上海工程技术大学概率论第一章答案
上海工程技术大学概率论与数理统计复习题(17-18(一))-答案
5.某人独立射击 10 次,每次射击的命中率均为 0.6,求: (1) 击中三次的概率; (2) 至少有一次未击中的概率. 解: (1) p P 10 (3) C10 (0.6) (0.4) 0.0425
10
10
0
2 1 0.97 0.98 0.9733 3 3
7.设 8 支枪中有 3 支未经试射校正,5 只已经试射校正.一射手用校正的枪射击时,中靶 的概率为 0.8,而用未校正过的枪射击时,中靶的概率为 0.3.现假定从 8 支枪中任取一支进 行射击,结果中靶,求所用的枪是己校正过的概率. 解:设事件 A :射击中靶,事件 B :所用的枪是已校正过的
P ( A B ) P ( A) P ( B ) P ( AB )
1 1 1 1 4 6 12 3
3. 甲乙二人独立地去破译一份密码, 已知各人能译出的概率分别为 1/5 和 1/3, 求密码被译 出的概率. 解:设A:甲译出密码,B:乙译出密码,C:密码被译出. 则 C A B
a a a 解:由规范性得: k 3 1 1 2 3 k 1 1 3
a , 3k
k 1, 2, ,求常数 a .
a2
k cos x, 9.设随机变量 X 的概率密度为 f ( x ) 0,
(2) P0 X ; 解: (1)
x
概率论与数理统计复习题
1 1 , P( B) ,试分别在下列三种情况下求 P ( A B ) 的值: 3 2 1 (1) A, B 独立; (2) A, B 互斥; (3) A B ; (4) P( AB) . 8
概率论与数理统计复习题--上海工程技术大学
y 2.38
准差
S 1 0 . 12
S 2 0 . 14
设两样本独立,其涉及的总体都服从正态分布,问 是否可以认为这两种牌子的雪茄烟其尼古丁含量 的波动是否有明显差异?( = 0 . 05 )
P ( A)P (B ) ,
则A 与B
(
)
(A)相互独立 (B)互不相容 (C)不相互独立 (D)相容
3.对于任意两个随机事件 为 (A) (B) (C) (D) .
与
,有
4.设 A ቤተ መጻሕፍቲ ባይዱ B 相互独立, P ( A ) 0.7 ,
P ( B ) 0.5
,则 P ( A B ) (B) 0.15; (D) 0.7
B)0.4; D)1.
9.设随机变量 X 的分布函数为
0, F ( x) x, 1, x 0; 0 x 1 x 1.
,
则 P{X
1 3
}
(
).
10. 设随机变量 X 的概率密度函数为
1 2 x 3 f x= 0 1 x 2 其它
, 则 P X
( 2) X , Y ) 关于 X 和关于 Y 的边缘概率密度
函数 f 3)
X
( x ), f Y ( y ) ;
P (Y 2 X )
24 . 设 随 机 变 量 ( X , Y ) 具 有 概 率 密 度
e , f ( x, y) 0
y
0 x y 其他
,
求边缘概率密度 f x ( x ), f Y ( y ) .
k n k
).
k 0 ,1 , 2 .... ;
2 3
1
第一章至第四章部分课后习题答案
第一章至第四章部分课后习题答案概率论与数理统计部分习题答案第一章概率论的基本概念1. 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 6. 在房间里有10人。
分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的号码。
(1)求最小的号码为5的概率。
记“三人纪念章的最小号码为5”为事件A∵ 10人中任选3人为一组:选法有??310种,且每种选法等可能。
又事件A 相当于:有一人号码为5,其余2人号码大于5。
这种组合的种数有??251 (2)求最大的号码为5的概率。
记“三人中最大的号码为5”为事件B ,同上10人中任选3人,选法有??310种,且每种选法等可能,又事件B 相当于:有一人号码为5,其余2人号码小于5,选法有??241种8. 在1500个产品中有400个次品,1100个正品,任意取200个。
(1)求恰有90个次品的概率。
记“恰有90个次品”为事件A ∵ 在1500个产品中任取200个,取法有??2001500种,每种取法等可能。
200个产品恰有90个次品,取法有??110110090400种(2)至少有2个次品的概率。
记:A 表“至少有2个次品”B 0表“不含有次品”,B 1表“只含有一个次品”,同上,200个产品不含次品,取法有?2001100种,200个产品含一个次品,取法有199********种9. 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少?记A 表“4只全中至少有两支配成一对” ∵ 从10只中任取4只,取法有??410种,每种取法等可能。
《概率论与数理统计答案》第一章
4/15,刮风(记作事件 B )的概率为 7/15,刮风又下雨(记作事件 C )的概率为
网 1/10。求 P( A | B) , P(B | A) , P( A ∪ B) 。
案 提示与答案: P(A | B) = 3 , P(B | A) = 3 , P(A ∪ B) = 19 。
6.已知事件 A 、 B 满足 P( AB) = P( A ∩ B ) 且 P( A) = 1/ 3 ,求 P(B) 。
解法一:由性质(5)知
m P(B) = P( A ∪ B) − P( A) + P( AB)
(性质 5)
co =1− P( A∪ B) − P( A) + P( AB)
(性质 3)
球,也可能是黑球),并且也只有这两种可能。因此若把这两种可能看成两个事
件,这两个事件的和事件便构成了一个必然事件。
若设 A 表示:“由甲袋取出的球是白球”; B 表示:“由甲袋取出的球是黑 球”; C 表示:“从乙袋取出的球是白球”。则 P(C) = 5 /12 。
18.设有一箱同类产品是由三家工厂生产的,其中 1 是第一家工厂生产的, 2
16.一机床有 1/3 的时间加工零件 A ,其余时间加工零件 B ,加工零件 A 时, 停机的概率是 3/10,加工零件 B 时,停机的概率是 4/10,求这台机床停机的概 率。
提示与答案:依题意,这是一全概率问题。若设 A 事件表示:“加工零件 A ”; B 事件表示:“加工零件 B ; C 事件表示:“机床停机”。 则 P(C) = 11/ 30 。
相同”; B 表示事件:“这 n 个人至少有两个人生日在同一天”。
概率论与数理统计答案第一章
概率论第一章习题解答习题1.11. 写出下列随机试验的样本空间Ω及指定的事件:(1)袋中有3个红球和2个白球,现从袋中任取一个球,观察其颜色;(2)掷一枚硬币,设H 表示“出现正面”,T 表示“出现反面”.现将一枚硬币连掷两次,观察出现正、反面的情况,并用样本点表示事件A =“恰有一次出现正面”;(3)对某一目标进行射击,直到击中目标为止,观察其射击次数,并用样本点表示事件A =“射击次数不超过5次”;(4)生产某产品直到5件正品为止,观察记录生产该产品的总件数;(5)从编号a 、b 、c 、d 的四人中,随机抽取正式和列席代表各一人去参加一个会议,观察选举结果,并用样本点表示事件A =“编号为a 的人当选”.解:(1)Ω = {红色, 白色}; (2)Ω = {(H , H ), (H , T ), (T , H ), (T , T )},A = {(H , T ), (T , H )};(3)Ω = {1, 2, 3, …, n , …},A = {1, 2, 3, 4, 5}; (4)Ω = {5, 6, 7, …, n , …};(5)Ω = {(a , b ), (a , c ), (a , d ), (b , a ), (b , c ), (b , d ), (c , a ), (c , b ), (c , d ), (d , a ), (d , b ), (d , c )},A = {(a , b ), (a , c ), (a , d ), (b , a ), (c , a ), (d , a )}.2. 某射手射击目标4次,记事件A =“4次射击中至少有一次击中”,B =“4次射击中击中次数大于2”.试用文字描述事件A 与B . 解:A 表示4次射击都没有击中,B 表示4次射击中击中次数不超过2.3. 设A , B , C 为三个事件,试用事件的运算关系表示下列事件:(1)A , B , C 都发生;(2)A , B , C 都不发生;(3)A , B , C 中至少有一个发生;(4)A , B , C 中最多有一个发生;(5)A , B , C 中至少有两个发生;(6)A , B , C 中最多有两个发生.解:(1)ABC ; (2)C B A ; (3)A ∪B ∪C ; (4)C B A C B A C B A C B A U U U ;(5)ABC BC A AB U U U ; (6)ABC .4. 在一段时间内,某电话交换台接到呼唤的次数可能是0次,1次,2次,….记事件A n =“接到的呼唤次数小于n ”(n = 1, 2, …),试用事件的运算关系表示下列事件:(1)呼唤次数大于2;(2)呼唤次数在5到10次范围内;(3)呼唤次数与8的偏差大于2.解:(1)3A ; (2)A 11 − A 5; (3)116A A U .5. 证明:(1)Ω=−A B A AB U U )(; (2)AB B A B A B A =))()((U U U .证:(1)Ω==Ω===−A A B A A AB B A AB U U U U U U U U )()(;(2)U U U U U U A B A B B A B A B A B A ())(())()((==∅AB AB A A B A A B A ===U U U )())(.习题1.21. 设P (A ) = P (B ) = P (C ) = 1/4,P (AB ) = P (BC ) = 0,P (AC ) = 1/8,求A 、B 、C 三个事件至少有一个发生的概率.解:因P (AB ) = P (BC ) = 0,且ABC ⊂ AB ,有P (ABC ) = 0, 则8581414141)()()()()()()()(=−++=+−−−++=ABC P BC P AC P AB P C P B P A P C B A P U U . 2. 设P (A ) = 0.4,P (B ) = 0.5,P (A ∪B ) = 0.7,求P (A − B )及P (B − A ).解:因P (AB ) = P (A ) + P (B ) − P (A ∪B ) = 0.4 + 0.5 − 0.7 = 0.2,则P (A − B ) = P (A ) − P (AB ) = 0.4 − 0.2 = 0.2,P (B − A ) = P (B ) − P (AB ) = 0.5 − 0.2 = 0.3.3. 某市有A , B , C 三种报纸发行.已知该市某一年龄段的市民中,有45%的人喜欢读A 报,34%的人喜欢读B 报,20%的人喜欢读C 报,10%的人同时喜欢读A 报和B 报,6%的人同时喜欢读A 报和C 报,4%的人同时喜欢读B 报和C 报,1%的人A , B , C 三种报纸都喜欢读.从该市这一年龄段的市民中任选一人,求下列事件的概率:(1)至少喜欢读一种报纸;(2)三种报纸都不喜欢;(3)只喜欢读A 报;(4)只喜欢读一种报纸.解:分别设A , B , C 表示此人喜欢读A , B , C 报,有P (A ) = 0.45,P (B ) = 0.34,P (C ) = 0.2,P (AB ) = 0.1,P (AC ) = 0.06,P (BC ) = 0.04,P (ABC ) = 0.01,(1)P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC ) = 0.8;(2)2.0)(1)((=−==C B A P C B A P P U U U U ;(3)3.0)()()()()()()(=+−−=−=ABC P AC P AB P A P B A P B A P C B A P ;(4)因21.0)()()()()()()(=+−−=−=ABC P BC P AB P B P P B P B P ,11.0)()()()()()()(=+−−=−=ABC P BC P AC P C P BC A P C A P C B A P , 故62.0)()()()(=++=++C B A P C B A P C B A P C B A C B A C B A P .4. 连续抛掷一枚硬币3次,求既有正面又有反面出现的概率.解:样本点总数n = 2 3 = 8,事件A 中样本点数62313=+=C C k A ,则75.043)(===n k A P A . 5. 在分别写有2, 4, 6, 7, 8, 11, 12, 13的8张卡片中任取两张,把卡片上的两个数字组成一个分数,求所得分数为既约分数的概率.解:样本点总数2828==C n ,事件A 中样本点数18231315=+=C C C k A ,则6429.0149)(===n k A P A . 6. 一部5卷文集任意地排列在书架上,问卷号自左向右或自右向左恰好为1, 2, 3, 4, 5顺序的概率等于多少?解:样本点总数12055==A n ,事件A 中样本点数k A = 2,则0167.0601)(===n k A P A . 7. 10把钥匙中有3把能打开某一门锁,今任取两把,求能打开某该门锁的概率.解:样本点总数45210==C n ,事件A 中样本点数24231317=+=C C C k A ,则5333.0158)(===n k A P A . 8. 一副扑克牌有52张,进行不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1)四张花色各异;(2)四张中只有两种花色. 解:样本点总数270725452==C n ,(1)事件A 1中样本点数285611131131131131==C C C C k A ,则1055.0208252197)(11===n k A P A ; (2)事件A 2表示两种花色各两张,或者一种1张一种3张,样本点数81120)2(113313213213242=+=C C C C C k A ,则2996.041651248)(22===n k A P A . 9. 口袋内装有2个伍分、3个贰分、5个壹分的硬币共10枚,从中任取5枚,求总值超过壹角的概率. 解:样本点总数252510==C n ,事件A 分三种情形:①两枚5分,三枚其它,②一枚5分,三枚2分,一枚1分,③一枚5分,两枚2分,两枚1分,样本点数1262523121533123822=++=C C C C C C C C k A ,则5.021)(===n k A P A . 方法二:10枚硬币总额2角1分,任取5枚若超过1角,那么剩下的5枚将不超过1角,可见事件A 中的样本点与A 中的样本点一一对应,即A k k =,则5.0)()(==A P A P .10.在10个数字0, 1, 2, …, 9中任取4个(不重复),能排成一个4位偶数的概率是多少(最好是更正为:排在一起,恰好排成一个4位偶数的概率是多少)?解:样本点总数5040410==A n ,事件A 的限制条件是个位是偶数,首位不是0,样本点数2296281814281911=+=A A A A A A k A ,则4556.09041)(===n k A P A . 11.一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一年以365天计算). 解:样本点总数n = 365 100,A 的对立事件A 表示所有学生生日都不在元旦,100364=A k , 则2399.036536411(1)(100=⎟⎠⎞⎜⎝⎛−=−=−=n k A P A P A .12.在 [0, 1] 区间内任取两个数,求两数乘积小于1/4的概率.解:设所取得两个数为x , y ,Ω = {(x , y ) | 0 < x < 1, 0 < y < 1},}1,10,10|),{(<<<<=y x y x A 有m (Ω) = 1,4034.042ln 23)41ln 4141(1)ln 41(411()(141141=−=−−=−=−=∫x x dx x A m 则5966.042ln 21)()(1(1)(=+=Ω−=−=m A m P A P . 习题1.31. 一只盒子有3只坏晶体管和7只好晶体管,在其中取二次,每次随机地取一只,作不放回抽样,发现第一只是好的,问另一只也是好的概率是多少?解:设A 表示第一只是好的,B 表示第二只是好的,当第一只是好的时,第二次抽取前有3只是坏的,6只是好的,则6667.03296)|(===A B P . 2. 某商场从生产同类产品的甲、乙两厂分别进货100件、150件,其中:甲厂的100件中有次品4件,乙厂的150件中有次品1件.现从这250件产品中任取一件,从产品标识上看它是甲厂生产的,求它是次品的概率.解:设A 表示甲厂产品,B 表示次品,故04.01004)|(==A B P . 3. 根据抽样调查资料,2000年某地城市职工家庭和农村居民家庭收入按人均收入划分的户数如下:户数 6000元以下 6000 ~ 12000元 12000元以上 合计城市职工 25 125 50 200 农村居民 120 132 48 300 合计 145 257 98 500 现从被调查的家庭中任选一户,已知其人均收入在6000元以下,试问这是一个城市职工家庭的概率是多少?解:设A 表示人均收入在6000元以下,B 表示城市职工家庭,故1724.014525)|(==A B P . 4. 某单位有92%的职工订阅报纸,93%的职工订阅杂志,在不订阅报纸的职工中仍有85%的职工订阅杂志,从单位中任找一名职工,求下列事件的概率:(1)该职工至少订阅报纸或杂志中一种;(2)该职工不订阅杂志,但是订阅报纸. 解:设A 表示订阅报纸,B 表示订阅杂志,有P (A ) = 0.92,P (B ) = 0.93,85.0|(=A B P , 则068.085.008.0)|()()(=×==A B P A P B A P ,862.0068.093.0)()()(=−=−=B A P B P AB P ,(1)P (A ∪B ) = P (A ) + P (B ) − P (AB ) = 0.92 + 0.93 − 0.068 = 0.988;(2)P (A − B ) = P (A ) − P (AB ) = 0.92 − 0.862 = 0.058.5. 某工厂有甲、乙、丙三个车间生产同一种产品,各个车间的产量分别占全厂产量的25%、35%、40%,各车间产品的次品率分别为5%、4%、2%.(1)求全厂产品的次品率;(2)如果从全厂产品中抽取一件产品,恰好是次品,问这件次品是甲、乙、丙车间生产的概率分别是多少?解:(1)任取一件产品,设A 1, A 2, A 3分别表示甲、乙、丙车间产品,B 表示次品,则P (B ) = P (A 1) P (B | A 1) + P (A 2) P (B | A 2) + P (A 3) P (B | A 3)= 0.25 × 0.05 + 0.35 × 0.04 + 0.4 × 0.02 = 0.0345;(2)3623.069250345.005.025.0)()|()()()()|(1111==×===B P A B P A P B P B A P B A P , 4058.069280345.004.035.0)()|()()()()|(2222==×===B P A B P A P B P B A P B A P , 2319.069160345.002.04.0)()|()()()()|(3333==×===B P A B P A P B P B A P B A P . 6. 有三个形状相同的罐,在第一罐中有两个白球和一个黑球;在第二个罐中有三个白球和一个黑球;在第三个罐中有两个白球和两个黑球.某人随机地取一罐,再从该罐中任取一球,试问这球是白球的概率有多少?解:设321,,A A A 分别表示第一、二、三罐,B 表示白球, 则6389.03623423143313231)|()()|()()|()()(332211==×+×+×=++=A B P A P A B P A P A B P A P B P . 7. 三部自动的机器生产同样的汽车零件,其中机器A 生产的占40%,机器B 生产的占25%,机器C 生产的占35%,平均说来,机器A 生产的零件有10%不合格,对于机器B 和C ,相应的百分数分别为5%和1%,如果从总产品中随机地抽取一个零件,发现为不合格,试问:(1)它是由机器A 生产出来的概率是多少?(2)它是由哪一部机器生产的可能性最大?解:设A 1, A 2, A 3分别表示机器A , B , C 生产的零件,D 表示不合格的零件,(1))|()()|()()|()()|()()()()|(3322111111A D P A P A D P A P A D P A P A D P A P D P D A P D A P ++== 7143.075056.004.001.035.005.025.01.04.01.04.0===×+×+××=; (2)2232.011225056.00125.0056.005.025.0)()()|(22===×==D P D A P D A P ,0625.01127056.00035.0056.001.035.0)()()|(33===×==D P D A P D A P , 则由机器A 生产的概率最大.8. 设P (A ) > 0,试证:)()(1)|(A P B P A B P −≥. 证:)()(1)()(11)(1)()()()()()()()()|(A P B P A P B P A P B P A P A P B A P B P A P A P AB P A B P −=−−=−+≥−+==U . 习题1.41. 一个工人看管三台机床,在一小时内机床不需要工人看管的概率分别为0.9、0.8、0.7,求在一小时内3台机床中最多有一台需要工人看管的概率.解:设A 1, A 2, A 3分别表示一小时内第一、二、三台机床不需要工人照管,可以认为A 1, A 2, A 3相互独立, 则概率为)()()()()(321321321321321321321321A A A P A A A P A A A P A A A P A A A A A A A A A A A A P +++=U U U)()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P +++== 0.9 × 0.8 × 0.7 + 0.9 × 0.8 × 0.3 + 0.9 × 0.2 × 0.7 + 0.1 × 0.8 × 0.7 = 0.902.2. 电路由电池A 与两个并联的电池B 及C 串联而成,设电池A , B ,电路发生断电的概率. 解:设A , B , C 分别表示电池A , B , C 损坏,电路断电为事件A ∪BC ,则概率为P (A ∪BC ) = P (A ) + P (BC ) − P (ABC ) = P (A ) + P (B ) P (C ) − P (A ) P (B ) P (C ) = 0.3 + 0.2 × 0.2 − 0.3 × 0.2 × 0.2 = 0.328.方法二:设A , B , C 分别表示电池A , B , C 正常工作,系统正常工作为事件A (B ∪C ) = AB ∪AC , 则概率为1 − P (AB ∪AC ) = 1 − P (AB ) − P (AC ) + P (ABC )= 1 − P (A ) P (B ) − P (A ) P (C ) + P (A ) P (B ) P (C )= 1 − 0.7 × 0.8 − 0.7 × 0.8 + 0.7 × 0.8 × 0.8 = 0.328.3. 