课件—直线、圆及椭圆的参数方程及应用PPT
第2章 2.2 直线和圆的参数方程
阶段一阶段二学业分层测评2.2 直线和圆的参数方程2.2.1 直线的参数方程2.2.2 圆的参数方程1.理解直线的参数方程. 难点2.掌握圆的参数方程. 重点[基础·初探]1.直线的参数方程(1)经过点M 0(x 0,y 0),倾斜角为±(±≠À2)的直线l 的参数方程为x =x 0+t cos ±y =y 0+t sin ±(t 为参数),其中参数t 的几何意义是:|t |是直线l 上任一点M (x ,y )到点M 0(x 0,y 0)的距离,即|t |=|M 0M |.(2)设直线过点M 0(x 0,y 0),且与平面向量a =(l ,m )平行(或称直线与a 共线,其中l ,m 都不为0),直线的参数方程的一般形式为x =x 0+lty =y 0+mtt ∈R .2.圆的参数方程若圆心在点M 0(x 0,y 0),半径为R ,则圆的参数方程为x =x 0+R cos ¸y =y 0+R sin ¸0≤¸≤2 À.特别地,若圆心在原点,半径为R ,则圆的参数方程为x =R cos ¸y =R sin ¸.[思考·探究]1.若直线l 的倾斜角±=0,则直线l 的参数方程是什么?【提示】参数方程为x =x 0+t ,y =y 0.2.如何理解直线参数方程中参数的几何意义? 【提示】 过定点M 0(x 0,y 0),倾斜角为±的直线l 的参数方程为x =x 0+t cos ±,y =y 0+t sin ±,(t 为参数),其中t 表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的向量M 0M →的长度,即|t |=|M 0M →|.①当t >0时,M 0M →的方向向上; ②当t <0时,M 0M →的方向向下; ③当t =0时,点M 与点M 0重合.[自主·测评]1.直线x =1+t cos ±y =-2+t sin ±(±为参数,0≤±<À)必过点()A.(1,-2)B.(-1,2)C.(-2,1)D.(2,-1)【解析】 直线表示过点(1,-2)的直线. 【答案】 A2.已知直线l 的参数方程为x =-1-22ty =2+22t(t 为参数),则直线l 的斜率为()A.1B.-1C.22D.-22【解析】 消去参数t ,得方程x +y -1=0, ∴直线l 的斜率k =-1.【答案】 B3.参数方程x =cos ±y =1+sin ±(±为参数)化成普通方程为________.【解析】∵x =cos ±y =1+sin ±(±为参数),∴x =cos ±①y -1=sin ±②(±为参数).①2+②2得x 2+(y -1)2=1,此即为所求普通方程.【答案】 x 2+(y -1)2=14.若直线x =1-2ty =2+3t(t 为参数)与直线4x +ky =1垂直,则常数k =________.【解析】 将 x =1-2t y =2+3t 化为y =-32x +72,∴斜率k 1=-32,显然k =0时,直线4x +ky =1与上述直线不垂直.∴k ≠0,从而直线4x +ky =1的斜率k 2=-4k .依题意k 1k 2=-1,即-4k ×(-32)=-1,∴k =-6.【答案】 -6[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_____________________________________________________ 解惑:_______________________________________________________ 疑问2:_____________________________________________________ 解惑:_______________________________________________________ 疑问3:______________________________________________________ 解惑:_______________________________________________________类型一 直线的参数方程已知直线l :x =-3+32ty =2+12t (t 为参数).(1)求直线l 的倾斜角;(2)若点M (-33,0)在直线l 上,求t ,并说明t 的几何意义.【精彩点拨】 将直线l 的参数方程化为标准形式,求得倾斜角,利用参数的几何意义,求得t .【尝试解答】 (1)由于直线l :x =-3+t cos À6y =2+t sin À6(t 为参数)表示过点M 0(-3,2)且倾斜角为À6的直线,故直线l 的倾斜角±=À6.(2)由(1)知,直线l 的单位方向向量e =(cos À6,sin À6)=(32,12).∵M 0(-3,2),M (-33,0),∴M 0M →=(-23,-2)=-4(32,12)=-4e ,∴点M 对应的参数t =-4,几何意义为|M 0M →|=4,且M 0M →与e 方向相反(即点M 在直线l 上点M 0的左下方).1.一条直线可以由定点M 0(x 0,y 0),倾斜角±(0≤±<À)惟一确定,直线上的动点M (x ,y )的参数方程为 x =x 0+t cos ±y =y 0+t sin ±(t 为参数),这是直线参数方程的标准形式.2.直线参数方程的形式不同,参数t 的几何意义也不同,过定点M 0(x 0,y 0),斜率为b a 的直线的参数方程是x =x 0+at y =y 0+bt (a 、b 为常数,t 为参数).[再练一题]1.设直线l 过点P (-3,3),且倾斜角为5 À6.【导学号:62790011】(1)写出直线l 的参数方程;(2)设此直线与曲线C : x =2cos ¸y =4sin ¸(¸为参数)交于A ,B 两点,求|PA |·|PB |.【解】 (1)直线l 的参数方程为x =-3+t cos 56À=-3-32t y =3+t sin 56À=3+t 2(t 为参数).(2)把曲线C 的参数方程中参数¸消去,得4x 2+y 2-16=0. 把直线l 的参数方程代入曲线C 的普通方程中,得 4-3-32t 2+(3+12t )2-16=0. 即13t 2+4(3+123)t +116=0.由t 的几何意义,知|PA |·|PB |=|t 1·t 2|,故|PA |·|PB |=|t 1·t 2|=11613.类型二 圆的参数方程及应用设曲线C 的参数方程为 x =2+3cos ¸y =-1+3sin ¸(¸为参数),直线l 的方程为x -3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为() A.1B.2C.3D.4【精彩点拨】求曲线C的几何特征,化参数方程为普通方程(x-2)2+(y +1)2=9,根据圆心到直线l的距离与半径大小作出判定.【尝试解答】由 x =2+3cos ¸,y =-1+3sin ¸. 得(x -2)2+(y +1)2=9.曲线C 表示以(2,-1)为圆心,以3为半径的圆,则圆心C (2,-1)到直线l 的距离d =710=71010<3, 所以直线与圆相交.所以过圆心(2,-1)与l 平行的直线与圆的2个交点满足题意,又3-d <71010,故满足题意的点有2个.【答案】 B1.本题利用三角函数的平方关系,消去参数;数形结合,判定直线与圆的位置关系.2.参数方程表示怎样的曲线,一般是通过消参,得到普通方程来判断.特别要注意变量的取值范围.[再练一题]2.已知直线x =y ,与曲线 x =1+2cos ±y =2+2sin ±(±为参数)相交于两点A 和B ,求弦长|AB |.【解】 由 x =1+2cos ±,y =2+2sin ±.