第二章随机过程1
随机过程-第二章 随机过程
![随机过程-第二章 随机过程](https://img.taocdn.com/s3/m/1b53702c0066f5335a81218b.png)
同样地, k 维随机过程的
n 维联合分布函数具有对称性和相容性。
i 1 i
k
例 2.1 设随机变量 X b(n, p) ,求 X 的特征函数
解:当 n 1 时, X 服从 0-1 分布,
P( X k ) p k (1 p)1k , k 0,1
所以
(t ) eitk P( X k ) peit (1 p)
自协方差函数与自相关函数之间的关系:
CX (s, t ) RX (s, t ) X (s) X (t )
注:自相关函数与自协方差函数均具有对称性和非负定性的性质。
2.3.2 二维随机过程
两个随机过程 X (t ), t T 和 Y (t ), t T 的互协方差函数
n
Ft1 ,,tm ,tm1 ,,tn ( x1 ,, xm , ,, ) Ft1 ,,tm ( x1 ,, xm )
对应具有有限分布族的随机过程 X (t ), t T 的特征函数
t ,,t (u1 ,, un ) E (ei (u X (t )u X (t )) ) ei (u X (t )u X (t )) dFt ,,t ( x1 ,, xn )
解:先求 Y
X
的特征函数。因为 Y N (0,1) ,所以
2 2
Y (t ) e
由于 ixe
itx x2 2
itx
x itx 1 x2 1 2 e dx e dx 2 2
x2 2
xe
,且
2
xe
x2 2
dx ห้องสมุดไป่ตู้ ,所以
第2讲 第二章随机过程的概念
![第2讲 第二章随机过程的概念](https://img.taocdn.com/s3/m/f9d8e56bddccda38366baf02.png)
RXY ( s, t ) E[ X ( s)Y t ]
互协方差函数为
BXY ( s, t ) Cov[ X ( s), Y t ]
E{[ X ( s) mX ( s)][Y (t ) mY (t )]}
例7 已知实随机过程X(t)具有自相关函数R(s,t), 令 Y(t)=X(t+a)-X(t) 求RXY(s, t), RYY(s, t).
设m n,
j 1
BY (n, m) min n, m pq,
RY (n, m) BY (n, m) E[Yn ]E[Ym ]
min n, m pq nmp 2
定义 设 X t , t T 和 Y t , t T 是两个随机过程,
2 1 2
x 1 t2
2 2
1 t 1 s
2
2 x1 x2
s, t 0, s t
例4 若从t=0开始每隔1/2秒抛掷一枚均匀的硬币做试 验,定义一个随机过程: t时出现正面; cos t , X (t ) t时出现反面. 2t 求 1) 一维分布函数F(1/2;x)和F(1,x); 2) 二维分布函数F(1/2, 1;x, y). 解(1) 这是独立随机过程(即在不同时刻的随机变量 相互独立) ,所以过程的有限维统计特性由一维确 定。 X(t cosπt 2t ) p 1/2 1/2
X t 的值称为随机过程在t时所处的状态。 X t 所有可能的值的集合,称状态空间, 记为I.
根据时间集和状态空间的不同,随机过程分为 四类: 1) T, I 均为离散;
2) T 离散, I 连续;
随机过程讲义(第二章)(PDF)
![随机过程讲义(第二章)(PDF)](https://img.taocdn.com/s3/m/5bd201dbdb38376baf1ffc4ffe4733687e21fc9b.png)
第二章 随机过程的一般概念2.1 随机过程的基本概念和例子定义2.1.1:设(P ,,F )Ω为概率空间,T 是某参数集,若对每一个,是该概率空间上的随机变量,则称为随机过程(Stochastic Process)。
T t ∈),(w t X ),w t (X 随机过程就是定义在同一概率空间上的一族随机变量。
随机过程可以看成定义在),(w t X Ω×T 上的二元函数,固定Ω∈0w ,即对于一个特定的随机试验,称为样本路径(Sample Path),或实现(realization),这是通常所观测到的过程;另一方面,固定,是一个随机变量,按某个概率分布随机取值。
),(0w t X T t ∈0),(0w t X抽象一点:令,即∏∈=Tt T R R T R 中的元素为),(T t x X t t ∈=,为其Borel域(插乘)(T R B σ域),随机过程实质上是()F ,Ω到())(,T T R R B 上的一个可测映射,在())(,T TR RB 上诱导出一个概率测度:T P ()B X P B P R B T T T ∈=∈∀)(),(B 。
一般代表的是时间。
根据参数集T 的性质,随机过程可以分为两大类: t 1)为可数集,如T {}L ,2,1,0=T 或{}L L ,1,0,1,−=T ,称为离散参数随机过程,也称为随机序列;2)为不可数集,如T {}0≥=t t T 或{}∞<<∞−=t t T ,称为连续参数随机过程。
随机过程的取值称为过程所处的状态(State),所有状态的全体称为状态空间(State Space)。
通常以表示随机过程的状态空间。
根据状态空间的特征,一般把随机过程分为两大类:T t t X ∈),(S 1) 离散状态,即取一些离散的值; )(t X 2)连续状态,即的取值范围是连续的。
)(t X离散参数离散状态随机过程: Markov 链 连续参数离散状态随机过程: Poisson 过程 离散参数连续状态随机过程: *Markov 序列连续参数连续状态随机过程: Gauss 过程,Brown 运动例2.1.1:一醉汉在路上行走,以的概率向前迈一步,以q 的概率向后迈一步,以p r 的概率在原地不动,1=++r q p ,选定某个初始时刻,若以记它在时刻的位置,则就是直线上的随机游动(Random Walk)。
第二章随机过程基本概念.
