212 (2015) 73--Seed-directed synthesis of EMT-type zeolite from an organic-template-free system
辣椒MADS–box_基因家族的鉴定及表达分析
湖南农业大学学报(自然科学版)2023,49(5):558–566.DOI:10.13331/ki.jhau.2023.05.009Journal of Hunan Agricultural University(Natural Sciences)引用格式:杨光彬,王瑾,陈恺琳,单庆云,崔苏菲,熊程,邹学校,刘峰.辣椒MADS–box基因家族的鉴定及表达分析[J].湖南农业大学学报(自然科学版),2023,49(5):558–566.YANG G B,WANG J,CHEN K L,SHAN Q Y,CUI S F,XIONG C,ZOU X X,LIU F.Identification andexpression analysis of the MADS-box gene family in Capsicum annuum[J].Journal of Hunan AgriculturalUniversity(Natural Sciences),2023,49(5):558–566.投稿网址:辣椒MADS–box基因家族的鉴定及表达分析杨光彬1,王瑾3,6,陈恺琳3,单庆云3,崔苏菲3,熊程2,3,4,5,邹学校2,3,4,5,刘峰2,3,4,5*(1.湖南大学隆平分院,湖南长沙410125;2.岭南现代农业实验室,广东广州510642;3.湖南农业大学园艺学院,湖南长沙410128;4.园艺作物种质创新与新品种选育教育部工程研究中心,湖南长沙410128;5.蔬菜生物学湖南省重点实验室,湖南长沙410128;6.南京农业大学园艺学院,江苏南京210095)摘要:利用辣椒的全基因组数据鉴定到104个MADS–box基因,对它们的理化性质、染色体定位、系统进化关系、蛋白保守基序和组织表达水平进行分析。
结果表明:辣椒MADS–box基因家族各成员在染色体上的分布不均,理化性质差异较大,104个家族成员编码的氨基酸长度为100~567 aa,蛋白相对分子质量为11 203.9~ 63 559.7,蛋白理论等电点(PI)为4.63~10.46,系统进化树分析结果表明,辣椒MADS–box基因家族可分为2大类,与拟南芥和番茄的进化关系类似;组织表达水平分析结果表明,CaMADSs主要在花、果实和种子中表达,在叶片中表达量相对较低,推测MADS–box基因可能参与调控果实的发育和成熟。
SMARTer PCR cDNA Synthesis Kit User Manual
SMARTer™ PCR cDNA Synthesis Kit User Manual Cat. Nos. 634925 & 634926United States/Canada 800.662.2566Asia Pacific +1.650.919.7300Europe +33.(0)1.3904.6880Japan +81.(0)77.543.6116SMART er™ PCR cDNA Synthesis Kit User ManualT able of ContentsI. List of Components (3)II. Additional Materials Required (4)III. Introduction & Protocol Overview (5)IV. RNA Preparation & Handling (7)A. General Precautions (7)B. RNA Isolation (7)C. RNA Purity (8)D. Assessing the Quality of the RNA Template (8)V. SMART er cDNA Synthesis (9)A. General Considerations (10)B. PRoToCol: First-Strand cDNA Synthesis (10)C. PRoToCol: cDNA Amplification by lD PCR (12)VI. Analysis of cDNA Amplification Results (16)VII. T roubleshooting Guide (17)VIII. References (18)Appendix A: Protocols for PCR-Select™ (19)A. Additional Materials Required (19)B. PRoToCol: cDNA Amplification by lD PCR (19)C. PRoToCol: Column Chromatography (22)D. PRoToCol: RsaI Digestion (23)E. PRoToCol: Purification of Digested cDNA (23)F. Controls for PCR-Select cDNA Subtraction (25)G. Analysis of Results of SMARTer PCR cDNA Synthesis for PCR-Select cDNA Subtraction (25)H. T roubleshooting (27)Appendix B: Virtual Northern Blots (28)Appendix C: Protocol for Non-Directional Cloning of SMART er cDNA (29)A. Additional Materials Required (29)B. PRoToCol: ds cDNA Polishing (29)List of FiguresFigure 1. Flowchart of SMARTer cDNA synthesis (5)Figure 2. Guide to using the SMARTer cDNA synthesis protocol for PCR-Select cDNA Subtraction,Virtual Northerns, Non-Directional Cloning & library Construction, and other applications. (9)Figure 3. optimizing PCR parameters for SMARTer cDNA synthesis. (15)Figure 4. Analysis for optimizing PCR parameters (16)Figure 5. optimizing PCR parameters for SMARTer cDNA synthesis for use withClontech PCR-Select (21)Figure 6. Virtual Northern blot analysis of cDNA fragments expressed in cells producing γ-globin. (28)List of T ablesTable I: Guidelines for Setting Up PCR Reactions (12)Table II: Cycling Guidelines Based on Starting Material (13)Table III: T roubleshooting Guide for First-Strand cDNA Synthesis & SMARTer PCR Amplification (17)Table IV: T roubleshooting Guide for Preparing SMARTer cDNA for Subtraction (27)SMART er™ PCR cDNA Synthesis Kit User Manual I. List of ComponentsSMART er PCR cDNA Synthesis KitCat. No.Cat. No. 634925634926 10 rxns20 rxns Box 110 µl20 µl • SMART er II A Oligonucleotide (12 µM)5'–AAGCAGTGGTATCAACGCAGAGTACXXXXX–3' Rsa I(X = undisclosed base in the proprietary SMARTer oligo sequence) 5 µl5 µl • Control Mouse Liver T otal RNA (1 µg/µl)Box 210 µl20 µl • 3’ SMART CDS Primer II A (12 µM)5’–AAGCAGTGGTATCAACGCAGAGTACT (30)N -1N–3’Rsa I (N = A, C, G, or T ; N -1 = A, G, or C)200 µl 400 µl • 5’ PCR Primer II A (12 µM)40 µl 80 µl • 5X First-Strand Buffer (RNase-Free)250 mM T ris-HCl (pH 8.3)375 mM KCl30 mM MgCl 2100 µl 200 µl • dNTP Mix (dATP , dCTP , dGTP , and dTTP , each at 10 mM)50 µl 50 µl • Dithiothreitol (DTT ; 100 mM)10 µl 10 µl • RNase Inhibitor (40 U/µl)12 µl 25 µl • SMARTScribe™ Reverse T ranscriptase (100 U/µl)1 ml 1 ml • Deionized H 2O Box 310 20 • CHROMA SPIN™+TE-1000 ColumnsStorage ConditionsStore Control Mouse Liver T otal RNA and SMARTer II A Oligonucleotide at –70°C.• Store the CHROMA SPIN +TE-1000 Columns at room temperature.• Store all other reagents at –20°C.• Licensing InformationFor important information about the use of SMART technology, please see the Notice to Purchaser at theend of this user manual.要稀释本页已使用福昕阅读器进行编辑。
张瑛,女,1977 年出生,博士后,教授,博士生导师,理学院
硕导简介
张瑛,女,1977年出生,博士后,教授,博士生导师,理学院副院长。
2005年博士毕业于中国石油大学(北京)化工学院,2008-2009期间在美国加州大学河滨分校做博士后,导师为国际著名的多孔材料专家Pingyun Feng教授。
主要研究方向为多孔催化材料的制备和表征以及高分子合成。
以第一负责人承担完成了国家自然科学青年基金1项和北京市自然科学基金1项,目前正承担国家自然科学基金项目2项,教育部归国留学人员启动基金1项,中原油田分公司项目1项。
曾多次参与了国家973基础研究、国家自然科学基金、中国石油天然气集团公司以及中国石油天然气股份公司等项目。
已在国内外期刊上发表和接收学术论文共40余篇,SCI收录30篇;会议论文共17篇,国际会议论文12篇。
发明专利6项。
获山西省科技进步三等奖一项。
近3年代表性论文:。
农药名词英汉对照
农药名词英汉对照一、农药名称与分类农药(Pesticides)天然农药(Naturalpesticides)无机农药(Inorganicpesticides)有机合成农药(Orgenosyntheticpesticides) 化学农药(Chemicalpesticides)生物农药(Biologicalpesticides)微生物农药(Microbialpesticides)植物性农药Botanicalpesticides)广谱性农药(Broadspectrumpesticides)高毒农药(Highlytoxicitypesticides)中毒农药(Middletoxicitypesticides)低毒农药(Lowtoxicitypesticides)残留性农药(Residualpesticides)持久性农药(Persistencypesticides)无公害农药(Non-publichazardspesticides)仿生农药(Biomimeticpesticides)第一代农药(First-generationpesticides)第二代农药(Second-generationpesticides)第三代农药(Third-generationpesticides)第四代农药(Fourth-generationpesticides)限制性杀虫剂杀虫剂使用的农药(Restrictedapplicationpesticides)水溶性农药(Water-Solublepesticides)油溶性农药(Oil-Solublepesticides)超高效农(Ultrahighefficiencypesticides)农药名称(PesticideName)通用名称(CommonName)商品名称(TradeName)化学名称(ChemicalName)缩写名称(AbbreviationName)试验代号(codenumber)中文名称(ChineseName)农药分类(PesticideClassification)杀虫剂(Insecticides)杀虫谱(Insecticidalspectrum)广谱性杀虫剂(Broadspectruminsecticide) 选择性杀虫剂(Selectiveinsecticide)内吸性杀虫剂(Systemicinsecticide)植物性杀虫剂(Plantinsecticide)微生物杀虫剂(Microbialinsecticide)矿物油杀虫剂(Mineraloilinsecticide)无机杀虫剂(Inorganicinsecticide)有机合成杀虫(Organosyntheticinsecticide) 有机氯杀虫剂(Organochlorineinsecticide)有机磷杀虫剂(Organophosphorusinsecticide) 有机氮杀虫剂(Organicnitrogenousinsecticide) 拟除虫菊酯类杀虫剂(Pyrethroidinsecticide)胃毒剂(StomachPoison)触杀性杀虫剂(Contactinsecticide)熏蒸性杀虫剂(Fumigantinsecticide)混合杀虫剂(Mixedinsecticide)神经毒剂(Neurotoxin,Nervepoison)拒食剂(Antifeedants,Feedingdeterrent)忌避剂(Repellent)引诱剂(Attractant)不育剂(Chemosterilant)昆虫生长调节剂(Insectgrwothregulators)昆虫内激素(Insecthormone)蜕皮激素(MoetingHormone)保幼激素(JuvenileHormone,J.H)脑激素(Brainhormone)昆虫信息素(Insectpheromone)聚集信息素(Aggregationpheromone)性信息素(Sexpheromone)几丁质抑制剂(chitinsynthesisinhibitor) 杀藻剂(Algaecide)杀灌木剂(Brushkiller)杀菌剂(Fungicide,Bacteriocide)杀菌谱(Fungicidalspectrum)杀菌活性(Fungicidalactivity)广谱性杀菌剂(Broadspectrumfungicide) 专效性杀菌剂(Narrowspectrumfungicide) 保护性杀菌剂(Protectivefungicide)治疗性杀菌剂(Curativefungicide)内吸性杀菌剂(Systemicfungicide)非内吸性杀菌剂(Unsystemicfungicide)铲除性杀菌剂(Eradicantfungicide)无机杀菌剂(Inorganicfungicide)有机合成杀菌剂(Organosyntheticfungicide)有机硫杀菌剂(Organicsulfurfungicide)有机磷杀菌剂(Organophosphorusfungicide)有机氯杀菌剂(Organochlorinefungicide)有机杂环杀菌剂(Organicheterocyclicfungicide)植物性杀菌剂(Botanicalfungicide)病菌细胞组分合成抑制剂(Cellcomponentofgermsynthesisinhibitor)病菌能量合成抑制剂(Germenergysynthesisinhibitor)种子处理剂(Seedtreatment)种子消毒剂(Seeddisinfectant)土壤消毒剂(Soildisinfectant)农用抗生素(antibioticfungicide)效价(Titer,Titre)杀线虫剂(Nematicide)杀鼠剂(Rodenticide)无机杀鼠剂(Inorganicrodenticide)有机杀鼠剂(Organicrodenticide)植物性杀鼠剂(Botanicalrodenticide)抗凝血性杀鼠剂(Anticoagulantrodenticide)急性杀鼠剂(Acuterodenticide)杀螨剂(Miticide,Acaricide)植物激素(Planthormone)植物生长调节剂(Plantgrowthregulator)烃类植物生长调节剂(Hydrocarbonplantgrowthregulator) 三唑类植物生长调节剂(Triazoleplantgrowthregulator)有机磷类植物生长调节剂(Organophosphorousplantgrowthregulator)细胞分裂素(Cytokinins)催熟剂(Ripener)保鲜剂(Antistalingagent)催芽剂(Forcedgerminationagent)脱叶剂(Defoliant,Defoliator)生长阻滞剂(Growthretardant,Dwarfingagent)干燥剂(Desiccant)疏花疏果剂(Flowerandfruitthinningagent)休眠复苏剂(Dormancybreaker)除草剂(Herbicide,Weedkiller,Grasskiller)杀草谱(Herbicidalspectrum)杀草活性(Herbicidalactivity)广谱性除草剂(Broadspectrumherbicide)选择性除草剂(Selectiveherbicide)触杀型除草剂(Contactherbicide)激素型除草剂(Hormonetypeherbicide)输导型除草剂(Translocatableherbicide)灭生性除草剂(Sterilantherbicide)混合型除草剂(Mixedherbicide)生物除草剂(Biologicalherbicide)芽前除草剂(Pre-emergenceherbicide)播前除草剂(Pre-sowingherbicide)茎叶处理剂(Stemandlefttreatment)除草剂解毒剂(Antidote)光合抑制剂(Photosynthesisinhibitor)有丝分裂抑制剂(Mitosisinhibitor)叶绿素抑制剂(Chlorophyllsynthesisinhibitor) 无机除草剂(Inorganicherbicide)有机合成除草剂(Organosynthesisherbicide)苯甲酸类除草剂(Benzoicherbicide)苯氧羧酸类除草剂(Phenoxyherbicide)酚类除草剂(Phenolicherbicide)醚类除草剂(Diphenyletherherbicide)酰胺类除草剂(Anilideherbicide)硝基苯胺类除草剂(Nitroanilineherbicide)脲类除草剂(Ureaherbicide)磺酰脲类除草剂(sulfonylureaherbicide)咪唑啉酮类除草剂(Imidazoloneherbicide)氨基及硫代氨基甲酸酯类除草剂(Carbamateandthiolcarbamateherbicide)三氮苯类除草剂(Triazineherbicide)有机磷类除草剂(Organophosphorusherbicide)脂肪族类除草剂(Aliphaticherbicide)杂环类除草剂(Heterocyclicherbicide)超高效除草剂(Ultra-highpotencyherbicide) 二、农药加工与剂型农药加工(Pesticideprocess)原药(Technicalmaterial,简称TC)原粉(Crudepowder)原油(Crudeoil)有效成分(Activeingredient)农药制剂(formulation)固体制剂(solidformulation)液体制剂(Liquidformulation)气体制剂(Gasformulation)母粉(Dustbases)母液(Mothersolution,Motherwater)剂型(Typeofformulation)粉剂(Dust)气流粉碎(Aircurrentshiver)机械粉碎(Mechanicalshiver)无飘移粉剂(Driftlessdustformulation)超微粉剂(Flo-dust)追踪粉剂(Trackingpowder)分散度(Dispersity,Dispersiondegree)分散体系(Dispersesystem)可湿性粉剂(Wettablepowder)可溶性粉剂(Watersolublepowder)颗粒剂(Granule)水分散性颗粒剂(Waterdispersiblegranule) 微粒剂(Micro-granule)大粒剂(Macro-granule)细粒剂(Finegranule)挤压造粒(Extrusiongranulation)吸附造粒(Absorbtiongranulation) 包衣造粒(Coatinggranulation)滚动造粒(Ballupgranulation)乳油(Emulsifiableconcentrate) 乳状液(Emulsion)浓乳剂(concentrateemulsion)水剂(Aqueoussolution)油剂(Oilsolution)胶体剂(colloidalagent)胶悬剂(Flowableformulation)乳膏(Emulsifiablepaste)片剂(Tablet)块剂(Block)胶囊剂(Capsuleagent)微胶囊剂(Microcapsule)超低容量喷雾剂(Ultralowvolumeagent)缓释剂(Controlreleaseformulation)物理型缓释剂(Physicaltypecontrolreleaseformulation) 化学型缓释剂(Chemicaltypecontrolreleaseformulation) 烟剂(Smokegenerator)气雾剂(Aerosoldispenser)种子包衣剂(Seedcoating)水面飘浮剂(Watersurfaceleafingagent)熏蒸剂(Fumigant)抗萎剂(Anti-wiltingagent)警戒色(Warningdye,Warningcolor)警戒气(Warninggas)农药辅助剂(Supplementaryagent)表面张力(Surfacetension)表面活性剂(Surfaceactiveagent)离子型表面活性剂(Ionicsurfaceactiveagent) 阴离子型表面活性剂(Anionicsurfactant)阳离子型表面活性剂(Cationicsurfactant)非离子型表面活性剂(Nonionicsurfactant)混合型表面活性剂(Mixturesurfactant)天然表面活性剂(Inartificialsurfactant)亲水亲油平衡值(Hydrophile-lipophilebalance) 无机性值(Inorganicvalue)乳化作用(Emulsification)乳化剂(Emulsifyingagent)乳化性(Emulsifiability)水包油型乳状液(Emulsion,oilinwater)油包水型乳状液(Emulsion,waterinoil)湿润剂(Wettingagent)接触角(Contactangle)展开剂(Spreader)扩散剂(Spreader)扩散系数(Diffusioncoefficient)分散剂(Dispersingagent)渗透剂(Penetratingagent,Penetrant) 固着剂(Adhesiveagent,Stickyspreade) 抑泡剂(Foamdepressant)发泡剂(Foamingadjuvant)溶剂(Solvent)助溶剂(Latentsolvent)增溶溶解(Solubilization)助悬剂(Helpsuspendagent)增效剂(Synergist)增效作用(Synergism)增效比(Synergisticspecificvalue)稳定剂(Stabilizingagent,Stabilizer) 