得 x -1=2cos ±,y -2=2sin ±. ∴(x -1)2+(y -2)2=4,其圆心为(1,2),半径r =2,则圆心(1,2)到直线y =x 的距离d =|1-2|12+ -12=22. ∴|AB |=2r 2-d 2=2 22- 22 2=14.类型三 直线参数方程的简单应用已知直线的参数方程为 x =1+2t y =2+t (t 为参数),则该直线被圆x 2+y 2=9截得的弦长是多少?【精彩点拨】 考虑参数方程标准形式中参数t 的几何意义,所以首先要把原参数方程转化为标准形式x =1+25 t ′,y =2+15 t ′,再把此式代入圆的方程,整理得到一个关于t 的一元二次方程,弦长即为方程两根之差的绝对值.【尝试解答】将参数方程 x =1+2t y =2+t (t 为参数)转化为直线参数方程的标准形式为x =1+25 t ′y =2+15t ′(t ′为参数). 代入圆方程x 2+y 2=9,得(1+25 t ′)2+(2+15t ′)2=9,整理,得5t′2+8t′-45=0由韦达定理,t′1+t′2=-85,t′1·t′2=-4.根据参数t′的几何意义.|t′1-t′2|= t′1+t′2 2-4t′1t′2=125 5,故直线被圆截得的弦长为125 5.在直线参数方程的标准形式下,直线上两点之间的距离可用|t1-t2|来求.本题易错的地方是:将题目所给参数方程直接代入圆的方程求解,忽视了参数t的几何意义.[再练一题]3.若将条件改为“直线l 经过点A (1,2),倾斜角为À3,圆x 2+y 2=9不变”,试求:(1)直线l 的参数方程;(2)直线l 和圆x 2+y 2=9的两个交点到点A 的距离之积.【解】 (1)直线l 的参数方程为x =1+t 2y =2+32t ,(t 为参数). (2)将 x =1+t 2y =2+32t ,代入x 2+y 2=9,得 t 2+(1+23)t -4=0,∴t 1t 2=-4.由参数t 的几何意义,得直线l 和圆x 2+y 2=9的两个交点到点A 的距离之积为|t 1t 2|=4.[真题链接赏析](教材P 41习题2-2T 6)写出过点A (-1,2),倾斜角为34À的直线的参数方程,并求该直线与圆x 2+y 2=8的交点.在直角坐标系xOy 中,曲线C 1的参数方程为 x =a cos t ,y =1+a sin t ,(t为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:Á=4cos ¸.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为¸=±0,其中±0满足tan ±0=2,若曲线C 1与C 2的公共点都在C 3上,求a .【命题立意】 知识:曲线的参数方程与极坐标方程.能力:通过参数方程与极坐标方程的互化,考查转化与化归的数学思想方法.试题难度:中.【解】(1)消去参数t得到C1的普通方程为x2+(y-1)2=a2,则C1是以(0,1)为圆心,a为半径的圆.将x=Ácos ¸,y=Ásin ¸代入C1的普通方程中,得到C1的极坐标方程为Á2-2Ásin ¸+1-a2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组Á2-2Ásin ¸+1-a 2=0,Á=4cos ¸.若Á≠0,由方程组得16cos 2¸-8sin ¸cos ¸+1-a 2=0,由已知tan ¸=2,可得16cos 2¸-8sin ¸cos ¸=0,从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,且在C 3上.所以a =1.我还有这些不足:(1)________________________________________________________(2)________________________________________________________ 我的课下提升方案:(1)________________________________________________________(2)________________________________________________________学业分层测评(六)点击图标进入…。
高中数学精品课件:第二节 参数方程
当 a<-4 时,d 的最大值为-a1+7 1.
由题设得-a+1= 17
17,解得 a=-16.综上,a=8 或 a=-16.
返回
[解题师说] 1.方法要熟 (1)解决直线与圆、圆锥曲线的参数方程的应用问题时, 一般是先化为普通方程,再根据直线与圆、圆锥曲线的位置关 系来解决问题. (2)对于形如xy==yx00++batt, (t 为参数)的参数方程,当 a2+ b2≠1 时,应先化为标准形式后才能利用 t 的几何意义解题.
解析:由xy==35scions
φ, φ
(φ 为参数)得,2x52+y92=1,
当 AB⊥x 轴时,|AB|有最小值.
所以|AB|min=2×95=158. 答案:158
返回
3.曲线
C
的参数方程为xy==csoins
θ, 2θ+1
(θ 为参数),则曲线 C 的普
通方程为____________.
解析:由xy==csoins
θ, 2θ+1
(θ 为参数)消去参数 θ,得 y=2-2x2(-
1≤x≤1).
答案:y=2-2x2(-1≤x≤1)
返回
4.在平面直角坐标系xOy中,已知直线l的参数方程为
x=1+12t,
y=
3 2t
(t为参数),椭圆C的方程为x2+y42=1,设直线
l与椭圆C相交于A,B两点,则线段AB的长为___________.
第二 节
参数方程
课前·双基落实
知识回扣,小题热身,基稳才能楼高
课堂·考点突破
练透基点,研通难点,备考不留死角
课后·三维演练
分层训练,梯度设计,及时查漏补缺
返回
课 前 双基落实
知识回扣,小题热身,基稳才能楼高
椭圆ppt课件
02
椭圆的绘制方法
几何法绘制椭圆
固定两点法
选取两个固定点,利用细线、笔 和画板,通过细线两端分别绕两 个固定点旋转绘制椭圆。
圆心与半径法
选取一个圆心,以不同半径分别 用圆规画出两个相交的圆,连接 两个交点得到椭圆的长短轴,再 绘制椭圆。
代数法绘制椭圆
标准方程法
根据椭圆的标准方程,确定长短轴长度和中心位置,利用坐标纸和直尺绘制椭圆 。
椭圆的几何性质
焦点
椭圆有两个焦点,它们位于长轴上,距离原点分别为c。
长轴和短轴
椭圆有两条对称轴,分别是长轴和短轴。长轴通过两个焦 点,短轴与长轴垂直。长轴长度为2a,短轴长度为2b。
离心率
椭圆的离心率e定义为c/a,它描述了椭圆的扁平程度。 0<e<1时,椭圆越扁平;e=0时,椭圆变为圆;e>1时, 椭圆不存在。
椭圆形储罐
椭圆形储罐结构受力均匀 ,节省材料,常用于石油 、化工等行业的聚焦于一点,应用于望 远镜、卫星天线等光学设 备中。
经济学中椭圆的应用
生产可能性边界
生产可能性边界呈椭圆形,表示 在一定资源和技术条件下,两种
产品最大可能产量的组合。
效用函数
在消费者选择理论中,效用函数常 用椭圆函数形式来描述消费者在无 差异曲线上的偏好。
参数方程法
根据椭圆的参数方程,设定参数范围和步长,利用计算器或计算机软件生成椭圆 上的离散点,再连接成椭圆。
电脑绘图软件绘制椭圆
绘图软件工具
使用绘图软件中的椭圆工具,通过鼠标点击和拖动直接在画 布上绘制椭圆。
自定义绘制
利用绘图软件的编程功能,编写自定义的椭圆绘制程序,实 现更复杂的椭圆绘制需求。
03
椭圆的应用举例
高考数学总复习 第2节 参数方程课件 新人教A版选修44
数的关系 y=g(t)
x=ft ,那么 y=gt 就是曲线的参数方程.
第五页,共70页。
在参数方程与普通(pǔtōng)方程的互化中,x,y的取值范围必 须保持一致.