加工某一零件共需经过四道工序.设第一、二、三、四道工序的次品率分别为2%, 3%, 5%, 3%,假定各道工序是互不影响的,求加工出来的零件的次品率.解:设A 1, A 2, A 3, A 4分别表示第一、二、三、四道工序加工出合格品,有A 1, A 2, A 3, A 4相互独立,则概率为1 − P (A 1A 2A 3A 4) = 1 − P (A 1) P (A 2) P (A 3) P (A 4) = 1 − 0.98 × 0.97 × 0.95 × 0.97 = 0.1240.4. 抛掷一枚质地不均匀的硬币8次,设正面出现的概率为0.6,求下列事件的概率:(1)正好出现3次正面;(2)至多出现2次正面;(3)至少出现2次正面.解:将每次掷硬币看作一次试验,出现正面A ,反面A ;独立;P (A ) = 0.6.伯努利概型,n = 8,p = 0.6.(1)1239.04.06.0)3(53388=××=C P ; (2)0498.04.06.04.06.04.06.0)2()1()0(622871188008888=××+××+××=++C C C P P P ;(3)9915.04.06.04.06.01)1()0(17118800888=××−××−=−−C C P P .5. 设每次射击时命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?解:将每次射击看作一次试验,击中A ,没击中A ;独立;P (A ) = 0.2.伯努利概型,n 次试验,p = 0.2,则9.08.018.02.01)0(100≥−=××−=−n n n n C P ,即0.8 n ≤ 0.1,故32.108.0lg 1.0lg =≥n ,取n = 11.6. 一大批产品的优质品率为60%,从中任取10件,求下列事件的概率:(1)取到的10件产品中恰有5件优质品;(2)取到的10件产品中至少有5件优质品;(3)取到的10件产品中优质品的件数不少于4件且不多于8件.解:将取每件产品看作一次试验,优质品A ,非优质品A ;独立;P (A ) = 0.6.伯努利概型,n = 10,p = 0.6.(1)2007.04.06.0)5(5551010=××=C P ;(2)P 10 (5) + P 10 (6) + P 10 (7) + P 10 (8) + P 10 (9) + P 10 (10)288103771046610555104.06.04.06.04.06.04.06.0××+××+××+××=C C C C8338.04.06.04.06.0010101019910=××+××+C C ;(3)P 10 (4) + P 10 (5) + P 10 (6) + P 10 (7) + P 10 (8)28810377104661055510644104.06.04.06.04.06.04.06.04.06.0××+××+××+××+××=C C C C C= 0.8989;7. 证明:若)|()|(B A P B A P =,则事件A 与B 独立. 证:因)(1)()()(1)()()()|()()()|(B P AB P A P B P B A P P B A P B A P B P AB P B A P −−=−−====, 则P (AB )[1 − P (B )] = P (B )[P (A ) − P (AB )],即P (AB ) − P (AB ) P (B ) = P (B ) P (A ) − P (B ) P (AB ), 故P (AB ) = P (A ) P (B ),A 与B 相互独立.复习题一1. 设P (A ) = 0.5,P (B ) = 0.6,问:(1)什么条件下P (AB )可以取最大值,其值是多少?(2)什么条件下P (AB )可以取得最小值,其值是多少?解:(1)当A ⊂ B 时P (AB ) 最大,P (AB ) = P (A ) = 0.5;(2)当A ∪B = Ω 时P (AB ) 最小,P (AB ) = P (A ) + P (B ) − P (A ∪B ) = 0.5 + 0.6 − 1 = 0.1.2. 一电梯开始上升时载有5名乘客,且这5人等可能地在8层楼的任何一层出电梯,求:(1)每层至多一人离开的概率;(2)至少有两人在同一层离开的概率;(3)只有一层有两人离开的概率.解:样本点总数是8取5次的可重排列,即n = 8 5 = 32768,(1)事件A 1中样本点数6720581==A k A ,则2051.0512105)(11===nk A P A ; (2)事件A 2是A 1的对立事件,则7949.0512407)(1)(12==−=A P A P ; (3)事件A 3表示有两人在同一层离开,而另外三人分别在3个不同楼层或者都在同一层离开,样本点数17360)(33173725183=+=C A A C A k A ,则5298.020481085)(33===n k A P A . 3. 从5副不同的手套中任取4只手套,求其中至少有两只手套配成一副的概率.解:样本点总数210410==C n ,A 的对立事件表示4只手套都不配套,801212121245==C C C C C k A , 则6190.021131(1)(==−=−=n k A P A P A . 4. 从1, 2, …, n 中任取两数,求所取两数之和为偶数的概率. 解:样本点总数为)1(212−=n n C n ,事件A 表示取得两个偶数或两个奇数,当n 为偶数时,共有2n 个偶数和2n 个奇数, 样本点数)2(41)12(22222−=−=+=n n n n C C k n n A ,则)1(22)(2−−==n n C k A P n A ; 当n 为偶数时,共有21−n 个偶数和21+n 个奇数, 样本点数2221221)1(41212121232121−=−⋅+⋅+−⋅−⋅=+=+−n n n n n C C k n n A ,则n n C k A P nA 21)(2−==. 5. 在中国象棋的棋盘上任意地放上一只红“车”及一只黑“车”,求它们正好可以一只吃掉另一只的概率.解:样本点总数4005290==C n ,事件A 中样本点数7652911021019=+=C C C C k A ,则1910.08917)(===n k A P A . 6. 某货运码头仅能容一船卸货,而甲、乙两船在码头卸货时间分别为1小时和2小时.设甲、乙两船在24小时内随时可能到达,求它们中任何一船都不需等待码头空出的概率.解:Ω = {(x , y ) | 0 ≤ x < 24, 0 ≤ y < 24},A = {(x , y ) | 0 ≤ x < 24, 0 ≤ y < 24, x − y > 2或y − x > 1},有m (Ω) = 24 2 = 576,5.50622212321)(22=×+×=A m , 则8793.05765.506)()()(==Ω=m A m A P . 7. 从区间 [0, 1] 中任取三个数,求三数和不大于1的概率.解:Ω = {(x , y , z ) | 0 ≤ x , y , z ≤ 1},A = {(x , y , z ) | 0 ≤ x , y , z ≤ 1, x + y + z ≤ 1},有m (Ω) = 1,A 是一个三棱锥,6112131)(=××=A m ,则1667.061)()()(==Ω=m A m A P . 8. 已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率是多少?(假设男人和女人各占人数的一半.)解:设A 1, A 2分别表示男人和女人,B 表示色盲,则9524.021200025.05.005.05.005.05.0)|()()|()()|()()()()|(22111111==×+××=+==A B P A P A B P A P A B P A P B P B A P B A P . 9. 发报台分别以0.7和0.3的概率发出信号0和1(例如:分别用低电频和高电频表示).由于随机干扰的影响,当发出信号0时,接收台不一定收到0,而是以概率0.8和0.2收到信号0和1;同样地,当发报台发出信号1时,接收台以概率0.9和0.1收到信号1和0.试求:(1)接收台收到信号0的概率;(2)当接收台收到信号0时,发报台确是发出信号0的概率.解:设A 0, A 1分别表示发出信号0, 1,B 0, B 1表示收到信号0, 1,(1)P (B 0) = P (A 0) P (B 0 | A 0) + P (A 1) P (B 0 | A 1) = 0.7 × 0.8 + 0.3 × 0.1 = 0.59;(2)9492.0595659.08.07.0)()|()()()()|(000000000==×===B P A B P A P B P B A P B A P . 10.设A , B 独立,AB ⊂ D ,D B A ⊂,证明P (AD ) ≥ P (A ) P (D ).证:因AB ⊂ D ,有AB ⊂ AD ,则P (AD ) − P(AB ) = P (AD − AB ),B D ΩA因B A ⊂=U ,有D ⊂ A ∪B ,D − B ⊂ A ∪B − B ⊂ A ,则AD − AB = A (D − B ) = D − B ,故P (AD ) − P (AB ) = P (AD − AB ) = P (D − B ) ≥ P (A ) P (D − B ) ≥ P (A ) [P (D ) − P (B )],由于A , B 独立,有P (AB ) = P (A ) P (B ),故P (AD ) ≥ P (A ) P (D ).11.甲、乙、丙三人同时向一架飞机射击,他们击中目标的概率分别为0.4, 0.5, 0.7.假设飞机只有一人击中时,坠毁的概率为0.2,若2人击中,飞机坠毁的概率为0.6,而飞机被3人击中时一定坠毁.现在如果发现飞机已被击中坠毁,计算它是由三人同时击中的概率.解:结果:设B 表示目标被击毁,原因:设A 0, A 1, A 2, A 3分别表示无人、1人、2人、3人击中目标, 则)|()()|()()|()()|()()|()()()()|(332211003333A B P A P A B P A P A B P A P A B P A P A B P A P B P B A P B A P +++==, 且有P (B | A 0) = 0,P (B | A 1) = 0.2,P (B | A 2) = 0.6,P (B | A 3) = 1,又设C 1, C 2, C 3分别表示甲、乙、丙击中目标, 则09.03.05.06.0)()()()()(3213210=××===C P C P C P C C C P A P ,)()(3213213211C C C C C C C C C P A P U U =)()()()()()()()()(321321321C P P P P C P P P P C P ++== 0.4 × 0.5 × 0.3 + 0.6 × 0.5 × 0.3 + 0.6 × 0.5 × 0.7 = 0.36,)()(3213213212C C C C C C C C C P A P U U =)()()()()()()()()(321321321C P C P P C P P C P P C P C P ++== 0.4 × 0.5 × 0.3 + 0.4 × 0.5 × 0.7 + 0.6 × 0.5 × 0.7 = 0.41,P (A 3) = P (C 1C 2C 3) = P (C 1) P (C 2) P (C 3) = 0.4 × 0.5 × 0.7 = 0.14, 故3057.0458.014.0114.06.041.02.036.0009.0114.0)|(3==×+×+×+××=B A P . 12.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有4人治好则认为这种药有效,反之则认为无效.试求:(1)虽然新药有效,且把痊愈率提高到35%,但通过试验被否定的概率;(2)新药完全无效,但通过试验被认为有效的概率. 解:将每人服药看作一次试验,痊愈A ,没有痊愈A ;独立;(1)新药有效,痊愈率为0.35,即P (A ) = 0.35,伯努利概型,n = 10,p = 0.35,故概率为P 10 (0) + P 10 (1) + P 10 (2) + P 10 (3) 5138.065.035.065.035.065.035.065.035.0733108221091110100010=××+××+××+××=C C C C .(2)新药完全无效,痊愈率为0.25,即P (A ) = 0.25,伯努利概型,n = 10,p = 0.25,故所求概率为1 − P 10 (0) − P 10 (1) − P 10 (2) − P 10 (3)2241.075.025.075.025.075.025.075.025.01733108221091110100010=××−××−××−××−=C C C C .。
上海工程技术大学概率论作业答案
习题一1 •设 A, B,C 是三个事件,且 P (A) = P(B) = P (C)=」,P (AB) = P(BC) = O ,4P(AC) =!,求A,B,C 中至少有一个发生的概率.8解:;P(AB)=OP(AB)C 0 /. P(A"") =P(A) +P(B) + P(C) -P(AB)-P(BC) -P(AC) + P(ABC)1 1 1 1 5 + + 一0—0— +0= 4 4 4 882•设事件A,B 及AuB 的概率分别为p,q 及r ,求:P(AB) , P(AB) , P(AB)及P (AB).解:P( AB) = P(A)+P (B)-P (AuB)A)B- A)B-P( A3•设P (A)^1, P (B)=l ,试分别在下列三种情况下求32A UB ;P(AB) J • 8⑶卩二 1-0.8472-0.1458 = 0.0070 或 p== 0.0071p+q-rP(AB))的值:(1) A, B 互不相容;解:(1) P (AB)= P®」 2 (2) P(AB) = P(B) -P(A)1(3) P (AB) = P(B)-P( AB)=—2 4•盒子中装有同型号的电子元件(1) 4个全是正品的概率;其中有4个是次品•从盒子中任取 4个,求: 恰有一个是次品的概率;至少有两个是次品的概率.解:C 4⑵ P =0.8472⑵ p =C 96C^ =0.1458C 100C 1006解:2 P 7⑴P N 。
0181P =^^=0.12 10&房间里有4人,求:这4人的生日不在同一个月的概率; 至少有2人的生日在同一个月的概率.12(1) P =1 -r =0.9994124 解:A 49.已知 P(A)=丄,P(B| A)4=1 , P(A| BH 1,求 P(A LJ B) •3 2 1解:P(AB) = P(A)P(B| A)=—12P (B )=3J 」 P(A| B) 6/. P(AuB) =P(A) + P(B) -P(AB)=丄 +1-丄=!4 6 12 310.掷两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率.解:设A:其中一颗为1点,B:点数之和为7,贝U6 1 2 1P(B )=666WP(AB)=6V1B -P(A|B"P (B )P(AB) 13 2 或 B ={(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)},则5.从45件正品5件次品的产品中任取 3件产品,求其中有次品的概率.C 3解:P =1-二5 =0.2760C 53O6.从一副扑克牌(52张)中任取4张,求4张牌的花色各不相同的概率. 解:P =埠=0.1055C527 .某城市的电话号码由8个数字组成,第一位为5或6 .求随机抽取的一个电话号码为不重复的八位数的概率; 随机抽取的一个电话号码末位数是 8的概率.11.某个家庭中有两个小孩,已知其中一个是女孩,试问另一个也是女孩的概率是多少 解:其中一个是女孩的样本空间为:{(男,女),(女,男),(女,女)}3则所求概率为: P (A 3A 1A 2HP (A )卩(民1人)卩(£ I = 10 9 9015.两台车床加工同样的零件,第一台出现废品的概率为 0.03,第二台出现废品的概率为0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍, 求任意取出的一件产品是合格品的概率.解:设事件A :取得的产品是合格品,事件B i :取得的产品由第i 台车床加工,i =1,2则所求概率为: P(A) = P(B 1)P(A| B,) + P(B 2)P(A|B 2)= 2 097 + 1 098 = 0.97333 3故所求概率为12. 一盒子中装有 只不放回,求:两次都取得正品的概率;第一次取得正品,第二次取得次品的概率; 一次取得正品,另一次取得次品的概率; 第二次取得正品的概率. ,4、 5 4 10 7 6 21 5 2 5(2) P = — 一=—— 7 6 21,3)5 2 2 5 767 6 /、5 4 2 5(4) P =——一+——一_ 7只晶体管,其中5只是正品,2只是次品,从中抽取两次,每次任取一 (1) ⑵ ⑶ 解:_10 "21513.袋中有红球和白球共次才取到红球的概率. 100个,其中白球有10个.每次从袋中任取一球不放回,求第三解:设A j 表示事件"第i 次取到白球”,i =1,2,314.某人忘记了电话号码的最后一个数字, 所需电话的概率•若已知最后一个数字是奇数,1丄9 1丄9或 P = + ” +10 10 9 10 3解:(1) P = 10 3(2) p=-因而他随意地拨号,求他拔号不超过三次而拨对 那么此概率是多少?8 1 = 3 9 8 10100 99 98 "O.0083’佥三鲁0.81638 812个乒乓球,其中有 9个是新的.第一次比赛时从中任取 第二次比赛时再从盒中任取 3个,求第二次取出的球都是新球的概率.第二次取出的球全是新球事件B :第一次取出的球当中有i 个新球,i =0,1,2,33则所求概率为:P(A)=2: P(B i )P(A|B i )i z0=C 9C 3+坐 c ; 空 + CC0 01458C 132 C 132 G ; C 132 C 132 C 132•19.设事件A 与B 相互独立,且P(A) = p,P(B) = q .求下列事件的概率: (1) P(A ・B) ;(2) P(A ・B) ;(3) P(A ・B).解: (1) P(AU B ) =P(A)+P(B)-P(AB) =P(A) + P(B)-P(A)P(B) = p + q-pq (2) P(A UB) =P(A) + P(B) -P(A)P(B) = p +(1-q) - p(1-q) =1 -q + pq (3) Pg B) =P(AB) =1 -P(AB) =1 -P(A)P(B) =1 - pq16.设有甲、乙两个口袋,甲袋中装有n 只白球,m 只红球,乙袋中装有 N 只白球,M 只红球.现从甲袋中任取一球放入乙袋,再从乙袋中任意取一球,问: (1) 取到白球的概率是多少 ?(2) 若已知取到白球,则原先是从甲袋中取得白球放入乙袋的概率是多少?解:设事件 A :从乙袋取到白球,事件 (1)所求概率为:(2)所求概率为:B :从甲袋取到白球P(A) = P(B)P(A | B) + P(B)P(A| B)n N +1mN= --------- F --------------- + -------- T ---------------m+n M+N+1 m + n M+N+1P(B|A)=迴P(A) nnN + n + mN "(m + n)(M+N+1)-m + n N +1M+N+1nN + nnN + n + mN17.设8支枪中有3支未经试射校正, 的概率为0.8,而用未校正过的枪射击时, 行射击,结果中靶,求所用的枪是己校正过的概率. 解:设事件 A :射击中靶,事件 B :所用的枪是已校正过的5只已经试射校正.一射手用校正的枪射击时,中靶 中靶的概率为0.3 .现假定从8支枪中任取一支进 则 所 求 概 率 为P(卄亍^B)P( B) _ P( _A| P(—A| "B )B) P( B)18.盒子中放有赛后仍放回盒中,解:设事件A :3个来使用,比nN + n +20.甲、乙两人独立地向同一目标射击,甲击中目标的概率是0.9,乙击中目标的概率是0.8.甲、乙两人各射击一次,求此目标被击中的概率.解:设事件A:甲击中目标,事件B:乙击中目标则所求概率为:P(AUB) =P(A)+P(B) -P(A)P(B) =0.9 + 0.8-0.9 0.8 = 0.9821•设每一门高射炮(发射一发)击中飞机的概率为0.6,现若干门炮同时发射(每炮射一发),若欲以99%的把握击中来犯的一架飞机,问至少需配备几门高射炮?解:事件A :第i门炮击中飞机,1 <i < n,则n nP(U A)=1 -P( JA) =1 -P(p瓦)=1-[P(瓦)]n =1-0.4n >0.99 ”n Alog0.4 0.01 =5.026 所以至少配备6门高射炮。
《概率论与数理统计》第一章课后习题解答共16页word资料
吴赣昌编 《概率论与数理统计》(理工类)三版课后习题解答习题1-31、袋中5个白球,3个黑球,一次任取两个。
(1)求取到的两个求颜色不同的概率;(2)求取到的两个求中有黑球的概率。
解:略2、10把钥匙有3把能打开门,今取两把,求能打开门的概率。
解:设A=“能打开”,则210S n C =法一,取出的两把钥匙,可能只有一把能打开,可能两把都能打开,则112373A n C C C =+ 所以()A Sn P A n = 法二,A ={都打不开},即取得两把钥匙是从另7把中取得的,则27A n C =,所以27210()1()1C P A P A C =-=- 3、两封信投入四个信筒,求(1)前两个信筒没有信的概率,(2)第一个信筒内只有一封信的概率。
解:24S n =(两封信投入四个信筒的总的方法,重复排列)(1)设A=“前两个信筒没有信”,即两封信在余下的两个信筒中重复排列,22A n =;(2)设B=“第一个信筒内只有一封信”,则应从两封信中选一封放在第一个信筒中,再把余下的一封信放入余下的三个信筒中的任一个,1123B n C =带入公式既得两个概率。
4、一副扑克牌52张,不放回抽样,每次取一张,连续抽4张,求花色各异的概率.解:略5、袋中有红、黄、黑色求各一个,有放回取3次,求下列事件的概率。
A=“三次都是红球”;B=“三次未抽到黑球”,C=“颜色全不相同”,D=“颜色不全相同” 解:略6、从0,1,2,,9L 等10个数字中,任意选出不同的三个数字,试求下列事件的概率:1A =‘三个数字中不含0和5’,2A =‘三个数字中不含0或5’,3A =‘三个数字中含0但不含5’.解 3813107()15C P A C ==. 333998233310101014()15C C C P A C C C =+-=, 或 182231014()1()115C P A P A C =-=-=, 2833107()30C P A C ==. 7、从一副52张的扑克牌中任取3张,不重复,计算取出的3张牌中至少有2张花色相同的概率。
上海工程技术大学概率论第一章答案
习题一2.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB )。
解: P (AB )=1-P (AB )=1-[P (A )-P (A -B )]=1-[0.7-0.3]=0.6。
3. 设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率。
解:因为 ABC AB ⊂,所以0()()P ABC P AB ≤≤,又 P (AB )=0,则()0P ABC =, P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=34。
