1.6一元一次不等式组(1)同步练习xin
一元一次不等式组 专题练习(含答案解析)
一元一次不等式组 专题练习(含答案解析)一、计算题(本大题共25小题,共150.0分)1. 解不等式组,并在数轴上表示出解集:(1){8x +5>9x +62x −1<7(2){2x−13−5x+12≤15x −1<3(x +1).2. 解不等式组:{x +1>0x ≤x−23+2.3. 解不等式组{3(x +2)≥x +4x−12<1,并求出不等式组的非负整数解.4. 解不等式组:{2x −6≤5x +63x <2x −15. 求不等式组:{x −3(x −2)≤85−12x >2x 的整数解.6. 解下列不等式组并将不等式组的解集在数轴上表示出来.(1){3x <2(x −1)+3x+62−4≥x ; (2){5x +7>3(x +1)1−32x ≥x−83.7. 解不等式组{x −3(x −2)≥42x−15<x+12,并将它的解集在数轴上表示出来.8. 解不等式组 {3(x −2)+4<5x 1−x 4+x ≥2x −1.9. 解不等式组:{−3(x +1)−(x −3)<82x+13−1−x 2≤1,并求它的整数解的和.10. 试确定实数a 的取值范围,使不等式组{x 2+x+13>0x +5a+43>43(x +1)+a 恰有两个整数解.11. 解不等式组{2(x +2)≤x +3x 3<x+14.12. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.13. {x −3(x −2)≤42x−15>x+12.14. 求不等式组{1−x ≤0x+12<3的解集.15. 解下列不等式组(1){3x −2<82x −1>2(2){5−7x ≥2x −41−34(x −1)<0.5.16. 解不等式组:{2x −1>53x+12−1≥x,并在数轴上表示出不等式组的解集.17. 解不等式组:{x 2−1<xx −(3x −1)≥−5.18. 解不等式组:{2x +9<5x +3x−12−x+23≤019. 解不等式组:{3x +1<2x +3①2x >3x−12②20. 解不等式组:{3x +7≥5(x +1)3x−22>x +1.21. 解不等式组{1−2(x −1)≤53x−22<x +12.22. 解不等式组:{4x >2x −6x−13≤x+19,并把解集在数轴上表示出来.23. 若关于x 的不等式组{x 2+x+13>03x +5a +4>4(x +1)+3a恰有三个整数解,求实数a 的取值范围.24. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.25. 解不等式组{x−32<−1x 3+2≥−x .答案和解析1.【答案】解:(1), 解不等式①得,x <-1,解不等式②得,x <4,∴不等式组的解集是x <-1,在数轴上表示如下:;(2){2x−13−5x+12≤1①5x −1<3(x +1)②, 解不等式①得,x ≥-1,解不等式②得,x <2,∴不等式组的解集是-1≤x <2,在数轴上表示如下:.【解析】 本题考查了不等式的解法与不等式组的解法,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.(1)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解;(2)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解.2.【答案】解:{x +1>0①x ≤x−23+2②, 由①得,x >-1,由②得,x ≤2,所以,原不等式组的解集是-1<x ≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.【答案】解:解不等式(1)得x ≥-1解不等式(2)得x <3∴原不等式组的解是-1≤x <3∴不等式组的非负整数解0,1,2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.【答案】解:解不等式①,得x ≥-4,解不等式②,得x <-1,所以不等式组的解集为:-4≤x <-1.【解析】先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.【答案】解:由x -3(x -2)≤8得x ≥-1由5-12x >2x 得x <2∴-1≤x <2∴不等式组的整数解是x =-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【答案】解:(1){3x <2(x −1)+3①x+62−4≥x②, 解①得x <1,解②得x ≤-2,所以不等式组的解集为x ≤-2,用数轴表示为:;(2){5x +7>3(x +1)①1−32x ≥x−83②, 解①得x >-2,解②得x ≤2,所以不等式组的解集为-2<x ≤2,用数轴表示为:. 【解析】(1)分别解两个不等式得到x <1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集; (2)分别解两个不等式得到x >-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.7.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.8.【答案】解:{3(x−2)+4<5x①1−x4+x≥2x−1②,由①得:x>-1;由②得:x≤1;∴不等式组的解集是-1<x≤1.【解析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.9.【答案】解:由①得x>-2,由②得x≤1,∴不等式组的解集为-2<x≤1∴不等式组的整数解的和为-1+0+1=0.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.【答案】解:由x 2+x+13>0,两边同乘以6得3x +2(x +1)>0,解得x >-25, 由x +5a+43>43(x +1)+a ,两边同乘以3得3x +5a +4>4(x +1)+3a ,解得x <2a ,∴原不等式组的解集为-25<x <2a .又∵原不等式组恰有2个整数解,即x =0,1;则2a 的值在1(不含1)到2(含2)之间,∴1<2a ≤2,∴0.5<a ≤1.【解析】先求出不等式组的解集,再根据x 的两个整数解求出a 的取值范围即可.此题考查的是一元一次不等式的解法,得出x 的整数解,再根据x 的取值范围求出a 的值即可. 求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【答案】解:{2(x +2)≤x +3①x 3<x+14②, ∵由①得:x ≤-1,由②得:x <3,∴不等式组的解集是x ≤-1.【解析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是根据不等式的解集找出不等式组的解集,题目比较好,难度也适中.12.【答案】解:由①得4x +4+3>x解得x >- 73,由②得3x -12≤2x -10,解得x ≤2,∴不等式组的解集为- 73<x ≤2.∴正整数解是1,2.【解析】 本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.13.【答案】解:{x −3(x −2)≤4①2x−15>x+12②, 由①得:x ≥1,由②得:x <-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.14.【答案】解:{1−x ≤0①x+12<3②, 解不等式①,得x ≥1.解不等式②,得x <5.所以,不等式组的解集是1≤x <5.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.15.【答案】解:(1){3x −2<8①2x −1>2②, 解不等式①,得x <103, 解不等式②,得x >32.∴原不等式组的解集是:32<x <103;(2){5−7x ≥2x −4①1−34(x −1)<0.5②, 解不等式①,得x ≤1,解不等式②,得x >53. ∴原不等式组无解.【解析】 本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x 大于较小的数、小于较大的数,那么解集为x 介于两数之间.