2015-2016学年江苏省苏州市高新区七年级上学期期末数学试卷(解析版)
七年级数学上学期月考试题(含解析) 苏科版-苏科版初中七年级全册数学试题
某某省某某市邳州市赵墩中学2015-2016学年七年级数学上学期月考试题一、填空题(每题2分,共20分)1.﹣的绝对值是__________,相反数是__________,倒数是__________.2.数轴上的一点由+3出发,向左移动4个单位,又向右移动了5个单位,两次移动后,这一点所表示的数是__________.__________.4.在数轴上距原点2个单位长度的点表示__________.5.某日最高气温是9℃,最低气温是﹣4℃,该日的温差为__________℃.6.在图中输入﹣1,按所示的程序运算,输出的结果是__________.7.大于且小于2的所有整数是__________.8.绝对值不大于3的非负整数有__________.9.比较大小:__________(填“>”或“<”)10.比﹣2大7的数是__________.二、选择题(每题3分,共18分)11.一个数的绝对值是正数,这个数一定是( )A.正数 B.非零数C.任何数D.以上都不是12.下列说法中,正确的是( )A.有理数中没有最大的负整数B.有理数中没有最大的正整数C.同号两数相加的和一定比加数大D.异号两数相加的和一定比加数小13.下列各对数:+(﹣6)与+6;﹣(+6)与﹣6;﹣(﹣6)与﹣(+6);﹣(+6)与+(﹣6);+(+6)与﹣(﹣6);+6与﹣(+6).其中,互为相反数的有( )A.3对B.4对C.5对D.6对14.下列计算中正确的有( )①0﹣(+3)=+3;②0﹣(﹣3)=+3;③+5﹣5=0;④()﹣0=;⑤;⑥.A.2个B.3个C.4个D.5个15.下列运算结果不一定为负数的是( )A.异号两数相乘 B.异号两数相除C.异号两数相加 D.奇数个负因数的乘积16.下列说法正确的是( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.①② B.①③ C.①②③D.①②③④三、解答题(每小题45分,共45分)17.(45分)计算:(1)28+(﹣72)(2)0+(﹣5)(3)﹣+(+)(4)(﹣3)﹣(﹣5)(5)(6)(﹣8)+(﹣5)﹣(+5)(7)﹣37﹣40+3﹣22(7)(8)(﹣5)×(﹣4)×3×(﹣2)(9)﹣12÷(10)(11)9(12)100÷(13)(14).四、解答题(32,33每题各6分,34题5分,共17分)18.将下列各数填入相应的括号里5.1,﹣3.14,0.222…,0,﹣有理数集合:{ }无理数集合:{ }.19.先在数轴上画出表示:3,﹣1.5,0,﹣1,,各数的点,再按从小到大的顺序用“<”把这些数连接起来.20.某种袋装奶粉标明标准净含量为400g.抽检其中8袋,记录如下(“+”表示超出标准净含量,“﹣”表示不足标准净含量)编号 1 2 3 4 5 6 7 8差值/g +5 0 +5 0 0 +2 ﹣5求:这8袋奶粉的总净含量是多少?2015-2016学年某某省某某市邳州市赵墩中学七年级(上)月考数学试卷一、填空题(每题2分,共20分)1.﹣的绝对值是,相反数是,倒数是﹣.【考点】倒数;相反数;绝对值.【分析】根据绝对值,相反数,倒数的性质求解即可.【解答】解:﹣的绝对值是,相反数是,倒数是﹣.【点评】本题主要考查了倒数,相反数,绝对值的定义.2.数轴上的一点由+3出发,向左移动4个单位,又向右移动了5个单位,两次移动后,这一点所表示的数是4.【考点】数轴;有理数的加减混合运算.【分析】分别求出每次移动后的各个数,利用数轴即可表示.【解答】解:+3向左移动4个单位长度,到达A,表示﹣1,﹣1向右移动了5个单位,就到达B,表示4.【点评】借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势..【考点】正数和负数.【专题】应用题.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若某水库的水位下降1米,记作﹣1米,那么+1.2米表示该水库的水位上升1.2米.故答案为:该水库的水位上升1.2米.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.4.在数轴上距原点2个单位长度的点表示±2.【考点】数轴.【分析】根据数轴的概念,则在数轴上距原点2个单位长度的点可能在数轴的左边,也可能在数轴的右边.【解答】解:在数轴上距原点2个单位长度的点表示±2.故答案为:±2.【点评】此题考查了数轴上的点和对应的数的中间的关系.5.某日最高气温是9℃,最低气温是﹣4℃,该日的温差为13℃.【考点】有理数的减法.【专题】应用题.【分析】求该日的温差就是作减法,用最高气温减去最低气温,列式计算.【解答】解:依题意,温差为:9﹣(﹣4)=9+4=13℃.【点评】本题主要考查了有理数的减法的应用,注意﹣4的符号不要搞错.6.在图中输入﹣1,按所示的程序运算,输出的结果是3.【考点】有理数的混合运算.【专题】计算题;图表型.【分析】把x=﹣1代入程序中计算,使其结果大于2,输出即可.【解答】解:把x=﹣1代入得:﹣1+4﹣(﹣3)﹣5=﹣3+3﹣5=﹣5,把x=﹣5代入得:﹣5+4﹣(﹣3)﹣5=﹣5+4+3﹣5=﹣3,把x=﹣3代入得:﹣3+4﹣(﹣3)﹣5=﹣3+4+3﹣5=﹣1,把x=﹣1代入得:﹣1+4﹣(﹣3)﹣5=﹣1+4+3﹣5=1,把x=1代入得:1+4﹣(﹣3)﹣5=1+4+3﹣5=3>2,则输出的结果是3.故答案为:3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.大于且小于2的所有整数是0、±1.【考点】有理数大小比较;数轴.【分析】设这个整数是x,根据题意得出不等式组﹣1<x<2,求出不等式组的整数解即可.【解答】解:∵设这个整数是x,则﹣1<x<2,∴整数x的值是0、±1,故答案为:0、±1.【点评】本题考查了有理数的大小比较和不等式组,关键是找出不等式组﹣1<x<2的整数解,题目比较好,难度适中.8.绝对值不大于3的非负整数有0,1,2,3.【考点】绝对值.【分析】根据绝对值的意义,正数和0的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【解答】解:根据绝对值的意义,绝对值不大于3的非负整数有0,1,2,3.【点评】要正确理解绝对值的意义,注意“0”属于非负整数.9.比较大小:>(填“>”或“<”)【考点】有理数大小比较.【专题】探究型.【分析】先把各数化为小数的形式,再根据负数比较大小的法则进行比较即可.【解答】解:∵﹣=﹣0.75<0,﹣=﹣0.8<0,∵|﹣0.75|=0.75,|﹣0.8|=0.8,0.75<0.8,∴﹣0.75>﹣0.8,∴﹣>﹣.故答案为:>.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.10.比﹣2大7的数是5.【考点】有理数的加法.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:﹣2+7=5.故答案为5.【点评】本题考查了有理数的加法,熟练掌握运算法则是解本题的关键.二、选择题(每题3分,共18分)11.一个数的绝对值是正数,这个数一定是( )A.正数 B.非零数C.任何数D.以上都不是【考点】绝对值.【分析】根据绝对值的性质解答.【解答】解:∵一个数的绝对值是正数,∴这个数一定不是0,∴这个数是非零数.故选B.【点评】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.下列说法中,正确的是( )A.有理数中没有最大的负整数B.有理数中没有最大的正整数C.同号两数相加的和一定比加数大D.异号两数相加的和一定比加数小【考点】有理数.【分析】根据有理数的意义,可判断①②,根据有理数的加减法,可判断③④.【解答】解:A、有理数中最大的负整数是﹣1,故错误;B、有理数中没有最大的正整数,故正确;C、同号两数相加,取相同的符号,用较大的绝对值加较小的绝对值,和不一定比加数大,故错误;D、异号两数相加,取绝对值较大的加数的符号,用较大的绝对值减去较小的绝对值,和小于较大的加数,故错误;故选B.【点评】本题考查了有理数,注意有理数中没有最大的正整数,也没有最小的有理数.13.下列各对数:+(﹣6)与+6;﹣(+6)与﹣6;﹣(﹣6)与﹣(+6);﹣(+6)与+(﹣6);+(+6)与﹣(﹣6);+6与﹣(+6).其中,互为相反数的有( )A.3对B.4对C.5对D.6对【考点】相反数.【分析】两数互为相反数,它们的和为0,解本题时可以将所给的两个数相加,看和是否为0,若和为0,则两数互为相反数.【解答】解:+(﹣6)+(+6)=0;﹣(+6)+(﹣6)=﹣12;﹣(﹣6)+[﹣(+6)]=0;﹣(+6)+[+(﹣6)]=﹣12;+(+6)+[﹣(﹣6)]=12;+6+[﹣(+6)]=0.互为相反数的有3对.故选A.【点评】本题考查了相反数的概念.两数互为相反数,它们的和为0.14.下列计算中正确的有( )①0﹣(+3)=+3;②0﹣(﹣3)=+3;③+5﹣5=0;④()﹣0=;⑤;⑥.A.2个B.3个C.4个D.5个【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式各项计算得到结果,即可做出判断.【解答】解:①0﹣(+3)=0﹣3=﹣3,错误;②0﹣(﹣3)=0+3=3,正确;③+5﹣5=0,正确;④()﹣0=﹣,错误;⑤﹣×(﹣)=,正确;⑥﹣÷2=﹣×=﹣,错误.故选B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.下列运算结果不一定为负数的是( )A.异号两数相乘 B.异号两数相除C.异号两数相加 D.奇数个负因数的乘积【考点】有理数的乘法;有理数的加法;有理数的除法.【分析】根据有理数的乘法、除法及加法法则作答.【解答】解:A、根据有理数的乘法法则,两数相乘,异号得负,可知异号两数相乘,积为负,选项错误;B、根据有理数的除法法则,两数相除,异号得负,可知异号两数相除,积为负,选项错误;C、根据有理数的加法法则,绝对值不相等的异号两数相加,取绝对值较大的加数符号,故当正加数的绝对值大于负加数的绝对值时,和为正,由此可知,异号两数相加,结果不一定为负数,选项正确;D、根据几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,可知奇数个负因数的乘积为负,选项错误.故选C.【点评】本题考查了有理数的乘法、除法及加法法则.有理数的乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘.(2)任何数字同0相乘,都得0.(3)几个不等于0的数字相乘,积的符号由负因数的个数决定.当负因数有奇数个数时,积为负;当负因数有偶数个数时,积为正.(4)几个数相乘,有一个因数为0时,积为0.有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.有理数的加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.16.下列说法正确的是( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.①② B.①③ C.①②③D.①②③④【考点】绝对值;相反数;有理数大小比较.【分析】根据绝对值的意义对①④进行判断;根据相反数的定义对②③进行判断.【解答】解:0是绝对值最小的有理数,所以①正确;相反数大于本身的数是负数,所以②正确;数轴上在原点两侧且到原点的距离相等的数互为相反数,所以③错误;两个负数比较,绝对值大的反而小,所以④错误.故选A.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了相反数.三、解答题(每小题45分,共45分)17.(45分)计算:(1)28+(﹣72)(2)0+(﹣5)(3)﹣+(+)(4)(﹣3)﹣(﹣5)(5)(6)(﹣8)+(﹣5)﹣(+5)(7)﹣37﹣40+3﹣22(7)(8)(﹣5)×(﹣4)×3×(﹣2)(9)﹣12÷(10)(11)9(12)(13)(14)100÷.【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的加减乘除的法则进行计算即可.【解答】解:(1)28+(﹣72)=﹣(72﹣28)=﹣44 (2)0+(﹣5)=﹣5(3)﹣+(+)=﹣()=﹣(4)(﹣3)﹣(﹣5)=(﹣3)+5 =2 (5)=()+()=﹣(6)(﹣8)+(﹣5)﹣(+5)=(﹣8)+(﹣5)+(﹣5)=﹣18(7)﹣37﹣40+3﹣22=(﹣37)+(﹣40)+3+(﹣22)=﹣96 (8)=3×2=6(9)(﹣5)×(﹣4)×3×(﹣2)=﹣5×4×3×2=﹣120(10)﹣12÷(11)=(12)9=12×4×=18 =6﹣15+14=5 =﹣×8 =(13)100÷=﹣100×8×8=﹣6400 (14)=﹣1×=﹣(15)=﹣=﹣【点评】本题考查有理数的混合运算,关键是明确有理数的加减乘除的法则.四、解答题(32,33每题各6分,34题5分,共17分)18.将下列各数填入相应的括号里5.1,﹣3.14,0.222…,0,﹣有理数集合:{ }无理数集合:{ }.【考点】实数.【分析】根据有理数是有限小数或无限循环小数是有理数,无理数是无限不循环小数,可得答案.【解答】解:有理数集合:{5.1,﹣3.14,0.222…,0,﹣};};故答案为:5.1,﹣3.14,0.222…,0,﹣.【点评】本题考查了实数,有理数和无理数统称实数,有理数是有限小数或无限循环小数是有理数,无理数是无限不循环小数.19.先在数轴上画出表示:3,﹣1.5,0,﹣1,,各数的点,再按从小到大的顺序用“<”把这些数连接起来.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再从左到右用“<”把这些数连接起来即可.【解答】解:如图所示,,故﹣1.5<﹣1<0<2<3.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.20.某种袋装奶粉标明标准净含量为400g.抽检其中8袋,记录如下(“+”表示超出标准净含量,“﹣”表示不足标准净含量)编号 1 2 3 4 5 6 7 8差值/g +5 0 +5 0 0 +2 ﹣5求:这8袋奶粉的总净含量是多少?【考点】正数和负数.【分析】根据有理数的加法,可得答案.【解答】解:400×8+[(﹣4.5)+5+0+5+0+0+2+(﹣5)]=3202.5(g).答:这8袋奶粉的总净含量是3202.5克.【点评】本题考查了正数和负数,利用有理数的加法是解题关键.。
江苏省苏州市昆山市2015-2016学年七年级数学下学期期中试题(含解析) 苏科版
某某省某某市某某市2015-2016学年七年级数学下学期期中试题一、选择题(本大题共10小题,每小题3分.请将下列各小题唯一正确的选项代号填涂在答题卡相应的位置上)1.计算2x2•x3的结果是()A.2x5B.2x C.2x6D.x52.甲型H1N1流感病毒的直径大约是0.000000081米,用科学记数法可表示为()A.8.1×10﹣9米B.8.1×10﹣8米C.81×10﹣9米D.0.81×10﹣7米3.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.8cm、6cm、3cm C.2cm、6cm、3cm D.11cm、4cm、6cm 4.一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.75.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE;④∠A+∠ADC=180°.其中,能推出AB∥DC的条件为()A.①④ B.②③ C.①③ D.①③④6.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2的度数等于()A.40°B.45°C.50°D.60°7.如图①,从边长为a的正方形中剪去一个边长为b的小正方形,然后将剩余部分剪拼成一个长方形(如图②),则上述操作所能验证的公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)8.在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个9.计算10﹣(0.5)2015×(﹣2)2016的结果是()A.﹣2 B.﹣1 C.2 D.310.如果等式(2x﹣3)x+3=1,则等式成立的x的值的个数为()A.1 B.2 C.3 D.4二、填空题(本大题共8小题,每小题3分,共24分)11.若x m=3,x n=5,则x m+n=.12.若a+b=1,ab=﹣2,则(a+1)(b+1)的值为.13.等腰三角形的两边长为4,9.则它的周长为.14.计算:20152一2014×2016=.15.如图,在△ABC中,∠A=50°,∠ABC、∠ACB的角平分线相交于点P,则∠BPC的度数为.16.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为.17.如图,将正方形纸片ABCD沿BE翻折,使点C落在点F处,若∠DEF=40°,则∠ABF 的度数为.18.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影=cm2.三、解答题(本大题共11小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.计算:(1)|﹣2|﹣(2﹣π)0+(﹣)﹣1(2)﹣2xy•3x2y﹣x2y(﹣3xy+xy2)(3)(2a+b)(b﹣2a)﹣(a﹣3b)2.20.如图,△ABC的顶点都在方格纸的格点上.将△ABC向左平移2格,再向上平移3格.(1)请在图中画出平移后的△A′B′C′;(2)在△ABC中画出中线BD;(3)在△ABC中画出AB边上高(图中标上字母).21.已知n为正整数,且x2n=4,求(x3n)2﹣2(x2)2n的值.22.先化简再求值:(a﹣2b)2+(a﹣b)(a+b)﹣2(a﹣3b)(a﹣b),其中a=,b=﹣3.23.如图,在△ABC中,BD⊥AC,EF⊥AC,垂足分别为D、F,且∠1=∠2,试判断DE与BC的位置关系,并说明理由.24.已知:x+y=6,xy=4,求下列各式的值(1)x2+y2(2)(x﹣y)2.25.如图,已知△ABC中,AD是高,AE是角平分线.(1)若∠B=20°,∠C=60°,求∠EAD度数;(2)若∠B=α,∠C=β(β>a),则∠EAD=.(用α、β的代数式表示)26.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)将图②中的阴影部分面积用2种方法表示可得一个等式,这个等式为.(2)若m+2n=7,mn=3,利用(1)的结论求m﹣2n的值.27.如图,正方形ABCD的边长为a,面积为6;长方形CEFG的长、宽分别为a,b,长方形的面积为2,其中点B、C、E在同一直线上,连接DF.求△BDF的面积.28.观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.29.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.2015-2016学年某某省某某市某某市七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分.请将下列各小题唯一正确的选项代号填涂在答题卡相应的位置上)1.计算2x2•x3的结果是()A.2x5B.2x C.2x6D.x5【考点】单项式乘单项式.【分析】据同底数幂相乘,底数不变指数相加进行计算即可得解.【解答】解:2x2•x3=2x2+3=2x5.故选A.2.甲型H1N1流感病毒的直径大约是0.000000081米,用科学记数法可表示为()A.8.1×10﹣9米B.8.1×10﹣8米C.81×10﹣9米D.0.81×10﹣7米【考点】科学记数法—表示较小的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:0.000 000 081=8.1×10﹣8米.故选B.3.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.8cm、6cm、3cm C.2cm、6cm、3cm D.11cm、4cm、6cm 【考点】三角形三边关系.【分析】根据已知三角形的两边,则第三边的X围是:大于已知的两边的差,而小于两边的和,分别判断即可.【解答】解:根据三角形的三边关系,知A、2+2=4,不能组成三角形,故此选项错误;B、3+6>8,能够组成三角形,故此选项正确;C、2+3<6,不能组成三角形,故此选项错误;D、4+6<11,不能组成三角形,故此选项错误.故选B.4.一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.7【考点】多边形内角与外角.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选C.5.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE;④∠A+∠ADC=180°.其中,能推出AB∥DC的条件为()A.①④ B.②③ C.①③ D.①③④【考点】平行线的判定.【分析】直接根据平行线的判定定理对各小题进行逐一分析即可.【解答】解:①∵∠1=∠2,∴AB∥CD,故本选项正确;②∵∠3=∠4,∴BC∥AD,故本选项错误;③∵∠A=∠CDE,∴AB∥CD,故本选项正确;④∵∠A+∠ADC=180°,∴AB∥CD,故本选项正确.故选D.6.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2的度数等于()A.40°B.45°C.50°D.60°【考点】平行线的性质.【分析】根据三角形外角性质求出∠4,根据平行线性质得出∠2=∠4,代入求出即可.【解答】解:如图所示,∵∠4=∠1+∠3,∴∠4=30°+20°=50°,∵AB∥CD,∴∠2=∠4=50°,故选C.7.如图①,从边长为a的正方形中剪去一个边长为b的小正方形,然后将剩余部分剪拼成一个长方形(如图②),则上述操作所能验证的公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)【考点】平方差公式的几何背景.【分析】由大正方形的面积﹣小正方形的面积=矩形的面积,进而可以证明平方差公式.【解答】解:大正方形的面积﹣小正方形的面积=a2﹣b2,矩形的面积=(a+b)(a﹣b),故a2﹣b2=(a+b)(a﹣b).故选A.8.在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个【考点】三角形内角和定理.【分析】根据直角三角形的判定对各个条件进行分析,从而得到答案.【解答】解:①、∵∠A+∠B=∠C=90°,∴△ABC是直角三角形,故小题正确;②、∵∠A:∠B:∠C=1:2:3,∴∠A=30°,∠B=60°,∠C=90°,△ABC是直角三角形,故本小题正确;③、设∠A=x,∠B=2x,∠C=3x,则x+2x+3x=180°,解得x=30°,故3x=90°,△ABC是直角三角形,故本小题正确;④∵设∠C=x,则∠A=∠B=2x,∴2x+2x+x=180°,解得x=36°,∴2x=72°,故本小题错误;⑤∠A=2∠B=3∠C,∴∠A+∠B+∠C=∠A+∠A+A=180°,∴∠A=°,故本小题错误.综上所述,是直角三角形的是①②③共3个.故选B.9.计算10﹣(0.5)2015×(﹣2)2016的结果是()A.﹣2 B.﹣1 C.2 D.3【考点】幂的乘方与积的乘方;零指数幂.【分析】直接利用零指数幂的性质结合积的乘方运算法则将原式变形求出答案.【解答】解:10﹣(0.5)2015×(﹣2)2016=1﹣[0.5×(﹣2)]2015×(﹣2)=1﹣2=﹣1.故选:B.10.如果等式(2x﹣3)x+3=1,则等式成立的x的值的个数为()A.1 B.2 C.3 D.4【考点】零指数幂;有理数的乘方.【分析】由于任何非0数的0次幂等于1和1的任何指数为1,所以分两种情况讨论.【解答】解:当x+3=0时,x=﹣3;当2x﹣3=1时,x=2.∴x的值为2,﹣3,当x=1时,等式(2x﹣3)x+3=1,故选C二、填空题(本大题共8小题,每小题3分,共24分)11.若x m=3,x n=5,则x m+n= 15 .【考点】同底数幂的乘法.【分析】由x m=3,x n=5,又由x m+n=x m•x n,即可求得答案.【解答】解:∵x m=3,x n=5,∴x m+n=x m•x n=3×5=15.故答案为:1512.若a+b=1,ab=﹣2,则(a+1)(b+1)的值为0 .【考点】整式的混合运算—化简求值.【分析】原式利用多项式乘以多项式法则计算,整理后把a+b与ab的值代入计算即可求出值.【解答】解:原式=ab+a+b+1=ab+(a+b)+1,当a+b=1,ab=﹣2时,原式=1﹣2+1=0,故答案为:013.等腰三角形的两边长为4,9.则它的周长为22 .【考点】等腰三角形的性质;三角形三边关系.【分析】由于题目没有说明4和9,哪个是底哪个是腰,所以要分类讨论.【解答】解:当腰长为4,底长为9时;4+4<9,不能构成三角形;当腰长为9,底长为4时;9﹣4<9<9+4,能构成三角形;故等腰三角形的周长为:9+9+4=22.故填22.14.计算:20152一2014×2016= 1 .【考点】平方差公式.【分析】把2014×2016写成×,然后利用平方差公式计算即可得解.【解答】解:20152﹣2014×2016=20152﹣×=20152﹣=20152﹣20152+1=1.故答案是:1.15.如图,在△ABC中,∠A=50°,∠ABC、∠ACB的角平分线相交于点P,则∠BPC的度数为115°.【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形的内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠PBC+∠PCB,然后利用三角形的内角和等于180°列式计算即可得解.【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠ABC与∠ACB的角平分线相交于P,∴∠PBC+∠PCB=(∠ABC+∠ACB)=×130°=65°,在△PBC中,∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣65°=115°.故答案为:115°.16.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为﹣1 .【考点】多项式乘多项式.【分析】把式子展开,找到所有x项的所有系数,令其和为0,可求出m的值.【解答】解:(x+1)(x+m)=x2+(1+m)x+m,∵结果不含x的一次项,∴1+m=0,解得:m=﹣1.故答案为:﹣1.17.如图,将正方形纸片ABCD沿BE翻折,使点C落在点F处,若∠DEF=40°,则∠ABF 的度数为50°.【考点】翻折变换(折叠问题).【分析】根据翻折的性质可得∠BEF=∠BEC,∠EBF=∠EBC,然后求出∠BEC,再根据直角三角形两锐角互余求出∠EBC,然后根据∠ABF=90°﹣∠EBF﹣∠EBC代入数据进行计算即可得解.