4.将3个不同的球随机地放入4个杯子中去,求所有杯中球的最大个数分别为1,2,3的概率。
解:设i A ={杯中球的最大个数为i },i =1,2,3。
将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()84P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()164P A ==,因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()164P A ==.6.从1,2,3,4,5,6,7,8,9,0这10个数字中任取五个数按先后顺序组成多位数,求下列事件的概率:(1) 这五个数字组成一个五位偶数;(2) 2和3都被抽到且靠在一起. 解(1)5105987648764190P A ⨯⨯⨯⨯-⨯⨯⨯==. (2)145102!876445C P A ⨯⨯⨯⨯==.7.对一个五人学习小组考虑生日问题:(1) 求五个人的生日都在星期日的概率;(2) 求五个人的生日都不在星期日的概率;(3) 求五个人的生日不都在星期日的概率.解:基本事件总数为57,(1)设A 1={五个人的生日都在星期日},所求事件包含基本事件的个数为1个,故 P (A 1)=517=51()7;(2) 设A 2={五个人生日都不在星期日},所求事件包含样本点的个数为65,故P (A 2)=5567=56()7; (3)设A 3={五个人的生日不都在星期日},利用对立事件的性质,可得P (A 3)=1-P (A 1)=1-51()7.8.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率。
概率论第一章答案(精编文档).doc
【最新整理,下载后即可编辑】第一章 概率论的基本概念习题答案. 1. 解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)}2. 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;{})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ;Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++;(4)BC A C B A C AB ++; (5)C B A ++;(6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++4.解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。
5.解:如图:C B A CB AC B A ABCBC A CAB C B A ΩABC C B ABCA CB CAB A B BCA CB AC AB AC B C C AB C AB C B A C B A BC A ABC C AB C B A C B A C B A +=+=++=-+=+++++++=++;;6. 解:不一定成立。
例如:{}5,4,3=A ,{}3=B ,{}5,4=C , 那么,C B C A +=+,但B A ≠。
概率论与数理统计第一章总习题答案
概率论与数理统计课后习题答案第一章总习题1.填空题(1)假设B A ,是两个随机事件,且B A AB ⋅=,则()A B =U ,()=AB ;解:AB A B AB A B =⋅⇔= 即AB 与A B U 互为对立事件,又AB A B ⊂U 所以()(),.AB A B A B AB A B AB Ω==∅==(2)假设B A ,是任意两个事件,则()()()()()P A B A B A B A B ⎡⎤=⎣⎦ .解:()()()()()()P A⎡=⎣()()0P B==.(3).已知41)()()(===C P B P A P , 0)(=AB P , 161)()(==BC P AC P 。
则事件A 、B 、C 全不发生的概率为解:所求事件的概率即为()P ABC ,又,ABC AB ⊂从而()()00,P ABC P AB ≤≤=则()0P ABC =,所以()()()1P ABC P A B C P A B C ==-()()()()()()()31311.488P A P B P C P AB P AC P BC P ABC =---+++-=-+=2.选择题(1)设8.0)(=A P ,7.0)(=B P ,()8.0=B A P ,则下列结论正确的是().(A )事件A 与事件B 相互独立;(B )事件A 与事件B 互逆; (C )A B ⊃;(D )()()()P A B P A P B =+ .解:因为()56.0)()(==B A P B P AB P ,而56.0)()(=B P A P ,即)()()(B P A P AB P =,所以事件A 与事件B 相互独立,选(A ).(2)设B A ,为两个互逆的事件,且0)(>A P ,0)(>B P ,则下列结论正确的是().(A )()0>A B P ;(B )())(A P B A P =;(C )()0=B A P ;(D ))()()(B P A P AB P =. 解:因为B A ,为两个互逆的事件,所以当事件B 发生时,事件A 是不会发生的,故()0=B A P .选(C ).(3)设1)(0<<A P ,1)(0<<B P ,()()1=+B A P B A P ,则下列结论正确的是().(A )事件A 与事件B 互不相容;(B )事件A 与事件B 互逆; (C )事件A 与事件B 不互相独立;(D )事件A 与事件B 互相独立.解:因为()()()()()()()()()()1111P A B P A B P AB P AB P A B P A B P B P B P B P B⋅+=⇔+=⇔+=-()()()()()()()()()()111111P AB P A B P AB P A P B P AB P B P B P B P B ---+⇔+=⇔+=⇔-- ()()[]()()()()[]()()[]⇔-=+--+-B P B P AB P B P A P B P B P AB P 111)()()(B P A P AB P =,所以事件A 与事件B 互相独立.选(D ).3.从五双不同的鞋子中任取四只,求取得的四只鞋子中至少有两只配成一双的概率. 解:此题考虑逆事件求解比较方便,即取得的四只鞋子中不能配成一双.设A 表示“取得的四只鞋子中至少有两只配成一双”,则()4101212124511)(C C C C C A P A P -=-=2113=.4.(找次品问题)盒中有4只次品晶体管,6只正品晶体管,随机地抽取一只进行测试,直到4只次品晶体管都找到为止,求第4次品晶体管在第五次测试中被发现的概率.解:设i A 表示“第i 次找到次品晶体管”()5,4,3,2,1=i ,则所求概率为:()54321543215432154321A A A A A A A A A A A A A A A A A A A A P ⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅⋅⋅()()()()()432153214213121A A A A A P A A A A P A A A P A A P A P ⋅⋅⋅⋅⋅⋅=()()()()()432153214213121A A A A A P A A A A P A A A P A A P A P ⋅⋅⋅⋅⋅⋅+ ()()()()()432153214213121A A A A A P A A A A P A A A P A A P A P ⋅⋅⋅⋅⋅⋅+ ()()()()()432153214213121A A A A AP A A A AP A A A P A A P A P ⋅⋅⋅⋅⋅⋅+61768293104617286931046172839610461728394106⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯+⨯⨯⨯⨯=1052617283941064=⎪⎭⎫⎝⎛⨯⨯⨯⨯=.5.(讨论奖金分配的公平性问题)在一次羽毛球比赛中,设立奖金1000元.比赛规定:谁先胜三盘,谁获得全部奖金.设甲、乙两人的球技相当,现已打了三盘,甲2胜1负.由于特殊原因必须中止比赛.问这1000元应如何分配才算公平?解:应以预期获胜的概率为权重来分配这笔奖金,于是求出甲、乙两人获胜的预期概率即可.比赛采取的应是五局三胜制,比赛已打三盘,甲胜两盘,甲若再胜一盘即可获胜.甲获胜的预期概率为:()()()()43212121544544=⨯+=+=+A P A P A P A A A P .于是,甲应分得1000元奖金中的750100043=⨯元,乙分得250元.6.(彩票问题) 一种福利彩票称为幸福35选7,即从01,02,…,35中不重复地开出7个基本号码和一个特殊号码.中奖规则如下表所示.(1)试求各等奖的中奖概率(1,2,,7);i p i = (2) 试求中奖的概率.解:(1) 因为不重复地选号码是一种不放回抽样,所以样本空间Ω含有735C 个样本点.要中奖应把抽样看成是在三种类型中抽取:第一类号码:7个基本号码; 第二类号码:1个特殊号码; 第三类号码:27个无用号码。
上海工程专业技术大学 概率论作业答案文件
习题一1.设C B A ,,是三个事件,且41)()()(===C P B P A P ,0)()(==BC P AB P ,81)(=AC P ,求C B A ,,中至少有一个发生地概率. 解:()0P AB = ()0P A B C ∴= ()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ∴⋃⋃=++---+1111500044488=++---+= 2.设事件B A ,及B A ⋃地概率分别为q p ,及r ,求:)(AB P ,)(B A P ,)(B A P 及)(B A P .解:()()()()P AB P A P B P A B p q r =+-⋃=+-()()()P A B P A P A B r q =-=- ()()()P A B P B P A B r p=-=- ()1()1P A BP AB r=-⋃=-3.设31)(=A P ,21)(=B P ,试分别在下列三种情况下求)(B A P )地值: (1) B A ,互不相容; (2)B A ⊂ ;(3) 81)(=AB P . 解:(1)1()()2P AB P B ==(2)111()()()236P AB P B P A =-=-= (3)113()()()288P AB P B P AB =-=-= 4.盒子中装有同型号地电子元件100个,其中有4个是次品.从盒子中任取4个,求: (1) 4个全是正品地概率;(2) 恰有一个是次品地概率; (3) 至少有两个是次品地概率.解:4964100(2)0.8472C p C == 319644100(2)0.1458C C p C == (3)10.84720.14580.0070p =--= 或 22314496496441000.0071C C C C C p C ++== 5.从45件正品5件次品地产品中任取3件产品,求其中有次品地概率.解:34535010.2760C p C =-=6.从一副扑克牌(52张)中任取4张,求4张牌地花色各不相同地概率.解:4452130.1055p C ==7.某城市地电话号码由8个数字组成,第一位为5或6.求 (1) 随机抽取地一个电话号码为不重复地八位数地概率; (2) 随机抽取地一个电话号码末位数是8地概率.解:7972(1)0.0181210P p ⋅==⋅ 67210(2)0.1210p ⋅==⋅8.房间里有4人,求:(1) 这4人地生日不在同一个月地概率; (2) 至少有2人地生日在同一个月地概率. 解:412(1)10.999412p =-= 4124(2)10.427112A p =-=9.已知41)(=A P ,31)|(=A B P ,21)|(=B A P ,求)(B A P ⋃. 解:1()()(|)12P AB P A P B A ==()1()(|)6P AB P B P A B ==1111()()()()46123P A B P A P B P AB ∴⋃=+-=+-=10.掷两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点地概率. 解:设A:其中一颗为1点,B:点数之和为7,则6121(),(),6666618P B P AB ====⋅⋅()1(|)()3P AB P A B P B ∴==或 {(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)}B =,则21(|)63P A B == 11.某个家庭中有两个小孩,已知其中一个是女孩,试问另一个也是女孩地概率是多少?解:其中一个是女孩地样本空间为:{(男,女),(女,男),(女,女)}故所求概率为1312.一盒子中装有7只晶体管,其中5只是正品,2只是次品,从中抽取两次,每次任取一只不放回,求:(1) 两次都取得正品地概率; (2) 第一次取得正品,第二次取得次品地概率; (3) 一次取得正品,另一次取得次品地概率; (4) 第二次取得正品地概率. 解:(1)54107621p =⋅= (2)5257621p =⋅= (3)522510767621p =⋅+⋅= (4)5425576767p =⋅+⋅= 13.袋中有红球和白球共100个,其中白球有10个.每次从袋中任取一球不放回,求第三次才取到红球地概率.解:设i A 表示事件“第i 次取到白球”,1,2,3i =则所求概率为:31212131210990()()(|)(|)0.00831009998P A A A P A P A A P A A A ==⋅⋅=14.某人忘记了电话号码地最后一个数字,因而他随意地拨号,求他拔号不超过三次而拨对所需电话地概率.若已知最后一个数字是奇数,那么此概率是多少? 解:(1)310p =或 191981310109109810p =+⋅+⋅⋅= (2)35p =15.两台车床加工同样地零件,第一台出现废品地概率为0.03,第二台出现废品地概率为0.02.加工出来地零件放在一起,并且已知第一台加工地零件比第二台加工地零件多一倍,求任意取出地一件产品是合格品地概率.解:设事件A :取得地产品是合格品,事件i B :取得地产品由第i 台车床加工,1,2i = 则所求概率为:112221()()(|)()(|)0.970.980.973333P A P B P A B P B P A B =+=⋅+⋅=16.设有甲、乙两个口袋,甲袋中装有n 只白球,m 只红球,乙袋中装有N 只白球,M 只红球.现从甲袋中任取一球放入乙袋,再从乙袋中任意取一球,问: (1) 取到白球地概率是多少?(2) 若已知取到白球,则原先是从甲袋中取得白球放入乙袋地概率是多少? 解:设事件A :从乙袋取到白球,事件B :从甲袋取到白球 (1)所求概率为:()()(|)()(|)P A P B P A B P B P A B =+111()(1)n N m N nN n mNm n M N m n M N m n M N +++=⋅+⋅=+++++++++ (2)所求概率为:()(|)()P AB P B A P A =11()(1)n N nN nm n M N nN n mN nN n mN m n M N +⋅++++==+++++++17.设8支枪中有3支未经试射校正,5只已经试射校正.一射手用校正地枪射击时,中靶地概率为0.8,而用未校正过地枪射击时,中靶地概率为0.3.现假定从8支枪中任取一支进行射击,结果中靶,求所用地枪是己校正过地概率.解:设事件A :射击中靶,事件B :所用地枪是已校正过地 则所求概率为:()(|)(|)()(|)()(|)P B P A B P B A P B P A B P B P A B =+50.84080.816353490.80.388⋅===⋅+⋅18.盒子中放有12个乒乓球,其中有9个是新地.第一次比赛时从中任取3个来使用,比赛后仍放回盒中,第二次比赛时再从盒中任取3个,求第二次取出地球都是新球地概率. 解:设事件A :第二次取出地球全是新球事件i B :第一次取出地球当中有i 个新球,0,1,2,3i = 则所求概率为:3()()(|)iii P A P B P A B ==∑0331232133039399389379363333333312121212121212120.1458C C C C C C C C C C C C C C C C C C C C =⋅+⋅+⋅+⋅=19.设事件A 与B 相互独立,且q B P p A P ==)(,)(.求下列事件地概率: (1) )(B A P ⋃; (2) )(B A P ⋃; (3) )(B A P ⋃. 解:(1)()()()()()()()()P A B P A P B P AB P A P B P A P B p q pq =+-=+-=+-(2)()()()()()(1)(1)1P AB P A P B P A P B p q p q q pq =+-=+---=-+(3)()()1()1()()1P A B P AB P AB P A P B pq ⋃==-=-=-20.甲、乙两人独立地向同一目标射击,甲击中目标地概率是0.9,乙击中目标地概率是0.8.甲、乙两人各射击一次,求此目标被击中地概率. 解:设事件A :甲击中目标,事件B :乙击中目标 则所求概率为:()()()()()0.90.80.90.80.98P AB P A P B P A P B =+-=+-⋅=21.设每一门高射炮(发射一发)击中飞机地概率为0.6,现若干门炮同时发射(每炮射一发),若欲以99%地把握击中来犯地一架飞机,问至少需配备几门高射炮? 解: 事件i A :第i 门炮击中飞机,1i n ≤≤,则111()1()1()1[()]10.40.99nnnn n i i i i i i i P A P A P A P A ====-=-=-=->0.4log 0.01 5.026n ∴>= 所以至少配备6门高射炮.22.如图,三个元件分别记作C B A ,,,且三个元件能否正常工作是相互独立地.设C B A ,,三个元件正常工作地概率分别为0.7,0.8和0.8,求该电路发生故障地概率.BAC解:设事件C B A ,,分别表示元件C B A ,,正常工作则所求概率为:1(1()())()1(10.20.2)0.70.328p P B P C P A =--⋅=--⋅⋅= 或 ()()0.30.70.20.20.328p P A P ABC =+=+⋅⋅=23.一大楼有5个同类型地供水设备,调查表明在任一时刻每个设备被使用地概率为0.1,问在同一时刻(1) 恰有2个设备被使用地概率; (2) 至少有3个设备被使用地概率. 解:(1)22355(2)(0.1)(0.9)0.0729P C == (2)555(3)(4)(5)p P P P =++332441550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=24.某人独立射击10次,每次射击地命中率均为0.6,求: (1) 击中三次地概率;(2) 至少有一次未击中地概率.解:(1)3371010(3)(0.6)(0.4)0.0425p P C === (2)101010101(10)(0.6)(0.4)0.9940p P C =-==习题二1.设随机变量X 地分布律为k ak X P 2}{==, ,2,1=k , (1)确定常数a ;(2)求}3{>X P .解:(1)由规范性:11k k p ∞==∑得:11211212k k a a a ∞====-∑ 1a ∴=(2)}3{>X P 2311111{1}{2}{3}12228P X P X P X =-=-=-==---=2.设在15只同类型地零件中有2只次品,在其中取三次,每次任取一只,作不放回抽样.以X 表示取出次品地只数,求X 地分布律.解:31331522{0}35C P X C === 2113231512{1}35C C P X C === 121323151{2}35C C P X C ===X ∴地分布律为:3.一射手每次射击地命中率为0.2,试问必须进行多少次独立射击才能使至少击中一次地概率不小于0.9?解:设X 表示n 次射击中击中地次数,则~(,0.2)X B n{1}1{0}10.80.9n P X P X ≥=-==-≥ 11n ∴≥∴必须进行11次独立射击才能使至少击中一次地概率不小于0.9.4.一批产品中有20%地次品,进行重复抽样检查,共抽取5件样品,计算这5件样品中恰好有3件次品、至多有3件次品地概率.解:设X 表示5件样品中次品地件数,则~(5,0.2)X B则恰好有3件次品地概率为:3325{3}(0.2)0.80.0512P X C ==⋅⋅= 至多有3件次品地概率为:{3}1{4}{5}P X P X P X ≤=-=-=441550551(0.2)0.8(0.2)0.80.9933C C =-⋅⋅-⋅⋅=5.某高速公路每天有大量汽车通过,设每辆汽车在一天地某段时间内出事故地概率为0.0001,在某天地该段时间内有1000辆汽车通过,问出事故地次数不小于2地概率是多少?(利用泊松定理计算)解:10000.00010.1np λ==⨯={2}1{0}{1}P X P X P X ≥=-=-=001000119991000100010.00010.99990.00010.9999C C =-⋅⋅-⋅⋅010.10.10.10.110.00470!1!e e --≈--=6.某电话交换台每分钟地呼唤次数服从参数为4地泊松分布,求: (1) 每分钟恰有8次呼唤地概率;(2) 每分钟地呼唤次数超过10次地概率.解:844(1){8}0.02988!P X e -===4114(2){10}0.002840!k k P X e k ∞-=>==∑7.设随机变量X 地分布律为412141211kp X-.求X 地分布函数.解:011114()312412x x F x x x <-⎧⎪⎪-≤<⎪=⎨⎪≤<⎪⎪≥⎩8.一口袋中装有5只球,编号为1,2,3,4,5.从袋中同时取3只,以X 表示取出地三只球中地最大号码,求随机变量X 地分布律和分布函数, 解:X 地可能取值为3,4,5351{3}0.1P X C ===,2335{4}0.3C P X C ===,2435{5}0.6C P X C ===∴X 地分布律为:3450.10.30.6k X P ∴X 地分布函数为:030.134()0.44515x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩9.设随机变量X 地概率密度为⎪⎩⎪⎨⎧<=.,0,2,cos )(其它πx x k x f 求:(1) 系数k ;(2)X 地分布函数)(x F ;(3) {}π<<X P 0;解:222002(1)cos 2cos 2sin 21k xdx k xdx k x k ππππ-====⎰⎰ 12k ∴=(2)当22x ππ≤≤-时,211()cos (sin 1)22xF x tdt x π-==+⎰∴ X 地分布函数为:021()(sin 1)22212x F x x x x ππππ⎧<-⎪⎪⎪=+-≤<⎨⎪⎪≥⎪⎩11(3){0}()(0)122P x F F ππ<<=-=-=10.设连续型随机变量X 地分布函数为⎪⎩⎪⎨⎧≥<≤<=.1,1,10,0,0)(2x x kx x x F 求:(1) 系数k ;(2) {}3.13.0≤≤X P ;(3) 概率密度)(x f .