 PS: Rajender Kumar 199 269 23063020INDUSTRIAL ADVISER VacantDIRECTORSH. L. Meena 189 214 23062981 26173179 PS : A.S. Chauhan 187A 278 23062981D B Singh 187 216 23063722 9868203010 PS: Gajender Singh 186 240 23063722Mahabir Prasad 185 218 23062386 23073216 PS: Anil Bhalla 187A 322 23062386K.S. Samarendra Nath 116 217 23063046PA: Gurjit Singh Chatha 186 277 23063046Manvendra Goyal 188 261 23063770PPS : Ms. Sudha 187A 318 23063770SENIOR TECHNICAL DIRECTOR (NIC)J K Yadav 299A 242 23061690 0129-2301516 PRINCIPAL SYSTEM ANALYST (NIC)Ms Anju Sondhi 299A 242 23061690DEPUTY SECRETARIESSubhash Battacharya 120 239 23062874PS : Ms. Sarita Pegwal 186 206 23062874N.K. Wadhwa 65 230 23063739PA: Ms. Vijaya Tata 73 306 23063739JOINT DIRECTOR ( RAJBHASHA)Shailesh Kumar Singh 63 337 23063263 23071393 P.S. Ms.Veena Sharma 66 233 23062242Media & Communications Officer (SHASTRI BHAWAN)Yashdeep S. Kataria Deputy Director*****************.in***********************111A-wing 2338448923488363Fax: 234881289818644187UNDER SECRETARIESC A Joseph 64 209 23061243 29565881 S.K. Basu 396 326 23061601Ashish Malhotra 392 290 23061138Mukesh Kumar 394 339 23063807K.B. Nair 396 333 23061601K.Murali 6420123061243R.K.Gupta 64A 304 23061352Sunil Kumar Singh 392 314 23063332R.K. Saxena 68 232 23063241Officer R.No.EPABXOfficeResidence S.Narayanaswamy 394 245 23063807B.N. Tiwary 395B 223 23061479Ms.Sarita Taneja 395B 325 23062380DEPUTY DIRECTORRaj Kumari Beniwal S-B5 301 23061941DEPUTY INDUSTRIAL ADVISERS K Bhatnager 69 327 23062490ASSTT DIRECTORSB5 328 23062299ASST INDUSTRIAL ADVISERA K Mishra(TW) 64A 307 23061352ASSTT. LIBRARY & INFORMATION OFFICERSmt K Sidana S-B3 294 23063825Divisions/Cells (SO unless designation stated)Adm.(G) J. Ramnath 74 219/238 23062537Board Level Appointments:Yogesh Gahtori396A 226 23062601Budget: Ashish Kumar Sao 393A 244 23061032Cash: P. Shankar (DDO)Ms Sunita Jalota (Cashier) 70702342342306359323063593Control Cell: Paramjit Singh Bsmt 297 23063560 Fax 23063236Coord : P.K. Sharma K.Ravichandran 396B396B2482482306149823061498Estt.: M.K. Jain 71 235/231 23062503Fin. : Ashish Kumar Sao397 249 23061496 FA : Kailash 397 270/302 23062803 KIOCL/ RINL: V.Arunachalam 399A 282 23062246 Logistics Cell: Rajesh Kumar 398 271 23061534 Industrial Development. Div. /MECON: S.P.BistAshok Kumar Sharma 397A 2502212306224523062245IFC Counter : Baldev Singh (Asstt.) Bsmt 297 23063560 MFH: Ajay Paul 393 220 23062501MOIL / Bird Group: Rajesh Kumar 65A 224 23061366 Official Language:6623323062242Parl Cell : Avnish (Parl Asst)S-B2 24123063337FAX2306167627611654 852******* Projects & Intrnational Co-opertation: Balbir Singh Himral 398 251 23061534 PMC CellSB-8 279 23061219 Raw Material/NMDC:Sunil Kumar Pandey Samim Ansari 13 20823063364Record cell :Bsmt28823061219Receipt & Dispatch/ Control Cell Paramjit Singh Bsmt 297 23063560 Fax 23063236SAIL : H L Prasad Sudha Gambhir 395 247 202 2306124723061247Steel Development (Institute) kshmi Srinagesh 73 236 23062395 Technical :Ms.Meena Singhal395A227 23063550Trade & Taxation : Madhulika Guglani 73 259 23061421 Fax 23061308 Vig & R: K.C.Sharma68 256 23062052Gyanendra Singh (Protocol Asstt.)74238230625379910033485CONSULTANT A C R Das399212230610649811330571PAY & ACCOUNTS OFFICE ACA: S.C.Jain553 300 23063718 Sr.AO(Admn.) M.S.Yadav 557 287 23063764 Sr.AO (IAW): V.K. Sharma 390 285 23061784 AAO: (IAW): Ajay Kumar 390 285 23061784 AAO: (IAW):390285 23061784 AAO: (Admn) Ms. Navodita Sharma 55728623061763AAO: (Comp) Smt.Malvinder H. Kaur 316 276 23061784。

