2018中职数学基础模块上册全套精品教案
中职数学基础模块上册(人教版)教案
中职数学基础模块上册(人教版)全套教案第一章:实数与函数1.1 实数【教学目标】1. 理解实数的概念,掌握实数的分类。
2. 熟练运用实数进行运算。
【教学内容】1. 实数的概念及分类。
2. 实数的运算规则。
【教学步骤】1. 引入实数的概念,引导学生理解实数的定义。
2. 讲解实数的分类,包括有理数和无理数。
3. 举例说明实数的运算规则,如加、减、乘、除等。
4. 练习题讲解与演练。
【教学评价】1. 检查学生对实数概念的理解程度。
2. 评估学生在实数运算方面的掌握情况。
1.2 函数【教学目标】1. 理解函数的概念,掌握函数的性质。
2. 学会用函数表示实际问题中的数量关系。
【教学内容】1. 函数的概念及性质。
2. 函数的图像及特点。
【教学步骤】1. 引入函数的概念,引导学生理解函数的定义。
2. 讲解函数的性质,如单调性、奇偶性等。
3. 引导学生通过实际问题,学会用函数表示数量关系。
4. 练习题讲解与演练。
【教学评价】1. 检查学生对函数概念的理解程度。
2. 评估学生在应用函数解决实际问题方面的能力。
第二章:三角函数2.1 角与弧度制【教学目标】1. 理解角的概念,掌握弧度制的定义。
2. 学会用弧度制表示角。
【教学内容】1. 角的概念及分类。
2. 弧度制的定义及应用。
【教学步骤】1. 引入角的概念,引导学生理解角的各种分类。
2. 讲解弧度制的定义,演示弧度制的应用。
3. 练习题讲解与演练。
【教学评价】1. 检查学生对角的概念及分类的理解程度。
2. 评估学生在弧度制应用方面的掌握情况。
2.2 任意角的三角函数【教学目标】1. 理解任意角的三角函数概念,掌握三角函数的定义。
2. 学会用三角函数表示任意角的正弦、余弦、正切值。
【教学内容】1. 任意角的三角函数概念。
2. 三角函数的定义及应用。
【教学步骤】1. 引入任意角的三角函数概念,引导学生理解三角函数的定义。
2. 讲解三角函数的定义,演示三角函数的应用。
3. 练习题讲解与演练。
中职数学基础模块上册教案教学文案
人教版中职数学教材基础模块上册全册教案【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】【课题】1.2 集合之间的关系【教学目标】知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】【课题】 1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间5 *动脑思考 探索新知一般地,对于两个给定的集合A 、B ,由集合A 、 B 的相同元素所组成的集合叫做A 与B 的交集,记作A B I ,读作“A 交B ”.即{}A B x x A x B =∈∈I 且.集合A 与集合B 的交集可用下图表示为:求两个集合交集的运算叫做交运算. 总结 归纳 仔细 分析 讲解 关键 词语 强调 图像 含义 思考 理解 记忆 观察 带领 学生 总结 三个 问题 的共 同点 得到 交集 的定义10 *巩固知识 典型例题例1 已知集合A ,B ,求A ∩B . (1) A ={1,2},B ={2,3}; (2) A ={a ,b },B ={c ,d , e , f }; (3) A ={1,3,5},B = ∅; (4) A ={2,4},B ={1,2,3,4}.分析 集合都是由列举法表示的,因为 A ∩B 是由集合A 和集合B 中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集.解 (1) 相同元素是2,A ∩B ={1,2}∩{2,3 }={2};(2) 没有相同元素A ∩B ={a , b }∩{c , d , e , f }=∅;(3) 因为A 是含有三个元素的集合, ∅是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A ∩B =∅;(4) 因为A 中的每一个元素的都是集合B 中的元素,所以A ∩B =A .例2设(){},|0A x y x y =+=,(){},|4B x y x y =-=,求A B I . 分析 集合A 表示方程0x y +=的解集;集合B 表示方程说明 强调 引领讲解观察 思考 主动 求解 观察通过 例题 进一 步领 会交 集 注意 观察 学生 是否 理解 知识 点 复习过 程行为 行为 意图 间4x y -=的解集.两个解集的交集就是二元一次方程组0,4x y x y +=⎧⎨-=⎩的解集. 解 解方程组0,4.x y x y +=⎧⎨-=⎩得2,2x y =⎧⎨=-⎩.所以(){}2,2A B =-I .例3 设{}|12A x x =-<„,{}|03B x x =<„,求A B I . 分析 这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解 {}{}|12|03A B x x x x=-<<I I 剟{}|02x x =<„.由交集定义和上面的例题,可以得到: 对于任意两个集合A ,B ,都有 (1)A B B A I I =;(2)A A A =I ,∅=∅I A ; (3)B B A A B A ⊆⊆I I ,;(4)如果A B A B A =⊆I 那么,.说明 引领 强调 含义 说明 启发 引导思考 求解 领会 思考 求解 了解方程 组的 解法 突出 数轴 的作 用 强调 数形 结合 可以 交给 学生 自我 发现 归纳25 *运用知识 强化练习 练习1.3.11.设{}1,0,1,2A =-,{}0,2,4,6B =,求A B I .2.设(){},|21A x y x y =-=,(){},|23B x y x y =+=,求A B I . 