第六页,共70页。
三、常见曲线的参数方程的一般形式
1.直线的参数方程
经过点 P0(x0,y0),倾斜角为 α 的直线的参数方程为
x= x0+tcos α y= y0+tsin α
第十四页,共70页。
2.若 P(2,-1)为圆xy==15+sin5θcos θ, (θ 为参数且 0≤θ
<2π)的弦的中点,则该弦所在的直线方程为( )
A.x-y-3=0
B.x+2y=0
C.x+y-1=0
D.2x-y-5=0
第十五页,共70页。
解析:由xy= =15+sin5θc,os θ 消去参数 θ,得(x-1)2+y2=25, ∴圆心 C(1,0),∴kCP=-1. ∴弦所在的直线的斜率为 1. ∴弦所在的直线方程为 y-(-1)=1·(x-2), 即 x-y-3=0,故选 A.
第二十页,共70页。
解析:曲线
C1:xy==34++csions
θ θ
(θ 为参数)的直角坐标方
程为(x-3)2+(y-4)2=1,可知曲线 C1 是以(3,4)为圆心,1 为半径的圆;曲线 C2:ρ=1 的直角坐标方程是 x2+y2=1, 故 C2 是以原点为圆心,1 为半径的圆.由题意知|AB|的最小 值即为分别在两个圆上的两点 A,B 间的最短距离.由条件
① ②
①2+②2 得 x2+(y-1)2=1,
即所求普通方程为 x2+(y-1)2=1,
答案(dáàn):x2+(y-1)2=1
第二十六页,共70页。
直线的参数方程及应用
直线的参数方程及应用x = x0 + aty = y0 + bt其中(x0,y0)是直线上的一个固定点,a和b是表示直线方向的参数。
参数t的取值范围根据实际问题的情况来确定,可以是实数、整数或者其他范围。
1.直线与平面的交点在三维空间中,直线与平面的交点可以通过参数方程求解。
假设平面的方程为Ax+By+Cz+D=0,直线的参数方程为:x = x0 + aty = y0 + btz = z0 + ct将直线的参数方程代入平面的方程,可以得到一个关于参数t的二次方程:A(x0+at) + B(y0+bt) + C(z0+ct) + D = 0通过求解这个二次方程,可以得到直线与平面的交点坐标。
2.直线的斜率直线的斜率是表示直线的倾斜程度的一个重要指标,可以通过直线的参数方程求得。
考虑直线上两个点P(x1,y1)和Q(x2,y2),它们对应的参数分别为t1和t2、直线的斜率可以表示为:m=(y2-y1)/(x2-x1)=(y0+b*t2-y0-b*t1)/(x0+a*t2-x0-a*t1)=b/a因此,直线的斜率可以通过参数a和b的比值得到。
当a=0时,直线是垂直于x轴的;当b=0时,直线是垂直于y轴的。
3.直线的长度直线的长度可以通过参数方程和积分来求解。
考虑直线上两个点P(x1,y1)和Q(x2,y2),它们对应的参数分别为t1和t2、直线的长度可以表示为:L = ∫√((dx/dt)²+(dy/dt)²) dt (t=t1到t2)其中 dx/dt 和 dy/dt 分别是直线参数方程关于 t 的导数。
将直线的参数方程代入到上式中,化简可得:L = ∫√(a²+b²) dt (t=t1到t2)=√(a²+b²)*(t2-t1)因此,直线的长度可以通过直线参数方程中的参数a和b计算得到。
4.直线的切线和法线y = y0 + (dy/dt) * (t-t0)其中 dy/dt 是直线参数方程关于 t 的导数。
曲线参数方程之意义和圆的参数方程ppt
Smax 5 2 10, Smin 5 2 10
x 2 cos 1 P(x, y)是曲线 y sin (α为参数)上任意一点,则
练习
( x 5)2 ( y 4)2 的最大值为( A )
A.36 B. 6 C.26 D.25
法一:直接代入(应用 辅助角公式)
A(2,7); B(1/3, 2/3)
C(1/2, 1/2)
D(1,0)
x sin 2 3.下列在曲线 y cos sin (为参数) 3 1 1 ( , 2 ) ( , ) C (2, 3) A 2 B 4 2
上的点是 ( B ) D (1, 3)
3.已知曲线C的参数方程 且点M(5,4)在该曲线上. (1)求常数a;(2)求曲线C的普通方程. 解: (1)由题意可知:
x 1 t 2
4.已知动点M作匀速直线运动, 它在x轴和y轴方向的速 度分别为5和12 , 运动开始时位于点P(1,2), 求点M的轨 迹参数方程。
解:设动点M (x,y) 运动时间为t,依题意,得
5、由方程x y 4tx 2ty 5t 4 0( t为 参数 )所表示的一族圆的圆心 轨迹是 D
这个方程组无解,因此点M2不在曲线上
解得t=2, a=9 所以,a=9.
练习
x 1 t 2 与x轴的交点坐标是( B ) 1、曲线 y 4t 3(t为参数)
A(1,4); B (25/16, 0)
C(1, -3)
D(±25/16, 0)
x sin (为参数)所表示的曲线上一点的坐标是( ) 2、方程 D y cos
直接判断点M的轨迹是什么并不方便,
把它化为我们熟悉的普通方程,有 cosθ=x-3, sinθ=y; 于是(x-3)2+y2=1, 轨迹是什么就很清楚了
圆的参数方程与椭圆的参数方程
y
b
r
sin
0,2
圆的参数方程
1.圆心在原点,半径为r的圆的参数方程:
x
y
r r
cos sin
(为参数)
2.圆心为(a,b),半径为r的圆的参数方程:
x
y
a b
r r
cos sin
(为参数)
0,2
例1. 如图,已知点P是圆x2+y2=4上的一个动点,
例2 把下列普通方程化为参数方程
(3)x2 y2 1 49
(4)x 2
y2
16
1
例3
已知椭圆
x2 100
y2 64
1
有一内接矩形ABCD,
求矩形ABCD的最大面积
D
y B2 A
A1 F1
O F2 A2 X
C
B
B1
例4 在椭圆 x2 y2 1 上, 到直线 l : 3x 2y 16 0
点A是x轴上的定点,坐标为(6,0).当点P在圆
上运动时,线段PA中点M的轨迹是什么?
y
解:设M的坐标为(x,y), 圆x2+y2=4
P
的参数方程为 x =2cosθ y =2sinθ
M
O
Ax
∴可设点P坐标为(2cosθ,2sinθ)
由中点公式得:点M的轨迹方程为
x =3+cosθ y =sinθ
∴点M的轨迹是以(3,0)为圆心、1为半径的圆。
P M
O
Ax
例:如图,已知点P是圆x²+y²=16上的一个动点,点A 是x轴上的定点,坐标是(12,0)。当点P在圆上运 动时,线段PA的中点M的轨迹是什么y ?