(1)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;(2)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;如果两个不等式没有交集,说明原不等式组无解.16.【答案】解:{2x −1>5①3x+12−1≥x②解①得:x >3,解②得:x ≥1,则不等式组的解集是:x >3;在数轴上表示为:【解析】分别解两个不等式得到x >3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集. 本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.【答案】解:{x2−1<x①x −(3x −1)≥−5②, 由①得:x >-2,由②得:x ≤3,∴不等式组的解集是:-2<x ≤3.【解析】根据不等式的性质求出不等式的解集,根据找不等式组的解集得规律找出不等式组的解集即可.本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,根据不等式的解集能找出不等式组的解集是解此题的关键.18.【答案】解:解不等式2x +9<5x +3,得:x >2,解不等式x−12-x+23≤0,得:x ≤7,则不等式组的解集为2<x ≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:由①,得3x-2x<3-1.∴x<2.由②,得4x>3x-1.∴x>-1.∴不等式组的解集为-1<x<2.【解析】分别求出不等式①②的解集,同大取大;同小取小;大小小大中间找;大大小小找不到求出不等式组解集.本题考查了解一元一次不等式组的解法,利用同大取大;同小取小;大小小大中间找;大大小小找不到求不等式组解集是本题关键.20.【答案】解:{3x+7≥5(x+1)①3x−22>x+1②,由①得,x≤1,由②得,x>4,所以,不等式组无解.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解.21.【答案】解:由①得:1-2x+2≤5∴2x≥-2即x≥-1由②得:3x-2<2x+1∴x<3.∴原不等式组的解集为:-1≤x<3.【解析】解先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.【答案】解:{4x>2x−6①x−13≤x+19②,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23.【答案】解:{x2+x+13>0①3x+5a+4>4(x+1)+3a②,由①得:x>-25,由②得:x<2a,则不等式组的解集为:-25<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤32,故答案为:1<a≤32.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.【答案】解:由①得4x+4+3>x解得x>-73,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为-73<x≤2.∴正整数解是1、2.【解析】先解每一个不等式,求出不等式组的解集,再求出正整数解即可.此题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.25.【答案】解:{x−32<−1①x3+2≥−x②,解①得x<1,解②得x≥-32,所以不等式组的解集为-32≤x<1.【解析】分别解两个不等式得到x<1和x≥-,然后根据大于小的小于大的取中间确定不等式组的解集.本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.。
初中数学分式方程一元一次不等式组练习题(附答案)
初中数学分式方程一元一次不等式组练习题一、单选题1.已知关于x 的分式方程211x kx x-=--的解为正数,则k 的取值范围为( ) A .20k -<< B .2k >-且1k ≠- C .2k >-D .2k <且1k ≠2.若分式293x x --的值为0,则x 的值等于( )A.0B.3±C.3D.3-3.方程2131x x =+-的解是( ) A.53x =B.5x =C.4x =D.5x =-4.已知: 3x =是分式方程2121kx k x x--=-的解,那么实数是k 的值为( ) A. 1- B.0 C.1 D.25.已知3x =是分式方程2121kx k x x--=-的解,那么实数k 的值为( ) A.1-B.0C.1D.26.关于x 的方程32211x mx x -=+++无解,则m 的值为( ) A.5- B.8- C.2- D.57.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( )A .3m ≤B .3m <C .3m >-D .3m ≥-8.解分式方程1101x +=-,正确的结果是( ) A.0x =B.1x =C.2x =D.无解9.对于非零的两个实数a ,b ,规定11a b b a=-,若2(21)1x -=,则x 的值为( )A.56 B.54C.32 D.16- 10.若关于x 的方程2230x x +-=与213x x a=+-有一个解相同,则a 的值为( ) A.1 B.1或3- C.1- D.1-或311.不等式32xx ->的解为( ) A.1x < B.1x <- C.1x > D.1x >- 12.不等式()215x -<的正整数解的个数为( ) A.2 B.3 C. 4 D. 5 13.不等式组2(2)22323x x x x -≤-⎧⎪++⎨>⎪⎩的解集是( )A.02x <≤B.06x <≤C.0x >D.2x ≤14.不等式组123122x x -<⎧⎪⎨+≤⎪⎩的正整数解的个数是( )A.5B.4C.3D.215.若数a 使关于x 的分式方程2311a x x x --=--有正数解,且使关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解,则所有符合条件的整数a 的个数为( ) A .1B .2C .3D .416.不等式293(2)x x +≥+的解集是( ) A .3x ≤ B .3x ≤-C .3x ≥D .3x ≥-17.不等式932122x x --+<的负整数解有( ) A.1个 B.2个 C.3个 D.4个18.下列各数轴上表示的x 的取值范围可以是不等式组2(21)60x aa x +>⎧⎨--<⎩的解集的是( )A .B .C .D .19.不等式组12,92x x x +⎧⎨-<⎩的解集在数轴上表示正确的是( )A. B. C.D.20.如果关于x 的分式方程1311a x x x --=++有负分数解,且关于x 的不等式组()24,3412a x x x x -≥--⎧⎪⎨+<+⎪⎩的解集为2x <-,那么符合条件的所有整数a 的积是( ) A 、3-B 、0C 、3D 、9二、解答题 21.解方程: (1)21133x x x x =+++; (2)241111x x x -+=-+. 22.对于实数m n ,,定义一种新运算”©”为:21m n m n ©=-,这里等式右边是实数运算.求方程2(2)14x x ©-=--的解. 23.如果230x x +-=,求321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭的值. 24.解下列方程: (1)125210x x x x --=--; (2)214111x x x ++=--. 25.解不等式组:2(1)7122x x x x +>⎧⎪⎨+-≥⎪⎩并在数轴上表示它的解集.26.解不等式组131722324334x x x x x ⎧+<-⎪⎪⎨--⎪≥+⎪⎩并写出它的所有整数解.27.解不等式组205121123x x x ->⎧⎪+-⎨+≥⎪⎩,并把解集在数轴上表示出来.28.如果一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关联方程.(1)若不等式组122136x x x ⎧-<⎪⎨⎪+>-+⎩,的一个关联方程的解是整数,则这个关联方程可以 是 (写出一个即可);(2)若方程1322(2)3x x x x -=+=+,都是关于的不等式组22x x m x m <-⎧⎨-≤⎩,的关联方程,试求的取值范围. 三、填空题 29.若关于x 的方程2222x mx x++=--有增根,则m 的值是__________ 30.分式方程2332x x =--的解是_____. 31.若关于x 的分式方程1322m xx x-=---有增根,则实数m 的值是 . 32.方程3122x x x =++的解是__________. 33.分式方程11233x x x-=---的解为 .34.若3311m m m m m --⋅=--,则m = . 35.不等式组30412x x -<⎧⎪⎨+≥⎪⎩的解为___________.36.不等式组23182x x x >-⎧⎨-≤-⎩的最小整数解是 .37.不等式组302321xx -⎧≤⎪⎨⎪+≥⎩的解集是________________。