减活化剂(Deactivatingagent)光敏剂(Photosensitizer)防氧化剂(Antioxidant)抗冻剂(Antifreezer)抗凝剂(Anticoagulant)防崩解剂(Anti-breakupagent)填充剂(Soliddiluent,Carrier)非活性成分(Inertingredient)稀释剂(Diluent)稀释率(Diluentratio)液体稀释剂(Liquiddiluent)陶土(Potteryclay)高岭土(Kaoline)硅藻土(Diatomearth)粘土(Clay)皂素(Saponin)皂角(Gledilschiasinensis)纸浆废液(Paperpulpliquidwaste) 茶籽饼(Tea-seedcake)拉开粉(NekalBX)助燃剂(Combustionimprover)发烟剂(Fumingagent)消燃剂(Flameinhibitingagent) 三、农药使用技术、药效及毒理喷雾法(Spray,spraying)高量喷雾法(Highvolumespray)常量喷雾法和常规喷雾法中容量喷雾法(Middlevolumespray) 低容量喷雾法(Lowvolumespray)超低容量喷雾法(Ultralowvolumespray)航空超低容量喷雾法(Aviationultralowvolumespray) 针对性喷雾(Placementspraying)飘移累积性喷雾(Incrementaldriftspraying)飘移性指数(Driftindex)喷幅(Applicationwidth,Swsthwidth)有效喷幅(Effectiveapplicationwidth)雾化(Atomization)雾化原理(Atomizingprinciple)雾滴的弹跳(bouncingofdroplet)喷洒速度(Applicationspeed)喷洒高度(Applicationheight)雾锥角(Coneangle)空心雾锥(Hollowcone)实心雾锥(Solidcone)压力雾化法(Pressureatomization)旋转离心雾化法(Rotatingatomization)转碟雾化法(Rotatingdiscatomization)静电雾化法(Electrostaticatomization)撞击雾化法(Impactatomization)液膜破裂(Liquidsheetperforation)液丝断裂(Ligamentdisintegration)雾滴(Spraydroplet)雾滴群(Spraycloud)雾滴密度衰减(Attenuationofdropletsdensity) 雾滴衷减系数(Attenuationcoefficient)喷粉法(Dusting)撒颗粒法(Granuleapplication)浸种浸苗法(Seedsoakingandimmersionshoot) 加药温汤浸种法(Modifiedhotwatertreatment)毒土法(Incorporation,toxinsoilmethod) 毒饵法(Poisonbaitmethod)泼浇法(Pouringmethod)甩施法(Free-swingingapplication)点涂法(Pointbrushmethod)熏蒸法(Fumigation)空间熏蒸(Spacefumigation)土壤熏蒸(Soilfumigation)拦种法(Seeddressing)环毒法(Poisonring)灌注法(Drenchandfillmethod)轮换使用(Rotationapplication)混合使用(Combinedapplication)混合相容性(Compatibility)点播穴施药(Pricking-inholetreatment)垄作施药(Ridgeapplication)垄间施药(Furrowapplication)带(条)状施药(Bandapplication,Stripeapplication)株间施药(Cropspaceapplication)植株根部施药(Plantfootapplication)局部施药(Topicalapplication)全面施药(Overallapplication)定向施药(Directedapplication)秋季施药(Autumnapplication)土壤处理(Soiltreatment)土壤消毒(Soildisinfection)水面施药(Paddywaterapplication,Submergedapplication) 混土施药法(Mixedsoilapplication)树干注射(Trunkinjection)树干涂抹(Barktreatment)叶面喷洒(Foliarapplication)种子消毒法(Seeddiskinfection)合理用药(properapplication)安全用药(Safeapplication)对症下药(Placementsymptomapplication) 适量用药(Properrateofapplication)适时用药(Punctualapplication)避毒措施(Evasiontoxicitymeasures)播前施药(Pre-sowingapplication)播后施药(Post-sowingapplication)芽前使用(Pre-emergenceapplication)芽后使用(Post-emergenceapplication)使用时期(Permissibleperiodofapplication) 衡释倍数(Dilution)药效(Efficiency)药效期(Periodofefficacy)流失(Runoff)渗漏(Permeability-weepage)飘移(Drift)蒸发(Evaporate)再分布作用(Redistribution)雾粒(Dropletandparticle)有效面积(Biocidalarea)半数致死距离(LDist50)药剂回收率(Recoveryofpesticide)叶面积指数(Leafareaindex,LAI)展开系数(Spreadingfactor)叶表面糙度(Roughnessofleafsurface)生物最佳粒径(Biologicaloptimumdropletsize,BODS) 靶标(Target)作用点(Siteofaction,Targetpoint)作用方式(Modeofaction)光活性化(Photoactivation)乙酰胆碱(Acetylcholine)乙酰胆碱酯酶(Acetylcholinesterase,AchE)乙酰胆碱受体(Acetylcholineaccepter)微粒体氧化酶(Microsomefunctionoxidase,MFO) 靶子酶(Targetenzyme)玉米酮(MBOA)酰胺水解酶(Amidehydrolyticenzyme)毒性基团(Toxicgroup)结合作用(Conjugation)希尔反应(Hillreaction)化学调节(Chemicalregulation)干涉作用(Crossprotection)表面化学治疗(Surfactchemotherapy)外部化学治疗(Crustchemotherapy)内部化学治疗(Internalchemotherapy)化学治疗指数(Chemotherapeuticindex)杀菌作用(Fungicidalaction)抑菌作用(Fungistaticaction)阻止作用(Inhibitaction)时差选择性(Differenceoftimeselectivity)位差先择性(Positiondifferenceselectivity)形态差异选择(Morphologicdifferenceselectivity) 生理选择性(Physiologicaldifferenceselectivity) 生化选择性(Biochemicaldifferenceselectivity) 属间选择性(Inter-generaselectivity)选择性指数(Selectivityindex)毒力(Toxicity)相对毒力指数((Relativetoxicityindex)有效浓度(Availabilityconcentration)半数抑制剂量(Medianinhibitiondose,)半数击倒时间(Mediankncokdowntime,KT50)半数致死时间(Medianlethaltime,LT50)致死中浓度(Medianlethalconentration,LC50)绝对致死浓度(Absolutelethalconcentration) 四、农药对人畜的毒性毒性(Toxicity)农药中毒(Pesticideintoxication)致死中量(Medianlethaldose,LD50)忍受极限中浓度(Mediantolerancelimit,TLm)最低中毒剂量(Minimaltoxiclevel)最大安全剂量(Maximalsafetydose)最高无作用剂量(Maximumnon-effectlevel,MNL)最大耐受浓度(Maximaltolerancelimitconcentration,MLC) 毒效比值(Toxiceffectratio)急性毒性(Acutetoxicity)急性中毒(Acuteintoxication)亚急性毒性(Subacutetoxicity)慢性毒性(Chronictoxicity)慢性中毒(Chronicintoxication)残留毒性(Residualtoxicity)累积毒性(Cumulativetoxicity)吸入毒性(Inhalationtoxicity)口服毒性(Oraltoxicity)经皮毒性(Dermaltoxicity)生殖毒性(Reproductivetoxicity)神经毒性(Neurotoxicity,Nervetoxicity)选择毒性(Selectivetoxicity)鱼毒(Fish-toxicity)二次毒性(Secondaryhazardtoxicity) 二次中毒(Secondaryintoxication)迟发性神经毒性(Delayedneurotoxicity) 三致性(Tri-pathogenicity)致癌性(Carcinogenicity)致畸性(Teratogenicity)致突变性(Mutagenicity)突变指数(Mutagenicityindex)致肿瘤性(Oncogenicity)一般毒性试验(Generaltoxicitytest)特殊毒性试验(Specifictoxicitytest)急性毒性试验(Acutetoxicitytest)慢性毒性试验(Chronictoxicitytest)致癌试验(Carcinogenicitytest)致畸试验(Teratogenicitytest)Ames试验(Amestest)一生毒性试验(Lifespantoxicitytest)三代生殖试验(Tri-generationtest)皮肤刺激性(Skinirritation)粘膜刺激性(Mycosisirritation)口腔给药(Oraladministration)皮触给药(Dermaladministration)腹腔投药(Intraperitonealadministration) 生产性中毒(Productoryintoxication)非生产性中毒(Non-productoryintoxication) 五、农药对生态环境的作用化学防治(Chemicalcontrol)物理防治(Physicalcontrol)生物防治(Biologicalcontrol)农业防治(Agriculturalcontrol)综合防治(Integratedcontrol)生态系统(Ecologicalsystem,Ecosystem)生态平衡(Ecologicalequilibrium)生态影响(Ecologicaleffect)生态可塑性(Ecologicalplasticity)生物群落(Biocoenosium)农药降解(Pesticidedegradation)农药归宿(Pesticidefate)生物降解(Biologicaldegradation)生物降解指数(Biologicaldegradationindex) 非生物分解(Nonbiologicaldegradation)微生物分解(Microbialdegradation)衍生(Derivation)异构化(Isomerization)光化(Photochemicalreaction) 裂解(Fragmentation)轭合(Conjugate)降解曲线(Degradationcurve) 降解产物(Degradationproduct) 母体化合物(Parentcompound) 风化(Weathering)土壤中行为(Behaviourinsoil)土壤中移动(Movementinsoil) 地表径流(Surfacerunoff)淋溶性(Eluviation)农药代谢(Pesticidemetabolism) 代谢途径(Metabolicpathway) 钝化(Deactivation)活性化(Activation)共同代谢(Co-metabolism)解毒代谢(Detoxicationmetabolism) 体内异物(Xenobiotics)田间小气候(Fieldmicroclimate)种群复起现象(Pestoverrun)有害生物(Injuriousbiota)防治对象(Targetorganisms)杂草(Weed)一年生杂草(Annualweed)多年生杂草(Perennialweed)水田杂草(Paddyfieldweed)旱田杂草(Uplandfieldweed)单子叶杂草(Monocotyledonousweed) 双子叶杂草(Dicotyledonweed)深根性杂草((Deep-rootedweed)恶性杂草(Viciousweed)寄生性杂草(Parasiticalweed)害虫(Pest,Insect,Injurious)咀嚼式口器害虫(Masticatorymouthpartsinsect)刺吸式口器害虫(Suckingmouthpartsinsect)虹吸式口器害虫(Siphonmouthpartsinsect)舐吸式口器害虫(Raspingsuckingmouthpartsinsect) 锉吸式口器害虫(File-suckingmouthpartsinsect)植食性害虫(Plant-feedinginsect)地下害虫(Subterraneousinsect)卫生害虫(Hygienicalinsect)线虫(Eelworm)螨虫(Mites)病原物(Pathogenousorganism)真菌病害(Mycosis)细菌性病害(Bacteriosis,Bacterialdisease) 植物病毒病(Plantvirusdisease)鼠类(Rodent)天敌(Naturalenemy)低等动物(Lowlyanimal)温血动物(Warmbloodedanimal)药害(Phytotoxicity)急性药害(Acutephytotoxicity)慢性药害(Chronicphytotoxicity)残留药害(Residualphytotoxicity)二次药害(Secondaryphytotoxicity)飘移药害(Drifthazard)混用药害(Mixedapplicationphytotoxicity) 误用药害(Mistakephytotoxicity)过量药害(Excessphytotoxicity)根部药害(Rootphytotoxicity)叶面药害(Foliagephytotoxicity)敏感性药害(Susceptiblecrop)急性药害(Acutephytotoxicity)慢性药害(Chronicphytotoxicity)残留药害(Residualphytotoxicity)二次药害(Secondaryphytotoxicity)飘移药害(Drifthazard)混用药害(Mixedapplicationphytotoxicity) 误用药害(Mistakephytotoxicity)过量药害(Excessphytotoxicity)根部药害(Rootphytotoxicity)叶面药害(Foliagephytotoxicity)敏感性作物(Susceptiblecrop)抗药性(Resistant)自然抗药性(Naturalresistant)获得抗药性(Acquiredresistant)多重抗性(Multipleresistance)单一抗性(Singleresistance)交互抗性(Crossresistance)负交互抗性(Negativelycrossresistance)抗性系数(Resistancefactor)拮抗作用(Antagonism,Antagonisticaction) 异株克生作用(Allelopathyaction)异株克生化合物(Allelopathyaction)农药公害(Pesticidepublichazards)农药污染(Pesticidecontamination)直接污染(Directcontamination)土壤污染(Soilcontamination,Landpollution) 大气污染(Airpollution)水质污染(Waterpollution)食品污染(Foodpollution)人体污染(Manpollution)二次污染(Secondarypollution)农药残留(Pesticideresidual)残留性(Persistence,persistency)残留量(Residualdose)农药残留物(Pesticideresidues)残效(Residualeffect,Residualactivity)残效期(Periodofresidualeffect)最终残留(Terminalresidue)母体残留(Parentresidual)结合残留(Boundresidue)可忽略残留(Negligibleresidue)生物浓缩(Biologicalconcentration,Bioconcentration)食物链(Foodchain,Foodweb)生物浓缩系数(Biologicalconcentrationfactor)生物分解指数(Biologicaldecompositionindex)残留标准(Toleranceforpesticideresidue)每日允许摄入量(Acceptabledailyintake,ADI)安全系数(Safetyfactor)最大允许残留量(Maximumresiduelimit,MRL)食物系数(Foodfactor)农药半衰期(Half-lifeforpesticideresidue)安全间隔期(Pre-harvestinterval,Pre-harvestperiod) 农药安全使用标准(Thecriterionforsafeuse)六、农药登记、商品质量及残留分析农药登记(Registrationofpesticides)临时登记(Temporaryregistration)品种登记(Varietalregistration)补充登记(Supplementaryregistration)延长登记(Prolongationregistration)暂缓登记(Hesitationregistration)登记有效期(Validperiodofregistration)农药质量标准(Qualitylevelofpesticide)国家标准(Statestandard)部颁标准(Ministerialstandard)企业标准(Enterprisestandard)暂行规定(Tentativespecify)技术指标(Technicalindex)农药纯品(Pesticidepureproduct)提纯(Clean-up)农药工作标准品(Standardsampleofpesticide) 农药分析(Pesticideanalysis)农药杂质(Pesticidedirt)粉粒细度(Particlesizeofpowderandgranule) 筛目(Sievemesh)平均粒径(Meanparticlesize)稳定度(Stability)pH值(pHvalue)凝固点(Freezingpoint)沸点(Boilingpoint)闪点(Flashpoint)熔点(Meltingpoint)酸度(Degreeofacidity)含水量(Watercontent)标准硬水(Standardhardwater)悬浮性(Suspensibility)悬浮率(Percentageofsuspension)硬度(Hardness)结块(Nodeclod)絮结作用(Flocculation)结晶析出(Crystallizeseparator-out) 沉淀(Settlings)分层(Demixion,creaming)比重(Specificweight)假比重(Apparentspecificgravity)松密度(Bulkdensity)比表面积(Specificarea)静止角(Angleofrepose)水中崩解性(Disintegrabilityinwater) 贮藏试验(Storagetest)热贮藏试验(Heatstoragetest)冷贮藏试验(Coldstoragetest)化学分析(Chemicalanalysis)定性分析(Qualitativeanalysis)定量分析(Qantitativeanalysis)酸碱滴定法(Acid-basetitrationmethod)重量分析法(Gravimetry)容量分析法(Volumetry)非水溶液滴定法(Nonaqueoustitrationmethod)氧化还原滴定法(Oxidation-reductiontitrationmethod)碘量法(Iodimetry)溴化法(Brominatonmethod)银量法(Argentometrictitration)重氮化法(Diazoniummethod)气相色谱法(Gaschromatography)高效液相色谱法(Highefficiencyliquidchromatography)薄层色谱法(Thin-layerchromatography)薄层色谱扫描法(Thin-layerchromatographicscan-method)分光光度法(Spectrophotometry)红外光谱法(Infra-redspectrometry)含水量测定(Watercontentdetermination)粉粒细度测定(Particlesizedetermination)酸度测定(Aciditytest)乳状液稳定性测定(Emulsionstabilitytest)湿润性测定(Wettablepropertiestest)粉剂流动性测定(Dustfluiditytest)粉粒细度测定(Particlesizedetermination)酸度测定(Aciditytest)乳状液稳定性测定(Emulsionstabilitytest)湿润性测定(Wettablepropertiestest)粉剂流动性测定(Dustfluiditytest)悬浮率测定(Suspensibilitytest)苯不溶物测定(Nonsolubilitymattertobenznetest)闪点测定(Flashpointtest)熔点测定(Meltingpointtest)溶解度测定(Solubilitytest)粘度测定(DegreeofVisositytest)农药残留分析(Pesticideresidualanalysis)多组分残留分析(Multi-residueanalysis)残留分析前处理(Pro-determinetreatmentofresidueanalysis) 提取(Extract,Extraction)提取剂(Extractingagent)组织捣碎(Histologicalmash)液-液分配(Liquid-Liquiddistribution)净化(Decontamination,clean-up)浓缩(Enrichment)回收率(Percentrecovery,Recovery)检出界限(Detectablelimit,Limitofdetection)灵敏度(Sensibilty)精密度(Preciosity)准确度(Accuracy)残留动态(Residualdynamicstate)残留动态曲线(Residualdynamicstatecurve) 七、农药生物测定与田间试验农药生物测定与田间试验(Pesticidebioassay) 胃毒毒力测定(Stomachtoxicitydetermine) 触杀毒力测定(Contacttoxicitydetermine)内吸毒力测定(Systemictoxicitydetermine) 熏蒸毒力测定(Fumigationtoxicitydetermine) 杀菌剂毒力测定(Fungitoxicitydetermine)琼脂扩散法(Agardiffusionmethod)琼脂衡释法(Agardilutionmethod)孢子萌发试验(Sporegerminationtest)除草剂生物测定(Herbicidebioassay)鱼毒测定(Fishtoxicitydetermine)农药筛选试验(Pesticidalscreeningtest)残留农药生物测定(Residualpesticidebioassay)农药代谢的生物测定(Pesticidemetabolicproductbioassay) 致死中量测定(Medianlethaldosagedetermine)农药蓄积性试验(Pesticideaccumulatitytest)蓄积系数(Accumulationcoefficient)田间药效试验(Fieldefficacytest)田间小区试验(fieldplottest)田间大面积试验(Fieldextensivetest)农药残留试验(Pesticideresiduetest)单因子试验(Onefactortest)多因子试验(Multiplefactortest)对比试验(Pairingtest)对照处理(Checktreatment)空白处理(Blanktreatment)药害试验(Phytotoxitytest)盆栽试验(Potexperiment,potincubationtest) 定位试验(Locationtest)采样(Harvestsample)主观样本(Subjectivesample)客观样本(Objectivesample)死亡率(Percentagedead,Mortalityrate)校正死亡率(Adjustedpercentagedead)发病率(Diseaseincidence,Incidenceofdisease) 病情指数(Statusofdiseaseindex)植株减退率(Plantdiminishrate)鲜重减退率(Freshweightdiminishrate)八、农药商品经营农药商品经营(Commercialpesticideoperate)统购统销(Unitedpurchasingandmarketing)贮存(Storage)露天贮存(Openstorage)简易棚贮存(simpleshedstorage)仓库贮存(Storehousestorage)地下室贮存(Subterraneousstorage)堆码方式(Modeofstacking)农药商品包装(Commoditycasingofpesticide)包装标志(Packingidentifyingmarks)商品合格证(Commoditycertification)商品说明书(Commoditydescriptive)农药商品运输(Commoditypesticideconveyance) 公路运输(Highwaytransportation)铁路运输(Railwaytransportation)水路运输(Waterwaytransportation)航空运输(Aerialtransportation)植物医院(Planthospital)出厂价格(Factoryprice)零售价格(Retailprice)最后有效期(Terminationdateofqualityguaranteeterm) 九、农药合成及其它农药合成(Pesticidesynthesis)农药筛选(Pesticidescreening)合成路线(Syntheticroute)仿生合成(Mimetismsynthesis)相转移催化合成(Phasetransfercatalyzesynthesis)定向合成(Orientingsynthesis)转位重排(Indexrearrangementreaction)一步法合成(One-stepsynthesis)。