Method for production of fluid stable aggregate

Method for production of fluid stable aggregate

专利名称:Method for production of fluid stableaggregate发明人:Hatsuda, Takumi,Kimura, Kazumasa,Nagauna, Kinya,Yano, Akito申请号:EP91302894.0申请日:19910402公开号:EP0450922A2公开日:19911009专利内容由知识产权出版社提供摘要:A method for the production of a fluid stable aggregate, which comprises mixing (A) 100 parts by weight of an absorbent resin powder possessing a carboxyl group, (B) 0.01 to 30 parts by weight of a cross-linking agent, and (C) 0 to 50 parts by weight of water, and (D) 0 to 60 parts by weight of a hydrophilic organic solvent in a high-speed stirring type mixer which is provided with an inner surface formed substantially of a substrate (I) possessing a contact angle of not less than about 60° with respect to water and a heat distortion point of not lower than about 70°C under the stirring condition of not less than 600 m/min of a peripheral speed of a leading-end of a stirring blade and thereafter completing reaction of said absorbent resin powder (A) with said cross-linking agent (B) under the condition that total kinetic energy F added to a mixture during the reaction is satisfied by the following equation: wherein the kinetic energy Fa per minute added during the reaction is not more than 600 joule/kg.申请人:NIPPON SHOKUBAI KAGAKU KOGYO CO. LTD.地址:1-1, Koraibashi, 4-chome, Chuo-ku Osaka-shi, Osaka-fu 541 JP国籍:JP代理机构:Rees, David Christopher 更多信息请下载全文后查看。

海底管线自动化三维建模技术

海底管线自动化三维建模技术

第34卷 第9期2020年9月 北京测绘BeijingSurveyingandMappingVol.34 No.9September2020引文格式:孔凡强.海底管线自动化三维建模技术[J].北京测绘,2020,34(9):1222 1224.犇犗犐:10.19580/j.cnki.1007 3000.2020.09.012[收稿日期] 2020 02 26[作者简介] 孔凡强(1987—),男,山东潍坊人,硕士,工程师,研究方向为三维地理信息系统应用。

犈 犿犪犻犾:kongfankongfan@163.com海底管线自动化三维建模技术孔凡强(浙江省测绘科学技术研究院,浙江杭州310000)[摘 要] 三维智慧海洋的建设离不开海底管线的三维可视化,针对传统管线三维建模存在的人工参与多、建模周期长、耗费人力大等问题,提出了一种GIS平台支持下基于海底地形数据的海底管线自动化三维建模方法,实现对埋设、铺设、穿越三种敷设类型的海底管线的三维建模。

基于建模结果表明:所提方法能够使铺设管线依附于海底地形,埋设管线位于海底地形之下,三维模型位置精确且建模速度快、自动化程度高,研究结果可应用于大范围的海底管线自动化建模,对于海底管线的管理、分析、可视化都有十分重要的意义。

[关键词] 海底管线;海底地形;三维建模;易智瑞[中图分类号] P209 [文献标识码] A [文章编号] 1007 3000(2020)09 1222 30 引言海底管线作为基础设施和海洋产业发展的重要依托,是智慧海洋的重要组成部分。

按用途可以分为电力、通信、供水、油气四大类,按敷设方式有穿越、埋设、铺设三种。

随着计算机图形学、GIS、VR等技术的快速发展,三维数字化技术在智慧海洋的应用也越来越广,管线的三维建模技术也得到了相应的发展。

许多学者也投身于此:早期有学者将高程信息赋予二维管线实现其三维可视化[1];AshokKumarPatil提出了一种利用点云得到圆柱体的轴线网格,确定直管、弯头范围并导出三维管线模型的方法[2];随着计算机软件的发展,许多学者也依靠相应的三维软件进行三维管线的建模,在自动化或半自动化建模方式中取得了不错的可视化效果[3 7];网络技术的发展也使一些学者研究在前端网页中三维管线的可视化[8 9];唐广鸣等研究了关于海底管线的地理信息管理系统的设计等问题[10 11]。

爱索尔(广州)包装有限公司开发区分公司企业信用报告-天眼查

爱索尔(广州)包装有限公司开发区分公司企业信用报告-天眼查
责。本报告应仅为您的决策提供参考。因使用该报告而产生的任何后果,天眼查概不负责。
2

一、企业背景
1.1 工商信息
企业名称:
爱索尔(广州)包装有限公司开发区分公司
工商注册号: 440108400005231
统一信用代码: 91440101552379231J
法定代表人: 王振东
5.2 失信信息
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
5.3 法律诉讼
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
5