![第二章随机过程基本概念.](https://img.taocdn.com/s3/m/20d07732a31614791711cc7931b765ce04087a5f.png)
第二章随机过程基本概念.2随机过程的基本概念§2.1 基本概念随机过程是指一族随机变量 .对随机过程的统计分析称为随机过程论 , 它是随机数学中的一个重要分支,产生于本世纪的初期 .其研究对象是随机现象,而它特别研究的是随“ 时间” 变化的“ 动态” 的随机现象 .一随机过程的定义1 定义设 E 为随机试验, S 为其样本空间,如果 (1对于每个参数t ∈ T , X(e,t为建立在 S 上的随机变量,(2对每一个e ∈ S , X(e,t为t 的函数,那么称随机变量族{X(e,t, t∈ T, e∈ S}为一个随机过程,简记为{X(e,t, t∈ T}或 X(t。
((((({}{}[](为随机序列。
时,通常称 , 取可列集合当可以为无穷。
通常有三种形式:参数一般表示时间或空间, 或有时也简写为一个轨道。
随机过程的一个实现或过程的样本函数,或称随机的一般函数,通常称为为对于 :上的二元单值函数。
为即若用映射来表示注意:t X T T T b a b a T T T T t X t X t e X T t e X S e S T t e X RS T t e X t21321, , , , 3, 2, 1, 0, 1, 2, 3, , 3, 2, 1, 0T , . 4, . 3, , 2, :, . 1=---==??×?′?′L L L 为一个随机过程。
则令掷一均匀硬币, 例 , ( (cos (}, {1t e X t X Rt T e t H e t t X T H S =??íì====p2 随机过程举例例 2:用 X(t表示电话交换台在 (0, t 时间内接到的呼唤的次数 , 则(1对于固定的时刻 t, X(t为随机变量 , 其样本空间为{0, 1, 2, …..},且对于不同的 t, 是不同的随机变量 .(2对于固定的样本点 n, X(t=n是一个 t 的函数 .(即:在多长时间内来 n 个人 ?所以 {X(t,t>0}为一个随机过程 .相位正弦波。
第二章 随机过程基本概念
![第二章 随机过程基本概念](https://img.taocdn.com/s3/m/71145f00cc175527072208f5.png)
E = {x : X (t , ω ) = x, t ∈ T , ω ∈Ω}
3.1 随机过程的定义
定义2 是一个实数集。 定义2 设( ,ℱ,P)是一个概率空间,T是一个实数集。 )是一个概率空间, 是一个实数集 X(t,ω)(t ∊T, ω∊Ω)是定义在 和 上的二元函数。若对于 (, ) ∊Ω) , ∊Ω 是定义在T和 上的二元函数。 任意固定的ω∊Ω 总有一个t 的函数X( , ) 任意固定的 ∊Ω ,总有一个 的函数 (t,ω)(t ∊T)与之对 ) 的函数, 应,对于所有的ω∊Ω ,就得到一族确知的 的函数,则称这一 对于所有的 ∊Ω 就得到一族确知的t的函数 则称这一 的函数的集合{ ( , ), ),t , ∊Ω ∊Ω} 族 t 的函数的集合{X(t,ω), ∊T, ω∊Ω}是( ,ℱ,P)上的随机 )上的随机 过程。 过程。 其中,每一个函数称为样本函数, 其中,每一个函数称为样本函数,或该随机过程的一个 函数称为样本函数 实现。 实现。
i 0 1 X2 1 i 0 Xm 1 i 0 1 2 3 4 5 6 7 8 9 10 …… 1 2 3 4 5 6 7 8 9 10 …… 2 3 4 5 6 7 8 9 10 ……
3.1 随机过程的定义
电话问题。 ( ≥0)固定时,电话交换站在[0 ] ≥0)固定时 [0, 例2 电话问题。当t(t≥0)固定时,电话交换站在[0,t] 时间内接到的呼唤次数是个随机变量 它可以取非负整数值0 随机变量, 时间内接到的呼唤次数是个随机变量,它可以取非负整数值0, 变到∞ 1,2,…。如果 从0变到∞, t 时刻前接收到的呼唤次数就 。如果t 需要用一族随机变量表示 是一个随机过程 一族随机变量表示, 随机过程。 需要用一族随机变量表示,是一个随机过程。 做一次试验, 做一次试验,可得到一 条表示t 条表示 时刻前接收到的 呼唤次数的非降阶梯曲 样本函数)。 )。各次 线(样本函数)。各次 试验所得的曲线是随机 所有这些样本函数 的。所有这些样本函数 组成一随机过程 随机过程。 组成一随机过程。
第二章 随机过程基本概念
![第二章 随机过程基本概念](https://img.taocdn.com/s3/m/a17e092310661ed9ad51f363.png)
第二章 随机过程的基本概念
§2.1 随机过程的定义 §2.2 随机过程的分布与数字特征 §2.3 随机过程的分类
§2.1 随机过程的定义
引入:
初等概率论的研究对象
§2.1 随机过程的定义
引例1
某电话交换台在时间段[0,t]内接到的电话次数记为X(t),
随机现象某个时刻或有限个时刻静态的结果 即一个或有限个随机变量(随机向量). 问 描述随机现象的整个变化过程, 需要多少个随机变量?