【解答】解:补全正方形如图,由翻折的性质得,∠BEF=∠BEC,∠EBF=∠EBC,∵∠DEF=30°,∴∠BEC===70°,∴∠EBC=90°﹣∠BEC=90°﹣70°=20°,∴∠ABF=90°﹣∠EBF﹣∠EBC=90°﹣20°﹣20°=50°.故答案为:50°.18.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影= 1 cm2.【考点】三角形的面积.【分析】根据三角形的面积公式,知△BCE的面积是△ABC的面积的一半,进一步求得阴影部分的面积是△BEC的面积的一半.【解答】解:∵点E是AD的中点,∴△BDE的面积是△ABD的面积的一半,△CDE的面积是△ACD的面积的一半.则△BCE的面积是△ABC的面积的一半,即为2cm2.∵点F是CE的中点,∴阴影部分的面积是△BCE的面积的一半,即为1cm2.三、解答题(本大题共11小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.计算:(1)|﹣2|﹣(2﹣π)0+(﹣)﹣1(2)﹣2xy•3x2y﹣x2y(﹣3xy+xy2)(3)(2a+b)(b﹣2a)﹣(a﹣3b)2.【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据绝对值、零指数幂、负指数幂计算即可;(2)根据同底数幂的乘法、单项式乘以多项式进行计算即可;(3)根据平方差公式和完全平方公式进行计算即可.【解答】解:(1)原式=2﹣1﹣3=﹣2;(2)原式=﹣6x3y2+3x3y2﹣x3y3=﹣3x3y2﹣x3y3;(3)原式=b2﹣4a2﹣a2+6ab﹣9b2=﹣5a2+6ab﹣8b2.20.如图,△ABC的顶点都在方格纸的格点上.将△ABC向左平移2格,再向上平移3格.(1)请在图中画出平移后的△A′B′C′;(2)在△ABC中画出中线BD;(3)在△ABC中画出AB边上高(图中标上字母).【考点】作图-平移变换.【分析】(1)分别作出点A、B、C向左平移2格,再向上平移3格的点,然后顺次连接;(2)作出AC的中点D,然后连接BD;(3)过点C作CD⊥AB延长线于点E,然后连接CE.【解答】解:(1)所作图形如图所示:(2)如图所示,BD即为所作中线;(3)如图所示,CE即为AB的高.21.已知n为正整数,且x2n=4,求(x3n)2﹣2(x2)2n的值.【考点】整式的混合运算—化简求值.【分析】原式利用幂的乘方运算法则变形,将已知等式代入计算即可求出值.【解答】解:∵n为正整数,且x2n=4,∴原式=(x2n)3﹣2(x2n)2=43﹣2×42=64﹣32=32.22.先化简再求值:(a﹣2b)2+(a﹣b)(a+b)﹣2(a﹣3b)(a﹣b),其中a=,b=﹣3.【考点】整式的混合运算—化简求值.【分析】原式第一项利用完全平方公式展开,第二项利用平方差公式计算,最后一项利用多项式乘多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣4ab+4b2+a2﹣b2﹣2a2+8ab﹣6b2=4ab﹣3b2,当a=,b=﹣3时,原式=﹣6﹣27=﹣33.23.如图,在△ABC中,BD⊥AC,EF⊥AC,垂足分别为D、F,且∠1=∠2,试判断DE与BC的位置关系,并说明理由.【考点】平行线的判定与性质.【分析】根据平行线的判定求出EF∥BD,根据平行线的性质得出∠1=∠BDE,求出∠2=∠BDE,根据平行线的判定得出即可.【解答】解:DE∥BC,理由是:∵BD⊥AC,EF⊥AC,∴∠EAF=∠BDF=90°,∴EF∥BD,∴∠1=∠BDE,又∵∠1=∠2,∴∠2=∠BDE,∴DE∥BC.24.已知:x+y=6,xy=4,求下列各式的值(1)x2+y2(2)(x﹣y)2.【考点】完全平方公式.【分析】(1)根据完全平方公式可得x2+y2=(x+y)2﹣2xy,然后把x+y=6,xy=4整体代入进行计算即可;(2)根据完全平方公式可得(x﹣y)2=(x+y)2﹣4xy,然后把x+y=6,xy=4整体代入进行计算即可.【解答】解:(1)∵x2+y2=(x+y)2﹣2xy,∴当x+y=6,xy=4,x2+y2=(x+y)2﹣2xy=62﹣2×4=28;(2)∵(x﹣y)2=(x+y)2﹣4xy,∴当x+y=6,xy=4,(x﹣y)2=(x+y)2﹣4xy=62﹣4×4=20.25.如图,已知△ABC中,AD是高,AE是角平分线.(1)若∠B=20°,∠C=60°,求∠EAD度数;(2)若∠B=α,∠C=β(β>a),则∠EAD=(β﹣α).(用α、β的代数式表示)【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】(1))根据∠B=20°,∠C=60°,得出∠BAC的度数,再根据AE是角平分线,AD 是高,分别得出∠EAC和∠DAC的度数,从而求出答案;(2)证明过程同(1),只不过把∠B和∠C的度数用字母代替,从而用字母表示出各个角的度数.【解答】解:(1)∵∠B=20°,∠C=60°,∴∠BAC=180°﹣20°﹣60°=100°,∵AE是角平分线,∴∠EAC=50°,∵AD是高,∴∠ADC=90°,∴∠DAC=30°,∴∠EAD=∠EAC﹣∠DAC=50°﹣30°=20°;(2))∵∠B=α,∠C=β,∴∠BAC=180°﹣α﹣β,∵AE是角平分线,∴∠EAC=90°﹣α﹣β,∵AD是高,∴∠ADC=90°,∴∠DAC=90°﹣β,∴∠EAD=∠EAC﹣∠DAC=(90°﹣α﹣β)﹣(90°﹣β)=(β﹣α).26.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)将图②中的阴影部分面积用2种方法表示可得一个等式,这个等式为(m+n)2﹣4mn=(m﹣n)2.(2)若m+2n=7,mn=3,利用(1)的结论求m﹣2n的值.【考点】完全平方公式的几何背景.【分析】(1)大正方形的面积减去矩形的面积即可得出阴影部分的面积,也可得出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系;(2)根据(1)所得出的关系式,可求出(m﹣2n)2,继而可得出m﹣2n的值.【解答】解:(1)(m+n)2﹣4mn=(m﹣n)2;故答案为:(m+n)2﹣4mn=(m﹣n)2(2)(m﹣2n)2=(m+2n)2﹣8mn=25,则m﹣2n=±5.27.如图,正方形ABCD的边长为a,面积为6;长方形CEFG的长、宽分别为a,b,长方形的面积为2,其中点B、C、E在同一直线上,连接DF.求△BDF的面积.【考点】整式的混合运算.【分析】由图形得三角形BDF的面积=正方形ABCD的面积+梯形DCEF﹣三角形ABD的面积﹣三角形BEF,再计算即可.【解答】解:S△BDF=S正方形ABCD+S梯形DCEF﹣S△ABD﹣S△BEF=a2+(a+b)•a﹣a2﹣•2a•b=a2﹣ab;由题意得:a2=6,ab=2,则S△BDF=6﹣×2=5.28.观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4× 4 2= 17 ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【考点】规律型:数字的变化类;完全平方公式.【分析】由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.【解答】解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=4n+1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=4n+1.左边=右边∴(2n+1)2﹣4n2=4n+1.29.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= 140 °;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:∠1+∠2=90°+α;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:∠2=90°+∠1﹣α.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)根据四边形内角和定理以及邻补角的定义得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求得出答案即可;(3)利用三角外角的性质得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出.【解答】解:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°;故答案为:140°;(2)由(1)得出:∠α+∠C=∠1+∠2,∴∠1+∠2=90°+α故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由:∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+α=90°+∠2+α.(4)∵∠PFD=∠EFC,∴180°﹣∠PFD=180°﹣∠EFC,∴∠α+180°﹣∠1=∠C+180°﹣∠2,∴∠2=90°+∠1﹣α.故答案为:∠2=90°+∠1﹣α.。
七年级数学上学期期中试题(含解析) 苏科版-苏科版初中七年级全册数学试题
某某省某某市江阴市南菁中学2015-2016学年七年级数学上学期期中试题一、选择题(本大题共10小题,每题2分,共20分)1.﹣3的绝对值是( )A.3 B.﹣3 C.﹣D.2.下列各数:﹣2.5,0,8,﹣2,,,﹣0.5252252225…(每两个5之间依次增加1个2)中,无理数的个数是( )A.1个B.2个C.3个D.4个3.若a=﹣22,b=(﹣2)2,c=a+b,则a,b,c的大小关系是( )A.a<b<c B.c<b<a C.c<a<b D.a<c<b4.下列各式最符合代数式书写规X的是( )A.2n B.C.3x﹣1个D.a×35.多项式3x2y﹣xy3+5xy﹣1是一个( )A.四次三项式B.三次三项式C.四次四项式D.三次四项式6.下列计算正确的是( )A.3a2+a=4a3 B.﹣2(a﹣b)=﹣2a+bC.a2b﹣2a2b=﹣a2 b D.5a﹣4a=17.如果x=2是方程x+a=﹣1的解,那么a的值是( )A.0 B.2 C.﹣2 D.﹣68.某年11月份有一个星期,从星期一到星期五连续五天的日历数字之和为55,则这个月的12号是( )A.星期一B.星期二C.星期三D.星期四9.如图,从边长为(a+3)cm的大正方形纸片中剪去一个边长为(a+1)cm的小正方形(a >0),剩余部分沿虚线剪开,重新拼成一个长方形(不重叠无缝隙),则此长方形的周长为( )A.(4a+12)cm B.(4a+8)cm C.(2a+6)cm D.(2a+4)cm10.如图,每一幅图中均含有若干个正方形,第①幅图中含有1个正方形;第②幅图中含有5个正方形;按这样的规律下去,则第⑥幅图中含有正方形的个数为( )A.55 B.78 C.91 D.140二.填空题:(本大题共8小题,每空2分,共16分)11.有理数﹣的相反数__________.12.某某省的面积约为102 600km2,这个数据用科学记数法可表示为__________km2.13.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么﹣4万元表示__________.14.如果单项式x a+1y3与2x3y b﹣1是同类项,那么a b=__________.15.已知关于x的方程:ax+4=1﹣2x的解恰为方程:2x﹣1=5的解,那么系数a的值为:__________.16.已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)=__________.17.若代数式x2+3x﹣5的值为2,则代数式2x2+6x+3的值为__________.18.对于数x,规定(x n)′=nx n﹣1(n是大于1的正整数),若(x2)′=﹣2,则x=__________.三.解答题:(本大题共7大题,共64分)19.计算:(1)8+(﹣10)+(﹣2)+(﹣5)(2)(+)+(﹣2)﹣(﹣2)﹣(+3)(3)(﹣﹣)×24(4)﹣16﹣|﹣5|+2×(﹣)2.20.合并同类项(1)3b+5a+2a﹣4b(2)(a2+2ab+b2)﹣2(a2﹣2ab﹣b2)21.解方程:(1)x+5=2x﹣1(2)﹣=1.22.先化简,再求值:,其中.23.有理数a,b,c在数轴上的位置如图所示,请化简:|a+b|+|b+c|﹣|a﹣c|.24.若A=x2﹣3x﹣6,B=2x2﹣4x+6,请计算:3A﹣2B,并求当x=1时这个代数式的值.25.某班10名男同学参加100米达标测验,成绩小于或等于15秒的达标,这10名男同学成绩记录如下(其中超过15秒记为“+”,不足15秒记为“﹣”):(1)求这10名男同学的达标率是多少?(“达标率”是指达标人数占参加人数的百分比)(2)这10名男同学的平均成绩是多少?(3)最快的比最慢的快了多少秒?26.操作与探究:数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.(1)画数轴并在数轴上表示出:﹣5、﹣3、﹣2、1、4;(2)数轴上表示﹣2和4两点之间的距离是__________;(3)若|x+1|=4,则x=__________;(4)若数轴画在纸面上,折叠纸面,若表示3的点和表示﹣1的点重合,则5表示的点和__________表示的点重合;这时如果数轴上有距离为6的A、B两点经折叠后重合,且点A 在点B左侧,则点A表示的数是__________.27.初步探索感悟方法如图1,用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点,以格点为顶点的多边形叫格点多边形,设格点多边形的面积为S,它各边上格点的个数和为x.(1)如图1中所示的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请填写下表并写出S与x之间的关系式,答:S=__________.多边形的序号①②③④…多边形的面积S 2 __________ 3 __________…各边上格点的个数和x 4 5 6 __________…(2)你可以画些格点多边形,使这些多边形内部都有而且只有2个格点.此时所画的各个多边形的面积S与它各边上格点的个数和x之间的关系式S=__________.(3)请你继续探索,当格点多边形内部有且只有n(n是正整数)个格点时,猜想S与x、n之间的关系式S=__________.(用含有字母x、n的代数式表示)积累经验拓展延伸如图2,对等边三角形网格中的类似问题进行探究:等边三角形网格中每个小等边三角形的面积为1,小等边三角形的顶点为格点,以格点为顶点的多边形称为格点多边形.(4)设格点多边形的面积为S,它各边上格点的个数和为x,当格点多边形内部有且只有n 个格点时,猜想S与x、n之间的关系式S=__________.(用含有字母x、n的代数式表示)2015-2016学年某某省某某市江阴市南菁中学七年级(上)期中数学试卷一、选择题(本大题共10小题,每题2分,共20分)1.﹣3的绝对值是( )A.3 B.﹣3 C.﹣D.【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣3的绝对值是3.故选:A.【点评】此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列各数:﹣2.5,0,8,﹣2,,2225…(每两个5之间依次增加1个2)中,无理数的个数是( )A.1个B.2个C.3个D.4个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,﹣0.5252252225…(每两个5之间依次增加1个2)共2个.故选B.【点评】此题主要考查了无理数的定义,其中初中X围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.若a=﹣22,b=(﹣2)2,c=a+b,则a,b,c的大小关系是( )A.a<b<c B.c<b<a C.c<a<b D.a<c<b【考点】有理数大小比较.【专题】推理填空题;实数.【分析】首先分别求出a,b,c的值各是多少;然后根据有理数大小比较的方法,判断出a,b,c的大小关系即可.【解答】解:a=﹣22=﹣4,b=(﹣2)2=4,c=a+b=﹣4+4=0,∵﹣4<0<4,∴a<c<b.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.4.下列各式最符合代数式书写规X的是( )A.2n B.C.3x﹣1个D.a×3【考点】代数式.【分析】根据代数式的书写要求判断各项.【解答】解;A、应表示为n,故A错误;B、两个字母相除表示为分式的形式,故B正确;C、(3x﹣1)个,应加上括号,故C错误;D、把数写在字母的前面,故D错误,故选:B.【点评】本题考查了代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.5.多项式3x2y﹣xy3+5xy﹣1是一个( )A.四次三项式B.三次三项式C.四次四项式D.三次四项式【考点】多项式.【分析】利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数,进而分别分析得出答案.【解答】解:多项式3x2y﹣xy3+5xy﹣1是一个:四次四项式.故选:C.【点评】此题主要考查了多项式的次数、系数、项数的定义,正确把握相关定义是解题关键.6.下列计算正确的是( )A.3a2+a=4a3 B.﹣2(a﹣b)=﹣2a+bC.a2b﹣2a2b=﹣a2 b D.5a﹣4a=1【考点】合并同类项;去括号与添括号.【分析】根据同类项、合并同类项法则,去括号法则分别判断即可.【解答】解:A、3a2和a不能合并,故本选项错误;B、﹣2(a﹣吧)=﹣2a+2b,故本选项错误;C、a2b﹣2a2b=﹣a2b,故本选项正确;D、5a﹣4a=a,故本选项错误;故选C.【点评】本题考查了同类项,去括号法则,合并同类项法则的应用,能熟记合并同类项法则是解此题的关键,注意:把同类项的系数相加作为结果的系数,字母和字母的指数不变.7.如果x=2是方程x+a=﹣1的解,那么a的值是( )A.0 B.2 C.﹣2 D.﹣6【考点】一元一次方程的解.【专题】计算题.【分析】此题可将x=2代入方程,然后得出关于a的一元一次方程,解方程即可得出a的值.【解答】解:将x=2代入方程x+a=﹣1得1+a=﹣1,解得:a=﹣2.故选C.【点评】此题考查的是一元一次方程的解法,方程两边可同时减去1,即可解出a的值.8.某年11月份有一个星期,从星期一到星期五连续五天的日历数字之和为55,则这个月的12号是( )A.星期一B.星期二C.星期三D.星期四【考点】一元一次方程的应用.【分析】设周一日历号为x,则周二为x+1,周三为x+2,周四为x+3,周五为x+4,根据这五天的日历号数之和为55,可得出方程,解出可得出x的值,也即可得出这个月的12号是星期几.【解答】解:设周一日历号为x,则周二为x+1,周三为x+2,周四为x+3,周五为x+4,由题意得,x+x+1+x+2+x+3+x+4=55,即5x+10=55,解得:x=9,则9+3=12,则这个月的12号是星期四.故选:D.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是表示出周一至周五的日历号数,得出方程,难度一般.9.如图,从边长为(a+3)cm的大正方形纸片中剪去一个边长为(a+1)cm的小正方形(a >0),剩余部分沿虚线剪开,重新拼成一个长方形(不重叠无缝隙),则此长方形的周长为( )A.(4a+12)cm B.(4a+8)cm C.(2a+6)cm D.(2a+4)cm【考点】整式的加减.【分析】根据已知正方形边长,得出新矩形的各边长,进而得出此矩形的周长.【解答】解:由题意可得出:AB=ED=a+1,CD=AF=a+3,BC=EF=a+3﹣(a+1)=2,故此矩形的周长为:2(a+1+a+3)+2×2=(4a+12)cm.故选A.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.10.如图,每一幅图中均含有若干个正方形,第①幅图中含有1个正方形;第②幅图中含有5个正方形;按这样的规律下去,则第⑥幅图中含有正方形的个数为( )A.55 B.78 C.91 D.140【考点】规律型:图形的变化类.【分析】观察图形发现第一个有1个正方形,第二个有1+4=5个正方形,第三个有1+4+9=14个正方形,…第n个有:1+4+9+…+n2=n(n+1)(2n+1)个正方形,从而得到答案.【解答】解:观察图形发现第一个有1个正方形,第二个有1+4=5个正方形,第三个有1+4+9=14个正方形,…第n个有:1+4+9+…+n2=n(n+1)(2n+1)个正方形,第6个有1+4+9+16+25+36=91个正方形,故选:C.【点评】此题考查了图形的变化规律,解题的关键是仔细关系图形并找到规律,利用规律解决问题.二.填空题:(本大题共8小题,每空2分,共16分)11.有理数﹣的相反数.【考点】相反数.【分析】据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:有理数﹣的相反数是,故答案为:.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.某某省的面积约为102 600km2,这个数据用科学记数法可表示为1.026×105km2.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n 表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:102 600=1.026×105km2.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).13.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么﹣4万元表示支出(或取出)4万元.【考点】正数和负数.【分析】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以存入3万元记作+3万元,那么﹣4万元表示支出(或取出)4万元.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.如果单项式x a+1y3与2x3y b﹣1是同类项,那么a b=16.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a,b 的值,再代入代数式计算即可.【解答】解:根据题意得:a+1=3,b﹣1=3,解得:a=2,b=4.则a b=16.故答案是:16.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.15.已知关于x的方程:ax+4=1﹣2x的解恰为方程:2x﹣1=5的解,那么系数a的值为:﹣3.【考点】同解方程.【分析】先解出2x﹣1=5的解,然后代入ax+4=1﹣2x,可得关于a的一元一次方程,解出即可得出a的值.【解答】解:由2x﹣1=5,解得:x=3,∴3a+4=1﹣6,解得:a=﹣3.故答案为:﹣3.【点评】此题考查了同解方程的定义,属于基础题,解答本题的关键是理解方程解的含义:即满足方程左右相等的未知数的值.16.已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)=5.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵a﹣b=﹣3,c+d=2,∴原式=b+c﹣a+d=﹣(a﹣b)+(c+d)=3+2=5,故答案为:5【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.17.若代数式x2+3x﹣5的值为2,则代数式2x2+6x+3的值为17.【考点】代数式求值.【专题】计算题;实数.【分析】根据已知代数式的值求出x2+3x的值,原式变形后代入计算即可求出值.【解答】解:∵x2+3x﹣5=2,即x2+3x=7,∴原式=2(x2+3x)+3=14+3=17.故答案为:17.【点评】此题考查了代数式求值,利用了整体代换的思想,熟练掌握运算法则是解本题的关键.18.对于数x,规定(x n)′=nx n﹣1(n是大于1的正整数),若(x2)′=﹣2,则x=﹣1.【考点】解一元一次方程.【专题】新定义.【分析】根据题意列出关于x的一元一次方程,求出x的值即可.【解答】解:∵(x n)′=nx n﹣1(n是大于1的正整数),∴(x2)′=2x=﹣2,解得x=﹣1.故答案为:﹣1.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的基本步骤是解答此题的关键.三.解答题:(本大题共7大题,共64分)19.计算:(1)8+(﹣10)+(﹣2)+(﹣5)(2)(+)+(﹣2)﹣(﹣2)﹣(+3)(3)(﹣﹣)×24(4)﹣16﹣|﹣5|+2×(﹣)2.【考点】有理数的混合运算.【分析】(1)(2)先化简,再分类计算;(3)利用乘法分配律简算;(4)先算乘方,绝对值,再算乘法,最后算加减.【解答】解:(1)原式=8﹣10﹣2﹣5=﹣9(2)原式=﹣2+2﹣3=﹣3;(3)原式=×24﹣×24﹣×24=9﹣4﹣18=﹣13;(4)原式=﹣1﹣5+2×=﹣6+=﹣5.【点评】此题考查有理数的混合运算,掌握运算顺序与计算方法是解决问题的关键.20.合并同类项(1)3b+5a+2a﹣4b(2)(a2+2ab+b2)﹣2(a2﹣2ab﹣b2)【考点】合并同类项.【分析】(1)先找出同类项,再合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)3b+5a+2a﹣4b=7a﹣b;(2)(a2+2ab+b2)﹣2(a2﹣2ab﹣b2)=a2+2ab+b2﹣2a2+4ab+2b2=﹣a2+6ab+3b2.【点评】本题考查了同类项和合并同类项法则的应用,能熟记合并同类项法则是解此题的关键,注意:把同类项的系数相加作为结果的系数,字母和字母的指数不变.21.解方程:(1)x+5=2x﹣1(2)﹣=1.【考点】解一元一次方程.【分析】(1)先移项,再合并同类项,把x的系数化为1即可;(2)先去分母,去括号,再移项,合并同类项即可.【解答】解:(1)移项得,x﹣2x=﹣1﹣5,合并同类项得,﹣x=﹣6,把x的系数化为1得,x=6;(2)去分母得,3x﹣2(x﹣1)=6,去括号得,3x﹣2x+2=6,移项得,3x﹣2x=6﹣2,合并同类项得,x=4.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的基本步骤是解答此题的关键.22.先化简,再求值:,其中.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a的值代入计算即可求出值.【解答】解:原式=﹣a2+a+2﹣a+2=﹣a2,当a=﹣时,原式=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.