Parallel adaptive solvers in compressible PETSc-FUN3D simulations. Argonne National Laborat

合集下载

自适应的无损数据压缩算法

自适应的无损数据压缩算法

[ src]T et dt nlos s cmpes na oi ms r i fr ihr o rs t ,u e a o e erq i me t fh ewok Abtat h aio a lsl s o rsi l rh e m g e mpes ai bthycnn t r i e o g t a a oh c r o t meth ur n e t r t e e ot n e vrn n. i p pr a e na at ea oi m i dutbecmpes nrt yp a trometh eu s f ieet n i me t. n i metT s ae i s dpi l rh wt ajs l o rsi i b a mee e terq et o f rn e vr ns o h rs a v g t h a o ao r t s df o
在文献51中提到的线传输带宽以及传输过程中不确定因素造成的不稳定性lz77和lz78算法的组合带参应用是通过对参数的调整改因此要根据传输线路的实时情况来调整发送给传输系统的数变2种算法在整个压缩过程中的作用份额找出相对于特定据量以免造成缓冲区的数据溢出或调整当缓冲区满时数类型的数据源2种算法的最佳搭配比例以得到最佳压缩据采集系统的等待从而在整体上就降低了整个系统的性能
应可调节压缩率的压缩 算法 ,根据参数实时调节压缩算法的压缩率 ,以满足不 同情况对压缩性能的要求。实验证明在远程传输环境 下该算 法 比传统的压缩算法具有更高 的传输效率。
关健词 :远程监控 ;无损压缩 ;可调节压缩率
Ad p i eLo se sDa a Co p e so g r t m a tv s ls t m r s i n Al o ih
需要编码过 的信息 曾经出现过 ,就输 出该字符 串的出现位置

二维非均匀多孔介质中不可压两相驱替的有限分析算法

二维非均匀多孔介质中不可压两相驱替的有限分析算法
第 3 2卷 第 5期
2 0 1 5年 9月




Vo 1 . 3 2. NO . 5 S e p.,2 01 5
CHI NES E J OURNAL OF COMPUT ATI ONAL PHYS I CS
文章编号 : 1 0 0 1 — 2 4 6 X( 2 0 1 5 ) 0 5 - 0 5 8 6 — 0 9
二维非均匀多孔介质 中不可压两相驱替 的有 限分析算 法
郑 晓磊 , 刘志峰 , 王 晓源自 , 施 安 峰 ( 中 国科 学 技 术 大 学 热 科 学 和 能 源 工 程 系 , 安 徽 合肥 2 3 0 0 2 6 )
摘 要 : 为提高油藏数值模拟算法的计算效率 , 在 求 解 单 向稳 态 渗 流 的有 限分 析 算 法基 础上 , 构 建 二 维 非 均 匀 多 孔 介 质 中 不 可 压 两 相 渗 流 的 有 限 分 析算 法 . 算法 中, 网 格 界 面 上 的 平 均 渗 透 率 不 是 简 单 地 取 为 相 邻 网 格 渗 透 率 的 调 和 平 均值 , 而是通过奇点邻域解析解积分求得. 相 比于 传 统 的 数 值 算 法 , 有 限分 析 算 法 随 着 网 格 的 加 密 , 能 够 很 快
油相 和 水相 压 力作 为 直接 的待求 变 量求 解 , 而 饱 和度 则作 为 毛管 力 的 函数 , 根 据 毛管 力得 到 饱 和度 . I MP E S
方 法 的最基 本思 想是 假定 毛管力 梯度 在每 个时 间步 里是 不 变 的 , 利 用 描述 多 相流 动 的方 程 组得 到其 中某
收 稿 日期 : 2 0 1 4—1 2— 0 4; 修 回 日期 : 2 0 1 5— 0 1— 2 2 基 金项 目 :国 家 自然 科学 基 金 ( 1 l 1 7 2 2 9 5 , 1 1 2 0 2 2 0 5 ) , 中 国科 学 技术 大 学 青年 创 新 基 金 ( WK 2 0 9 0 1 3 0 0 1 7 ) ) 及 C N P C — C A S 科 技 合 作 资助 项 目

Autodesk Nastran 2023 参考手册说明书

Autodesk Nastran 2023 参考手册说明书
DATINFILE1 ........................................................................................................................................................... 9
FILESPEC ............................................................................................................................................................ 13
DISPFILE ............................................................................................................................................................. 11
File Management Directives – Output File Specifications: .............................................................................. 5
BULKDATAFILE .................................................................................................................................................... 7

非饱和半无限多孔介质一维瞬态响应积分解

非饱和半无限多孔介质一维瞬态响应积分解

非饱和半无限多孔介质一维瞬态响应积分解下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!非饱和半无限多孔介质一维瞬态响应积分解在土壤力学与水文学领域中,非饱和多孔介质的一维瞬态响应问题是一个关键的研究课题。

截断各向异性等离子体的修正各向异性完全匹配层吸收边界

截断各向异性等离子体的修正各向异性完全匹配层吸收边界

截 断各 向异性 等 离子体 的修 正 各 向 异 性 完 全 匹配 层 吸收 边 界
杨利霞 , 王秭君 谢应涛 , 王 刚 。 ,
( .江苏 大 学 通 信 工 程 系 ,江苏 镇 江 2 2 1 ; 2 1 103 .东 南 大 学 毫 米 波 国家 重 点 实验 室 ,南 京 2 0 9 ) 1 0 6
摘 要 : 基 于 磁 化 等 离 子 体 本 构 方 程 , 出 了一 种 截 断 各 向 异性 色散 介 质 的修 正 的各 向异 性 完 全 匹 配 层 提 ( UP 吸收 边 界 算 法 。通 过 等 效相 对 介 电 常数 , UP M— MI ) 将 ML 推 广 到 截 断 各 向异 性 等 离 子 体 介 质 的 情 形 , 并 推 导 了其 时 域 有 限 差 分 方 法 ( D ) 代 式 。用 该 方 法 计 算 了半 空 间 磁 化 与非 磁 化 等 离 子 体 的反 射 系 数 , F TD 迭 计 算 结 果 与 解 析 解 相 一 致 , 明 该 吸 收 边 界 具 有 良好 的 吸收 效 果 。 表
将 UP ML推广 到截断 各 向异性等 离子 体介质情 形 。通过 验证 算例 , 解析 解 进行 对 比, 与 验证 了该 吸 收边 界 的
有 效性 。
1 M- M L 吸 收 边 界 理 论 UP
对 于各 向异性 等离子 体来说 , x l和等 离子 体本构 方程 基本关 系为 Ma we l XE — , ×H 3 瓦 E+J
d + J
∞ 2


E rb× ‘ q- o ,
() 1
式 中:。 £ 为真 空 中的介 电常数 ; 为 真空 中导磁率 ; 为等离 子体频 率 ; B。 , 电子旋 转 频率 , 。为外 f 一e / 为 O B

光学专业英语词

光学专业英语词

Coherent相干的 incoherent 非相干的 Photon光子 amplifier 放大器 energy level 能级 atomic 原子的 dth线宽 thermal equilibrium 热平衡 Nonequlibrium非平衡 population inversion粒子数反转 Pump泵浦,抽运 Feedback反馈 Loss损耗 Gain增益 saturated gain coefficient饱和增益系数
Scattering 散射 Free space自由空间 spacial filter空间滤波器 fourier-transforming 傅立叶变换 inverse fourier-transforming 逆傅立叶变换 transfer function 传递函数 Magnitude 量值,值,大小 Pinhole 针孔 illuminate 照明
correlation 相关,关联 statistical distribution统计分布 Random随机的 probability 概率 poisson distribution泊松分布 Orthonormal标准正交的,规范正交的 orthogonal 正交的,垂直的
eigenfunction 本征函数 harmonic oscillator 谐振子 quanta of energy能量量子 Particle粒子 Momentum动量 uncertainty relation不确定关系 squeezed light压缩光 Coherent light相干光
amplitude 振幅 phase 相位 wavenumber波数 wavefront 波前 wavevector波矢 envelope 包络 Wave envelope 波包 Wave packet theory波包理论 quarter wave plate四分之一波片