Fn ( xi1 , xi2 ,, xin , ti1 , ti2 ,, tin ) Fn ( x1 , x2 ,, xn , t1, t2 ,, tn )
(2)相容性 对任意自然数m<n,随机过程的m维分布函数 与n维分布函数之间有关系:
Fm ( x1 , x2 ,, xm , t1 , t2 ,, tm ) Fn ( x1 , x2 ,, xm , ,, , t1 , t2 ,, tn )
解
X(t ) A (t (T0 kT )), T0 kT t T0 (k 1)T (k 0, 1, 2) T
§2.2 随机过程的分布与数字特征
2、随机过程的二维分布函数
定义 设{ X ( t ), t T }是一个随机过程,对任意固定的
T 故有,T0 X (t ) t kT h( X (t )), T0 kT t T0 (k 1)T A
29 November 2015
随机过程
§2.2 随机过程的分布与数字特征
例1 设X ( t ) X cos(at ), t ,其中a为常数,
X服从标准正态分布,试求X(t)的一维概率密度函数。
第二章随机过程
![第二章随机过程](https://img.taocdn.com/s3/m/6418fc006fdb6f1aff00bed5b9f3f90f76c64d6d.png)
第⼆章随机过程第 2 章随机过程2.1 引⾔确定性信号是时间的确定函数,随机信号是时间的不确定函数。
?通信中⼲扰是随机信号,通信中的有⽤信号也是随机信号。
描述随机信号的数学⼯具是随机过程,基本的思想是把概率论中的随机变量的概念推⼴到时间函数。
2.2 随机过程的统计特性⼀.随机过程的数学定义:设随机试验E 的可能结果为)(t g ,试验的样本空间S 为{x 1(t), x 2(t), …, x n (t),…}, x i (t)是第i 次试验的样本函数或实现,每次试验得到⼀个样本函数,所有可能出现的结果的总体就构成⼀随机过程,记作)(t g 。
随机过程举例:⼆.随机过程基本特征其⼀,它是⼀个时间函数;其⼆,在固定的某⼀观察时刻1t ,)(1t g 是随机变量。
随机过程具有随机变量和时间函数的特点。
●随机过程)(t g 在任⼀时刻都是随机变量;●随机过程)(t g 是⼤量样本函数的集合。
三.随机过程的统计描述设)(t g 表⽰随机过程,在任意给定的时刻T t ∈1, )(1t g 是⼀个⼀维随机变量。
1.⼀维分布函数:随机变量)(t g ⼩于或等于某⼀数值x 的概率,即})({);(1x t g P t x P ≤= 2.2.12.⼀维概率密度函数:⼀维概率分布函数对x 的导数.xt x P t x p ??=);(),(11 2.2.2 3.对于任意两个时间1t 和2t ,随机过程的对应的抽样值)(1t g )(2t g 为两个随机变量.他们的联合分布定义为)(t g 的⼆维分布})(;)({),;,(221121212x t g x t g P t t x x P ≤≤= 2.2.34.⼆维分布密度定义为212121221212),;,(),;,(x x t t x x P t t x x p = 2.2.4 四.随机过程的⼀维数字特征设随机过程)(t g 的⼀维概率密度函数为),(1t x p .1.数学期望(Expectation)dx t x xp t g E t g );()]([)(1?∞∞-==µ 2.2.5 2.⽅差(Variance)dx t x p t x t t g E t g Var t g g g ),()]([]))()([()]([)(1222µµσ-=-==?∞∞- 2.2.6五.随机过程的⼆维数字特征1.⾃协⽅差函数(Covariance)21212122211221121),;,())())((())]()())(()([(),(dx dx t t x x p t x t x t t g t t g E t t C g g g g g µµµµ--=--=??∞∞-∞∞- 2.2.72. ⾃相关函数(Autocorrelation)2121212212121),;,()]()([),(dx dx t t x x p x x t g t g E t t R g ∞∞-∞∞-== 2.2.83.⾃相关函数和⾃协⽅差函数的关系)]([)]([),(),(212121t g E t g E t t R t t C g g ?-= 2.2.94.设两个随机过程分别为)(),(t h t g ,在时刻1t 和2t ,对)(),(t h t g 抽样,两个随机过程的互相关函数(Cross-correlation)定义为)]()([),(2121t h t g E t t R gh = 2.2.105.两个随机过程的互协⽅差函数(Cross-covariance)定义为)]()())(()([(),(221121t t h t t g E t t C h g gh µµ--= 2.2.112.3 平稳随机过程⼀.狭义平稳的随机过程(严平稳的随机过程)对于任意的正整数n 和实数τ,若随机过程)(t g 的n 维概率密度函数满⾜ ),,;,,(),,;,,,(21212121n n n n n n t t t x x x p t t t x x x p=+???++???τττ 2.3.1 则称)(t g 为狭义平稳的随机过程.统计特性不随时间的推移⽽变化的随机过程称为平稳随机过程。
第2章_随机过程的基本概念
![第2章_随机过程的基本概念](https://img.taocdn.com/s3/m/044b5b7902768e9951e73855.png)
t1
100
150
200
接收机噪声
随时间变化的随机变量----随机变量的集合
随机过程的直观解释:
对随机相位信号或噪声信号作一次观测相当于做一次随
机试验,每次试验所得到的观测记录结果xi(t)是一个
确定的函数,称为样本函数,所有这些样本函数的全体
构成了随机过程。
在实际中还有一类过程,它是按照确定的数学公式产
例2. 设随机过程X(t)=tX,X为标准正态分布的随机变量。 试问X(t)是否平稳?