4.5 竞品信息
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
五、风险信息
5.1 被执行人信息
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。
2014-11-12
生产、加工新型复合软管及复 塑料包装箱及容器制造;塑料板、管、 2014-11-11
合片材,销售本公司产品并提 型材制造;塑料制品批发人员
截止 2018 年 11 月 19 日,根据国内相关网站检索及天眼查数据库分析,未查询到相关信息。不排除因信 息公开来源尚未公开、公开形式存在差异等情况导致的信息与客观事实不完全一致的情形。仅供客户参 考。

视网膜有髓神经纤维合并高度近视参差性弱视研究进展

视网膜有髓神经纤维合并高度近视参差性弱视研究进展

视网膜有髓神经纤维合并高度近视参差性弱视研究进展沈阳;钱宜珊;周行涛【摘要】视网膜有髓神经纤维合并高度近视参差性弱视是以视网膜有髓神经纤维合并患高度近视、屈光参差性弱视为主要特征的一组综合征,多发于单眼,可严重威胁患者的视力和视功能.目前其原因不详,症状的进展规律尚不明确,治疗效果和预后各异.近年来随着眼科诊疗技术的进步,对视网膜有髓神经纤维合并高度近视参差性弱视的研究取得了一定进展.本文就视网膜有髓神经纤维合并高度近视参差性弱视的最新研究进展加以综述.【期刊名称】《中国眼耳鼻喉科杂志》【年(卷),期】2014(014)004【总页数】3页(P254-256)【作者】沈阳;钱宜珊;周行涛【作者单位】复旦大学附属眼耳鼻喉科医院眼科上海200031;复旦大学附属眼耳鼻喉科医院眼科上海200031;复旦大学附属眼耳鼻喉科医院眼科上海200031【正文语种】中文视网膜有髓神经纤维是由异常分布到视网膜的少突胶质细胞形成有髓神经纤维导致的。

视网膜可见不透明灰白条纹,边缘呈羽状,病灶常沿神经纤维分布,多在出生后数月内发病,也可在任何年龄发病,患眼可无任何临床症状,仅在眼科检查时意外发现,但也可伴发轴性近视、屈光参差、弱视等一系列症状群,严重威胁患者视觉和视功能[1-2]。

随着我国医疗卫生水平的日益提高和全民医疗保健意识的增强,部分视网膜有髓神经纤维合并高度近视参差性弱视患者在学龄期甚至婴幼儿期常规体检时被检出。

但目前该综合征的流行病学特征、发生机制和治疗原则尚不明确,具体治疗方案及疗效均无定论[3]。

本文就视网膜有髓神经纤维合并高度近视参差性弱视最新的研究进展予以综述。

1 流行病学Straatsma等[3]一项对于3968个样本量(7936眼)的随机序贯性观察发现,视网膜有髓神经纤维患病率约为0.98%,0.54%被观察眼患有视网膜有髓神经纤维,12%患者伴发有其他眼部异常,患者中7.7%累及双眼。

Kaimbo等[4]指出视网膜有髓神经纤维伴发高度近视和弱视概率为35%,若双眼屈光参差严重者还可能出现斜视,而伴发高度远视和远视性弱视者罕见。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