第2章2.1~2.2 直线与圆的参数方程
§2 直线和圆锥曲线的参数方程2.1 直线的参数方程 2.2 圆的参数方程1.直线的参数方程(1)经过点P (x 0,y 0)、倾斜角是α的直线的参数方程为 ⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)① 其中M (x ,y )为直线上的任意一点,参数t 的几何意义是从点P 到M 的位移,可以用有向线段PM→的数量来表示. (2)经过两个定点Q (x 1,y 1),P (x 2,y 2)(其中x 1≠x 2)的直线的参数方程为 ⎩⎪⎨⎪⎧x =x 1+λx 21+λ,y =y 1+λy 21+λ(λ为参数,λ≠-1). 其中M (x ,y )为直线上的任意一点,参数λ的几何意义是动点M 分有向线段QP →的数量比QM MP .当λ>0时,M 为内分点;当λ<0且λ≠-1时,M 为外分点; 当λ=0时,点M 与Q 重合. 2.圆的参数方程(1)圆心在原点、半径为r 的圆的参数方程⎩⎨⎧x =r cos α,y =r sin α(α为参数).参数α的几何意义是OP 与x 轴正方向的夹角.(2)去掉圆与x 轴负半轴交点,圆心在原点、半径为r 的圆的参数方程.⎩⎪⎨⎪⎧x =(1-k 2)r 1+k 2,y =2kr 1+k 2(k 为参数)参数k 的几何意义是直线AP 的斜率.【思维导图】【知能要点】 1.直线的参数方程. 2.直线的参数方程的应用. 3.圆的参数方程及应用.题型一 直线的参数方程直线的参数方程⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α (α为参数)中,α,x 0,y 0都是常数,对于同一直线,选取的参数不同,会得到不同的参数方程.对于直线普通方程y =2x +1,如果令x =t ,可得到参数方程⎩⎨⎧x =t ,y =2t +1 (t 为参数);如果令x =t2,可得到参数方程⎩⎪⎨⎪⎧x =t 2,y =t +1(t 为参数).这样的参数方程中的t 不具有一定的几何意义,但是在实际应用中有时能够简化某些运算.例如,动点M 做匀速直线运动,它在x 轴和y 轴方向的分速度分别为9和12,点M 从A 点(1,1)开始运动,求点M 的轨迹的参数方程.点M 的轨迹的参数方程可以直接写为⎩⎨⎧x =1+9t ,y =1+12t (t 为参数).【例1】 设直线的参数方程为⎩⎪⎨⎪⎧x =-4+22t ,y =22t(t 为参数),点P 在直线上,且与点M 0(-4,0)的距离为2,若该直线的参数方程改写成⎩⎨⎧x =-4+t ,y =t (t 为参数),则在这个方程中点P 对应的t 值为________. 解析 由|PM 0|=2知t =±2,代入第一个参数方程,得点P 的坐标分别为(-3,1)或(-5,-1),再把点P 的坐标代入第二个参数方程可得t =1或t =-1. 答案 ±1【反思感悟】 直线参数方程的标准形式中的参数具有相应的几何意义,本题正是使用了其几何意义,简化了运算,这也正是直线参数方程标准式的优越性所在.1.已知直线l 的方程为3x -4y +1=0,点P (1,1)在直线l 上,写出直线l 的参数方程,并求点P 到点M (5,4)和点N (-2,6)的距离.解 由直线方程3x -4y +1=0可知,直线的斜率为34,设直线的倾斜角为α,则tan α=34,sin α=35,cos α=45.又点P (1,1)在直线l 上,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =1+45t ,y =1+35t(t 为参数). 因为3×5-4×4+1=0,所以点M 在直线l 上. 由1+45t =5,得t =5,即点P 到点M 的距离为5.因为点N 不在直线l 上,故根据两点之间的距离公式,可得|PN |=(1+2)2+(1-6)2=34.【例2】 已知直线l 经过点P (1,1),倾斜角α=π6, (1)写出直线l 的参数方程;(2)设l 与圆x 2+y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积.解(1)直线的参数方程是⎩⎪⎨⎪⎧x =1+32t ,y =1+12t(t 是参数).(2)因为点A ,B 都在直线l 上,所以可设它们对应的参数为t 1和t 2,则点A ,B 的坐标分别为A ⎝ ⎛⎭⎪⎫1+32t 1,1+12t 1,B ⎝⎛⎭⎪⎫1+32t 2,1+12t 2.以直线l 的参数方程代入圆的方程x 2+y 2=4, 整理得到t 2+(3+1)t -2=0.①因为t 1和t 2是方程①的解,从而t 1t 2=-2. 所以|P A |·|PB |=|t 1t 2|=|-2|=2.【反思感悟】 本题P 到A 、B 两点的距离就是参数方程中t 的两个值,可以充分利用参数的几何意义.2.已知直线l :⎩⎪⎨⎪⎧x =-3+32t ,y =2+12t (t 为参数).(1)分别求t =0,2,-2时对应的点M (x ,y ); (2)求直线l 的倾斜角;(3)求直线l 上的点M (-33,0)对应的参数t ,并说明t 的几何意义.解(1)由直线l :⎩⎪⎨⎪⎧x =-3+32t ,y =2+12t(t 为参数)知当t =0,2,-2时,分别对应直线l 上的点(-3,2),(0,3),(-23,1).(2)法一 化直线l :⎩⎪⎨⎪⎧x =-3+32t ,y =2+12t(t 为参数)为普通方程为y -2=33(x +3),其中k =tan α=33,0≤α<π. ∴直线l 的倾斜角α=π6.法二由于直线l :⎩⎪⎨⎪⎧x =-3+t cos π6,y =2+t sin π6(t 为参数),这是过点M 0(-3,2),且倾斜角α=π6的直线,故π6为所求. (3)由上述可知直线l 的单位方向向量 e =⎝ ⎛⎭⎪⎫cos π6,sin π6=⎝ ⎛⎭⎪⎫32,12. ∵M 0(-3,2),M (-33,0),∴M 0M →=(-23,-2)=-4⎝ ⎛⎭⎪⎫32,12=-4e , ∴点M 对应的参数t =-4,几何意义为|M 0M →|=4, 且M 0M →与e 方向相反(即点M 在直线l 上点M 0的左下方).题型二 直线参数方程的应用利用直线的参数方程,可以求一些距离问题,特别是求直线上某一定点与曲线交点距离时使用参数的几何意义更为方便.【例3】 过点P ⎝ ⎛⎭⎪⎫102,0作倾斜角为α的直线与曲线x 2+12y 2=1交于点M ,N ,求|PM |·|PN |的最小值及相应的α的值. 解设直线为⎩⎨⎧x =102+t cos α,y =t sin α(t 为参数),代入曲线并整理得(1+11sin 2α)t 2+(10cos α)t +32=0. 则|PM |·|PN |=|t 1t 2|=321+11sin 2 α.所以当sin 2 α=1时,即α=π2,|PM |·|PN |的最小值为18,此时α=π2.【反思感悟】 利用直线的参数方程中参数的几何意义,将最值问题转化为三角函数的值域,利用三角函数的有界性解决.3.已知曲线的参数方程⎩⎨⎧x =3cos θ,y =2sin θ(θ为参数),求曲线上一点P 到直线⎩⎨⎧x =2-3t ,y =2+2t(t 为参数)的最短距离. 