一元一次不等式(组)应用题及练习(含答案)
类型一例1.*校初三年级春游,现有36座和42座两种客车供选择租用,假设只租用36座客车假设干辆,则正好坐满;假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游"(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】此题的关键语句是:"假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人〞.理解这句话,有两层不等关系.(1)租用36座客车*辆的座位数小于租用42座客车(*-1)辆的座位数.(2)租用36座客车*辆的座位数大于租用42座客车(*-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车*辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意*应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,假设每人分4个,则剩下9个橘子;假设每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李〔药品、器械〕,租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车*辆,请你设计所有可能的租车方案;(2) 假设甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.*市局部地区遭受了罕见的旱灾,"旱灾无情人有情〞.*单位给*乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.〔1〕求饮用水和蔬菜各有多少件?〔2〕现方案租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.〔3〕在〔2〕的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:〔1〕设饮用水有*件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.〔2〕设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960〔元〕;②3×400+5×360=3000〔元〕;③4×400+4×360=3040〔元〕.所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积〔单位:亩〕种植B类蔬菜面积〔单位:亩〕总收入〔单位:元〕甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵ *种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积〔两类蔬菜的种植面积均为整数〕,求该种植户所有租地方案.2、*公司为了更好得节约能源,决定购置一批节省能源的10台新机器。
一元一次不等式(组)应用题及练习(含答案)
一元一次不等式组的典型应用题类型一例1.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】本题的关键语句是:“若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人”.理解这句话,有两层不等关系.(1)租用36座客车x辆的座位数小于租用42座客车(x-1)辆的座位数.(2)租用36座客车x辆的座位数大于租用42座客车(x-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车x辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意x应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:(1)设饮用水有x件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.2、某公司为了更好得节约能源,决定购买一批节省能源的10台新机器。
一元一次不等式组练习题含答案详解
不等式组综合提高一.选择题(共2小题)1.若不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<32.已知关于x的不等式组有解,则m的取值范围为()A.m>6B.m≥6C.m<6D.m≤6二.填空题(共11小题)3.关于x的不等式组的整数解共有6个,则a的取值范围是.4.已知关于x的不等式组有且只有2个整数解,且a为整数,则a的值为.5.若关于x的不等式组的解集为﹣<x<﹣6,则m的值是.6.已知关于x的不等式组有且仅有两个整数解,则a的取值范围是.7.若关于x的不等式组有且只有4个整数解,则k的取值范围是.8.若关于x的不等式组有且只有五个整数解,则k的取值范围是.9.已知不等式的解集为﹣1<x<1,求(a+1)(b﹣1)的值为.10.已知不等式组的解集如图所示(原点没标出数轴单位长度为1,黑点和圆圈均在整数的位置),则a的值为.11.若关于x的不等式组只有4个整数解,则a的取值范围是.12.已知关于x、y的方程组的解满足x>0,y>0,实数a的取值范围是.13.不等式组有5个整数解,那么a的取值范围是.三.解答题(共13小题)14.解不等式组:,并在数轴上表示出它的解集.15.解不等式组,并把解集表示在下面的数轴上.16.解不等式(组):(1);(2).17.解不等式组:.18.解下列方程组和不等式组.(1)方程组:;(2)不等式组:.19.解方程组或不等式组(1)(2)解不等式组,并把解集在数轴上表示出来.20.解不等式(组):(1)19﹣3(x+7)≤0(2)21.绿水青山都是金山银山,3月12日,某校八年级一班全体学生在邓老师的带领下一起种许愿树和发财树,已知购买1棵许愿树和2棵发财树需要42元,购买2棵许愿树和1棵发财树需要48元.(1)你来算一算许愿树、发财树每棵各多少钱?(2)邓老师指示:全班种植许愿树和发财树共20棵,且许愿树的数量不少于发财树的数量,但由于班费资金紧张,还要求两种树的总成本不得高于312元,聪明的同学,你知道共有哪几种种植方案吗?22.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两种型号的手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.23.计算题(1)解方程组:.(2)解不等式组:,并写出它的所有正整数解.24.某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.A型B型类型价格进价(元/盏)4065标价(元/盏)60100(1)这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润至少为1400元,问至少需购进B种台灯多少盏?25.入夏以来,由于持续暴雨,某市遭受严重水涝灾害,群众失去家园.市民政局为解决灾民群众困难,紧急组织了一批救灾帐篷和食品准备送往灾区.已知这批物质中,帐篷和食品共680件,且帐篷比食品多200件.(1)帐篷和食品各有多少件?(2)现计划租用A、B两种货车共16辆,一次性将这批物质送到群众手中,已知A种货车可装帐篷40件和食品10件,B种货车可装帐篷20件和食品20件,试通过计算帮助市民政局设计几种运输方案?(3)在(2)条件下,A种货车每辆需付运费800元,B种货车每辆需付运费720元,市民政局应该选择哪种方案,才能使运费最少?最少运费是多少?26.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)参考答案与试题解析一.选择题(共2小题)1.若不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m≤3D.m<3【解答】C.2.