解:
所以X(t)是非平稳的。
2. 平稳随机过程自相关函数的性质 性质:
(5)若随机过程含有周期分量,则自相关函数也含有周 期分量,
例3 已知平稳随机过程X(t)的自相关函数为
求X(t)的均值和方差。 解:
连续型随机过程 连续
时刻
续
离散
离散
连续
离散随机序列
离散
离散
(2)按概率分布分类
高斯随机过程 瑞利随机过程
对数正态随机过程
(3)按统计特性分类
平稳随机过程
非平稳随机过程
§ 2.2 随机过程的统计描述
1.随机过程的概率分布 (1)一维概率分布 X(t)在任意时刻t是一个随机变量,这个随机变量的概率 分布和概率密度定义为随机过程的一维概率分布和概率 密度。
(3)掌握相关函数的性质;
(4)理解白噪声的定义和特点;
本章是本课程的基础和核心
§2.1随机过程的基本概念及定义
1.实际背景
例2.1 分析随机相位信号
X (n) A cos(0 n )
Φ~R(-π, +π)
1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
第二章随机过程的基本概念-1
![第二章随机过程的基本概念-1](https://img.taocdn.com/s3/m/b9fb170a76c66137ee061908.png)
X (t0 )
是一个随机变量, 是一个随机变量,
并称作随机过程 X (t ) 在 t = t 0 时的一个状态,
它 反 映 了 X (t ) 的 “ 随 机 ” 性 ;
对于每一个ω0 ∈Ω ,
X (t ) 是一个确定的样本函数,
它反映了 X (t) 的变化“过程” 。
首页
随机过程 X (t ,ω) 可看成定义在积集 T × Ω 上的二 元函数
n维 维 概率 密度
F (t1 , t 2 , L, t n;x1 , x 2 , L , x n )
若存在非负函数 f (t1 , t 2 , L , t n;x1 , x 2 , L , x n )
F (t1 , t 2 , L , t n;x1 , x2 , L, xn )
=
∫ ∫
x1
x2
−∞ −∞
X (t )
取值是连续的
首页
T离散、I离散 离散、 离散 离散 参数T 参数 状态I 状态 分类 T离散、I非离散(连续) 离散、 非离散 连续) 离散 非离散( T非离散(连续) 、I离散 非离散(连续) 非离散 离散 T非离散(连续) 、I非离散(连续) 非离散(连续) 非离散( 非离散 非离散 连续)
= P ( X (t n ) ≤ x n | X (t n −1 ) = x n −1 ) ,
则称 X (t ) 为马尔可夫过程
简称马氏过程。 简称马氏过程。
首页
马氏过程的特点
当随机过程在时刻 t n −1 的状态已知的条件下, 它在时刻 t n ( t n > t n −1 )所处的状态
仅与时刻 t n −1 的状态有关, 而与过程在时刻 t n −1 以前的状态无关
第2章 随机过程
![第2章 随机过程](https://img.taocdn.com/s3/m/cd6ad641336c1eb91a375d19.png)
第2章
随机过程
随机信号分析
3 随机过程的定义:
定义1:设随机试验E的样本空间 S { } ,若对于 每个元素 S ,总有一个确知的时间函数 X (t , ) 与它对应,这样,对于所有的 S,就可以得 到一簇时间t的函数,称它为随机过程。簇中的 每一个函数称为样本函数。 定义2:若对于每个特定的时间 ti (i 1,2,) X (ti , ) , 都是随机变量,则称 X (t , ) 为随机过程.X (ti , ) 称为随机过程 X (t ) 在t t i 时刻的状态。
第2章 随机过程
随机信号分析
2 二维概率分布 二维随机变量[X(t1),X(t2)]的分布函数FX(x1,x2;t1,t2)为
FX(x1,x2;t1,t2)=P{ X(t1)≤x1,X(t2)≤x2}
若FX(x1,x2;t1,t2)对x1,x2的二阶混合偏导存在,则
2 FX ( x1 , x2 ; t1 , t 2 ) f X ( x1 , x2 ; t1 , t 2 ) x1x2
为随机过程X(t)的二维概率密度
第2章 随机过程
随机信号分析
3 n维概率分布 随机过程 X (t )在任意n个时刻 t1 , t2 ,, tn 的取值 X (t1 ), X (t2 ),, X (tn ) 构成n维随机变量 [ X (t1 ), X (t2 ),, X (tn )], 定义随机过程X (t ) 的n维分布函数和n维概率密 度函数为
n重
4 f X ( x1 , x2 ,, xn ; t1 , t 2 ,, t n )dx1dx2 dxn 1
5
n-m重
第二章 随机过程
![第二章 随机过程](https://img.taocdn.com/s3/m/0e029d1c32687e21af45b307e87101f69e31fbf8.png)
程孤 立的时间点上的统计特性。 • 随机过程孤立的时间点上的统计特性不能反
映随机过程的起伏程度, 故采用两时刻或更多 时刻状态的相关性去描述起伏程度。
4.自相关函数
设和
分别是随机过程 在时刻
和的状态,称它们的二阶原点混合矩
统计特性也可分为:
1、幅值域描述: 数学期望、均方值、方差 等; 2、时间域描述: 自相关函数、互相关函数 ; 3.频率域描述: 功率谱密度函数、互功率谱 密度函数;
2.2.1.随机过程的概率分布
随机过程 , 在任意固定时刻 , 都 是随机变量。 随机事件:
发生概率:
1.一维分布函数
与 和 都有直接的关系,是 二元函数,记为:
7、当平稳随机过程含有均值 , 那它的自相 关函数也将会含有一个常数项 。
8、平稳随机过程的自相关函数的傅里叶变换在 整个频率轴上是非负的,即
且对于所有 都成立。 注: 即不含有阶跃函数的因子,如: 平顶、垂
直边或幅度上的任何不连续。
用平稳过程的自相关函数表示数字特征: (1).数学期望