有理数a,b,c在数轴上的位置如图所示,请化简:|a+b|+|b+c|﹣|a﹣c|.【考点】整式的加减;数轴;绝对值.【分析】由数轴上点的位置及有理数的加减法则判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:由数轴上点的位置得:b<c<0<a,|a|<|c|<|b|,所以a+b<0,b+c<0,a﹣c>0,则|a+b|+|b+c|﹣|a﹣c|=﹣(a+b)﹣(b+c)﹣(a﹣c)=﹣a﹣b﹣b﹣c﹣a+c=﹣2a﹣2b.【点评】此题考查了整式的加减,数轴,以及绝对值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.24.若A=x2﹣3x﹣6,B=2x2﹣4x+6,请计算:3A﹣2B,并求当x=1时这个代数式的值.【考点】整式的加减—化简求值.【专题】计算题.【分析】把A与B代入3A﹣2B,去括号合并得到最简结果,把x=1代入计算即可求出值.【解答】解:∵A=x2﹣3x﹣6,B=2x2﹣4x+6,∴3A﹣2B=3(x2﹣3x﹣6)﹣2(2x2﹣4x+6)=3x2﹣9x﹣18﹣4x2+8x﹣12=﹣x2﹣x﹣30,当x=1时,原式=﹣1﹣1﹣30=﹣32.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.25.某班10名男同学参加100米达标测验,成绩小于或等于15秒的达标,这10名男同学成绩记录如下(其中超过15秒记为“+”,不足15秒记为“﹣”):(1)求这10名男同学的达标率是多少?(“达标率”是指达标人数占参加人数的百分比)(2)这10名男同学的平均成绩是多少?(3)最快的比最慢的快了多少秒?【考点】正数和负数.【分析】(1)15秒的达标,不足15秒记为“﹣”,15秒的记为0,共有7人达标,用7除以总数10即可.(2)这10名男同学的平均成绩:先计算:+1.2,0,﹣0.8,+2,0,﹣1.4,﹣0.5,0,﹣0.3,+0.8 的平均数,再加15即可;(3)最快的为:(15﹣1.4)秒,最慢的是:(15+1.2)秒,相减即可.【解答】解:(1)7÷10=70%.答:这10名男同学的达标率是70%;(2)(+1.2+0+﹣0.8+2+0﹣1.4﹣0.5+0﹣0.3+0.8)÷10=0.1,15+0.1=15.1(秒).答:这10名男同学的平均成绩是15.1秒;(3)最快的:15﹣1.4=13.6(秒),最慢的:15+2=17(秒),17﹣13.6=3.4(秒).答:最快的比最慢的快了3.4秒.【点评】此题主要考查了有理数的计算,解题关键是要明确用时越短速度越快.26.操作与探究:数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.(1)画数轴并在数轴上表示出:﹣5、﹣3、﹣2、1、4;(2)数轴上表示﹣2和4两点之间的距离是6;(3)若|x+1|=4,则x=3或﹣5;(4)若数轴画在纸面上,折叠纸面,若表示3的点和表示﹣1的点重合,则5表示的点和﹣3表示的点重合;这时如果数轴上有距离为6的A、B两点经折叠后重合,且点A在点B 左侧,则点A表示的数是﹣2.【考点】数轴.【分析】(1)在数轴上表示出来即可.(2)列出算式4﹣(﹣2),求出即可.(3)根据绝对值的性质x+1=±4,求出即可.(4)根据折叠3和﹣1重合,即可得出5和﹣3重合,当A是4时B是﹣2,当A是﹣2时B 是4,两种情况都符合.【解答】解:(1)如图,.(2)4﹣(﹣2)=6.(3)|x+1|=4,x+1=±4,x=3或﹣5.(4)∵3表示的点和﹣1表示的点重合,∴5表示的点和﹣3表示的点重合,∵A、B两点之间的距离为6,且A、B两点经折叠后重合,∴点A表示的数是4或﹣2,∵点A在点B左侧,∴点A表示的数是﹣2.故答案为:(2)6;(3)3或﹣5;(4)﹣3,﹣2.【点评】本题考查了数轴,绝对值,解一元一次方程,折叠的应用,主要考查学生的理解能力和计算能力.27.初步探索感悟方法如图1,用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点,以格点为顶点的多边形叫格点多边形,设格点多边形的面积为S,它各边上格点的个数和为x.(1)如图1中所示的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请填写下表并写出S与x之间的关系式,答:S=x.多边形的序号①②③④…多边形的面积S 2 3 4 …各边上格点的个数和x 4 5 6 8 …(2)你可以画些格点多边形,使这些多边形内部都有而且只有2个格点.此时所画的各个多边形的面积S与它各边上格点的个数和x之间的关系式S=x+1.(3)请你继续探索,当格点多边形内部有且只有n(n是正整数)个格点时,猜想S与x、n之间的关系式S=x+(n﹣1)..(用含有字母x、n的代数式表示)积累经验拓展延伸如图2,对等边三角形网格中的类似问题进行探究:等边三角形网格中每个小等边三角形的面积为1,小等边三角形的顶点为格点,以格点为顶点的多边形称为格点多边形.(4)设格点多边形的面积为S,它各边上格点的个数和为x,当格点多边形内部有且只有n 个格点时,猜想S与x、n之间的关系式S=x+2(n﹣1).(用含有字母x、n的代数式表示)【考点】规律型:图形的变化类.【分析】(1)由(1)可以直接得到S=x;(2)由图可知多边形内部都有而且只有2格点时,①的各边上格点的个数为10,面积为6,②的各边上格点的个数为4,面积为3,③的各边上格点的个数为6,面积为4,进而得出答案;(3)由图可知多边形内部都有而且只有n格点时,图形的面积;(4)由图可知多边形内部都有而且只有n格点时,图形的面积.【解答】解:(1)填表如下:多边形的序号①②③④…多边形的面积S 2 3 7 …各边上格点的个数和x 4 5 6 …∵①各边上格点个数和为:4,S=2,②各边上格点个数和为:5,S=2.5,③各边上格点个数和为:6,S=3,④各边上格点个数和为:7,S=3.5,∴S=x;故答案为:x;(2)由图可知多边形内部都有而且只有2格点时,⑤的各边上格点的个数为4,面积为3,⑥的各边上格点的个数为10,面积为6,∴S=x+1;故答案为:x+1;(3)由图1可知多边形内部都有而且只有n格点时,面积为:S=x+(n﹣1).(4)由图2可知多边形内部都有而且只有n格点时,面积为:S=x+2(n﹣1).故答案为:(1)x,2.5,4,8;(2)x+1;(3)x+n﹣1;(4)x+2 (n﹣1).【点评】此题主要考查了应用作图与设计,此题需要根据图中表格和自己所算得的数据,总结出规律.寻找规律是一件比较困难的活动,需要仔细观察和大量的验算.word 21 / 21。
2015~2016学年度第一学期七年级期末考试数学附答案
2015~2016学年度第一学期七年级期末考试数学第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)1.在-25, 0,25,2.5这四个数中,绝对值最大的数是 A. -25 B.0 C. 25D.2.5 2.下面运算正确的是 A.369a b ab += B.33330a b ba -= C.43862a a a -= D.22111236y y -= 3.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把书3120000用科学记数法表示为A.3.12×105B.3.12×106C.31.2×105D.0.312×1074.如果一个角的余角是50°,则这个角的补角的度数是A.130°B.140°C.40°D.150°5.如图是每个面都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“祝”字相对的面是A.新B.年C.快D.乐6.下图是由八个相同的小正方体组合而成的几何体,其左视图是7.已知多项式2222A x y z =+-,222=432B x y z -++,且0A B C ++=,则C 为A.2225x y z --B.22235x y z --C.22233x y z --D.22235x y z -+8.如图,点O 在直线AB 上,射线OC 、OD 在直线AB 的同侧,∠AOD =50°,∠BOC =40°,OM 、ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为A.135°B.140°C.152°D.145° 9.如图,直线l 1∥l 2,则∠α为 A.150° B.140° C.130° D.120° 10.若8,5a b ==,且a b +>0,则a b -的值为 A.3或13 B.13或-13 C.3或-3 D. -3或-1311.已知A 、B 、C 三点在同一直线上,M 、N 分别为线段AB 、BC 中点,且AB =60,BC =40,则MN 的长为A.10B.50C.20或50D.10或12.下面每个表格中的四个数都是按相同规律填写的: 根据此规律确定x 的值为A.135B.170C.209D.252第Ⅱ卷(非选择题共72分)乐快年新你祝D C B A NMD C B A l 2············第4个第3个第2个第1个35834∙∙∙···x 20b a 541054206329421二、填空题(本大题共4小题,每小题4分,共16分,请将最后答案填在题中横线上)13.312m a b 与212n a b -是同类项,则m n -=________; 14.规定符号*运算为a *b =21ab a b -++,那么-3*4=_____________;15.若代数式2245x x --的值为6,则2122x x --的值为_________; 16.为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示:按照上面的规律,摆第(n )图,需用火柴棒的根数为_____________________.三、解答题(本大题共6个小题,共56分,解答时应写出必要的文字说明或演算步骤.)17.(本小题满分10分)计算与化简:(1)2241325(2)4-+----⨯-()() (2)224(6)3(2)x xy x xy +---18.(本小题满分8分)先化简,再求值:2211312()()2323a a b a b ----,其中22,3a b =-=.19.(本小题满分9分)一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走了1.5千米到达商场C,又向西走了4.5千米到达超市D,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;(2)超市D距货场A多远?(3)货车一共行驶了多少千米?20.(本小题满分8分)某中学初一(四)班3位教师决定带领本班a名学生在五一期间取北京旅游,A旅行社的收费标准为:教师全价,学生半价;而B旅行社的收费标准为:不分教师、学生,一律八折优惠.(1)分别用代数式表示参加这两家旅行社所需的费用;(2)如果这3位教师要带领该班30名学生参加旅游,你认为选择哪一家旅行社较为合算,为什么?21.(本小题满分10分)如图,已知AB∥CE,∠A=∠E,试说明∠CGD=∠FHB.22.(本小题满分11分)HGFEDCBA将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°,∠E=∠B=45°).(1)1若∠DCE=45°,则∠ACB的度数为_________:2 若∠ACB=140°,则∠DCE的度数为______;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE所有可能的值(不必说明理由);若不存在,请说明理由.。
【精品】2015-2016年江苏省苏州市相城区初一上学期数学期末试卷含解析答案
2015-2016学年江苏省苏州市相城区七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分;以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卷上将该项涂黑.)1.(3分)﹣3的绝对值是()A.﹣3 B.3 C.D.2.(3分)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A.0.675×105B.6.75×104C.67.5×103D.675×1023.(3分)在下列单项式中,与2xy是同类项的是()A.2x2y2B.3y C.xy D.4x4.(3分)已知∠α=35°,那么∠α的补角等于()A.35°B.55°C.65°D.145°5.(3分)由x<y得到ax>ay的条件是()A.a≥0 B.a≤0 C.a>0 D.a<06.(3分)如果x=2是方程x+a=﹣1的解,那么a的值是()A.﹣2 B.2 C.0 D.﹣67.(3分)一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是()A.记B.观C.心D.间8.(3分)已知a﹣2b=﹣2,则4﹣2a+4b的值是()A.0 B.2 C.4 D.89.(3分)关于x的不等式组的解集为x>1,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<110.(3分)如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.6条 B.5条 C.4条 D.3条二、填空题(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相应的位置上.)11.(3分)单项式7a3b2的次数是.12.(3分)下列各数﹣4,,π,0,0.1010010001…中,无理数有个.13.(3分)若关于x的方程3x﹣2a=0与2x+3a﹣13=0的解相同,则这两个方程的解为x=.14.(3分)如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是PB,理由.15.(3分)几个人共同种一种树苗,如果每人种10棵,则剩下6棵树苗未种,如果每人种12棵,则缺6棵树苗,参加种树的有人.16.(3分)已知2﹣a和3﹣2a的值的符号相反,则a的取值范围是.17.(3分)求上午10时30分,钟面上时针和分针的夹角=度.18.(3分)设a,b,c是从1到9的互不相同的整数,则的最大值为.三、解答题(本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.(10分)计算:(1)3+(﹣9)﹣(﹣6)(2).20.(10分)解方程:(1)5x﹣1=3(x+1)(2).21.(5分)解不等式2(x+1)﹣1≥4x+3,并把它的解集在数轴上表示出来.22.(5分)解不等式组.23.(6分)先化简,再求值3x2y﹣[2xy﹣2(xy﹣x2y)+xy],其中x=3,y=﹣.24.(6分)由几个相同的边长为1的小立方块搭成的几何体的俯视图如图,方格中的数字表示该位置的小立方块的个数.(1)请在图方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为个平方单位.(包括面积)25.(8分)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需元,购买12根跳绳需元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.26.(8分)如图,直线AB、CD、EF相交于点O,OG⊥CD,∠BOD=32°.(1)求∠AOG的度数;(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线吗?请说明理由.27.(8分)已知关于x的方程4x+2m+1=2x+5的解是负数.(1)求m的取值范围;(2)在(1)的条件下,解关于x的不等式2(x﹣2)>mx+3.28.(10分)如图,在数轴上点A表示的数为a,点B表示的数为b,且a,b满足|a+2|+(3a+b)2=0,O为原点.(1)则a=,b=;(2)若动点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,①当PO=2PB时,求点P的运动时间t;②当点P运动到线段OB上时,分别取AP和OB的中点E、F,则的值为.(3)有一动点Q从原点O出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2015次时,求点Q所对应的有理数.2015-2016学年江苏省苏州市相城区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分;以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卷上将该项涂黑.)1.(3分)﹣3的绝对值是()A.﹣3 B.3 C.D.【解答】解:|﹣3|=3.故﹣3的绝对值是3.故选:B.2.(3分)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A.0.675×105B.6.75×104C.67.5×103D.675×102【解答】解:将67500用科学记数法表示为:6.75×104.故选:B.3.(3分)在下列单项式中,与2xy是同类项的是()A.2x2y2B.3y C.xy D.4x【解答】解:与2xy是同类项的是xy.故选:C.4.(3分)已知∠α=35°,那么∠α的补角等于()A.35°B.55°C.65°D.145°【解答】解:∵∠α=35°,∴∠α的补角=180°﹣35°=145°,故选:D.5.(3分)由x<y得到ax>ay的条件是()A.a≥0 B.a≤0 C.a>0 D.a<0【解答】解:∵由x<y得到ax>ay,不等号的方向发生了可改变,∴a<0.故选:D.6.(3分)如果x=2是方程x+a=﹣1的解,那么a的值是()A.﹣2 B.2 C.0 D.﹣6【解答】解:把x=2代入方程x+a=﹣1得:2×+a=﹣1,解得:a=﹣2,故选:A.7.(3分)一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是()A.记B.观C.心D.间【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“值”字相对的字是“记”.故选:A.8.(3分)已知a﹣2b=﹣2,则4﹣2a+4b的值是()A.0 B.2 C.4 D.8【解答】解:∵a﹣2b=﹣2,代入4﹣2a+4b,得4﹣2(a﹣2b)=4﹣2×(﹣2)=8.故选:D.9.(3分)关于x的不等式组的解集为x>1,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<1【解答】解:∵关于x的不等式组的解集为x>1,∴a的取值范围是:a≤1.故选:C.10.(3分)如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.6条 B.5条 C.4条 D.3条【解答】解:如下图所示:则所有三颗颜色相同的棋并且在同一直线上的直线共有五条:①竖直的三颗黑色的,②竖直的三颗白色的,③斜着三颗黑色的,④斜着三颗白色的,⑤斜着的三颗白色的.故选:B.二、填空题(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相应的位置上.)11.(3分)单项式7a3b2的次数是5.【解答】解:单项式7a3b2的次数是5,故答案为:5.12.(3分)下列各数﹣4,,π,0,0.1010010001…中,无理数有2个.【解答】解:无理数有:π,0,0.1010010001…共2个.故答案是:2.13.(3分)若关于x的方程3x﹣2a=0与2x+3a﹣13=0的解相同,则这两个方程的解为x=2.【解答】解:3x﹣2a=0,3x=2a,x=,2x+3a﹣13=0,2x=13﹣3a,x=,∵关于x的方程3x﹣2a=0与2x+3a﹣13=0的解相同,∴=,解得:a=3,∴x==2,故答案为:2.14.(3分)如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是PB,理由垂线段最短.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∵PB⊥AD,∴PB最短.故答案为:垂线段最短.15.(3分)几个人共同种一种树苗,如果每人种10棵,则剩下6棵树苗未种,如果每人种12棵,则缺6棵树苗,参加种树的有6人.【解答】解:设参与种树的人数为x人.则10x+6=12x﹣6,x=6,即:6人参与种树.故答案是:6.16.(3分)已知2﹣a和3﹣2a的值的符号相反,则a的取值范围是 1.5<a<2.【解答】解:由题意得,(1),或(2);由(1)得无解;由(2)得,所以a的取值范围为1.5<a<2.17.(3分)求上午10时30分,钟面上时针和分针的夹角=135度.【解答】解:钟面平均分成12,可得每份是30°,时针只在6上,分针指在10与11的=处,时针与分针相距(4+)份30°×(4+)=135°,故答案为:135.18.(3分)设a,b,c是从1到9的互不相同的整数,则的最大值为1.【解答】解:因为分母是相乘的关系,放大倍数大,所以应该尽量使a、b、c的取值小才能确保分式的值最大.故选a=1,b=2,c=3.∴的最大值为1.故填1.三、解答题(本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.(10分)计算:(1)3+(﹣9)﹣(﹣6)(2).【解答】解:(1)原式=3﹣9+6=0;(2)原式=2×9﹣5×2×2=18﹣20=﹣2.20.(10分)解方程:(1)5x﹣1=3(x+1)(2).【解答】解:(1)去括号得:5x﹣1=3x+3,移项合并得:2x=4,解得:x=2;(2)去分母得:3(x+2)﹣12=2(2x﹣1),去括号得:3x+6﹣12=4x﹣2,移项合并得:x=﹣4.21.(5分)解不等式2(x+1)﹣1≥4x+3,并把它的解集在数轴上表示出来.【解答】解:去括号得:2x+2﹣1≥4x+3,移项、合并同类项得:2x≤﹣2,系数化为1得:x≤﹣1,在数轴上表示为:.22.(5分)解不等式组.【解答】解:∵解不等式①得:x<4,解不等式②得:x≥2,∴不等式组的解集为2≤x<4.23.(6分)先化简,再求值3x2y﹣[2xy﹣2(xy﹣x2y)+xy],其中x=3,y=﹣.【解答】解:原式=3x2y﹣[2xy﹣2xy+3x2y+xy],=3x2y﹣3x2y﹣xy,=﹣xy,当x=3,y=﹣时,原式=﹣3×(﹣)=1.24.(6分)由几个相同的边长为1的小立方块搭成的几何体的俯视图如图,方格中的数字表示该位置的小立方块的个数.(1)请在图方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为24个平方单位.(包括面积)【解答】解:(1)如图所示:;(2)能看到的:第一层表面积为12,第二层表面积为:7,第三层表面积为:5,∴这个几何体的表面积为24个平方单位.故答案为:24.25.(8分)情景:试根据图中信息,解答下列问题:(1)购买6根跳绳需150元,购买12根跳绳需240元.(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.【解答】解:(1)25×6=150(元),25×12×0.8=300×0.8=240(元).答:购买6根跳绳需150元,购买12根跳绳需240元.(2)有这种可能.设小红购买跳绳x根,则25×0.8x=25(x﹣2)﹣5,解得x=11.故小红购买跳绳11根.26.(8分)如图,直线AB、CD、EF相交于点O,OG⊥CD,∠BOD=32°.(1)求∠AOG的度数;(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线吗?请说明理由.【解答】解:(1)由对顶角相等,得∠AOC=∠BOD=32°,由角的和差,得∠AOG=∠COG﹣∠AOC=90°﹣32°=58°;(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线,理由如下:由OC是∠AOE的平分线,得∠COE=∠AOC=32°,由对顶角相等,得∠DOF=∠COE,等量代换,得∠DOF=∠AOC.∠AOC+∠AOG=∠COG=90°,∠DOF+∠FOG=∠DOG=90°,由等角的余角相等,得∠AOG=∠FOG,OG是∠AOF的平分线.27.(8分)已知关于x的方程4x+2m+1=2x+5的解是负数.(1)求m的取值范围;(2)在(1)的条件下,解关于x的不等式2(x﹣2)>mx+3.【解答】解:(1)方程4x+2m+1=2x+5的解是:x=2﹣m.由题意,得:2﹣m<0,所以m>2.(2)2(x﹣2)>mx+3,2x﹣4>mx+3,2x﹣mx>3+4,(2﹣m)x>7,因为m>2,所以2﹣m<0,所以x<.28.(10分)如图,在数轴上点A表示的数为a,点B表示的数为b,且a,b满足|a+2|+(3a+b)2=0,O为原点.(1)则a=﹣2,b=6;(2)若动点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,①当PO=2PB时,求点P的运动时间t;②当点P运动到线段OB上时,分别取AP和OB的中点E、F,则的值为2.(3)有一动点Q从原点O出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到2015次时,求点Q所对应的有理数.【解答】解:(1)∵|a+2|+(3a+b)2=0,∴a+2=0,3a+b=0,∴a=﹣2,b=6;(2)①∵若动点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,∴运动t秒后P点对应的数为﹣2+t,∵点A表示的数为﹣2,点B表示的数为6,∴PO=|﹣2+t|,PB=|﹣2+t﹣6|=|t﹣8|,当PO=2PB时,有|﹣2+t|=2|t﹣8|,解得t=6或14.答:点P的运动时间t为6或14秒;②当点P运动到线段OB上时,AP中点E表示的数是=,OB的中点F表示的数是3,所以EF=3﹣=,则==2;(3)依题意得:﹣1+2﹣3+4﹣5+6﹣7+…+2014﹣2015=(﹣1+2)+(﹣3+4)+(﹣5+6))+…+(﹣2013+2014)﹣2015=1007﹣2015=﹣1008.答:点Q所对应的有理数的值为﹣1008.故答案为﹣2,6;2.附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。
2014-2015学年江苏省苏州市高新区七年级上学期期末数学试卷(解析版)
12. (3 分)如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那 么在原正方体的表面上,与汉字“之”相对的面上的汉字是 .
13. (3 分)如图是一个简单的数值运算程序,当输入 n 的值为 3 时,则输出的 结果为 .
14. (3 分)一个多边形的内角和是它的外角和的 4 倍,这个多边形是 形. 15. (3 分)将一些扑克牌分成左、中、右相同的三份. 第一步:从左边取两张扑克牌,放在中间,右边不变; 第二步:从右边取一张扑克牌,放在中间,左边不变; 第三步:从中间取与左边相同张数的扑克牌,放在左边,右边不变. 则此时中间有 张扑克牌.