Seed-index目录
Abelmoschus esculentus193Abies amabilis385abscisic acid (ABA)184, 244Abutilon theophrasti15, 18, 202Acacia spp.94, 102, 283ligulata93longifolia269Acer spp.132, 270pseudoplatanus206Achyranthes aspera205acorns114, 118, 174, 175, 176, 177 Acrocephalus spp.139Adenostoma fasciculatum320Aegilops geniculata63, 68, 76, 77, 78, 79 kotschyi64neglecta64ovata63, 65, 76, 77triuncialis64Aellenia autrani62Aesculus californica20hippocastanum274after-ripening184–187, 189, 190, 262–267, 278, 284, 294, 302Afzelia africana346Agave deserti6, 10ageing of seeds205, 318Ageratum conyzoides251agoutis114Agropyron repens4, 5, 8, 9, 12, 16 Agrostemma githago283Agrostis capillaris175, 228, 230curtisii64stolonifera227, 378Aizoaceae59, 60, 61, 69Alaria nana20alkaloids337allelochemicals301, 302allelopathy294, 301, 306, 319, 320 allocationcurrency of4, 5in seedlings347Allophyllum glutinosum320Alopecurus pratensis378alternate bearing168, 171, 175, 176 alternating temperatures see temperatures, fluctuatingaltitude70Amaranthaceae68, 119Amaranthus caudatus250, 251retroflexus68, 76, 244, 251 Amaryllidaceae18Ambrosia artemisiifolia11, 17, 245, 248, 249, 277, 301, 304trifida8, 16, 17ammonium293, 295, 300, 304Ampelion stresemanni119Amphicarpaea bracteata89purshii11amphicarpy66Amyema quadang131Anacardiaceae163, 193, 314Anacardium excelsum337Andricus quercus-calicis176Anemone spp.101annelids111Annonaceae163Anoda cristata202anthills340, 346, 376Anthoxanthum odoratum89, 230 Anthurium harrisii120ants32, 43, 45, 91–96, 101, 102, 111, 114, 116,118, 120, 167, 168, 170, 220, 223, 344, 346397apes126, 133, 142Aphanes arvensis278Apiaceae66Apion ulicis171Apium graveolens66, 67, 201 Apocynaceae163Apodemus sylvaticus175appendages, for dispersal91apple270, 271, 272, 302Arabidopsis spp.184thaliana15, 74, 230, 262, 278, 298 Arachis hypogaea196Araucariaceae194Arceuthobium spp.112Arctium spp.112Arctostaphylos spp.115Argyranthemum spp.185Aristida contorta283, 284oligantha301Arrhenatherum elatius173, 175Artemisia californica320trientata273arthropods344Artibeus spp.137, 142, 148artiodactyls143Arundinella hirta228Asclepias spp.342Ascomycota344ash (tree)239, 254Asparagus densiflorus193Aster pilosus244Asteraceae33, 46, 48, 63, 66, 69, 92, 314, 320 Asteriscus hierochunticus66pygmaeus66, 78Astragalus cibarius169utahensis169Astrocaryum mexicanum20ATP synthesis264Atriplex dimorphostegia62heterosperma79holocarpa62inflata62rosea62semibaccata62spongiosa62autotoxicity302Avena fatua72, 185, 186, 203, 264, 266, 298, 300, 304, 305Avenula marginata64avocado194badger mounds89badgers376bamboo97, 324Banksia spp.33barley185, 186, 195, 196, 203, 263, 265, 282Basidiomycota344, 345, 346bats100, 114, 118, 119, 126, 129, 131, 133, 134, 135, 137, 138, 141, 142, 146, 147, 148 bayberries116, 119beans336bears90, 119, 126beetles170, 223bet-hedging strategy35, 36Betula spp.325pubescens6, 224verrucosa244Bidens spp.112pilosa75, 205, 254polylepis277Bignoniaceae33, 336birdsas frugivores101, 113, 114, 125, 126, 129, 132, 133, 137, 142, 146, 147, 148, 149 as seed dispersers43, 93, 95, 96, 98, 100, 102, 200birds of paradise116bison113, 222Bixa orellana193Bixaceae193blackberries115, 150blackcaps133, 148Blandfordia grandiflora20Blepharis spp.78blueberries115Bombacaceae33Bombycilla garrulus144Boraginaceae314, 320Bouteloua gracilis384, 385bowerbirds116Brassicaceae61, 62, 73, 76, 314Briza media230Bromus hordeaceus378rigidus320tectorum266, 339Brycon sp. 120Buchloe dactyloides113bugs170buoyancy91, 342burial37, 40, 50, 95, 170, 199, 223, 246, 248, 254, 299, 301, 304, 318, 339, 389 caching92, 98, 113, 176Cakile edentula61Calamagrostis epigejos226, 227Calathea ovandensis20, 384calcium336Callichlamys latifolius336Calluna vulgaris221, 224, 251, 254, 324, 365 Calotropa procera251Campanula rotundifolia230Canna spp.193Cannaceae193, 267canopy filtered light see leaf canopy shade Capsella bursa-pastoris187, 189, 278 carbon deficit41, 42carbon dioxide18, 186, 304, 305, 317 Cardiospermum halicacabum193Carex bigelowii231canescens273flacca227, 230oederi227trinervis227Carica papaya194Carlina vulgaris222, 244, 249carnivores119Carollia spp.142, 148perspicillata137Carrichtera annua73, 75, 78Carya illinoensis115ovata115Caryophyllaceae60, 283, 314, 316Cassia obtusifolia202cassowaries118, 133Castanea spp.194Casuarius casuarius133catbirds116, 117Caulanthus heterophyllus317Ceanothus spp.193, 270crassifolius312, 316sanguineus228Cecropia spp.255obtusifolia228, 250, 383, 385, 386peltata137celery201cellulose337Cenchrus ciliaris185, 186longispinus66Centaurea melitensis320nigra173, 175, 230Centaurium spp.13Cephalophus spp.126monticola135sylvicultor135Cercopithecus spp.135, 142charred wood314, 316, 317, 319, 320, 322 cheatgrass266Cheiridopsis spp.79aurea69chemical defence223, 347chemical environment293, 299, 306 Chenopodiaceae62, 70, 71, 267 Chenopodium album70, 71, 74, 75, 76, 184, 185, 191, 192, 200, 248, 250, 251, 277,280, 295, 296, 301, 305bonus-henricus70, 78, 248botrys251polyspermum71, 72, 74cherries150chestnut194chickpeas196, 282chilling172, 190, 216, 244, 246, 254, 266,270–276, 278, 281, 284, 294 Chionochloa spp.38Chlorocardium rodiei42chlorophyll79, 185, 238, 242, 298Cicer arietinum196cinnabar moth177Cirsium palustre244, 248, 249, 254 Cistaceae312civits119climate change224Clostridium spp.305clover201clutch size19cocoa194coexistence172, 179Coffea arabica194coffee194Coleoptera167Collinsia verna218colonization18, 50, 100, 102, 117of gaps341, 376, 387, 389of islands99, 100postfire311Colossoma spp.120Columba palumbus139compensation point42competition15, 19, 38, 40, 49, 50, 99, 295, 298, 305, 339, 343, 345, 375, 381, 386 in seedlings40, 88, 89, 90, 94, 111, 114, 117, 148, 173, 219, 324, 338, 340 competitive exclusion172Compositae222, 283see also Asteraceaeconditioning period302conifers99Convallaria majalis271Convallariaceae267Convolvulaceae193, 267, 312, 314, 320 Convolvulus cyclostegius320Corollia perspicillata118Corynephorus canescens229cotingas119cotton303cotyledons40, 41, 42, 333, 335, 336, 337, 346, 382morphology of 333, 336cowpea196coyote149crabs343cranes118Crematogaster spp.120Crinum erubescens18crow167Cruciferaesee BrassicaceaeCryptantha spp.319Cryptantha intermedia320cryptocotylar cotyledons41cucumbers72, 74Cucumis prophetarum72, 73, 75sativus72, 75, 78Cucurbitaceae72cues, environmental216, 312, 313, 315, 317, 318, 324, 382, 384, 389Cupressus spp.312, 322Curculio glandium176Cyanopica cyanus139cycads171Cynodon dactylon229Cynosurus cristatus378Cyperus odoratus278Cypripedium acaule20, 21Cyrtanthus ventricosus324cytokinin244Dactylis glomerata175, 228, 229, 262, 264, 266, 280, 282, 378damping-off344, 345Danthonia decumbens230spicata16dark reversion of phytochrome243, 246, 250, 256dark, seed response to68, 184, 242–250, 254, 281, 298, 301, 382Datura spp.193ferox248stramonium200Daviesia mimosoides269daylength59, 71, 72, 78, 238during maturation59, 69, 70–74, 78, 193 daylight238, 239, 240, 241, 242, 249, 250, 252, 254, 255, 256see also lightdeer113, 126, 176defence, in seedlings337, 338Deschampsia flexuosa222desiccation118, 273, 279, 285, 296, 340, 342 Desmodium tortuosum 203diaspores33Dicaeum spp.119, 143hirundinaceum131Dicentra chrysantha316, 318Digitalis purpurea216, 223, 250Dilleniaceae314dimorphism62Dimorphotheca polyptera63dioecy98, 132Dioscorea spp.273Diospyros virginiana193Dipodomys spp.118Diptera167Dipterocarpaceae194, 346Dipteryx panamensis344directed dispersal hypothesis117, 148 dispersal60, 85–102, 216, 335, 361, 363, 378, 388 ability387by adhesion43, 45by animals111–120, 255by ants43, 45, 91–96, 99, 101, 102, 117by ballistic mechanism46, 91, 92, 94, 95, 99by birds43, 91, 93, 95, 96, 98, 99, 100, 102, 111, 112, 113, 115, 141, 142, 221, 222 consequences of98–102costs of89curves388directed117distance46, 339by fish111by mammals43, 111–115and persistence219, 221phylogenetic contraints on93, 101, 102by rain78by reptiles111, 114and seed size43, 45structures44targeted388, 390temporal206timing of76, 96, 97, 312unassisted45by vertebrates32, 43, 45, 92, 94, 95, 99, 101, 111, 163by water111, 220by wind32, 43, 45, 46, 62, 92, 93, 94, 96, 99, 100, 101, 111, 220, 222, 229, 325,372, 387, 389Disporum spp.91disturbance2, 37, 38, 173, 228, 229, 230, 237, 246, 247, 248, 249, 253, 254, 256, 295,298, 311, 320, 325, 339, 341, 366, 367,372, 375, 379, 381, 388, 389DNA-content48dodo101dogs119dormancy35, 170, 183–207, 362, 363breaking202, 239, 242, 243, 244, 245, 246, 247, 249, 250, 253, 254, 255, 271, 274,279, 295, 299, 303, 304, 306, 318, 342 conditional187, 262, 275cyclic see dormancy, seasonal changes indark246, 248, 254, 255, 256endogenous312, 313, 317, 319enforced191, 319, 320exogenous312, 313induced272, 276, 278, 285, 300, 319, 320innate262, 272, 319, 320, 324, 343leaf canopy induced252, 254, 256loss of202, 206, 261physical76, 193, 216, 267primary186, 187, 188, 190, 206, 245, 266, 294, 302relative275, 276, 277, 278release276, 278, 269, 284, 285seasonal changes in190, 191, 216, 253, 254, 275, 278, 279, 285, 294, 295, 299, 302 secondary186, 187, 188, 190, 206, 272, 274, 278, 294, 295, 299, 302, 304 Draba verna264Drosera intermedia16drought50, 253, 273, 311, 321, 322, 333, 339, 342, 343, 348, 367dry habitats37, 40dry storage61, 66, 186Ducala spp.143ducks118Dunalia arborescens140dung116, 381, 387earthworms37, 111, 200Ebenaceae193Echinochloa crus-galli203, 275, 304, 305 turnerana188, 189Eichhornia crassipes6Elaeis guineensis194elaiosomes32, 95, 102, 114, 116, 118, 120 Elattaria cardamomum193elephants119, 126, 133elm196emberizids139embryos32, 34, 42, 78, 237, 243, 244, 267, 271, 284, 304, 313, 382emergence of seedlings39, 40, 205, 249, 253, 254, 275, 276, 279, 285, 305, 306, 346,381, 382, 383, 384, 385, 386, 387, 389,390periodicity of191timing of12, 19, 63, 274, 281Emex spinosa67, 79Emmenanthe spp.323penduliflora316, 317, 318, 320 endosperm32, 41, 244, 271, 336 endozoochory100, 127, 