解:2111(1)lim ()lim lim ()1x x x F x kx k F x --+→→→==== 1k ∴= 2(2){0.3 1.3}(1.3)(0.3)10.30.91P x F F <<=-=-=201(3)()0x x f x ≤<⎧=⎨⎩其他11.设K 在)6,1(上服从均匀分布,求方程012=++Kx x 有实根地概率. 解:方程有实根,即240,22k k or k ∆=-≥≥≤-∴所求地概率为:624{2}{2}0615p P k P k -=≥+≤-=+=- 12.设某种电子元件地使用寿命X (以小时计)地概率密度为⎪⎩⎪⎨⎧≤>=.100,0,100,100)(2x x x x f某仪器内装有3个这样地电子元件(设各电子元件损坏与否相互独立),试求:(1) 使用地最初150小时内没有一个电子元件损坏地概率; (2) 这段时间内只有一个电子元件损坏地概率.解:最初150小时内一个电子元件损坏地概率为:15021001001{150}3P X dx x <==⎰设Y :最初150小时内电子元件损坏地个数,则1(3,)3YB故0303128(1){0}3327P Y C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭213124(2){1}339P Y C ⎛⎫⎛⎫==⋅= ⎪ ⎪⎝⎭⎝⎭13.设随机变量X 在)5,2(上服从均匀分布.现对X 进行三次独立观测,试求至少有两次观测值大于3地概率. 解:532{3}523P X ->==- 设Y :三次观测中观测值大于3地次数,则2(3,)3YB故所求概率为:23233321220{2}33327P Y C C ⎛⎫⎛⎫⎛⎫≥=⋅+⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭14.设)16,1(~-N X ,试求:(1) {}5.1->X P ;(2) {}4<X P ;(3) {}11>-X P . 解: 1.51(1){ 1.5}1()1(1(0.125))0.54984P X -+>-=-Φ=--Φ= (2){4}(1.25)(0.75)(1.25)(0.75)10.6678P X <=Φ-Φ-=Φ+Φ-= (3){11}{20}1(0.75)(0.25)0.8253P X P X or X ->=><=-Φ+Φ=15.某产品地质量指标),160(~2σN X ,若要求{}8.0200120≥<<X P ,允许σ最大为多少?解:404040{120200}()()2()10.8P X σσσ<<=Φ-Φ-=Φ-≥40()0.9σ∴Φ≥401.28(1.29),31.25(31.01)σσ≥≤16.测量至某一目标地距离时发生地随机误差X (M )地概率密度为3200)20(22401)(--=x ex f π, )(+∞<<-∞x求在三次测量中至少有一次误差地绝对值不超过30M 地概率. 解:2(20,40)XN一次测量误差地绝对值不超过30M 地概率为:{30}(0.25)(1.25)0.4931P X <=Φ-Φ-=设Y :在三次测量中误差地绝对值不超过30M 地次数,则(3,0.4931)YB所求概率为:3{1}1{0}1(10.4931)0.8698P Y P Y ≥=-==--=17.设随机变量X 地分布律为试求:(1) X Y 21-=;(2) 22X Y =地分布律.解:((2)18.设随机变量)1,0(~N X ,求:(1) X Y arctan =地概率密度; (2) X Y =地概率密度.解:X地概率密度为:22()()x X f x x -=-∞<<+∞ (1)()arctan ,y g x x == 210,1y x '=>+ 且()tan ,x h y y == ()tan ,h y y '= (),()22g g ππ-∞=-+∞=故由定理可得,X Y arctan =地概率密度为:2tan 22sec ()220y Y y y f y ππ-⎧⋅-<<=⎩其他(2)Y地分布函数为:2222020(){}00x x y y yY dx dx y F y P X y y ---⎧=>⎪=≤=⎨⎪≤⎩⎰⎰∴Y地概率密度为:220()()00yY Y y f y F y y -⎧>'==≤⎩19.设随机变量X 在)1,0(上服从均匀分布,求: (1) Xe Y =地概率密度; (2) X Y ln 2-=地概率密度.解:X地概率密度为:101()0X x f x <<⎧=⎨⎩其他(1)(),x y g x e == 0,x y e '=>且()ln ,x h y y == 1(),h y y'=(0)1,(1)g g e == 故由定理可得,Xe Y =地概率密度为:11()0Y y e yf y ⎧<<⎪=⎨⎪⎩其他(2)()2ln ,y g x x ==-20,y x'=-<且2(),y x h y e -==21(),2y h y e -'=-(0),(1)0g g =+∞=故由定理可得,X Y ln 2-=地概率密度为:210()200yY ey f y y -⎧>⎪=⎨⎪≤⎩习题三1. 一口袋中装有四个球,它们依次标有数字1,2,2,3.从这袋中任取一球后,不放回袋中,再从袋中任取一球,设每次取球时袋中每个球被取到地可能性相同.以Y X ,分别表示第一、二次取得地球上标有地数字,试写出随机变量X 和Y 地联合分布律. 解:2.设随机变量),(Y X 地概率密度为⎩⎨⎧<<<<--=,,0,42,20),6(),(其它y x y x k y x f (1) 确定常数k ; (2) 求}3,1{<<Y X P ;(3) 求}5.1{<X P ;(4) 求}4{≤+Y X P . 解:(1)2422(,)(6)(62)81f x y dxdy dx k x y dy k x dx k +∞+∞-∞-∞=--=-==⎰⎰⎰⎰⎰ 18k ∴=(2)1310201173{1,3}(6)()8828P X Y dx x y dy x dx <<=--=-=⎰⎰⎰ (3) 1.541.50201127{ 1.5}(6)(62)8832P X dx x y dy x dx <=--=-=⎰⎰⎰ (4) 24220201112{4}(6)(46)8823xP X Y dx x y dy x x dx -+≤=--=-+=⎰⎰⎰ 3.设二维随机变量),(Y X 具有概率密度⎩⎨⎧>>=+-,,0,0,0,2),()2(其它y x e y x f y x(1) 求分布函数),(y x F ; (2) 求概率}{X Y P ≤.解:(1)(,)(,)y xF x y f u v dudv -∞-∞=⎰⎰当0,0x y >>时,(2)220(,)22(1)(1)y xx yu v u v x y F x y e dudv e du e dv e e -+----===--⎰⎰⎰⎰当,x y 取其他值时,(,)0F x y =2(1)(1)0,0(,)0x y e e x y F x y --⎧-->>∴=⎨⎩其他(2) (2)2002{}2(1)3xx y x x P Y X dx edy e e dx +∞+∞-+--≤==-=⎰⎰⎰4.求第1题中随机变量),(Y X 地边缘分布律. 解:5. 设随机变量),(Y X 地概率密度为⎪⎩⎪⎨⎧≤≤≤≤+=其它20,103),(2y x xy x y x f ,求关于X和关于Y 地边缘概率密度. 解:2222()201()(,)330X xy x dy x x x f x f x y dy +∞-∞⎧+=+≤≤⎪==⎨⎪⎩⎰⎰其他 1201()02()(,)3360Y xyy x dx y f y f x y dx +∞-∞⎧+=+≤≤⎪==⎨⎪⎩⎰⎰其他6.设随机变量),(Y X 具有概率密度⎩⎨⎧<<=-,,0,0,),(其它y x e y x f y求边缘概率密度)(),(y f x f Y X . 解:0()(,)00y x x X e dy ex f x f x y dy x +∞--+∞-∞⎧=>⎪==⎨⎪≤⎩⎰⎰00()(,)00yy y Y e dx yey f y f x y dx y --+∞-∞⎧=>⎪==⎨⎪≤⎩⎰⎰7.设随机变量X 和Y 地联合分布律为试问:当βα,取何值时,X 与Y 相互独立? 解:X与Y相互独立,则有2121P P P ⋅⋅=⋅ 即111()993α=+⋅ 29α∴= 3131P P P ⋅⋅=⋅ 即111()18183β=+⋅ 19β∴=8.设随机变量),(Y X 在区域G 上服从均匀分布,其中G 由直线2,,=-==y x y x y 所围成. (1) 求X 与Y 地联合概率密度;(2) 求Y X 、地边缘概率密度; (3) 问X 与Y 相互独立吗?为什么? 解:(1)G地面积14242A =⋅⋅= ∴X 与Y 地联合概率密度为:1||,02(,)40x y y f x y ⎧≤≤≤⎪=⎨⎪⎩其他(2) 2||11(2||)||2()(,)440x X dy x x f x f x y dy +∞-∞⎧=-≤⎪==⎨⎪⎩⎰⎰其他1102()(,)420y y Y dx y y f y f x y dx +∞--∞⎧=≤≤⎪==⎨⎪⎩⎰⎰其他 (3) 不是相互独立地.因为不恒成立(,)()()X Y f x y f x f y =9.设X 和Y 是两个相互独立地随机变量,X 在)1,0(上服从均匀分布,Y 地概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,21)(2y y e y f yY(1) 求),(Y X 地概率密度),(y x f ;(2) 设含有t 地二次方程为022=++Y Xt t ,求t 有实根地概率. 解:(1) 101()0X x f x <<⎧=⎨⎩其他X 与Y相互独立,2101,0(,)()()20yX Y ex y f x y f x f y -⎧<<>⎪∴==⎨⎪⎩其他(2) 方程有实根,2(2)40X Y ∆=-≥即 2X Y ≥∴所求概率为:2211222001{}(,)(1)2y xx DP X Y f x y dxdy dx e dy e dx --≥===-⎰⎰⎰⎰⎰21211(1)(0))0.1445x dx -==Φ-Φ=10.设X 和Y 是两个相互独立地随机变量,其分布律分别为试分别求Y X Z +=1和),m ax (2Y X Z =地分布律.1Z X Y ∴=+地分布律为:2max(,)Z X Y =地分布律为11.设X 和Y 是两个相互独立地随机变量,X 在)2.0,0(上服从均匀分布,Y 地概率密度是⎩⎨⎧≤>=-.0,0,0,5)(5y y e y f y Y试求Y X Z+=地概率密度.解:500.2()0X x f x <<⎧=⎨⎩其他()()()Z X Y X Y f z f f f x f z x dx+∞-∞∴=*=-⎰5()500.25()500,0,1555(1),0,51555(1),.5zz x z z x zz e dx e z e dx e e z ------⎧⎪≤⎪⎪=⋅=-<<⎨⎪⎪⋅=-≥⎪⎩⎰⎰12.设随机变量X 和Y 相互独立,X 在)1,0(上服从均匀分布,Y 在)2,0(上服从均匀分布,求),m ax (1Y X Z =和),m in(2Y X Z =地概率密度. 解:00()0111X x F x x x x <⎧⎪=≤<⎨⎪≥⎩ 00()02212Y y y F y y y <⎧⎪⎪=≤<⎨⎪≥⎪⎩2max 00012()()()12212X Y z z z F z F z F z z z z <⎧⎪⎪≤<⎪∴=⋅=⎨⎪≤<⎪⎪≥⎩m a x m a x 011()()1220z z f z F z z ≤<⎧⎪⎪'==≤<⎨⎪⎪⎩其它2min 0031()1[1()][1()]1(1)(1)0122211X Y z z F z F z F z z z z z z <⎧⎪⎪∴=--⋅-=---=-≤<⎨⎪≥⎪⎩min min 3,01,()()20,z z f z F z ⎧-≤<⎪'==⎨⎪⎩其它.习题四1.设随机变量X 地分布律为41121616131212101kp X -,求)(),1(),(2X E X E X E +-.解:1111111()(1)01236261243E X =-⋅+⋅+⋅+⋅+⋅= 1111112(1)210(1)36261243E X -+=⋅+⋅+⋅+⋅+-⋅= 211111135()1014364612424E X =⋅+⋅+⋅+⋅+⋅=2.一口袋中共有8只球,其中5只白球,2只红球和1只黑球.从中随机地取出3只球,以X 表示这三只球中所含红球数,试求)(X E .51533()0121428284E X ∴=⋅+⋅+⋅= 3.设随机变量X 地概率密度为⎪⎩⎪⎨⎧≤<-≤<=其它,,0,21,2,10,)(x x x x x f 求)(),(2X E X E .解:121()()(2)1E X xf x dx x xdx x x dx +∞-∞==⋅+⋅-=⎰⎰⎰122222017()()(2)6E X x f x dx x xdx x x dx +∞-∞==⋅+⋅-=⎰⎰⎰4.某车间生产地圆盘其直径在区间),(b a 内服从均匀分布,试求圆盘面积地数学期望.解:圆盘直径地概率密度为:1()0a xb f x b a⎧<<⎪=-⎨⎪⎩其他∴圆盘面积地数学期望为:22221()()()()2412b a x E S f x dx x dx a ab b b a πππ+∞-∞=⋅=⋅=++-⎰⎰5.设随机变量X 地概率密度为⎩⎨⎧≤>=-,0,0,0,)(x x e x f x求(1)X Y 21=,(2)Xe Y 22-=地数学期望.解:10()2()22(1)2x x E Y xf x dx x e dx x e+∞+∞+∞---∞==⋅=-+=⎰⎰2232011()()33xxxx E Y ef x dx ee dx e +∞+∞+∞-----∞==⋅=-=⎰⎰6.设二维随机变量),(Y X 地概率密度为 ⎩⎨⎧≤≤≤=,,0,10,12),(2其它x y y y x f求)(),(22Y X E XY E +.解:112501()(,)1232xE XY xyf x y dxdy dx xy y dy x dx +∞+∞-∞-∞==⋅==⎰⎰⎰⎰⎰1122222225003216()()(,)()12515xE X Y x y f x y dxdy dx x y y dy x dx +∞+∞-∞-∞+=+=+⋅==⎰⎰⎰⎰⎰7.设随机变量21,X X 相互独立,它们地概率密度分别为⎩⎨⎧≤≤=;,0,10,2)(1其它x x x f ⎪⎩⎪⎨⎧≤>=--,5,0,5,)(52x x ex f x )( 求)(21X X E . 解:11102()()23E X xf x dx x xdx +∞-∞==⋅=⎰⎰ (5)(5)2255()()(1)6x x E X xf x dx x e dx x e +∞+∞+∞-----∞==⋅=-+=⎰⎰12122()()()643E X X E X E X ∴==⋅=8.计算第1题,第3题中随机变量X 地方差及规范差.解:第1题方差:22235197()()[()]24372D XE X E X ⎛⎫=-=-= ⎪⎝⎭规范差:()X σ==第3题方差:22271()()[()]166D XE X E X =-=-=规范差:()X σ==9.设随机变量X 服从参数为2地泊松分布,23-=X Z ,求)(),(Z D Z E . 解:()2,()2E X D X ==()(32)3()24E Z E X E X ∴=-=-=2()(32)3()18D Z D X D X =-==10.设随机变量X 与Y 相互独立,且4)(,2)(,1)()(====Y D X D Y E X E ,求2)(Y X E +.解:()()()2,E X Y E X E Y +=+= ()()()D X Y D X D Y +=+=22()()[()]10E X Y D X Y E X Y ∴+=+++=11.设随机变量X 与Y 相互独立,且)30,720(~2N X ,)25,640(~2N Y .设ZX Y =-,求Z 地概率分布,并求概率}{Y X P >. 解:()()()80,()()()1525E X Y E X E Y D X Y D X D Y -=-=-=+=~(80,1525)Z N ∴{}{0}{0}1(2.05)0.9798P X Y P X Y P Z ∴>=->=>=-Φ=Φ= 12.试证明:如果X 与Y 相互独立,则有[][])()()()()()()(22X D Y E Y D X E Y D X D XY D ++=.解:等式右边22()()[()]()D Y E X E Y D X =+222222{()[()]}()[()]{()[()]}E Y E Y E X E Y E X E X =-+-2222()[()][()]()E X Y E X E Y D XY =-==等式左边13.已知正常男性成人血液中,每毫升白细胞平均数是7300,均方差是700.利用切比雪夫不等式估计每毫升含白细胞数在5200~9400之间地概率p .解:设X:每毫升血液中含白细胞数所求概率{52009400}{210073002100}p P X P X =<<=-<-<227008{|7300|2100}121009P X -<≥-=14.设随机变量Z 地分布律为:且设Z Y Z X cos ,sin ==,实验证X 和Y 是不相关地,但X 和Y 不是相互独立地.,()0,()0.4,()E X E Y E XY ===)()()()E X Y E XE Y =-=0XY ρ∴==X ∴和Y 不相关另一方面:X 和Y显然{1,0}P X Y P =-=≠ 15.设4.0,36)(,25)(===XY Y D X D ρ,试求)(Y X D +以及)(Y X D -. 解:()()()2cov(,)()()2D X Y D X D Y X Y D X D Y ρ+=++=++ 253620.485=++⋅=()()()2c o v (D X Y D X D Y X Y-=+-= 16.设二维随机变量),(Y X 在G 上服从均匀分布,其中}0,10|),{(x y x y x G <<<<=,试求相关系数XY ρ.解:⎩⎨⎧<<<<=其他00,102),(xy x y x f322)(010==⎰⎰x xdy dx X E 312)(010==⎰⎰x y d y dx Y E 412)(010==⎰⎰x x y d y dx XY E212)(02102==⎰⎰x dy x dx X E 612)(02102==⎰⎰x dy y dx Y E361313241)()()(),cov(=⋅-=-=∴Y E X E XY E Y X1813221)]([)()(222=⎪⎭⎫ ⎝⎛-=-=X E X E X D 1813161)]([)()(222=⎪⎭⎫ ⎝⎛-=-=Y E Y E Y D21)()(),cov(==Y D X D Y X XY ρ17.试证:)()(),(Y D X D Y X Y X Cov -=-+.证:),cov(),cov(),cov(Y X Y Y X X Y X Y X -+-=-+ )()(),cov(),cov(),cov(),cov(Y D X D Y Y X Y Y X X X -=-+-=习题五1.根据以往地经验,某种电器元件地寿命服从均值为100小时地指数分布.现随机取16只,设它们地寿命是相互独立地,求这16只元件地寿命地总和大于1920小时地概率. 解:(1)设第i 个元件地寿命为16,,2,1, =i X i ,则2100)(,100)(==i i X D X E由中心极限定理得:)1,0(~40016001001610016161161N XXi ii i近似-=⋅⋅-∑∑==}8.04001600{}1920{161161≥-=≥∴∑∑==i ii i XP X P 2119.07881.01)8.0(1=-=Φ-≈2.某银行地统计资料表明,每个定期存款储户地存款地平均数为5000元,均方差为500元, (1)任意抽取100个储户,问每户平均存款超过5100元地概率为多少?(2) 至少要抽取多少储户,才能以%90以上地概率保证,使每户平均存款数超过4950元.解:(1)设第i 户储户地存款为,1,2,,100i X i =,则2()5000,()500i i E X D X ==1001005000~(0,1)iXN -⋅∑近似100100115000001{5100}{2}1005000i i i i X P X P ==-∴≥=≥∑∑1(2)10.97720.0228≈-Φ=-= (2)100100115000001{4950}{5000ii i i XP X P n ==-∴≥=≥∑∑1(0.9≈-Φ-=Φ>查表得: 1.282> 164.4n ∴> ∴ 至少要抽取165户储户,才能以%90以上地概率保证,使每户平均存款数超过4950元.3.有一批建筑房屋用地木柱,其中80%地长度不小于3M .现从这批木柱中随机地取出100根,问其中至少有30根短于3M 地概率是多少? 解:设短于3M 地根数为X ,则)2.0,100(~B X ,则168.02.0100)(,202.0100)(=⋅⋅==⋅=X D X E由中心极限定理得:)1,0(~4201620N X X 近似-=-0062.09938.01)5.2(1}5.2420{}42030420{}30{=-=Φ-≈≥-=-≥-=≥∴X P X P X P 4.设某电视台某项电视节目地收视率为%32,现任意采访500户城乡居民,问其中有170~150户收视该项节目地概率为多少?解:设收视该项节目地户数为X ,则)32.0,500(~B X ,则8.10868.032.0500)(,16032.0500)(=⋅⋅==⋅=X D X E由中心极限定理得:)1,0(~8.108160N X 近似-6630.018315.021)96.0(2}96.08.10816096.0{}170150{=-⋅=-Φ≈≤-≤-=≤≤∴X P X P5.设有1000台纺纱机彼此独立地工作,每台纺纱机在任意时刻都可能发生棉纱断头(其概率为02.0),因而需要工人去及时接头.问至少应配备多少工人,才能以%95地概率保证,当纺纱机发生断头时有工人及时地去接头.解:设发生棉纱断头地纺纱机为X 台,则)02.0,1000(~B X ,则6.1998.002.01000)(,2002.01000)(=⋅⋅==⋅=X D X E由中心极限定理得:)1,0(~6.1920N X 近似- 设应该配备n 个人,则95.0)6.1920(}6.19206.1920{}{≥-Φ≈-≤-=≤∴n n X P n X P查表得:65.16.1920≥-n ,即3.27≥n∴至少配备28个工人,才能以%95地概率保证,当纺纱机发生断头时有工人及时地去接头.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理。
《概率论与数理统计》第一章 习题及答案
《概率论与数理统计》第一章习题及答案习题1.11. 将一枚均匀的硬币抛两次,事件CA,,分别表示“第一次出现B正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件C,中的样本点。
A,B解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A(正,正),(正,反)};{=B(正,正),(反,反)} {=C(正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件D,分别表示“点数之和为,A,CB偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事件D--+,C,中,AB-,ABABCCB的样本点。