3.设{}|22A x x =-<≤,{}|04B x x =剟,求A B I . 提问巡视指导 动手 求解 交流 及时 了解 学生 知识 掌握 情况 35 *创设情景 兴趣导入问题1 某班有团员34名,非团员11名,那么该班有多少名同学?用我们学过的集合来表示:A ={该班团员};B ={该班非团员};C ={该班同学}.那么这三个集合之间有什么关系?问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;介绍 质疑了解 观看 课件 思考从实 际事 例使 学生 自然教 学 过 程教师 行为 学生 行为 教学 意图 时间(3)列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端点的处理.强化70*巩固知识 典型例题 例5 设{}{}2,1,0,1,5,3,2-==B A ,求B A I ,B A Y .解 {}{}{}22,1,0,15,3,2=-=I I B A ;{}{}2,1,0,15,3,2-=Y Y B A {}5,3,2,1,0,1-=.例6 设{0{1A x x B x x =<=<≤2},≤3},求B A I ,B A Y . 解 将集合A 、B 在数轴上表示:{1A B x x =<I ≤2},{0A B x x =<U ≤3}. 引领 分析 讲解 说明领会 思考 求解进行 并交 的对 比例 题讲 解巩 固所 归纳 的强 化点75 *归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.{}{}1,0,1,2,0,2,4,6A B =-=,求B A I ,B A Y .2.{}{}22,04A x x B x x =-<=剟?,求B A I ,B A Y .引导 提问 巡视 指导 回忆 反思 动手 求解 培养 学生 总结 反思 学习 过程 的能 力 85 *继续探索 活动探究(1)读书部分: 教材章节1.3; (2)书面作业: 学习与训练1.3;(3)实践调查: 举出交集和并集的生活实例. 说明记录90【课题】 1.3集合的运算(2)【教学目标】知识目标:(1)理解全集与补集的概念; (2)会求集合的补集. 能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.【教学重点】集合的补运算.【教学难点】集合并、交、补的综合运算.【教学设计】(1)通过生活中的实例导入全集与补集的概念,提高学生的学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲练结合,数形结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间作“A 的补集”.集合A 在全集U 中的补集的图形表示,如下图所示:求集合A 在全集U 中的补集的运算叫做补运算. 引导 说明观察 领会充分 利用 图形 的直 观性20*巩固知识 典型例题例1设{}0,1,2,3,4,5,6,7,8,9U =,{}1,3,4,5A =,{}3,5,7,8B =.求A U ð及B U ð.分析 集合A 的补集是由属于全集U 而且不属于集合A 的元素组成的集合.解 {}0,2,6,7,8,9A =ðU ;{}0,1,2,4,6,9B =ðU . 例2 设U =R ,{}|12A x x =-<„,求A ð.分析 作出集合A 在数轴上的表示,观察图形可以得到A ð.解 {}|12A x x x =->或„ð.说明 通过观察图形求补集时,要特别注意端点的取舍.本题中,因为端点−1不属于集合A ,所以−1属于其补集A ð;因为说明 讲解 引领 引导 分析讲解观察 思考 主动 求解 观察 思考 理解通过 例题 进一 步领 会补 集的 含义 及其 运算 特点 突出 数轴 的作 用 交给【课题】1.4 充要条件【教学目标】知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.【教学重点】(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“⇒”,“⇐”,“⇔”的正确使用.【教学难点】“充分条件”、“必要条件”、“充要条件”的判定.【教学设计】(1)以学生的活动为主线.在条件与结论的关系的判断上,尽可能多的教给学生在独立尝试解决问题的基础上进行交流;(2)由易到难,具有层次性.从内涵上引导学生体会复合命题中条件和结论的关系. 【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】【课题】2.1不等式的基本性质【教学目标】知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.【教学重点】⑴比较两个实数大小的方法;⑵不等式的基本性质.【教学难点】比较两个实数大小的方法.【教学设计】(1)以实例引入知识内容,提升学生的求知欲;(2)抓住解不等式的知识载体,复习与新知识学习相结合;(3)加强知识的巩固与练习,培养学生的思维能力.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】【课题】2.2区间【教学目标】知识目标:⑴掌握区间的概念; ⑵ 用区间表示相关的集合. 能力目标:通过数形结合的学习过程,培养学生的观察能力和数学思维能力.【教学重点】区间的概念.【教学难点】区间端点的取舍.【教学设计】⑴ 实例引入知识,提升学生的求知欲; ⑵ 数形结合,提升认识;⑶ 通过知识的巩固与练习,培养学生的思维能力; ⑷ 通过列表总结知识,提升认知水平.