229energy reserves, in seeds33, 333, 334, 340 energy storage, in cotyledons338 Enterolobium spp.115environmental cues see cuesEpacridaceae314Epilobium angustifolium325epiphytes85, 348, 376Erica tetralix251, 254, 324Ericaceae163, 314Erigeron divergens320Eriophorum vaginatum231Erithacus spp.139rubecula146Erythroxylum ovalifolium120escape hypothesis117escape time243, 255establishment of seedlings11, 18, 31, 33, 36, 37, 38, 40, 49, 126, 183, 206, 215, 217, 219,221, 230, 261, 273, 331, 338, 340, 342,361, 362, 368, 378, 379, 381, 386–389 ethanol304ethephon72ethylene72, 78, 190, 294, 303, 304, 305, 317 etiolation18, 41, 340Eucalyptus spp.33Eucrypta chrysanthemifolia320Euphonia spp.143Euphorbiaceae76evolutionarily stable strategy (ESS) 49, 50, 221 Fabaceae46, 60, 66, 70, 78, 312, 314, 320, 323, 346Fagus spp.97, 132, 270sylvatica169fecundity10, 11, 12, 15–21fern spores294Festuca arundinacea230, 264ovina175, 228, 230pratensis175, 283rubra175, 378Ficedula hypoleuca146Ficus spp.115, 131, 133, 137, 142insipida134fig wasps174figs114, 134, 150Fimbristylis littoralis244finches115, 117, 139, 148fire49, 95, 114, 199, 219, 221, 228, 229, 268, 269, 270, 333, 336, 340, 342, 367, 375 role in regeneration311–325fire-return interval312, 313fish111, 114, 120fitness16, 18, 19, 34, 42, 88, 89, 90, 93, 95, 125, 175, 176, 219, 237, 335flooding339flowering, smoke-triggered324flowerpeckers119flycatchers115, 141flying foxes119foraging99, 101, 113, 141, 148, 168, 344 Formica podzolica91foxes126Fragaria virginiana8Fraxinus excelsior169, 365frogs120frost damage338frugivores92, 99, 101, 114, 115, 118, 138 frugivory116, 125–150fruit125–150abortion174, 176accessibility of141carbohydrates in116, 136, 137colours of113design94, 116, 133, 142, 149digestion of145, 146dry96fleshy92, 95, 96, 100, 101, 102, 117, 125, 126, 128, 131, 132, 135, 137lipid in116, 136, 137minerals in137, 138nutrient content of136–138phenols in138production126, 127, 128, 150protein in116, 136, 137, 138, 144seasonality of129, 148size87, 94, 133, 134, 135, 136, 149sticky112tannins in138waxes in116fruiting phenology96, 97, 128functional groups361, 378fungi70, 101, 197, 344, 345, 346Fusarium spp.344Galium aparine250, 251gall wasps176, 177game theory models49, 50, 51gap attainment ability388–391colonization229, 230, 231, 367, 376, 379creation49, 341, 347, 366, 380, 388definition of375detection249, 256, 338, 341, 382due to fire311, 325dynamics49, 341quality384shape341size18, 325, 340, 344, 379, 381, 383, 386, 390timing of229, 231, 388see also tree-fall gapsgaps18, 39, 202, 219, 222, 228, 230, 252, 253, 255, 320, 322, 340, 345, 348, 363, 369,376, 378, 379, 382, 384, 390 Garrulus garrulus176gases, in soils303geese118genome size48Gentianella amarella230Geraniaceae193, 267, 314Geranium spp.94germination62–79, 147, 148, 150, 171, 215, 242, 261, 294, 378, 382, 389after animal dispersal120, 176charred-wood stimulated314delayed252epigeal336fatal204, 205, 222, 253fire-dependent311fire-stimulated315in gaps382, 383, 386, 387hypogeal336inhibition of64, 68, 190, 218, 239, 250, 251, 293, 294, 296, 301, 302, 312, 319 intermittent60, 183, 305light requirement for223, 253and nitrate294, 296precocious184rate of92, 149, 281, 282, 285requirements for266, 267smoke-stimulated314, 315, 318, 323, 324suicidal303synchronous184timing of38, 237, 262too deep to emerge246Geum spp.112gibberellic acid (GA)186, 190, 244, 245, 262, 271, 273, 316, 318, 323Gladiolus spp.21Glottiphyllum linguiforme61Glycine max76, 196Goodeniaceae314gophers376Gopherus spp.120Gossypium spp.193hirsutum302Gramineae184, 186, 267see also Poaceaegranivory138, 168grapes150grebes118groundnuts196growth form46guans388Gymnarrhena micrantha66, 67, 79 gymnosperms37Haemodoraceae314Hakea spp.33sericea335Halothamnus hierochunticus62hard-seededness71, 193, 202, 206, 216, 217, 267, 268, 269, 313hawks118heat322, 323, 339, 342see alsofireheather254heat-shock312, 313, 322Hedypnois cretica63Hedypnois rhagadioloides63 Helianthemum nummularium230Helianthus annuus301Helichrysum cassinianum283, 284 Helictotrichon pratense230Helipterum craspedioides283Heracleum sphondylium173, 216herbivory4, 40, 223, 339, 341, 342, 343, 347, 381 herons118heteroblasty64, 77, 78heteromorphism see polymorphism Heterotheca latifolia93Hevea brasiliensis194hickory115Hieracium spp.386high-irradiance response (HIR) 188, 190, 239, 240, 241, 243, 244, 247, 252, 256 Hippolais spp.139Hirschfeldia incana76Holcus lanatus175, 228, 230hoofprints, as microsites340Hordeum secalinum 378vulgare185, 195, 196hornbills118, 131horse chestnut274horses115, 126hummingbirds119Hyacinthoides non-scripta282Hydrocotyle vulgaris227Hydrophyllaceae314, 316, 320hydrothermal time266hydroxamic acid344Hyla truncata119Hymenoptera167Hypericaceae314iguanas114, 120imbibition68, 190, 193, 206, 217, 242, 243, 304, 312, 313, 334Impatiens spp.17capensis89impermeability see hard-seedednessinfra-red see light, far-redinsects101, 126, 131, 136, 167, 170, 176, 343, 344 interactions between factors43, 192, 298, 299, 305Ipomoea spp.193lacunosa202tubinata202jays92, 174, 175, 176Juncus articulatus227Juttadinteria spp.79kangaroo-rats118kangaroos126kingbird119knopper gall176, 179Koeleria macrantha230Lactuca sativa64, 73, 74, 196, 241, 244scariola72serriola59, 69, 79, 320Lamiaceae314Lamium amplexicaule277, 278purpureum216, 276, 278larder hoarders118, 119Lauraceae115, 131, 133, 135, 163leaf area index (LAI)238, 242, 253, 347leaf area ratio (LAR)43, 338leaf canopies75, 238, 239, 242, 246leaf canopy shade238, 241, 246, 247, 251–256, 252, 348leaf litter see litterleaf transmitted light see leaf canopy shade legumes18, 282, 314, 335Leguminosae33, 119, 193, 222, 267see also Fabaceaelemurs126Leontodon hispidus246, 249Lepidoptera167lettuce196, 197, 239, 240, 241, 243, 244, 249, 273 life-history1, 17, 19, 21, 22, 89, 370, 379, 387, 388, 391evolution of2, 10, 19, 22light187, 238, 239, 273, 279, 280, 281, 283, 285, 294, 298, 299, 313, 320far-red74, 187, 238, 241, 242, 248, 253, 254, 273, 300in gaps380gradient18, 41inhibition by239, 251perception of241quality, during maturation74–76, 79red74, 190, 238, 241, 242, 248, 254, 297, 299, 300required for germination216, 223, 244,246, 248, 249, 254, 386requirements in buried seeds190response, temperature effect on244seed responses to237–256spectral composition of238, 239, 241, 243, 246, 250, 251see also daylight; leaf transmitted light;red/far-red ratiolignin337Liliaceae93, 163, 193, 267Lindera benzoin20, 117Linum catharticum230lipid contentin fruits97in seeds334, 335, 338Lithospermum caroliniense87litter18, 37, 40, 41, 50, 199, 222, 238, 269, 339, 340, 370Littorella uniflora226lizards92, 120Loasaceae314Lodoicea seychellarum31Lolium perenne175, 228, 378Lomatium grayi18long-day effect75longevityof adult plants47, 221of seeds35, 170, 183–207, 217, 222, 223, 265loons118lorises126Lotus corniculatus173, 175, 230scoparius320low energy reaction190low-fluence response (LFR)239–243, 247, 255, 256Lupinus arboreus193arcticus199cosentini193Luscinia spp.139Lycopersicum esculentum72, 73, 75, 78 Lycopus europaeus244Lythrum salicaria227Macaca fascicularis135macaques135magnesium334, 336mahogany196Malva rotundifolia200Malvaceae193, 267, 312, 314, 323mammals91, 93, 132as dispersers43as frugivores 117, 119, 125, 126, 129, 133as seed predators100, 119, 175Manacus candei114manakins135, 141Mangifera indica194mango194maple384Marantaceae92marsupials119masting97, 98, 168, 171maternal effects on seeds59–79Mazama spp.126Medicago spp.60orbicularis193rigidula268Melastomataceae138, 163Meliaceae163Mentha aquatica227Mesembryanthemum nodiflorum60, 61, 79methane317mice, as seed predators115, 117Miconia spp.115, 228microsites for germination98, 173, 387 Microtus agrestis175, 367Mimulus aurantiacus320mineralnutrients9, 15, 33, 40, 41, 50, 77, 193, 311, 331, 365, 386reserves333, 335Miscanthus sinensis228mistletoe98, 112, 115, 119, 131moisture contentof seeds196–198, 264, 265, 266, 270, 285, 334of soil18, 38, 39, 40, 41, 294, 295, 296,303, 304, 305moisture stress37, 38molehills, as microsites340molluscs111, 343, 344, 384monkeys135, 143, 388moonlight243Mora excelsum342gonggripii342Moraceae163mortality factors348mortality of seedlings331Morus spp.114, 115motmots118mud99, 118, 281mulberries114, 115Muscicapa striata146mycorrhizae48, 345,346Myrica spp.116, 119myrmecochory95see also dispersal, by antsMyrsinaceae163Myrtaceae163, 193, 312, 314Myrtus spp.91Neotoma spp.118Neotorularia torulosa62Nicotiana spp.319attenuata314, 319, 320tabacum201, 244nitrate186, 187, 190, 191, 192, 219, 224, 245, 246, 273, 276, 279, 281, 293–301, 305,306, 315–318, 336, 383nitrite318nitrogen9, 10, 33, 333, 335, 336, 346nitrogen dioxide315, 317, 318nitrogen, in soil76, 95, 380, 381nitrous oxide317nutcrackers113nutmeg344nutrients seemineral, nutrientsoak38, 118, 171, 176, 177, 179, 194, 331, 340 Oenothera biennis8, 200oilbird118, 137oil-palm194okra193Oldenlandia corymbosa68, 251Oleaceae164olives133Onagraceae314onion282Ononis sicula68, 70, 71, 73, 77, 78 ontogenetic change347Oomycota345opossums119, 126optimal outcrossing98Orchidaceae31orchids92, 169Origanum vulgare222, 230, 240, 243, 248, 254 Orobanche spp.188aegyptiaca187, 190, 205Oryza glaberrima186sativa303owls118Oxycoccus macrocarpus227oxygen224, 237, 299, 302, 303, 304, 313, 342 during after-ripening264effects of low levels186inhibition of germination by251 palatability of seedlings344, 347palm fruits114Palmae133, 164Panicum capillare199maximum280Papaver spp.92californica319Papaveraceae61, 314, 316papaya194parasites31, 88, 89, 101, 112, 149, 294, 302, 306, 346parasitoids178parental environment effect59–79parent–offspring conflict322Parietaria diffusa66judaica66Parkia discolor342pendula342parrots115, 118, 148Parthenium hysterophorus302 Parthenocissus quinquefolia140passerines139, 145patchiness86, 132, 390pathogens88, 89, 99, 339, 341, 342, 344, 345 pea196peaches150pears150pecans115peccaries144Pegohylemyia seneciella177Pelargonium spp.193penguins119Pennisetum typhoides282Penstemon palmeri274Penthorum sedoides278pentose phosphate pathway299Peromyscus spp.115Persea americana194persistence36, 37, 205, 206, 216, 217, 219, 220, 222, 223, 225, 321, 361, 363, 366, 369 Petalostigma pubescens91Phacelia grandiflora316, 317, 320tanacetifolia251Phainopepla nitens115, 143phainopeplas119, 126, 137, 145phalangers119, 126Phaseolus vulgaris72, 76Pheidole spp.120phenols302, 337phenotypic plasticity12, 22, 60, 348Phleum arenarium263pratense378Phoenicurus spp.139ochruros139phoenicurus146Phoradendron juniperinum8phosphorus9, 10, 333–336, 345, 380, 381 photoinhibition251, 252photon flux density (PFD) 237, 238, 239, 243, 246, 249, 250, 251, 252, 255, 256 photoperiod9, 72photosynthesis2, 8, 9, 22, 39, 336, 337 photosynthetically active radiation (PAR) 39 Phylloscopus spp.139phylogeny37, 101, 102, 222, 334, 341 phytochrome74, 75, 79, 183, 238, 239, 241,242, 243, 245, 248, 252, 253, 254, 255,266, 273, 280, 281, 298, 299 Phytolacca americana117, 200, 222 Phytophthora spp.345Picea sitchensis187pigeons116, 118, 131, 133, 143, 148, 167pigs176Pilosella officinarum230Pimpinella saxifraga230Pinaceae346Pinguicula spp.9alpina20vulgaris9Pinus