已知关于x的不等式组有解,则m的取值范围为()A.m>6B.m≥6C.m<6D.m≤6【解答】C.二.填空题(共11小题)3.关于x的不等式组的整数解共有6个,则a的取值范围是﹣6≤a<﹣5.4.已知关于x的不等式组有且只有2个整数解,且a为整数,则a的值为5.5.若关于x的不等式组的解集为﹣<x<﹣6,则m的值是9.6.已知关于x的不等式组有且仅有两个整数解,则a的取值范围是1≤a<2.7.若关于x的不等式组有且只有4个整数解,则k的取值范围是﹣4≤k<﹣2 8.若关于x的不等式组有且只有五个整数解,则k的取值范围是﹣6≤k<﹣4.9.已知不等式的解集为﹣1<x<1,求(a+1)(b﹣1)的值为﹣6.10.已知不等式组的解集如图所示(原点没标出数轴单位长度为1,黑点和圆圈均在整数的位置),则a的值为2.11.若关于x的不等式组只有4个整数解,则a的取值范围是﹣3<a≤﹣.12.已知关于x、y的方程组的解满足x>0,y>0,实数a的取值范围是﹣<a<2.13.不等式组有5个整数解,那么a的取值范围是﹣4<a≤﹣3.三.解答题(共13小题)14.解不等式组:,并在数轴上表示出它的解集.【解答】解:解不等式①,得:x<5,解不等式②,得:x≥﹣2,则不等式组的解集为﹣2≤x<5,将不等式组的解集表示在数轴上如下:15.解不等式组,并把解集表示在下面的数轴上.【解答】解:解不等式x﹣2(x﹣3)≥5,得:x≤1,解不等式<+1,得:x>﹣3,则不等式组的解集为﹣3<x≤1,将不等式组的解集表示在数轴上如下:16.解不等式(组):(1);(2).【解答】解:(1)去分母,得:3(x﹣2)﹣6≤2(4﹣x),去括号,得:3x﹣6﹣6≤8﹣2x,移项,得:3x+2x≤8+6+6,合并同类项,得:5x≤20,系数化为1,得:x≤4;(2)解不等式①,得:x≤3,解不等式②,得:x>1,则不等式组的解集为1<x≤3.17.解不等式组:.【解答】解:.由①得:x>2,由②得:x≤4,则不等式组的解集是2<x≤4.18.解下列方程组和不等式组.(1)方程组:;(2)不等式组:.【解答】解:(1)①﹣②×3得:5y=﹣5,解得:y=﹣1,把y=﹣1代入②得:x+3=﹣4,解得:x=﹣7,所以方程组的解为:;(2)解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集,﹣1≤x<2.19.解方程组或不等式组(1)(2)解不等式组,并把解集在数轴上表示出来.【解答】解:(1),①×8+②得:33x=33,解得:x=1,把x=1代入①得:y=1,则方程组的解为;(2)不等式组整理得:,解得:﹣4<x≤2,20.解不等式(组):(1)19﹣3(x+7)≤0(2)【解答】解:(1)19﹣3(x+7)≤0,19﹣3x﹣21≤0,﹣3x≤21﹣19,﹣3x≤2,x≥﹣;(2)∵解不等式①得:x<2,解不等式②得:x>﹣4,∴不等式组的解集是﹣4<x<2.21.绿水青山都是金山银山,3月12日,某校八年级一班全体学生在邓老师的带领下一起种许愿树和发财树,已知购买1棵许愿树和2棵发财树需要42元,购买2棵许愿树和1棵发财树需要48元.(1)你来算一算许愿树、发财树每棵各多少钱?(2)邓老师指示:全班种植许愿树和发财树共20棵,且许愿树的数量不少于发财树的数量,但由于班费资金紧张,还要求两种树的总成本不得高于312元,聪明的同学,你知道共有哪几种种植方案吗?【解答】解:(1)设许愿树每棵x元,发财树每棵y元,根据题意可得:,解得:.答:许愿树每棵18元,发财树每棵12元;(2)设许愿树为a棵,则发财树为(20﹣a)棵,根据题意可得:,解得:10≤a≤12,∴a=10,11,12;所以有三种方案,方案一:10棵许愿树、10棵发财树;方案二:11棵许愿树、9棵发财树;方案三:12棵许愿树、8棵发财树.22.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两种型号的手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.【解答】解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,解得,答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,17400≤1000a+800(20﹣a)≤18000,解得7≤a≤10,共有四种方案,方案一:购进甲手机7部、乙手机13部;方案二:购进甲手机8部、乙手机12部;方案三:购进甲手机9部、乙手机11部;方案四:购进甲手机10部、乙手机10部.(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m当m=80时,w始终等于8000,取值与a无关.23.计算题(1)解方程组:.(2)解不等式组:,并写出它的所有正整数解.【解答】解:(1),①×2+②,得:8y=40,解得y=5,将y=5代入②,得:﹣2x+15=17,解得:x=﹣1,所以方程组的解为;(2)解不等式4x﹣7<5(x﹣1),得:x>﹣2,解不等式≤3﹣,得:x ≤,则不等式组的解集为﹣2<x ≤,所以该不等式组的正整数解有1、2、3、4.24.某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.A型B型类型价格进价(元/盏)4065标价(元/盏)60100(1)这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润至少为1400元,问至少需购进B种台灯多少盏?【解答】解:(1)设A型台灯购进x盏,B型台灯购进y盏,根据题意,得,解得:;(2)设购进B种台灯m盏,根据题意,得利润(100﹣65)•m+(60﹣40)•(50﹣m)≥1400,解得,m ≥,∵m是整数,∴m≥27,答:A型台灯购进30盏,B型台灯购进20盏;要使销售这批台灯的总利润不少于1400元,至少需购进B种台灯27盏.25.入夏以来,由于持续暴雨,某市遭受严重水涝灾害,群众失去家园.市民政局为解决灾民群众困难,紧急组织了一批救灾帐篷和食品准备送往灾区.已知这批物质中,帐篷和食品共680件,且帐篷比食品多200件.(1)帐篷和食品各有多少件?(2)现计划租用A、B两种货车共16辆,一次性将这批物质送到群众手中,已知A种货车可装帐篷40件和食品10件,B种货车可装帐篷20件和食品20件,试通过计算帮助市民政局设计几种运输方案?(3)在(2)条件下,A种货车每辆需付运费800元,B种货车每辆需付运费720元,市民政局应该选择哪种方案,才能使运费最少?最少运费是多少?【解答】解:(1)设帐篷有x件,食品有y件.则,解得,;答:帐篷有440件,食品有240件(2)设租用A种货车a辆,则租用B种货车(16﹣a)辆,则,解得6≤a≤8,故有3种方案:A种车分别为6,7,8辆,B种车对应为10,9,8辆(3)设总费用为W元,则W=800a+720(16﹣a)=80a+11520,k=80>0,W随a的增大而减少,所以当a=6时费用最少,为12000元.26.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)【解答】解:(1)设甲材料每千克x元,乙材料每千克y元,则,解得,所以甲材料每千克25元,乙材料每千克35元;(2)设生产A产品m件,生产B产品(60﹣m)件,则生产这60件产品的材料费为25×4m+35×1m+25×3(60﹣m)+35×3(60﹣m)=﹣45m+10800,由题意:﹣45m+10800≤9900,解得m≥20,又∵60﹣m≥38,解得m≤22,∴20≤m≤22,∴m的值为20,21,22,共有三种方案:①生产A产品20件,生产B产品40件;②生产A产品21件,生产B产品39件;③生产A产品22件,生产B产品38件;(3)设生产A产品m件,总生产成本为W元,加工费为:40m+50(60﹣m),则W=﹣45m+10800+40m+50(60﹣m)=﹣55m+13800,∵﹣55<0,∴W随m的增大而减小,而m=20,21,22,∴当m=22时,总成本最低.答:选择生产A产品22件,生产B产品38件,总成本最低.。
(完整版)一元一次不等式组练习题(含答案)(最新整理)
x4 0.2
14
18、(2007
年滨州)解不等式组
1x2332x(2x2x1)
≤ 1.
4,
把解集表示在数轴上,并求出不等式组的整数解.
19、求同时满足不等式 6x-2≥3x-4 和 2x 1 1 2x 1 的整数 x 的值.
3
2
x y m5
20、若关于
x、y
的二元一次方程组
x
y
3m
3
中,x
的值为负数,y
的值为正数,求
m
的取值范围.