TUBE-TECH CL 1B压缩器说明书

TUBE-TECH CL 1B压缩器说明书

LYDKRAFT ApSMose Allé20,DK2610RødovreDenmark 1Owners manualTUBE-TECHCL1B CompressorDESCRIPTION.The TUBE-TECH compressor CL1B differs from many other compressors,in that the gain-reduction element is made from a non-semiconductor element,which in itself has a very low harmonic distortion and none of the non-linearity problems involved when using most semiconductor elements.Furthermore there is no long-term degradation of the element thus giving it almost infinite life.This element is placed after the input-transformer of the compressor and followed by an all tube-based amplifier with a gain of-∞dB to+30dB.Thus the signal is not fed through any semiconductor circuitry on its way to the output.The amplifier consists of two tubes(valves)in push-pull configuration(one ECC83as thepre-amp and phase splitter,and one ECC82as the output stage),and an output transformer. The power supply for the pre-amp and phase splitter are stabilized and the heaters of both tubes (valves)are fed with a stabilized DC voltage.The whole amplifier(including input and output transformer)and the power supplies are placed on one PC-board.Both input and output are balanced(600Ω)and fully floating.The in/out key switches the compressor in and out without clicks.THE SIDECHAIN:The side chain is the only part of the compressor that contains semiconductors.They are used for three reasons:First they do not affect the sound reproduction,second they have a high slew rate,which is of importance for the performance of the compressor and third they don't take up much room.It contains two J-FET quad op-amps,one npn-transistor and one FET-transistor,which handles the signal for the gain-reduction element.The compressor contains two time constants circuits:1.Fixed attack and release times2.Variable attack and release timesThe attack/release select switch makes it possible to use these two circuits separately or combine their functions.This gives a feature not normally obtained in other compressors:In the combined(fix./man.)state the attack-and release controls make it possible toobtain a complex release-time slope.(See page4)(140919jgp)LYDKRAFT ApSMose Allé20,DK 2610RødovreDenmark2COMPRESSOR INTERCONNECTION:The side chain sockets for interconnection of several compressors are located on the rear panel.A switch (BUS SELECT)on the front selects which compressors are interconnected,and on which bus they are connected.If you e.g.have 10compressors in a rack,you can selectcompressor 1,5,7and 8on bus 1,and compressor 2,3,6and 9on bus 2,leaving compressor 4and 6in the off position.Compressors 1,5,7,8are now interconnected and all four will perform the exact samecompression.This applies to compressor 2,3,6and 9as pressor 4and 6are independent.The interconnection implies,that the unit,which performs the most compression,is controlling the others.To choose which one you want to control,select the attack/release time,the threshold and the ratio on that unit,and turn the threshold fully counter clockwise on the reminding compressors.It is of course possible to have all the interconnected compressors control each othersimultaneously.NB:Remember to set the ratio control and the gain control in the same position on the"slaves".Otherwise the stereo image could be shifted during compression.Theattack/release-control on the slaves will have no effect.The input/output capability of the side chain-circuit allows up to ten compressors to be linked together.They are connected in parallel with a standard 1/4"stereo jack/-jack cord (tip:bus 1,ring:bus 2).The two jack socket on the rear panel is connected in parallel and both are input/output.(980112)LYDKRAFT ApSMose Allé20,DK2610RødovreDenmark 3CONTROLS:GAIN:The gain control is used to"make up"for the gain loss,which takes place when the unit is compressing.It is placed after the gain-reduction circuit andtherefore has no influence on the threshold setting.The gain-control iscontinuously variable from off to+30dB.RATIO:The ratio control varies the ratio by which the input signal is compressed.If the ratio selected is to2:1,and the input signal increases10dB,the outputsignal is only increased by5db.The ratio control is continuously variablefrom2:1to10:1.THRESHOLD:The threshold is the point where the compressor begins its action.It isdefined as the point where the gain is reduced by1dB.The threshold is continuously variable from+20dBU to-40dBU.METER:The VU-meter switch has three positions:1.Input The meter is reading the level at the input socket.pressionThe VU-meter is reading gain reduction.Its rest position is"0VU",and the amount ofcompression is shown as a decreasing deflection in dB.3.Output The VU-meter is reading the level at the output socket."0VU"is equivalent to+4dBU.NB:Leave the meter switch in position compression as it might introducedistortion if left in the input or output position.IN/OUT:This leverswitch switches the compressor in and out of the signal path.The out position bypasses the entire compressor.ATTACK:The attack control chooses how fast/slow the compressor responds to an increase in the input signal.The attack control is continuously variable from0.5to300milliseconds. RELEASE:The release control chooses how fast/slow the compressor responds to a decrease in the input signal.The release control is continuously variable from0,05to10seconds.(980112)LYDKRAFT ApSMose Allé20,DK 2610RødovreDenmark4ATTACK/RELEASE SELECT:This switch selects how the compressor reacts to an increase (attack )ordecrease (release )of the input signal.There are three settings of the switch:1.Fixed.Attack time:1msecRelease time:50msec2.Manual.Attack time:from 0.5msec to 300msecRelease time:from 0.05sec to 10sec3.Fix/man.This setting combines the release times of fixed and manualmode.The attack time is as in the fixed mode.The fix/man mode always has a fast attack,but it is possible to obtain a release time depending on the input signal,e.g.get a fast release when the peak disappears,then superseded shortly thereafter by the release time selected by the release control.From the time the peak disappears,until the selected release time takes over,is dependent upon the setting of the attack control.The more CW the attack control is turned,the longer time before the selected release control takes over.The more CCW the attack control is turned,the shorter time before the selected release control takes over.This function is valid only if the time of the peak is shorter than the setting of the attack control.If the peak of the program is longer than the setting of the attack control,or if the attack control has reached the full CCW position,it will respond as in the manual mode.The fix/man mode acts as an automatic release function with a constant fast attack time and fast release time for short peaks and a longer release times for longer peaks.This setting is mainly intended for use on program material (overall compression).BUS SELECT:Interconnects several compressors on bus 1or bus 2.If the compressor is left in the off position,it works entirely independently.(150426)LYDKRAFT ApSMose Allé20,DK2610RødovreDenmark 5SUGGESTED APPLICATIONSOFTUBE-TECH COMPRESSOR CL1BIn the following,you will find suggestions on various applications of the TUBE-TECH compressor CL1B.They are given as a convenient guide to enable you to familiarise yourself with the different aspects of using the compressor.We have not mentioned specific settings of gain and threshold as they are dependent upon input levels.Instead we have specified how much compression in dB,we feel,is needed for the various examples.OVERALL COMPRESSION:FINAL MIXCOMPRESSION NEEDED:3-4dBAttack/release select:Fix/manAttack:2o'clockRelease:10o'clockRatio:9o'clockSTANDARD COMPRESSION:BASS,PIANO,GUITAR,KEYBOARDS AND VOCALSCOMPRESSION NEEDED:4-5dBAttack/release select:ManualAttack:2o'clockRelease:10o'clockRatio:10-2o'clockHEAVY COMPRESSION ON INSTRUMENTS:LINE GUITAR AND PIANOCOMPRESSION NEEDED:10dBAttack/release select:ManualAttack:7o'clockRelease:1o'clockRatio:3o'clockCOMPRESSION OF DRUMS:SNARE AND BASS DRUMCOMPRESSION NEEDED:2-3dBAttack/release select:FixedRatio:9-12o'clock(980112)LYDKRAFT ApSMose Allé20,DK 2610RødovreDenmark6ADJUSTMENT PROCEDURE:CAUTION:Before making any adjustment let the unit heat-up at least 15min.Observe that the offset-voltage measured at the side chain jack socket,when the THRESHOLD is off,is not greater than +/-15mV DC in both position "fixed"and "manual".(tip is bus 1and ring is bus 2).If the voltage exceeds this value,replace either IC1or IC2.For serial no.up to 15891THE GRE SHALL BE MARKED BETWEEN 1.225-1.285For serial no.15892and onwardsTHE GRE SHALL BE MARKED BETWEEN W1.20-W1.50ADJUSTMENT OF BASIC GAIN:1)Apply a signal of 1kHz,-30,0dBU into the input of the compressor.2)Turn the GAIN-control fully clockwise.3)Set the RATIO-control at 2:14)Adjust the pre-set GAIN (located on amp/psu PCB)to an output-reading of 0,0dBU.ADJUSTMENT OF COMPRESSION TRACKING :1)Turn the THRESHOLD -control fully counter-clockwise.2)Set the RATIO-control at 2:1.3)Set the BUS-select -switch at 1.4)Apply a signal of 1kHz,0,0dBU into the input of the compressor.5)Adjust the GAIN -control to an output-reading of 0,0dBU.6)Apply a DC-voltage of +250,0mV into the side chain jack socket (tip)and observe that the output level has dropped to -10,0dB.7)If this is not the case,adjust the level with P 2(P 1)*,to obtain a drop of exactly -10,0dB.*The trimpots in parenthesis refers to PCB 870316-0,1,2(180515)LYDKRAFT ApSMose Allé20,DK2610RødovreDenmark 7ADJUSTMENT OF THE VU METER READING"COMPRESSION":1)Turn the THRESHOLD-control fully counter-clockwise.2)Switch the METER-selector to Compression.3)Set the RATIO-control at2:14)Apply a signal of1kHz,0,0dBU into the input of the compressor.5)Adjust the GAIN-control to an output-reading of0,0dBU.6)Adjust P4(P2)*until the meter is reading0VU.7)Apply a DC-voltage of+250,0mV into the side chain jack socket and observe that theoutput level has dropped to-10,0dBU.If this is not the case,adjust the compressiontracking(see above)8Adjust P3until the meter is reading-10,0VU.9)Remove the DC-voltage from the side chain jack socket.10)Repeat step6-9.NB:The VU-meter accuracy should be within+/-0,5dB when reading compression. ADJUSTMENT OF THE RELEASE CONTROL:1)Set the METER switch in position compression.2)Set the attack/release SELECT switch in position manual.3)Apply a signal of1kHz,0,0dBU into the input of the compressor.4)Adjust the THRESHOLD-control to a reading of-10VU of the VU-meter5)Set the ATTACK-control at fast.6)Set the RELEASE-control at slow.7)Switch off the1kHz and observe that the VU meter moves to0VU in approx.10sec.8)If this is not the case,adjust P1(P5)*,to obtain a release time of approximately10sec. *The trimpots in parenthesis refers to PCB870316-0,1,2(950119)LYDKRAFT ApSMose Allé20,DK 2610RødovreDenmark8Over view of the sidechain PCBPCB 870316-0,1,2P2P3P1P50VU -10VU -10dBRel.10Sec.PCB 870316-3P4P3P2P10VU -10VU -10dB Rel 10Sec.101115LYDKRAFT ApSMose Allé20,DK2610RødovreDenmark 9TECHNICAL SPECIFICATIONS CL1B:Input impedance:600OhmsOutput impedance:<60OhmsFrequency-response:5Hz-25kHz+0.5/-3dB Distortion THD@40Hz:0dBU:<0,15%10dBU:<0,15%maximum output(1%THD):+26,0dBUmaximum input(1%THD):+21,0dBUNoise Rg=200Ohm:Output Gain0dB+30dB Unweighted-85,0dBU-75,0dBUCCIR468-3-75,0dBU-65,0dBUCMRR@10KHz<-60dBGain:off to+30dBCompressorRatio:2:1to10:1Threshold:off to-40dBUAttack:0,5mS to300mSRelease:0,05S to10STracking between interconnected compressors:(0to30dB compression):<+/-1dBTubesECC821ECC831DimensionsHeight:3units132m m/5,2”Width:483m m/19”Depth:170m m/6,7”WeightNet:4,1Kg/9,0lbsShipping:5,9Kg/13,0lbsPower requirements@115V/230V AC,50-60Hz30-40WAll specifications at RL=600Lydkraft reserves the right to alter specifications without prior notice(051018jgp)LYDKRAFT ApSMose Allé20,DK 2610RødovreDenmark 10DRAWINGSforTUBE-TEC H CL 1B(081218jgp)CircuitDrawing no.Overview CL 1BTE 130-40OUTPUT AMP.-PSU CL 1B TE 100-41FRONT CONTROLS TE 130-42SIDECHAIN CL 1BTE 130-43PCB layout PSU -AMPlifier PCB 900621-5PCB layout Front controls PCB 870314-3PCB layout Sidechain PCB 870316-3。