解 P (3cos θ,2sin θ)直线:2x +3y -10=0 d =|6cos θ+6sin θ-10|13=|62sin ⎝ ⎛⎭⎪⎫θ+π4-10|1362sin ⎝ ⎛⎭⎪⎫θ+π4-10∈[-62-10,62-10]∴|62sin ⎝ ⎛⎭⎪⎫θ+π4-10|13∈⎣⎢⎡⎦⎥⎤10-6213,10+6213 ∴d min =10-6213.【例4】 如图所示,过不在椭圆x 2a 2+y 2b 2=1上的任一点P 作两条直线l 1,l 2分别交椭圆于A ,B 和C ,D 四点,若l 1,l 2的倾斜角为α,β且满足α+β=π.求证:A ,B ,C ,D 四点共圆. 证明 设P (x 0,y 0),直线l 1:⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α (t 为参数),直线l 2:⎩⎨⎧x =x 0+p cos β,y =y 0+p sin β (p 为参数),分别代入椭圆方程得(b 2cos 2 α+a 2sin 2 α)t 2+2(b 2x 0cos α+a 2y 0sin α)t +b 2x 20+a 2y 20-a 2b 2=0; (b 2cos 2 β+a 2sin 2 β)p 2+2(b 2x 0cos β+a 2y 0sin β)p +b 2x 20+a 2y 20-a 2b 2=0.∵α+β=π,∴cos 2 α=cos 2 β,sin 2 α=sin 2 β,∴t 1t 2=p 1p 2,即|P A |·|PB |=|PC |·|PD |.由平面几何知识知,A ,B ,C ,D 四点共圆. 【反思感悟】 本题利用平面几何知识,要证四点A ,B ,C ,D 共圆,只需证|P A |·|PB |=|PC |·|PD |,又转化为距离问题,利用参数的几何意义计算即可.4.直线l 通过P 0(-4,0),倾斜角α=π6,l 与圆x 2+y 2=7相交于A ,B 两点. (1)求弦长|AB |;(2)过P 0作圆的切线,求切线长; (3)求|P 0A |和|P 0B |的长; (4)求交点A ,B 的坐标.解 ∵直线l 通过P 0(-4,0),倾斜角α=π6, 所以可设直线l 的参数方程为⎩⎪⎨⎪⎧x =-4+32t ,y =t 2,代入圆方程,得⎝ ⎛⎭⎪⎫-4+32t 2+⎝ ⎛⎭⎪⎫12t 2=7,整理得t 2-43t +9=0.(1)设A ,B 对应的参数分别为t 1和t 2, 由根与系数的关系得t 1+t 2=43,t 1t 2=9, ∴|AB |=|t 2-t 1|=(t 1+t 2)2-4t 1t 2=2 3. (2)设过P 0的切线为P 0T ,切点为T , 则|P 0T |2=|P 0A |·|P 0B |=|t 1t 2|=9, ∴切线长|P 0T |=3.(3)解方程t 2-43t +9=0,得t 1=33,t 2=3, ∴|P 0A |=33,|P 0B |= 3.(4)将t 1=33,t 2=3代入直线参数方程⎩⎪⎨⎪⎧x =-4+32t ,y =t 2,得A 点坐标为⎝ ⎛⎭⎪⎫12,332,B 点坐标为⎝ ⎛⎭⎪⎫-52,32. 题型三 圆的参数方程及其应用如果取半径绕原点O 逆时针旋转的转过的角度θ为参数,圆x 2+y 2=r 2对应的参数方程为⎩⎨⎧x =r cos θ,y =r sin θ.同理,圆(x -x 0)2+(y -y 0)2=r 2对应的参数方程为⎩⎨⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).圆的参数方程对于需要将圆上点的两个坐标分别表示,代入计算的问题比较方便. 【例5】 圆的直径AB 上有两点C 、D ,且|AB |=10,|AC |=|BD |=4,P 为圆上一点,求|PC |+|PD |的最大值.分析 本题应考虑数形结合的方法,因此需要先建立平面直角坐标系.将P 点坐标用圆的参数方程的形式表示出来,θ为参数,那么|PC |+|PD |就可以用只含有θ的式子来表示,再利用三角函数等相关知识计算出最大值.解 以AB 所在直线为x 轴,以线段AB 的中点为原点建立平面直角坐标系.因为|AB |=10,所以圆的参数方程为⎩⎨⎧x =5cos θ,y =5sin θ(θ为参数).因为|AC |=|BD |=4,所以C ,D 两点的坐标为C (-1,0),D (1,0).因为点P 在圆上,所以可设点P 的坐标为(5cos θ,5sin θ). 所以|PC |+|PD |=(5cos θ+1)2+(5sin θ)2 +(5cos θ-1)2+(5sin θ)2 =26+10cos θ+26-10cos θ =(26+10cos θ+26-10cos θ)2 =52+2262-100cos 2 θ.当cos θ=0时,(|PC |+|PD |)max =52+52=226. ∴|PC |+|PD |的最大值为226.【反思感悟】 解题时将所求式子和图形联系起来,利用圆的参数方程表示P 点坐标,结合三角函数的值域进行计算.5.已知实数x ,y 满足(x -1)2+(y -1)2=9,求x 2+y 2的最大值和最小值.解 由已知,可把点(x ,y )视为圆(x -1)2+(y -1)2=9上的点,设⎩⎨⎧x =1+3cos θ,y =1+3sin θ(θ为参数).则x 2+y 2=(1+3cos θ)2+(1+3sin θ)2 =11+6(sin θ+cos θ)=11+62sin ⎝ ⎛⎭⎪⎫θ+π4∵-1≤sin ⎝ ⎛⎭⎪⎫θ+π4≤1,∴11-62≤x 2+y 2≤11+6 2. ∴x 2+y 2的最大值为11+62, 最小值为11-6 2.1.求直线l 1:⎩⎨⎧x =1+t ,y =-5+3t (t 为参数)和直线l 2:x -y -23=0的交点P 的坐标,及点P 与Q (1,-5)的距离.解 将⎩⎨⎧x =1+t ,y =-5+3t 代入x -y -23=0,得t =23,∴P (1+23,1),而Q (1,-5), 得|PQ |=(23)2+62=4 3.2.已知直线l 的参数方程为⎩⎨⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.解 (1)直线l 的普通方程为2x -y -2a =0,圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.3.已知椭圆的中心在原点,焦点在y 轴上且长轴长为4,短轴长为2,直线l 的参数方程为⎩⎨⎧x =t ,y =m +2t (t 为参数).当m 为何值时,直线l 被椭圆截得的弦长为6?解 椭圆方程为y 24+x 2=1,化直线参数方程⎩⎨⎧x =t ,y =m +2t 为⎩⎪⎨⎪⎧x =55t ′,y =m +255t ′ (t ′为参数). 代入椭圆方程得⎝ ⎛⎭⎪⎫m +255t ′2+4⎝ ⎛⎭⎪⎫55t ′2=4 ⇔8t ′2+45mt ′+5m 2-20=0.当Δ=80m 2-160m 2+640=640-80m 2>0, 即-22<m <22, 方程有两不等实根t ′1、t ′2,则弦长为|t ′1-t ′2|=(t ′1+t ′2)2-4t ′1t ′2=640-80m 28,依题意知640-80m 28=6,解得m =±455.[P 30思考交流]1.经过两点Q (1,1),P (4,3)的直线的参数方程.