参考答案
1、C 2、D 3、C 4、B 5、A 6、D 7、A 8、D 9、1<y<2 10、-1≤x<3
1
11、- ≤x≤4 12、m>2 13、2≤x<5 14、a<2
4
15、-6
16、a≤1
17、(1) 3 x 10 (2)无解(3)-2<x< 1 (4)x>-3 18、2,1,0,-1
1
A、a<
2
B、a<0
C、a>0
1
D、a<-
2
x 1≤ 0, 3、(2007 年湘潭市)不等式组 2x 3 5 的解集在数轴上表示为(
) )
1 1 x
A
1 1 x
B
1 1 x
C
1 1 x
D
3x 1 0 4、不等式组 2x 5 的整数解的个数是( )
A、1 个
B、2 个
C、3 个
D、4 个
5、在平面直角坐标系内,P(2x-6,x-5)在第四象限,则 x 的取值范围为(
2
3
3
19、不等式组的解集是- 2 x 7 ,所以整数 x 为 0 3 10
20、-2<m<0.5
初三数学同步练习:一元一次不等式(组)训练试题
初三数学同步练习:一元一次不等式(组)训练试题[课标要求]可以依据详细情境中的数量关系,列出一元一次不等式和一元一次不等式组,处置复杂的效果.[基础训练]1、某班级从文明用品市场购置了签字笔和圆珠笔共l5支,所付金额大于26元,但小于27元.签字笔每支2元,圆珠笔每支1.5元,那么其中签字笔购置了_____ 支.2、我国从2021年5月1日起在群众场所实行禁烟,为配合禁烟举动,某校组织展开了吸烟有害安康的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记分.小明参与本次竞赛得分要超越100 分,他至少要答对道题.3、依据如下图,对a、b、c三种物体的质量判别正确的选项是( )A、aB、aC、acD、b[要点梳理]列出不等式(组) 处置实践效果的步骤:(1)找出实践效果中的不等关系,设出未知数,列出不等式(组);(2)解不等式(组);(3)从不等式(组)的解集中求出契合题意的答案.[效果研讨]例1、黄冈某地杜鹃节时期,某公司70名职工组团前往观赏欣赏,旅游景点规则:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人1 0元.公司职工正好坐满每辆车且总费用不超越5000元,问公司租用的四座车和十一座车各多少辆?例 2、某学校组织八年级先生参与社会实际活动,假定独自租用35座客车假定干辆,那么刚好坐满;假定独自租用55座客车,那么可以少租一辆,且余45个空座位.( 1)求该校八年级先生参与社会实际活动的人数;(2)35座客车的租金为每辆320元,55座客车的租金为每辆400元.依据租车资金不超越1500元的预算,学校决议同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实际活动所需车辆的租金.例3、青青商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元,乙种商品每件进价35元,售价45元,(1)假定该商场同时购进甲、乙两种商品共100件恰恰用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超越760 元,请你协助该商场设计相应的进货方案;(3)在五一黄金周时期,该商场对甲、乙两种商品停止如下优惠促销活动:打折前一次性购物总金额优惠措施不超越300元不优惠超越 300元且不超越400元售价打九折超越400元售价打八折按上述优惠条件,假定小王第一天只购置甲种商品一次性付款200元,第二天只购置乙种商品打折后一次性付款324元,那么这两天他在该商场购置甲、乙两种商品一共多少件?(经过计算求出一切契合要求的结果)剖析:(1)购进甲种商品的总费用+购进乙种商品的总费用=2700元.(2)列出不等式组,留意不等式组的整数解.例4、2021年5月20日是第22个中国先生营养日,某校社会实际小组在这天展开活动,调查快餐营养状况.他们从食品平安监视部门获取了一份快餐的信息(如图).依据信息,解答以下效果.(1)求这份快餐中所含脂肪质量;(2)假定碳水化合物占快餐总质量的4 0%,求这份快餐所含蛋白质的质量;(3)假定这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.例5、为了进一步树立秀美、宜居的生态环境,某村欲购置甲、乙、丙三种树美化村庄,甲、乙、丙三种树每棵的价钱之比是2:2:3,甲种树每棵200元,现方案用210000元,购置这三种树共1000棵.(1)求乙、丙两种树每棵个多少元?(2)假定购置甲种树的棵树是乙种树的2倍,且恰好用完方案资金,求三种树各购置多少棵?(3)假定又添加了1 0120元的购树款,在购置总棵树不变的状况下,求丙种树最多可以购置多少棵?[规律总结]1、依据标题给出的条件能转化为不等式时,要了解,如至少、至少、不少于等等.2、要留意不等式(组)的解集能否契合实践.[强化训练]1、(桂林2021)某校初三年级春游,现有36座和42座两种客车供选择租用,假定只租用36座客车假定干辆,那么正好坐满;假定只租用42座客车,那么能少租一辆,且有一辆车没有坐满,但超越30人;36座客车每辆租金400元,42座客车每辆租金44 0元.(1)该校初三年级共有多少人参与春游?(2)请你帮该校设计一种最省钱的租车方案.2、某房地产开发公司方案建 A、B两种户型的住房共80套,该公司所筹资金不少于 2090万元,但不超越2096万元,且所筹资金全部用于建房,两种户型的建房的本钱和售价如表:AB本钱(万元/套)2528售价(万元/套)3034(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获利利润最大?(3)依据市场调查,每套B型住房的售价不会改动,每套A型住房的售价将会提高 a万元(a0),且所建的两种住房可全部售出,该公司又将如何建房取得利润最大?。
一元一次不等式(组)专题训练
一元一次不等式(组)一、 一元一次不等式(组)的解A 、 已知不等式(组)的解(集),求参数的值或取值范围 例1:不等式-<+mx 23x 4的解集是63x m >-,求m 的取值范围。
练习:1、若关于x 的不等式a(1)x 12a x ->+-的解集是1x <-求a 的取值范围。
2、若关于x 的不等式(1)x 5a a -<+的解集和24x <的解集相同,求a 的取值。
3、不等式475x a x ->+的解集是1x <-求a 的取值4、若关于x 的不等式2132x a a ->-的解集和2x a <的解集相同,求a 的取值例2:若不等式组3x x a >⎧⎨>⎩的解集是x a >则a 的取值范围是 练习:1、(1)若不等式组5x x m <⎧⎨>⎩ 无解,则a 的取值范围是 (2)若无解,则a 的取值范围是2、已知不等式组x a x b <⎧⎨>⎩无解,求不等式组11x a x b >-⎧⎨<-⎩的解3、当a 满足什么条件时,不等式组131x a x a >+⎧⎨<-⎩无解4、如果2a <,那么不等式组2x x a >⎧⎨>⎩的解集为 ,2x x a <⎧⎨<⎩的解集为 例3:若不等式组2123x a x b -<⎧⎨->⎩的解集为11x -<<求(a 3)(b 3)-+ 的值。
练习:1、一元一次不等式组13x a x -≤⎧⎨+>⎩的解集为x a ≥-,求a 的取值范围。
2、一元一次不等式组221x a b x a a -≥⎧⎨-<+⎩的解集为35x ≤<,求b a3、一元一次不等式组213(x 1)x x m ->-⎧⎨<⎩的解集为2x <,求m 的取值范围。
4、不等式组26x x x m-+<-⎧⎨>⎩的解集为4x >,求m 的取值范围B :已知不等式(组)的整数解的个数,求参数的取值范围例4:已知不等式30x a -≤ 的正整数解有三个,1,2,3求a 的取值范围。