解:{})6,6(,2,1(),1,1(),Ω;=),2,6(),1,6(,),6,1(,6,2(,),2,2(),1,2(),{})1,3(),2,2(),3,1(),1,1(AB;={})1,2(),2,1(),6,6(),4,6(),2,6(,+B=A;3,1(),1,1(),5,1(),CA;=Φ{})2,2(),1,1(BC;={})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(BA-DC-=-3. 以C,分别表示某城市居民订阅日报、晚报和体育报。
试用A,B,表示以下事件:A,BC(1)只订阅日报;(2)只订日报和晚报;2(3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。
解:(1)C B A ; (2)C AB ;(3)C B A C B A C B A ++; (4)BC A C B A C AB ++;(5)C B A ++; (6)C B A ;(7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。
概率论与数理统计第一章课后答案
第5题
必然事件是指概率为1的事件,因此 C选项正确。
习题二答案与解析
1. C 答案
2. B
01
03 02
习题二答案与解析
01
3. D
02
4. A
03
5. B
习题二答案与解析
第1题
根据概率的加法公式,两个互斥事件之和的概率等于它们概率的和,因此C选项正确。
第2题
根据概率的乘法公式,两个独立事件同时发生的概率等于它们概率的乘积,因此B选项 正确。
习题二答案与解析
01
02
第3题
第4题
根据概率的加法公式,两个对立事件 之和的概率等于1减去它们的概率之 和,因此D选项正确。
根据概率的加法公式,两个互斥且对 立事件之和的概率等于1减去它们的 概率之和,因此A选项正确。
03
第5题
根据概率的加法公式,两个独立事件 同时发生的概率等于它们概率的乘积 加上它们的概率之和减去它们同时发 生的概率,因此B选项正确。
3. C 4. B 5. C
习题一答案与解析
第1题
根据概率的基本性质,任何事件的概率都介 于0和1之间,因此A选项正确。
第2题
互斥事件是指两个事件不可能同时发生,因 此D选项正确。
习题一答案与解析
第3题
独立事件是指一个事件的发生不受另 一个事件是否发生的影响,因此C选
项正确。
第4题
不可能事件是指概率为0的事件,因 此B选项正确。
概率论与数理统计的应用领域
金融
概率论与数理统计在金融领 域中广泛应用于风险评估、 投资组合优化和金融衍生品 定价等方面。
医学
在医学领域,概率论与数理 统计用于临床试验设计、流 行病学研究、诊断和预后评 估等方面。
上海工程技术大学 概率论作业答案
习题一1.设C B A ,,是三个事件,且41)()()(===C P B P A P ,0)()(==BC P AB P ,81)(=AC P ,求C B A ,,中至少有一个发生的概率. 解:()0P AB =Q ()0P ABC ∴=()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ∴⋃⋃=++---+1111500044488=++---+= 2.设事件B A ,及B A ⋃的概率分别为q p ,及r ,求:)(AB P ,)(B A P ,)(B A P 及)(B A P . 解:()()()()P AB P A P B P A B p q r =+-⋃=+- ()()()P AB P A P AB r q =-=- ()()()P AB P B P AB r p =-=- ()1()1P AB P A B r =-⋃=- 3.设31)(=A P ,21)(=B P ,试分别在下列三种情况下求)(B A P )的值: (1) B A ,互不相容; (2) B A ⊂; (3) 81)(=AB P . 解:(1)1()()2P AB P B ==(2)111()()()236P AB P B P A =-=-= (3)113()()()288P AB P B P AB =-=-=4.盒子中装有同型号的电子元件100个,其中有4个是次品.从盒子中任取4个,求: (1) 4个全是正品的概率; (2) 恰有一个是次品的概率; (3) 至少有两个是次品的概率.解:4964100(2)0.8472C p C == 319644100(2)0.1458C C p C == (3)10.84720.14580.0070p =--=或22314496496441000.0071C C C C C p C ++==5.从45件正品5件次品的产品中任取3件产品,求其中有次品的概率.解:34535010.2760C p C =-=6.从一副扑克牌(52张)中任取4张,求4张牌的花色各不相同的概率.解:4452130.1055p C ==7.某城市的电话号码由8个数字组成,第一位为5或6.求 (1) 随机抽取的一个电话号码为不重复的八位数的概率; (2) 随机抽取的一个电话号码末位数是8的概率.解:7972(1)0.0181210P p ⋅==⋅ 67210(2)0.1210p ⋅==⋅8.房间里有4人,求:(1) 这4人的生日不在同一个月的概率; (2) 至少有2人的生日在同一个月的概率. 解:412(1)10.999412p =-= 4124(2)10.427112A p =-=9.已知41)(=A P ,31)|(=A B P ,21)|(=B A P ,求)(B A P ⋃. 解:1()()(|)12P AB P A P B A ==()1()(|)6P AB P B P A B == 1111()()()()46123P A B P A P B P AB ∴⋃=+-=+-=10.掷两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率. 解:设A:其中一颗为1点,B:点数之和为7,则6121(),(),6666618P B P AB ====⋅⋅()1(|)()3P AB P A B P B ∴== 或{(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)}B =,则21(|)63P A B ==11.某个家庭中有两个小孩,已知其中一个是女孩,试问另一个也是女孩的概率是多少?解:其中一个是女孩的样本空间为:{(男,女),(女,男),(女,女)}故所求概率为1312.一盒子中装有7只晶体管,其中5只是正品,2只是次品,从中抽取两次,每次任取一只不放回,求:(1) 两次都取得正品的概率; (2) 第一次取得正品,第二次取得次品的概率; (3) 一次取得正品,另一次取得次品的概率; (4) 第二次取得正品的概率.解:(1)54107621p =⋅= (2)5257621p =⋅=(3)522510767621p =⋅+⋅=(4)5425576767p =⋅+⋅=13.袋中有红球和白球共100个,其中白球有10个.每次从袋中任取一球不放回,求第三次才取到红球的概率.解:设i A 表示事件“第i 次取到白球”,1,2,3i =则所求概率为:31212131210990()()(|)(|)0.00831009998P A A A P A P A A P A A A ==⋅⋅=14.某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拔号不超过三次而拨对所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:(1)310p =或191981310109109810p =+⋅+⋅⋅= (2)35p =15.两台车床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍,求任意取出的一件产品是合格品的概率.解:设事件A :取得的产品是合格品,事件i B :取得的产品由第i 台车床加工,1,2i = 则所求概率为:112221()()(|)()(|)0.970.980.973333P A P B P A B P B P A B =+=⋅+⋅=16.设有甲、乙两个口袋,甲袋中装有n 只白球,m 只红球,乙袋中装有N 只白球,M 只红球.现从甲袋中任取一球放入乙袋,再从乙袋中任意取一球,问: (1) 取到白球的概率是多少?(2) 若已知取到白球,则原先是从甲袋中取得白球放入乙袋的概率是多少? 解:设事件A :从乙袋取到白球,事件B :从甲袋取到白球 (1)所求概率为:()()(|)()(|)P A P B P A B P B P A B =+111()(1)n N m N nN n mNm n M N m n M N m n M N +++=⋅+⋅=+++++++++ (2)所求概率为:()(|)()P AB P B A P A =11()(1)n N nN nm n M N nN n mN nN n mN m n M N +⋅++++==+++++++17.设8支枪中有3支未经试射校正,5只已经试射校正.一射手用校正的枪射击时,中靶的概率为0.8,而用未校正过的枪射击时,中靶的概率为0.3.现假定从8支枪中任取一支进行射击,结果中靶,求所用的枪是己校正过的概率.解:设事件A :射击中靶,事件B :所用的枪是已校正过的 则所求概率为:()(|)(|)()(|)()(|)P B P A B P B A P B P A B P B P A B =+50.84080.816353490.80.388⋅===⋅+⋅18.盒子中放有12个乒乓球,其中有9个是新的.第一次比赛时从中任取3个来使用,比赛后仍放回盒中,第二次比赛时再从盒中任取3个,求第二次取出的球都是新球的概率. 解:设事件A :第二次取出的球全是新球事件i B :第一次取出的球当中有i 个新球,0,1,2,3i = 则所求概率为:3()()(|)iii P A P B P A B ==∑0331232133039399389379363333333312121212121212120.1458C C C C C C C C C C C C C C C C C C C C =⋅+⋅+⋅+⋅=19.设事件A 与B 相互独立,且q B P p A P ==)(,)(.求下列事件的概率: (1) )(B A P ⋃; (2) )(B A P ⋃; (3) )(B A P ⋃.解:(1)()()()()()()()()P A B P A P B P AB P A P B P A P B p q pq =+-=+-=+-U (2)()()()()()(1)(1)1P A B P A P B P A P B p q p q q pq =+-=+---=-+U (3)()()1()1()()1P A B P AB P AB P A P B pq ⋃==-=-=-20.甲、乙两人独立地向同一目标射击,甲击中目标的概率是0.9,乙击中目标的概率是0.8.甲、乙两人各射击一次,求此目标被击中的概率. 解:设事件A :甲击中目标,事件B :乙击中目标则所求概率为:()()()()()0.90.80.90.80.98P A B P A P B P A P B =+-=+-⋅=U 21.设每一门高射炮(发射一发)击中飞机的概率为0.6,现若干门炮同时发射(每炮射一发),若欲以99%的把握击中来犯的一架飞机,问至少需配备几门高射炮? 解:事件i A :第i 门炮击中飞机,1i n ≤≤,则111()1()1()1[()]10.40.99n n nn n i i i i i i i P A P A P A P A ====-=-=-=->U U I0.4log 0.01 5.026n ∴>=所以至少配备6门高射炮。
概率论与数理统计第一章课后习题及参考答案
概率论与数理统计第一章课后习题及参考答案1.写出下列随机试验的样本空间.(1)记录一个小班一次数学考试的平均分数(以百分制记分);(2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取出3个球;(3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数;(4)在单位圆内任意取一点,记录它的坐标.解:(1)}100,,2,1{ =Ω;(2)}345,235,234,145,135,134,125,124,123{=Ω;(3)},2,1{ =Ω;(4)}|),{(22y x y x +=Ω.2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A .解:(1),9,10}{1,5,6,7,8=A ,}5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ;(3)法1:}10,9,8,7,6,2,1{=B ,}10,9,8,7,6,1{=B A ,}5,4,3,2{=B A ;法2:}5,4,3,2{===B A B A B A ;(4)}5{=BC ,}10,9,8,7,6,4,3,2,1{=BC ,}4,3,2{=BC A ,}10,9,8,7,6,5,1{=BC A ;(5)}7,6,5,4,3,2{=C B A ,{1,8,9,10}=C B A .3.设}20|{≤≤=Ωx x ,}121|{≤<=x x A ,}2341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A .解:(1)B B A = ,}223,410|{≤<<≤==x x x B B A ;(2)=B A ∅;(3)A AB =,}21,210|{≤<≤≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ;(2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB .解:(1)A ,B ,C 恰有一个发生;(2)A ,B ,C 中至少有一个发生;(3)A 发生且B 与C 至少有一个不发生;(4)A ,B ,C 中不多于一个发生.6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.证:A B B A A B A AB A B A AB )()(==-Ω==Ω=A A A A .7.把事件C B A 表示为互不相容事件的和事件.解:)()[(C A B A A A C B A C B A =-=)(B A A A A C A B A A ==CB A BC A B A A )(=C B A B A A =.8.设0)(>A P ,0)(>B P ,将下列5个数)(A P ,)()(B P A P -,)(B A P -,)()(B P A P +,)(B A P 按有小到大的顺序排列,用符号“≤”联结它们,并指出在什么情况下可能有等式成立.解:因为0)(>A P ,0)(>B P ,)()(B P AB P ≤,故)()()()()()()()()(B P A P B A P A P B A P AB P A P B P A P +≤≤≤-=-≤- ,所以)()()()()()()(B P A P B A P A P B A P B P A P +≤≤≤-≤- .(1)若A B ⊂,则有)()()(B A P B P A P -=-,)()(B A P A P =;(2)若=AB ∅,则有)()(A P B A P =-,)()()(B P A P B A P += .9.已知B A ⊂,3.0)(=A P ,5.0)(=B P ,求)(A P ,)(AB P ,)(B A P 和)(B A P .解:(1)7.0)(1)(=-=A P A P ;(2)∵B A ⊂,∴A AB =,则3.0)()(==A P AB P ;(3)2.0)()()()(=-=-=AB P B P A B P B A P ;(4))(1()(B A P B A P B A P -==5.0)]()()([1=-+-=AB P B P A P .10.设有10件产品,其中6件正品,4件次品,从中任取3件,求下列事件的概率.(1)只有1件次品;(2)最多1件次品;(3)至少一件次品.解:从10件产品中任取3件,共有310C 种取法,(1)记=A {从10件产品中任取3件,只有1件次品},只有1件次品,可从4件次品中任取1件次品,共14C 中取法,另外的两件为正品,从6件正品中取得,共26C 种取法.则事件A 共包含2614C C 个样本点,21)(3102614==C C C A P .(2)记=B {从10件产品中任取3件,最多有1件次品},=C {从10件产品中任取3件,没有次品},则C A B =,且A 与C 互不相容.没有次品,即取出的3件产品全是正品,共有36C 种取法,则61)(31036==C C C P ,32)()()()(=+==C P A P C A P B P .(3)易知=C {从10件产品中任取3件,至少有1件次品},则65)(1(=-=C P C P .11.盒子里有10个球,分别标有从1到10的标号,任选3球,记录其号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率.解:从10个球中任选3球,共有310C 种选法,(1)记=A {从10个球中任选3球,最小标号为5},事件A 发生,则选出球的最小标号为5,另外两个球的标号只可从6,7,8,9,10这5个数中任选,共有25C 种选法,则121)(31025==C C A P .(2)记=B {从10个球中任选3球,最大标号为5},事件B 发生,则选出球的最大标号为5,另外两个球的标号只可从1,2,3,4这4个数中任选,共有24C 种选法,则201)(31024==C C B P .12.设在口袋中有a 个白球,b 个黑球,从中一个一个不放回地摸球,直至留在在口袋中的球都是同一种颜色为止.求最后是白球留在口袋中的概率.解:设=A {最后是白球留在口袋中},事件A 即把b a +个球不放回地一个一个摸出来,最后摸到的是白球,此概率显然为ba a A P +=)(.13.一间学生寝室中住有6位同学,假定每个人的生日在各个月份的可能性相同,求下列事件的概率:(1)6个人中至少有1人的生日在10月份;(2)6个人中有4人的生日在10月份;(3)6个人中有4人的生日在同一月份.解:设=i B {生日在i 月份},则=i B {生日不在i 月份},12,,2,1 =i ,易知121)(=i B P ,1211)(=i B P ,12,,2,1 =i .(1)设=A {6个人中至少有1人的生日在10月份},则=A {6个人中没有一个人的生日在10月份},66101211(1)]([1)(1)(-=-=-=B P A P A P ;(2)设=C {6个人中有4人的生日在10月份},则62244621041046121115)1211()121()]([)]([)(⋅===C B P B P C C P ;(3)设=D {6个人中有4人的生日在同一月份},则52112121115)()(⋅==C P C D P .14.在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,即交点在这一直径上一个区间内的可能性与此区间的长度成正比,求任意画的弦的长度大于R 的概率.解:设弦与该直径的交点到圆心的距离为x ,已知,当R x 23<,弦长大于半径R ,从而所求的概率为232232=⋅=R R P .15.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头停泊,它们在同一昼夜内到达的时刻是等可能的,如果甲船的停泊时间是1h ,乙船的停泊时间是2h ,求它们中的任何一艘都不需要等候码头空出的概率.解:设=A {两艘中的任何一艘都不需要等候码头空出},则=A {一艘船到达泊位时必须等待},分别用x 和y 表示第一、第二艘船到达泊位的时间,则}10,20|),{(≤-≤≤-≤=x y y x y x A ,从而1207.0242221232124)()()(2222≈⋅-⋅-=Ω=μμA A P ;8993.0)(1)(≈-=A P A P .16.甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被击中,问由甲射中的概率为多少?解:设=A {甲击中目标},=B {乙击中目标},=C {目标被击中},则B A C =,由题设知A 与B 相互独立,且6.0)(=A P ,5.0)(=B P ,所以)()()()()(AB P B P A P B A P C P -+== 8.0)()()()(=-+=B P A P B P A P ,从而43)()()()()|(===C P A P C P AC P C A P .17.某地区位于河流甲与河流乙的汇合点,当任一河流泛滥时,该地区即被淹没,设在某时期内河流甲泛滥的概率是0.1,河流乙泛滥的概率是0.2,又当河流甲泛滥时引起河流乙泛滥的概率为0.3,求在该时期内这个地区被淹没的概率,又当河流乙泛滥时,引起河流甲泛滥的概率是多少?解:=A {甲河流泛滥},=B {乙河流泛滥},=C {该地区被淹没},则B A C =,由题设知1.0)(=A P ,2.0)(=B P ,3.0)|(=A B P ,从而)()()()()(AB P B P A P B A P C P -+== 27.0)|()()()(=-+=A B P A P B P A P ,15.0)()|()()()()|(===B P A B P A P B P AB P B A P .18.设n 件产品中有m 件不合格品,从中任取两件,已知两件中有一件不合格品,求另一件也是不合格品的概率.解:设=A {有一件产品是不合格品},=B {另一件产品也是不合格品},=i D {取出的两件产品中有i 件不合格品},2,1,0=i ,显然,21D D A =,=21D D ∅,2D B AB ==.=Ω{从n 件产品种任取两件},共有2nC 种取法;若1D 发生,即取出的两件产品中有1件不合格品,则该不合格品只能从m 件不合格品中取得,共有1m C 种取法;另一件为合格品,只能从m n -件合格品中取得,共有1m n C -种取法,则事件1D 中共有11m n m C C -个样本点,)1()(2)(2111--==-n n m n m C C C D P n m n m ,类似地,)1()1()(222--==n n m m C C D P n m ,所以)1()1()(2)()()()(2121--+-=+==n n m m m n m D P D P D D P A P ,)1()1()()(2--==n n m m D P AB P ,于是所求概率为121)()()|(---==m n m A P AB P A B P .19.10件产品中有3件次品,每次从其中任取一件,取出的产品不再放回去,求第三次才取得合格品的概率.解:设=i A {第i 次取得合格品},3,2,1=i ,则所求概率为12878792103)|()|()()(213121321=⋅⋅==A A A P A A P A P A A A P .20.设事件A 与B 互不相容,且1)(0<<B P ,证明:)(1)(|(B P A P B A P -=.证:∵事件A 与B 互不相容,则0)(=AB P ,)(1)()(1)()()(1)()()()|(B P A P B P AB P A P B P B A P B P B A P B A P -=--=--==.21.设事件A 与B 相互独立,3.0)(=A P ,45.0)(=B P ,求下列各式的值:(1))|(A B P ;(2))(B A P ;(3)(B A P ;(4)|(B A P .解:∵事件A 与相互独立,∴事件A 与B 也相互独立,(1)45.0)()|(==B P A B P ;(2))()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=615.0=;(3)385.0)](1)][(1[)(()(=--==B P A P B P A P B A P ;(4)7.0()|(==A P B A P .22.