3GPP TS 36.331 V13.2.0 (2016-06)

3GPP TS 36.331 V13.2.0 (2016-06)

3GPP TS 36.331 V13.2.0 (2016-06)Technical Specification3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA);Radio Resource Control (RRC);Protocol specification(Release 13)The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP. The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.KeywordsUMTS, radio3GPPPostal address3GPP support office address650 Route des Lucioles - Sophia AntipolisValbonne - FRANCETel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16InternetCopyright NotificationNo part may be reproduced except as authorized by written permission.The copyright and the foregoing restriction extend to reproduction in all media.© 2016, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).All rights reserved.UMTS™ is a Trade Mark of ETSI registered for the benefit of its members3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational PartnersLTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners GSM® and the GSM logo are registered and owned by the GSM AssociationBluetooth® is a Trade Mark of the Bluetooth SIG registered for the benefit of its membersContentsForeword (18)1Scope (19)2References (19)3Definitions, symbols and abbreviations (22)3.1Definitions (22)3.2Abbreviations (24)4General (27)4.1Introduction (27)4.2Architecture (28)4.2.1UE states and state transitions including inter RAT (28)4.2.2Signalling radio bearers (29)4.3Services (30)4.3.1Services provided to upper layers (30)4.3.2Services expected from lower layers (30)4.4Functions (30)5Procedures (32)5.1General (32)5.1.1Introduction (32)5.1.2General requirements (32)5.2System information (33)5.2.1Introduction (33)5.2.1.1General (33)5.2.1.2Scheduling (34)5.2.1.2a Scheduling for NB-IoT (34)5.2.1.3System information validity and notification of changes (35)5.2.1.4Indication of ETWS notification (36)5.2.1.5Indication of CMAS notification (37)5.2.1.6Notification of EAB parameters change (37)5.2.1.7Access Barring parameters change in NB-IoT (37)5.2.2System information acquisition (38)5.2.2.1General (38)5.2.2.2Initiation (38)5.2.2.3System information required by the UE (38)5.2.2.4System information acquisition by the UE (39)5.2.2.5Essential system information missing (42)5.2.2.6Actions upon reception of the MasterInformationBlock message (42)5.2.2.7Actions upon reception of the SystemInformationBlockType1 message (42)5.2.2.8Actions upon reception of SystemInformation messages (44)5.2.2.9Actions upon reception of SystemInformationBlockType2 (44)5.2.2.10Actions upon reception of SystemInformationBlockType3 (45)5.2.2.11Actions upon reception of SystemInformationBlockType4 (45)5.2.2.12Actions upon reception of SystemInformationBlockType5 (45)5.2.2.13Actions upon reception of SystemInformationBlockType6 (45)5.2.2.14Actions upon reception of SystemInformationBlockType7 (45)5.2.2.15Actions upon reception of SystemInformationBlockType8 (45)5.2.2.16Actions upon reception of SystemInformationBlockType9 (46)5.2.2.17Actions upon reception of SystemInformationBlockType10 (46)5.2.2.18Actions upon reception of SystemInformationBlockType11 (46)5.2.2.19Actions upon reception of SystemInformationBlockType12 (47)5.2.2.20Actions upon reception of SystemInformationBlockType13 (48)5.2.2.21Actions upon reception of SystemInformationBlockType14 (48)5.2.2.22Actions upon reception of SystemInformationBlockType15 (48)5.2.2.23Actions upon reception of SystemInformationBlockType16 (48)5.2.2.24Actions upon reception of SystemInformationBlockType17 (48)5.2.2.25Actions upon reception of SystemInformationBlockType18 (48)5.2.2.26Actions upon reception of SystemInformationBlockType19 (49)5.2.3Acquisition of an SI message (49)5.2.3a Acquisition of an SI message by BL UE or UE in CE or a NB-IoT UE (50)5.3Connection control (50)5.3.1Introduction (50)5.3.1.1RRC connection control (50)5.3.1.2Security (52)5.3.1.2a RN security (53)5.3.1.3Connected mode mobility (53)5.3.1.4Connection control in NB-IoT (54)5.3.2Paging (55)5.3.2.1General (55)5.3.2.2Initiation (55)5.3.2.3Reception of the Paging message by the UE (55)5.3.3RRC connection establishment (56)5.3.3.1General (56)5.3.3.1a Conditions for establishing RRC Connection for sidelink communication/ discovery (58)5.3.3.2Initiation (59)5.3.3.3Actions related to transmission of RRCConnectionRequest message (63)5.3.3.3a Actions related to transmission of RRCConnectionResumeRequest message (64)5.3.3.4Reception of the RRCConnectionSetup by the UE (64)5.3.3.4a Reception of the RRCConnectionResume by the UE (66)5.3.3.5Cell re-selection while T300, T302, T303, T305, T306, or T308 is running (68)5.3.3.6T300 expiry (68)5.3.3.7T302, T303, T305, T306, or T308 expiry or stop (69)5.3.3.8Reception of the RRCConnectionReject by the UE (70)5.3.3.9Abortion of RRC connection establishment (71)5.3.3.10Handling of SSAC related parameters (71)5.3.3.11Access barring check (72)5.3.3.12EAB check (73)5.3.3.13Access barring check for ACDC (73)5.3.3.14Access Barring check for NB-IoT (74)5.3.4Initial security activation (75)5.3.4.1General (75)5.3.4.2Initiation (76)5.3.4.3Reception of the SecurityModeCommand by the UE (76)5.3.5RRC connection reconfiguration (77)5.3.5.1General (77)5.3.5.2Initiation (77)5.3.5.3Reception of an RRCConnectionReconfiguration not including the mobilityControlInfo by theUE (77)5.3.5.4Reception of an RRCConnectionReconfiguration including the mobilityControlInfo by the UE(handover) (79)5.3.5.5Reconfiguration failure (83)5.3.5.6T304 expiry (handover failure) (83)5.3.5.7Void (84)5.3.5.7a T307 expiry (SCG change failure) (84)5.3.5.8Radio Configuration involving full configuration option (84)5.3.6Counter check (86)5.3.6.1General (86)5.3.6.2Initiation (86)5.3.6.3Reception of the CounterCheck message by the UE (86)5.3.7RRC connection re-establishment (87)5.3.7.1General (87)5.3.7.2Initiation (87)5.3.7.3Actions following cell selection while T311 is running (88)5.3.7.4Actions related to transmission of RRCConnectionReestablishmentRequest message (89)5.3.7.5Reception of the RRCConnectionReestablishment by the UE (89)5.3.7.6T311 expiry (91)5.3.7.7T301 expiry or selected cell no longer suitable (91)5.3.7.8Reception of RRCConnectionReestablishmentReject by the UE (91)5.3.8RRC connection release (92)5.3.8.1General (92)5.3.8.2Initiation (92)5.3.8.3Reception of the RRCConnectionRelease by the UE (92)5.3.8.4T320 expiry (93)5.3.9RRC connection release requested by upper layers (93)5.3.9.1General (93)5.3.9.2Initiation (93)5.3.10Radio resource configuration (93)5.3.10.0General (93)5.3.10.1SRB addition/ modification (94)5.3.10.2DRB release (95)5.3.10.3DRB addition/ modification (95)5.3.10.3a1DC specific DRB addition or reconfiguration (96)5.3.10.3a2LWA specific DRB addition or reconfiguration (98)5.3.10.3a3LWIP specific DRB addition or reconfiguration (98)5.3.10.3a SCell release (99)5.3.10.3b SCell addition/ modification (99)5.3.10.3c PSCell addition or modification (99)5.3.10.4MAC main reconfiguration (99)5.3.10.5Semi-persistent scheduling reconfiguration (100)5.3.10.6Physical channel reconfiguration (100)5.3.10.7Radio Link Failure Timers and Constants reconfiguration (101)5.3.10.8Time domain measurement resource restriction for serving cell (101)5.3.10.9Other configuration (102)5.3.10.10SCG reconfiguration (103)5.3.10.11SCG dedicated resource configuration (104)5.3.10.12Reconfiguration SCG or split DRB by drb-ToAddModList (105)5.3.10.13Neighbour cell information reconfiguration (105)5.3.10.14Void (105)5.3.10.15Sidelink dedicated configuration (105)5.3.10.16T370 expiry (106)5.3.11Radio link failure related actions (107)5.3.11.1Detection of physical layer problems in RRC_CONNECTED (107)5.3.11.2Recovery of physical layer problems (107)5.3.11.3Detection of radio link failure (107)5.3.12UE actions upon leaving RRC_CONNECTED (109)5.3.13UE actions upon PUCCH/ SRS release request (110)5.3.14Proximity indication (110)5.3.14.1General (110)5.3.14.2Initiation (111)5.3.14.3Actions related to transmission of ProximityIndication message (111)5.3.15Void (111)5.4Inter-RAT mobility (111)5.4.1Introduction (111)5.4.2Handover to E-UTRA (112)5.4.2.1General (112)5.4.2.2Initiation (112)5.4.2.3Reception of the RRCConnectionReconfiguration by the UE (112)5.4.2.4Reconfiguration failure (114)5.4.2.5T304 