八年级数学下册 1.6 一元一次不等式组同步练习集(1) 北师大版
1.6 一元一次不等式组(1)一、目标导航1.理解一元一次不等式组、一元一次不等式组的解集、解不等式组等概念.2.会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集. 二、基础过关1.以下不等式组中,解集是2<x <3的不等式组是( )A .⎩⎨⎧>>23x x B .⎩⎨⎧<>23x x C .⎩⎨⎧><23x xD .⎩⎨⎧<<23x x2.在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( )A .a <12 B .a <0 C .a >0 D .a <-123.不等式组10235x x +⎧⎨+<⎩≤,的解集在数轴上表示为( )4.不等式组31025x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个5.在平面直角坐标系内,P (2x -6,x -5)在第四象限,则x 的取值范围为( )A .3<x <5B .-3<x <5C .-5<x <3D .-5<x<-36.已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( )A .①与②B .②与③C .③与④D .①与④ABCD7.方程组43283x m x y m +=⎧⎨-=⎩的解x 、y满足x >y ,则m 的取值范围是( )A .m >109 B .m >910 C .m >1019 D .m >1910 8.若y 同时满足y +1>0与y -2<0,则y 的取值范围是______________.9.不等式组3010x x -<⎧⎨+⎩≥的解集是 .10.不等式组20.53 2.52x x x -⎧⎨---⎩≥≥的解集是 .11.若不等式组⎩⎨⎧->+<121m x m x 无解,则m的取值范围是 .12.不等式组15x x x >-⎧⎪⎨⎪<⎩≥2的解集是_________________.13.不等式组2x x a >⎧⎨>⎩的解集为x >2,则a 的取值范围是_____________.14.若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x <1,那么(a +1)(b -1)的值等于________.15.若不等式组4050a x x a ->⎧⎨+->⎩无解,则a的取值范围是_______________.三、能力提升16.解以下不等式组:(1)328212x x -<⎧⎨->⎩ (2)572431(1)0.54x x x -≥-⎧⎪⎨--<⎪⎩(3)2x <1-x ≤x +5 (4)3(1)2(9)34140.50.2x x x x -<+⎧⎪-+⎨-≤-⎪⎩17.解不等式组3(21)42132 1.2x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩≤,把解集表示在数轴上,并求出不等式组的整数解.18.求同时满足不等式6x -2≥3x -4和2112132x x+--<的整数x 的值.19.求不等式组73442555(4)2(4)3x xx x x -+⎧≥-⎪⎪⎨⎪+-≥-⎪⎩的非负整数解.四、聚沙成塔若关于x 、y的二元一次方程组533x y m x y m -=-⎧⎨+=+⎩中,x的值为负数,y 的值为正数,求m 的取值范围.1.6 一元一次不等式组(1)1.C ;2.D ;3.C ;4.C ;5.A ;6.D ;7.D ;8.-1<y <2;9.-1≤x <3;10.-14≤x ≤4;11.M ≥2;12.2≤x <5;13.a ≤2;14.-6;15.A ≤1; 16.(1)31023x <<;(2)无解;(3)-2≤x <13;(4)x >-3. 17.解集为345x <≤-,整数解为2,1,0,-1.18.不等式组的解集是27310x ≤<-,所以整数x 为0.19.不等式组的解集为6913x ≤, 所以不等式组的非负整数解为:0,l ,2,3,4,5.聚沙成塔 -4<m <0.5.科学睡眠 健康成长——在国旗下的发言各位尊敬的老师、各位亲爱的同学:大家上午好!我是来自预备二班的***。
一元一次不等式(1)同步练习(含答案)
9.2.1 一元一次不等式一、选择题1.当x =-2时,下列不等式成立的是( )A.x -5>-7B.12x +2>0 C.2(x -2)>-2 D.3x >2x 2.不等式260x -<的解集是( )A . 3x >B . 3x <C .3x >-D .3x <-3.不等式3x -7≥4(x -1)的解集是( ).A .x ≥-3B .x ≥3C .x ≤-3D .x ≤34.把不等式2x -< 4的解集表示在数轴上,正确的是5.关于x 的方程12mx x -=的解为正实数,则m 的取值范围是A .m ≥2B .m ≤2C .m >2D .m <26.下面有4种说法:① x =3是不等式2x -5>0的解; ②x =23不是不等式3x -2>0的解; ③ x >23是不等式3x -2>0的解集; ④ x >1中的任何一个数都能使3x -2>0成立,所以x >1也是它的解集.其中正确的有( )CA .1个B .2个C .3个D .4个二、填空题7.不等式23x x >-的解集为 .8.不等式5(1)31x x -<+的解集是 .9.不等式2(x +4)≤12的解集是________.10.若4与某数7倍的和不小于6与该数5倍的差,则该数的取值范围是 .11. 写一个解集是1x ≤的不等式:____________.(答案不唯一)A -2 0 BD 2 0C -2 2 012.有一个两位数,它的十位数字比个位数字大1,并且这个两位数大于30小于40,这个两位数是.三、解答题13.在数轴上表示下列不等式的解集:(1)x>2;(2)x<-3;(3)12x≤;4)1x≥-.14.解下列不等式,并把解集在数轴上表示出来:(1)46x x-<(2)5122(43)x x-≤-15.(选做题)某次数学测验共有25道选择题,评分办法为:答对一题得4分,答错一题从所得分数中扣1分,不答不得分也不扣分.某同学有1题未答,若该同学希望成绩超过80分,他至少要答对多少题?参考答案1. B2.B3. C4.A5.C6.C7.x >1;8.3x <;9.2x ≤;10.x ≥16;11.10x -≤;12. 32 13. (1)(2)2(3)(4)14.(1) 解:移项,得<46x x -合并同类项,得<36x系数化为1,得<2x不等式的解集在数轴上表示如下(2)解:去括号,得51286x x -≤-移项,得58126x x -≤-合并同类项,得36x -≤系数化为1,得-2x ≥不等式的解集在数轴上表示如下15.解:设他答对了x 题,答错了(251)x --道题 依题意,得41(251)80x x >-⨯-- 去括号,得425180x x >-++ 移项、合并同类项,得5104x > 系数化为1,得20.8x >答:他至少要答对21题.-3 -2 -1 0 1 2 3 0-3 -2 -1 1 2 3。
1.6 一元一次不等式组(1)同步练习(含答案)