File Synchronizer and Personal AssistanceBTP Project ReportBy: Ashok Kumar(Y2102)BTP Supervisor: Professor T.V Prabhakar{ashokk, tvp}@cse.iitk.ac.inDEPARTMENT OF COMPUTER SCIENCE ANDENGINEERINGINDIAN INSTITUTE OF TECHNOLOGY KANPURApril - 13, 2006AbstractFile synchronization, in its simplest form, is automatic updating files and directory from a specified directory on one system to the other system or within the system. Whenever changes are made, in files and/or directory, my tool then up to date it, according to the most recent modification date by propagating the changes in each replica and keeping the backup copy of the modified file into the specified directory.KEYWORD: File Synchronization, Time Synchronization1.0 IntroductionAnyone who uses more than one computer is aware of the data management problem posed by doing so: having multiple copies of files requires synchronization of files to bring all copies up to date after some copies have changed.The simplest and perhaps most widespread method is manual synchronization, in which users remember which files they have changed on which directory or computers and manually copy those files to the other directory or computers. Since users must manually keep track of which files are up-to-date and which are out-of-date, this method is highly error-prone.The better method is to use my tool “file synchronizers” which track changes to files, directory and propagate those changes from•Computer to USB hard disk and vise versa•Computer to Computer over the NetworkTo accomplish this first of all user must run my “Time Synchronization” tool to correct the system clock according to the “NTP” server of IITK, so that all the system within the IITK can be synchronize without time adjustment problem.Also my tools synchronized according to the modification time of the file which imposes one constraint: the user must remember to synchronize the computer whenever he switches from one to another. If he does not, he might end up with different new versions of the same file on different computer and will lose one change or the other.2.0 Problem Statement: SynchronizationFirst of all we must know what a correct synchronization must accomplish. A strict formal definition of correctness is an on going research topic (see, for example, Balasubramanian and Pierce [1], Pierce and Voilloun [2]), so we will make a informal definition as:“File synchronization, in its simplest form, is automatic updating files and directory from a specified directory on one system to the other system or within the system.”Also we consider a unidirectional synchronization, changes from one replica are propagated to a second, but changes on the second do not propagate back to the first. Bidirectional synchronizer can be easily built from two unidirectional synchronizer.We will call a unidirectional synchronization that propagates changes from A to B, leaving A unchanged, a “sync from A to B”.This section present the job of synchronization from two points of view:•First considering the synchronization of a single file and directory containing files with no sub-directory.•And then considering the synchronization of entire file and directory hierarchy.3.0 Synchronizing FilesTo decide how to synchronize individual files, file synchronizer must follow the “no lost updates rule”.3.1.0 No Lost UpdatesCorrect synchronization provides a “no lost updates” guarantee.Suppose each file is represented by the modifications time over the course of its lifetime, beginning with its initial creation. If two replicas have different copies of file (call the copies A and B), it is safe to replace A with B only if A’s modification time is more recent than B’s.Let F A and F B denotes the version of the file on A and BM A and M B denotes their modification times.Left_To_Right_Synchronization( A B) ≡if ( M A = M B ) // same modification time implies files are same(for{ //within the system)nothingdo}else if ( M A < M B ){do nothing // in bidirectional sync. F B will update A}else{F B to archive directory )Move(F A to BUpdate}Fig. 1: An algorithmic specification of single file synchronization in terms of modification time.3.1.1Synchronizing file systemFor synchronizing the file system we have to consider the subdirectories along with files. So when synchronizing from left to right and if right side do not contains the files and directories existing in the left then we are creating all the files and directories to the right. And if some files and directories with the name same as in the left exist to the right then we are updating it with the algorithm (mention in fig.1) by recursively calling the function.4.0 Solution overviewThe solution for the problem mention in section 2.0 can be solved through the tool provided by me and following the section 3.0 and its sub-section.5.0 Mile Stone AchievedThe tools provided by me are:•Time Synchronizer•Directories and File Synchronizer from system to USB hard drive and vise versa.•File Synchronizer from system to system over the network.5.1 Function of Tools•Time Synchronizer:This tool synchronizes the system clock according to the NTP server of iitk, so that there is no discrepancy between the system clocks within the domain for synchronization to take place and now if we run the “file synchronizer” we don’t have to bother about the time difference between the systems.It has been implemented according to RFC-2030 [3].Fig. 2: An algorithm for synchronizing time from the NTP server.•Directories and File Synchronizer from system to USB hard drive: This tool synchronizes the directories and files recursively from system to USB drive and vise versa taking modification date as a parameter. Also it keeps the backup copy of the replaced files in specified directory.Fig. 3: File Synchronization over view•File Synchronizer from system to system over the network:This tool synchronizes the files from system to system over the network taking modification date as a parameter and keeps the backup copy of the replaced files in specified directory.Fig. 4: File Synchronization over view over the networkAll the above mention tools has been developed for windows on dotNet platform and the implementation language is C#, which can solve the problem stated in the section (2.0).6.0 Final OutcomeOutcome of this semester BTP project is a GUI based tools implemented in C# on dotNetplatform for windows operating system to solve the file synchronization problem.7.0 Future work“Directories and File Synchronizer” from system to USB hard drive has beenimplemented completely but “File Synchronizer” over the network is only for fileswithin the directory. So in future it can be implemented for sub-directories within thedirectory and recursively.References[1] S. Balasubramanian and Benjamin C. Pierce. What is a file synchronizer? InProceedings of the Fourth Annual ACM/IEEE International Conference onMobile Computing and Networking (MobiCom ’98), October 1998.[2]Benjamin C. Pierce and Jerome Vouillon. What’s in Unison? A formalspecification and reference implementation of a file synchronizer. TechnicalReport MS-CIS-03-36, Dept. of CIS, University of Pennsylvania, 2004.[3] /rfcs/rfc2030.html[4] Fig.2 has been taken from section “SNTP Client Operations” of above link.。

相关文档
最新文档