spp.93, 97, 101, 312, 322banksia321brutia273, 312contorta321muricata312Pinus spp.continuedpalustris342ponderosa325serotina342strobus199pioneers378Piper spp.118, 137Piperaceae164Pisonia spp.112aculeata112Pisum sativum196Plantago lanceolata16, 175, 230, 244, 246, 383, 385Plantago major17, 21, 22, 239, 240, 242–246, 248, 250–254, 383, 385, 386plasma membrane299, 301Platystemon californicus61plums150Poa spp.378annua18, 21pratensis201, 228Poaceae48, 73, 314, 320poison ivy119Polemoniaceae314, 320Polemonium viscosum21pollination17, 18, 20, 21, 97, 98, 126, 169, 172, 176Polygonaceae67Polygonum arenastrum6, 15, 19cascadens e16lapatifolia295persicaria11, 15, 18, 276, 277, 279 polymorphism62, 86, 185, 188, 314 polyphenols70, 78Polypogon monspeliensis73porcupine68Portulaca oleracea71, 73, 74, 79, 305smallii277Portulacaceae71position effect60–68postfire environment319potassium95, 333, 336Potentilla spp.199anserina227prechilling185, 186, 189, 206, 273see also chillingpredationby insects100by invertebrates37by mammals115post-dispersal88, 167, 168, 170, 175, 178pre-dispersal167–170, 174, 178of seedlings343, 344, 384of seeds95, 97–100, 111, 114, 167–179, 204, 322predator satiation171, 311, 344primates113, 116, 126, 131, 135, 142, 148Proteaceae38, 40, 312, 314, 336protein in seeds94Prunella vulgaris384Prunus ilicifolia149mahaleb134, 139, 140pensylvanica222, 227 Pseudarrhenatherum longifolium64 Pseudotsuga menziesii21, 385Psidium spp.193Psophia crepitans133Pteranthus dichotomus60, 63, 77, 79 Ptilinopus spp. 143Pythium spp.345Quercus spp.40, 97, 132, 194borealis176ilicifolia 118robur171, 174, 175quetzals131quiescence183, 191, 194, 198, 312rabbits176, 229, 340, 387racoons119ragwort177, 178rain(fall) 38, 49, 60, 64, 68, 78, 86, 267, 283, 321, 343rainforest127, 128, 130, 132Ranunculaceae184Ranunculus adoneus8flammula227sceleratus246, 274, 280, 281Raphanus raphanistrum19Ratibida columnifera16rats119recolonization270, 367see also colonizationrecruitment147, 168, 169, 171, 172, 173, 174, 177, 178, 229, 230, 311, 312, 313, 321,324, 325, 341, 344, 347, 361, 366, 372fire-dependent322foci132microsite limited173postfire314, 321, 324red/far-red ratio74, 238, 239, 242, 244, 245, 246, 247, 251, 252, 253, 254, 255, 298, 341, 382 regeneration125, 183, 184, 205, 226, 252, 270, 311, 320, 331, 340, 342, 344, 347, 348,365, 371, 375, 390in forests341niche231, 341, 378, 379postfire321regenerative strategies206, 207, 362, 363,366–370, 372relative growth rate (RGR)18, 20, 41–44, 333,335, 338, 341reproduction, carbon uptake during8, 9delayed219, 311, 322, 325frequency of19limited by meristems5, 6minimum size for14timing of19, 22reproductive allocation1–22constraints on13, 14, 21in dioecious species8phenotypic plasticity of22selection for16variation in12, 15, 22reproductive biomass13, 17cost9, 19effort1, 7, 9, 10, 12, 13, 19, 22output1, 11, 14, 16, 22, 217strategies1, 2, 19structures3, 4, 9, 10reptiles111, 114, 120, 125, 126residual reproductive value19, 20, 21 resource allocation2, 4, 8, 389respiration4, 8, 9, 42, 198, 294, 304, 305, 336, 348, 349Restionaceae314Rhamnaceae164, 193, 312, 316, 323Rhamnus spp.91rheas118rhinoceros113Rhizoctonia spp.345rhizosphere305rhubarb252Rhus spp.193javanica269, 270Ribes bracteosum90rice263, 264, 265, 266, 303Ricinus communis76robins117, 119rodents90, 92, 115, 119, 167, 168, 170, 175,343, 344, 384Romneya coulteri316, 317, 318rook167root gaps376, 381, 383, 384, 386, 390root/shoot ratio5, 343, 348Rorippa islandica281Rosaceae164Rousettus spp.137rubber194Rubiaceae68, 138, 164Rubus spp.115fruticosus227strigosus222ulmifolius140Ruellia tuberosa251Rumex spp.189acetosella173, 229crispus187, 200, 216, 248, 271, 278obtusifolius244, 245, 250, 251, 271, 272, 278Rutaceae164, 314Rutidosis leptorrhynchoides385, 386safe sites89, 147, 322, 342sagebrush273Saguinus spp.140Salicornia europaea62salinity293, 381Salix spp.231Salsola komarovii62, 72volkensii62Salvia mellifera320Samolus valerandi227Sapindaceae193Sapotaceae164saprophytes31Sarcopoterium spinosum 255Sassafras albidum 117Saxicola spp.139Scabiosa columbaria249scarification71, 147, 172, 318, 320scatter hoarding92, 118, 119, 175Schismus arabicus73Schoenus nigricans227Scirpus juncoides 251Sciurus carolinensis176Scrophulariaceae119, 218, 314Seedbank35, 50, 66, 71, 120, 170, 171, 183,191, 193, 198–201, 204, 205, 215–231,250, 253, 256, 295, 312, 315, 317, 319,321, 322, 324, 325, 347, 362, 363, 366,367, 369, 372, 378, 387–390canopy78, 312, 322, 323, 342persistent215, 226, 229, 230, 231, 246,248, 254, 255, 278transient206, 215, 226chemical composition59, 94, 168, 196, 222coat18, 32, 33, 68, 70, 71, 78, 184, 191,193, 238, 239, 242, 244, 267, 284, 302,304, 312, 313, 315, 317, 318, 320, 322,334, 336, 382colour60, 62, 63, 68, 77density85, 172, 173, 178, 388dispersal85–102see also dispersaldormancy see dormancylongevity see longevity, of seedsmass see seed, sizematuration59, 62, 69mortality171, 174, 179, 223number11, 18, 48, 49, 85, 97orthodox194, 206, 217, 265predation see predation, of seedsproduction97, 98, 168, 169, 176, 178, 224, 324, 378, 388, 389, 390rain49, 132, 149, 225, 230, 231, 372, 387,388, 390。
甘蔗多样性微阵列技术(DArT)标记体系的建立
甘蔗多样性微阵列技术(DArT)标记体系的建立高轶静;黄东亮;李双喜;段维兴;王泽平;杨翠芳;张革民【摘要】[目的]建立成熟、稳定的甘蔗多样性微阵列技术(Diversity array technology,DArT)标记体系,为甘蔗的遗传多样性分析、遗传图谱构建及标记辅助育种等提供新的分子标记方法.[方法]以7份不同种属的甘蔗材料为样本,优化基因组复杂性降低方法并建立甘蔗DArT标记体系,同时应用该体系分析7份材料的遗传多样性.[结果]获得了基于PstⅠ/TaqⅠ酶切组合的最优基因组复杂性降低方法,利用该方法建立了DArT体系.利用DArT体系分析了7份材料之间遗传进化关系,发现供试7份材料的遗传相似系数为0.497~0.811,平均值为0.569.以遗传相似系数0.546为阀值,可以将供试材料分为三大类,其中第一类的GT29号、拔地拉和割手密GXS85-30均为甘蔗属材料,与预期相一致;第二类为河八王2号和滇蔗茅2号,第三类为芒84-8和斑茅GXA87-36.[结论]建立的甘蔗DArT标记体系具有有效性,其遗传相似性分析结果与材料预期的亲缘关系密切程度相一致.【期刊名称】《南方农业学报》【年(卷),期】2014(045)005【总页数】5页(P720-724)【关键词】甘蔗;多样性微阵列技术;遗传多样性;遗传进化;亲缘关系【作者】高轶静;黄东亮;李双喜;段维兴;王泽平;杨翠芳;张革民【作者单位】广西农业科学院甘蔗研究所/中国农业科学院甘蔗研究中心/广西甘蔗遗传改良重点实验室/农业部广西甘蔗生物技术与遗传改良重点实验室,南宁530007;广西农业科学院甘蔗研究所/中国农业科学院甘蔗研究中心/广西甘蔗遗传改良重点实验室/农业部广西甘蔗生物技术与遗传改良重点实验室,南宁530007;广西农业科学院甘蔗研究所/中国农业科学院甘蔗研究中心/广西甘蔗遗传改良重点实验室/农业部广西甘蔗生物技术与遗传改良重点实验室,南宁530007;广西农业科学院甘蔗研究所/中国农业科学院甘蔗研究中心/广西甘蔗遗传改良重点实验室/农业部广西甘蔗生物技术与遗传改良重点实验室,南宁530007;广西农业科学院甘蔗研究所/中国农业科学院甘蔗研究中心/广西甘蔗遗传改良重点实验室/农业部广西甘蔗生物技术与遗传改良重点实验室,南宁530007;广西农业科学院甘蔗研究所/中国农业科学院甘蔗研究中心/广西甘蔗遗传改良重点实验室/农业部广西甘蔗生物技术与遗传改良重点实验室,南宁530007;广西农业科学院甘蔗研究所/中国农业科学院甘蔗研究中心/广西甘蔗遗传改良重点实验室/农业部广西甘蔗生物技术与遗传改良重点实验室,南宁530007【正文语种】中文【中图分类】S566【研究意义】DNA分子标记技术常用的方法有RFLP、 RAPD、AFLP、SSR等,每种标记技术均有其优势和不足。
沸石分子筛的绿色合成路线_历_阳_孙洪满_王有和__许本静_阎子峰
PROGRESSINCHEMISTRYDOI:10 7536/PC150112http://www.progchem.ac.cn㊀㊀ProgressinChemistry,2015,27(5):503 510沸石分子筛的绿色合成路线∗历㊀阳1㊀孙洪满1,2㊀王有和1,2∗∗㊀许本静1㊀阎子峰1∗∗(1.中国石油大学重质油国家重点实验室㊀中国石油催化重点实验室㊀青岛266580;2.中国石油大学(华东)理学院㊀青岛266580)摘㊀要㊀沸石分子筛因具有独特的孔道结构㊁较强的酸性和高的水热稳定性,在吸附分离㊁催化和离子交换等领域得到了广泛的应用㊂沸石分子筛的合成方法大多采用水热法,需要使用大量含硅铝的化工产品和有机模板剂,导致沸石分子筛的合成成本较高㊁效率较低,且环境污染较为严重,因此沸石分子筛高效绿色合成路线的研究具有重大意义㊂本文主要从沸石分子筛的合成原料绿色化㊁合成条件绿色化以及合成方法绿色化等三个方面综述了国内外沸石分子筛绿色合成路线的研究新进展,并提出现有沸石分子筛绿色合成路线存在的问题以及将来的发展方向㊂关键词㊀沸石分子筛㊀天然矿物㊀无胺法㊀无溶剂法㊀绿色合成路线中图分类号:O643 36;TQ426 6㊀文献标识码:A㊀文章编号:1005⁃281X(2015)05⁃0503⁃08收稿:2015年1月,收修改稿:2015年1月,网络出版:2015年5月5日㊀∗国家自然科学基金委员会⁃中国石油天然气集团公司石油化工联合基金项目(No.U1362202)和中国石油大学(华东)研究生创新工程项目(No.YCX2014037)资助TheworkwassupportedbythePetrochemicalJointFundsofNSFC⁃CNPC(No.U1362202)andPostgraduateInnovationProjectofChinaUniversityofPetroleum(EastChina)(No.YCX2014037).∗∗Correspondingauthor㊀e⁃mail:yhewang@upc.edu.cn;zfyancat@upc.edu.cnGreenRoutesforSynthesisofZeolites∗LiYang1㊀SunHongman1,2㊀WangYouhe1,2∗∗㊀XuBenjing1㊀YanZifeng1∗∗(1.StateKeyLaboratoryofHeavyOilProcessing,KeyLaboratoryofCatalysis,CNPC,ChinaUniversityofPetroleum,Qingdao266580,China;2.SchoolofScience,ChinaUniversityofPetroleum(EastChina),Qingdao266580,China)Abstract㊀Zeoliteshavebeenwidelyusedasadsorbents,heterogeneouscatalystsandion⁃exchangematerialsduetotheiruniqueporestructure,strongacidityandhighhydrothermalstability.Atpresent,mostofzeolitesaresynthesizedbyhydrothermalmethod,involvingtheuseofcommercialsilicon⁃andaluminum⁃containingreagentsandorganictemplates,whichleadstohighcost,lowefficiencyandseriouslyenvironmentalpollution.Therefore,theresearchofhighlyefficientandgreenroutesforsynthesisofzeolitesisofgreatsignificance.Threeaspectsincludingthegreenizationoftherawmaterials,synthesisconditionsandsynthesismethodsarereviewedinthispaper.Theexistingproblemsandfuturedirectionofdevelopmentarealsoputforward.Keywords㊀zeolite;naturalmineral;organotemplate⁃free;solvent⁃free;greenroutesContents1㊀Introduction2㊀Thegreenizationofrawmaterials2 1㊀Synthesisofzeolitefromkaolin2 2㊀Synthesisofzeolitefromdiatomite3㊀Thegreenizationofsynthesisconditions3 1㊀Directedmethod3 2㊀Seedsolution⁃assistedmethod3 3㊀Crystalseed⁃directedmethod4㊀Thegreenizationofsynthesismethods5㊀Conclusion网络出版时间:2015-05-06 11:18网络出版地址:㊃504㊀㊃ProgressinChemistry,2015,27(5):503 5101㊀引言沸石分子筛是一种无机晶体材料,因具有规整的孔道结构㊁较强的酸性和高的水热稳定性而广泛应用于催化㊁吸附和离子交换等领域中,并起着不可替代的作用㊂人们对于沸石分子筛的人工合成研究可追溯到20世纪40年代,Barrer等[1]通过对天然矿物在热的盐溶液中相态转变的研究,首次实现了沸石分子筛的人工合成,自此揭开了人工合成沸石分子筛的序幕㊂目前,人们已经发现206种沸石分子筛骨架结构类型[2],最为常用的合成沸石分子筛的方法是水热法㊂但是,随着人们对于 绿色化学 理念的不断追求,传统的水热法合成沸石分子筛因存在着效率低㊁能耗高㊁环境污染严重等问题正面临着严峻的考验,例如,(1)利用硅酸钠㊁铝酸钠等化工产品作为合成分子筛的原料,增大了沸石分子筛合成上游工艺的能耗;(2)有机模板剂的使用,造成沸石分子筛合成成本提高,同时有机模板剂的脱除过程会产生NOx等有毒有害的气体,造成较大的环境污染;(3)合成过程利用水作为溶剂,且合成体系的固液比较低,导致分子筛合成效率下降,废液排放量大,同时反应压力较高,存在一定的安全隐患㊂所以如何克服传统水热法存在的诸多弊端,成为人们最为关心的问题㊂近些年来,人们针对传统水热法存在的一系列问题,通过对沸石分子筛合成原料㊁合成条件和合成方法的研究改进,开发出了一系列绿色合成路线,包括天然矿物合成沸石分子筛㊁无胺法合成沸石分子筛以及无溶剂法合成沸石分子筛等㊂本文将重点从沸石分子筛合成的原料绿色化㊁合成条件绿色化以及合成方法绿色化等三个方面来介绍沸石分子筛绿色合成路线研究的最新进展情况,并提出现有沸石分子筛绿色合成路线存在的问题以及将来的发展方向㊂2㊀沸石分子筛合成原料的绿色化目前,利用硅酸钠㊁铝酸钠等化工原料合成沸石分子筛的技术已相当成熟,但是该方法需要大量的化工原料,使得沸石分子筛生产成本较高,同时由于这些化工原料的生产过程都伴随着巨大的能耗和环境污染等问题,所以寻找更为经济有效的绿色原料成为人们关注的焦点㊂以硅铝元素为主的天然矿物由于具有储量丰富㊁价格低廉等优势,在作为合成沸石分子筛的替代原料方面表现出巨大的潜力,因此,以天然矿物为原料合成沸石分子筛也逐渐成为人们研究的热点㊂在众多的天然矿物中,最为典型的合成沸石分子筛的原料为高岭土和硅藻土㊂下面主要介绍这两种天然矿物在沸石分子筛合成过程中的应用㊂2 1㊀高岭土合成沸石分子筛高岭土是一种以高岭石为主要成分,具有晶体结构的层状硅酸盐矿物,其理想化学组成为Al2O3㊃2SiO2㊃2H2O[3]㊂由于高岭土稳定的晶体结构,使其在作为合成沸石分子筛原料之前需要进行活化处理㊂研究表明[4],当焙烧温度为600 900ħ时,高岭土可转变成具有高反应活性的偏高岭土㊂因为高岭土中硅铝原子比约为1,所以较为适合作为低硅铝比沸石分子筛的合成原料,但若要合成高硅铝比沸石分子筛通常需要补加硅源或经脱铝处理㊂由于高岭土与4A沸石分子筛具有相同的硅铝比,因此高岭土是合成4A沸石分子筛的优良原料㊂自从Howell等[5]首次报道以高岭土为原料成功合成出4A沸石分子筛以来,人们对其做了大量的研究㊂翟彦霞等[6]通过采用将高岭土于500 600ħ焙烧活化后,再与氢氧化钠碱液混合,在水热条件下晶化合成出4A沸石分子筛㊂研究表明,高岭土焙烧转化成高活性的偏高岭土是决定能否成功合成4A沸石分子筛的关键因素,虽然该法操作流程较为简单,但是存在煅烧温度较高㊁原料活化不充分㊁晶化产物纯度低等缺点㊂胡芳华等[7]对原有工艺进行了改进,先利用碱液溶出活化高岭土中的硅铝酸盐,经过滤后,用硅铝酸盐滤液直接来合成4A沸石分子筛㊂该工艺大大提高了晶化产物的纯度和结晶度,并减少了晶化产物中微量元素的含量,提高了4A沸石分子筛的使用安全性,但是该工艺仍无法避免高温焙烧活化高岭土所造成的能耗损失㊂孔德顺等[8]采用高岭土与氢氧化钠共同焙烧活化的方式合成出了4A沸石分子筛,该工艺使得焙烧活化温化学进展,2015,27(5):503 510㊃505㊀㊃度由原来的600ħ左右降低至了400ħ,降低了沸石分子筛合成过程的能耗㊂Zhou等[9]采用两步晶化法进行了A沸石分子筛的研究,通过控制预晶化时间和温度,可加速分子筛成核,提高A沸石分子筛的结晶度并缩短晶化时间㊂Wang等[10]提出了以无需焙烧活化高岭土为原料合成A沸石分子筛的研究路线,使得分子筛合成能耗大大降低,但合成过程需引入大量的酸碱溶液,废液排放量较大㊂Y和ZSM⁃5沸石分子筛是石油炼制工业上最为重要的沸石分子筛,主要用于催化裂化催化剂和助剂㊂但是由于这两种沸石分子筛的硅铝比均大于高岭土原料的硅铝比,所以需要对高岭土进行补硅或脱铝处理㊂刘欣梅等[11,12]较早地进行了高岭土合成Y沸石分子筛的研究㊂他们以焙烧活化后的高岭土为主要原料,硅溶胶作为补充硅源,合成出了高结晶度㊁无杂晶的NaY沸石分子筛㊂王雪静等[13]对偏高岭土合成Y沸石分子筛的机理进行了探索研究,结果表明偏高岭土水热合成Y沸石分子筛遵循固相转变机理,晶化过程是一个扩散⁃成胶⁃原位重排的过程㊂为提高Y沸石分子筛的催化活性,人们还先后进行了高岭土合成小晶粒NaY[14]和原位合成NaY[15]沸石分子筛的研究㊂Pan等[16,17]开发了一种绿色高效的ZSM⁃5沸石分子筛合成方法,为了提高高岭土原料的硅铝比,他们对焙烧活化后的高岭土进行酸化处理,使得高岭土的SiO2/Al2O3摩尔比由原来的2 1增加至31 