某种动物活到10岁的概率为0.92,活到15岁的概率为0.67,现有一只10岁的该种动物,求其能活到15岁的概率.解:设=A {该种动物能活到10岁},=B {该种动物能活到15岁},显然A B ⊂,由题设可知92.0)(=A P ,67.0)(=B P ,所以9267)()()()()|(===A P B P A P AB P A B P .23.某商店出售的电灯泡由甲、乙两厂生产,其中甲厂的产品占60%,乙厂的产品占40%,已知甲厂产品的次品率为4%,乙厂的次品率为5%.一位顾客随机地取出一个电灯泡,求它是合格品的概率.解:设=A {电灯泡是次品},=1B {电灯泡由甲厂生产},=2B {电灯泡由乙厂生产},则=A {电灯泡是合格品}.由题设可知6.0)(1=B P ,4.0)(2=B P ,04.0)|(1=B A P ,05.0)|(2=B A P ,044.0)|()()|()()(2211=+=B A P B P B A P B P A P ,所以956.0)(1)(=-=A P A P .24.已知男子有5%是色盲患者,女子有0.25%是色盲患者.今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?解:设=A {选出的人是色盲患者},=B {选出的人是男性},=B {选出的人是女性},由题设可知21()(==B P B P ,05.0)|(=B A P ,0025.0)|(=B A P ,则2120)|()()|()()|()()|(=+=B A P B P B A P B P B A P B P A B P .25.甲、乙、丙三人独立地向一敌机射击,设甲、乙、丙命中率分别为0.4,0.5和0.7,又设敌机被击中1次、2次、3次而坠毁的概率分别为0.2,0.6和1.现三人向敌机各射击一次,求敌机坠毁的概率.解:设1A ,2A ,3A 分别表示甲、乙、丙射击击中敌机,=i B {敌机被击中i 次},3,2,1=i ,=C {敌机坠毁},则3213213211A A A A A A A A A B =,3213213212A A A A A A A A A B =,3213A A A B =,由题设可知4.0)(1=A P ,5.0)(2=A P ,7.0)(3=A P ,2.0)|(1=B C P ,6.0)|(2=B C P ,1)|(3=B C P ,则)()()()(3213213211A A A P A A A P A A A P B P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.0=,类似地,51.0)(2=B P ,14.0)(3=B P ,由全概率公式得458.0)|()()(31==∑=i i i B C P B P C P .26.三人独立地破译一份密码,已知各人能译出的概率分别为51,31和41.问三人中至少有一人能将此密码译出的概率是多少?解:分别设事件A ,B ,C 为甲、乙、丙破译密码,则三人中至少有一人能将此密码译出可表示为C B A ,有)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= )()()()()()()()()()()()(C P B P A P C P B P C P A P B P A P C P B P A P +---++=53=.27.甲袋中装有n 只白球、m 只红球,乙袋中装有N 只白球、M 只红球.今从甲袋中任意取一只球放入乙袋中,再从乙袋中任意取一只球,问取到白球的概率是多少?解:设=A {从甲袋中取出白球},=B {从乙袋中取出白球},则由题设可知m n n A P +=)(,m n m A P +=(,11)|(+++=M N N A B P ,1|(++=M N N A B P ,由全概率公式,得)|(()|()()(A B P A P A B P A P B P +=)1)(()1(+++++=N M n m mN N n .28.从区间)1,0(内任取两个数,求这两个数的和小于1.2的概率.解:设x 和y 分别为所取的两个数,显然10≤≤x ,10≤≤y ,即试验的样本空间为边长为1的单位正方形,记}2.1|),{(<+=y x y x A ,由几何概型,有68.0118.08.02111)(=⨯⨯⨯-⨯=A P .29.一个系统由4个元件联结而成(如图),每个元件的可靠性(即元件能正常工作的概率)为r (10<<r ),假设各个元件独立地工作,求系统的可靠性.解:设=i A {第i 个元件能正常工作},4,3,2,1=i ,=B {系统能正常工作},则4314214321)(A A A A A A A A A A B ==,由题知r A P i =)(,i A 相互独立,4,3,2,1=i ,所以)()(431421A A A A A A P B P =)()()(4321431421A A A A P A A A P A A A P -+=)(()()()()()()()()(4321431421A P A P A P A P A P A P A P A P A P A P -+=3)2(r r -=.30.某篮球运动员投篮命中的概率为0.8,求他在5次独立投篮中至少命中2次的概率.解:设=A {该篮球运动员5次独立投篮中至少命中2次},=i B {该篮球运动员5次独立投篮中命中的次数},5,,1,0 =i ,则由题可知5432B B B B A =,10B B A =,i B 互不相容,5,,1,0 =i ,所以)()(1)(1)(10B P B P A P A P --=-=9933.02.08.02.08.0141155005=⋅⋅-⋅⋅-=C C .31.设概率统计课的重修率为5%,若某个班至少一人重修的概率不小于0.95,1324问这个班至少有多少名同学?解:设该班有n 名同学,=A {该班每名同学概率统计课重修},=i B {该班n 名同学中有i 名同学概率统计课重修},=C {该班n 名同学中至少有1名同学概率统计课重修},则 ni i n B B B B C 121===,0B C =,由题可知05.0)(=A P ,n n n C B P C P C P 95.0195.005.01)(1)(1)(000-=⋅⋅-=-=-=,由题意,应有95.095.01=-n ,解得59=n .32.某种灯泡使用时数在1000h 以上的概率为0.6,求3个灯泡在使用1000h 以后最多有1个损坏的概率.解:设=A {该种灯泡使用时数在h 1000以上},=i B {3个灯泡在使用h 1000以后有i 个损坏},3,2,1,0=i ,=C {3个灯泡在使用h 1000以后最多有1个损坏},则10B B C =,由题知6.0)(=A P ,i B 互不相容,3,2,1,0=i ,所以648.06.04.06.04.0)()()(2113300310=⋅⋅+⋅⋅=+=C C B P B P C P .33.甲、乙两名篮球运动员投篮的命中率分别为0.7和0.6,每人投篮3次,求:(1)二人进球数相等的概率;(2)甲比乙进球数多的概率.解:设=A {甲篮球运动员投篮命中},=B {乙篮球运动员投篮命中},=i A {甲篮球运动员投篮命中i 次},3,2,1,0=i ,=i B {乙篮球运动员投篮命中i 次},3,2,1,0=i ,=C {甲、乙进球数相等},=D {甲比乙进球数多},由题可知A 与B 相互独立,i A 相互独立,i B 相互独立,i A 与i B 相互独立,7.0)(=A P ,6.0)(=B P ,i i i i C A P -⋅⋅=333.07.0)(,i i i i C B P -⋅⋅=334.06.0)(,3,2,1,0=i ,(1) 30==i i i B A C ∑∑======303030)()()()()(i i i i i i i i i B P A P B A P B A P C P 3208.0=;(2)3310201)(B A B B A B A D =,从而有))(()(3310201B A B B A B A P D P =)(]([)(3310201B A P B B A P B A P ++= )()()()(33120201B A P B A P B A P B A P +++=)()()()()()()()(33120201B P A P B P A P B P A P B P A P +++=4362.0=.34.若三事件A ,B ,C 相互独立,证明:B A 及B A -都与C 相互独立.证:(1))())((BC AC P C B A P =)()()(ACBC P BC P AC P -+=)()()(ABC P BC P AC P -+=)()()()()()()(C P B P A P C P B P C P A P -+=)()]()()()([C P B P A P B P A P -+=)()]()()([C P AB P B P A P -+=)()(C P B A P =所以B A 与C 相互独立.(2))())((BC AC P C B A P -=-)()(ABC P AC P -=)()()()()(C P B P A P C P A P -=)()]()()([C P B P A P A P -=)()]()([C P AB P A P -=)()(C P B A P -=,所以B A -与C 相互独立.35.设袋中有1个黑球和1-n 个白球,每次从袋中随机摸出一球,并放入一个白球,连续进行,问第k 次摸到白球的概率是多少?解:设=A {第k 次摸到白球},=A {第k 次摸到黑球},A 发生表示前1-k 次摸球摸到的都是白球,第k 次摸到的是黑球.前1-k 次摸球,每次摸到白球的概率均为n n 1-,第k 次摸到黑球的概率为n 1,每次摸球相互独立,可知nn n A P k 1)1()(1⋅-=-,则n n n A P A P k 11(1)(1)(1⋅--=-=-.。
MXT-概率统计第一章概率论的基础知识习题与答案
MXT-概率统计第一章概率论的基础知识习题与答案概率论与数理统计概率论的基础知识习题一、选择题1、下列关系正确的是( )。
A 、0∈? B 、{0}?∈ C 、{0}?? D 、{0}?=答案:C2、设{}{}2222(,)1,(,)4P x y x y Q x y x y =+==+=,则( )。
A 、P Q ? B 、P Q < C 、P Q ?与P Q ?都不对 D 、4P Q =答案:C 二、填空1、6个学生和一个老师并排照相,让老师在正中间共有________种排法。
答案:6!720=2、5个教师分配教5门课,每人教一门,但教师甲只能教其中三门课,则不同的分配方法有____________种。
答案:723、编号为1,2,3,4,5的5个小球任意地放到编号为A 、B 、C 、D 、E 、F 的六个小盒子中,每一个盒至多可放一球,则不同的放法有_________种。
答案:()65432720=4、设由十个数字0,1,2,3,Λ ,9的任意七个数字都可以组成电话号码,则所有可能组成的电话号码的总数是_______________。
答案:710个5、九名战士排成一队,正班长必须排在前头,副班长必须排在后头,共有_______________种不同的排法。
答案:77!5040P ==6、平面上有10个点,其中任何三点都不在一直线上,这些点可以确定_____个三角形。
答案:1207、5个篮球队员,分工打右前锋,左前锋,中锋,左后卫右后卫5个位置共有_____________种分工方法?答案:5!120=8、6个毕业生,两个留校,另4人分配到4个不同单位,每单位1人。
则分配方法有______种。
答案:(6543)360=9、平面上有12个点,其中任意三点都不在一条直线上,这些点可以确定_____________条不同的直线。
答案:6610、编号为1,2,3,4,5的5个小球,任意地放到编号为A ,B ,C ,D ,E ,F ,的六个小箱子中,每个箱子中可放0至5个球,则不同的放法有___________种。
概率论章节作业答案
第一章随机事件与概率一、单项选择题1.掷一枚骰子,设A ={出现奇数点},B ={出现1或3点},则下列选项正确的是( B ).A.AB ={出现奇数点}B. AB ={出现5点}C. B ={出现5点}D. A B =Ω2.设A 、B 为任意两个随机事件,则下列选项中错误的是 ( A ).A. ()A B B A +-=B. ()A B B A B A AB +-=-=-C. ()A B B A B -+=+D.AB AB A +=3.将一枚匀称的硬币投掷两次,令A i ={第i 次正面向上}(i =1,2),则“至少有一次正面向上”可表示为 ( D ).A.1212A A A AB.12A AC.12A AD.12A A4.某人向一目标射击3次,设A i 表示“第i 次射击命中目标”(i =1,2,3),则3次都没有命中目标表示为 ( A ).A.123A A AB.123A A A ++C.123A A AD.123A A A5.设A 与B 为互为对立事件,且()0,()0P A P B >>,则下列各式中错误的是( A).A.(|)0P A B =B. (|)0P B A =C. ()0P AB =D. ()1P A B =6.设事件A 与B 相互独立,P (A )=0.2, P (B )=0.4, 则(|)P A B = ( D ).A. 0.2B. 0.4C. 0.6D. 0.87.已知事件A 与B 互不相容, P (A )>0, P (B )>0, 则( C ).A.()1P A B =B.()()()P AB P A P B =C. ()0P AB =D.()0P AB >8.设P (A )=0, B 为任一事件, 则 ( C ).A.A =ΦB.A B ⊂C.A 与B 相互独立D. A 与B 互不相容9.已知P (A )=0.4, P (B )=0.5, 且A B ⊂,则P (A |B )= ( C ).A. 0B. 0.4C. 0.8D. 110.设A 与B 为两事件, 则AB = ( B ).A.A BB. A BC. A BD. A B11.设事件A B ⊂, P (A )=0.2, P (B )=0.3,则()P A B = ( A ).A. 0.3B. 0.2C. 0.5D. 0.4412.设事件A 与B 互不相容, P (A )=0.4, P (B )=0.2, 则P (A|B )=( D ).A. 0.08B. 0.4C. 0.2D. 013.设A , B 为随机事件, P (B )>0, P (A |B )=1, 则必有 ( A ).A.()()P A B P A =B.A B ⊂C. P (A )=P (B )D. P (AB )=P (A )14.从1,2,3,4,5中任意取3个数字,则这3个数字中不含5的概率为 ( A ).A. 0.4B. 0.2C. 0.25D. 0.7515.某学习小组有10名同学,其中6名男生、4名女生,从中任选4人参加社会活动,则4人中恰好2男2女的概率为 ( A ).A.37B.0.4C. 0.25D.16 16.某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该种动物已经活了20年,它能活到25年的概率是 ( B ).A. 0.48B. 0.75C. 0.6D. 0.817.将两封信随机地投到4个邮筒内,则前两个邮筒内各有一封信的概率为 ( A ).A. 0.125B. 0.25C. 0.5D. 0.418.一批产品的合格品率为96%,而合格品中有75%是优质品,从该批产品中任取一件恰好是优质品的概率为 ( A ).A. 0.72B. 0.75C. 0.96D. 0.7819.设有10个产品,其中7个正品,3个次品,现从中任取4个产品,则这4个都是正品的概率为 ( C ).A. 710B. 44710C. 47410C C D. 4710⨯ 20.设有10个产品,其中8个正品,2个次品,现从中抽取3次,每次任取1个,取后放回,则取到的3个产品都是正品的概率为 ( C ).A. 810B. 38310C C C. 33810 D. 38310C 21.某人打靶的命中率为0.4,现独立地射击5次,则5次中恰有2次命中的概率为 ( C ).A. 20.4B. 30.6C. 22350.40.6CD. 23250.40.6C22.随机地抛掷质地匀称的6枚骰子,则至少有一枚骰子出现6点的概率为 ( D ).A.15615()66CB.156151()66C - C.15651()66C D.651()6- 23.把3个不同的球分别放在3个不同的盒子中,则出现2个空盒的概率为(A ).A. 19B. 12C. 23D. 13 24.从1,2,3,4,5,6六个数字中,等可能地、有放回地连续抽取4个数字,则取到的4个数字完全不同的概率为( A ).A.518B.4!6!C.4446AAD.44!625.某人每次射击命中目标的概率为p(0<p<1),他向目标连续射击,则第一次未中第二次命中的概率为( D ).A. p2B. (1-p)2C. 1-2pD. p(1-p)二、填空题1.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,则这两颗棋子是不同色的概率为18/35.2.甲乙两人,每人扔两枚均匀硬币,则两人所扔硬币均未出现正面的概率为1/16.3.设袋中有5个红球、3个白球和2个黑球,从袋中任取3个球,则恰好取到1个红球、1个白球和1个黑球的概率为0.25 .4.从数字1,2,…,10中有放回地任取4个数字,则数字10恰好出现两次的概率为0.0486.5.甲乙丙三人各自独立地向一目标射击一次,三人的命中率分别是0.5,0.6,0.7,则目标被击中的概率为0.94.6.甲袋中装有两白一黑共3个球,乙袋中装有一白两黑共3个球,从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,则取到白球的概率为5/12.7.设事件A与B互不相容,P(A)=0.2, P(B)=0.3, 则()P A B=0.5.8.设事件A与B相互独立,且P(A+B)=0.6, P(A)=0.2, 则P(B)=0.5.9.设()0.3,(|)0.6P A P B A==,则P(AB)=0.42.10.设11()()(),()(),()046P A P B P C P AB P AC P BC======,则P(A+B+C)=5/12.11.已知P(A)=0.7, P(A-B)=0.3, 则()P AB=0.6.12.某射手对一目标独立射击4次,每次射击的命中率为0.5,则4次射击中恰好命中3次的概率为0.25.13.已知P (A )=0.4, P (B )=0.8, P (B|A )=0.25, 则P (A|B )=0.125.14.设111(),(|),(|)432P A P B A P A B ===,则()P A B =1/3. 15.一批产品的废品率为4%,而正品中的一等品率为60%,从这批产品中任取一件是一等品的概率为0.576.16.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为0.7.三、计算题1.设P (A )=0.4, P (B )=0.2, (|)0.3P B A =, 求P (AB )以及P (A |B ).解:由(|)0.3P B A =得:()0.3,()P AB P A =即()()0.31()P B P AB P A -=-, 解得:P (AB )=0.02. 从而, ()0.02(|)0.1()0.2P AB P A B P B ===.2.已知,()0.2,()0.3,A B P A P B ⊂==求:(1)(),()P A P B ;(2)P (AB );(3)()P AB ;(4) ()P A B ;(5)P (B -A ).(1)由概率的性质,知()1()0.8,P A P A =-=()1()0.7P B P B =-=;(2)因为A B ⊂,所以AB A =,P (AB )=P (A )=0.2; (3)()P AB =P (A -AB )=P (A )-P (AB )=P (A )-P (A )=0;(4) 因为A B ⊂,所以A B B = , ()P A B =P (B )=0.3;或者,()P A B =P (A )+P (B )-P (AB )=0.2+0.3-0.2=0.3;3.若事件A 与B 互不相容,P (A )=0.6, P (A+B )=0.9, 求:(1)()P AB ;(2)(|)P A B ;(3)()P AB .解:(1) 因A 与B 互不相容,故AB =Φ,P (AB )=0,所以()P AB =1-P (AB )=1;(2) 因A 与B 互不相容,由加法公式:P (A+B )=P (A )+P (B ),得P (B )=0.3,从而 (|)P A B =()()()0.661()0.77()P AB P A P AB P B P B -===-; (3) ()P AB =1()1()10.90.1P AB P A B -=-+=-=.4.已知事件A 与B 相互独立,且P (A )=0.4, P (A+B )=0.6, 求(1)P (B );(2) ()P AB ;(3)P (A|B ).解:(1)因为事件A 与B 相互独立,所以P (AB )=P (A )P (B ),()()()()()()()()P A B P A P B P AB P A P B P A P B +=+-=+-0.6=0.4+P (B )-0.4P (B ),解得:P (B )=13; (2) 因为事件A 与B 相互独立,所以A 与B 也相互独立,故()P AB =4()()15P A P B =; (3) 因为事件A 与B 相互独立,所以P (A|B )=P (A )=0.4.四、应用题 1.一批产品共有50个,其中40个一等品、6个二等品、4个三等品,现从中任取3个产品,求3个产品中至少有2个产品等级相同的概率.解:设A “3个产品中至少有2个产品等级相同”,A “3个产品等级都不同”,由古典概率定义,得111406435012()0.049245C C C P A C ==≈,从而 ()10.0490.951P A =-=.2.10把钥匙中有3把能打开门,现从中任取2把,求能打开门的概率.解:A “取出2把钥匙能打开门”,由古典概率知:1123732108()15C C C P A C +==. 3.将5双不同的鞋子混放在一起,从中任取4只,求这4只鞋子至少能配成一双的概率.解:A “4只鞋子中至少能配成一双”,则A “4只鞋子都不同”.由古典概率得:41111522224108()21C C C C C P A C ==,故13()1()21P A P A =-=. 4.从0,1,2,3这4个数中任取3个进行排列,求取得的三个数字排成的数是三位数且是偶数的概率.解:A “排成的数是三位数且是偶数”,A 0“排成的三位数末位是0”,A 2“排成的三位数末位是2”,则A =A 0+A 2,且A 0与A 2互不相容,因为230342!1(),3!4C P A C ==11222341(),3!6C C P A C == 所以,015()()()12P A P A P A =+=. 5.一批零件共100个,次品率为10%,每次从中任取一个零件,取出的零件不再放回去,求下列事件的概率:(1)第三次才取得合格品;(2)如果取得一个合格品后就不再取零件,在三次内取得合格品.解:设A i “第i 次取到合格品”(i =1,2,3),则(1)第三次才取到合格品的概率为:12312131210990()()(|)(|)0.00831009998P A A A P A P A A P A A A ==⨯⨯≈. (2)A “三次内取得合格品”,则112123A A A A A A A =++,所求概率为: 112123()()()()P A P A P A A P A A A =++1121121312()()(|)()(|)(|)P A P A P A A P A P A A P A A A =++90109010990100100991009998=+⨯+⨯⨯0.9993.