如果应用共线向量的充要条件来求,方程及参数的含义分别是什么?答 在直线PQ 上任取一点M (x ,y ),PM→=(x -1,y -1),QM →=(x -4,y -3),∵P 、Q 、M 三点共线,∴PM→∥QM →,∴PM →=tQM →,⎩⎪⎨⎪⎧x -1=t (x -4),y -1=t (y -3),化简为⎩⎪⎨⎪⎧x =1-4t 1-t,y =1-3t 1-t,此即为过P 、Q 两点的直线的参数方程.参数t 的含义是有向线段PM→、QM →的比值.2.比较直线的参数方程与普通方程体会各自的优势.答 直线的普通方程直观地反映了变量x、y 之间的关系,方程是唯一的. 直线的参数方程中反映了变量x 、y 分别随参数的变化而变化的规律.方程是不唯一的,随参数的选取而有所不同.[P 33思考交流]给定参数方程⎩⎨⎧x =a +r cos α,y =b +r sin α其中a 、b 是常数. 讨论下列问题:(1)如果r 是常数,α是参数,那么参数方程表示的曲线是什么?(2)如果α是常数,r 是参数,那么参数方程表示的曲线是什么?答 (1)⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α⇒⎩⎪⎨⎪⎧x -a =r cos α,y -b =r sin α=====消掉参数α>(x -a )2+(y -b )2=r 2. 其中r 为常数,表示以(a ,b )为圆心,r 为半径的圆.(2)⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α⇒⎩⎪⎨⎪⎧x -a =r cos α,y -b =r sin α=====消掉参数t >x -a y -b =tan α.整理得x -tan α·y +b ·tan α-a =0,其中a 、b 、tan α为常数.方程为过点(a ,b ),斜率为1tan α的直线.【规律方法总结】1.利用直线的参数方程⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(α为参数)中参数的几何意义,在解决直线与曲线交点问题时,可以方便地求出相应的距离.2.直线的参数方程有不同的形式,可以允许参数t 没有明显的几何意义,在直线与圆锥曲线的问题中,利用参数方程有时可以简化计算.一、选择题1.若直线的参数方程为⎩⎨⎧x =1+2t ,y =2-3t(t 为参数),则直线的斜率为( ) A.23 B.-23C.32D.-32 解析 k =y -2x -1=-3t 2t =-32. 答案 D2.曲线⎩⎨⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( ) A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上解析 消去参数θ,将参数方程化为普通方程.曲线可化为(x +1)2+(y -2)2=1,其对称中心为圆心(-1,2),该点在直线y =-2x 上,故选B.答案 B3.直线⎩⎪⎨⎪⎧x =1+12t ,y =-33+32t(t 为参数)和圆x 2+y 2=16交于A ,B 两点,则AB 的中点坐标为( )A.(3,-3)B.(-3,3)C.(3,-3)D.(3,-3)解析 ⎝ ⎛⎭⎪⎫1+12t 2+⎝⎛⎭⎪⎫-33+32t 2=16, 得t 2-8t +12=0,t 1+t 2=8,t 1+t 22=4, 中点为⎩⎪⎨⎪⎧x =1+12×4,y =-33+32×4,⇒⎩⎪⎨⎪⎧x =3,y =- 3. 答案 D4.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎨⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( ) A.14B.214C. 2D.2 2解析 直线l 的参数方程⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数)化为直角坐标方程是y =x -4,圆C 的极坐标方程ρ=4cos θ化为直角坐标方程是x 2+y 2-4x =0.圆C 的圆心(2,0)到直线x -y -4=0的距离为d =22= 2.又圆C 的半径r =2,因此直线l 被圆C 截得的弦长为2r 2-d 2=2 2. 故选D.答案 D5.直线⎩⎨⎧x =t cos α,y =t sin α (t 为参数)与圆⎩⎨⎧x =4+2cos θ,y =2sin θ(θ为参数)相切,则直线的倾斜角为( )A.π6或5π6B.π4或5π6C.π3或2π3D.-π6或-5π6 解析 直线方程为y =tan α·x ,圆为:(x -4)2+y 2=4,利用图形可知直线的倾斜角为π6或56π.答案 A二、填空题6.在平面直角坐标系中,曲线C :⎩⎪⎨⎪⎧x =2+22t ,y =1+22t(t 为参数)的普通方程为________. 解析 ∵x =2+22t ,∴22t =x -2,代入y =1+22t ,得y =x -1,即x -y -1=0.答案 x -y -1=07.直线⎩⎪⎨⎪⎧x =2-12t ,y =-1+12t(t 为参数)被圆x 2+y 2=4截得的弦长为________. 解析 直线为x +y -1=0,圆心到直线的距离d =12=22,弦长d =2 22-⎝ ⎛⎭⎪⎫222=14. 答案 148.经过点P (1,0),斜率为34的直线和抛物线y 2=x 交于A 、B 两点,若线段AB 中点为M ,则M 的坐标为________.解析直线的参数方程为⎩⎪⎨⎪⎧x =1+45t ,y =35t (t 是参数),代入抛物线方程得9t 2-20t -25=0.∴中点M 的相应参数为t =12×209=109.∴点M 的坐标是⎝ ⎛⎭⎪⎫179,23. 答案 ⎝ ⎛⎭⎪⎫179,23 9.在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为⎩⎪⎨⎪⎧x =t -1t ,y =t +1t (t 为参数),l 与C 相交于A ,B 两点,则|AB |=________.解析 化极坐标方程为直角坐标方程,化参数方程为普通方程,联立直线l 和曲线C 的方程,求出交点A ,B 的坐标,利用两点间的距离公式求解.由ρ(sin θ-3cos θ)=0,得ρsin θ=3ρcos θ,则y =3x .由⎩⎪⎨⎪⎧x =t -1t ,y =t +1t ,得y 2-x 2=4. 由⎩⎪⎨⎪⎧y =3x ,y 2-x 2=4,可得⎩⎪⎨⎪⎧x =22,y =322或⎩⎪⎨⎪⎧x =-22,y =-322,不妨设A ⎝ ⎛⎭⎪⎫22,322,则B ⎝ ⎛⎭⎪⎫-22,-322, 故|AB |=⎝ ⎛⎭⎪⎫-22-222+⎝ ⎛⎭⎪⎫-322-3222=2 5. 答案 2 5三、解答题10.直线过点A (1,3),且与向量(2,-4)共线.(1)写出该直线的参数方程;(2)求点P (-2,-1)到此直线的距离.解 (1)设直线上任意一点坐标为(x ,y ),则(x ,y )=(1,3)+t (2,-4). ∴直线的参数方程为⎩⎨⎧x =1+2t ,y =3-4t . (2)将参数方程化为普通方程为2x +y -5=0,则|-4-1-5|5=25, ∴点P (-2,-1)到此直线的距离是2 5.11.