8㊂该实验方法避免了化工硅铝源的加入,大大降低了生产成本,同时还具有良好的环境效应㊂Holmes等[18]采用相似的方法也成功合成出了ZSM⁃5沸石分子筛㊂Wang等[19]以高岭土为原料,硅酸为补充硅源进行了原位合成ZSM⁃5沸石分子筛的研究,所得晶化产物在催化裂化反应中表现出优异的增产丙烯的催化活性㊂目前,美国Engelhard公司和中国石油股份公司兰州石化分公司催化剂厂已实现高岭土原位晶化技术的工业化,并开发出一系列高岭土型催化剂,如REY型和REHY型催化剂等[20]㊂Li等[21]以高岭土为硅铝源实现了ZSM⁃5/MCM⁃41等级孔沸石分子筛的合成,并表现出较高的催化酯化反应活性㊂由于高岭土自身的硅铝原子比较低,所以高岭土更适合作为低硅铝比分子筛的合成原料㊂同时高岭土的晶体结构虽然使其在作为原料前需要进行活化处理,但却在作为基质材料方面表现出良好的稳定性和机械强度,所以开发低能耗㊁高效的活化方法和原位合成技术是以高岭土为原料合成分子筛研究中的重点和难点㊂2 2㊀硅藻土合成沸石分子筛硅藻土是一种生物成因的硅质沉积岩,与高岭土相比,在作为沸石分子筛合成原料方面,硅藻土具有以下优点:(1)硅藻土的主要成分为SiO2,所以具有更高的硅铝原子比,可以用来作为合成高硅铝比沸石分子筛;(2)硅藻土中SiO2是无定形的,无需进行活化处理就可以直接合成沸石分子筛;(3)硅藻土具有独特有序排列的孔道结构,孔隙率高等优点㊂因此,硅藻土不仅可以作为沸石分子筛合成的生物质硅源,还可以用来作为沸石分子筛的载体材料[22]㊂Ghosh等[23]最早利用硅藻土合成出了A型沸石分子筛,并详细考察了合成体系中硅铝比㊁钠硅比及晶化条件对晶化产物的影响㊂满卓等[24]直接将硅藻土原料与氢氧化钠溶液混合晶化得到了P型沸石分子筛,大大简化了操作流程,并且在生产成本上具有明显的优势,但是由于原料未经纯化处理,所以晶化产物的纯度较低㊂Du等[25]首次提出采用水浴法合成P型沸石分子筛的工艺路线,使得工艺过程能耗进一步降低,并且硅藻土原料事先与六聚偏磷酸钠混合,除去原料中的黏土矿物等杂质并起到扩孔的作用,提高了晶化产物的纯度,表现出优异的钙离子吸附性能㊂Chaisena等[26,27]同样进行了硅藻土合成分子筛的研究,并通过对初始凝胶组成㊁晶化温度和时间等不同合成条件的考察,确定了P型㊁方沸石㊁方钠石等沸石分子筛的合成条件区间㊂Sanhueza等[28]以硅藻土为原料合成出了丝光沸石分子筛㊂研究者们以硅藻土为原料[29,30],在有机模板剂的作用下成功合成出了ZSM⁃5沸石分子筛㊂Shan等[31]采用相同的方法也得到了ZSM⁃5沸石分子筛,但是由于合成体系中引入NaCl,导致晶化产物以聚晶形式堆积成球形,具有大量的间隙孔道㊂硅藻土除了可以作为合成沸石分子筛的原料外,还可以作为分子筛载体,制备具有等级孔道结构的沸石分子筛㊂Wang等[32]以硅藻土为原料,提出气相转移法合成等级孔ZSM⁃5沸石分子筛的工艺路线,通过对实验条件的优化发现,当ZSM⁃5沸石分子筛负载量达到50%时,晶化产物中硅藻土原料的孔道结构仍然可以得到较好的保留,并且晶化产物表现出良好的水热稳定性能,这为等级孔ZSM⁃5沸石分子筛的催化应用提供了可能㊂张柯等[33 35]以硅藻土为原料,采用固相原位晶化法同样合成出了具有微孔⁃介孔等级孔ZSM⁃5沸石分子筛,㊃506㊀㊃ProgressinChemistry,2015,27(5):503 510晶化产物不仅具有丰富的孔结构㊁较高的结晶度及完整晶形,而且通过对其芳构化性能研究发现,该法制备的催化剂具有较高的芳构化活性和抗积炭能力㊂Jia等[36]采用蒸汽辅助晶化法实现了硅藻土原位合成纳米silicalite⁃1沸石分子筛,避免了传统水热法复杂的分离㊁纯化过程,大大简化了操作流程㊂Hill等[37]以硅藻土为载体采用晶种法合成出了具有等级孔结构的Y/硅藻土复合材料,并表现出优异的钴离子脱除能力㊂Cho等[38]在有机模板剂的作用下合成出了具有微孔⁃介孔⁃大孔结构的β/硅藻土复合材料㊂为了调节沸石分子筛合成体系的硅铝比,实现硅铝原料的全部天然矿物化,鲍晓军课题组[39,40]先后进行了以高岭土和硅藻土为原料合成Y(图1)和ZSM⁃5沸石分子筛的研究㊂图1㊀高岭土和硅藻土为原料合成Y沸石分子筛示意图[39]Fig.1㊀SchematicdiagramofsynthesisofzeoliteYfromkaoliniteanddiatomite[39]从上述合成实例可以看出,虽然硅藻土在作为分子筛合成原料方面更具优势,但是由于以硅藻土为原料合成沸石分子筛起步较晚,理论研究还不系统,因此还未见其工业化报道㊂无论以高岭土还是硅藻土为原料,都会受到其自身元素组成的限制,使得沸石分子筛合成范围较窄,所以只有充分利用各种天然矿物的组成和结构特点,才能真正实现分子筛合成原料的全部天然矿物化㊁绿色化㊂3㊀沸石分子筛合成条件的绿色化除了在合成原料方面着手外,沸石分子筛合成条件的绿色化改进也同样重要㊂在沸石分子筛的众多合成条件中,有机模板剂的使用所引发的问题最为严重,主要体现在以下方面:(1)大多数的有机模板剂都是有毒的并且价格昂贵,不仅会污染环境还会增加沸石分子筛的生产成本;(2)有机模板剂会占据沸石分子筛的孔道结构,所以在晶化结束后需要将其通过高温焙烧的方式脱除,这个过程会增大能耗,还会排放出NOx和CO2等有毒有害气体㊂所以,彻底避免有机模板剂的使用,对于沸石分子筛的工业化生产具有重大的研究意义㊂为解决有机模板剂带来的诸多问题,人们开发出了几种绿色合成沸石分子筛的工艺,主要包括:直接法㊁晶种导向液法和晶种法等㊂3 1㊀直接法直接法就是通过调节初始凝胶的组成来合成沸石分子筛,使得沸石分子筛的合成成本和环境破坏程度大大降低㊂直接法的发现打破了人们对于ZSM⁃5和ECR⁃1等沸石分子筛只有在有机模板剂或晶种存在条件下才能合成出来的观念,向沸石分子筛的绿色化合成迈进了一大步㊂Grose等[41]较早地进行了直接法合成ZSM⁃5沸石分子筛的研究,他们通过调节初始凝胶Na2O⁃SiO2⁃Al2O3⁃H2O体系中各物质的摩尔组成,在无有机模板剂条件下成功合成出具有高结晶度的ZSM⁃5沸石分子筛㊂与此同时,李赫咺等[42]在不外加任何有机模板剂和晶种的条件下,直接由水玻璃㊁硫酸铝和硫酸采用直接法成功合成出ZSM⁃5沸石分子筛,并对研究结果进行了100L的工业放大实验,证明该合成方法完全适用于工业生产,并且具有成本低㊁产量高㊁质量稳定㊁无三废问题等明显优势㊂南开大学催化剂厂利用该技术已实现直接法合成ZSM⁃5分子筛的工业化生产㊂随后,Shiralkar等[43]通过研究发现,无有机模板剂体系合成ZSM⁃5沸石分子筛过程中,硅铝比及钠铝比是影响晶化产物晶体结构的关键因素㊂对于初始凝胶组成为aSiO2ʒAl2O3:bNa2Oʒ1500H2O的反应体系来说,当初始凝胶组成为a=40并且b值为4 5 6 0时,通过Na+对分子筛骨架过剩电荷的平衡作用,可合成出具有高结晶度的ZSM⁃5沸石分子筛;而若硅铝比过低时,会伴随着丝光沸石杂晶的生成;若硅铝比过高,则会有α⁃石英相生成,同时随着b的增大,也会导致晶化产物中α⁃石英及丝光沸石等杂晶的出现,这说明直接法合成沸石分子筛的条件区间很窄,要严格控制反应条件㊂Huang等[44]采用两段晶化法,得到小晶粒ZSM⁃5沸石分子筛聚晶,研究发现,通过调控高温成核时间和低温晶化时间可有效调控ZSM⁃5沸石分子筛的晶粒尺寸,并且与一步晶化法相比,两步晶化法得到的ZSM⁃5沸石分子筛具有更大的比表面积和更多的Brönsted酸㊂Zhang等[45]采用直接法进行化学进展,2015,27(5):503 510㊃507㊀㊃了ZSM⁃5/ZSM⁃11共晶的合成研究,详细考察了硅源㊁铝源以及初始凝胶组成等因素对晶化过程的影响㊂直接法合成沸石分子筛的另一个典型应用是ECR⁃1沸石分子筛的合成㊂ECR⁃1沸石分子筛的合成通常是以二羟乙基二甲基氯化铵㊁TMA+等作为有机模板剂合成出来的[46 48],但是合成成本仍然很高㊂Song等[49]首次在无有机模板剂的作用下,通过调节初始凝胶中Na2O/SiO2的摩尔配比成功合成出来ECR⁃1沸石分子筛㊂通过研究发现,初始凝胶中的碱硅比是影响晶化产物最为重要的因素㊂当Na2O/SiO2=0 3时,晶化产物为纯的Y沸石分子筛;当Na2O/SiO2=0 28时,晶化产物为Y型和ECR⁃1型混晶;当Na2O/SiO2=0 25时,晶化产物为纯的ECR⁃1沸石分子筛;而当Na2O/SiO2=0 2时,晶化产物为无定形的SiO2㊂通过进一步对晶化速度随晶化温度变化的影响研究发现,ECR⁃1沸石分子筛随着晶化温度的升高,其晶化速度急剧的增加,但会伴随着杂晶的生成㊂直接法虽然可以彻底避免有机模板剂和晶种的加入,但是合成沸石分子筛的过程中极易产生杂晶,合成条件区间变窄,并且分子筛晶粒尺寸难于控制,晶化周期较长,给工业生产操作带来一定难度㊂3 2㊀晶种导向液法分子筛晶种导向液是指分子筛的前驱液或是含有初级和二级分子筛结构单元的溶液㊂通过向合成体系中加入晶种导向液,有利于提高晶化速度,缩短晶化周期,并抑制杂晶的生成㊂Xiao等[50]通过向合成体系中加入L分子筛晶种液成功诱导合成出了ZSM⁃34沸石分子筛,其原因是L与ZSM⁃34沸石分子筛中均含有CAN笼结构㊂通过对L分子筛晶种导向液加入量的研究发现,当加入量过少时晶化产物为无定形结构,而当加入量过多时,晶化产物均为L分子筛,所以严格控制晶种导向液加入量尤为重要㊂黄先亮等[51]通过向沸石分子筛合成体系中加入预晶化液的方式,合成出了ZSM⁃5沸石分子筛,并对预晶化液添加法合成ZSM⁃5沸石分子筛的生长机理进行了研究,研究表明,预晶化液可大大提高晶化速度,减少晶化时间㊂Zhang等[52]利用晶种导向液合成出了具有高硅铝比的FER沸石分子筛,并得到最适的FER水热合成条件为:初始凝胶摩尔组成(0 154 0 244)Na2OʒSiO2ʒ(0 024 0 035)Al2O3ʒ35H2O,晶种液RUB⁃37加入量为SiO2质量的5%,晶化温度150ħ,晶化时间72 168h,得到的晶化产物的硅铝比为14 5㊂晶种导向液法与直接法相比,在一定程度上降低了分子筛合成的难度,但是由于增加了晶种导向液的制备过程,使得工艺流程变长,不利于工业化生产操作㊂3 3㊀晶种法晶种法常常作为大规模工业合成分子筛的方法,这是因为通过向合成体系中加入晶种可起到缩短诱导期㊁提高晶化速度㊁抑制杂晶生成和调控晶粒尺寸等作用[53 55]㊂Xie等[56]提出了一种快速水热合成β沸石分子筛的方法,通过向摩尔组成10Na2Oʒ40SiO2ʒAl2O3ʒ570H2O的初始凝胶中加入β晶种干基,在140ħ下晶化17h后可得到高结晶度的β沸石分子筛㊂Majano等[57]采用相同的方法得到富铝β沸石分子筛㊂Kalvachev等[58]分别在OH-和F-体系下采用晶种法进行β沸石分子筛的合成研究,通过比较两种晶化产物物化性质发现,F-⁃β沸石分子筛具有较多的Brönsted酸,并表现出更强的间二甲苯转化活性㊂Kamimura等[59]进行了晶种法合成β沸石分子筛研究(图2),详细考察了各合成条件对晶化产物的影响,比如初始凝胶中硅铝比㊁钠硅比㊁水硅比以及晶化时间等㊂实验结果表明,由于晶种的加入,β沸石分子筛可在较宽的初始凝胶组成中合成出来,并分别以β[60]和ZSM⁃12[61,62]沸石分子筛为晶种进行了MTW沸石分子筛的合成研究㊂图2㊀晶种法合成β沸石分子筛示意图[59]Fig.2㊀Schematicdiagramofsynthesisofzeoliteβviacrystalseed⁃directedmethod[59]Yashiki等[63,64]以Y沸石分子筛(FAU)为原料,通过加入未经焙烧处理的晶种合成出了β和LEV沸石分子筛,实现了沸石分子筛之间的转化㊂Zhang等[65]以RUB⁃50为晶种进行了LEV沸石分子筛的合成研究,结果表明,合成体系中加入少量的醇类有利于抑制丝光沸石杂晶的生成,提高LEV沸石分子筛的纯度㊂Yoshioka等[66,67]采用RTH为晶种合成出一系列金属改性的TTZ⁃1沸石分子筛㊂㊃508㊀㊃ProgressinChemistry,2015,27(5):503 510Majano等[68]以纳米silicalite⁃1为晶种成功合成出纳米ZSM⁃5沸石分子筛,并发现晶种加入量会影响晶粒尺寸和晶化速度㊂Tang课题组[69 71]同样以纳米silicalite⁃1为晶种,详细地考察了晶种法合成ZSM⁃5沸石分子筛体系中碱度对晶化产物晶粒尺寸和骨架硅铝比的影响,并提出晶种表面晶化机理㊂姜杰等[72]以ZSM⁃5晶种合成出了ZSM⁃5沸石分子筛,研究结果表明,投料硅铝比㊁晶种加入量㊁硅源温度对分子筛性能有显著的影响㊂陈艳红等[73]通过对比晶种法和有机模板剂法合成的ZSM⁃5沸石分子筛在物性和重油催化裂化装置上的催化性能发现,两种方法合成的ZSM⁃5沸石分子筛的结晶度㊁晶体形貌都相差不大,并且均表现出优异的增产丙烯的催化效果㊂Yu等[74]提出了一种异质晶种导向ZSM⁃5沸石分子筛的合成方法,该方法以ZSM⁃11为晶种,初始凝胶组成为9 0Na2Oʒ1 0Al2O3ʒ65SiO2ʒ1300H2O,晶化时间为12 16h即可生成高结晶度的ZSM⁃5沸石分子筛,这与ZSM⁃5晶种相比,晶化时间缩短1/2以上㊂通过进一步研究发现,这可能是因为ZSM⁃11晶种有更多的末端Si OH,更加有利于吸附沸石分子筛结构单元,提高了沸石分子筛的成核和生长速率㊂关于晶种法合成沸石分子筛的机理,不同研究者的实验结果[70,75,76]可以归纳为:晶种在水热晶化初期先发生部分溶解形成小碎片,被液相中无定形硅铝酸盐经过溶解⁃缩聚形成的硅铝酸盐凝胶包围,形成一种以晶种为核心的壳层结构;随着晶化时间的延长,处于壳层结构中的无定形的铝酸盐凝胶逐渐生成分子筛的二级结构单元,并进一步浓缩⁃聚合成晶体前驱物种由壳层向核心沉积,最终使得无定形的硅铝凝胶全部转换成沸石分子筛㊂通过以上三种沸石分子筛合成条件绿色化方法对比发现,晶种法兼具直接法和晶种导向液法的优点,不仅能简化工艺流程㊁缩短晶化周期,还可以调控晶粒尺寸㊁抑制杂晶的生成,并且由于晶种加入量很少,并不会带来生产成本的大幅度提高,所以晶种法是目前最有工业化前景的绿色沸石分子筛合成路线㊂4㊀沸石分子筛合成方法的绿色化为克服常规水热法合成沸石分子筛过程中由于溶剂水的引入造成的含碱废水排放,合成体系压力过高㊁单釜产率过低等问题,人们开发出了无溶剂法绿色沸石分子筛合成路线㊂无溶剂法与传统水热法相比具有一下几点优势[77]:分子筛单釜产率高㊁废液排放少㊁无需进行液固相分离以及合成体系更加安全等㊂目前,关于沸石分子筛的无溶剂法的研究还处于起步阶段,相关的研究报道比较少㊂Ren等[78]提出了一条无溶剂法合成沸石分子筛的工艺路线,该方法只需通过将固体原料混合㊁研磨㊁加热晶化就可以得到目标沸石分子筛,具有操作流程简单㊁环境污染小㊁成本低等优势,并具有广泛的适用性㊂无溶剂法合成沸石分子筛的典型应用是silicalite⁃1沸石分子筛的合成(图3)㊂图3㊀无溶剂法合成silicalite⁃1沸石分子筛流程示意图Fig.3㊀Schematicdiagramofsynthesisofsilicalite⁃1viasolvent⁃freemethod通过对晶化过程中晶化产物的表征结果发现,无溶剂法合成沸石分子筛经历如下过程:晶化初期,固相原料在无定形二氧化硅中逐渐发生扩散,并伴随着硅物种的聚合;随着晶化时间的延长,无定形的二氧化硅逐渐向晶体转换㊂总的来说,固相合成反应过程经历了初始原料混合和扩散,硅羟基的不断缩合等过程,最终使得反应原料在固相状态下转换为silicalite⁃1沸石分子筛,反应发生在固相状态下,不存在像液相凝胶中发生的溶解,重排再生长的过程,反应原料中的结晶水起到反应引发剂的作用[79]㊂Wu等[80]首次将无模板剂法和无溶剂法相结合,采用将固体硅铝原料与晶种混合均匀后在研钵中充分研磨的方式,实现了β和ZSM⁃5沸石分子筛无溶剂法合成㊂该工艺流程不仅解决了有机模板剂引入所带来的环境污染㊁高成本等问题,还解决了由于水作为溶剂造成的合成体系压力过大㊁单釜效率过低㊁碱液排放量大等问题,在沸石分子筛的绿色合成方面具有极大的理论价值和意义㊂无溶剂法合成沸石分子筛与水热法相比虽然具有明显的优势,但仍处于理论研究阶段,还没有实现工业化大规模生产,这是因为人们对于沸石分子筛的合成机理还处于探索阶段,溶剂水在分子筛合成过程中所起到的作用还不是很清楚㊂所以,进一步加深对沸石分子筛合成机理的认识和研究是无溶剂法实现工业化的重要基础㊂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Seed-directed synthesis of EMT-type zeolite from anorganic-template-free systemQin Mou,Niu Li*,Shouhe XiangKey Laboratory of Advanced Energy Materials Chemistry,Ministry of Education,College of Chemistry,Nankai University,94Weijin Road, Tianjin300071,PR Chinaa r t i c l e i n f oArticle history:Received17December2014 Received in revised form17March2015Accepted23March2015 Available online1April2015Keywords:EMT zeoliteEMC-2Seed crystalsTemplate-free18-Crown-6ether a b s t r a c tEMT-type zeolite has been prepared by usage of seed directed method from an organic-template-free system(named as EMC-2-SOF).Powder X-ray diffraction(XRD)patterns verified that the diffraction patterns of EMC-2-SOF matched very well with EMC-2synthesized using18-crown-6ether as template. EMT-type zeolite with complete diffraction patterns was prepared at high OHÀ/SiO2ratio(more than2.0) and low temperature(50 C)for3days.It has been found that,without organic template,calcined EMC-2 (denoted as EMC-2-C)showed better directing effect than as-synthesized one for the synthesis of EMC-2-SOF.Besides,the variation of SiO2/Al2O3molar ratio in original gel for synthesizing EMC-2-SOF was affected by OHÀ/SiO2ratio.A bestfit between the ratio of SiO2/Al2O3and OHÀ/SiO2has been achieved.At OHÀ/SiO2¼2.0,the relative crystallinity of EMC-2-SOFfirst increased,then got to100%at SiO2/ Al2O3¼50,andfinally decreased with SiO2/Al2O3ratio increasing.Meanwhile,by changing H2O/SiO2 ratio from46.6to30,yield of EMC-2-SOF increased from15.8to33.4wt.%.A relationship of mutual compensation among three intensive parameters in preparing zeolites(alkaline,temperature and crystallization time)has been used to improve the crystallinity of EMC-2-SOF.When gels with SiO2/ Al2O3¼25,OHÀ/SiO2¼2.0,H2O/SiO2were crystallized at55 C for12e20h,all the samples had crystallinity above100%with the yield over25wt.%.©2015Elsevier Inc.All rights reserved.1.IntroductionAs a pure phase,zeolite EMC-2(EMT type)wasfirst synthesized by Delprato and coworkers in1990by employing18-crown-6ether as structure direction agent(SDA)[1].It is a hexagonal polymorph of faujasite with a stacking of faujasite sheets differing from cubic phase of zeolite Y[2].This stack makes zeolite EMC-2possessing two types of cages:hypocage with0.61nm3void volume and hypercage with1.24nm3,pared with zeolite Y, which comprises only one supercage(1.15nm3void volume)with four12-ring windows,the hypercage of zeolite EMC-2comprises five12-ring windows[3e6].Hence,its bigger cavities and more windows may deal with nerve-wracking problem faced by zeolite Y with the proportion of bulky saturated hydrocarbons and aromatics increasing in crude oil[7].Usually,zeolite EMC-2is synthesized using18-crown-6ether as SDA,which is poisonous.Many approaches have been used in the past decades to reduce its content in the reacting mixture,for instance,adding surfactant or auxiliary agent of Na3PO4$12H2O[8,9], adopting continuous tumbling method during the entire aging and crystallization period[10],using a steam-assisted crystallization (SAC)method[2],etc.Even though the molar ratio of18-crown-6 ether/Al2O3has been greatly decreased to0.14[10],it still exists.On the other hand,the intergrowth of FAU/EMT phase has attracted many attentions since some properties of the intergrowth phases are better than those of the pure end members[11e13].However, another poisonous organics,15-crown-5ether or di-(azacrown ether)should be used[14].Up to2012,a template-free method was reported to synthesize ultra-small EMT type zeolite at30 C for36h at high alkaline(called as UEOF-2)[15,16].X-ray diffraction(XRD) pattern of these samples showed partial diffraction peaks of EMT-type zeolite,such as the diffraction of plane(100)and(101)at 2q¼5.87 and6.65 ,respectively.However,it lacks the diffraction of (103)plane of EMC-2at2q¼11.05 ,which has been recognized as one of the typical diffraction of zeolite EMC-2[13,17e20].Using seed crystals in place of organic template have made progress on organic-free synthesis of many zeolites[21e30].Seed crystals in the original gel can be the substrate zeolite for the*Corresponding author.Tel.:þ862223509932.E-mail address:liniu@(N.Li).Contents lists available at ScienceDirectMicroporous and Mesoporous Materials journal h omepage:w /l ocate/micro meso/10.1016/j.micromeso.2015.03.0231387-1811/©2015Elsevier Inc.All rights reserved.Microporous and Mesoporous Materials212(2015)73e79growth of crystal with the same or related structure [31e 43].In the present paper,we reported an organic-template-free method to synthesize pure EMT-type zeolite (denoted as EMC-2-SOF)with EMC-2seed assisting.The resulted products possessed high crys-tallinity with the XRD pattern matching very well with what syn-thesized by using 18-crown-6ether as template.2.Experiment 2.1.MaterialsThe following materials were used as source materials:sodium aluminate (NaAlO 2,Tianjin Guangfu Fine Chemical Research Insti-tute,China,98%)as an aluminum source,silica sol (Qingdao Makall,China,SiO 2¼27wt.