≈ 6.盒子中有8个红球和4个白球,每次从盒子中任取一球,不放回地抽取两次,试求:(1) 两次取出的都是红球的概率;(2)在第一次取出白球的条件下,第二次取出红球的概率;(3)第二次取到红球的概率.解:A 1“第一次取出的是红球”,A 2“第二次取出的是红球”,则(1)由乘法公式得,两次取出的都是红球的概率为:121218714()()(|)121133P A A P A P A A ==⨯=;(2)在第一次取出白球的条件下,第二次取出红球的概率为:218(|)11P A A =; (3)由全概率公式得,第二次取到红球的概率为: 2121121()()(|)()(|)P A P A P A A P A P A A =+7.某工厂有三台设备生产同一型号零件,每台设备的产量分别占总产量的25%,35%,40%,而各台设备的废品率分别是0.05,0.04,0.02,今从全厂生产的这种零件中任取一件,求此件产品是废品的概率.解:设A i “第i 台设备生产的零件”(i =1,2),B “产品是废品”,由题意知:P (A 1)=25%,P (A 2)=35%,P (A 3)=40%,P (B |A 1)=0.05, P (B |A 2)=0.04, P (B |A 3)=0.02,由全概率公式得,产品是废品的概率为:112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++25%0.0535%0.0440%0.020.0345=⨯+⨯+⨯=.8.两台车床加工同一种零件,加工出来的零件放在一起,已知第一台出现废品的概率是0.03,第二台出现废品的概率是0.02,且第一台加工的零件比第二台加工的零件多一倍.(1)求任取一个零件是合格品的概率;(2)如果取出的是废品,求它是由第二台车床加工的概率.解:设B “零件是合格品”,A “第一台车床加工的零件”,则A “第二台车床加工的零件”,由题意知:21(),()33P A P A ==. (1)由全概率公式得:()()(|)()(|)P B P A P B A P A P B A =+21(10.03)(10.02)0.97333=⨯-+⨯-≈; (2)由贝叶斯公式得,如果取出的是废品,求它是由第二台车床加工的概率为:10.02()()(|)3(|)0.252.921()()13P A B P A P B A P A B P B P B ⨯====-- 9.已知5%的男人和0.25%的女人是色盲,假设男人女人各占一半.现随机地挑选一人,求:(1)此人恰是色盲的概率是多少?(2)若随机挑选一人,此人是色盲,问他是男人的概率多大?(3)若随机挑选一人,此人不是色盲,问他是男人的概率多大?解:设B “色盲患者”,A “随机挑选一人是男人”,由题设知:11(),(),(|)5%,(|)0.25%22P A P A P B A P B A ====,则 (1)由全概率公式得,随机挑选一人是色盲的概率为:()()(|)()(|)P B P A P B A P A P B A =+115%0.25%0.0262522=⨯+⨯=; (2)由贝叶斯公式得,随机选一人是色盲,他是男人的概率为:15%()()(|)2(|)0.952()()0.02625P AB P A P B A P A B P B P B ⨯===≈; (3)由贝叶斯公式得,随机选一人不是色盲,他是男人的概率为:195%()()(|)2(|)0.48781()0.97375()P AB P A P B A P A B P B P B ⨯===≈-. 10.现有10张考签,其中4张是难签,甲、乙、丙三人抽签考试(取后不放回),甲先乙次丙最后,求下列事件的概率:(1)甲乙都抽到难签;(2)甲没有抽到难签,而乙抽到难签;(3)甲乙丙都抽到难签;(4)证明:甲乙丙抽到难签的机会均等.解:设A ,B ,C 分别表示“甲、乙、丙抽到难签”,则(1)甲乙都抽到难签的概率为:432()()(|)10915P AB P A P B A ==⨯=; (2)甲没有抽到难签,而乙抽到难签的概率为:644()()(|)10915P AB P A P B A ==⨯=; (3)甲乙丙都抽到难签的概率为:4321()()(|)(|)109830P ABC P A P B A P C AB ==⨯⨯=; (4)由古典概率知,甲抽到难签的概率为:4()0.410P A ==. 由全概率公式得,乙抽到难签的概率为:()()(|)()(|)P B P A P B A P A P B A =+43640.4109109=⨯+⨯=. 丙抽到难签的概率为:()()(|)()(|)()(|)()(|)P C P AB P C AB P AB P C AB P AB P C AB P AB P C AB =+++ 4326434636541098109810981098=⨯⨯+⨯⨯+⨯⨯+⨯⨯=0.4. 得,P (A )=P (B )=P (C )=0.4,所以,甲乙丙抽到难签的机会均等,各占40%.11.三个人向同一敌机射击,设三人命中飞机的概率分别为0.4,0.5和0.7.若三人中只有一人击中,飞机被击落的概率为0.2;若有两人击中,飞机被击落的概率为0.6;若三人都击中,则飞机必被击落.求飞机被击落的概率.解:设A i 表示“三人中恰有i 人击中飞机”,i =0,1,2,3.B “飞机被击落”. A 0, A 1, A 2, A 3构成完备事件组,且0()(10.4)(10.5)(10.7)0.09P A =-⨯--=,1()0.4(10.5)(10.7)(10.4)0.5(10.7)(10.4)(10.5)0.70.36P A =⨯-⨯-+-⨯⨯-+-⨯-⨯=, 2()0.40.5(10.7)0.4(10.5)0.7(10.4)0.50.70.41P A =⨯⨯-+⨯-⨯+-⨯⨯=,3()0.40.50.70.14P A =⨯⨯=.由题设知:0123(|)0,(|)0.2,(|)0.6,(|)1P B A P B A P B A P B A ====.故,由全概率公式得,飞机被击落的概率为:00112233()()(|)()(|)()(|)()(|)P B P A P B A P A P B A P A P B A P A P B A =+++ 0.0900.360.20.410.60.1410.458=⨯+⨯+⨯+⨯=.12.在上题中,假设三人的射击水平相当,命中率都是0.6,其他条件不变,再求飞机被击落的概率.解:设A i 表示“三人中恰有i 人击中飞机”,i =0,1,2,3.B “飞机被击落”. A 0, A 1, A 2, A 3构成完备事件组,且由贝努里公式得:00303()0.60.40.064P A C =⨯⨯=,1213()0.60.40.288P A C =⨯⨯=, 2223()0.60.40.432P A C =⨯⨯=,3333()0.60.216P A C =⨯=.由题设知:0123(|)0,(|)0.2,(|)0.6,(|)1P B A P B A P B A P B A ====. 故由全概率公式得,飞机被击落的概率为:30()()(|)i i i P B P A P B A ==∑0.06400.2880.20.4320.60.21610.5328=⨯+⨯+⨯+⨯=13.已知一批产品中有95%是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率为0.03,求:(1)任意抽查一个产品,它被判为合格品的概率;(2)一个经检查被判为合格的产品,它确实是合格品的概率.解:设A “产品是合格品”,B “经检查产品被判为合格品”,且由题意知:P (A )=95%, ()195%5%,(|)10.020.98,(|)0.03P A P B A P B A =-==-==.则(1)由全概率公式得,任意抽查一个产品,它被判为合格品的概率为:()()(|)()(|)P B P A P B A P A P B A =+ 95%0.985%0.030.9325=⨯+⨯=;(2)由贝叶斯公式得,一个经检查被判为合格的产品,它确实是合格品的概率为:()0.950.98(|)0.9984()0.9325P AB P A B P B ⨯==≈. 14.一个工人看管三台机床,在一小时内机床不需要工人看管的概率第一台为0.9,第二台为0.8,第三台为0.7,且三台机床是否需要看管彼此独立.求在一小时内三台机床中最多有一台需要工人看管的概率.解:设A i “第i 台机床需要看管”,i =1,2,3. “三台机床中最多有一台需要工人看管”表示为123123123123A A A A A A A A A A A A +++,且这4个事件两两互不相容,由加法与独立性知,所求的概率为:123123123123()P A A A A A A A A A A A A +++123123123123()()()()P A A A P A A A P A A A P A A A =+++123123123123()()()()()()()()()()()()P A P A P A P A P A P A P A P A P A P A P A P A =+++0.10.80.70.90.20.70.90.80.30.90.80.70.902=⨯⨯+⨯⨯+⨯⨯+⨯⨯=15.加工某一零件共需经过三道工序,设第一、第二、第三道工序的次品率分别是2%,3%,5%.假定各道工序是互不影响的,问加工出来的零件的次品率是多少?解:设A i “第i 道工序加工出次品”,i =1,2,3.则加工出来的零件是次品表示为A 1+A 2+A 3,且A 1,A 2,A 3相互独立,从而123,,A A A 也相互独立. 所求概率为:123123123(++)1()1()()()P A A A P A A A P A P A P A =-=-1(12%)(13%)(15%)0.09693=----=.16.甲、乙、丙三人独立地破译一密码,他们各自能破译出的概率分别是0.4,0.6,0.7,求此密码被破译的概率.解:设A ,B ,C 分别表示“甲、乙、丙破译出密码”,则A+B+C 表示“密码被破译”,且A ,B ,C 相互独立,从而,,A B C 也相互独立,故所求概率为:(++)1()1()()()P A B C P ABC P A P B P C =-=- 1(10.4)(10.6)(10.7)0.928=----=.17.有甲、乙两批种子,发芽率分别为0.8和0.7,各在两批中随机取一粒,求: (1)两粒种子都能发芽的概率; (2)至多有一粒种子能发芽的概率; (3)至少有一粒种子能发芽的概率.解:设A ,B 分别表示“甲、乙种子发芽”,由题设知:()0.8,()0.7,()10.80.2,()10.70.3P A P B P A P B ===-==-=.(1)两粒种子都能发芽的概率为:()()()0.80.70.56P AB P A P B ==⨯=;(2)至多有一粒种子能发芽的概率为:()()()()P AB AB AB P AB P AB P AB ++=++ ()()()()()()P A P B P A P B P A P B =++ 0.80.30.20.70.20.30.44=⨯+⨯+⨯=;(3)至少有一粒种子能发芽的概率为:()()()()()()()()P A B P A P B P AB P A P B P A P B =+-=+-0.80.70.80.70.94=+-⨯=.18.一批产品有70%的一级品,进行重复抽样检查,共抽取5件样品,求: (1)取出5件样品中恰有2件一级品的概率p 1; (2)取出5件样品中至少有2件一级品的概率p 2; (3)取出5件样品中至少有一件一级品的概率p 3.解:该问题是参数p =0.7的5重贝努里试验,由贝努里公式得:(1)取出5件样品中恰有2件一级品的概率p 1=22350.70.30.1323C ⨯⨯=;(2)取出5件样品中至少有2件一级品的概率为:p 2=55520.70.3k k k k C -=⨯⨯∑=005145510.70.30.70.30.96922C C -⨯⨯-⨯⨯=;(3)取出5件样品中至少有一件一级品的概率为:p 3=55510.70.3k k k k C -=⨯⨯∑=005510.70.30.99757C -⨯⨯=.19.一射手对一目标独立地射击4次,若至少命中一次的概率为8081, 求射手射击一次命中目标的概率..解:设射手射击一次命中目标的概率为p ,由贝努里定理知,4次射击中至少有一次命中目标的概率为:41(1)p --,由题设知:4801(1)81p --=,解得:23p =.20.一射手对一目标独立地射击, 每次射击命中率为p , 求射击到第4次时恰好两次命中的概率.解:射手射击到第4次恰好有两次命中目标,即第四次命中,而前三次中恰有一次命中,由贝努里定理知,所求概率为:12223(1)3(1)P pC p p p p =-=-.五、证明题1.设0<P (B )<1,证明事件A 与B 相互独立的充分必要条件是(|)(|)P A B P A B =. 证:必要性设事件A 与B 相互独立,则P (AB )=P (A )P (B ),P (A|B )=P (A ), 又()()()()()(|)()1()1()()P AB P A AB P A P A P B P A B P A P B P B P B --====--, 所以,(|)(|)P A B P A B =.充分性若(|)(|)P A B P A B =,则()()()()()()1()1()()P AB P AB P A AB P A P AB P B P B P B P B --===--, 对上式两端化简,得:()()()P AB P A P B =,所以A 与B 相互独立2.证明条件概率的下列性质:(1)若P (B )>0,则0(|)1,(|)1,(|)0P A B P B P B ≤≤Ω=Φ=;(2)若A 与B 互不相容,()0P C >,则(|)(|)(|)P A B C P A C P B C =+ ; (3)(|)1(|)P A B P A B =-. 证:(1)因为()(|)()P AB P A B P B =,而0()()P AB P B ≤≤,所以,0(|)1P A B ≤≤, 且()()(|)1()()P B P B P B P B P B ΩΩ===,()()(|)0()()P B P P B P B P B ΦΦΦ===; (2)若A 与B 互不相容,则AC 与BC 也互不相容,从而()()()(|)(|)(|)()()P AC BC P AC P BC P A B C P A C P B C P C P C +===+ ;(3)由性质(2)得:(|)(|)(|)P A A B P A B P A B =+ ,又A A =Ω ,由性质(1)知,(|)1P B Ω=,所以,(|)(|)1P A B P A B +=,即(|)1(|)P A B P A B =-第二章随机变量及其概率分布 一、单项选择题1.设随机变量X 的分布律为 则P {X <1}=( C ).A. 0B. 0.2C. 0.3D. 0.5 2.设随机变量X 的概率分布为 则a =( D ).A. 0.2B. 0.3C. 0.1D. 0.43.设随机变量X 的概率密度为2,1(),0,1cx f x x x ⎧>⎪=⎨⎪≤⎩则常数c =( D ).A. 1-B.12 C. -12D. 1 4.设随机变量X 的概率密度为3,01(),0,ax x f x ⎧≤≤⎪=⎨⎪⎩其它则常数a =( D ).A.14 B. 12C. 3D. 4 5.下列函数中可作为某随机变量的概率密度函数的是 (A ).A.2100,1000,100x x x ⎧>⎪⎨⎪≤⎩ B.10,00,0x xx ⎧>⎪⎨⎪≤⎩ C. 1,020,x -≤≤⎧⎨⎩其它 D. 113,2220,x ⎧≤≤⎪⎨⎪⎩其它6.设函数()f x 在区间[,]a b 上等于sin x ,而在此区间外等于0;若()f x 可以作为某连续型随机变量的概率密度函数,则区间[,]a b 为 ( A ).A. [0,]2πB. [0,]πC. [,0]2π-D. 3[0,]2π7.下列函数中,可以作为某随机变量X 的分布函数的是 ( C ).A. 0,00.3,01()0.2,121,2x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩B. 0.5,0()0.8,011,1x x F x x x <⎧⎪=≤<⎨⎪≥⎩C. 0,00.1,05()0.6,561,6x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩ D. 0,2()sin ,021,0x F x x x x ππ⎧<-⎪⎪⎪=-≤<⎨⎪≥⎪⎪⎩8.设()F x 是随机变量X 的分布函数,则 ( B ). A. ()F x 一定连续 B. ()F x 一定右连续 C. ()F x 是不增的 D. ()F x 一定左连续9.设()()F x P X x =≤是随机变量X 的分布函数,则下列结论错误的是(D ).A.()F x 是定义在(,)-∞+∞上的函数B.lim ()lim ()1x x F x F x →+∞→-∞-=C.()()()P a X b F b F a <≤=-D.对一切实数x ,都有0<()F x <110.设随机变量的概率分布为2()(),(1,2,3...)3k P X k a k ===,则常数a =( B ).A. 1B. 12C. 2D. 12-11.已知随机变量X 的分布律为()F x 是X 的分布函数,则F (2.5)=( B ). A. 0.7 B. 0.8C. 0.1D. 112.随机变量X 的概率密度2,01()0,x x f x <<⎧=⎨⎩其它,则11{}22P X -≤≤=( A ). A.14 B.13 C.12 D.3413.已知随机变量X 的分布律为 若随机变量Y =X 2,则P {Y =1}=( C ).A. 0.1B. 0.3C. 0.4D. 0.2 14.设随机变量X ~B (4, 0.2),则P {X >3}=( A ).A. 0.0016B. 0.0272C. 0.4096D. 0.819215.设随机变量X ~N (1,4),Y =2X +1,Y ~ ( C). A. N (1, 4) B. N (0, 1) C. N (3, 16) D. N (3, 9) 16.设2~(,)X N μσ,()x Φ是N (0, 1)的分布函数,则()P a X b ≤≤= ( D ). A.()()b a Φ-Φ B.()()b a Φ+Φ C.22()()b a μμσσ--Φ-Φ D.()()b a μμσσ--Φ-Φ17.设X ~N (-1,4),()x Φ是N (0, 1)的分布函数,则P (-2<X <0)= ( A ).A.12()12Φ- B.(0)(2)Φ-Φ- C.1(2)2Φ- D.(2)(0)Φ-Φ18.设X ~N (0,1),()x ϕ是X 的概率密度函数,则(0)ϕ= (C ). A. 0 B. 0.5C.D. 1 19.设X 服从均匀分布U[0,5],Y =3X +2,则Y 服从 ( B ). A. U[0, 5] B. U[2, 17] C. U[2, 15] D. U[0, 17] 20.某种商品进行有奖销售,每购买一件有0.1的中奖率.现某人购买了20件该商品,用随机变量X 表示中奖的件数,则X 的分布为 ( D ).A.正态分布B.指数分布C.泊松分布D.二项分布 21.设X 服从参数2λ=的泊松分布,()F x 是X 的分布函数,则下列正确的选项是 ( B ).A.2(1)F e -=B.2(0)F e -=C.P (X =0)=P (X =1)D.2(1)2P X e -≤= 22.设X 服从参数λ的泊松分布,且2(1)(3)3P X P X ===,则λ= ( C ). A. 1 B. 2 C. 3 D. 4二、填空题1.若2()1P X x β≤=-,1()1P X x α≥=-,其中x 1<x 2, 则12()P x X x ≤≤=1.2.设随机变量X 的概率分布为记Y =X 2, 则P (Y =4)=0.5.3.若X 是连续型随机变量, 则P (X =1)=0.4.设随机变量X 的分布函数为F (x ), 已知F (2)=0.5, F (-3)=0.1, 则(32)P X -<≤=0.4.5.设随机变量X的分布函数为212()xt F x edt --∞=,则其密度函数为.6.设连续型随机变量X 的分布函数为0,0()sin ,021,2x F x x x x ππ⎧⎪<⎪⎪=≤<⎨⎪⎪≥⎪⎩, 其密度函数为()f x ,则()6f π=1/2.7.设随机变量X 的分布函数为1,0()0,x e x F x x -⎧-≥=⎨<⎩, 则当x >0时, X 的概率密度()f x =1..8.设随机变量X 的分布律为则(01)P X ≤≤=0.6.9.设随机变量X ~N (3, 4), 则(45)P X <<=0.148. (其中(1)0.8413,(0.5)0.6915Φ=Φ=)10.设随机变量X 服从参数为6的泊松分布, 写出其概率分布律P(X=K)=6K/K! K=0,1,2,3.11.若随机变量X ~B (4, 0.5), 则(1)P X ≥=15/16.12.若随机变量X ~U (0, 5),且Y =2X ,则当010y ≤≤时, Y 的概率密度()Y f y =1/10. 13.设随机变量X ~N (0, 4),则(0)P X ≥=0.5.14.设随机变量X ~U (-1, 1),则1(||)2P X ≤=0.5.15.设随机变量X 在[2, 4]上服从均匀分布,则(23)P X <<=0.5.16.设随机变量X ~N (-1, 4),则1~2X Y +=N(0,1). 17.设随机变量X 的分布律为(),0,1,2, (3)k aP X k k ===,则a =2/3.18.设连续型随机变量X 的概率密度为1,02()0,kx x f x +<<⎧=⎨⎩其它,则k =-1/2.19.若随机变量X ~N (1, 16),Y =2X -1,则Y ~N(1,64). 20.若随机变量X ~U (1, 6),Y =3X +2,则Y ~U(5,20). 三、计算题1.设连续型随机变量X 的分布函数为20,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩,求X 的概率密度函数.解:由分布函数与概率密度函数之间的关系()()F x f x '=知,当0<x <1时,2()()2f x x x '==,当1x ≥或0x ≤时,()f x =0,所以,X 的概率密度为2,01()0,x x f x <<⎧=⎨⎩其它.2.设X 服从参数p =0.2的0-1分布,求X 的分布函数及P (X <0.5). 解:X 的分布律为当0x <时,()()F x P X x =≤=0;当01x ≤<时,()()F x P X x =≤=(0)0.8P X ==;当1x ≥时,()()F x P X x =≤=(0)(1)0.80.21P X P X =+==+=.所以,X 的分布函数为0,0()0.8,011,1x F x x x <⎧⎪=≤<⎨⎪≥⎩;而P (X <0.5)= P (X =0)=0.8.3.设随机变量X ~U (a , b ),求X 的密度函数与分布函数.解:X 的密度函数为1,()0,a x b f x b a ⎧<<⎪=-⎨⎪⎩其它;分布函数()()x F x f t dt -∞=⎰,当x a <时,()()x F x f t dt -∞=⎰00xdt -∞==⎰;当a x b ≤<时,()()x F x f t dt -∞=⎰10a xax adt dt b a b a-∞-=+=--⎰⎰; 当x b ≥时,()()x F x f t dt -∞=⎰1001a bx ab dt dt dt b a-∞=++=-⎰⎰⎰.