(2)在 OC 上另取一点 Q,画 QF⊥OA,QG⊥OB,垂足分别为 F,G.再比较 QF、 QG 的长短,得 ;
(3)你可以在角平分线 OC 上再取其它一些点试试,从中你发现了什么? 请你试一试.
第 3 页(共 18 页)
23. (10 分)某自相车厂一周计划生产 1400 量自行车,平均每天生产 200 量, 由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超 产为正,减产为负) ; 星期 增减 一 +5 二 ﹣2 三 ﹣4 四 +13 辆; 辆; 五 ﹣10 六 +6 日 ﹣9
25. (10 分)泰州和姜堰某厂同时生产有某种型号的机器若干台,泰州厂可支援 外地 10 台,姜堰厂可支援外地 4 台,兴化需要该种型号机器 8 台,泰兴需要 6 台,每台机器的运费(单位:元)如下表,设泰州运往兴化的机器为 x 台. 终点 泰兴 兴化
第 4 页(共 18 页)
起点 姜堰厂 泰州厂 300 600 500 400
B.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离 C.互相垂直的两条线段一定相交 D. 直线 c 外一点 A 与直线 c 上各点连接而成的所有线段中最短线段的长是 3cm, 则点 A 到直线 c 的距离是 3cm
江苏省常州市度七年级数学上学期期末考试试题(含解析) 苏科版-苏科版初中七年级全册数学试题
某某省某某市2015-2016学年度七年级数学上学期期末考试试题一、填空题:每小题2分,共20分.1.﹣3的绝对值是.2.某天的最高温度是15℃,最低温度是﹣6℃,这一天温差是℃.3.已知∠A=50°,则∠A的补角是度.4.若单项式与单项式﹣5x m y3是同类项,则m﹣n的值为.5.已知点C是线段AB的中点,线段BC=5,则线段AB的长为.6.如图所示,将等边三角形ABC分割成大小相同的9个小等边三角形,分别标上数字1,2,3,…,9,那么标有数字2的小等边三角形绕它下面的顶点O旋转180°,可以和标有数字的小等边三角形重合.7.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.8.对于有理数a、b,规定一种新运算:a*b=a﹣b﹣2,若a=2,b=﹣3,则a*b=.9.有一列数,按一定规律排成1,﹣3,9,﹣27,81,﹣243,…,其中某三个相邻数的和是5103,则这三个数中最小的数是.10.若平面内有3个点,过其中任意两点画直线,最多可画3条直线;若平面内有4个点,过其中任意两点画直线,最多可画6条直线;若平面内有5个点,过其中任意两点画直线,最多可画10条直线;…;若平面内有n个点,过其中任意两点画直线,最多可画条直线.二、选择题:下列各题中都给出了代号为A、B、C、D的四个答案,其中有且只有一个是正确的,把正确答案的代号填在()内,每小题3分,共18分.11.下列式子中,正确的是()A.(﹣2)2=8 B.(﹣3)2=﹣9 C.(﹣3)2﹣9 D.(﹣3)2=﹣612.下列方程中,解为x=2的是()A.3x+6=3 B.﹣x+6=2x C.4﹣2(x﹣1)=1 D.13.下列说法正确的有()①0是绝对值最小的数②绝对值等于本身的数是正数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.1个B.2个C.3个D.4个14.某某是“全国文明城市”,在文明城市创建时,X老师特制了一个正方体模型,其展开图如图所示,则正方体中标有“建”字所在的面和标有哪个字所在的面相对?()A.创B.城C.市D.明15.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30° B.40° C.50° D.30°或50°16.已知x=﹣2015,计算|x2+2014x+1|+|x2+2016x﹣1|的值为()A.4030 B.4031 C.4032 D.4033三、解答题:第17(1)(2)题每题4分,第18、19(1)(2)题每题6分,共26分.17.(1)计算:﹣5+(﹣2)2﹣(﹣3)(2)计算:﹣22×7﹣(﹣3)÷6﹣|﹣5|18.先化简,再求值:,其中x=2,y=.19.(1)解方程:2(y+6)=4﹣2(2y﹣1)(2)解方程:.四、解答题:第20题8分,第21题4分,第22题4分,第23题6分,第24题6分,共28分.20.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?21.图①是由大小相同的小正方体搭成的几何体.(1)请在图②中画出该几何体的俯视图和左视图;(2)如果在图①所示的几何体表面涂上红色,则在所有的小正方体中,有个正方体恰有两个面是红色,有个正方体恰有三个面是红色.22.如图,在∠AOB内有一点C.(1)过点C画CD垂直于射线OB,垂足为点D;(2)过点C画OB的平行线,交射线OA于点E;(3)过点E画射线OA的垂线,交CD的延长线于点H,试判断线段EH和线段CH的大小,即EHCH.(填<、>或=)23.某商场以每件120元的价格购进了某种品牌的衬衫600件,并以每件140元的价格销售了500件,由于天气原因,商场准备采取促销措施,问剩下的衬衫促销价格定为每件多少元时,销售完这批衬衫恰好盈利10800元?24.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°,求∠EOF的度数.五、操作与探究:本题8分.25.已知:点O为直线AB上一点,∠COD=90°,射线OE平分∠AOD.(1)如图①所示,若∠COE=20°,则∠BOD=°.(2)若将∠COD绕点O旋转至图②的位置,试判断∠BOD和∠COE的数量关系,并说明理由;(3)若将∠COD绕点O旋转至图③的位置,∠BOD和∠COE的数量关系是否发生变化?并请说明理由.(4)若将∠COD绕点O旋转至图④的位置,继续探究∠BOD和∠COE的数量关系,请直接写出∠BOD 和∠COE之间的数量关系:.某某省某某市2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、填空题:每小题2分,共20分.1.﹣3的绝对值是 3 ﹣.【考点】倒数;绝对值.【分析】求一个数的倒数,即用1除以这个数.【解答】解:﹣3的绝对值是3,﹣1.5的倒数是﹣,故答案为:3;﹣【点评】本题主要考查绝对值,倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.某天的最高温度是15℃,最低温度是﹣6℃,这一天温差是21 ℃.【考点】有理数的减法.【专题】应用题.【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【解答】解:这天最高温度与最低温度的温差为15﹣(﹣6)=21℃.故答案为:21【点评】本题主要考查有理数的减法法则,关键是根据减去一个数等于加上这个数的相反数解答.3.已知∠A=50°,则∠A的补角是130 度.【考点】余角和补角.【专题】计算题.【分析】根据补角定义计算.【解答】解:∠A的补角是:180°﹣∠A=180°﹣50°=130°.【点评】熟知补角定义即可解答.4.若单项式与单项式﹣5x m y3是同类项,则m﹣n的值为 2 .【考点】同类项.【分析】根据同类项的定义,由同类项的定义可先求得m和n的值,从而求出它们的和.【解答】解:与单项式﹣5x m y3是同类项,得m=2,n﹣1=3.解得n=4.m﹣n=4﹣2=2,故答案为:2.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了2016届中考的常考点.5.已知点C是线段AB的中点,线段BC=5,则线段AB的长为10 .【考点】两点间的距离.【分析】根据线段中点的性质进行计算即可.【解答】解:∵C是线段AB的中点,线段BC=5,∴AB=2BC=10.故答案为:10.【点评】本题考查的是两点间的距离的计算,掌握线段中点的定义和性质是解题的关键.6.如图所示,将等边三角形ABC分割成大小相同的9个小等边三角形,分别标上数字1,2,3,…,9,那么标有数字2的小等边三角形绕它下面的顶点O旋转180°,可以和标有数字7 的小等边三角形重合.【考点】旋转的性质.【分析】利用等边三角形的性质结合旋转角直接得出答案.【解答】解:由题意可得:标有数字2的小等边三角形绕它下面的顶点O旋转180°,可以和标有数字7的小等边三角形重合.故答案为:7.【点评】此题主要考查了旋转的性质,正确利用等边三角形的性质得出答案是解题关键.7.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【解答】解:根据题意得:3a++3(a﹣)=0,去括号得:3a++3a﹣=0,移项合并得:6a=1,解得:a=,故答案为:【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.对于有理数a、b,规定一种新运算:a*b=a﹣b﹣2,若a=2,b=﹣3,则a*b= 3 .【考点】有理数的混合运算.【专题】计算题;新定义.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据已知的新定义得:a*b=a﹣b﹣2,当a=2,b=﹣3时,原式=2+3﹣2=3,故答案为:3【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.9.有一列数,按一定规律排成1,﹣3,9,﹣27,81,﹣243,…,其中某三个相邻数的和是5103,则这三个数中最小的数是﹣2187 .【考点】规律型:数字的变化类.【专题】计算题;推理填空题.【分析】观察所给的数发现:它们的一般式为(﹣3)n﹣1,而其中某三个相邻数的和是5103,设第一个的数为x,由此即可得到关于x的方程,解方程即可求解.【解答】解:设第一个的数为x,依题意得x﹣3x+9x=5103,∴x=729,∴﹣3x=﹣2187.∴最小的数为﹣2187.故答案为:﹣2187.【点评】此题主要考查了数字的变化规律,解题的关键是首先认真观察所给数字,然后找出隐含的规律即可解决问题.10.若平面内有3个点,过其中任意两点画直线,最多可画3条直线;若平面内有4个点,过其中任意两点画直线,最多可画6条直线;若平面内有5个点,过其中任意两点画直线,最多可画10条直线;…;若平面内有n个点,过其中任意两点画直线,最多可画条直线.【考点】直线、射线、线段.【专题】规律型.【分析】根据直线两两相交且不交于同一点,可得答案.【解答】解:平面内有n个点,过其中两点画直线,最多画条.故答案为:.【点评】本题考查了直线,直线两两相交且不交于同一点,每条直线都有(n﹣1)个交点,n条直线有n(n﹣1)个交点,每个交点都重复了一次,交点的总个数除以2.二、选择题:下列各题中都给出了代号为A、B、C、D的四个答案,其中有且只有一个是正确的,把正确答案的代号填在()内,每小题3分,共18分.11.下列式子中,正确的是()A.(﹣2)2=8 B.(﹣3)2=﹣9 C.(﹣3)2﹣9 D.(﹣3)2=﹣6【考点】有理数的乘方.【分析】根据有理数的乘方计算解答即可.【解答】解:A、(﹣2)2=4,错误;B、(﹣3)2=9,错误;C、(﹣3)2=9,正确;D、(﹣3)2=9,错误;故选C.【点评】此题考查有理数的乘方问题,关键是根据有理数的乘方法则计算.12.下列方程中,解为x=2的是()A.3x+6=3 B.﹣x+6=2x C.4﹣2(x﹣1)=1 D.【考点】方程的解.【分析】把x=2代入方程判断即可.【解答】解:A、把x=2代入方程,12≠3,错误;B、把x=2代入方程,4=4,正确;C、把x=2代入方程,2≠1,错误;D、把x=2代入方程,3≠0,错误;故选B【点评】此题考查方程的解问题,关键是把x=2代入方程,利用等式两边是否相等判断.13.下列说法正确的有()①0是绝对值最小的数②绝对值等于本身的数是正数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.1个B.2个C.3个D.4个【考点】绝对值;相反数.【分析】分别根据相反数、绝对值的概念分别判断即可.【解答】解:①任何数的绝对值都是非负数,所以绝对值最小是0,所以①正确;②绝对值等于它本身的数还有0,所以②不正确;③数轴上原点两侧的数,只有到原点的距离相等的数才互为相反数,所以③不正确;④两个负数比较时,绝对值大的反而小,所以④不正确;所以正确的只有一个,故选:A.【点评】本题主要考查绝对值的有关概念,解题时注意0的特殊性.14.某某是“全国文明城市”,在文明城市创建时,X老师特制了一个正方体模型,其展开图如图所示,则正方体中标有“建”字所在的面和标有哪个字所在的面相对?()A.创B.城C.市D.明【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:“创”与“城”是相对面,“建”与“明”是相对面,“文”与“市”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,掌握正方体的相对的面之间一定相隔一个正方形是解题的关键.15.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30° B.40° C.50° D.30°或50°【考点】角平分线的定义.【分析】由于OA与∠BOC的位置关系不能确定,故应分OA在∠BOC内和在∠BOC外两种情况进行讨论.【解答】解:当OA与∠BOC的位置关系如图1所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠AOM=∠AOB=×80°=40°,∠BON=∠COB=×20°=10°,∴∠MON=∠BON﹣∠AOM=40°﹣10°=30°;当OA与∠BOC的位置关系如图2所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠BOM=∠AOB=×80°=40°,∠BON=∠BOC=×20°=10°,∴∠MON=∠BOM+∠BON=10°+40°=50°.故选:D.【点评】本题考查的是角平分线的定义,解答≜此题时要根据OA与∠BOC的位置关系分两种情况进行讨论,不要漏解.16.已知x=﹣2015,计算|x2+2014x+1|+|x2+2016x﹣1|的值为()A.4030 B.4031 C.4032 D.4033【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把x=﹣2015代入原式,利用绝对值的代数意义化简,计算即可得到结果.【解答】解:当x=﹣2015时,原式=|(﹣2015)2﹣2014×2015+1|+|(﹣2015)2﹣2015×2016﹣1|=20152﹣2014×2015+1﹣20152+2015×2016+1=2015×+2=4030+2=4032.故选C【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.三、解答题:第17(1)(2)题每题4分,第18、19(1)(2)题每题6分,共26分.17.(1)计算:﹣5+(﹣2)2﹣(﹣3)(2)计算:﹣22×7﹣(﹣3)÷6﹣|﹣5|【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算加减运算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣5+4+3=﹣5+7=2;(2)原式=﹣4×7+﹣5=﹣28+﹣5=﹣32.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:,其中x=2,y=.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=2,y=时,原式=﹣6+=﹣5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(1)解方程:2(y+6)=4﹣2(2y﹣1)(2)解方程:.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2y+12=4﹣4y+2,移项合并得:6y=﹣6,解得:y=﹣1;(2)去分母得:2(x+1)﹣3(2﹣3x)=12,去括号得:2x+2﹣6+9x=12,移项合并得:11x=16,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.四、解答题:第20题8分,第21题4分,第22题4分,第23题6分,第24题6分,共28分.20.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?【考点】一元一次方程的应用.【分析】(1)设出发x小时后两车相遇,根据题意列出方程解答即可.(2)设出发x小时后两车相距80km,分两种情况列出方程解答.【解答】解:(1)设出发x小时后两车相遇,可得:80x+120x=800,解得:x=4,答:设出发4小时后两车相遇;(2)设出发x小时后后两车相距80km,可得:①80x+120x+80=800,解得:x=3.6,②80x+120x﹣80=800解得:x=4.4,答:设出发3.6或4.4小时后两车相距80km.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.图①是由大小相同的小正方体搭成的几何体.(1)请在图②中画出该几何体的俯视图和左视图;(2)如果在图①所示的几何体表面涂上红色,则在所有的小正方体中,有 1 个正方体恰有两个面是红色,有 2 个正方体恰有三个面是红色.【考点】作图-三视图.【分析】(1)由已知条件可知,俯视图有2列,每列小正方形数目分别为3,2;左视图有3列,每列小正方形数目分别为3,2,1.据此可画出图形;(2)有2个面是黄色的应该是第一列正方体中最底层中间那个;有3个面是黄色的应是第一列最底层最后面那个和第一列第二层最后面的那个,依此即可求解.【解答】解:(1)如图所示:(2)由分析可知:如果在图①所示的几何体表面涂上红色,则在所有的小正方体中,有1个正方体恰有两个面是红色,有2个正方体恰有三个面是红色.故答案为:1,2.【点评】本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.注意涂色面积指组成几何体的外表面积.22.如图,在∠AOB内有一点C.(1)过点C画CD垂直于射线OB,垂足为点D;(2)过点C画OB的平行线,交射线OA于点E;(3)过点E画射线OA的垂线,交CD的延长线于点H,试判断线段EH和线段CH的大小,即EH >CH.(填<、>或=)【考点】作图—复杂作图.【分析】(1)利用直角三角板,一条边与BO重合,沿OB所在直线平移,使另一条直角边过C,再画直线即可;(2)根据过直线外一点做已知直线平行线的方法过点C画OB的平行线即可;(3)利用直角三角板,一条边与AO重合,沿OA所在直线平移,使另一条直角边过E,再画直线即可;根据垂线段最短可得EH>CH.【解答】解:(1)(2)如图所示:;(3)如图所示:EH>CH.【点评】此题主要考查了复杂作图,以及垂线段的性质,关键是掌握过直线外一点作已知直线平行线和垂线的方法.23.某商场以每件120元的价格购进了某种品牌的衬衫600件,并以每件140元的价格销售了500件,由于天气原因,商场准备采取促销措施,问剩下的衬衫促销价格定为每件多少元时,销售完这批衬衫恰好盈利10800元?【考点】一元一次方程的应用.【分析】分别表示出140元时的利润以及降价后的利润,再利用销量得出利润,进而得出等式求出答案.【解答】解:设剩下的衬衫促销价格定为每件x元时,销售完这批衬衫恰好盈利10800元,根据题意可得:(140﹣120)×500+(x﹣120)×100=10800,解得:x=128.答:剩下的衬衫促销价格定为每件128元时,销售完这批衬衫恰好盈利10800元.【点评】此题主要考查了一元一次方程的应用,根据题意分别表示出降价前后的利润是解题关键.24.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°,求∠EOF的度数.【考点】对顶角、邻补角;角平分线的定义.【分析】根据对顶角的性质和角平分线的定义求出∠BOE,根据图形求出∠BOF的度数,计算即可.【解答】解:∠BOD=∠AOC=74°,∵OE平分∠BOD,∴∠BOE=∠BOD=37°,∠BOF=∠DOF﹣∠BOD=16°,∴∠EOF=∠BOE+∠BOF=53°.【点评】本题考查的是对顶角、邻补角的概念和性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.五、操作与探究:本题8分.25.已知:点O为直线AB上一点,∠COD=90°,射线OE平分∠AOD.(1)如图①所示,若∠COE=20°,则∠BOD=40 °.(2)若将∠COD绕点O旋转至图②的位置,试判断∠BOD和∠COE的数量关系,并说明理由;(3)若将∠COD绕点O旋转至图③的位置,∠BOD和∠COE的数量关系是否发生变化?并请说明理由.(4)若将∠COD绕点O旋转至图④的位置,继续探究∠BOD和∠COE的数量关系,请直接写出∠BOD 和∠COE之间的数量关系:∠BOD+2∠COE=360°.【考点】角的计算;角平分线的定义;余角和补角;角的大小比较.【专题】推理填空题;开放型;线段、角、相交线与平行线.【分析】(1)由互余得∠DOE度数,进而由角平分线得到∠AOE度数,根据∠AOC=∠AOE﹣∠COE、∠BOD=180°﹣∠AOC﹣∠COD可得∠BOD度数;(2)由互余及角平分线得∠DOE=90°﹣∠COE=∠AOE,∠AOC=∠AOE﹣∠COE=90°﹣2∠COE,最后根据∠BOD=180°﹣∠AOC﹣∠COD可得;(3)由互余得∠DOE=90°﹣∠COE,由角平分线得∠AOD=2∠DOE=180°﹣2∠COE,最后根据∠BOD=180°﹣∠AOC﹣∠COD可得;(4)由互余得∠DOE=∠COE﹣90°,由角平分线得∠AOD=2∠DOE=2∠COE﹣180°,最后根据∠BOD=180°﹣∠AOD可得;【解答】解:(1)∠EOD=∠COD﹣∠COE=90°﹣20°=70°,∵OE平分∠AOD,∴∠AOD=2∠EOD=2×70°=140°,∴∠BOD=180°﹣∠AOD=180°﹣140°=40°.(2)∠BOD=2∠COE.理由如下:∵∠COD=90°,∴∠DOE=90°﹣∠COE,∵OE平分∠AOD,∴∠AOE=∠DOE=90°﹣∠COE,∴∠AOC=∠AOE﹣∠COE=90°﹣2∠COE,∵A、O、B在同一直线上,∴∠BOD=180°﹣∠AOC﹣∠COD=180°﹣90°﹣(90°﹣2∠COE)=2∠COE,即:∠BOD=2∠COE.(3)∠BOD=2∠COE,理由如下;∵OE平分∠AOD,∴∠AOD=2∠EOD,∵∠BOD+∠AOD=180°,∴∠BOD+2∠EOD=180°.∵∠COD=90°,∴∠COE+∠EOD=90°,∴2∠COE+2∠EOD=180°,∴∠BOD=2∠COE;(4)∵∠COD=90°,∴∠DOE=∠COE﹣90°,又∵OE平分∠AOD,∴∠AOD=2∠DOE=2∠COE﹣180°,∴∠BOD=180°﹣∠AOD=180°﹣2∠COE+180°=360°﹣2∠COE,即:∠BOD+2∠COE=180°.故答案为:(1)40°,(4)∠BOD+2∠COE=360°.【点评】本题主要考查利用互余、互补及角平分线进行角的计算,求∠BOD时可逆向推理得到与∠COE 间关系,灵活运用以上三点是关键.。
2015-2016学年江苏省苏州市太仓市七年级上学期期末数学试卷(解析版)
2. (3 分)下列各数中,比﹣2.1 小的数是( A.﹣2 B.2.1 C.﹣2.2 D.﹣
3. (3 分)月球的半径约为 1738000m,1738000 这个数用科学记数法可表示为 ( )
A.1.738×106 B.1.738×107 C.0.1738×107 D.17.38×105 4. (3 分)下列各式中,正确的是( A.3a+b=3ab B.3a2+2a2=5a4 )
二、填空题(本大题共 8 小题,每小题 3 分,共 24 分) 11 . ( 3 分 ) 小 慧 家 的 冰 箱 冷 冻 室 的 温 度 为 ﹣ 3℃ , 调 高 了 2 ℃ 后 的 温 度 是 ℃.
12. (3 分)某校在上午 9:00 开展“大课间”活动,上午 9:00 这一时刻钟面上 分针与时针所夹的角等于 度. .
第 2 页(共 18 页)
17. (3 分) 如图, OA⊥OB, ∠BOC=28°, OD 平分∠AOC, 则∠BOD 的度数是
ቤተ መጻሕፍቲ ባይዱ
18. (3 分)已知 a﹣b=1,b﹣c=2,则(a﹣b)2﹣2(a﹣c)+1 的值为
.
三、解答题(本大题共 10 小题,共 76 分,应写出必要的计算程、推理步骤或 文字说明) 19. (8 分)计算: (1)|﹣6|﹣2× +(﹣3) ;
(2)﹣12×2+(﹣2)3÷4﹣(﹣3) . 20. (16 分)解方程和不等式: (1)4x﹣3=2x+5 (2)4x﹣3>2x+5 (3) (4) ﹣ ﹣ =1 ≥1.
21. (6 分)先化简,后求值: 3(2x2y﹣xy2)﹣(5x2y﹣4xy2) ,其中 x、y 满足|x﹣2|+(x+y)2=0. 22. (6 分)画图与探索: (画图完成后需用 2B 铅笔描深线条) (1)如图,按下列要求画图: ①取线段 AB 的中点 C; ②过点 C 画线段 AB 的垂线 CD; ③在垂线 CD 上取一点 P,使 PC=3cm; ④连接 PA、PB. (2)通过度量猜想 PA、PB 的数量关系是 .