经过点A ⎝ ⎛⎭⎪⎫-3,-32,倾斜角为α的直线l 与圆x 2+y 2=25相交于B ,C 两点. (1)求弦BC 的长;(2)当A 恰为BC 的中点时,求直线BC 的方程;(3)当|BC |=8时,求直线BC 的方程;(4)当α变化时,求动弦BC 的中点M 的轨迹方程.解 取AP =t 为参数(P 为l 上的动点),则l 的参数方程为⎩⎪⎨⎪⎧x =-3+t cos α,y =-32+t sin α,代入x 2+y 2=25,整理,得t 2-3(2cos α+sin α)t -554=0.∵Δ=9(2cos α+sin α)2+55>0恒成立.∴方程必有相异两实根t 1,t 2,且t 1+t 2=3(2cos α+sin α),t 1·t 2=-554.(1)|BC |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2 =9(2cos α+sin α)2+55.(2)∵A 为BC 中点,∴t 1+t 2=0,即2cos α+sin α=0,∴tan α=-2.故直线BC 的方程为y +32=-2(x +3),即4x +2y +15=0.(3)∵|BC |=9(2cos α+sin α)2+55=8, ∴(2cos α+sin α)2=1,∴cos α=0或tan α=-34.∴直线BC 的方程是x =-3或3x +4y +15=0.(4)∵BC 的中点M 对应的参数是t =t 1+t 22=32(2cos α+sin α),∴点M 的轨迹方程为⎩⎪⎨⎪⎧x =-3+32cos α(2cos α+sin α),y =-32+32sin α(2cos α+sin α)(0≤α<π), ∴⎩⎪⎨⎪⎧x +32=32⎝ ⎛⎭⎪⎫cos 2α+12sin 2α,y +34=32⎝ ⎛⎭⎪⎫sin 2α-12cos 2α.∴⎝ ⎛⎭⎪⎫x +322+⎝ ⎛⎭⎪⎫y +342=4516.即点M 的轨迹是以⎝ ⎛⎭⎪⎫-32,-34为圆心,以354为半径的圆.。
高中数学《参数方程》第一课时 课件
2
2
所以,点M的轨迹的参数方程是
x
y
cos s in
3(为参数)
5、若已知直线的参数方程为xy
1 1
t (t为参数) t
求它与曲线xy
2 c os 2 sin
(为参数)的交点。
解:参数方程xy
1 1
t (t为参数)的普通方程为 t
x y20
曲线xy
2 cos 2 s in
(为参数)的普通方程为x2
x 2 pt2
y
2 pt
圆锥曲线的参数方程
从三角换元看参数方程
换元依据: cos2 sin2 1
圆
心在
原点,
半径
为r的
圆的
参数
方 程 xy
r r
cos sin
(为参
数)
中心在
原点
的椭圆
的 参数 方 程 xy
a cos b sin
(为
参数)
换元依据: sec2 tan2 1
32
22
y
M(x,y)
r
o
M0 x
x y
x0 y0
r r
cos s in
(为参数)
对应的普通方程为(x x0 )2 ( y y0 )2 r 2
2、指出参数方程xy
2cos 5 3 2sin
(为参数)所
表示圆的圆心坐标、半径,并化为普通方程。
(x 5)2 ( y 3)2 4
2
)
以a,b(a>b>0)为半径作两个圆,点B是大圆半 径OA与小圆的交点,过点A作AN⊥Ox,垂 足为N,过点B作BM⊥AN,垂足为M,求当半 径OA绕点O旋转时点M的轨迹的参数方程.
12-2坐标系与参数方程教学课件
2020/6/24
(2)空间点 P 的直角坐标(x,y,z)与球坐标(r,φ,θ)之 x=rsinφcosθ
间的变换关系为y=rsinφsinθ . z=rcosφ
2020/6/24
二、参数方程 1.参数方程的概念 在平面直角坐标系中,如果曲线上任意一点的坐标 x、 y 都是某个变数 t 的函数xy==gftt (*),如果对于 t 的每一 个允许值,由方程组(*)所确定的点 M(x,y)都在这条曲线 上,则方程组(*)就叫做这条曲线的参数方程,变数 t 叫做 参数.
2020/6/24
解析:由条件知点12x,3y在方程 x2+y2=1 的曲线 上,∴12x2+(3y)2=1,即曲线 C 的方程为:x42+9y2=1.
答案:x42+9y2=1
2020/6/24
点评:在坐标变换式yx′′==μλxy 中,点(x′,y′)是变 换后点的坐标,应满足变换后的曲线方程 x2+y2=1(x,y) 是变换前点的坐标,应满足变换前曲线的方程x42+9y2=1.
答案:2 或-8
2020/6/24
• (文)(2010·广东理)在极坐标系(Ρ,Θ)(0≤Θ<2Π) 中,曲线Ρ=2SINΘ与ΡCOSΘ=-1的交点的 极坐标为________.
2020/6/24
解析:由 ρ=2sinθ 与 ρcosθ=-1 得 2sinθcosθ=-1, ∴sin2θ=-1,∵0≤θ<2π 且 sinθ>0,cosθ<0, ∴θ=34π,∴ρ=2sin34π= 2. 答案:( 2,34π)
x′=λxλ>0 y′=μyμ>0
的作用下,点 P(x,y)对应到点 P′(x′,
y′),称 φ 为平面直角坐标系中的伸缩变换.
参数方程1 PPT
础 为___极__点___,射线 Ox 称为___极__轴___.同时确定一个长度单
位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方
向为正方向),这样就建立了一个_极__坐__标__系_.对于平面上任意
一点 M,用 ρ 表示线段 OM 的长度,用 θ 表示从 Ox 到 OM
的角度,ρ 叫做点 M 的__极__径____,θ 叫做点 M 的___极__角___,
有序数对(_ρ__,__θ__)_就叫做 M 的极坐标.一般地,极径 ρ≥0;
极角θ可取任意实数.
图 11-64-1
双
向
三、直角坐标与极坐标的互化
固 基
1.互化条件:(1)原点与极点重合,(2)极轴与 x 轴正方向
础 重合,(3)两坐标轴长度单位一致.
2.互化公式:xy= =ρρcsionsθθ,,tρan2θ==x2+yx(y2x,≠0).
θ.这样点 P 的位置就可以用有序数组(r,φ,θ)表示.空间的
点与有序数组(r,φ,θ)之间建立了一种对应关系.把建立上
述对应关系的坐标系叫做球坐标系(或空间极坐标系).有序数
组(r,φ,θ)叫做点 P 的球坐标,其中 r≥0,0≤φ≤π,0≤θ<2
π.
双
向
—— 疑 难 辨 析 ——
固
基 础
1.极坐标系中,点的极坐标是唯一的.( )
坐标系与 参数方程
坐标系 参数方程
单元网络
核心导语
一、极坐标系 1.定义——极坐标系与直角坐标系的区别,极坐标系 下点的坐标表示. 2.互化——极坐标系下点的坐标与直角坐标系下点的 互化,关注互化条件、互化公式. 3.方程——极坐标系下特殊位置的直线、圆的极坐标 方程. 二、参数方程 1.概念——参数方程中参数的意义. 2.参数方程——直线、圆、圆锥曲线的参数方程. 3.互化——参数方程与普通方程的互化,关注参数的 取值范围和互化公式.
高中数学人教B版选修4-4第二章 2.3 2.3.1 椭圆曲线的参数方程 课件
三、解答题 9.在平面直角坐标系 xOy 中,点 P(x,y)是椭圆x32+y2=1 上的一
个动点,求 S=x+y 的最大值.