expiry (handover to E-UTRA failure) (114)5.4.3Mobility from E-UTRA (114)5.4.3.1General (114)5.4.3.2Initiation (115)5.4.3.3Reception of the MobilityFromEUTRACommand by the UE (115)5.4.3.4Successful completion of the mobility from E-UTRA (116)5.4.3.5Mobility from E-UTRA failure (117)5.4.4Handover from E-UTRA preparation request (CDMA2000) (117)5.4.4.1General (117)5.4.4.2Initiation (118)5.4.4.3Reception of the HandoverFromEUTRAPreparationRequest by the UE (118)5.4.5UL handover preparation transfer (CDMA2000) (118)5.4.5.1General (118)5.4.5.2Initiation (118)5.4.5.3Actions related to transmission of the ULHandoverPreparationTransfer message (119)5.4.5.4Failure to deliver the ULHandoverPreparationTransfer message (119)5.4.6Inter-RAT cell change order to E-UTRAN (119)5.4.6.1General (119)5.4.6.2Initiation (119)5.4.6.3UE fails to complete an inter-RAT cell change order (119)5.5Measurements (120)5.5.1Introduction (120)5.5.2Measurement configuration (121)5.5.2.1General (121)5.5.2.2Measurement identity removal (122)5.5.2.2a Measurement identity autonomous removal (122)5.5.2.3Measurement identity addition/ modification (123)5.5.2.4Measurement object removal (124)5.5.2.5Measurement object addition/ modification (124)5.5.2.6Reporting configuration removal (126)5.5.2.7Reporting configuration addition/ modification (127)5.5.2.8Quantity configuration (127)5.5.2.9Measurement gap configuration (127)5.5.2.10Discovery signals measurement timing configuration (128)5.5.2.11RSSI measurement timing configuration (128)5.5.3Performing measurements (128)5.5.3.1General (128)5.5.3.2Layer 3 filtering (131)5.5.4Measurement report triggering (131)5.5.4.1General (131)5.5.4.2Event A1 (Serving becomes better than threshold) (135)5.5.4.3Event A2 (Serving becomes worse than threshold) (136)5.5.4.4Event A3 (Neighbour becomes offset better than PCell/ PSCell) (136)5.5.4.5Event A4 (Neighbour becomes better than threshold) (137)5.5.4.6Event A5 (PCell/ PSCell becomes worse than threshold1 and neighbour becomes better thanthreshold2) (138)5.5.4.6a Event A6 (Neighbour becomes offset better than SCell) (139)5.5.4.7Event B1 (Inter RAT neighbour becomes better than threshold) (139)5.5.4.8Event B2 (PCell becomes worse than threshold1 and inter RAT neighbour becomes better thanthreshold2) (140)5.5.4.9Event C1 (CSI-RS resource becomes better than threshold) (141)5.5.4.10Event C2 (CSI-RS resource becomes offset better than reference CSI-RS resource) (141)5.5.4.11Event W1 (WLAN becomes better than a threshold) (142)5.5.4.12Event W2 (All WLAN inside WLAN mobility set becomes worse than threshold1 and a WLANoutside WLAN mobility set becomes better than threshold2) (142)5.5.4.13Event W3 (All WLAN inside WLAN mobility set becomes worse than a threshold) (143)5.5.5Measurement reporting (144)5.5.6Measurement related actions (148)5.5.6.1Actions upon handover and re-establishment (148)5.5.6.2Speed dependant scaling of measurement related parameters (149)5.5.7Inter-frequency RSTD measurement indication (149)5.5.7.1General (149)5.5.7.2Initiation (150)5.5.7.3Actions related to transmission of InterFreqRSTDMeasurementIndication message (150)5.6Other (150)5.6.0General (150)5.6.1DL information transfer (151)5.6.1.1General (151)5.6.1.2Initiation (151)5.6.1.3Reception of the DLInformationTransfer by the UE (151)5.6.2UL information transfer (151)5.6.2.1General (151)5.6.2.2Initiation (151)5.6.2.3Actions related to transmission of ULInformationTransfer message (152)5.6.2.4Failure to deliver ULInformationTransfer message (152)5.6.3UE capability transfer (152)5.6.3.1General (152)5.6.3.2Initiation (153)5.6.3.3Reception of the UECapabilityEnquiry by the UE (153)5.6.4CSFB to 1x Parameter transfer (157)5.6.4.1General (157)5.6.4.2Initiation (157)5.6.4.3Actions related to transmission of CSFBParametersRequestCDMA2000 message (157)5.6.4.4Reception of the CSFBParametersResponseCDMA2000 message (157)5.6.5UE Information (158)5.6.5.1General (158)5.6.5.2Initiation (158)5.6.5.3Reception of the UEInformationRequest message (158)5.6.6 Logged Measurement Configuration (159)5.6.6.1General (159)5.6.6.2Initiation (160)5.6.6.3Reception of the LoggedMeasurementConfiguration by the UE (160)5.6.6.4T330 expiry (160)5.6.7 Release of Logged Measurement Configuration (160)5.6.7.1General (160)5.6.7.2Initiation (160)5.6.8 Measurements logging (161)5.6.8.1General (161)5.6.8.2Initiation (161)5.6.9In-device coexistence indication (163)5.6.9.1General (163)5.6.9.2Initiation (164)5.6.9.3Actions related to transmission of InDeviceCoexIndication message (164)5.6.10UE Assistance Information (165)5.6.10.1General (165)5.6.10.2Initiation (166)5.6.10.3Actions related to transmission of UEAssistanceInformation message (166)5.6.11 Mobility history information (166)5.6.11.1General (166)5.6.11.2Initiation (166)5.6.12RAN-assisted WLAN interworking (167)5.6.12.1General (167)5.6.12.2Dedicated WLAN offload configuration (167)5.6.12.3WLAN offload RAN evaluation (167)5.6.12.4T350 expiry or stop (167)5.6.12.5Cell selection/ re-selection while T350 is running (168)5.6.13SCG failure information (168)5.6.13.1General (168)5.6.13.2Initiation (168)5.6.13.3Actions related to transmission of SCGFailureInformation message (168)5.6.14LTE-WLAN Aggregation (169)5.6.14.1Introduction (169)5.6.14.2Reception of LWA configuration (169)5.6.14.3Release of LWA configuration (170)5.6.15WLAN connection management (170)5.6.15.1Introduction (170)5.6.15.2WLAN connection status reporting (170)5.6.15.2.1General (170)5.6.15.2.2Initiation (171)5.6.15.2.3Actions related to transmission of WLANConnectionStatusReport message (171)5.6.15.3T351 Expiry (WLAN connection attempt timeout) (171)5.6.15.4WLAN status monitoring (171)5.6.16RAN controlled LTE-WLAN interworking (172)5.6.16.1General (172)5.6.16.2WLAN traffic steering command (172)5.6.17LTE-WLAN aggregation with IPsec tunnel (173)5.6.17.1General (173)5.7Generic error handling (174)5.7.1General (174)5.7.2ASN.1 violation or encoding error (174)5.7.3Field set to a not comprehended value (174)5.7.4Mandatory field missing (174)5.7.5Not comprehended field (176)5.8MBMS (176)5.8.1Introduction (176)5.8.1.1General (176)5.8.1.2Scheduling (176)5.8.1.3MCCH information validity and notification of changes (176)5.8.2MCCH information acquisition (178)5.8.2.1General (178)5.8.2.2Initiation (178)5.8.2.3MCCH information acquisition by the UE (178)5.8.2.4Actions upon reception of the MBSFNAreaConfiguration message (178)5.8.2.5Actions upon reception of the MBMSCountingRequest message (179)5.8.3MBMS PTM radio bearer configuration (179)5.8.3.1General (179)5.8.3.2Initiation (179)5.8.3.3MRB establishment (179)5.8.3.4MRB release (179)5.8.4MBMS Counting Procedure (179)5.8.4.1General (179)5.8.4.2Initiation (180)5.8.4.3Reception of the MBMSCountingRequest message by the UE (180)5.8.5MBMS interest indication (181)5.8.5.1General (181)5.8.5.2Initiation (181)5.8.5.3Determine MBMS frequencies of interest (182)5.8.5.4Actions related to transmission of MBMSInterestIndication message (183)5.8a SC-PTM (183)5.8a.1Introduction (183)5.8a.1.1General (183)5.8a.1.2SC-MCCH scheduling (183)5.8a.1.3SC-MCCH information validity and notification of changes (183)5.8a.1.4Procedures (184)5.8a.2SC-MCCH information acquisition (184)5.8a.2.1General (184)5.8a.2.2Initiation (184)5.8a.2.3SC-MCCH information acquisition by the UE (184)5.8a.2.4Actions upon reception of the SCPTMConfiguration message (185)5.8a.3SC-PTM radio bearer configuration (185)5.8a.3.1General (185)5.8a.3.2Initiation (185)5.8a.3.3SC-MRB establishment (185)5.8a.3.4SC-MRB release (185)5.9RN procedures (186)5.9.1RN reconfiguration (186)5.9.1.1General (186)5.9.1.2Initiation (186)5.9.1.3Reception of the RNReconfiguration by the RN (186)5.10Sidelink (186)5.10.1Introduction (186)5.10.1a Conditions for sidelink communication operation (187)5.10.2Sidelink UE information (188)5.10.2.1General (188)5.10.2.2Initiation (189)5.10.2.3Actions related to transmission of SidelinkUEInformation message (193)5.10.3Sidelink communication monitoring (195)5.10.6Sidelink discovery announcement (198)5.10.6a Sidelink discovery announcement pool selection (201)5.10.6b Sidelink discovery announcement reference carrier selection (201)5.10.7Sidelink synchronisation information transmission (202)5.10.7.1General (202)5.10.7.2Initiation (203)5.10.7.3Transmission of SLSS (204)5.10.7.4Transmission of MasterInformationBlock-SL message (205)5.10.7.5Void (206)5.10.8Sidelink synchronisation reference (206)5.10.8.1General (206)5.10.8.2Selection and reselection of synchronisation reference UE (SyncRef UE) (206)5.10.9Sidelink common control information (207)5.10.9.1General (207)5.10.9.2Actions related to reception of MasterInformationBlock-SL message (207)5.10.10Sidelink relay UE operation (207)5.10.10.1General (207)5.10.10.2AS-conditions for relay related sidelink communication transmission by sidelink relay UE (207)5.10.10.3AS-conditions for relay PS related sidelink discovery transmission by sidelink relay UE (208)5.10.10.4Sidelink relay UE threshold conditions (208)5.10.11Sidelink remote UE operation (208)5.10.11.1General (208)5.10.11.2AS-conditions for relay related sidelink communication transmission by sidelink remote UE (208)5.10.11.3AS-conditions for relay PS related sidelink discovery transmission by sidelink remote UE (209)5.10.11.4Selection and reselection of sidelink relay UE (209)5.10.11.5Sidelink remote UE threshold conditions (210)6Protocol data units, formats and parameters (tabular & ASN.1) (210)6.1General (210)6.2RRC messages (212)6.2.1General message structure (212)–EUTRA-RRC-Definitions (212)–BCCH-BCH-Message (212)–BCCH-DL-SCH-Message (212)–BCCH-DL-SCH-Message-BR (213)–MCCH-Message (213)–PCCH-Message (213)–DL-CCCH-Message (214)–DL-DCCH-Message (214)–UL-CCCH-Message (214)–UL-DCCH-Message (215)–SC-MCCH-Message (215)6.2.2Message definitions (216)–CounterCheck (216)–CounterCheckResponse (217)–CSFBParametersRequestCDMA2000 (217)–CSFBParametersResponseCDMA2000 (218)–DLInformationTransfer (218)–HandoverFromEUTRAPreparationRequest (CDMA2000) (219)–InDeviceCoexIndication (220)–InterFreqRSTDMeasurementIndication (222)–LoggedMeasurementConfiguration (223)–MasterInformationBlock (225)–MBMSCountingRequest (226)–MBMSCountingResponse (226)–MBMSInterestIndication (227)–MBSFNAreaConfiguration (228)–MeasurementReport (228)–MobilityFromEUTRACommand (229)–Paging (232)–ProximityIndication (233)–RNReconfiguration (234)–RNReconfigurationComplete (234)–RRCConnectionReconfiguration (235)–RRCConnectionReconfigurationComplete (240)–RRCConnectionReestablishment (241)–RRCConnectionReestablishmentComplete (241)–RRCConnectionReestablishmentReject (242)–RRCConnectionReestablishmentRequest (243)–RRCConnectionReject (243)–RRCConnectionRelease (244)–RRCConnectionResume (248)–RRCConnectionResumeComplete (249)–RRCConnectionResumeRequest (250)–RRCConnectionRequest (250)–RRCConnectionSetup (251)–RRCConnectionSetupComplete (252)–SCGFailureInformation (253)–SCPTMConfiguration (254)–SecurityModeCommand (255)–SecurityModeComplete (255)–SecurityModeFailure (256)–SidelinkUEInformation (256)–SystemInformation (258)–SystemInformationBlockType1 (259)–UEAssistanceInformation (264)–UECapabilityEnquiry (265)–UECapabilityInformation (266)–UEInformationRequest (267)–UEInformationResponse (267)–ULHandoverPreparationTransfer (CDMA2000) (273)–ULInformationTransfer (274)–WLANConnectionStatusReport (274)6.3RRC information elements (275)6.3.1System information blocks (275)–SystemInformationBlockType2 (275)–SystemInformationBlockType3 (279)–SystemInformationBlockType4 (282)–SystemInformationBlockType5 (283)–SystemInformationBlockType6 (287)–SystemInformationBlockType7 (289)–SystemInformationBlockType8 (290)–SystemInformationBlockType9 (295)–SystemInformationBlockType10 (295)–SystemInformationBlockType11 (296)–SystemInformationBlockType12 (297)–SystemInformationBlockType13 (297)–SystemInformationBlockType14 (298)–SystemInformationBlockType15 (298)–SystemInformationBlockType16 (299)–SystemInformationBlockType17 (300)–SystemInformationBlockType18 (301)–SystemInformationBlockType19 (301)–SystemInformationBlockType20 (304)6.3.2Radio resource control information elements (304)–AntennaInfo (304)–AntennaInfoUL (306)–CQI-ReportConfig (307)–CQI-ReportPeriodicProcExtId (314)–CrossCarrierSchedulingConfig (314)–CSI-IM-Config (315)–CSI-IM-ConfigId (315)–CSI-RS-Config (317)–CSI-RS-ConfigEMIMO (318)–CSI-RS-ConfigNZP (319)–CSI-RS-ConfigNZPId (320)–CSI-RS-ConfigZP (321)–CSI-RS-ConfigZPId (321)–DMRS-Config (321)–DRB-Identity (322)–EPDCCH-Config (322)–EIMTA-MainConfig (324)–LogicalChannelConfig (325)–LWA-Configuration (326)–LWIP-Configuration (326)–RCLWI-Configuration (327)–MAC-MainConfig (327)–P-C-AndCBSR (332)–PDCCH-ConfigSCell (333)–PDCP-Config (334)–PDSCH-Config (337)–PDSCH-RE-MappingQCL-ConfigId (339)–PHICH-Config (339)–PhysicalConfigDedicated (339)–P-Max (344)–PRACH-Config (344)–PresenceAntennaPort1 (346)–PUCCH-Config (347)–PUSCH-Config (351)–RACH-ConfigCommon (355)–RACH-ConfigDedicated (357)–RadioResourceConfigCommon (358)–RadioResourceConfigDedicated (362)–RLC-Config (367)–RLF-TimersAndConstants (369)–RN-SubframeConfig (370)–SchedulingRequestConfig (371)–SoundingRS-UL-Config (372)–SPS-Config (375)–TDD-Config (376)–TimeAlignmentTimer (377)–TPC-PDCCH-Config (377)–TunnelConfigLWIP (378)–UplinkPowerControl (379)–WLAN-Id-List (382)–WLAN-MobilityConfig (382)6.3.3Security control information elements (382)–NextHopChainingCount (382)–SecurityAlgorithmConfig (383)–ShortMAC-I (383)6.3.4Mobility control information elements (383)–AdditionalSpectrumEmission (383)–ARFCN-ValueCDMA2000 (383)–ARFCN-ValueEUTRA (384)–ARFCN-ValueGERAN (384)–ARFCN-ValueUTRA (384)–BandclassCDMA2000 (384)–BandIndicatorGERAN (385)–CarrierFreqCDMA2000 (385)–CarrierFreqGERAN (385)–CellIndexList (387)–CellReselectionPriority (387)–CellSelectionInfoCE (387)–CellReselectionSubPriority (388)–CSFB-RegistrationParam1XRTT (388)–CellGlobalIdEUTRA (389)–CellGlobalIdUTRA (389)–CellGlobalIdGERAN (390)–CellGlobalIdCDMA2000 (390)–CellSelectionInfoNFreq (391)–CSG-Identity (391)–FreqBandIndicator (391)–MobilityControlInfo (391)–MobilityParametersCDMA2000 (1xRTT) (393)–MobilityStateParameters (394)–MultiBandInfoList (394)–NS-PmaxList (394)–PhysCellId (395)–PhysCellIdRange (395)–PhysCellIdRangeUTRA-FDDList (395)–PhysCellIdCDMA2000 (396)–PhysCellIdGERAN (396)–PhysCellIdUTRA-FDD (396)–PhysCellIdUTRA-TDD (396)–PLMN-Identity (397)–PLMN-IdentityList3 (397)–PreRegistrationInfoHRPD (397)–Q-QualMin (398)–Q-RxLevMin (398)–Q-OffsetRange (398)–Q-OffsetRangeInterRAT (399)–ReselectionThreshold (399)–ReselectionThresholdQ (399)–SCellIndex (399)–ServCellIndex (400)–SpeedStateScaleFactors (400)–SystemInfoListGERAN (400)–SystemTimeInfoCDMA2000 (401)–TrackingAreaCode (401)–T-Reselection (402)–T-ReselectionEUTRA-CE (402)6.3.5Measurement information elements (402)–AllowedMeasBandwidth (402)–CSI-RSRP-Range (402)–Hysteresis (402)–LocationInfo (403)–MBSFN-RSRQ-Range (403)–MeasConfig (404)–MeasDS-Config (405)–MeasGapConfig (406)–MeasId (407)–MeasIdToAddModList (407)–MeasObjectCDMA2000 (408)–MeasObjectEUTRA (408)–MeasObjectGERAN (412)–MeasObjectId (412)–MeasObjectToAddModList (412)–MeasObjectUTRA (413)–ReportConfigEUTRA (422)–ReportConfigId (425)–ReportConfigInterRAT (425)–ReportConfigToAddModList (428)–ReportInterval (429)–RSRP-Range (429)–RSRQ-Range (430)–RSRQ-Type (430)–RS-SINR-Range (430)–RSSI-Range-r13 (431)–TimeToTrigger (431)–UL-DelayConfig (431)–WLAN-CarrierInfo (431)–WLAN-RSSI-Range (432)–WLAN-Status (432)6.3.6Other information elements (433)–AbsoluteTimeInfo (433)–AreaConfiguration (433)–C-RNTI (433)–DedicatedInfoCDMA2000 (434)–DedicatedInfoNAS (434)–FilterCoefficient (434)–LoggingDuration (434)–LoggingInterval (435)–MeasSubframePattern (435)–MMEC (435)–NeighCellConfig (435)–OtherConfig (436)–RAND-CDMA2000 (1xRTT) (437)–RAT-Type (437)–ResumeIdentity (437)–RRC-TransactionIdentifier (438)–S-TMSI (438)–TraceReference (438)–UE-CapabilityRAT-ContainerList (438)–UE-EUTRA-Capability (439)–UE-RadioPagingInfo (469)–UE-TimersAndConstants (469)–VisitedCellInfoList (470)–WLAN-OffloadConfig (470)6.3.7MBMS information elements (472)–MBMS-NotificationConfig (472)–MBMS-ServiceList (473)–MBSFN-AreaId (473)–MBSFN-AreaInfoList (473)–MBSFN-SubframeConfig (474)–PMCH-InfoList (475)6.3.7a SC-PTM information elements (476)–SC-MTCH-InfoList (476)–SCPTM-NeighbourCellList (478)6.3.8Sidelink information elements (478)–SL-CommConfig (478)–SL-CommResourcePool (479)–SL-CP-Len (480)–SL-DiscConfig (481)–SL-DiscResourcePool (483)–SL-DiscTxPowerInfo (485)–SL-GapConfig (485)。