江苏省苏州市高新区2015-2016学年七年级上学期期末考试数学试题解析(解析版)
一、选择题 (本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置.......上) 1.-3的相反数是( )A .-3B .3C .-13D .13【答案】B考点:相反数的定义2.下列四个数中,在-2到0之间的数是( )A .3B .1C .-3D .-1【答案】D 【解析】试题分析:零大于一切负数,小于一切正数,正数大于负数;当两个负数比较大小时,绝对值越大则说明原数越小;当两个正数比较大小时,绝对值越大则说明原数就越大. 考点:数的大小比较 3.下列计算正确的是 ( )A .3a +4b =7abB .7a -3a =4C .3a +a =3a 2D .3a 2b -4a 2b =-a 2b【答案】D 【解析】试题分析:A 和C 两个选项不是同类项,无法进行计算;B 、原式=(7-3)a=4a ;D 、计算正确. 考点:单项式求和4.下列图形中,能折叠成正方体的是( )【答案】A 【解析】试题分析:根据正方体的展开图的性质可得:A 选项为正方体的展开图. 考点:正方体的展开图5.已知a ,b 两数在数轴上的位置如图所示,则化简代数式12a b a b +--++的结果是( )A .1B .2a -3C .2b +3D .-1【答案】C 【解析】试题分析:根据数轴可得:a+b >0,a -1>0,b+2>0,则原式=a+b -a+1+b+2=2b+3. 考点:(1)、数轴;(2)、绝对值的化简.6.下列说法中:①棱柱的上、下底面的形状相同; ②若AB=BC ,则点B 为线段AC 的中点;③相等的两个角一定是对顶角; ④不相交的两条直线叫做平行线; ⑤直线外一点与直线上各点连接的所有线段中,垂线段最短。
正确的有( ) A .1个B .2个C .3个D .4个【答案】B7.如果一个角α的度数为13°14',那么关于x 的方程x x 31802-︒=-α的解为( ) A .76°46' B .76°86' C .86°56' D .166°46'【答案】A 【解析】试题分析:1°=60′,根据题意可得:2x=180°-2α,解得:x=90°-α=90°-13°14′=76°46′. 考点:角度的计算-=+,那么对于结论(1)a一定不是负数; (2)b可能是负数.其中( ) 8.a、b是有理数,如果a b a bA.只有(1)正确B.只有(2)正确C.(1),(2)都正确 D.(1),(2)都不正确【答案】A【解析】试题分析:根据绝对值的性质可得:a≥0,b≤0,则a一定不是负数,b一定不是正数.考点:绝对值的性质二、填空题 (本大题共10小题,每小题2分,共20分.请把答案直接填写在答卷纸相应位......置.上9.与原点的距离为2.5个单位的点所表示的有理数是▲.【答案】±2.5【解析】试题分析:互为相反数的两个数位于原点两侧且到原点的距离相等,则到原点距离2.5个单位长度的点所表示的有理数为±2.5.考点:绝对值的性质10.若代数式x-y的值为3,则代数式2x-3-2y的值是▲.【答案】3【解析】试题分析:将原式化简可得:原式=2(x-y)-3=2×3-3=3.考点:整体思想求解11.五个完全相同的小长方形拼成如图所示的大长方形,大长方形的周长是32 cm,则小长方形的面积是▲cm2.【答案】12考点:二元一次方程组的应用12.如图,C为线段AB上一点,AC=5,CB=3,若点E、F分别是线段AC、CB的中点,则线段EF的长度为▲.【答案】4【解析】试题分析:根据中点的性质可得:EC=12AC=2.5,CF=12BC=1.5,则EF=EC+CF=2.5+1.5=4.考点:线段长度的计算13.已知关于x的方程kx=7-x有正整数解,则整数k的值为▲.【答案】0,6【解析】试题分析:根据一元一次方程的解法可得:x=71k+,因为x为正整数,k为整数,则k=0或6.考点:一元一次方程14.已知∠AOB=80o,以O为顶点,OB为一边作∠BOC=20o,则∠AOC的度数为▲.【答案】60°或100°【解析】试题分析:本题需要分两种情况进行讨论计算,当OB在角内部时,∠AOC=80°-20°=60°;当OB在角外部时,则∠AOC=80°+20°=100°.考点:角度的计算15.上右图是2016年1月份的日历,在日历上任意圈出一个竖列..上相邻的3个数.如果被圈出的三个数的和为54,则这三个数中最大的一个数表示:2016年1月▲日.【答案】25【解析】试题分析:设最大的一个数为x,则其他的两个数为(x-7)和(x-14),则根据题意得:x+x-7+x-14=54,解得:x=25,即最大的一个数表示2016年1月25日. 考点:一元一次方程的应用16.直线AB 外有C 、D 两个点,由点A 、B 、C 、D 可确定的直线条数是 ▲ . 【答案】6或4 【解析】试题分析:本题需要分两种情况来进行讨论,当A 、C 、D 或B 、C 、D 任意三点都不共线时有6条直线;当A 、C 、D 或B 、C 、D 有任意三点共线时有4条直线. 考点:线段的条数17.有m 辆校车及n 个学生,若每辆校车乘坐40名学生,则还有10名学生不能上车;若每辆校车乘坐43名学生,则只有1名学生不能上车.现有下列四个方程:①40m +10=43m -1;②1014043n n ++=;③1014043n n --=;④40m +10=43m +1.其中正确的是 ▲ (请填写相应的序号) 【答案】③④ 【解析】试题分析:设有m 辆校车,则根据题意可得: 40m+10=43m+1;设有n 名学生,则根据题意可得:1014043n n --=. 考点:方程的应用18.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…按这样的规律下去,第7幅图中有 ▲ 个正方形.【答案】140 【解析】试题分析:第一幅有1个正方形,第二幅有1+4=5个正方形,第三幅有1+4+9=14个正方形;第四幅有1+4+9+16=30个正方形,根据题意可得:第7幅有1+4+9+16+25+36+49=140个正方形. 考点:规律题第1幅 第2幅 第3幅 第4幅三、解答题 (本大题共10小题,共64分.请在答卷纸指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(本题满分6分,每小题3分) (1)313()(24);468-+-⨯-(2)(-1)3×(-5)÷[(-3)2+2×(-5)].【答案】(1)、23;(2)、-5.考点:有理数的计算.20.(本题满分4分) 先化简,再求值:2m 2-4m +1-2(m 2+2m -21),其中m =-1.【答案】-8m+2;10. 【解析】试题分析:首先根据去括号的法则将括号去掉,然后再进行合并同类项化简,最后将m 的值代入化简后的式子进行计算,得出答案.试题解析:22m -4m +1-2(2m +2m -12)=22m -4m +1-22m -4m+1=-8m +2;当m =-1时,原式=8+2=10. 考点:化简求值21.(本题满分9分,每小题3分) 解方程(组):(1)4-3x =6-5x ;(2)32121x x -=-+;(3)⎩⎨⎧-=+=-1373y x y x .【答案】(1)、x=1;(2)、x=75;(3)、21x y ì=ïí=-ïî【解析】试题分析:(1)、进行移项合并同类项,最后将系数化为1求出方程的解;(2)、首先进行去分母,然后进行去括号、移项合并同类项,最后将系数化为1求出方程的解;(3)、首先将y 的系数化成互为相反数,然后利用加减消元法求出方程组的解. 试题解析:(1)、4-3x =6-5x移项,得 5x -3x =6-4. 合并同类项,得 2x =2. 系数化为1,得 x =1 (2)、x +12-1=2-x 3.去分母,得 3(x +1)-6=2(2-x). 去括号,得 3x +3-6=4-2x . 移项、合并同类项,得 5x =7. 系数化为1,得x =75.(3)、①×3+②,得 9x +x =20 x =2 把x =2代入①中,得y =-1 ∴方程组的解是⎩⎨⎧-==.1;2y x考点:(1)、解一元一次方程;(2)、解二元一次方程组.22.(本题满分5分) 某班同学分组参加迎新年活动,原来每组8人,后来重新编组,每组6人,这样比原来增加2组.这个班共有多少人? 【答案】48人考点:一元一次方程的应用.23.(本题满分6分) (1)由大小相同的小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要 ▲ 个小立方块,最多要 ▲ 个小立方块. 【答案】(1)、答案见解析;(2)、5;7. 【解析】试题分析:(1)、根据三视图的画法画出三视图;(2)、根据立体图形的俯视图和左视图推导出小正方体的个数.试题解析:(1)如图所示: (2)最少5块;最多7块;俯视图左视图考点:三视图24.(本题满分6分) 随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“-”,刚好50km 的记为“0”.(1)、请你用所学的数学知识,估计小明家一个月(按30天计)要行驶多少千米?(2)、若每行驶100km 需用汽油8L ,汽油每升4.74元,试求小明家一年(按12个月计)的汽油费用是多少元? 【答案】(1)、1500千米;(2)、6825.6元. 【解析】试题分析:(1)、首先求出前七天的平均值,然后求出一个月的行驶千米数;(2)、首先求出一个月的汽油费,然后求出一年的费用.试题解析:(1)、50+(-8+-11-14+0-16+41+8)÷7=50(千米) 50×30=1500(千米) (2)、1500×1008×4.74×12=6825.6元考点:有理数的计算25.(本题满分6分) 如果方程22834+-=--x x 的解与方程126)13(4-+=+-a x a x 的解相同,求式子a a 1-的值.【答案】-334【解析】试题分析:首先根据方程的解法求出第一个方程的解,然后将x 的值代入第二个方程,从而求出a 的值,最后将a 的值代入代数式求出代数式的值. 试题解析:解方程42832x x -+-=-可得:x=10 把x =10代入方程4x -(3a+1)=6x+2a -1得:40-3a -1=60+2a -1 解得:a=-4 ∴1a a-=334-俯视图 左视图考点:(1)、解一元一次方程;(2)、代数式求值.26.(本题满分6分) 如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,∠AOC =72°,∠DOF =90°. (1)写出图中任意一对互余的角;(2)求∠EOF 的度数.【答案】(1)、∠BOF 与∠BOD 或∠DOE 与∠EOF ;(2)、∠EOF=54°.考点:角度的计算27.(本题满分7分) 某车间共有75名工人生产A 、B 两种工件,已知一名工人每天可生产A 种工件15件或B 种工件20件,但要安装一台机械时,同时需A 种工件1件,B 种工件2件,才能配套.问车间如何分配工人生产,才能保证一天连续安装机械时,两种工件恰好配套? 【答案】30名工人生产A 种工件,45名工人生产B 种工件 【解析】试题分析:首先设分配x 名工人生产A 种工件,然后根据A 种工件数量的2倍等于B 种工件的数量列出方程进行求解,得出答案.试题解析:设分配x 名工人生产A 种工件,根据题意,得:2×15x=20(75-x) 解得:x =30 ∴75-x=75-30=45答:分配30名工人生产A 种工件,45名工人生产B 种工件. 考点:一元一次方程的应用E BFCAO28.(本题满分9分) 如图1,已知数轴上有三点A、B、C,AB=60,点A对应的数是40.(1)若7:4ACBC,求点C到原点的距离;:=(2)如图2,在(1)的条件下,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度2倍少5个单位长度/秒.经过5秒,点P、Q之间的距离与点Q、R之间的距离相等,求动点Q的速度;(3)如图3,在(1)的条件下,O表示原点,动点P、T分别从C、O两点同时出发向左运动,同时动点R从点A出发向右运动,点P、T、R的速度分别为5个单位长度/秒、1个单位长度/秒、2个单位长度/秒,在运动过程中,如果点M为线段PT的中点,点N为线段OR的中点.请问MNPT-的值是否会发生变化?若不变,请求出相应的数值;若变化,请说明理由.【答案】(1)、100;(2)、7个单位长度/秒;(3)、不会发生改变,定值为30.【解析】试题分析:(1)、首先根据比值得出AC的长度,然后根据数轴的性质得出点C所表示的数,从而得到距离;(2)、设R的速度为每秒x个单位,从而分别得出R、P、Q所对应的数,求出PQ和QR的长度,然后根据题意列出方程得出答案;(3)、首先设运动时间为t秒,求出点P、T、R、M、N所对应的数,求出PT和MN的长度,然后得出PT-MN的值.试题解析:(1)、根据题意可得:AC=140,则点C所表示的数为40-140=-100∴点C到原点的距离为100;(2)、设R的速度为每秒x个单位,则R对应的数为405xx+,-+, Q对应的数为1015-,P对应的数为10015xPQ=5115-=-或11551525x xx x-=-x-∵PQ=QR ∴51151525x-或1155x- QR=1525解得x=-9(不合题意,故舍去)或x=7 ∴动点Q的速度是7个单位长度/秒.(3)、设运动时间为t秒,P对应的数为1005t++, PT=1004t--,T对应的数为t-,R对应的数为402tM对应的数为503t+∴PT-MN=30--,N对应的数为20t+, MN=704t∴PT MN-的值不会发生变化,是30.考点:(1)、数轴;(2)、分类讨论思想;(3)、动点问题.高考一轮复习:。
2016-2017年七年级上学期期末考试数学试题及答案
2015-2016学年第一学期七年级期末测试数学试题(本试题共4页,满分为120分,考试时间为90分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的绝对值是()1A.6B.﹣6C.±6D.62.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×1023.计算23-的结果是()A.9B.9-C.6D.6-4.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A.数B.学C.活D.的5.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是( )A .32523x x x =+B .1222=-b a b aC .0=--ab ab D.022=+-xy xy7.如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )A .35°B .45°C .55°D .65°8. 下列说法中错误的是( )A .y x 232-的系数是32- B .0是单项式 C .xy 32的次数是1 D .x -是一次单项式 9. 方程x =+-32▲,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是( ) A .2 B .3 C .4 D .610. 如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M,N 分别为AB ,BC 的中点,那么M,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x ﹣1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x ﹣1)=1312.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m 、n 的值分别为( )7题图A .4,3B .3,3C .3,4D .4,413.钟表在8:25时,时针与分针的夹角是( )度.A .101.5B .102.5C .120D .12514.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为( )A .88元B .98元C .108元D .118元15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( )1+8=? 1+8+16=? 1+8+16+24=?A.(2n+1)2B.(2n-1)2C.(n+2)2D.n 2二、填空题(本大题共6个小题,每小题3分,共18分.只要求填写最后结果,把答案填在题中的横线上.)16.比较大小:30.15° 30°15′(用>、=、<填空)17.若代数式123--x a 和243+x a 是同类项,则x=_______. 18.若()521||=--m x m 是一元一次方程,则m= .19.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°, 则∠AOD= °.20.已知3x+1和2x+4互为相反数,则x= .21.小明与小刚规定了一种新运算△:,则a△b = b a 23-.小明计算出2△5= -4,请你帮小刚计算2△(-5)=________________.19题图三、解答题:(本大题共7小题,共57分.解答要写出必要的文字说明、证明过程或演算步骤。
江苏省苏州市立达中学2015-2016学年度七年级数学上学期期末考试试题(含解析) 苏科版
江苏省苏州市立达中学2015-2016学年度七年级数学上学期期末试题一、选择题(共10小题,每小题2分,共20分)1.﹣5的相反数是()A.5 B.﹣5 C. D.2.a、b两数在数轴上位置如图所示,将a、b、﹣a、﹣b用“<”连接,其中正确的是()A.a<﹣a<b<﹣b B.﹣b<a<﹣a<b C.﹣a<b<﹣b<a D.﹣b<a<b<﹣a3.已知|x|=5,|y|=2,且x<y,则x+y的值()A.7 B.3 C.﹣3或3 D.﹣3或﹣74.多项式﹣x|m|+(m﹣4)x+7是关于x的四次三项式,则m的值是()A.4 B.﹣2 C.﹣4 D.4或﹣45.已知代数式﹣5a m﹣1b6和是同类项,则m﹣n的值是()A.1 B.﹣1 C.﹣2 D.﹣36.苏州市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽一棵,则树苗正好用完.设原有树苗a棵,则根据题意列出方程正确的是()A.5(a+21﹣1)=6(a﹣1)B.5(a+21)=6(a﹣1)C.5(a+21)﹣1=6a D.5(a+21)=6a 7.如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是()A.这是一个棱锥 B.这个几何体有4个面C.这个几何体有5个顶点 D.这个几何体有8条棱8.下列图形中,不是正方体的展开图的是()A. B. C. D.9.如图所示,将一块直角三角板的直角顶点O放在直尺的一边CD上,如果∠AOC=28°,那么∠BOD 等于()A.72° B.62° C.52° D.28°10.按下面的程序计算:当输入x=100时,输出结果是299;当输入x=50时,输出结果是446;如果输入x的值是正整数,输出结果是257,那么满足条件的x的值最多有()A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每空2分,共16分)11.比较大小:.12.一粒纽扣式电池能够污染60升水,某市每年报废的纽扣式电池有近1200 000粒,如果废旧电池不回收,一年报废的电池所污染的水约有升(用科学记数法表示)13.已知代数式x﹣2y的值是﹣5,则代数式3﹣x+2y的值是.14.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k= .15.已知3是关于x的方程4x﹣3a=1的解,则a= .16.某种商品的进价为100元,出售标价为150元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最多可打折.17.已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON,则∠MON=.18.如图,两条直线相交只有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个交点,五条直线相交最多有10个交点,六条直线相交最多有个交点,二十条直线相交最多有个交点.三、解答题.(本大题共10小题,共64分)19.计算:(1)﹣1.5+1.4﹣(﹣3.6)﹣1.4+(﹣5.2)(2)﹣22×7﹣(﹣3)×6﹣5÷(﹣).20.解方程:(1)4﹣x=3(2﹣x);(2).21.先化简,再求值:2(3a2b﹣ab2)﹣(ab2+3a2b),其中a=2,b=﹣1.22.关于x的方程2(x﹣1)=3m﹣1与3x+2=﹣2(m+1)的解互为相反数,求m的值.23.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG AH.(填写下列符号>,<,≤,≥之一)24.如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的正视图和俯视图不变,那么最多可以再添加个小正方体.25.(1)如图所示,点D、E分别为线段CB、AC的中点,若ED=6,求线段AB的长度.(2)若点C在线段AB的延长线上,点D、E分别为线段CB、AC的中点,DE=6,画出图形并求AB的长度.26.某城市按以下规定收取每月的水费:用水量如果不超过6吨,按每吨1.2元收费;如果超过6吨,未超过的部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?27.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是、、(把符合条件的角都填出来)(2)图中除直角相等外,还有相等的角,请写出三对:①;②;③.(3)①如果∠AOD=160°.那么根据可得∠BOC=度.②如果∠AOD=4∠EOF,求∠EOF的度数.28.已知直线l上有一点O,点A、B同时从O出发,在直线l上分别向左、向右作匀速运动,且A、B的速度比为1:2,设运动时间为ts.(1)当t=2s时,AB=12cm.此时,①在直线l上画出A、B两点运动2秒时的位置,并回答点A运动的速度是cm/s;点B运动的速度是cm/s.②若点P为直线l上一点,且PA﹣PB=OP,求的值;(2)在(1)的条件下,若A、B同时按原速向左运动,再经过几秒,OA=2OB.江苏省苏州市立达中学2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,共20分)1.﹣5的相反数是()A.5 B.﹣5 C. D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣5的相反数是5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.a、b两数在数轴上位置如图所示,将a、b、﹣a、﹣b用“<”连接,其中正确的是()A.a<﹣a<b<﹣b B.﹣b<a<﹣a<b C.﹣a<b<﹣b<a D.﹣b<a<b<﹣a【考点】有理数大小比较;数轴.【分析】根据a、b在数轴上的位置,可对a、b赋值,然后即可用“<”连接.【解答】解:令a=﹣0.8,b=1.5,则﹣a=0.8,﹣b=﹣1.5,则可得:﹣b<a<﹣a<b.故选B.【点评】本题考查了有理数的大小比较及数轴的知识,同学们注意赋值法的运用,这可以给我们解题带来很大的方便.3.已知|x|=5,|y|=2,且x<y,则x+y的值()A.7 B.3 C.﹣3或3 D.﹣3或﹣7【考点】有理数的加法;绝对值.【分析】由已知|x|=5,|y|=2,且x<y,可得出x=﹣5,y=±2,两数相加即可求得结论.【解答】解:∵|x|=5,|y|=2,且x<y,∴x=﹣5,y=﹣2,或者x=﹣5,y=2,x+y=﹣5+(﹣2)=﹣7,或者x+y=﹣5+2=﹣3.故选D.【点评】本题考查了有理数的加法以及去绝对值,解题的关键是由“|x|=5,|y|=2,且x<y”,得出x=﹣5,y=±2.4.多项式﹣x|m|+(m﹣4)x+7是关于x的四次三项式,则m的值是()A.4 B.﹣2 C.﹣4 D.4或﹣4【考点】多项式.【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.【解答】解:∵多项式﹣x|m|(m﹣4)x+7是关于x的四次三项式,∴|m|=4,﹣(m﹣4)≠0,∴m=﹣4.故选:C.【点评】本题考查了与多项式有关的概念,解题的关键是理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.5.已知代数式﹣5a m﹣1b6和是同类项,则m﹣n的值是()A.1 B.﹣1 C.﹣2 D.﹣3【考点】同类项.【分析】本题考查同类项的定义,由同类项的定义可先求得m和n的值,从而求出代数式的值.【解答】解:根据题意得:,解得:,则m﹣n=2﹣3=﹣1.故选B.【点评】本题考查了同类项定义,定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了2016届中考的常考点.6.苏州市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽一棵,则树苗正好用完.设原有树苗a棵,则根据题意列出方程正确的是()A.5(a+21﹣1)=6(a﹣1)B.5(a+21)=6(a﹣1)C.5(a+21)﹣1=6a D.5(a+21)=6a 【考点】由实际问题抽象出一元一次方程.【分析】设原有树苗x棵,根据首、尾两端均栽上树,每间隔5米栽一棵,则缺少21棵,可知这一段公路长为5(a+21﹣1);若每隔6米栽1棵,则树苗正好用完,可知这一段公路长又可以表示为6(a﹣1),根据公路的长度不变列出方程即可.【解答】解:设原有树苗x棵,由题意得:5(a+21﹣1)=6(a﹣1),故选A.【点评】考查了由实际问题抽象出一元一次方程,本题是根据公路的长度不变列出的方程.“表示同一个量的不同式子相等”是列方程解应用题中的一个基本相等关系,也是列方程的一种基本方法.7.如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是()A.这是一个棱锥 B.这个几何体有4个面C.这个几何体有5个顶点 D.这个几何体有8条棱【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为锥体,根据俯视图是正方形可判断出此几何体为四棱锥.【解答】解:∵主视图和左视图都是三角形,∴此几何体为锥体,∵俯视图是一个正方形,∴此几何体是一个四棱锥,四棱锥有5个面,5个顶点,8条棱.故错误的是B.故选B.【点评】考查了由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.8.下列图形中,不是正方体的展开图的是()A. B. C. D.【考点】几何体的展开图.【专题】压轴题.【分析】利用正方体及其表面展开图的特点解题.【解答】解:A、B、C经过折叠均能围成正方体,D折叠后下边没有面,不能折成正方体,故选D.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.9.如图所示,将一块直角三角板的直角顶点O放在直尺的一边CD上,如果∠AOC=28°,那么∠BOD 等于()A.72° B.62° C.52° D.28°【考点】余角和补角.【分析】根据平角的度数为180°即可得出∠BOD的度数.【解答】解:由题意得,∠AOC+∠AOB+∠BOD=180°,解得:∠BOD=62°.故选B.【点评】本题考查了余角的知识,仔细审图,得出∠AOC与∠BOD互余是解答本题的关键.10.按下面的程序计算:当输入x=100时,输出结果是299;当输入x=50时,输出结果是446;如果输入x的值是正整数,输出结果是257,那么满足条件的x的值最多有()A.1个B.2个C.3个D.4个【考点】一元一次方程的应用;代数式求值.【专题】图表型.