1.6 一元一次不等式组(1)一、目标导航1.理解一元一次不等式组、一元一次不等式组的解集、解不等式组等概念.2.会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集.二、基础过关1.下列不等式组中,解集是2<x <3的不等式组是( )A .⎩⎨⎧>>23x xB .⎩⎨⎧<>23x xC .⎩⎨⎧><23x xD .⎩⎨⎧<<23x x 2.在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( )A .a <12B .a <0C .a >0D .a <-123.不等式组10235x x +⎧⎨+<⎩≤,的解集在数轴上表示为( )4.不等式组31025x x +>⎧⎨<⎩的整数解的个数是( ) A .1个 B .2个 C .3个 D .4个5.在平面直角坐标系内,P (2x -6,x -5)在第四象限,则x 的取值范围为( )A .3<x <5B .-3<x <5C .-5<x <3D .-5<x <-36.已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( )A .①与②B .②与③C .③与④D .①与④ 7.方程组43283x m x y m +=⎧⎨-=⎩的解x 、y 满足x >y ,则m 的取值范围是( ) A .m >109 B .m >910 C .m >1019 D .m >1910 8.若y 同时满足y +1>0与y -2<0,则y 的取值范围是______________.1-1 x 1- 1 x 1- 1 x 1- 1 x A B C D9.不等式组3010x x -<⎧⎨+⎩≥的解集是 .10.不等式组20.53 2.52x x x -⎧⎨---⎩≥≥的解集是 .11.若不等式组⎩⎨⎧->+<121m x m x 无解,则m 的取值范围是 . 12.不等式组15x x x >-⎧⎪⎨⎪<⎩≥2的解集是_________________.13.不等式组2x x a>⎧⎨>⎩的解集为x >2,则a 的取值范围是_____________.14.若不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x <1,那么(a +1)(b -1)的值等于________.15.若不等式组4050a x x a ->⎧⎨+->⎩无解,则a 的取值范围是_______________. 三、能力提升16.解下列不等式组:(1)328212x x -<⎧⎨->⎩ (2)572431(1)0.54x x x -≥-⎧⎪⎨--<⎪⎩(3)2x <1-x ≤x +5 (4)3(1)2(9)34140.50.2x x x x -<+⎧⎪-+⎨-≤-⎪⎩17.解不等式组3(21)42132 1.2x xxx⎧--⎪⎪⎨+⎪>-⎪⎩≤,把解集表示在数轴上,并求出不等式组的整数解.18.求同时满足不等式6x-2≥3x-4和2112132x x+--<的整数x的值.19.求不等式组73442555(4)2(4)3x xx x x-+⎧≥-⎪⎪⎨⎪+-≥-⎪⎩的非负整数解.四、聚沙成塔若关于x、y的二元一次方程组533x y mx y m-=-⎧⎨+=+⎩中,x的值为负数,y的值为正数,求m的取值范围.参考答案1.C ;2.D ;3.C ;4.C ;5.A ;6.D ;7.D ;8.-1<y <2;9.-1≤x <3;10.-14≤x ≤4;11.M ≥2;12.2≤x <5;13.a ≤2;14.-6;15.A ≤1;16.(1)31023x <<;(2)无解;(3)-2≤x <13;(4)x >-3.17.解集为345x <≤-,整数解为2,1,0,-1.18.不等式组的解集是27310x ≤<-,所以整数x 为0.19.不等式组的解集为6913x ≤, 所以不等式组的非负整数解为:0,l ,2,3,4,5.聚沙成塔 -4<m <0.5.。
数学:《一元一次不等式组》同步练习1(人教版七年级下)
数学:《一元一次不等式组》同步练习1(人教版七年级下)练习一1.用适当的符号表示下列关系:(1)x 的平方与y 的21的差不大于5 ; (2)x 与y 的差的平方的相反数不是正数:(3)a 的绝对值与1的和是正数:(4)x 的3倍大于5____________(5)x 的2倍大于x 与3的和的3倍___________(6)x 与17的和比x 的5倍小2.下列各式中,一元一次不等式是 ( )A .032≤-y xB .0322<--x xC .0321≥+-x D .x x x +>-243 3.不等式6x+8>3x+8的解集是( )A . x >21 B. x <0; C .x >0; D. x <21 4. 如果不等式组{8<>x m x 有解,那么m 的取值范围是( )A.8>mB. 8<mC.8≥mD. 8≤m5.解下列不等式(组),并将解集在数轴上表示出来.(1)13121≥+---x x (2)21-x <354--x(3) ⎩⎨⎧>-≥-04012x x (4) ⎩⎨⎧-<++>-7214112x x x x6. 已知方程组{114354-=++=+m y x m y x 的解x 、y 都是正数,求m 的取值范围.7.已知方程组{123134+=+-=+m y x m y x 的解x ,y 符号相反,求m 的范围。
8.有一个大于36而小于50的两位数,其个位上的数比十位数大3,求这个两位数的个位数与十位数之和。
9.有学生若干人住宿舍,若每间住4人则余20人,若每间住8人,则有一间不空也不满,求有多少间宿舍?多少名学生?10.设a ,b 为不超过10的自然数,那么使方程ax=b 的解大于41且小于31的a ,b 有几组?11.5个苹果的质量为1kg,价格为5元;15个橘子质量为1kg,价格为4元,现打算买20个橘子和若干个苹果,使其质量在4.5kg以下。
1.6 一元一次不等式组同步练习2(含答案)
1.6 一元一次不等式组同步练习2(总分:100分时间45分钟)1、(10分)我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?2、(10分)一玩具厂生产甲、乙两种玩具,已知造一个甲种玩具需用金属80克,塑料140克,造一个乙种玩具需用金属100克,塑料120克.若工厂有金属4600克,塑料6440克,计划用两种材料生产甲、乙两种玩具共50件,求甲种玩具件数的取值范围.3、(10分)现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试定出用车厢节数x表示总费用y的公式.(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?4、(10分)为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)5、(15分)某厂计划2004年生产一种新产品,下面是2003年底提供的信息,人事部:明年生产工人不多于800人,每人每年可提供2400个工时;市场部:预测明年该产品的销售量是10000~12000件;技术部:该产品平均每件需要120个工时,每件要4个某种主要部件;供应部:2003年低库存某种主要部件6000个.预测明年能采购到这种主要部件60000个.根据上述信息,明年产品至多能生产多少件?6、(15分)某宾馆底层客房比二楼少5间,某旅行团有48人.若全部住底层,每间4人,房间不够;每间住5人,有房间没有住满5人.若全部安排在二楼,每间住3人,房间不够;每间住4人,有房间没有住满4人.问该宾馆底层有客房多少间?7、(15分)(2007年眉山市)某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.(1)用含有x的代数式表示y;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案?8、(15分)学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:一等奖二等奖三等奖1盒福娃和1枚徽章1盒福娃1枚徽章用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前,了解到如下信息:(1)求一盒“福娃”和一枚徽章各多少元?