%,H 2O ¼73wt.%)as a silica source and NaOH (Tianjin Jiangtian Chemical Technology Co.,Ltd.,China,!96.0%)aqueous solution as an alkali source.The 18-crown-6(Alfa Aesar,China,99%)ether was used as an SDA for the synthesis of zeolite EMC-2seed crystals.2.2.Synthesis of EMC-2seed crystalsEMC-2were synthesized following the method in literature [1]with the molar composition being 10SiO 2:1Al 2O 3:2.4Na 2O:1(18-crown-6ether):140H 2O.Starting gel were prepared as follows:NaAlO 2was dissolved into NaOH aqueous solution.Then the silica sol and 18-crown-16ether were added into the mixture with agitation for 2h.The starting gel was aged for 24h at room tem-perature.After that,the aluminosilicate gel was transferred into 20mL steel-stainless autoclave with a polytetra fluoroethylene liner for crystallization at 110 C for 15days under static condition.The solid product was filtered,washed with deionized water until a near neutral pH was achieved,dried overnight in room temperature.In order to remove the SDA cations,the as-prepared EMC-2seed crystals would be calcined at 550 C for 5h in air to obtain EMC-2-C.2.3.Seed directed synthesis of EMT-type zeolite from an organic-free routeWithout organic template,high-crystallization zeolite EMC-2-SOF was synthesized from the gel with the composition:(25e 50)SiO 2:1Al 2O 3:(25e 50)Na 2O:(750e 2330)H 2O:seed.EMC-2-C was used as seed crystals with 20wt.%relative to silica source.The starting gel were prepared as follow:an Al source was dissolved into NaOH aqueous solution,then silica sol was dropped into the mixture and then agitated for 1h.The EMC-2-C crystals were added just before transferring the gel into steel stainless autoclave.The gel crystallized at 50 C for 16e 168h under static condition.The solid product was filtered,washed and dried in air.2.4.CharacterizationThe powder XRD patterns was recorded on Bruker-D8using CuK a radiation (tube current 40mA,voltage 40kV).The scanning electron microscopy (SEM)images were obtained with a JEOL JSM-7500F scanning electron microscopy.The chemical analysis was used to analyze the SiO 2/Al 2O 3ratios of products.RamanTable 1Conditions for forming EMC-2from an organic-template-free system with seed assistant (20wt.%).Sample OH À/SiO 2SiO 2/Al 2O 3H 2O/SiO 2T/ C Time/h Y-solid wt.%Crystal./%Y-SOF wt.%ES-1310046.6503Â2414.034 4.8ES-235046.6503Â2413.273.29.7ES-333546.6503Â2417.68515.8ES-432546.6503Â24þimpurity*ES-5210046.6503Â2413.48311.1ES-625046.6503Â2422.510022.5ES-725020503Â2416.595.115.7ES-823546.6503Â2422.273.216.2ES-922546.6503Â2426.06115.8ES-1022540503Â2436.48430.6ES-1121546.6503Â24þimpurity ES-12110046.6507Â2416.187.814.1ES-1315046.6503Â2425.465.916.7ES-1415046.6507Â2425.565.816.8ES-1513546.6507Â24e 58.5e ES-1611546.6507Â24e 36.6e ES-1711046.6507Â24e 29.8e ES-181 5.1546.6507Â24FAU ES-190.85046.6503Â2434.746.316.1ES-200.85046.6507Â2439.245.918.0ES-210.65046.6503Â245531.717.4ES-220.65046.6507Â2436.243.715.8*þimpurity:there is impurity in the product;Y-solid:yield of solid;Y-SOF:yield ofEMC-2-SOF.Fig.1.XRD patterns of synthesized samples (A)without seed,OH À/SiO 2¼2,SiO 2/Al 2O 3¼25,crystallization at 50 C for 3days;(B)EMC-2-SOF synthesized by using 20wt.%EMC-2-C seed crystals from the gel with OH À/SiO 2¼2,SiO 2/Al 2O 3¼25at 50 C for 3days;(C)EMC-2synthesized by using 18-crown-16ether as template.Q.Mou et al./Microporous and Mesoporous Materials 212(2015)73e 7974investigation was performed on a Renishaw inVia Microscope.The laser used was Argon ion laser with 514.5nm excitation source with power output of 25mW.3.Results and discussion3.1.Synthesis of zeolite EMC-2-SOF with seed crystals assistant Adding EMC-2as seed crystals lead to the formation of EMC-2-SOF in a wide range of gel composition with SiO 2/Al 2O 3ratio from 10to 100,OH À/SiO 2ratio from 0.6to 3.0,H 2O/SiO 2ratio from 20to 46.6,temperature from 50to 70 C,and the period for crystalliza-tion being 16e 168h (Table 1).XRD patterns shows the presence of (103)plane diffraction of EMC-2-SOF at 2q ¼11.05 ,which matches well with that of pure zeolite EMC-2(Fig.1B,C)[1]and cannot be found in sample without seed crystal assistant (Fig.1A).Seed directing method not only getrid of organic templates,but also lead to the formation of pure phase EMT-type zeolite.High alkalinity is a typical condition in the seed-directing route to prepare zeolites.For example,OH À/SiO 2gets to 0.5in the seed-directing route to prepare zeolite Beta [22],while in the routine way using TEAOH as template,OH À/SiO 2is only about 0.2.This distinction also exists in the formation of EMC-2-SOF.An 18-crown-6ether directed EMC-2is usually obtained at low alkalinity (OH À/SiO 2<0.48)[48],whereas for EMC-2-SOF,the suitable ratio of OH À/SiO 2gets to 1.0e 3.0.With OH À/SiO 2¼3in the original gel,variation of SiO 2/Al 2O 3ratio from 15to 100leads to signi ficant changes in the products.SiO 2/Al 2O 3ratio changes from 15to 25,some impurities coexist with EMC-2-SOF in the product (Fig.2A,2B).Increasing SiO 2/Al 2O 3ratio to 35,impurities disappeared.The relative crystallinity of this sample gets to 85%relative to organic directed EMC-2(Fig.1A,ES-3).When SiO 2/Al 2O 3ratio is higher than 35(at 50or 100),the relative crystallinity of EMC-2-SOF turns to decrease rapidly (Table 1ES-1and ES-2).At OH À/SiO 2¼2,the relative crystallinity show similar trend to that of OH À/SiO 2¼3with SiO 2/Al 2O 3ratio varying from 25to 100.The difference is that the relative crystal-linity of sample ES-6getting to 100%at SiO 2/Al 2O 3¼50(Fig.3a).Decreasing OH À/SiO 2to 1,obtained samples always have a lower crystallinity in all the range of SiO 2/Al 2O 3ratio (from 25to 100),indicating the insuf ficient alkalinity (Fig.3a).A best fit of SiO 2/Al 2O 3and OH À/SiO 2ratio to give high crystallinity of EMC-2-SOF has been found:with SiO 2/Al 2O 3ratio below 35and OH À/SiO 2at about 2(Fig.3b,Table 1).However,if we focus on the yield of EMC-2-SOF,it has been found embarrassedly that in most cases the yield of most products is lower than 20wt.%,which is just the addition of seed crystals (20wt.%).So it is much important to make clear the situation of seed crystals during the crystallization.3.2.Effect of seed crystals on the formation of ECM-2-SOFBy adding 20wt.%EMC-2-C as seed crystals,a gel with SiO 2/Al 2O 3¼25,OH À/SiO 2¼2,has been crystallized at 50 C for 0e 72h.The XRD patterns of products are showed in Fig.4a.The original gel displays some trace peaks of EMT structure coming from seed crystals (Fig.4a-0h).These peaks increase rapidly aftercrystallizedFig.2.XRD patterns of synthesized samples with OH À/SiO 2¼3at 50 C for 7days with 20wt.%seed crystals,(A)original gel SiO 2/Al 2O 3¼15;(B)original gel SiO 2/Al 2O 3¼25;(C)original gel SiO 2/Al 2O 3ratio ¼35;with OH À/SiO 2¼2at 50 C for 3days with 20wt.%seed crystals,(D)original gel SiO 2/Al 2O 3¼50.Fig.3.(a)The relationship between SiO 2/Al 2O 3ratio and relative crystallinity with OH À/SiO 2ratio ¼1,2and 3;(b)the relationship between OH À/SiO 2ratio and relative crystallinity with original gel SiO 2/Al 2O 3¼25,35and 50.Q.Mou et al./Microporous and Mesoporous Materials 212(2015)73e 797524h (Fig.4a-24h e 72h).Is it the formation of EMC-2-SOF,or the residual seed crystals with all of others dissolved?In order to verify it,seed crystals have been treated solely under OH À/SiO 2¼2at 50 C.It has been found that only half of them remained after 72h (Fig.4b).It means that seed crystals can be partly dissolved under this condition.Meanwhile,a seed-free gel with SiO 2/Al 2O 3¼25has also been heated under OH À/SiO 2¼2at 50 C for 72h with a lot ofFAU-type crystals being obtained (Fig.1C).It means that the initial gel have not dissolved completely,and can crystallize under this condition.Thus,if the yield of EMC-2-SOF is lower than 10wt.%,it can be considered as coming from seed.When the yield gets over 10wt.%,the extra product should be attributed to seed crystals growing.Furthermore,as SiO 2/Al 2O 3ratio of EMC-2-SOF is only about 5.1(Table 2)and lower than that of seed crystals (SiO 2/Al 2O 3¼7e 10)[1e 6],higher yield means more crystal growth.All of these indicate that,similar to the work on seed directing synthesis of zeolite BEA [41e 45],the partial dissolving seed crystals become the substrate for the growth and reconstruction of EMC-2-SOF.Fig.5show the SEM images of seed crystals,seed treated under OH À/SiO 2¼2at 50 C for 72h and EMC-2-SOF.They display the partial dissolving of seed crystals and the morphology after growing.Raman investigation has also traced the time evolution of the gel during crystallization (Fig.6).In Raman spectra,bandatFig.4.XRD patterns of (a)original gel with SiO 2/Al 2O 3¼25for 0e 72h,respectively by adding 20wt.%seed crystals;(b)seed crystal of EMC-2-C (A),and treating under OH À/SiO 2¼2at 50 C for 72h (B).Table 2The relationship of OH À/SiO 2,SiO 2/Al 2O 3ratio and the SiO 2/Al 2O 3molar ratio of EMC-2-SOF.OH À/SiO 2ratio in original gelSiO 2/Al 2O 3ratio Original gelEMC-2-SOF 250 5.553355.16Fig.5.SEM images of (A e B):EMC-2synthesized by using organic template;(C e D):EMC-2treated in OH À/SiO 2¼2system at 50 C for 72h;(E e F):EMC-2-SOF obtained under OH À/SiO 2¼2with 20wt.%EMC-2as seed.Q.Mou et al./Microporous and Mesoporous Materials 212(2015)73e 7976498cm À1is correlated with the formation of even-numbered rings such as 4-rings,and the band around 1125cm À1corresponds to the stretching vibration of T-O.Formation of these two bands suggest the construction of the framework of EMC-2-SOF.It can be observed that,compared to seed crystal,these two bands are very weak in the Raman spectrum of the initial gel.With crystallization time over 24h,intensity of these two bands increase remarkably.This is in good agreement with XRD results.The directing effects of seed crystals have also been investigated using three forms of EMT type crystals.They are as-synthesized EMC-2,EMC-2-C (EMC-2calcined at 550 C for 5h)and H-EMC-2(EMC-2-C exchanged by NH 4þin 0.2M NH 4Cl solution,then calcinedat 550 C for 2h).Surely,the form of the seed crystals has shownsigni ficant difference for preparing EMC-2-SOF.EMC-2-C show thebest effect for preparing EMC-2-SOF with higher crystallinity compared to the other two seed crystals (Fig.7B,C).Furthermore,content of the seed crystals also in fluences the crystallinity of resulted products.In the case of SiO 2/Al 2O 3¼15,OH À/SiO 2¼3.0and H 2O/SiO 2¼46.6,the diffraction intensity of products first in-crease and then decrease with the seed/SiO 2ratio increasing from 5wt.