【分析】利用逆向思维来做,分析第一个数就是直接输出257,可得方程3x﹣1=257,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【解答】解:第一个数就是直接输出其结果的:3x﹣1=257,解得:x=86,第二个数是(3x﹣1)×3﹣1=257解得:x=29;第三个数是:3[3(3x﹣1)﹣1]﹣1=257,解得:x=10,第四个数是3{3[3(3x﹣1)﹣1]﹣1}﹣1=257,解得:x=(不合题意舍去);第五个数是3(81x﹣40)﹣1=257,解得:x=(不合题意舍去);故满足条件所有x的值是86、29或10.故选C.【点评】本题考查了列一元一次方程解实际问题的运用.解答本题时注意理解题意与逆向思维的应用是解题的关键.二、填空题(本大题共8小题,每空2分,共16分)11.比较大小:>.【考点】有理数大小比较.【专题】计算题.【分析】先计算|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数反而越小即可得到它们的关系关系.【解答】解:∵|﹣|==,|﹣|==,而<,∴﹣>﹣.故答案为:>.【点评】本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.12.一粒纽扣式电池能够污染60升水,某市每年报废的纽扣式电池有近1200 000粒,如果废旧电池不回收,一年报废的电池所污染的水约有7.2×107升(用科学记数法表示)【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将60×1 200 000用科学记数法表示为7.2×107.故答案为:7.2×107.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.已知代数式x﹣2y的值是﹣5,则代数式3﹣x+2y的值是8 .【考点】代数式求值.【专题】计算题;实数.【分析】原式后两项提取﹣1变形后,将x﹣2y的值代入计算即可求出值.【解答】解:∵x﹣2y=﹣5,∴原式=3﹣(x﹣2y)=3+5=8.故答案为:8.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.14.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k= 2 .【考点】多项式.【专题】方程思想.【分析】先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程即可求出k.【解答】解:原式=x2+(﹣3k+6)xy﹣3y2﹣8,因为不含xy项,故﹣3k+6=0,解得:k=2.故答案为:2.【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.15.已知3是关于x的方程4x﹣3a=1的解,则a= .【考点】一元一次方程的解.【分析】把x=3代入方程,即可得出一个关于a的方程,求出方程的解即可.【解答】解:把x=3代入方程4x﹣3a=1得:12﹣3a=1,解得:a=,故答案为:.【点评】本题考查了解一元一次方程,一元一次方程的解的应用,能得出一个关于a的一元一次方程是解此题的关键.16.某种商品的进价为100元,出售标价为150元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最多可打八折.【考点】一元一次不等式的应用.【分析】设最多可以打x折,根据利润不低于20%,即可列出一元一次不等式150x﹣100≥100×20%,解不等式即可得出结论.【解答】解:设最多可以打x折,根据题意可得:150x﹣100≥100×20%,解得x≥0.8.所以最多可以打八折.故答案为:八.【点评】本题考查一元一次不等式的应用,解题的关键是根据最低利润列出不等式150x﹣100≥100×20%.17.已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON,则∠MON=40°或20°.【考点】角平分线的定义.【分析】分OC在∠AOB外部和内部两种情况,由OM、ON分别平分∠AOB、∠BOC可得∠BOM、∠BON 度数,在根据两种位置分别求之.【解答】解:①如图,当OC在∠AOB外部时,∵∠AOB=60°,OM平分∠AOB,∴∠BOM=∠AOB=30°,又∵∠BOC=20°,ON平分∠BOC,∴∠BON=∠BOC=10°,∴∠MON=∠BOM+∠BON=40°;②如图,当OC在∠AOB内部时,∵∠AOB=60°,OM平分∠AOB,∴∠BOM=∠AOB=30°,又∵∠BOC=20°,ON平分∠BOC,∴∠BON=∠BOC=10°,∴∠MON=∠BOM﹣∠BON=20°,故答案为:40°或20°.【点评】本题主要考查角平分线定义的运用能力,能考虑到OC在∠AOB外部和内部两种情况是关键.18.如图,两条直线相交只有1个交点,三条直线相交最多有3个交点,四条直线相交最多有6个交点,五条直线相交最多有10个交点,六条直线相交最多有15 个交点,二十条直线相交最多有190 个交点.【考点】规律型:图形的变化类.【分析】根据题意,结合图形,发现:3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n﹣1)=n(n﹣1)个交点.【解答】解:6条直线两两相交,最多有n(n﹣1)=×6×5=15,20条直线两两相交,最多有n(n﹣1)=×20×19=190.故答案为:15,190.【点评】此题主要考察了图形的变化类问题,在相交线的基础上,着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.三、解答题.(本大题共10小题,共64分)19.计算:(1)﹣1.5+1.4﹣(﹣3.6)﹣1.4+(﹣5.2)(2)﹣22×7﹣(﹣3)×6﹣5÷(﹣).【考点】有理数的混合运算.【分析】(1)先去括号,再从左到右依次计算即可;(2)先算乘方,再算乘除,最后算加减即可.【解答】解:(1)原式=﹣1.5+1.4+3.6﹣1.4﹣5.2=﹣0.1+3.6﹣1.4﹣5.2=3.5﹣1.4﹣5.2=2.1﹣5.2=﹣3.1;(2)原式=﹣4×7+3×6﹣5×(﹣5)=﹣28+18+25=﹣10+25=15.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.20.解方程:(1)4﹣x=3(2﹣x);(2).【考点】解一元一次方程.【专题】计算题.【分析】(1)此题主要是去括号,移项,合并同类项.(2)方程两边每一项都要乘各分母的最小公倍数12,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.【解答】解:(1)4﹣x=6﹣3x,3x﹣x=6﹣4,2x=2,x=1;(2)去分母得:3(x+2)﹣2(2x﹣3)=12,去括号得:3x+6﹣4x+6=12,移项合并得:﹣x=0,系数化为1得:x=0.【点评】本题考查解一元一次方程的知识,题目难度不大,但是出错率很高,是失分率很高的一类题目,同学们要在按步骤解答的基础上更加细心的解答.21.先化简,再求值:2(3a2b﹣ab2)﹣(ab2+3a2b),其中a=2,b=﹣1.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=6a2b﹣2ab2﹣ab2﹣3a2b=3a2b﹣3ab2,当a=2,b=﹣1时,原式=﹣12﹣6=﹣18.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.关于x的方程2(x﹣1)=3m﹣1与3x+2=﹣2(m+1)的解互为相反数,求m的值.【考点】一元一次方程的解.【专题】计算题.【分析】根据一元一次方程的解法求出两方程的解,再根据互为相反数的和等于要0列方程,然后再解关于m的一元一次方程即可.【解答】解:由2(x﹣1)=3m﹣1,解得,x=,由3x+2=﹣2(m+1),解得,x=,∵两方程的解互为相反数,∴+=0,解得m=1.故答案为:m=1.【点评】本题考查了一元一次方程的解,以及一元一次方程的解法,分别表示出两个方程的解,再根据互为相反数的定义列出关于m的方程是解题的关键.23.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段AG 的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG <AH.(填写下列符号>,<,≤,≥之一)【考点】作图—基本作图;垂线段最短;点到直线的距离.【分析】(1)根据网格结构特点,过点C作长2宽1的长方形的对角线即可;(2)根据网格结构以及长方形的性质作出即可;(3)根据点到直线的距离的定义解答;(4)结合图形直接进行判断即可得解.【解答】解:(1)如图所示,直线CD即为所求作的直线AB的平行线;(2)如图所示:(3)线段AG的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG<AH.故答案为:AG;<.【点评】本题考查了基本作图,利用网格结构作垂线,平行线,点到直线的距离的定义,都是基础知识,需熟练掌握.24.如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的正视图和俯视图不变,那么最多可以再添加 2 个小正方体.【考点】作图-三视图.【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,1;左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,每列小正方数形数目分别为2,1,1;据此可画出图形.(2)可在第二层第1列第一行加一个,第三层第1列第一行加一个,共2个.【解答】解:(1)画图如下:(2)最多可以再添加2个小正方体.故答案为:2.【点评】本题考查几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.25.(1)如图所示,点D、E分别为线段CB、AC的中点,若ED=6,求线段AB的长度.(2)若点C在线段AB的延长线上,点D、E分别为线段CB、AC的中点,DE=6,画出图形并求AB的长度.【考点】两点间的距离.【分析】(1)根据图象得出AC=2CE,BC=2CD,即AB=AC+BC=2CE+2CD,进而求出即可;(2)根据已知画出图形,进而利用AB=2CE﹣2CD=2DE求出即可.【解答】解:(1)∵点D、E分别为线段CB、AC的中点,∴AC=2CE,BC=2CD,∴AB=AC+BC=2CE+2CD=2DE=2×6=12;(2)如图所示:∵点D、E分别为线段CB、AC的中点,∴AC=2CE,BC=2CD,∵AB=AC﹣BC,∴AB=2CE﹣2CD=2DE=2×6=12.【点评】此题主要考查了两点之间距离求法,根据题意画出正确图形是解题关键.26.某城市按以下规定收取每月的水费:用水量如果不超过6吨,按每吨1.2元收费;如果超过6吨,未超过的部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?【考点】一元一次方程的应用.【专题】应用题;经济问题;压轴题.【分析】水费平均为每吨1.4元大于1.2,说明本月用水超过了6吨,那么标准内的水费加上超出部分就是实际水费.根据这个等量关系列出方程求解.【解答】解:设该用户5月份用水x吨,则1.2×6+(x﹣6)×2=1.4x,7.2+2x﹣12=1.4x,0.6x=4.8,x=8,∴1.4×8=11.2(元),答:该用户5月份应交水费11.2元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.27.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是∠EOF、∠BOD、∠AOC(把符合条件的角都填出来)(2)图中除直角相等外,还有相等的角,请写出三对:①∠AOC=∠EOF;②∠AOC=∠BOD;③∠DOE=∠AO F .(3)①如果∠AOD=160°.那么根据对顶角相等可得∠BOC=160 度.②如果∠AOD=4∠EOF,求∠EOF的度数.【考点】垂线.【分析】(1)余角即与令一个角的和为90°的角;(2)相等的角可以是与同一个角互余的角,也可以是对顶角等;(3)①是对顶角相等,②是利用平角为180°求解.【解答】解:(1)∠EOF、∠BOD、∠AOC;(2)∠AOC=∠EOF,∠AOC=∠BOD,∠DOE=∠AOF,答案不唯一;(3)①:对顶角相等,160°;36°.②:∵∠AOC=∠EOF,∠AOC+∠AOD=180°,即5∠AOC=180°,则∠EOF=∠AOC=36°.【点评】本题主要考查了垂线的一些性质问题,能够掌握并利用其性质求解一些简单的计算问题.28.已知直线l上有一点O,点A、B同时从O出发,在直线l上分别向左、向右作匀速运动,且A、B的速度比为1:2,设运动时间为ts.(1)当t=2s时,AB=12cm.此时,①在直线l上画出A、B两点运动2秒时的位置,并回答点A运动的速度是 2 cm/s;点B运动的速度是 4 cm/s.②若点P为直线l上一点,且PA﹣PB=OP,求的值;(2)在(1)的条件下,若A、B同时按原速向左运动,再经过几秒,OA=2OB.【考点】一元一次方程的应用;两点间的距离.【分析】(1)①设A的速度为xcm/s,B的速度为2xcm/s,根据2s相距的距离为12建立方程求出其解即可;②分情况讨论如图2,如图3,建立方程求出OP的值就可以求出结论;(2)设A、B同时按原速向左运动,再经过几a秒OA=2OB,根据追击问题的数量关系建立方程求出其解即可.【解答】解:(1)①设A的速度为xcm/s,B的速度为2xcm/s,由题意,得2x+4x=12,解得:x=2,∴B的速度为4cm/s;故答案为:2,4②如图2,当P在AB之间时,∵PA﹣OA=OP,PA﹣PB=OP,∴PA﹣OA=PA﹣PB,∴OA=PB=4,∴OP=4.∴.如图3,当P在AB的右侧时,∵PA﹣OA=OP,PA﹣PB=OP,∴PA﹣OA=PA﹣PB,∴OA=PB=4,∴OP=12.∴答:=或1;(2)设A、B同时按原速向左运动,再经过几a秒OA=2OB,由题意,得2a+4=2(8﹣4a)或2a+4=2(4a﹣8)解得:a=或答:再经过或秒时OA=2OB.【点评】本题考查了数轴的运用,列一元一次方程解实际问题的运用,追击问题的数量关系的运用,解答时由行程问题的数量关系建立方程是关键.。
2015-2016学年七年级(上)第一次月考数学试卷
2015-2016学年七年级(上)第一次月考数学试卷一、选择题(10题,每题3分)1.下列说法中正确的是()A.有最小的正数B.有最大的负数C.有最小的整数D.有最小的正整数2.在﹣(﹣5),﹣(﹣5)2,﹣|﹣5|,(﹣5)3中负数有()A.3个B.2个C.1个D.0个3.下列计算正确的是()A.﹣22=﹣4 B.﹣(﹣2)2=4 C.(﹣3)2=6 D.(﹣1)3=14.若|a|=|b|,则a、b的关系是()A.a=b B.a=﹣b C.a+b=0或a﹣b=0 D.a=0且b=0ba=05.下列判断不正确的有()①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个6.1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为()亿元.A.1.1×104B.1.1×105C.11.4×103D.11.3×1037.如果两个有理数的积是正数,和也是正数,那么这两个有理数()A.同号,且均为正数B.异号,且正数的绝对值比负数的绝对值大C.同号,且均为负数D.异号,且负数的绝对值比正数的绝对值大8.如果一个数的相反数比它本身大,那么这个数为()A.正数B.负数C.整数D.不等于零的有理数9.已知|x|=4,|y|=5,则|x+y|的值为()A.1 B.9 C.9或1 D.±9或±110.如图所示,A、B两点所对的数分别为a、b,则AB的距离为()A.a﹣b B.a+b C.b﹣a D.﹣a﹣b二、填空题(共8小题,每小题3分,满分24分)11.如果时针顺时针方向旋转90°记作﹣90°,那么逆时针方向旋转60°记作12.将数据0.235精确到百分位为.13.用正、负数表示气温的变化量:上升为正、下降为负.某登山队攀登一座山峰,每登高1km,气温的变化量为﹣6℃.攀登5km后,气温有什么变化?.14.在有理数中,绝对值等于它本身的数有:;相反数等于其本身的有;倒数等于其本身的有:.(填哪些数)15.把(﹣)×(﹣)×(﹣)×(﹣)写成乘方的形式,底数是,指数是.16.计算:4﹣32=,6÷(﹣3)=,(﹣3×2)2=.17.若|x﹣6|+|y+5|=0,则x﹣y=.1)﹣|﹣3|的相反数是,(2)|3.14﹣π|=.(3)比较﹣和﹣的大小:﹣﹣.三.计算题(共38分)19.﹣(﹣7)﹣(﹣5)+(﹣4)(2)22﹣|﹣7|﹣2×(﹣)(3)(﹣4)2﹣9÷+(﹣2)×(﹣1)÷(﹣)(4)﹣24+(﹣5)×[(﹣2)3+2]+(﹣4)2÷(﹣)20.如果a、b互为相反数,c、d互为倒数,x的绝对值是1,y是数轴负半轴上到原点的距离为1的数,求代数式+x2﹣cd+y2010的值.21.若实数a、b满足|a|=4,|b|=6,且a>b,求a+b的值.22.一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走1.5千米到达商场C,又向西走了5.5千米到达超市D,最后回到货场.(1)以货场为原点,以东为正方向,用一个单位长度表示1千米,你能在数轴上分别表示出货场A,批发部B,商场C,超市D的位置吗?(2)超市D距货场A多远?(3)此款货车每百千米耗油约10升,每升汽油约6.20元,请你计算他需多少汽油费?2015-2016学年七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(10题,每题3分)1.下列说法中正确的是()A.有最小的正数B.有最大的负数C.有最小的整数D.有最小的正整数考点:有理数.分析:利用正数、负数的定义与性质,以及整数的概念与分类(正整数,0,负整数)即可解答.解答:解:①没有最小的正数,也没有最大的正数,因此选项错误;②没有最小的负数,也没有最大的负数,因此选项错误;③整数包括正整数和负整数,没有最小的整数,因此选项错误;④最小的正整数是1,因此选项正确.故选D.点评:此题考查正数、负数的定义,整数的概念与分类(正整数,0,负整数),运用概念和性质是解决这类问题的关键.2.在﹣(﹣5),﹣(﹣5)2,﹣|﹣5|,(﹣5)3中负数有()A.3个B.2个C.1个D.0个考点:有理数的乘方.分析:根据相反数、绝对值的定义,乘方的运算法则先化简各数,再根据负数的定义求解.解答:解:∵﹣(﹣5)=5,﹣(﹣5)2=﹣25,﹣|﹣5|=﹣5,(﹣5)3=﹣125,∴﹣(﹣5)2,﹣|﹣5|,(﹣5)3都是负数,共3个.故选A.点评:此题关键是理解负数的概念,而且要把这些数化为最后结果才能得出正确答案.这就又要理解平方、立方、绝对值,正负号的变化等知识点.3.下列计算正确的是()A.﹣22=﹣4 B.﹣(﹣2)2=4 C.(﹣3)2=6 D.(﹣1)3=1考点:有理数的乘方.专题:计算题.分析:原式各项利用乘方的意义计算得到结果,即可做出判断.解答:解:A、原式=﹣4,正确;B、原式=﹣4,错误;C、原式=9,错误;D、原式=﹣1,错误,故选A点评:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.4.若|a|=|b|,则a、b的关系是()A.a=b B.a=﹣b C.a+b=0或a﹣b=0 D.a=0且b=0ba=0考点:绝对值.分析:根据绝对值的性质选择.解答:解:根据绝对值性质可知,若|a|=|b|,则a与b相等或互为相反数,即a+b=0或a﹣b=0.故选C.点评:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.下列判断不正确的有()①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个考点:相反数.分析:根据相反数的定义和性质回答即可.解答:解:①0的相反数是0,故①错误;②0的相反数是0,故②错误;③正确;④只有符号不同的两个数互为相反数,故④错误.故选:A.点评:本题主要考查的是相反数的定义和性质,掌握相反数的定义和性质是解题的关键.6.1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为()亿元.A.1.1×104B.1.1×105C.11.4×103D.11.3×103考点:科学记数法与有效数字.专题:应用题.分析:一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.注意对一个数进行四舍五入时,若要求近似到个位以前的数位时,首先要对这个数用科学记数法表示.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数它的有效数字的个数只与a有关,而与n的大小无关.解答:解:用四舍五入法保留两个有效数字得11 377的近似值为11 000,其精确到千位,用科学记数法表示为1.1×104.故选A.点评:本题旨在考查基本概念,需要同学们熟记有效数字的概念:从一个数的左边第一个非零数字起,到精确到的数位止,所有数字都是这个数的有效数字.注意对一个数进行四舍五入时,若要求近似到个位以前的数位时,首先要对这个数用科学记数法表示.7.如果两个有理数的积是正数,和也是正数,那么这两个有理数()A.同号,且均为正数B.异号,且正数的绝对值比负数的绝对值大C.同号,且均为负数D.异号,且负数的绝对值比正数的绝对值大考点:有理数的乘法;有理数的加法.分析:此题根据有理数的加法和乘法法则解答.解答:解:两个有理数的积是正数,说明两数同号,和也是正数,说明均为正数,A正确.故选A.点评:有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加.8.如果一个数的相反数比它本身大,那么这个数为()A.正数B.负数C.整数D.不等于零的有理数考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数,再根据正数大于,可得答案.解答:解:如果一个数的相反数比它本身大,那么这个数为负数,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数,相反数大于它本身,相反数是正数,原数是负数.9.已知|x|=4,|y|=5,则|x+y|的值为()A.1 B.9 C.9或1 D.±9或±1考点:绝对值;有理数的加法.分析:根据绝对值相等的数有两个,可得这两个数,再根据有理数的加法可求出和,再由绝对值的意义,可得和的绝对值.解答:解:|x|=4,|y|=5,x=±4,y=±5,当x=﹣4,y=﹣5时,|x+y|=9当x=﹣4,y=5时,|x+y|=1,当x=4,y=﹣5时,|x+y|=1,当x=4,y=5时,|x+y|=9,故选:C.点评:题考查了绝对值,先有绝对值求出相反数,再求出和的绝对值,注意要分分类讨论,不能漏掉.10.如图所示,A、B两点所对的数分别为a、b,则AB的距离为()A.a﹣b B.a+b C.b﹣a D.﹣a﹣b考点:两点间的距离.专题:数形结合.分析:根据AB两点之间的距离即为0到B的距离与0到A的距离之和,由数轴可知a<0,b>0,得出AB的距离为b﹣a.解答:解:∵A、B两点所对的数分别为a、b,∵a<0,b>0,∴AB之间的距离为b﹣a,故选C.点评:本题考查了两点之间的距离,图形结合,判断出a、b的符号,难度适中.二、填空题(共8小题,每小题3分,满分24分)11.如果时针顺时针方向旋转90°记作﹣90°,那么逆时针方向旋转60°记作+60°考点:正数和负数.专题:规律型.分析:首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.解答:解:由题意知顺时针旋转记作负数,那么逆时针旋转就记作正数,∴逆时针方向旋转60°记作+60°.点评:解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.将数据0.235精确到百分位为0.24.考点:近似数和有效数字.分析:精确到哪位,就是对它后边的一位进行四舍五入.解答:解:0.235≈0.24,故答案为:0.24.点评:本题主要考查了近似数和有效数字,近似数与精确数的接近程度,可以用精确度表示,精确到哪一位,对它后边的一位进行四舍五入是解答此题的关键.13.用正、负数表示气温的变化量:上升为正、下降为负.某登山队攀登一座山峰,每登高1km,气温的变化量为﹣6℃.攀登5km后,气温有什么变化?气温下降30℃.考点:正数和负数.分析:根据有理数乘法的意义列出算式即可求解.解答:解:﹣6×5=﹣30(℃).故气温下降30℃故答案为:气温下降30℃.点评:考查了正数和负数和有理数乘法,解题的关键是根据题意列出算式.14.在有理数中,绝对值等于它本身的数有:正数和0;相反数等于其本身的有0;倒数等于其本身的有:±1.(填哪些数)考点:倒数;相反数;绝对值.分析:根据绝对值的性质,倒数和相反数的定义回答即可.解答:解:绝对值等于它本身的数有正数和零;相反数等于其本身的数是0;倒数等于其本身的数是±1.故答案为:正数和0;0;±1.点评:本题主要考查的是绝对值的性质,倒数和相反数的定义,掌握绝对值的性质,倒数和相反数的定义是解题的关键.15.把(﹣)×(﹣)×(﹣)×(﹣)写成乘方的形式(﹣)4,底数是﹣,指数是4.考点:有理数的乘方.专题:计算题.分析:原式利用乘方的意义化简,计算即可得到结果.解答:解:把(﹣)×(﹣)×(﹣)×(﹣)写成乘方的形式(﹣)4,底数是﹣,指数是4.故答案为:(﹣)4;﹣;4点评:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.16.计算:4﹣32=﹣5,6÷(﹣3)=﹣2,(﹣3×2)2=36.考点:有理数的除法;有理数的乘方.分析:先算乘方,再算乘除,最后算加减,有括号应该先算括号里面,然后运算顺序计算即可.解答:解:4﹣32=4﹣9=﹣5;6÷(﹣3)=﹣(6÷3)=﹣2;(﹣3×2)2=(﹣6)2=36.故答案为:﹣5;﹣2;36.点评:本题主要考查的是有理数的计算,掌握有理数的运算法则和运算顺序是解题的关键.17.若|x﹣6|+|y+5|=0,则x﹣y=11.考点:非负数的性质:绝对值.专题:计算题.分析:先根据非负数的性质求出x、y的值,再代入x﹣y进行计算即可.解答:解:∵|x﹣6|+|y+5|=0,∴x﹣6=0,y+5=0,解得x=6,y=﹣5,∴原式=6+5=11.故答案为:11.点评:本题考查的是非负数的性质,即任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.1)﹣|﹣3|的相反数是3,(2)|3.14﹣π|=π﹣3.14.(3)比较﹣和﹣的大小:﹣<﹣.考点:有理数大小比较;相反数;绝对值.分析:(1)先根据绝对值的性质得出|﹣3|=3,再由相反数的定义即可得出结论;(2)根据绝对值的性质即可得出结论;(3)根据负数比较大小的法则进行比较即可.解答:解:(1)∵|﹣3|=3,∴﹣|﹣3|=﹣3,∵﹣3的相反数是3,∴﹣|﹣3|的相反数是3.故答案为:3.(2)∵3.14<π,∴3.14﹣π<0,∴|3.14﹣π|=π﹣3.14.故答案为:π﹣3.14;(3)∵|﹣|==,|﹣|==,>,∴﹣<﹣.故答案为:<.点评:本题考查的是有理数的大小比较,熟知有理数比较大小的法则是解答此题的关键.三.计算题(共38分)19.﹣(﹣7)﹣(﹣5)+(﹣4)(2)22﹣|﹣7|﹣2×(﹣)(3)(﹣4)2﹣9÷+(﹣2)×(﹣1)÷(﹣)(4)﹣24+(﹣5)×[(﹣2)3+2]+(﹣4)2÷(﹣)考点:有理数的混合运算.分析:(1)先化简,再计算加减法;(2)(3)(4)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:(1)(﹣3)﹣(﹣7)﹣(﹣5)+(﹣4)=﹣3+7+5﹣4=5;(2)22﹣|﹣7|﹣2×(﹣)=4﹣7+1=﹣2;(3)(﹣4)2﹣9÷+(﹣2)×(﹣1)÷(﹣)=16﹣12﹣4=0;(4)﹣24+(﹣5)×[(﹣2)3+2]+(﹣4)2÷(﹣)=﹣16+(﹣5)×[﹣8+2]+16÷(﹣)=﹣16+5×6﹣32=﹣16+30﹣32=﹣18.点评:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.20.如果a、b互为相反数,c、d互为倒数,x的绝对值是1,y是数轴负半轴上到原点的距离为1的数,求代数式+x2﹣cd+y2010的值.考点:代数式求值;相反数;绝对值;倒数.专题:计算题.分析:利用相反数,倒数,以及绝对值的代数意义求出a+b,cd,x与y的值,代入原式计算即可得到结果.解答:解:根据题意得:a+b=0,cd=1,x=±1,y=﹣1,则原式=0+1﹣1+1=1.点评:此题考查了代数式求值,绝对值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.21.若实数a、b满足|a|=4,|b|=6,且a>b,求a+b的值.考点:绝对值;有理数的加法.分析:首先根据条件确定a,b的值,然后再代入即可.解答:解:∵|a|=4,|b|=6,∴a=±4,b=±6,∵a>b,∴a=±4,b=﹣6,当a=4,b=﹣6时,a+b=﹣2;当a=﹣4,b=﹣6时,a+b=﹣10.点评:本题主要考查了绝对值的意义,根据a>b确定a,b的值是解答此题的关键.22.一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走1.5千米到达商场C,又向西走了5.5千米到达超市D,最后回到货场.(1)以货场为原点,以东为正方向,用一个单位长度表示1千米,你能在数轴上分别表示出货场A,批发部B,商场C,超市D的位置吗?(2)超市D距货场A多远?(3)此款货车每百千米耗油约10升,每升汽油约6.20元,请你计算他需多少汽油费?考点:数轴;正数和负数.专题:计算题.分析:(1)根据题意画出数轴,如图所示;(2)找出A与D之间的距离即可;(3)根据列出算式,计算即可得到结果.解答:解:(1)根据题意画出数轴,如图所示:(2)根据题意得:|AD|=2;(3)根据题意得:10÷10×6.20×(2+1.5+5.5)=55.8(元),则此款货车汽油费为55.8元.点评:此题考查了数轴,以及正数与负数,熟练掌握运算法则是解本题的关键.第11页(共11页)。