(2) 均方值 (3) 方差 (4).协方差
• 随机过程 具有以下四种含义:
1.若 和 在发生变 一族时间函数,或化一,族则随随机机变过量程,是构成 了随机过程的完整概念; 2.若和 都固定,则随机过程是一个 确定值;
3.若 取固定值,则随机过程是一个确定 的时间函数,即样本函数,对应于某次试 验的结果;
4.若 取固定值,则随机过程是一个随 机变量;
图 随机过程数字特征
例2-14.设随机过程 的自相关函数为
求它的均值、均方值、方差和自协函数方差。 解:
第2章 随机过程
![第2章 随机过程](https://img.taocdn.com/s3/m/f8e2eb22af45b307e871978b.png)
2、随机过程的基本特征(属性) 、随机过程的基本特征(属性) (1)随机过程是一个时间函数; )随机过程是一个时间函数; (2)在给定的任一时刻t1,全体样本在t1时刻的取值ξ(t1)是 )在给定的任一时刻 全体样本在 时刻的取值 是 一个不含t变化的随机变量 一个不含 变化的随机变量。因此,我们又可以把随机过程看成 变化的随机变量 依赖时间参数的一族随机变量。
(2.1 - 12) (2.1 - 11)
作 业
思考题(自作): 思考题(自作): P61 习 题 : P61 3-1,3-2 , 3-2
2.2
平稳随机过程
★ 平稳随机过程的定义 ★ 各态历经性(遍历性) 各态历经性(遍历性) ★ 平稳过程的自相关函数 ★ 平稳过程的功率谱密度
一、平稳随机过程的定义
(2.1 数的关系 ) 协方差函数和( B(t1, t2)=R(t1, t2)-a(t1)a(t2)
若a(t1)=0或a(t2)=0,则B(t1, t2)=R(t1, t2)。 若t2>t1,并令t2=t1+τ,则R(t1, t2)可表示为R(t1, t1+τ)。这说 明,相关函数依赖于起始时刻 1及t2与t1之间的时间间隔 即相关 相关函数依赖于起始时刻t 之间的时间间隔τ,即相关 相关函数依赖于起始时刻 函数是t 的函数。 函数是 1和τ的函数。 的函数 由于B(t1, t2)和R(t1, t2)是衡量同一过程的相关程度的, 因此, 它们又常分别称为自协方差函数 自相关函数 自协方差函数和自相关函数 自协方差函数 自相关函数。
二、随机过程的统计特性
1、一维分布函数 一维分布函数 表示一个随机过程, 设ξ(t)表示一个随机过程,在任意给定的时刻 1∈T, 其取 表示一个随机过程 在任意给定的时刻t , 值 ξ(t1)是一个一维随机变量, 把随机变量ξ(t1)小于或等于某一 是一个一维随机变量, 把随机变量 小于或等于某一 是一个一维随机变量 数值x 的概率称为随机过程ξ(t)的一维分布函数 数值 1 的概率称为随机过程 的 一维分布函数,简记为F1(x1, t1), 即 F1(x1,t1)=P[ξ(t1)≤x1] 2、一维概率密度函数 一维概率密度函数 如果一维分布函数F 如果一维分布函数 1(x1, t1)对x1的偏导数存在,则称 1(x1, 对 的偏导数存在,则称f t1)为ξ(t)的一维概率密度函数 为 的一维概率密度函数。即有 ∂F1 ( x1 , t1 ) (2.1 - 1)
随机过程课件-第二章
![随机过程课件-第二章](https://img.taocdn.com/s3/m/dede5e313868011ca300a6c30c2259010202f3a3.png)
例题2.8:
设X(t)为信号过程,Y(t)为噪声过程,令W(t)=X(t)+Y(t),求W(t)的均值
函数和相关函数。
14复Βιβλιοθήκη 机过程定义: 设{Xt, t∈T},{Yt, t∈T}是取实数值的两个随机过程,若对任意t∈T
Zt X t iYt
其中 i 1 ,则称{Zt, t∈T}为复随机过程。 复随机过程的数字特征函数
Ft1,,tn (x1, x2 ,, xn ) P{X (t1) x1, X (tn ) xn}
这些分布函数的全体
F {Ft1,tn (x1, x2 , xn ),t1, t2 ,, tn T , n 1}
称为XT={Xt,t ∈T}的有限维分布函数。
10
数字特征
设XT={X(t),t∈T}是随机过程,如果对任意t∈T,EX(t)存在,则称函数
def
mx (t) EX (t), t T
为XT的均值函数,反映随机过程在时刻t的平均值。
若对任意t∈T,E(X(t))2存在,则称XT为二阶矩过程,而称
def
BX (s,t) E[{X (s) mX (s)}{X (t) mX (t)}], s,t T
为XT的协方差函数,反映随机过程在时刻t和s时的线性相关程度。
随机过程{X(t,e),t ∈T}可以认为是一个二元函数。 对固定的t,X(t,e)是(Ω,F,P)上的随机变量; 对固定的e, X(t,e)是随机过程{X(t,e),t ∈T}的一个样本函数。
5
X(t)通常表示为在时刻t所处的状态。X(t)的所有可能状态所构成的集合 称为状态空间或相空间。
通常我们可以根据随机变量X(t)在时间和状态上的类型区分随机过程 的类型。
第二章随机过程的基本概念
![第二章随机过程的基本概念](https://img.taocdn.com/s3/m/2832896419e8b8f67d1cb946.png)
二、有限维分布族: 定义:对于任意的t1 , t 2 , , t n T ,
F ( x1, x2 , , xn ; t1, t2 , , tn ) P X (t1) x1, , X (tn ) xn
称为随机过程X (t) 的n 维分布函数. 定义随机过程X(t) 的 n 维分布密度
而 0 ,若 t 从 0 变到 ,时刻 t 来到的
呼叫次数需用一族随机变量 X (t),t [0,) 表 示,X(t)是一个随机过程.
对电话交换站作一次观察 E 可得到一条表 示 t 以前来到的呼唤曲线 x1(t) ,它为非降的阶
梯曲线,在有呼唤来到的时刻阶跃地增加, (假定在任一呼唤来到的时刻不可能来到多 于一次呼唤).