%to 25wt.%(Fig.8).When 5wt.%seed has been used,XRD pattern of the resulted sample lacks the diffraction peak of (103)plane (Fig.8A).This peak appears when 15wt.%seed has been used (Fig.8B)and reaches the maximum value with the seed/SiO 2ratio being 20wt.%(Fig.8C).Further increasing seed content,impurity phase appears (Fig.8D).So directing effect of the seed crystals is determined by its amount.In order to obtain pure EMC-2-SOF,the seed/SiO 2ratio has been kept at 20wt.%in the research.3.3.Increasing the yield of EMC-2-SOF by optimizing crystallization conditionsIncreasing the yield is a dif ficult problem for seed-directing route of zeolite preparation.Many efforts have been made to get yield of zeolites exceeding 35wt.%[39,43e 47].Directing ef ficiency of seed crystals is usually determined by crystallization conditions,which depend on the structure type and composition of speci fied zeolite.For example,high silica zeolite Beta with 5-ring as the main second building unit cannot be formed from a system with OH À/SiO 2ratio over 0.7,even if seed-directing method has been used [39,44e 46].On contrast,zeolite structures containing 4-ring and 6-ring as the building unit (including EMC-2-SOF)usually form at low SiO 2/Al 2O 3ratio under high alkaline (OH À/SiO 2¼ 2.0e 3.3)[43,47e 49].Our investigations above have con firmed the crystal-lization conditions of OH À/SiO 2ratio (1e 3),SiO 2/Al 2O 3ratio (25e 50)in the gel and crystallization temperature (50e 70 C)for growing EMC-2-SOF,which is the base for optimization.It is well known that low SiO 2/Al 2O 3ratio,OH À/SiO 2ratio,and H 2O/SiO 2ratio favor the increasing of zeolites yield.At SiO 2/Al 2O 3¼25under OH À/SiO 2¼2,a little change of H 2O/SiO 2ratio ranging from 46.6to 40leads to not only the crystallinity of EMC-2-SOF increasing from 61%to 84%,but also its yield going up from 15.8wt.%to 30.6wt.%(Table 1,ES-9and ES-10).A series of changesFig.6.Raman spectra of seed crystal and the gels obtained at different crystallization time.Fig.7.XRD patterns of EMT-type zeolites (A)EMC-2synthesized by using 18-crown-16ether as template;(B,C,and D)EMC-2-SOF synthesized by using 20wt.%EMC-2,H-EMC-2and EMC-2-C seed crystals,respectively from the gel with OH À/SiO 2ratio ¼3,SiO 2/Al 2O 3¼15at 50 C for 7days;(E)EMC-2-SOF synthesized by using 20wt.%EMC-2-C seed crystals from the gel with OH À/SiO 2ratio ¼3,SiO 2/Al 2O 3¼35at 50 C for 7days.Fig.8.XRD patterns of synthesized samples,OH À/SiO 2ratio ¼3,SiO 2/Al 2O 3¼15at 50 C for 7days with different seed crystals content (A)5wt.%;(B)15wt.%;(C)20wt.%;(D)25wt.%.Q.Mou et al./Microporous and Mesoporous Materials 212(2015)73e 7977from 46.6to 20,all the yields of EMC-2-SOF samples increase to exceeding 20wt.%with the maximum of yield being 33.4at H 2O/SiO 2¼30(Table 3,ES-2-4to ES-2-8).However,their crystallinity are below 90.2%.Generally,increasing OH À/SiO 2ratio,solubility of silica increase accompanying with silica polymerization changing.The polymeri-zation degree of silicate decrease radically in a solution when alkalinity higher than OH À/SiO 2¼1[42,50].In the presence of 18-crown-6ether as template to synthesize EMC-2,faujasite layers can be formed at 110 C with OH À/SiO 2¼0.48and assembled by [Na e 18-crown-6]þto form EMT structure and inhibits impurities [6].High alkaline results in FAU or the intergrowth of FAU/EMT structure [51].EMC-2-SOF grows on the surfaces of seed crystals of EMC-2-C at low temperature.Surely,higher alkaline (OH À/SiO 2>3)not only leads to the corrosion of seed crystals and loss their directing role as substrate for the growth of crystals,but also de-creases zeolite yield.Alkaline,temperature and crystallization time,which called as ATT,are three intensive parameters in preparing zeolites with some interconnection among them.Under OH À/SiO 2¼2,with the temperature increasing from 50 C to 55 C,impurity appears.So the period of crystallization is decreased from 72h to 24,20and 16h.Results have shown that relative crystal-linity of all these samples (Table 3ES-2-9to ES-2-13)have increased to over 100%with their yields getting above 25wt.%.Especially,when seed crystals have been added after the gel had been treated at 50 C for 2h,the crystallinity of EMC-2-SOF has reached 112%(Table 3ES-2-13).It gives us some inspiration for the next work.4.ConclusionsSeed crystals have been used to synthesize zeolite EMC-2-SOF in the absence of 18-crown-6ether.EMT-type zeolite with XRD pat-terns matched very well with what obtained by using 18-crown-6ether as template has been prepared.The variation of SiO 2/Al 2O 3molar ratio in original gel for synthesizing EMC-2-SOF was affected by OH À/SiO 2ratio.A best fit between SiO 2/Al 2O 3and OH À/SiO 2ratio has been found.At OH À/SiO 2¼2.0,the relative crystallinity of EMC-2-SOF first increased and then decreased with SiO 2/Al 2O 3ratio increasing,and gots to 100%at SiO 2/Al 2O 3¼50.By changing H 2O/SiO 2ratio from 46.6to 30,yield of EMC-2-SOF increased from 15.8to 33.4wt.%.A relationship of mutual compensation among threeintensive parameters (alkaline,temperature and crystallization time)in preparing zeolites has been found and used to improve the crystallinity of EMC-2-SOF.AcknowledgmentsWe thank the Natural Science Foundation of Tianjin(12JCYBJC12700),MOE (IRT13R30)for financial support.References[1] F.Delprato,L.Delmotte,J.L.Guth,L.Huve,Zeolites 10(1990)546e 552.[2]M.Matsukata,K.Kizu,M.Ogura,E.Kikuchi,Cryst.Growth Des.1(2001)509e 516.[3]M.W.Anderson,K.S.Pachis, F.Pr ebin,S.W.Carr,O.Terasaki,T.Ohsuna,V.J.Alfredsson,mun.23(1991)1660e 1664.[4] C.Wu,K.Chao,J.Chem,Soc.Faraday Trans.91(1995)167e 173.[5]N.Hanif,M.W.Anderson,V.Alfredsson,O.Terasaki,Phys.Chem.Chem.Phys.2(2000)3349e 3357.[6] E.J.P.Feijen,K.D.Vadder,M.H.Bosschaerts,J.Am.Chem.Soc.116(1994)2950e 2957.[7]P.B.Venuto, E.T.Habib,Fluid Catalytic Cracking Zeolite Catalysis,MarcelDecker,Inc.,New York,1979.[8]J.Sun,M.Sun,C.Nie,Q.Z.Li,mun.24(1999)2459e 2460.[9]Y.Luo,J.Sun,W.Zhao,J.Yao,Q.Z.Li,Chem.Mater.14(2002)1906e 1908.[10]R.Wendelbo,M.St €ocker,H.Junggreen,H.B.Mostad,D.E.Akporiaye,Micro-porous Mesoporous Mater.28(1999)361e 375.[11]H.Li,J.N.Armor,Microporous Mater.9(1997)51e 57.[12]L.N.Belandría,C.S.Gonz alez,F.Aguirre,E.Sosa,A.Uzc a tegui,G.Gonz a lez,J.Brito,S.L.Gonz alez-Cort e s,F.E.Imbert,J.Mol.Catal.A Chem.281(2008)164e 172.[13] A.M.Goossens,B.H.Wouters,P.J.Grobet,V.Buschmann,Eur.J.Inorg.Chem.5(2001)1167e 1181.[14]J.Dhainaut,T.J.Daou, A.Chappaz,N.Bats, B.Harbuzaru,pisardi,H.Chaumeil,A.Defoin,L.Rouleau,J.Patarin,Microporous Mesoporous Mater.174(2013)117e 125.[15] E.P.Ng,D.Chateigner,T.Bein,V.Valtchev,S.Mintova,Science 335(2012)70e 73.[16] E.P.Ng,J.M.Goupil, A.Vicente, C.Fernandez,R.Retoux,V.Valtchev,S.Mintova,Chem.Mater.24(2012)4758e 4765.[17]J.P.Arhancet,M.E.Davis,Chem.Mater.3(1991)567e 569.[18] F.Chen,J.Ma,Z.Dong,R.Liu,J.Nanosci,Nanotechnology 14(2014)7293e 7299.[19]M.Khaleel,A.J.Wagner,K.Andre Mkhoyan,M.Tsapatsis,Angew.Chem.Int.Ed.53(2014)9456e 9461.[20]N.S.John,S.M.Stevens,O.Terasaki,M.W.Anderson,Chem.Eur.J.16(2010)2220e 2230.[21]G.Majano,A.Darwiche,S.Mintova,V.Valtchev,Ind.Eng.Chem.Res.48(2009)7084e 7091.[22] B.Xie,J.Song,L.Ren,Y.Ji,J.Li,F.S.Xiao,Chem.Mater.20(2008)4533e 4535.[23]G.Majano,L.Delmotte,V.Valtchev,S.Mintova,Chem.Mater.21(2009)4184e 4191.Table 3Optimizing crystallization conditions for forming EMC-2with seed assistant (20wt.%).Sample OH À/SiO 2SiO 2/Al 2O 3H 2O/SiO 2T/ C Time (h)Y-solid wt.%Crystal./%Y e SOF wt.%ES-2-123546.6503Â2422.27516.6ES-2-223540503Â24þimpurity*74ES-2-323535503Â24þimpurity 85ES-2-422546.6503Â2426.06115.8ES-2-522540503Â2436.48430.6ES-2-622530503Â243790.233.4ES-2-722530502Â2428.682.923.7ES-2-822520503Â2434.265.922.5ES-2-9225305524þimpurity 105ES-2-1022530552025.610225.6ES-2-1122530551625.010025.0ES-2-1222530552þ1627.410527.4ES-2-1322530582þ1230.911230.9ES-2-14225307020þimpurity 96ES-2-1522530701625.985.422.1ES-101 1.85046.6503Â2423.897.723.2ES-102 1.82530552Â2432.887.828.8ES-1031.65046.6503Â2427.748.813.5*þimpurity:there is impurity in the product;Y-solid:yield of solid;Y-SOF:yield of EMC-2-SOF;2þ12:before adding seed crystals,the gel is heated hydrothermally at 50 C for 2h,then add seed crystals and crystalized at some temperature for 12h.Q.Mou et al./Microporous and Mesoporous Materials 212(2015)73e 7978[24]Y.Kamimura,W.Chaikittisilp,K.Itabashi,A.Shimojima,T.Okubo,Chem.Asian J.5(2010)2182e2191.[25]K.Iyoki,Y.Kamimura,K.Itabashi,A.Shimojima,T.Okubo,Chem.Lett.39(2010)730e731.[26]Y.Kamimura,K.Itabashi,T.Okubo,Microporous Mesoporous Mater.147(2012)149e156.[27]Y.Kamimura,K.Iyoki,S.P.Elangovan,K.Itabashi,A.Shimojima,T.Okubo,Microporous Mesoporous Mater.163(2012)282e290.[28]Z.Wu,J.Song,Y.Ji,L.Ren,F.S.Xiao,Chem.Mater.20(2008)357e359.[29]T.Yokoi,M.Yoshioka,H.Imai,T.Tatsumi,Angew.Chem.Int.Ed.48(2009)9884e9887.[30]M.Yoshioka,T.Yokoi,M.Liu,H.Imai,S.Inagaki,T.Tatsumi,MicroporousMesoporous Mater.153(2012)70e78.[31]G.T.Kerr,J.Phys.Chem.70(1966)1047e1050.[32]G.T.Kerr,J.Phys.Chem.72(1968)1385e1386.[33] B.Lu,T.Tsuda,Y.Oumi,K.Itabashi,T.Sano,Microporous Mesoporous Mater.76(2004)1e7.[34]S.Kasahara,K.Itabashi,K.Igawa,Stud.Surf.Sci.Catal.28(1986)185e192.[35]R.D.Edelman,D.V.Kudalkar,T.Ong,J.Warzywoda,R.W.Thompson,Zeolites9(1989)496e502.[36]P.K.Dutta,J.Bronic,Zeolites14(1994)250e255.[37]L.Gora,K.Streletzky,R.W.Thompson,G.D.G.Phillies,Zeolites19(1997)98e106.[38]M.Itakura,I.Goto,A.Takahashi,T.Fujitani,Y.Ide,Microporous MesoporousMater.144(2011)91e96.[39]K.Honda,A.Yashiki,M.Itakura,Y.Ide,M.Sadakane,T.Sano,MicroporousMesoporous Mater.142(2011)161e167.[40]K.Nishi,R.W.Thompson,in:K.Schüth,S.W.Sing,J.Weitkamp(Eds.),Hand-book of Porous Solids,vol.2,WILEY-VCH,Germany,2002,p.736.[41]Q.Wu,X.Wang,X.Meng,C.Yang,Y.Liu,Y.Jin,Q.Yang,F.S.Xiao,MicroporousMesoporous Mater.186(2014)106e112.[42]T.Moteki,T.Okubo,Chem.Mater.25(2013)2603e2609.[43]Y.Kamimura,S.Tanahashi,K.Itabashi, A.Sugawara,T.Wakihara,A.Shimojima,T.Okubo,J.Phys.Chem.C115(2011)744e750.[44](a)A.Ogawa,K.Iyoki,Y.Kamimura,S.P.Elangovan,K.Itabashi,T.Okubo,Microporous Mesoporous Mater.186(2014)21e28;(b)C.W.Bunn,H.Emmett,Faraday Soc.Discuss.5(1949)119e132;(c)P.H.Egli,S.Zerfoss,Faraday Soc.Discuss.5(1949)61e66.[45] B.Xie,H.Zhang,C.Yang,S.Liu,L.Ren,L.Zhang,X.Meng,B.Yilmaz,U.Müller,F.S.Xiao,mun.47(2011)3945e3947.[46]K.Itabashi,Y.Kamimura,K.Iyoki,A.Shimojima,T.Okubo,J.Am.Chem.Soc.134(2012)11542e11549.[47]H.J.Lee,Y.M.Kim,O.S.Kweon,I.J.Kim,J.Eur.Ceram.Soc.27(2007)581e584.[48]Y.M.Liu,Z.Z.Yang,C.L.Yu,X.H.Gu,N.P.Xu,Microporous Mesoporous Mater.143(2011)348e356.[49] F.Dougnier,J.L.Guth,mun.9(1995)951e952.[50]R.R.Xu,W.Q.Pang,Chemistry of Zeolites and Porous Materials,Science Press,Beijing,2004.[51]O.Terasaki,T.Ohsuna,V.Alfredsson,J.O.Bovin, D.Watanabe,S.W.Carr,M.W.Anderson,Chem.Mater.5(1993)452e458.Q.Mou et al./Microporous and Mesoporous Materials212(2015)73e7979。