江苏省苏州工业园区2015-2016学年七年级上学期期末考试数学试题解析(解析版)
一、选择题(每小题2分,共20分)1.下列算式中,运算结果为负数的是 ( )A. -32B. |-3|C. -(-3)D.(-3)2 【答案】 A.【解析】试题解析:-32=-9;|-3|=3; -(-3)=3;(-3)2=9故选A.考点:正数和负数.2.苏州地铁4号线,2017年上半年通车试运营,主线全程长约为42000m ,北起相城区荷塘月色公园,南至吴江同津大道站,共设31站。
将42000 用科学记数法表示应为( )A .0.42×105B .4.2×104C .44×103D .440×102【答案】B .【解析】试题解析:将42000用科学记数法表示为:4.2×104.故选B .考点:科学记数法—表示较大的数.3.如果y x >,则下列变形中正确的是 ( ) A.y x 2121->- ; B. y x 2121< ; C.y x 53>; D. 33->-y x ; 【答案】D .【解析】试题解析:A 、两边都乘以-12,故A 错误; B 、两边都乘以12,故B 错误; C 、左边乘3,右边乘5,故C 错误;D 、两边都减3,故D 正确;故选D .考点:不等式的性质.4.如果22-=-x x ,那么x 的取值范围是 ( )A . x ≤2;B . x ≥2;C . x <2;D . x >2;【答案】B .【解析】试题解析:∵|x-2|=x-2,∴x-2≥0,即x ≥2.故选B .考点:1.解一元一次不等式;2.绝对值.5.已知代数式x +2y 的值是3,则代数式2x +4y +1的值是 ( )A. 1B. 4C. 7D. 不能确定【答案】C .【解析】试题解析:∵x+2y=3,∴2x+4y+1=2(x+2y )+1,=2×3+1,=6+1,=7.故选C .考点:代数式求值.6.如图,若C 为线段AB 的中点,D 在线段CB 上,6=DA ,4=DB ,则CD 的长度是( )A .0.5B .1C .1.5D .2【答案】A .【解析】试题解析:∵线段DA=6,线段DB=4,∴AB=10,∵C 为线段AB 的中点,∴AC=BC=5,∴CD=AD-AC=1.故选A .考点:两点间的距离.7.若∠A, ∠B 互为补角,且∠A ﹤∠B ,则∠A 的余角是 ( )A.21(∠A+∠B ) B . 21∠B C . 21(∠B -∠A ) D .21∠A 【答案】C .【解析】试题解析:根据题意得,∠A+∠B=180°,∴∠A 的余角为:90°-∠A=1802︒-∠A , =12(∠A+∠B )-∠A , =12(∠B-∠A ). 故选C .考点:余角和补角.8.下边给出的是某月的日历表,任意圈出一竖列上、相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能 ( )A .27B .40C . 54D . 69【答案】C .考点:列代数式.9.-件工作,甲单独做20 h 完成,乙单独做12 h 完成,现甲单独做4h 后,乙加入和甲一起做,还要几小时完成?若设还要x h 完成,则依题意可列方程为 ( )A .41202012x x --=B .41202012x x -+=C .41202012x x +-=D .41202012x x ++= 【答案】D .【解析】试题解析:设还要xh 完成,由题意得41202012x x ++=. 故选D .考点:由实际问题抽象出一元一次方程.10.钟面角是指时钟的时针与分针所成的角,如果时间从下午2点整到下午4点整,钟面角为90°的情况有 ( )A .有一种B .有二种C . 有三种D .有四种【答案】D .考点:钟面角.二、填空题(每小题3分,共24分)11.单项式253a bc -的次数是 . 【答案】4.【解析】试题解析:根据单项式次数的定义,单项式的次数为4.考点:单项式.12.若单项式2x 2y m 与-13x n y 3是同类项,则m+n 的值是 【答案】5.【解析】试题解析:由同类项的定义可知n=2,m=3,则m+n=5.考点:同类项.13.在数轴上与2的距离等于3个单位的点表示的数是【答案】5或-1.【解析】试题解析:若该数在2的左边,则这个数为:2-3=-1;若该数在2的右边,则这个数为:2+3=5.因此答案为:5或-1.考点:数轴.14.不等式31221-≥+x x 的非负整数解的和是 . 【答案】15.【解析】试题解析:解不等式得:x ≤5,故其非负整数解为:5,4,3,2,1,0.故其和5+4+3+2+1+0=15考点:一元一次不等式组的整数解.15.如图,直线AB 、CD 相交于点O ,∠DOE=∠BOD ,OF 平分∠AOE ,若∠BOD=32°,则∠BOF= .【答案】122°.【解析】试题解析:∵∠BOD=32°,∠DOE=∠BOD∴∠BOE=32°+32°=64°∴∠AOE=180°-64°=116°∵OF 平分∠AOE ,∴∠EOF=12∠AOE=12×116°=58°, ∴∠BOF ═58°+64°=122°.考点:1.对顶角、邻补角;2.角平分线的定义.16.如图,该平面展开图按虚线折叠成正方体后,相对面上两个数之和为8,则x+y = .【答案】10.【解析】试题解析:∵“4”与“y”是对面,“x”与“2”是对面,∴x=6,y=4.∴x+y=10.考点:正方体相对两个面上的文字.17.若有理数a、b、c在数轴上的位置如图所示,则化简:|a|+|a-b|-|c+b|=.【答案】2a+c.【解析】试题解析:根据数轴上点的位置得:c<b<0<a,∴a-b>0,c+b<0,则原式=a+a-b+c+b=2a+c.考点:1.整式的加减;2.数轴;绝对值.18.如图,若开始输入的x的值为正整数,最后输出的结果为144,则满足条件的x的值为.【答案】29或6.【解析】试题解析:第一个数就是直接输出其结果的:5x-1=144,解得:x=29,第二个数是(5x-1)×5-1=144解得:x=6;第三个数是:5[5(5x-1)-1]-1=144,解得:x=1.4(不合题意舍去),第四个数是5{5[5(5x-1)-1]-1}-1=144,解得:x=1225(不合题意舍去)∴满足条件所有x的值是29或6.考点:一元一次不等式的应用.三、解答题(共56分)19.计算(每小题4分,共8分)(1)[]24)3(3611-+-⨯-- (2)77°53′26"+33.3° 【答案】(1)-2;(2)111°11′26″.【解析】试题分析:(1)先算乘方,再算括号里面的运算,再算乘法,最后算减法;(2)把33.3°换算成33°18′,再进一步相加即可.试题解析:(1)原式=-1-16×[-3+9] =-1-1=-2;(2)原式=77°53′26″+33°18′=111°11′26″.考点:1.有理数的混合运算;2.度分秒的换算.20.解关于x 的方程与不等式: (每小题4分,共8分)(1)()x x -=-234 (2)215321x x +>--; 【答案】(1)x=1;(2)x >-1.【解析】试题分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1,即可得解.(2)首先去分母,去括号,然后移项,合并同类项,即可求得不等式的解集.试题解析:(1)4-x=3(2-x )去括号得,4-x=6-3x ,移项,合并同类项得,2x=2,系数化为1得,x=1;(2)215321x x +>-- 去分母得,10-2(2-3x )>5(1+x )去括号得,10-4+6x >5+5x ,移项,合并同类项得,x >-1.考点:1.解一元一次不等式;2.解一元一次方程.21.一个角比它的余角大20°,求这个角的度数.【答案】55°.【解析】试题分析:设这个角的度数是x ,则其余角为90°-x ,进而可得出结论.试题解析:设这个角的度数是x ,则其余角为90°-x ,∵此角比它的余角大20°,∴x-(90°-x )=20°,解得x=55°.答:这个角是55°.考点:余角和补角.22.用五个小正方体搭成如图的几何体,请画出它的三视图。
2015-2016学年七年级(上)期末数学试卷(解析版)
2015-2016学年七年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×1062.下列各式计算正确的是()A.5a+a=5a2B.5a+b=5abC.5a2b﹣3ab2=2a2b D.2ab2﹣5b2a=﹣3ab23.如图,是由一个圆柱体和一个长方体组成的几何体.其主视图是()A.B.C.D.4.下列图形经过折叠不能围成棱柱的是()A.B.C.D.5.有理数a、b在数轴上的位置如图所示,则化简|a+b|﹣|a﹣b|的结果为()A.2a B.﹣2b C.﹣2a D.2b6.如图,直线AB、CD相交于点O,OD平分∠BOE,则∠AOD的补角的个数为()A.1个B.2个C.3个D.4个7.下列说法错误的是()A.两点确定一条直线B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.过一点有且只有一条直线与已知直线平行D.若两条直线相交所成的角是直角,则这两条直线互相垂直8.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,…按照这种移动规律进行下去,第51次移动到点A51,那么点A51所表示的数为()A.﹣74 B.﹣77 C.﹣80 D.﹣83二、填空题(本大题共有10小题,每小题3分,共30分)9.一个数的绝对值是5,这个数是.10.若方程3x m﹣2﹣2=0是关于x的一元一次方程,则m的值为.11.已知∠β=48°30′,则∠β的余角是.12.下午2点时,时针与分针的夹角的度数是.13.如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠FEC=56°,则∠AED=.14.已知整式x2﹣2x+6的值为9,则﹣2x2+4x+6的值为.15.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.16.已知∠AOB=80°,以O为顶点,OB为一边作∠BOC=20°,OD平分∠AOC,则∠BOD 度数为.17.小明和小丽同时从甲村出发到乙村,小丽的速度为4km/h,小明的速度为5km/h,小丽比小明晚到15分钟,则甲、乙两村的距离是km.18.生活中,有人喜欢把传送的便条折成如图的形状,折叠过程是这样的(阴影部分表示纸条的反面):为了美观,人们希望纸条两端超出点P的长度相等(即AP=MB),若纸条的长为26cm,纸条的宽为2cm,则在开始折叠时起点M与点A的距离为cm.三、解答题(本大题共有10小题,共96分)19.计算:(1)﹣2+6÷(﹣2)×;(2)﹣14+(﹣2)2﹣6×(﹣).20.解方程:(1)3(x﹣5)=﹣12;(2).21.先化简,再求值:3a2﹣4ab+[a2﹣2(a2﹣3ab)],其中|a+1|+(b﹣)2=0.22.已知关于x的方程=3x﹣2的解与方程3(x﹣m)=6+2m的解相同,求m的值.23.(1)由大小相同的小正方体搭成的几何体如图,请在如图的方格中画出该几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加个小正方体.24.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG AH.(填写下列符号>,<,≤,≥之一)25.我校群星文学社若干名师生准备集体外出采风,现有30座的小客车和45座大客车两种车型供选择.学校根据两种车型的座位数计算后得知:如果仅租用小客车若干辆,师生刚好坐满全部座位;如果仅租用大客车,不仅少用2辆车,而且师生坐完后还多30个座位.(1)求这次准备外出采风的师生共多少人?(2)现决定同时租用大、小客车共6辆,且确保每个师生均有座位,那么至少要租用大客车几辆?26.如图,线段AB=10cm,C是线段AB上一点,BC=6cm,M是AB的中点,N是AC的中点.(1)图中共有条线段;(2)求线段AN的长;(3)求线段MN的长.27.1号探测气球从海拔5米处出发,以1米/分的速度上升.与此同时,2号探测气球从海拔15米处出发,以0.5米/分的速度上升,两个气球都匀速上升了50分钟.设气球球上升时间为x分(0≤x≤50)(1)根据题意,填写下表:上升时间/分10 30 (x)1号探测气球所在位置的海拔/米15 …2号探测气球所在位置的海拔/米30 …(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)当两个气球所在位置的海拔相差7.5米时,这时气球上升了多长时间?28.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=120°,则∠DOE=;若∠AOC=140°,则∠DOE=;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣3∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.2015-2016学年江苏省扬州中学教育集团树人学校七年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.B.2.D.3.B.4.B.5.A 6.C.7.C.8.B.二、填空题(本大题共有10小题,每小题3分,共30分)9.±510.3 11.41°30″12.60°13.62°14.0 15.7 16.30°或50°.17.小明和小丽同时从甲村出发到乙村,小丽的速度为4km/h,小明的速度为5km/h,小丽比小明晚到15分钟,则甲、乙两村的距离是5km.【考点】一元一次方程的应用.【分析】设甲、乙两村之间的距离为xkm,根据已知两人的速度结合行驶的路程相等,时间差为15分钟得出方程,再求出答案即可.【解答】解:设甲、乙两村之间的距离为xkm.根据题意可得:﹣=,解得:x=5,答:甲、乙两村之间的距离为5km;故答案为:5.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.生活中,有人喜欢把传送的便条折成如图的形状,折叠过程是这样的(阴影部分表示纸条的反面):为了美观,人们希望纸条两端超出点P的长度相等(即AP=MB),若纸条的长为26cm,纸条的宽为2cm,则在开始折叠时起点M与点A的距离为10cm.【考点】翻折变换(折叠问题).【分析】将折叠纸条展开,分析其中的三角形,梯形的特点,再进行计算.【解答】解:将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即2cm,下底等于纸条宽的2倍,即4cm,两个三角形都为等腰直角三角形,斜边为纸条宽的2倍,即4cm,故超出点P的长度为(26﹣10)÷2=8,AM=8+2=10cm,故答案为:10.【点评】本题考查了折叠的性质.关键是将折叠图形展开,分析每个图形形状及与纸条宽的关系.三、解答题(本大题共有10小题,共96分)19.计算:(1)﹣2+6÷(﹣2)×;(2)﹣14+(﹣2)2﹣6×(﹣).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣2﹣=﹣3;(2)原式=﹣1+4﹣3+2=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)3(x﹣5)=﹣12;(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:3x﹣15=﹣12,移项合并得:3x=3,解得:x=1;(2)去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项合并得:﹣x=3,解得:x=﹣3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.先化简,再求值:3a2﹣4ab+[a2﹣2(a2﹣3ab)],其中|a+1|+(b﹣)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用绝对值以及偶次方的性质得出a,b的值,再利用整式加减运算法则化简求出原式,进而代入a,b的值求出答案.【解答】解:∵|a+1|+(b﹣)2=0,∴a+1=0,b﹣=0,解得:a=﹣1,b=,∴3a2﹣4ab+[a2﹣2(a2﹣3ab)]=3a2﹣4ab+a2﹣2a2+6ab,=2a2+2ab,将a,b的值代入上式可得:原式=2×(﹣1)2+2×(﹣1)×=2﹣1=1.【点评】此题主要考查了偶次方、绝对值的性质以及整式加减运算法则,正确求出a,b的值是解题关键.22.已知关于x的方程=3x﹣2的解与方程3(x﹣m)=6+2m的解相同,求m的值.【考点】同解方程.【分析】先求出方程=3x﹣2的解,再代入方程3(x﹣m)=6+2m,即可解答.【解答】解:方程=3x﹣2的解为:x=1,把x=1代入方程3(x﹣m)=6+2m得:3(1﹣m)=6+2m,解得:m=﹣0.6.【点评】本题考查了同解方程的知识,解答本题的关键是理解方程解得含义.23.(1)由大小相同的小正方体搭成的几何体如图,请在如图的方格中画出该几何体的三视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加2个小正方体.【考点】作图-三视图;由三视图判断几何体.【分析】(1)主视图有3列,每列小正方数形数目分别为2,1,1,俯视图有3列,每列小正方形数目分别为1,2,1,左视图有2列,每列小正方形数目分别为2,1.据此可画出图形;(2)保持这个几何体的俯视图和左视图不变的情况下添加小正方体即可.【解答】解:(1)如图所示:;(2)可以在①和②的位置上各添加一个小正方体,这个几何体的俯视图和左视图都不变,最多添加2个,故答案为:2.【点评】此题主要考查了画三视图,关键是在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.24.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段AG的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG<AH.(填写下列符号>,<,≤,≥之一)【考点】作图—基本作图;垂线段最短;点到直线的距离.【分析】(1)根据网格结构特点,过点C作长2宽1的长方形的对角线即可;(2)根据网格结构以及长方形的性质作出即可;(3)根据点到直线的距离的定义解答;(4)结合图形直接进行判断即可得解.【解答】解:(1)如图所示,直线CD即为所求作的直线AB的平行线;(2)如图所示:(3)线段AG的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG<AH.故答案为:AG;<.【点评】本题考查了基本作图,利用网格结构作垂线,平行线,点到直线的距离的定义,都是基础知识,需熟练掌握.25.我校群星文学社若干名师生准备集体外出采风,现有30座的小客车和45座大客车两种车型供选择.学校根据两种车型的座位数计算后得知:如果仅租用小客车若干辆,师生刚好坐满全部座位;如果仅租用大客车,不仅少用2辆车,而且师生坐完后还多30个座位.(1)求这次准备外出采风的师生共多少人?(2)现决定同时租用大、小客车共6辆,且确保每个师生均有座位,那么至少要租用大客车几辆?【考点】一元一次不等式组的应用;一元一次方程的应用.【分析】(1)先设小客车租了x辆,根据如果仅租用小客车若干辆,师生刚好坐满全部座位;如果仅租用大客车,不仅少用2辆车,而且师生坐完后还多30个座位,列出方程,求出x的值,即可得出答案;(2)先设至少要租用大客车x辆,根据同时租用大、小客车共6辆,且确保每个师生均有座位,列出不等式,求出解集即可.【解答】解:(1)设小客车租了x辆,根据题意得:30x=45(x﹣2)﹣30,解得:x=8,则这次准备外出采风的师生共有30×8=240(人),答:这次准备外出采风的师生共240人;(2)至少要租用大客车x辆,根据题意得:45x+30(6﹣x)≥240,解得:x≥4,答:至少要租用大客车4辆.【点评】此题考查了一元一次不等式的应用,关键是读懂题意,根据题目中的数量关系,列出方程和不等式.26.如图,线段AB=10cm,C是线段AB上一点,BC=6cm,M是AB的中点,N是AC的中点.(1)图中共有10条线段;(2)求线段AN的长;(3)求线段MN的长.【考点】两点间的距离.【分析】(1)根据线段有两个端点,写出所有线段后计算个数;(2)由N是AC中点知AN=AC,而AC=AB﹣BC,根据AB、BC的长度可得;(3)由图可知,MN=AM﹣AN,由M是AB中点且AB=10cm可得AM长度,由(2)知AN的长度,可得MN长.【解答】解:(1)图中的线段有AN、AC、AM、AB、NC、NM、NB、CM、CB、MB这10条;(2)∵AB=10cm,BC=6cm,∴AC=AB﹣BC=4cm,又∵N是AC的中点,∴AN=AC=2cm;(3)∵AB=10cm,M是AB的中点,∴AM=AB=5cm,由(1)知,AN=2cm,∴MN=AM﹣AN=3cm;故答案为:(1)10.【点评】本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.距离是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.27.1号探测气球从海拔5米处出发,以1米/分的速度上升.与此同时,2号探测气球从海拔15米处出发,以0.5米/分的速度上升,两个气球都匀速上升了50分钟.设气球球上升时间为x分(0≤x≤50)(1)根据题意,填写下表:上升时间/分10 30 (x)1号探测气球所在位置的海拔/米15 35…x+52号探测气球所在位置的海拔/米2030 …0.5x+15(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)当两个气球所在位置的海拔相差7.5米时,这时气球上升了多长时间?【考点】一元一次方程的应用.【分析】(1)根据“1号探测气球从海拔5米处出发,以1米/分的速度上升.与此同时,2号探测气球从海拔15米处出发,以0.5米/分的速度上升”,得出1号探测气球、2号探测气球的函数关系式;(2)两个气球能位于同一高度,根据题意列出方程,即可解答;(3)两个气球所在位置的海拔相差7.5米,分两种情况:①2号探测气球比1号探测气球海拔高7.5米;②1号探测气球比2号探测气球海拔高7.5米;分别列出方程求解即可.【解答】解:(1)根据题意得:1号探测气球所在位置的海拔:m1=x+5,2号探测气球所在位置的海拔:m2=0.5x+15;当x=30时,m1=30+5=35;当x=10时,m2=5+15=20.填表如下:上升时间/分10 30 (x)1号探测气球所在位置的海拔/米15 35 …x+52号探测气球所在位置的海拔/米20 30 …0.5x+15故答案为:35,x+5,20,0.5x+15;(2)两个气球能位于同一高度,根据题意得:x+5=0.5x+15,解得:x=20,有x+5=25,答:此时,气球上升了20分钟,都位于海拔25米的高度;(3)分两种情况:①2号探测气球比1号探测气球海拔高7.5米,根据题意得(0.5x+15)﹣(x+5)=7.5,解得x=5;②1号探测气球比2号探测气球海拔高7.5米,根据题意得(x+5)﹣(0.5x+15)=7.5,解得x=35.答:当两个气球所在位置的海拔相差7.5米时,这时气球上升了5分或35分.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,列出函数解析式.28.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=120°,则∠DOE=60°;若∠AOC=140°,则∠DOE=70°;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣3∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.【考点】角的计算;角平分线的定义.【分析】(1)首先利用补角的定义可得出∠BOC,再利用角平分线的定义可得出∠COE,易得∠DOE;(2)同理由(1)可得;(3)设∠DOE=x,∠AOF=y,根据已知和(2)的结论可得出x﹣y=45°,从而得出结论.【解答】解:(1)若∠AOC=120°,则∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣30°=60°;若∠AOC=140°,则∠BOC=180°﹣140°=40°,∵OE平分∠BOC,∴,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣20°=70°;故答案为:60°;70°;(2);∵∠AOC=α,∴∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90)=,故答案为:;(3)∠DOE﹣∠AOF=45°.理由:设∠DOE=x,∠AOF=y,左边=∠AOC﹣3∠AOF=2∠DOE﹣3∠AOF=2x﹣3y,右边=2∠BOE+∠AOF=2(90°﹣x)+y=180°﹣2 x+y,∴2x﹣3y=180﹣2 x+y 即4x﹣4y=180°,∴x﹣y=45°∴∠DOE﹣∠AOF=45°.【点评】此题考查的知识点是角平分线的性质及角的计算,关键是正确运用好有关性质准确计算角的和差倍分.。
2016-2017学年江苏省苏州市高新区七年级上学期期末数学试卷(解析版)
26. (5 分)某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下: 普通(元/间/天) 三人间 双人间 240 180 豪华(元/间/天) 500 420
一个 30 人的旅游团到该酒店入住,选择了一些双人普通间和三人豪华间入住, 且恰好住满,已知该旅游团当日住宿费用共计 3620 元,问该旅游团入住的双人 普通间和三人豪华间各为几间? 27. (7 分)如图,直线 AB、CD 相交于点 O,OE 平分∠BOD. ①若∠AOC=68°,∠DOF=90°,求∠EOF 的度数; ②若 OF 平分∠COE,∠BOF=15°,若设∠AOE=x°,求∠EOF 的度数.