程 X (t,) 在时刻t 的状态或截口. 若 固定,它
是 t 的函数,称为随机过程的样本函数或样 本曲线,亦称之为现实(曲线).
Remark:①上述定义中样本空间通常可理
解为样本函数的全体,而每一条样本曲线作 为一个基本事件;例3:样本曲线 x i (t )
作为i(i 1,2,,n,) 改写为 X(t,i) ;全体样本函数x(t) 构成样本空间 ,即X(t,) 全体构成样本空间 当 i 时,X(t,i) 即为 xi(t),i 1,2
的结果是一个随机过程,可用一族相互独 立 r v X 1 ,X2, 或 Xn,n 1表示.
,
Xn
0
n
n
0
……
n
0
1
2
3
4
5
6
7
8Hale Waihona Puke 910例2.当 t(t 0)固定时,电话交换站在 [ 0 , t ] 时 间内来到的呼叫次数是 r v ,记X (t ) ,X(t) P(t) , 其中 是单位时间内平均来到的呼叫次数,
第二章 随机过程
![第二章 随机过程](https://img.taocdn.com/s3/m/946d97e0aef8941ea76e0581.png)
x1 x2 f X ( x1 , x2 ; t1,t2 ) dx1dx2
RX (t1 , t2 ) x1i x2 j P X (t1 ) x1i , X (t2 ) x2 j
i j
2017/5/2 32
2017/5/2
32/129
三、 RS的数字特征
二、 RS的分布特性
研究随机过程有两条途经:
侧重于研究概率结构
侧重于统计平均性质的研究
2017/5/2
21
21/117
二、 RS的分布特性
1.一维分布
研究RS上任意时刻对应的RV的统计特性
FX x , t P X t x
FX x, t f X x, t x
离散型随机序列
20பைடு நூலகம்7/5/2
13
例 正弦随机信号(连续型随机过程 )
X t, s A cos t
正弦R.S.的三个参数 A, , 都可能是 R.V.
2017/5/2
14
14/117
. . ,A, 为常数 1)随机相位正弦信号 为RV
X t A cos t
6
6/117
定义2:设有一个过程X(t),若对于每一个固定的
时刻tj(j=1,2,…),X(tj)是一个随机变量,则称X(t) 为随机过程。 可把随机过程看成是依赖于时间 t 的一族随机 变量。
一、随机过程的定义
【理解】: 1)与RV 相比,点与线的关系 2)与确定信号
sin(t)
t
t
t
任一时刻函数值为定值
热噪声电压表示为:
X t, X t, 1 , X t, 2 ,K , X t, n ,K
第二章随机过程1
![第二章随机过程1](https://img.taocdn.com/s3/m/a766482accbff121dd3683ca.png)
所以S.P.的一维分布为X(t) ~N(0,1+t2) 又对任意的t1≥0, t2≥0, X(t1)=A+Bt1 ~N(0,1+t12), X(t2)=A+Bt2 ~N(0,1+t22),
即
( X (t1 )
1 1 X (t2 )) ( A B) t t 1 2
由A,B独立知, (A,B)服从二维正态分布 (定理 正态变量的线性变换是正态变量)
2.二维分布函数
对任意固定的t1,t2∈T, X (t1) ,X (t2)为两个随机 变量.称其联合分布函数 F (t1,t2; x1, x2)=P(X(t1) ≤x1, X(t2) ≤x2 ), x1, x2∈R 为随机过程{X(t),t∈T}的二维分布函数.
3. n维分布函数
对任意固定的t1,t2, …,tn∈T, X (t1) ,X (t2),…, X (tn) 为n个随机变量.称其联合分布函数
例3 的样本曲线与状态
样本曲线x1(t)
状态X(t0)=40 状态X(t0)=25 状态X(t0)=18
样本曲线x2(t) 样本曲线x3(t)
0
24
…
t0
t
状态空间S={0,1,2,….},
T=[0,24,……)
4.分类根据参数集与状态空间离散与否,随机过程可分为
●离散参数,离散状态的随机过程 (例3)
,t X t () 3.样本轨道:固定
称为一条样本轨道
样本轨道的连续性:设X={Xt(ω):t ∈T}是一个取实值 过程(S=R),则称该过程: (1) 以概率1连续(过程X有连续样本轨道):
P(lim X s X t 0, t T ) 1
第二章随机过程(函数)
![第二章随机过程(函数)](https://img.taocdn.com/s3/m/4ce9861a227916888486d731.png)
t1 ,全体样本在t1 时刻的取值ξ(t1)是一个不含t变化的随机
变量。 因此,我们又可以把随机过程看成依赖时间参数的一族随 机变量。可见,随机过程具有随机变量和时间函数的特点。
8
西安电子科技大学 理学院
随机过程的定义:设Sk(k=1, 2, …)是随机试验。 每一次 试验都有一条时间波形(称为样本函数或实现),记作xi(t), 所有可能出现的结果的总体{x1(t), x2(t), …, xn(t), …} 就构成一随机过程,记作ξ(t)。简言之, 无穷多个样本函 数的总体叫做随机过程,如图所示。
N=200;
ind=find(rand(N,1)>0.5); z(1:N)=1; z(ind)=-1; stairs(1:25,z(1:25)); axis([0 25 -1.5 1.5]); xlabel('时间-秒 (假定T=1 秒)'); ylabel('X(t)','FontSize',[12]);
17
西安电子科技大学 理学院
伪随机序列似乎已经失去了“随机”特点,但是它确
代替或者模拟了某类随机过程!