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II

稀疏恢复和傅里叶采样

稀疏恢复和傅里叶采样

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Leslie A. Kolodziejski Chair, Department Committee on Graduate Students
2
Sparse Recovery and Fourier Sampling by Eric Price
Submitted to the Department of Electrical Engineering and Computer Science on August 26, 2013, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science
Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Department of Electrical Engineering and Computer Science August 26, 2013
Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Piotr Indyk Professor Thesis Supervisor

基于椭圆逼近算法的低通IIR滤波器设计与实现

基于椭圆逼近算法的低通IIR滤波器设计与实现
Chebyshew)、椭 圆(
e
l
l
i
t
i
c)滤 波 器 等。
p
其中巴特沃斯和切比雪夫滤波器均可以通过限制
椭圆滤波器的某些参数而得到。椭圆滤波器具有
通带和阻带等波 纹 幅 频 响 应 的 特 性,它 以 通 带 和
阻带的起伏为代价换取了更为陡峭的过渡带。对
于给定的阶数和 波 纹 要 求,椭 圆 滤 波 器 能 得 到 较
I
IR 滤
波器的阶数可 能 仅 为 FIR 滤 波 器 的 1/5~1/10,
因此更能够满足对视线角速率实时滤波的要求。
人们经过对滤 波 器 的 长 期 研 究,已 经 形 成 了
许多简单有效的逼近算法和精确的设计公式。目
前常用的I
IR 滤 波 器 有 巴 特 沃 斯(
Bu
t
t
e
rwo
r
t
h)、
切比雪夫(
为验证低通 I
IR 滤 波 器 设 计 方 法 的 可 行 性,
基于 Ma
t
l
ab 平台 进 行 设 计 仿 真 验 证 。 设 输 入
信号包含频率为 10 Hz 和 100 Hz 的 正 弦 波 以 及
[
6]
高斯白噪声,输入 信 号 的 时 域 及 频 域 特 征 分 别 如
图 2 和图 3 所示。
0
.0131
a2
0
.0131
a4
0
.0010
a6
b1
b2
b3
b4
b5
b6
-0
.0055
a1
-0
.0171
a3
0
.0055