**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**
2016-2017 学年江苏省苏州市高新区七年级上学期数学期末试卷
一、选择题(本大题共 8 小题,每小题 2 分,共 16 分.在每小题所给出的四个 选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题 卷相应位置上) 1. (2 分)﹣2 的相反数是( A.﹣2 B.2 C. D.﹣ )
2. (2 分)地球离太阳约有 15000000 千米,15000000 这个数用科学记数法可以 表示为( A.0.15×l08 ) B.1.5×106 C.1.5×107 D.15×106 )
3. (2 分)下列计算正确的是( A.3a+4b=7ab B.7a﹣3a=4 C.3a+a=3a2
D.3a2b﹣4a2b=﹣a2b )
A.30° B.34° C.45° D.56°
第 1 页(共 18 页)
7. (2 分) 多项式﹣ x|m|+ (m﹣2) x+1 是关于 x 的二次三项式, 则 m 的值是 ( A.2 B.﹣2 C.﹣4 D.2 或﹣2
2015-2016学年江苏省苏州市吴江区七年级上学期期末数学试卷(带解析)
绝密★启用前2015-2016学年江苏省苏州市吴江区七年级上学期期末数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:131分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、(2015秋•吴江区期末)如图,平面内有公共端点的六条射线OA ,OB ,OC ,OD ,OE ,OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在( )A .射线OA 上B .射线OB 上C .射线OD 上D .射线OF 上2、(2015秋•吴江区期末)下列说法: ①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与己知直线平行; ④两点之间的距离是两点间的线段. 其中正确的个数是( ) A .1个B .2个C .3个D .4个3、(2015秋•吴江区期末)关于x 的方程4x ﹣3m=2的解是x=m ,则m 的值是( ) A .﹣2B .2C .﹣D .4、(2013•梧州一模)如图,E 点是AD 延长线上一点,下列条件中,不能判定直线BC ∥AD 的是( )A .∠3=∠4B .∠C=∠CDEC .∠1=∠2D .∠C+∠ADC=180°5、(2013•德宏州)如图,三条直线相交于点O .若CO ⊥AB ,∠1=56°,则∠2等于( )A .30°B .34°C .45°D .56°6、(2014春•淮北月考)由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是( )A .B .C .D .7、(2015秋•吴江区期末)下列关于单项式的说法中,正确的是()A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是38、(2005•海淀区)已知(1﹣m)2+|n+2|=0,则m+n的值为()A.﹣1B.﹣3C.3D.不能确定9、(2013•自贡)在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×10910、(2015秋•吴江区期末)下列运算正确的是()A.﹣a2b+2a2b=a2b B.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab第II 卷(非选择题)二、填空题(题型注释)11、(2015秋•吴江区期末)将一个边长为10cm 正方形,沿粗黑实线剪下4个边长为 cm 的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.12、(2015秋•吴江区期末)某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为 元.13、(2015秋•吴江区期末)已知线段AB=20cm ,直线AB 上有一点C ,且BC=6cm ,M 是线段AC 的中点,则AM= cm .14、(2015秋•吴江区期末)若方程2(2x ﹣1)=3x+1与方程m=x ﹣1的解相同,则m 的值为 .15、(2015秋•吴江区期末)若代数式x+y 的值是1,则代数式(x+y )2﹣x ﹣y+1的值是 .16、(2015秋•吴江区期末)若有理数在数轴上的位置如图所示,则化简|a+c|+|a ﹣b|﹣|c+b|= .17、(2015秋•吴江区期末)若﹣2x 2m+1y 6与3x 3m ﹣1y 10+4n 是同类项,则m+n= .18、(2015秋•吴江区期末)若∠α=34°36′,则∠α的余角为 .19、(2015秋•吴江区期末)计算:= .20、(2015秋•吴江区期末)比较大小:﹣ ﹣0.4.三、计算题(题型注释)21、(2015秋•吴江区期末)计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.四、解答题(题型注释)22、(2015秋•吴江区期末)已知∠AOC=∠BOD=α(0°<α<180°) (1)如图1,若α=90°①写出图中一组相等的角(除直角外) ,理由是②试猜想∠COD 和∠AOB 在数量上是相等、互余、还是互补的关系,并说明理由; (2)如图2,∠COD+∠AOB 和∠AOC 满足的等量关系是 ;当α= °,∠COD 和∠AOB 互余.23、(2015秋•吴江区期末)某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?24、(2015秋•吴江区期末)如图,点P 是∠AOB 的边OB 上的一点.(1)过点P 画OB 的垂线,交OA 于点C , (2)过点P 画OA 的垂线,垂足为H ,(3)线段PH 的长度是点P 到 的距离,线段 是点C 到直线OB 的距离. (4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC 、PH 、OC 这三条线段大小关系是 (用“<”号连接)25、(2015秋•吴江区期末)已知代数式6x 2+bx ﹣y+5﹣2ax 2+x+5y ﹣1的值与字母x 的取值无关(1)求a 、b 的值; (2)求a 2﹣2ab+b 2的值.26、(2015秋•吴江区期末)先化简,再求值:5(3a 2b ﹣ab 2)﹣4(﹣ab 2+3a 2b ),其中a=﹣1,b=﹣2.27、(2015秋•吴江区期末)解方程: (1)4﹣x=3(2﹣x );(2)﹣=1.参考答案1、A2、B3、B4、C5、B6、D7、D8、A9、A10、A11、2.512、24013、13或714、215、116、017、118、55°24′.19、﹣.20、>21、﹣222、(1)AOD=∠BOC,同角的余角相等;(2)互补,45.23、该旅游团入住三人普通间12间、双人豪华间7间24、(1)见解析;(2)见解析;(3)直线0A、PC的长.(4)PH<PC<OC.25、(1)a=3,b=﹣1;(2)1626、﹣227、(1)x=1;(2)x=.【解析】1、试题分析:分析图形,可得出各射线上点的特点,再看2016符合哪条射线,即可解决问题.解:由图可知OA上的点为6n,OB上的点为6n+1,OC上的点为6n+2,OD上的点为6n+3,OE上的点为6n+4,OF上的点为6n+5,(n∈N)∵2016÷6=336,∴2016在射线OA上.故选A.考点:规律型:数字的变化类.2、试题分析:根据两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短可得①说法正确;根据对顶角相等可得②错误;根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行,可得说法正确;根据连接两点间的线段的长度叫两点间的距离可得④错误.解:①两点之间的所有连线中,线段最短,说法正确;②相等的角是对顶角,说法错误;③过直线外一点有且仅有一条直线与己知直线平行,说法正确;④两点之间的距离是两点间的线段,说法错误.正确的说法有2个,故选:B.考点:线段的性质:两点之间线段最短;两点间的距离;对顶角、邻补角;平行公理及推论.3、试题分析:使方程两边左右相等的未知数叫做方程的解方程的解.解:把x=m代入方程得4m﹣3m=2,m=2,故选B.考点:一元一次方程的解.4、试题分析:分别利用同旁内角互补两直线平行,内错角相等两直线平行得出答案即可.解:A、∵∠3+∠4,∴BC∥AD,本选项不合题意;B、∵∠C=∠CDE,∴BC∥AD,本选项不合题意;C、∵∠1=∠2,∴AB∥CD,本选项符合题意;D、∵∠C+∠ADC=180°,∴AD∥BC,本选项不符合题意.故选:C.考点:平行线的判定.5、试题分析:根据垂线的定义求出∠3,然后利用对顶角相等解答.解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选:B.考点:垂线.6、试题分析:找到从左面看所得到的图形即可.解:从左面可看到一个长方形和上面的中间有一个小长方形.故选:D.考点:由三视图判断几何体;简单组合体的三视图.7、试题分析:根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.故选D.考点:单项式.8、试题分析:本题可根据非负数的性质得出m、n的值,再代入原式中求解即可.解:依题意得:1﹣m=0,n+2=0,解得m=1,n=﹣2,∴m+n=1﹣2=﹣1.故选A.考点:非负数的性质:偶次方;非负数的性质:绝对值.9、试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.考点:科学记数法—表示较大的数.10、试题分析:根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.解:A、正确;B、2a﹣a=a;C、3a2+2a2=5a2;D、不能进一步计算.故选:A.考点:合并同类项.11、试题分析:利用剪下部分拼成的图形的边长等于棱柱的底面边长求解即可.解:设粗黑实线剪下4个边长为xcm的小正方形,根据题意列方程2x=10÷2解得x=2.5cm,故答案为:2.5.考点:展开图折叠成几何体.12、试题分析:设这种商品每件的进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.解:设这种商品每件的进价为x元,根据题意得:330×80%﹣x=10%x,解得:x=240,则这种商品每件的进价为240元.故答案为:240考点:一元一次方程的应用.13、试题分析:应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB 的延长线上或点C在线段AB上.解:①当点C在线段AB的延长线上时,此时AC=AB+BC=26cm,∵M是线段AC的中点,则AM=AC=13cm;②当点C在线段AB上时,AC=AB﹣BC=14cm,∵M是线段AC的中点,则AM=AC=7cm.故答案为:13或7.考点:两点间的距离.14、试题分析:根据解一元一次方程,可得x的值,根据同解方程的解相等,可得关于m的方程,根据解方程,可得答案.解:由2(2x﹣1)=3x+1,解得x=3,把x=3代入m=x﹣1,得m=3﹣1=2,故答案为:2.考点:同解方程.15、试题分析:先变形(x+y)2﹣x﹣y+1得到(x+y)2﹣(x+y)+1,然后利用整体思想进行计算.解:∵x+y=1,∴(x+y)2﹣x﹣y+1=(x+y)2﹣(x+y)+1=1﹣1+1=1.故答案为1.考点:代数式求值.16、试题分析:先根据数轴上各点的位置判断出a,b,c的符号及|a|,|b|和|c|的大小,接着判定a+c、a﹣b、c+b的符号,再化简绝对值即可求解.解:由上图可知,c<b<0<a,|a|<|b|<|c|,∴a+c<0、a﹣b>0、c+b<0,所以原式=﹣(a+c)+a﹣b+(c+b)=0.故答案为:0.考点:实数与数轴.17、试题分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2m+1=3m﹣1,10+4n=6,求出n,m的值,再代入代数式计算即可.解:∵﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,∴2m+1=3m﹣1,10+4n=6,∴n=﹣1,m=2,∴m+n=2﹣1=1.故答案为1.考点:同类项.18、试题分析:根据如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角进行计算.解:∠α的余角为:90°﹣34°36′=89°60′﹣34°36′=55°24′,故答案为:55°24′.考点:余角和补角;度分秒的换算.19、试题分析:直接利用乘方的意义和计算方法计算得出答案即可.解:﹣(﹣)2=﹣.故答案为:﹣.考点:有理数的乘方.20、试题分析:有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解:|﹣|=,|﹣0.4|=0.4,∵<0.4,∴﹣>﹣0.4.故答案为:>.考点:有理数大小比较.21、试题分析:利用有理数的运算法则计算.有理数的混合运算法则即先算乘方或开方,再算乘法或除法,后算加法或减法.有括号(或绝对值)时先算.解:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|=﹣1﹣÷3×|3﹣9|=﹣1﹣××6=﹣1﹣1=﹣2.考点:有理数的混合运算.22、试题分析:(1)①根据同角的余角相等解答;②表示出∠AOD,再求出∠COD,然后整理即可得解;(2)根据(1)的求解思路解答即可.解:(1)①∵∠AOC=∠BOD=90°,∴∠AOD+∠AOB=∠BOC+∠AOB=90°,∴∠AOD=∠BOC;②∵∠AOD=∠BOD﹣∠AOB=90°﹣∠AOB,∴∠COD=∠AOD+∠AOC=90°﹣∠AOB+90°,∴∠AOB+∠COD=180°,∴∠COD和∠AOB互补;(2)由(1)可知∠COD+∠AOB=∠BOD+∠AOC=α+α=2α,所以,∠COD+∠AOB=2∠AOC,若∠COD和∠AOB互余,则2∠AOC=90°,所以,∠AOC=45°,即α=45°.故答案为:(1)AOD=∠BOC,同角的余角相等;(2)互补,45.考点:余角和补角.23、试题分析:首先设该旅游团入住的三人普通间数为x,根据题意表示出双人豪华间数为,进而利用该旅游团当日住宿费用共计4020元,得出等式求出即可.解:设该旅游团入住的三人普通间数为x,则入住双人豪华间数为.根据题意,得160x+300×=4020.解得:x=12.从而=7.答:该旅游团入住三人普通间12间、双人豪华间7间.(注:若用二元一次方程组解答,可参照给分)考点:一元一次方程的应用.24、试题分析:(1)(2)利用方格线画垂线;(3)根据点到直线的距离的定义得到线段PH的长度是点P到OA的距离,线段OP的长是点C到直线OB的距离;(4)根据直线外一点到直线上各点连接的所有线中,垂线段最短得到PC>PH,CO>CP,即可得到线段PC、PH、OC的大小关系.解:(1)如图:(2)如图:(3)直线0A、PC的长.(4)PH<PC<OC.考点:垂线段最短;点到直线的距离;作图—基本作图.25、试题分析:(1)原式合并后,根据代数式的值与字母x无关,得到x一次项与二次项系数为0求出a与b的值即可;(2)原式利用完全平方公式化简后,将a与b的值代入计算即可求出值.解:(1)原式=(6﹣2a)x2+(b+1)x+4y+4,根据题意得:6﹣2a=0,b+1=0,即a=3,b=﹣1;(2)原式=(a﹣b)2=42=16.考点:整式的加减—化简求值.26、试题分析:原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时,原式=﹣6+4=﹣2.考点:整式的加减—化简求值.27、试题分析:去分母,去括号,移项,合并同类项,系数化一.解:(1)4﹣x=3(2﹣x),去括号,得4﹣x=6﹣3x,移项合并同类项2x=2,化系数为1,得x=1;(2),去分母,得3(x+1)﹣(2﹣3x)=6去括号,得3x+3﹣2+3x=6,移项合并同类项6x=5,化系数为1,得x=.考点:解一元一次方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. (2 分)下列四个数中,在﹣2 到 0 之间的数是( A.3 B.1 C.﹣3 D.﹣1 )
3. (2 分)下列计算正确的是( A.3a+4b=7ab B.7a﹣3a=4 C.3a+a=3a2
D.3a2b﹣4a2b=﹣a2b )
4. (2 分)下列图形中,能折叠成正方体的是(
A.
B.
C
.
D. 5. (2 分)已知 a,b 两数在数轴上的位置如图所示,则化简代数式|a+b|﹣|a﹣ 1|+|b+2|的结果是( )
26. (6 分) 如图, 直线 AB、 CD 相交于点 O, OE 平分∠BOD, ∠AOC=72°, ∠DOF=90°. (1)写出图中任意一对互余的角; (2)求∠EOF 的度数.
第 4 页(共 18 页)
27. (7 分)某车间共有 75 名工人生产 A、B 两种工件,已知一名工人每天可生 产 A 种工件 15 件或 B 种工件 20 件,但要安装一台机械时,同时需 A 种工件 1 件,B 种工件 2 件,才能配套,设车间如何分配工人生产,才能保证连续安装机 械时,两种工件恰好配套? 28. (9 分)如图 1,已知数轴上有三点 A、B、C,AB=60,点 A 对应的数是 40.
A.只有(1)正确 B.只有(2)正确 C. (1 ) , (2)都正确 都不正确
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.请把答案直接填写在 答卷纸相应位置上) 9. (2 分)与原点的距离为 2.5 个单位的点所表示的有理数是 10. (2 分)若代数式 x﹣y 的值为 3,则代数式 2x﹣3﹣2y 的值是 . .
A.1 个 B.2 个 C.3 个 D.4 个 7. (2 分)如果一个角 α 的度数为 13°14′,那么关于 x 的方程 2α﹣x=180°﹣3x 的 解为( A.76°46′ ) B.76°86′ C.86°56′ D.166a﹣b|=a+b,那么对于结论: (1)a 一定不是负 数; (2)b 可能是负数,其中( ) D. (1) , (2)
18. (2 分)如图,每一幅图中均含有若干个正方形,第 1 幅图中有 1 个正方形; 第 2 幅图中有 5 个正方形…按这样的规律下去,第 7 幅图中有 个正方形.
三、解答题(本大题共 10 小题,共 64 分.请在答卷纸指定区域内作答,解答 时应写出文字说明、证明过程或演算步骤) 19. (6 分)计算: (1) ;
11. (2 分)五个完全相同的小长方形拼成如图所示的大长方形,大长方形的周 长是 32cm,则小长方形的面积是 cm2.
12. (2 分)如图,C 为线段 AB 上一点,AC=5,CB=3,若点 E、F 分别是线段 AC、 CB 的中点,则线段 EF 的长度为 .
13. (2 分)已知关于 x 的方程 kx=7﹣x 有正整数解,则整数 k 的值为
24. (6 分)随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明 家中买了一辆小轿车,他连续记录了 7 天中每天行驶的路程(如下表) ,以 50km 为标准,多于 50km 的记为“+”,不足 50km 的记为“﹣”,刚好 50km 的记为“0”. 第一天 第二天 第三天 第四天 第五天 第六天 第七天 路程(km) ﹣8 ﹣11 ﹣14 0 ﹣16 +41 +8
**==(本文系转载自网络,如有侵犯,请联系我们立即删除)==**
2015-2016 学年江苏省苏州市高新区七年级上学期数学期末试卷
一、选择题(本大题共 8 小题,每小题 2 分,共 16 分.在每小题所给出的四个 选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题 卷相应位置上) 1. (2 分)与﹣3 互为相反数的是( A.﹣3 B.3 C.﹣ D. ) )
(1)请你用所学的统计知识,估计小明家一月(按 30 天计)要行驶多少千米? (2)若每行驶 100km 需用汽油 8L,汽油每升 4.74 元,试求小明家一年(按 12 个月计)的汽油费用是多少元? 25. (6 分)如果方程 求式子 的值. 的解与方程 4x﹣(3a+1) =6x+2a﹣1 的解相同,
16. (2 分) 直线 AB 外有 C、 D 两个点, 由点 A、 B、 C、 D 可确定的直线条数是
.
17. (2 分)有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 10 人不能上车, 若每辆客车乘 43 人,则只有 1 人不能上车,有下列四个等式:①40m+10=43m ﹣1② ③ ④40m+10=43m+1,其中正确的是 .
(2) (﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)]. 20. (4 分)先化简,再求值:2m2﹣4m+1﹣2(m2+2m﹣ ) ,其中 m=﹣1. 21. (9 分)解方程(组) : (1)4﹣3x=6﹣5x; (2) (3) . ;
22. (5 分)在如图所示的方格纸中,点 A、B、C 均在格点上. (1)画线段 BC,过点 A 作 BC 的平行线 AD.
第 3 页(共 18 页)
(2)过点 C 作 AD 的垂线,垂足为 E; (3)若 BC=3.2,则点 B 到直线 AD 的距离为 .
23. (6 分) (1)由大小相同的小立方块搭成的几何体如下图,请在下图的方格 中画出该几何体的俯视图和左视图. (2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画 的图一致, 则这样的几何体最少要 块. 个小立方块,最多要 个小立方
.
14. (2 分)已知∠AOB=80°,以 O 为顶点,OB 为一边作∠BOC=20°,则∠AOC 的度数为 .
15. (2 分)如图是 2016 年 1 月份的日历,在日历上任意圈出一个竖列上相邻的 3 个数.如果被圈出的三个数的和为 54,则这三个数中最大的一个数表示:2016 年1月 日.
第 2 页(共 18 页)
A.1
B.2a﹣3
C.2b+3
D.﹣1
6. (2 分)下列说法中:①棱柱的上、下底面的形状相同;②若 AB=BC,则点 B 为线段 AC 的中点;③相等的两个角一定是对顶角;④不相交的两条直线叫做平 行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有 ( )
第 1 页(共 18 页)