解:椭圆x32+y2=1 的参数方程为xy==sin3cφo,s φ, 0≤φ≤2π. 故可设动点 P 的坐标为( 3cos φ,sin φ), 其中 0≤φ≤2π.
D.152,152
解析:因为xy--00=43tan θ=tan π4=1,所以 tan θ=34.
所以 cos θ=45,sin θ=35,代入得 P 点坐标为152,152. 答案:D
二、填空题 5.已知曲线 C:xy==2cosisnθθ, (0≤θ≤2π)经过点m,12,则 m=
11.椭圆xa22+by22=1(a>b>0)与 x 轴正半轴交于点 A,若这个椭圆上总 存在点 P,使 OP⊥AP(O 为坐标原点),求离心率 e 的取值范围. 解:由题意,知 A(a,0),若存在点 P,使 OP⊥AP, 则点 P 必落在第一或第四象限,故根据椭圆的参数方程可 设 P(acos φ,bsin φ),φ∈0,π2∪32π,2π. 因为 OP⊥AP, 所以 kOP·kAP=-1,即abcsions φφ·acbossinφ-φ a=-1. 所以 b2sin2φ+a2cos2φ-a2cos φ=0,
(1)利用椭圆的参数方程可把几何问题转化为三角问题,便 于计算或证明.
(2)利用参数方程解决此类问题时,要注意参数的取值范围.
3.求证:椭圆xy==bascions
θ, θ
(a>b>0,0≤θ≤2π)上一点 M 与其
左焦点 F 的距离的最大值为 a+c(其中 c2=a2-b2).
证明:M,F 的坐标分别为(acos θ,bsin θ),(-c,0). |MF|2=(acos θ+c)2+(bsin θ)2 =a2cos2θ+2accos θ+c2+b2-b2cos2θ =c2cos2θ+2accos θ+a2=(a+ccos θ)2. ∴当 cos θ=1 时,|MF|2 最大,|MF|最大,最大值为 a+c.
第58讲 参数方程
课堂考点探究
π 解:(1)当 α= 3 时,直线 AB 的普通方程为 3x-y- 3=0,即直线 AB 的直角坐标方程
为 3 x - y - 3 = 0 , ∴ 直 线 AB 的 极 坐 标 方 程 为 3 ρ cos θ - ρsin θ = 3 , 即 2ρcosθ+π6 = 3.
课堂考点探究
因为曲线 C 的极坐标方程为 ρ=4 2sinθ+π4 =4sin θ+4cos θ,即 ρ2=4ρsin θ+ 4ρcos θ,
所以曲线 C 的直角坐标方程为 x2+y2-4x-4y=0(或写成(x-2)2+(y-2)2=8).
(2)点
P(2,1)在直线
l
上,且在圆
C
x=2+ 内,把
22t,代入
x2+y2-4x-4y=0,得
第58讲 PART 11
参数方程
考试说明
1. 了解参数方程,了解参数的意义. 2. 能选择适当的参数写出直线、圆和椭圆的参数方程.
课前双基巩固
知识梳理
1.参数方程的定义 一般地,在平面直角坐标系中,如果曲 线上任意一点的坐标 x,y 都是某个变数 t 的函数xy= =fg((tt)),(*),并且对于 t 的 每一个允许值,由方程组(*)所确定的点 M(x,y)都在这条曲线上,那么方程(*) 就叫作这条曲线的参__数__方__程__,联系变数 x,y 的变数 t 叫作参变数,简称___参__数___.
θ, θ (θ
为参数).
(3)
椭
圆
x2 a2
+
y2 b2
=
1(a
>
b
>
0)
的
参
数
方
程
为
x=acos y=bsin
直线的参数方程用ppt课件
t1 t2 2
练习
1.求直线
x
y
2
t sin20 t cos20
(t为参数)的
倾斜角
2。直线
x y
t sin 20o t cos 20o
3
(t为参数)的倾斜角是
C
A.20o B.70o C.110o D.160o
3.直线 xy
t t
cos
sin a
| M0M | a2 b2 | t | | M1M2 | a2 b2 | t1 t2 |
例题选讲
例1.已知直线l : x y 1 0与抛物线y x2交于 A,B两点,求线段AB的长度和点M(-1,2)到A,B
两点的距离之积。
分析:
1.用普通方程去解还 是用参数方程去解;
2.分别如何解.
作业
1。求直线l : 4x y 4 0与l1:x 2 y 2 0及直线
l2:4x 3y 12 0所得两交点间的距离。 9 17
2.13如.直直0线相线l过切点xy,P则04b(t这 4,a0条t)(,直 倾 t为线 斜参角 的数为 倾)斜= 与角曲 6 等 ,线l于与x2圆3x或y212243y42
普通方程化为参数方程需要引入参数
由于选取的参数不同,曲线有不同的参数 方程;一般地,同一条曲线,可以选取不同的 变数为参数,因此得到的参数方程也可以有不 同的形式。形式不同的参数方程,它们表示 的曲线可以是相同的。
另外,在建立曲线的参数时,要注明参数及 参数的取值范围。
普通方程化为参数方程需要引入参数
x
x=-1+tcos
3
4
y
2
t
sin
圆的参数方程及应用
圆的参数方程及应用圆是数学中常见且重要的几何图形之一,具有许多应用。
在研究圆的性质和应用时,我们可以使用参数方程来描述圆的形状和运动。
本文将介绍圆的参数方程以及它的一些应用。
一、圆的参数方程的推导要推导圆的参数方程,我们可以从圆的定义出发。
圆是由距离等于半径的所有点组成的轨迹。
设圆的半径为r,圆心的坐标为(a,b)。
那么,对于圆上的任意一点(x,y),根据距离的定义,我们有:√((x-a)²+(y-b)²)=r接下来,我们可以对上式进行平方操作得到:(x-a)²+(y-b)²=r²进一步展开得到:(x-a)²=r²-(y-b)²(x - a)² = r² - y² + 2by - b²注意到(b²-r²)是常数,我们可以记作c。
那么上式可以简化为:(x - a)² + y² - 2by = c通过整理,我们可以得到:x=a+√(r²-(y-b)²)x=a-√(r²-(y-b)²)这就是圆的参数方程。
对于每个y值,我们可以通过上面的方程计算得到x的两个解。
因此,我们可以通过参数y来确定圆上的所有点。
二、圆的参数方程的性质1.圆的参数方程给出了圆上的所有点的坐标。
通过给定不同的y值,可以得到每个对应的x值,从而得到圆上的点。
2.圆的参数方程是一对方程。
对于圆上的每个点,我们有两个对应的(x,y)值。
这是因为对于圆上的每个点,它关于x轴对称的另一个点也在圆上。
3.圆的参数方程可以用来描述圆的形状和位置。
通过参数方程中的半径和圆心的坐标,我们可以确定特定的圆。
三、圆的参数方程的应用1.数学几何中的应用:圆的参数方程可以用来求解与圆的交点、圆的切线和法线等问题。
通过将参数方程带入相应的表达式,可以得到圆的切线或法线的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
刚才的发言,如 有不当之处请多指
正。谢谢大家!
35
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
直线,圆及椭圆的参数方程的应用
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容
选修4-4 坐标系数与参数方程
三维设计·高三数学(苏教版) 选考内容