稀疏度拟合的自适应图像并行压缩感知算法

稀疏度拟合的自适应图像并行压缩感知算法
摘 要: 为了提高图像的重构精度和处理速度, 提出一种稀疏度拟合的自适应小波包图像并行压缩感知算法. 首先 采用小波包对大小相同但不重叠的图像块进行稀疏变换, 在最优分解尺度下利用迭代方法确定满足图像重构精度的 最低采样率, 并采用最小二乘法对采样率进行优化处理; 然后结合云计算技术, 利用 MapReduce 框架对算法进行并 行化. 在实验室构建 Java 开发环境下的计算机集群, 采用标准图像作为样本比较不同算法的压缩率、重构性能和运 算时间, 结果表明, 该算法的重构质量和处理速度均得到显著提升.
Yang Zhengli, Shi Wen, and Chen Haixia
(School of Mechanical and Electrical EngineNanjing 210012)
Abstract: In order to improve the reconstruction accuracy and processing speed of an image, an adaptive wavelet packet image parallel compressed sensing algorithm with sparsity fitting is proposed. First, the sparse transformation was carried out on the image blocks which were of the same size and not overlapped using wavelet packet. An iterative method was used to determine the minimum sampling rate satisfying the accuracy of image reconstruction under the optimal decomposition scale, and the least square method was used to optimize the sampling rate. Then, the algorithm was parallelized with MapReduce framework combined with cloud computing technology. A computer cluster was built in the laboratory under Java development environment, and the compression rate, reconstruction performance and operation time of different algorithms were compared by using standard image as samples. The results show that the reconstruction quality and processing speed of the algorithm are improved significantly.

一种图像局部拓扑结构特征描述符的相似度计算方法[发明专利]

一种图像局部拓扑结构特征描述符的相似度计算方法[发明专利]

专利名称:一种图像局部拓扑结构特征描述符的相似度计算方法
专利类型:发明专利
发明人:桑强
申请号:CN202010194853.9
申请日:20200319
公开号:CN111401385B
公开日:
20220617
专利内容由知识产权出版社提供
摘要:本发明提出了一种图像局部拓扑结构特征描述符的相似度计算方法,首先,提出了一种局部拓扑结构特征描述符,其次,在比较局部相似度时,基于该描述符的特点,以两个偏序结构找到局部结构的对应关系,并通过提出的代价计算方法量化了不同局部拓扑结构之间的差异,从而可以有效地计算拓扑结构的相似性。

本发明与现有的方法比较,精确地量化了局部结构的差异性。

申请人:成都理工大学
地址:610059 四川省成都市二仙桥东三路1号
国籍:CN
代理机构:北京正华智诚专利代理事务所(普通合伙)
代理人:李梦蝶
更多信息请下载全文后查看。

一种变步长最小平均p范数自适应滤波算法

一种变步长最小平均p范数自适应滤波算法

一种变步长最小平均p范数自适应滤波算法
王彪;李涵琼;高世杰;张明亮;徐晨
【期刊名称】《电子与信息学报》
【年(卷),期】2022(44)2
【摘要】在α稳定分布脉冲噪声背景下,为解决固定步长最小平均p范数(LMP)不能同时满足快收敛速度和低稳态误差的问题,该文提出一种对脉冲噪声具有鲁棒性的变步长最小平均p范数(VSS-LMP)自适应滤波算法。

该算法利用改进的变形高斯函数来调节步长,采用移动平均法构造变步长函数,克服了定步长算法稳态误差高及抗噪性能差的问题。

VSS-LMP算法在系统受到脉冲噪声干扰时,能维持步长稳定;当系统逐渐稳定时,能产生小步长以降低稳态误差。

系统辨识仿真结果表明,在α稳定分布脉冲噪声下,VSS-LMP算法与固定步长和已有变步长算法相比,具有更快的收敛速度和更强的系统跟踪能力。

【总页数】7页(P661-667)
【作者】王彪;李涵琼;高世杰;张明亮;徐晨
【作者单位】江苏科技大学电子信息学院
【正文语种】中文
【中图分类】TN911.7
【相关文献】
1.一种α稳定分布下的变步长最小ρ-范数算法
2.α噪声环境下整体最小平均P-范数IIR自适应滤波算法
3.一种新的变步长最小均方自适应滤波算法
4.一种改进的归
一化变步长最小均方误差自适应滤波算法5.用于稀疏系统辨识的变步长加权零吸引最小平均p范数算法
因版权原因,仅展示原文概要,查看原文内容请购买。

一类直线上自相似集的相似压缩不动点的分布

一类直线上自相似集的相似压缩不动点的分布

一类直线上自相似集的相似压缩不动点的分布
刘静;孙善辉
【期刊名称】《大学数学》
【年(卷),期】2011(027)003
【摘要】先构造了一类直线上的自相似集,研究了它的相似压缩不动点的坐标公式.作为推论我们给出了三分Cantor集相似压缩不动点的坐标公式,从而首次发现了它的相似压缩不动点的分布规律.
【总页数】4页(P66-69)
【作者】刘静;孙善辉
【作者单位】宿州学院,数学与统计学院,安徽,宿州,234000;宿州学院,数学与统计学院,安徽,宿州,234000
【正文语种】中文
【中图分类】O189.1
【相关文献】
1.一类推广的Cantor集相似压缩不动点的计算机实现 [J], 刘静
2.关于一类自相似集的上密度 [J], 许强
3.一类直线上的自相似集的特征 [J], 尹建东;邓中书
4.一类压缩比非一致且具完全重叠结构自相似集的迭代函数系 [J], 潘俨;姚媛媛
5.乘积度量空间上一类隐式压缩映射的唯一不动点 [J], 朴勇杰
因版权原因,仅展示原文概要,查看原文内容请购买。

虚拟边界径向基配点法求解电磁场问题.

虚拟边界径向基配点法求解电磁场问题.

虚拟边界径向基配点法求解电磁场问题
全部作者:
丁平张勇邵可然
第1作者单位:
华中科技大学
论文摘要:
介绍了MQ径向基无单元法,在此基础引入改进型MQ径向基无单元法。

此方法无需背景单元,是1种真正的无单元法。

本文用改进型MQ径向基无单元法求解3维电场问题。

数值结果表明,此方法相对于有限元法在效率和精度上有很大的提高。

关键词:
径向基函数,MQ径向基函数,无单元法,改进型MQ配点法远程下载论文(免费PDF论文全文)
发表日期:
2006年09月11日
同行评议:
无单元法是近年发展的求解偏微分方程的数值方法,具有求解速度快,计算量小的优点。

该文提出了1种改进的MQ径向基函数法,并应用于电场的求解中,提高了计算精度。

文章有创新,具有发表的价值。

文章条理清晰,研究方案合理,数据可信。

综合评价:
修改稿:
注:同行评议是由特聘的同行专家给出的评审意见,综合评价是综合专家对论文各要素的评议得出的数值,以1至5颗星显示。

自适应密度峰值聚类算法

自适应密度峰值聚类算法

自适应密度峰值聚类算法
张强;周水生;张颖
【期刊名称】《西安电子科技大学学报》
【年(卷),期】2024(51)2
【摘要】密度峰值聚类(DPC)以其简单、高效的特点被广泛应用。

然而,其有两个不足:(1)集群密度不均匀和不平衡的数据集在DPC所提供的决策图中,很难识别真正的聚类中心;(2)存在一个区域密度最高的点的错误分配将导致该区域内的所有点都指向同一个错误的聚类的“链式效应”。

针对这两个不足,引入新的自然邻域(NaN)的概念,提出了一种基于自然邻域的密度峰值聚类算法(DPC-NaN)。

算法使用新的自然邻域密度识别噪声点,选择初始预聚类中心点,将非噪声点按密度峰值方法进行分配以得到预聚类;并通过确定预聚类的边界点和合并半径,自适应地将预聚类结果合并为最终聚类。