所谓:经目之事有恐未真;过耳之言焉能全信! 工程种研究随机过程实际是通过理论分析其大量样本 函数,建立符合其实际过程或者称为能体现其过程特点 的伪随机序列模型,对伪随机序列进行研究,即可得到
其过程特点。
3
西安电子科技大学 理学院
随机信号序列
4
西安电子科技大学 理学院
5
西安电子科技大学 理学院
6
西安电子科技大学 理学院
7
西安电子科技大学 理学院
按分布特性分类,依照过程在不同时刻状态的统计依赖关 分类。例如:独立增量过程,马尔可夫过程,平稳过程,鞅,
第二章 随机过程的基本概念.
![第二章 随机过程的基本概念.](https://img.taocdn.com/s3/m/135aa337a76e58fafab003ce.png)
4
5
随机变量X (t1 )
x1 (t )
随机序列
x2 (t )
x3 (t ) xn (t )
t1
噪声电压
xi (t )为样本函数
每一个样本函数都是 一个确定的时间函数 随机过程在任意时刻 的状态是一随机变量
连续随机过程 离散随机过程
连续随机序列 离散随机序列
随机过程是一族时间函数的集合
6
设正弦波随机过程为 X (t ) A cos 0t 其中 0 为常数 A为均匀分布在(0,1)内的随机变量, 画出随机过程X (t ) 的几个样本函数的图形.
2 (t ) 就表征消耗在单位电阻 上的瞬时交流功率的统 计平均值 .
25
三、自相关函数
表征了随机过程在任意两个时刻之间的关联程度
m X (t ) X (t ) mY (t ) Y (t )
m X (t )
mY (t )
m X (t ) X (t )
X (t )起伏慢
Y (t )起伏快
2 2 若 A , 则 X (t ) cos 0t 为一个确定性函数 3 3
7
设正弦波随机过程为 X (t ) A cos 0t 其中 0 为常数 A为均匀分布在(0,1)内的随机变量, 画出随机过程X (t ) 的几个样本函数的图形.
若 A 0, 则 X (t ) 0 为一个确定性函数
[ x m X (t1 )][ y mY (t 2 )] f XY ( x, y; t1 , t 2 )dxdy
C XY (t1 , t 2 ) RXY (t1 , t 2 ) m X (t1 )mY (t 2 )
若对任意t1 , t 2 都有RXY (t1 , t 2 ) 0, 则称X (t ), Y (t )是正交过程, 此时有C XY (t1 , t 2 ) m X (t1 )mY (t 2 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)
t 0时,X (t ) V cos 0 V , 而V为[0, 1] 上均匀分布,则
1 f X(0) ( x ) 0
3 t 时, 4
0 x 1 其它
3 2 X (t ) V cos V 4 2
2 由于函数x V的反函数为V h( x) 2 x, 2 其导数为h( x) 2 , 则利用公式
所以S.P.的一维分布为X(t) ~N(0,1+t2) 又对任意的t1≥0, t2≥0, X(t1)=A+Bt1 ~N(0,1+t12), X(t2)=A+Bt2 ~N(0,1+t22),
即
( X (t1 )
1 1 X (t2 )) ( A B) t t 1 2
由A,B独立知, (A,B)服从二维正态分布 (定理 正态变量的线性变换是正态变量)
例3 的样本曲线与状态
样本曲线x1(t)
状态X(t0)=40 状态X(t0)=25 状态X(t0)=18
样本曲线x2(t) 样本曲线x3(t)
0
24
…
t0
t
状态空间S={0,1,2,….},
T=[0,24,……)
4.分类根据参数集与状态空间离散与否,随机过程可分为
●离散参数,离散状态的随机过程 (例3)
所以( X(t1), X(t2) ) 也服从二维正态分布
又Cov( X (t1 ), X (t2 )) E[X (t1 ) X (t2 )] E[X (t1 )]E[X (t2 )]
E(A Bt1 )(A Bt2 ) 1 t1t2
所以协方差矩阵为
1 t12 1 t1t2 M 2 1 t t 1 t 1 2 2
2 x2 1 1 2 x2 2 ( x1 2 x2 ) 或 2 2 x2 3 2 x2 3
( x1 2 x2 )
例4.利用重复掷硬币的试验定义一个随机过程 cos t ,出现正面 0 t
X (t ) 2t , 出现反面
出现正面与反面的概率相等. ⑴ 求X(t)的一维分布函数F(1/2; x),F(1; x).
而( X(t1), X(t2) ) 的均值向量为 μ =(0, 0) 所以该S.P.的二维分布为
( X (t1 ) X (t2 )) ~ N (, M ), t1 0, t2 0
例3. 设S.P.X (t ) A cos t , t 0 其中A具有以下概率分布
1 P( A i ) , i 1,2,3. 3
fV (h( x)) h( x) f 3 ( x) X( ) 0 4
2 0 2 0
0 h( x ) 1 其它
0 2x 1 其它
2 x0 2 其它
(3) t 时,X (t ) V cos 0, 2 2 此时X ( )是单点分布, 则 2 F ( x) P{ X ( ) x} X( ) 2 2
F (t1 , t2 ,, tn ; x1 , x2 ,, xn )
相容性 设m<n,则
F (t1 , t2 ,, tm ; x1 , x2 ,, xm ) F (t1 , t2 ,, tm , tm1 ,, tn ; x1 , x2 ,, xm ,, )
注: 随机过程的统计特性还可以用另一种工 具描述, 即随机过程的有限维特征函数族 (后面补充介绍)
有限维分布函数族定义
称随机过程{X(t),t∈T}的一维分布函数,二维 分布函数,…,n维分布函数,…,的全体 为随机 过程的有限维分布函数族. 注: 有限维分布函数族能够描述随机过程的 统计特性.