所以,X 的分布函数为0,(),1,x a x a F x a x b b a x b <⎧⎪-⎪=≤<⎨-⎪≥⎪⎩.4.设随机变量X ~N (3, 4),求:(1)P (2<X <3);(2) P (-4<X <10);(3) P (|X|>2);(4)P (X >3).解:(1)P (2<X <3)=3323(3)(2)()()22F F ---=Φ-Φ(0)(0.5)=Φ-Φ- (0)[1(0.5)]=Φ--Φ=0.1915;(2)P (-4<X <10)=10343(10)(4)()()22F F -----=Φ-Φ =(3.5)( 3.5)2(3.5)1Φ-Φ-=Φ-=0.9996; (3)P (|X|>2)=1(||2)P X -≤=1(22)1[(2)(2)]P X F F --≤≤=---=23231[()()]22----Φ-Φ=(0.5)(2.5)1Φ-Φ+=0.6977; (4)P (X >3)=1(3)P X -≤=331(3)1()1(0)2F --=-Φ=-Φ=0.5.5.已知随机变量X 的密度函数为2,01()0,kx x f x ⎧<<=⎨⎩其它,求:(1)常数k ;(2)分布函数;(3)(10.5)P X -<<..解:(1)因为()1f x dx +∞-∞=⎰,所以123100|133k kkx dx x ===⎰,故k =3. 即随机变量X 的概率密度为23,01()0,x x f x ⎧<<=⎨⎩其它;(2)当0x <时,()()xF x f t dt -∞=⎰=0,当01x ≤<时,()()xF x f t dt -∞=⎰=023003xdt t dt x -∞+=⎰⎰,当1x ≥时,()()x F x f t dt -∞=⎰=012010301xdt t dt dt -∞++=⎰⎰⎰所以,随机变量X 的分布函数为30,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩;(3)(10.5)P X -<<3(0.5)(1)0.500.125F F =--=-=;6.设随机变量X 的概率密度为,011(),1220,x x f x x <<⎧⎪⎪=≤<⎨⎪⎪⎩其它,求X 的分布函数.解:当0x <时,()()xF x f t dt -∞=⎰=0;当01x ≤<时,()()xF x f t dt -∞=⎰=020102xdt tdt x -∞+=⎰⎰;当12x ≤<时,()()x F x f t dt -∞=⎰=010111022x dt tdt dt x -∞++=⎰⎰⎰;当2x ≥时,()()x F x f t dt -∞=⎰=01201210012xdt tdt dt dt -∞+++=⎰⎰⎰⎰.所以,随机变量X 的分布函数为20,01,012()1,1221,2x x x F x x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩.7.设随机变量X~,01()2,120,x x f x x x ≤<⎧⎪=-≤<⎨⎪⎩其它,求:(1)1()2P X ≥;(2)13()22P X <<.解:(1)1()2P X ≥=+1211122()(2)f x dx xdx x dx ∞=+-⎰⎰⎰=2122112117|(2)|228x x x +-=;(2)13()22P X <<=3312211122()(2)f x dx xdx x dx =+-⎰⎰⎰=32122112113|(2)|224x x x +-=.8.设随机变量X 在[0,5]上服从均匀分布,求方程24420x Xx X +++=有实根的概率.解:X ~1,05()50,x f x ⎧≤≤⎪=⎨⎪⎩其它,而方程24420x Xx X +++=有实根的充分必要条件是21616(2)0X X ∆=-+≥,即220X X --≥,故所求概率为:2{20}(1)(2)P X X P X P X --≥=≤-+≥=0+5215dx ⎰=0.6.9.设随机变量X 的分布律为求:(1)Y =2X 的分布律;(2)Z =|X |的概率分布;(3)X 2的分布律.解:(1)由X 的分布律知,Y 的取值为-2,0,2,4.且(2)(1)0.1P Y P X =-==-=,(0)(0)0.2P Y P X ====, (2)(1)0.3P Y P X ====,(4)(2)0.4P Y P X ====.所以,Y 的分布律为(2)Z =|X |的取值为0,1,2.2(0)(0)0.2P X P X ====,2(1)(1)(1)0.4P X P X P X ===-+==, 2(4)(2)0.4P X P X ====. 所以,X 2的分布律为:10.设X ~U [0,4],Y =3X +1,求Y 的概率密度.解:X ~1,04()40,x f x ⎧≤≤⎪=⎨⎪⎩其它,Y =3X +1的取值范围是[1,13].Y 的分布函数131()()(31)()()3y Y y F y P Y y P X y P X f x dx --∞-=≤=+≤=≤=⎰ 当1y <时,有103y -<,13()00y Y F y dx --∞==⎰; 当113y ≤<时,有1043y -≤<,103011()0412y Y y F y dx dx --∞-=+=⎰⎰;当13y ≥时,有143y -≥,1043041()0014y Y F y dx dx dx --∞=++=⎰⎰⎰.11.已知随机变量X ~N (1,4),Y =2X +3,求Y 的概率密度..解:X~2(1)8(),()x f x x --=-∞<<+∞,建立Y 的分布函数与X 的分布函数之间的关系.因为:33()()(23)()()22Y X y y F y P Y y P X y P X F --=≤=+≤=≤=, 两边对y 求导:3313()()()()2222Y X X y y y f y F f ---''=⋅=223(1)(5)2832y y -----==,即Y ~N (5,16).12.已知X 服从参数1λ=的指数分布,Y =2X -1,求Y 的概率密度.解:由题设知,X ~,0()0,0x e x f x x -⎧>=⎨≤⎩,方法1 11()()(21)()()22Y X y y F y P Y y P X y P X F ++=≤=-≤=≤=,两边对y 求导:1111()()()()2222Y X X y y y f y F f +++''=⋅=, 又因为12121,012,1()210,10,02y y X y e y e y f y y +-+-⎧+>⎧⎪+⎪⎪>-==⎨⎨+⎪⎪≤-⎩≤⎪⎩,所以,Y 的概率密度为:121,1()20,1y Y e y f y y +-⎧>-⎪=⎨⎪≤-⎩.四、应用题1.一批零件中有10个合格品和2个废品,安装机器时,从这批零件中任取一个,如果每次取出废品后不再放回,用X 表示在取得合格品以前已取出的废品的个数,求:(1)随机变量X 的分布律;(2)随机变量X 的分布函数.解:(1)随机变量X 的可能取值为0,1,2,且105(0)126P X ===,2105(1)121133P X ==⨯=,21101(2)12111066P X ==⨯⨯=, 得到X 的分布律为:(2)X 的可能取值0,1,2将分布函数F (x )的定义域(,)-∞+∞分为四部分: 当0x <时,()()0F x P X x =≤=,当01x ≤<时,()()F x P X x =≤5(0)6P X ===,当12x ≤<时,()()F x P X x =≤65(0)(1)66P X P X ==+==, 当2x ≤时,()()F x P X x =≤(0)(1)(2)1P X P X P X ==+=+==. 从而得到X 的分布函数为:0,05,016()65,12661,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩.2.袋中有标号为1,2,2,3,3,3的六个球,从中任取一个球,求所取出的球的号码X 的概率分布及分布函数..解:X 的可能取值为1,2,3.且1(1)6P X ==,21(2)63P X ===,31(3)62P X ===, 所以,X 的概率分布为:当1x <时,()()0F x P X x =≤=, 当12x ≤<时,()()F x P X x =≤1(1)6P X ===, 当23x ≤<时,()()F x P X x =≤1(1)(2)2P X P X ==+==,当3x ≥时,()()F x P X x =≤(1)(2)(3)1P X P X P X ==+=+==. 从而得到X 的分布函数为:0,11,126()1,2321,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩3. 袋中有标号为1,2,2,3,3,3的六个球,从中任取两个球,X 表示取出的两个球的最大号码,求X 的概率分布..解:X 的所有可能的取值为2,3.且112122261(2)5C C C P X C +===,112333264(3)5C C C P X C +===, 从而得到X 的概率分布为:4.设一批产品共1000个,其中40个是次品,随机抽取100个样品,按下列两种方式抽样,分别求样品中次品数X 的概率分布.(1)不放回抽样; (2)有放回抽样.解:(1)不放回抽样,X 的可能取值为0,1,2,…,40.{X =k }表示100个样品中恰好有k 个次品,则100401000401001000()k kC C P X k C --==,得到X 的概率分布为: 100409601001000(),0,1,2,...,40.k k C C P X k k C -=== (2)有放回抽样,X 的可能取值为0,1,2,…,100.由于有放回抽样,抽取100个样品可看作进行了100重贝努里试验,且每次抽到次品的概率都是0.04,抽到正品的概率为0.96,X ~B (100,0.04).则X 的概率分布为:100100()0.040.96,0,1,2,...,100.kk k P X k C k -===5.抛掷一枚质地不均匀的硬币,每次正面出现的概率为13,连续抛掷10次,以X 表示正面出现的次数,求X 的分布律.由题设知,X ~B (10,13). 则X 的分布律为:101012()()(),0,1,2,...,10.33k k kP X k C k -===6.有一繁忙的交通路口,每天有大量的汽车经过,设每辆汽车在一天的某段时间内出事故的概率为0.0001.在某天的该段时间内有1000辆汽车经过,问出事故的次数不小于2的概率.解:设X 表示1000辆汽车通过路口时出事故的次数,由题意知,X ~B (1000,0.0001).由于n =1000很大,p =0.0001很小,故利用泊松分布近似代替二项分布计算.其中,10000.00010.1np λ==⨯=,0.10.1(),0,1,2,...!k P X k e k k -=≈=, 查泊松分布表可得,所求概率为:7.以电话交换台每分钟收到的呼唤次数服从参数为4的泊松分布,求: (1)每分钟恰有4次呼唤的概率; (2)每分钟的呼唤次数至少有4次的概率.解:设X 表示电话交换台每分钟收到的呼唤次数,由题意知,X ~P (4),其分布律为:44(),0,1,2...!k P X k e k k -===,则(1)每分钟恰有4次呼唤的概率444(4)0.1953674!P X e -===;(2)每分钟的呼唤次数至少有4次的概率444(4)0.56653!k k P X e k ∞-=≥==∑8.袋中装有8个球,其中3个红球、5个白球,现从袋中任取3个球,求取出红球数的概率分布.解:X 表示取出3个球中含有红球的个数,则X 的可能取值为0,1,2,3. 且35385(0)28C P X C ===,12353815(1)28C C P X C ===, 21353815(2)56C C P X C ===,33381(3)56C P X C ===,于是,X 的概率分布为:9.已知某类电子元件的寿命X (单位:小时)服从指数分布,其概率密度为110001,0()10000,0x e x f x x -⎧>⎪=⎨⎪≤⎩, 一台仪器装有3个此种类型的电子元件,其中任意一个损坏时仪器便不能正常工作,假设3个电子元件损坏与否相互独立.试求:(1)一个此类电子元件能工作1000小时以上的概率p 1; (2)一台仪器能正常工作到1000小时以上的概率p 2. 解:(1)一个此类电子元件能工作1000小时以上的概率为:p 1=11110001000100010001(1000)|1000x x P X e dx e e --+∞+∞-≥==-=⎰; (2)一台仪器能正常工作到1000小时以上,需要这3个电子元件的寿命都在1000小时以上,由独立性知,所求概率为:p 2=33[(1000)]P X e -≥=.10.公共汽车车门的高度是按男子与车门顶碰头的机会在0.01以下来设计的.设男子身高X 服从170μ=(厘米),6σ=(厘米)的正态分布,即2~(170,6)X N .问车门高度应如何确定?解:设车门高度为h 厘米,由题意知,()0.01P X h >≤,即()0.99P X h ≤≥. 因为X ~N (170,36),所以170()()()0.996h P X h F h -≤==Φ≥, 查表得:(2.33)0.99010.99Φ=>,所以1702.336h -=,解得h =183.98. 设计车门的高度为183.98厘米时,可使男子与车门碰头的机会不超过0.01.五、综合题1.设10件产品中有2件次品,现进行连续无放回抽样,直至取到正品为止,求:(1)抽样次数X 的概率分布; (2)X 的分布函数F (x ); (3)(2),(13)P X P X >-<<..解:(1)X 的可能取值为1,2,3.且84(1)105P X ===,288(2)10945P X ==⨯=,2181(3)109845P X ==⨯⨯=. 所以,X 的概率分布为:(2)当1x <时,()()0F x P X x =≤=, 当12x ≤<时,4()()(1)5F x P X x P X =≤===, 当23x ≤<时,44()()(1)(2)45F x P X x P X P X =≤==+==, 当3x ≥时,()()(1)(2)(3)1F x P X x P X P X P X =≤==+=+==. 所以,X 的分布函数为:0,14,125()44,23451,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩;(3)(2)(1)(2)(3)1P X P X P X P X >-==+=+==; 或(2)1(2)1(2)101P X P X F >-=-≤=-=-=.8(13)(2)45P X P X <<===.2.司机通过某高速路收费站等候的时间X (单位:分钟)服从参数15λ=的指数分布.(1)求某司机在此收费站等候时间超过10分钟的概率p ;(2)若该司机一个月要经过此收费站两次,用Y 表示等候时间超过10分钟的次数,写出Y 的分布律,并求(1)P Y ≥.解:(1)由题设知,151,0~()50,0x e x X f x x -⎧>⎪=⎨⎪≤⎩,则司机在此收费站等候时间超过10分钟的概率为:125101(10)5x p P X e dx e -+∞-=>==⎰; (2)由题意知,2~(2,)Y B e -,Y 的分布律为:22222222()()(1)(1),0,1,2.k k k k kk P Y k C e e C e e k ------==-=-=2224(1)1(0)1(1)2P Y P Y e e e ---≥=-==--=-.3.甲乙丙三人独立地等1,2,3路公共汽车,他们等车的时间(单位:分钟)都服从[0,5]上的均匀分布,求三人中至少有两人等车不超过2分钟的概率.解:设一个人等车的时间为X ,由题设知,X ~U [0,5],其密度函数:1,05()50,x f x ⎧≤≤⎪=⎨⎪⎩其它. 则一个人等车不超过2分钟的概率为:221(2)()0.45p P X f x dx dx -∞=≤===⎰⎰. 设Y 表示三人中等车时间不超过2分钟的人数,则Y ~B (3,0.4),则三人中至少有两人等车不超过2分钟的概率为:223333(2)(2)(3)0.40.60.4P Y P Y P Y C C ≥==+==+=0.352.4.设测量距离时产生的随机误差X ~N (0,102)(单位:米),现作三次独立测量,记Y 为三次测量中误差绝对值大于19.6的次数,已知(1.96)0.975.Φ=(1)求每次测量中误差绝对值大于19.6的概率p ; (2)问Y 服从何种分布,并写出其分布律;(3)求三次测量中至少有一次误差绝对值大于19.6的概率. 解:(1) p =(||19.6)1(||19.6)P X P X >=-≤019.601(||)1[2(1.96)1]1010X P --=-≤=-Φ-=0.05. (2)由题意知,Y ~B (3, 0.05),Y 的分布律为:33()0.050.95,0,1,2,3.kk k P X k C k -===(3)三次测量中至少有一次误差绝对值大于19.6的概率为:3(1)1(0)10.95P Y P Y ≥=-==-=0.142625.5.设顾客在某银行的窗口等待服务的时间X (单位:分钟)服从参数110λ=的指数分布.某顾客在窗口等待服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.(1)写出Y 的分布律;(2)求该顾客一个月至少有一次未等到服务而离开窗口的概率.解:(1)由题设知,等待服务的时间X ~1101,0()100,0x e x f x x -⎧>⎪=⎨⎪≤⎩,顾客离开银行的概率为:1110101(10)10x p P X e dx e -+∞-=>==⎰.由题意知,Y ~B (5,e -1),其分布律为:1155()()(1),0,1,...,5.kk k P Y k C e e k ---==-=(2)所求概率为(1)P Y ≥=151(0)1(1)P Y e --==--0.899≈.6.设连续型随机变量X 的分布函数为:20,0(),011,1x F x Ax x x <⎧⎪=≤<⎨⎪≥⎩,求:(1)系数A ; (2)X 的概率密度; (3)(0.30.7)P X <≤; (4)Y =X 2的概率密度.解:(1)由F (x )的连续性知,11lim ()lim ()(1)x x F x F x F -+→→==,有21l i m 1x Ax -→=,得1A =; (2)X 的概率密度2,01()()0,x x f x F x <<⎧'==⎨⎩其它;(3)(0.30.7)P X <≤22(0.7)(0.3)0.70.30.4F F =-=-=, 或(0.30.7)P X <≤=0.720.70.30.32|0.4xdx x ==⎰;(4)因为20Y X =≥,所以,当0y <时,()()0Y F y P Y y =≤=, 当01y ≤<时,2()()()(Y F y P Y y P X y P X =≤=≤=≤()f x dx xdx y ===,当1y ≥时,101()(()21Y F y P X f x dx xdx dx =≤≤==+=⎰所以,X 的分布函数为:0,0(),011,1Y y F y y y y <⎧⎪=≤<⎨⎪≥⎩,X 的概率密度为:1,01()0,Y y f y <<⎧=⎨⎩其它.7.连续型随机变量X 的分布函数为()arctan ,()F x A B x x =+-∞<<+∞,求:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题一
2.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (
AB
解: P (AB )
=1-P (AB )=1-[P (A )-P (A -B )]
=1-[0.7-0.3]=0.6。
3. 设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率。
解:因为 A B C A B
⊂,所以0()()P ABC P AB ≤≤,又 P (AB )=0,则()0P ABC =, P (A ∪B ∪C )
=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =14+14+13-112=34。
4.将3个不同的球随机地放入4个杯子中去,求所有杯中球的最大个数分别为1,2,3的概率。
解:设i A ={杯中球的最大个数为i },i =1,2,3。
将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故
34
13C 3!3()84
P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()164
P A ==,因此 213319()1()()181616
P A P A P A =--=--= 或 12143323C C C 9()164P A ==.
6.从1,2,3,4,5,6,7,8,9,0这10个数字中任取五个数按先后顺序组成多位数,求下列事件的概率:(1) 这五个数字组成一个五位偶数;(2) 2和3都被抽到且靠在一起. 解(1)5105987648764190
P A ⨯⨯⨯⨯-⨯⨯⨯==. (2)145102!876445
C P A ⨯⨯⨯⨯==.
7.对一个五人学习小组考虑生日问题:
(1) 求五个人的生日都在星期日的概率;(2) 求五个人的生日都不在星期日的概率;
(3) 求五个人的生日不都在星期日的概率.
解:基本事件总数为57,
(1)设A 1={五个人的生日都在星期日},所求事件包含基本事件的个数为1个,故 P (A 1)=517=51()7
;
(2) 设A 2={五个人生日都不在星期日},所求事件包含样本点的个数为65,故
P (A 2)=5567=56()7
; (3)设A 3={五个人的生日不都在星期日},利用对立事件的性质,可得
P (A 3)=1-P (A 1)=1-51()7
.
8.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:
(1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率。
解: 设A ={下雨},B ={下雪}。
(1) ()0.1()0.2()0.5
P AB p B A P A ===, (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=。
9.设A ,B 为随机事件,且P (B )>0,P (A |B )=1,试比较P (A ∪B )与P (A )的大小。
解:由加法公式,()()()()P A B P A P B P AB =+-,再根据乘法定理,有
()()()()P AB P B P A B P B =⋅=
所以 ()()()()()P A
B P A P B P B P A =+-=。
10.袋中有红球和白球共30个,其中白球有10个。
每次从袋中任取一球不放回,求第三次才取到白球的概率。
解 2019100.16302928
P ⨯⨯=≈⨯⨯.
11.一盒子中装有10个零件,其中8只是正品,2只是次品,从中抽取两次,每次任取一只不放回,求:
(1) 两次都取得正品的概率; (2) 第一次取得次品,第二次取得正品的概率;
(3) 一次取得次品,另一次取得正品的概率; (4) 第二次取得正品的概率.
解 (1)2811210872828==1094545
C P P C =⨯=或. (2)2828=10945
P =⨯. (3)11823321082281616+==1091094545C C P P C =⨯⨯=或82280.36109
P ⨯+⨯=≈⨯. (4)38728+=0.8109109P =⨯⨯.。