所提算法无需人工预设参数,也缓解了“链式效应”的问题。

实验结果表明,与相关聚类算法相比,所提出的算法可在典型的数据集上获得更好的聚类结果,同时在图像分割表现良好。

【总页数】12页(P170-181)
【作者】张强;周水生;张颖
【作者单位】西安电子科技大学数学与统计学院
【正文语种】中文
【中图分类】TP391
【相关文献】
1.基于自适应可达距离的密度峰值聚类算法
2.自适应截断距离与样本分配的密度峰值聚类算法
3.自适应聚类中心策略优化的密度峰值聚类算法
4.基于人工鱼群的自适应密度峰值聚类算法
5.自适应多密度峰值子簇融合聚类算法
因版权原因,仅展示原文概要,查看原文内容请购买。

核范数优化下的多表征挤压激励自适应网络

核范数优化下的多表征挤压激励自适应网络

核范数优化下的多表征挤压激励自适应网络谭茜成;郭涛;李鸿;朱新远;邹俊颖;夏青【期刊名称】《小型微型计算机系统》【年(卷),期】2022(43)3【摘要】多表征自适应网络(MRAN)用于无监督学习取得了显著成效.但MRAN的特征提取只关注了域在空间结构上的联系而忽略了特征通道之间的联系,在进行无监督领域自适应(UDA)分类时,决策边界附近存在大量混淆数据的情况,当使用信息熵最小化对混淆数据进行分类时,往往会产生错误分类.针对这一问题,提出了基于批量核范数最大化的多表征挤压激励自适应网络(Multi-Representation Squeeze-Excitation Adaptation Network_Batch Kernel NormMaximization,MRSEAN_BNM).该网络采用挤压激励注意力机制对多表征特征进行重标定,以强化重要的表征特征,采用条件最大均值差异(CMMD)拉近源域和目标域的特征分布距离,并通过最大化目标域分类输出矩阵的核范数以约束决策边界的混淆数据,达到提升域适应图像分类精度的效果.在基于公开数据集的域适应下的图像分类、可视化结果实验结果表明,MRSEAN_BNM分类精度有明显提升.【总页数】6页(P598-603)【作者】谭茜成;郭涛;李鸿;朱新远;邹俊颖;夏青【作者单位】四川师范大学计算机科学学院【正文语种】中文【中图分类】TP181【相关文献】1.基于范数优化的对角加载稳健自适应波束形成2.改进的自适应权值核范数最小化去噪算法3.复杂环境下采场结构参数优化与自适应表征分析4.基于截断核范数低秩分解的自适应字典学习算法5.基于P范数的核最小对数绝对差自适应滤波算法因版权原因,仅展示原文概要,查看原文内容请购买。

基于麻雀搜索算法的橡胶复合挤出机温度压力解耦控制

基于麻雀搜索算法的橡胶复合挤出机温度压力解耦控制

基于麻雀搜索算法的橡胶复合挤出机温度压力解耦控制
王冰;尚亚强;严一踔;丘军意;谷龙强;陈明霞
【期刊名称】《大众科技》
【年(卷),期】2022(24)7
【摘要】橡胶挤出机是橡胶制品生产的关键设备,其挤出过程是一个多变量大时滞系统,其中温度和压力两个关键的工艺参数存在强耦合,单变量控制和传统的解耦方
式无法保证挤出制品质量。

文章从影响橡胶复合挤出机生产过程中的众多因素中选出最重要的两个因素,即温度和压力来进行研究。

针对橡胶复合挤出机温度和压力
的耦合现象,使用麻雀搜索算法(Sparrow Search Algorithm,SSA)对PID神经元网络的初始权值进行优化以及调整,以加快系统解耦后的响应速度和提高系统稳定性。

利用MTATLAB软件分别使用PID神经元网络和SSA-PID神经元网络对挤出机温度压力进行解耦控制,并将二者结果对比。

结果表明,SSA-PID神经元网络的解耦控制后的系统响应速度更快、稳态误差更小,系统的动态性能和稳态性能都有所提升。

【总页数】5页(P9-13)
【作者】王冰;尚亚强;严一踔;丘军意;谷龙强;陈明霞
【作者单位】桂林理工大学机械与控制工程学院
【正文语种】中文
【中图分类】TQ33
【相关文献】
1.基于导电橡胶的柔性压力/温度复合感知系统
2.基于RBF神经网络的挤出机温度压力控制系统
3.基于Smith-模糊控制算法的橡胶挤出机料筒温度控制系统研究
4.基于FFRLS辨识优化橡胶挤出机Smith-模糊PID温度控制系统
5.基于混合粒子群算法优化橡胶挤出机Smith-模糊PID温度控制系统
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) ρU ρU ux + n ˆx p ρU uy + n ˆx p ρU uz + n ˆz p (E + p)U
ρ ρux ρuy ρuz E
U =n ˆx ux + n ˆy uy + n ˆz uz ,
b
Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4844, E-mail: [kaushik,mcinnes,norris]@ Department of Computer Science and Engineering, The Pennsylvania State University, 343K IST Building, University Park, PA 16802-6106, E-mail: raghavan@ Abstract. We consider parallel, three-dimensional transonic Euler flow using the PETScFUN3D application, which employs pseudo-transient Newton-Krylov methods. Solving a large, sparse linear system at each nonlinear iteration dominates the overall simulation time for this fully implicit strategy. This paper presents a polyalgorithmic technique for adaptively selecting the linear solver method to match the numeric properties of the linear systems as they evolve during the course of the nonlinear iterations. Our approach combines more robust, but more costly, methods when needed in particularly challenging phases of solution, with cheaper, though less powerful, methods in other phases. We demonstrate that this adaptive, polyalgorithmic approach leads to improvements in overall simulation time, is easily parallelized, and is scalable in the context of this large-scale computational fluid dynamics application. 1. INTRODUCTION Many time-dependent and nonlinear computational fluid dynamics (CFD) applications involve the parallel solution of large-scale, sparse linear systems. Typically, application developers select a particular algorithm to solve a given linear system and keep this algorithm fixed throughout the simulation. However, it is difficult to select a priori the most effective algorithm for a given application. Moreover, for long-running applications in which the numerical properties of the linear systems change as the simulation progresses, a single algorithm may not be best throughout the entire simulation. This situation has motivated us to develop an adaptive, polyalgorithmic approach for linear solvers, which this paper discusses in the context of parallel, three-dimensional transonic Euler flow using PETSc-FUN3D [2]. This application employs pseudo-transient Newton-Krylov methods for a fully implicit solution. We
p = (γ − 1) E − ρ
2 2 (u2 x + uy + uz ) . 2
Here ρ, E , and U represent the density, energy, and velocity in the direction of the outward normal to a cell face, respectively. The pressure field p is determined by the equation of state for a perfect gas (given above). Also the cell volume (V ) is enclosed by the cell boundary (Ω). We solve the nonlinear system in Equation (1) with pseudo-timestepping [8] to advance towards an assumed steady state. Using backward Euler time discretization, Equation (1) becomes V (u − u −1 ) + f (u ) = 0, ∆t (2)
2
S. Bhowmick, D. Kaushik, L. McInnes, B. Norris, P. Raghavan
present a technique for adaptively selecting the linear solver methods to match the numeric properties of the linearized Newton systems as they evolve during the course of the nonlinear iterations. Our approach combines more robust, but more costly, methods when needed in particularly challenging phases of the solution, with faster, though less powerful, methods in other phases. Our previous work focused on sequence-based adaptive heuristics in an uniprocessor environment [4, 5, 9]. In this paper, we extend our research to solve a more complicated parallel application, where we demonstrate that the adaptive polyalgorithmic approach can be easily parallelized, is scalable, and can lead to improvements in overall simulation time. The remainder of this paper is organized as follows. Section 2 introduces our motivating application. Section 3 explains our approach to adaptive solvers, and Section 4 presents some parallel experimental results. Section 5 discusses conclusions and directions of future work. 2. PARALLEL COMPRESSIBLE FLOW EXAMPLE FUN3D is an unstructured mesh code originally developed by W. K. Anderson of the NASA Langley Research Center [1] for solving the compressible and incompressible Navier-Stokes equations. This code uses a finite volume discretization with a variable order Roe scheme on a tetrahedral, vertex-centered mesh. Anderson et al. subsequently developed the parallel variant PETSc-FUN3D [2], which incorporates MeTiS [7] for mesh partitioning and the PETSc library [3] for the preconditioned Newton-Krylov family of implicit solution schemes. This paper focuses on solving the unsteady compressible three-dimensional Euler equations ∂u 1 + ∂t V where u= − → F ·n ˆ dΩ = 0,
相关文档
最新文档