有限维分布函数族的性质
对称性
设i1 , i2 ,, in是1,2,, n的任意一个排列,则
F (ti1 , ti2 ,, tin ; xi1 , xi2 ,, xin )
1 x 0 0 x 0
例2 设随机过程 X(t)=A+Bt, t≥0,其中A,B 是相互独 立的随机变量,且都服从标准正态分布N(0,1).求该 随机过程的一维和二维分布
解 对任意的t≥0, X(t)=A+Bt, 有题意知X(t)是正态分布. 又 E[X(t)]=0, D[X(t)]=1+t2
⑵ 求X(t) 的二维分布函数F(1/2,1; x1,x2).
例5.利用掷一枚硬币的试验定义一个随机过程
cos t ,出现正面 X (t ) 2t , 出现反面
例3.生物群体的增长问题.以Xt表示在时刻t某种 生物群体的个数,则对每一个固定的t,Xt是一 个随机变量. 如果从t=0开始每隔24小时对群体的个数观 察一次,则对每一个t,Xt是一族随机变量. 也记为Xn,n=0,1,…. 则称{Xt ,t=0,1, 2 , ….} 是随机过程.
例4. 在天气预报中, 以Xt 表示某地区第t次统计所得 到的最高气温,则Xt 是一个随机变量.
t0 状态空间S={0,1,2,….}, T=[0,+∞)
例2 的样本曲线与状态
X(t)
X(t) A cos(t )
样本曲线x1(t)
状态X(t0)
t0
状态X(t0)
t 样本曲线x2(t)
状态空间S=[-A,A],参数集T=[-∞,+ ∞]
X(t)
70
60 50 40 30 20 10
3
2
; x1 , x2 )
分布函数为 0, 1 , 3 F( ; x ) 4 2 , 3 1,
x 2 2
(2)F (0, ; x1 , x2 ) P( X (0) x1 , X ( ) x2 ) 3 3 A P( A x1 , x2 ) 2
பைடு நூலகம்
,t X t () 3.样本轨道:固定
称为一条样本轨道
样本轨道的连续性:设X={Xt(ω):t ∈T}是一个取实值 过程(S=R),则称该过程: (1) 以概率1连续(过程X有连续样本轨道):
P(lim X s X t 0, t T ) 1
s t
(2) 以概率连续(过程X随机连续):
本节内容举例
例1.设随机过程 X(t)=Vcosω t,t∈(-∞,+∞), 其中ω为常数,V服从[0,1]上的均匀分布.
⑴确定{X(t),t∈(-∞,+∞)}的两个样本函数. ⑵求t=0,t=3π /4ω时,随机变量的概率密度函数. ⑶求t= π ∕2ω 时X(t) 的分布函数. 解 (1) 取V=1/2, 1/3分别得到两个样本函数 1 1 x2 (t ) cos t x1 (t ) cos t 3 2
F (t1,t2 ,…,tn ; x1, x2,…, xn) = P(X(t1) ≤x1, X(t2) ≤x2 … X(tn) ≤xn ) x1 x2,…, xn ∈R 为随机过程{X(t),t∈T}的n维分布函数.
F (t1,t2 ,…,tn ; x1, x2,…, xn)= Ft1,t2 ,…,tn (x1, x2,…, xn)
2 x 2 2 3 2x 2 2 3 x 2 2
P( A x1, A 2 x2 )
P ( A x1 ) x1 2 x2 P ( A 2 x2 ) x1 2 x2
0, 1 , 3 2 , 3 1,
x1 1 1 x1 2 2 x1 3 x1 3
0, lim P( X s X t ) 0
s t
(3) 以Lp连续(L2连续也叫均方连续):
lim E ( X s X t ) 0
s t p
X(t)
例1的样本曲线与状态
状态X(t0)=4
样本曲线x1(t) x1 ( t ) t 状态X(t0)=5 样本曲线x2(t) x2 ( t ) t
试求 (1)该S.P.的一维分布函数 F ( , x ), F ( , x )
4
(2)该S.P.的二维分布函数 F (0, 解(1) X ( ) A cos 2 A, 4 4 2
分布律为 2 2 1 3 2 1 3 3 2 2 1 3
为了预报该地区未来的气温,要让t趋于无穷大, 则可得到一族随机变量: Xt , t=0,1,2,…, 称{Xt,t=0,1,2,….,} 是随机过程. 以上4个例子的共同特点是: 对某参数集中的任意一个参数t,就有一个 随机变量X(t)与之对应.
2.随机过程定义
设(Ω,F,P)为一概率空间,T为一参数集,T R, 若对每一 t ∈T,均有定义在(Ω,F,P)上的一个 随机变量X(ω,t),(ω∈Ω)与之对应, 则称X(ω,t)为(Ω,F,P)上的一个随机过程(S.P.) 记{X(ω,t), ω∈Ω, t∈T},
● 离散参数,连续状态的随机过程 (例4)
● 连续参数,离散状态的随机过程 (例1)
● 连续参数,连续状态的随机过程 (例2)
参数集为离散的随机过程也称为随机序列, 或时间序列.
§2 随机过程的有限维分布函数族
一.有限维分布函数
设{X(t),t∈T}是S.P.
1.一维分布函数
对任意t∈T, X (t)为一随机变量.称其分布 函数 F (t ; x)=P(X(t) ≤x), x ∈R 为随机过程{X(t),t∈T}的一维分布函数.
第一章
随机过程基本知识
● 随机过程的定义
● 随机过程的有限维分布族及数字特征
● 随机过程的分类与举例
重点
随机过程的定义、数字特征
要求(1)准确理解随机过程的定义,熟悉研究
随机过程的方法. (2)熟练求出样本函数、有限维分布、 数字特征、特征函数.