(2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?参考答案1、 解:设住房有x 间,住宿的学生有(5x +12)人,根据题意: 0<(5x +12)-8(x -1)<8 4<x <263∵x 为整数,∴x =5,6答:当有5间房的时候,住宿学生有37人;当有6间房的时候,住宿学生有42人. 2、解:设甲种玩具为x 件,则甲种玩具为(50-x )件.根据题意得:80100(50)4600140120(50)6440x x x x +-⎧⎨+-⎩≤≤ 解得:20≤x ≤22答:甲种玩具不少于20个,不超过22个 3、(1)y =32000-2000x(2)共有三种方案,A 、B 两种车厢的节数分别为24节、16节或25节、15节或26节、14节4、(1)共有三种购买方案,A 、B 两种型号的设备分别为0台、10台或1台、9台或2台、8台.(2)A 、B 两种型号的设备分别1台、9台;(3)10年节约资金42.8万元5、解:设明年可生产产品x 件,根据题意得:120800240010000120004600060000x x x ⨯⎧⎪⎨⎪+⎩≤≤≤≤ 解得:10000≤x ≤12000 答:明年产品至多能生产12000件.6、解:设宾馆底层有客房x 间,则二楼有客房(x +5)间.根据题意得:⎪⎪⎩⎪⎪⎨⎧>+<+><48)5(448)5(3485484x x x x 解得:9.6<x <11 所以: x = 10答:该宾馆底层有客房10间.7、解:(1)32(20)y x x =+-40x =+ (2)由题意可得203(20)264486(20)708x x x x +-⎧⎨+-⎩≥ ①≤ ②解①得x ≥12 解②得x ≤14∴不等式的解为12≤x ≤14x Q 是正整数∴x 的取值为12,13,14即有3种修建方案:①A 型12个,B 型8个;②A 型13个,B 型7个;③A 型14个,B 型6个(3)∵y =x +40中,y 随x 的增加而增加,要使费用最少,则x =12∴最少费用为y =x +40=52(万元)村民每户集资700元与政府补助共计:700×264+340000=524800>520000 ∴每户集资700元能满足所需要费用最少的修建方案 8、解:(1)设一盒“福娃”x 元,一枚徽章y 元,根据题意得23153195x y x y +=⎧⎨+=⎩ 解得15015x y =⎧⎨=⎩ 答:一盒“福娃”150元,一枚徽章15元. (2)设二等奖m 名,则三等奖(10—m )名,216515015(10)1000216515015(10)1100m m m m ⨯++-⎧⎨⨯++-⎩≥≤ 解得1041242727m ≤≤. m Q 是整数,∴m =4,∴10-m =6.答:二等奖4名,三等奖6名.。
七年级数学下册1.1《一元一次不等式组》同步练习湘教版
1.1一元一次不等式组班级:_______姓名:_______一、请你填一填(1)不等式组0201x x 的解集是________,整数解有________.(2)不等式组,483212xx 的解集是________.(3)不等式组422x x x 的解集是_______.(4)不等式组94754)1(2x x x 的解集是________.二、认真选一选(1)不等式组x x x28432的最小整数解为_________.[ ]A .-1 B.0 C .1 D .4(2)不等式23x x的解集,在数轴上表示正确的是_________.[ ](3)满足不等式-1<312x ≤2的非负整数解的个数是_________.[ ] A .5 B.4 C .3 D .无数个(4)如果不等式组00b x a x的解集是3<x <5,那么a 、b 的值分别为_________.[ ] A .a =3 b =5 B.a =-3 b =-5 C .a =-3 b =5 D.a =3 b =-5三、开动脑筋哟已知5x -2y =6,当x 满足6≤7x -1<13时,请确定y 的取值范围.四、用数学眼光看世界弟弟上午八点钟出发步行去郊游,速度为每小时4千米;上午十点钟哥哥从同一地点骑自行车去追弟弟.如果哥哥要在上午十点四十分之前追上弟弟,问哥哥的速度至少是多少?参考答案一、(1)-1<x ≤2 0 1 2 (2)x <-21(3)x >-1 (4)无解二、(1)B (2)C (3)B (4)D三、解法一:由6≤7x -1<13得:1≤x <2由5x -2y =6 得:x =526y,∴1≤526y<2则5≤6+2y <10 -1≤2y <4∴-21≤y <2解法二:由6≤7x -1<13得:1≤x <2 由5x -2y =6得:y =265x ∵1≤x <2,5≤5x <10 -1≤5x -6<4 ∴-21≤265x <2即-21≤y <2四、解:设哥哥的速度为x 千米/小时根据题意得:6040x ≥4(2+6040)解得:x ≥16答:哥哥的速度至少是16千米/小时.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.6 一元一次不等式组(1) 同步练习
一、选择题(每题4分,共32分)
1、下列不等式组中,解集是2<x <3的不等式组是( )
A 、⎩⎨⎧>>23x x
B 、⎩⎨⎧<>23x x
C 、⎩⎨⎧><23x x
D 、⎩⎨⎧<<2
3x x
2、在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( )
A 、a <12
B 、a <0
C 、a >0
D 、a <-12
3、(2007年湘潭市)不等式组10235
x x +⎧⎨+<⎩≤,的解集在数轴上表示为( )
4、不等式组31025
x x +>⎧⎨<⎩的整数解的个数是(
A 、1个
B 、2个
C 、3个
D 、4个
5、在平面直角坐标系内,P (2x -6,x -5)在第四象限,则x 的取值范围为( )
A 、3<x <5
B 、-3<x <5
C 、-5<x <3
D 、-5<x <-3
7、如果不等式组x a x b >⎧⎨<⎩
无解,那么不等式组的解集是( ) A.2-b <x <2-a B.b -2<x <a -2 C.2-a <x <2-b D.无解
8、方程组43283x m x y m
+=⎧⎨-=⎩的解x 、y 满足x >y ,则m 的取值范围是( ) A.910m > B. 109m > C. 1910m > D. 1019
m > 二、填空题(每题4分,共32分)
A B C D
11、不等式组20.53 2.52x x x -⎧⎨---⎩
≥≥的解集是 . 12、若不等式组⎩⎨
⎧->+<121m x m x 无解,则m 的取值范围是
14、不等式组2x x a >⎧⎨>⎩
的解集为x >2,则a 的取值范围是_____________. 15、若不等式组2123
x a x b -<⎧⎨->⎩的解集为-1<x <1,那么(a +1)(b -1)的值等于________. 16、若不等式组4050a x x a ->⎧⎨
+->⎩无解,则a 的取值范围是_______________. 三、解答题(每题9分,共36分)
17、解下列不等式组
(1)328212x x -<⎧⎨->⎩ (2)572431(1)0.54
x x x -≥-⎧⎪⎨--<⎪⎩ (3)2x <1-x ≤x +5 (4)3(1)2(9)34140.5
0.2x x x x -<+⎧⎪-+⎨-≤-⎪⎩18、(2007年滨州)解不等式组3(21)42132 1.2
x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩≤,把解集表示在数轴上,并求出不等式组的整数解.
20、若关于x 、y 的二元一次方程组533x y m x y m -=-⎧⎨
+=+⎩
中,x 的值为负数,y 的值为正数,求m 的取值范围.。