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】过 程行为 行为 意图 间*巩固知识 典型例题例1 已知集合()1,4A =-,集合[0,5]B =,求:A B U ,A B I .解 两个集合的数轴表示如下图所示,(1,5]A B =-U , [0,4)A B =I .质疑 分析 讲解 思考 理解 复习 相关 集合 运算 知识 15*运用知识 强化练习 教材练习2.2.11.已知集合(2,6)A =,集合()1,7B =-,求A B U ,A B I .2.已知集合[3,4]A =-,集合[1,6]B =,求A B U ,A B I .3. 已知集合(1,2]A =-,集合[0,3)B =,求A B U ,A B I . 巡视 辅导思考 解题 交流 反馈 学习 效果20 *动脑思考 明确新知 问题集合{|2}x x >可以用数轴上位于2右边的一段不包括端点的射线表示,如何用区间表示? 解决集合{|2}x x >表示的区间的左端点为2,不存在右端点,为开区间,用记号(2,)+∞表示.其中符号“+∞”(读作“正无穷大”),表示右端点可以任意大,但是写不出具体的数.类似地,集合{|2}x x <表示的区间为开区间,用符号(,2)-∞表示(“-∞”读作“负无穷大”). 集合{|2}x x …表示的区间为右半开区间,用记号[2,)+∞表示;集合{|2}x x …表示的区间为左半开区间,用记号(,2]-∞表示;实数集R 可以表示为开区间,用记号(,)-∞+∞表示. 注意“-∞”与“+∞”都是符号,而不是一个确切的数. 质疑 讲解 说明 强调 细节思考 领会 记忆 理解 明确学习 各种 区间 25 *巩固知识 典型例题例 2 已知集合(,2)A =-∞,集合(,4]B =-∞,求A B U ,过 程行为 行为 意图 间A B I .解 观察如下图所示的集合A 、B 的数轴表示,得 (1)(,4]A B B =-∞=U ;(2)(,2)A B A =-∞=I .例3 设全集为R ,集合(0,3]A =,集合(2,)B =+∞, (1)求A ð,B ð;(2)求A B I ð.解 观察如下图所示的集合A 、B 的数轴表示,得 (1) (,0](3,)A =-∞+∞U ð,(,2]B =-∞ð; (2) (0,2]A B =I ð.质疑 说明 讲解 启发 强调观察 思考 领会 主动 求解通过 例题 巩固 区间 的概 念 注意 规范 书写30*理论升华 整体建构下面将各种区间表示的集合列表如下(表中a 、b 为任意实数,且a b <). 区间(,)a b[,]a b (,]a b 集合 {|}x a x b << {|}x a x b ≤≤ {|}x a x b <≤ 区间[,)a b(,)b -∞ (,]b -∞ 集合 {|}x a x b <≤ {|}x x b < {|}x x b ≤ 区间(,)a +∞[,)a +∞ (,)-∞+∞集合 {|}x x a >{|}x x a ≥R引导分析思考 互动 总结小组 讨论 教师 归纳35*运用知识 强化练习 教材练习2.2.21. 已知集合[)1,4A =-,集合(]0,5B =,求A B U ,A B I . 2.设全集为R ,集合(,1)A =-∞-,集合(0,3)B =,求A ð,B ð,B A I ð.巡视指导求解 交流反馈 学习 效果40 *归纳小结 强化思想【课题】2.3 一元二次不等式【教学目标】知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.【教学重点】⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.【教学难点】一元二次不等式的解法.【教学设计】⑴从复习一次函数图像、一元一次方程、一元一次不等式的联系入手;⑵类比观察一元二次函数图像,得到一元二次不等式的图像解法;⑶加强知识的巩固与练习,培养学生的数学思维能力;⑷讨论、交流、总结,培养团队精神,提升认知水平.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间*揭示课题 2.3 一元二次不等式 *回顾思考 复习导入 问题一次函数的图像、一元一次方程与一元一次不等式之间存在着哪些联系? 解决观察函数26y x =-的图像:方程260x -=的解3x =恰好是函数图像与x 轴交点的横坐标;在x 轴上方的函数图像所对应的自变量x 的取值范围,恰好是不等式260x ->的解集{|3}x x >;在x 轴下方的函数图像所对应的自变量x 的取值范围,恰好是不等式260x -<的解集{|3}x x <. 归纳一般地,如果方程0ax b +=(0)a >的解是0x ,那么函数y ax b =+图像与x 轴的交点坐标为0(,0)x ,并且(1)不等式0ax b +>(0)a >的解集是函数y ax b =+的图像在x 轴上方部分所对应的自变量x 的取值范围,即0{|}x x x >;(2)不等式0ax b +<(0)a >的解集是函数y ax b =+在x轴下方部分所对应的自变量x 的取值范围,即0{|}x x x <. 总结由此看到,通过对函数y ax b =+的图像的研究,可以求出不等式0ax b +>与0ax b +<的解集.介绍 提出 问题 引领 分析 讲解 提炼了解 思考 观察 领悟 理解 认知复习 相关 知识 内容 强化 知识 点的 内在 联系 突出 数形 结合15过 程行为 行为 意图 间(1)当240b ac ∆=->时,方程20ax bx c ++=有两个不相等的实数解1x 和2x 12()x x <,一元二次函数2y ax bx c =++的图像与x 轴有两个交点1(,0)x ,2(,0)x (如图(1)所示).此时,不等式20ax bx c ++<的解集是()12,x x ,不等式20a x bx c ++>的解集是12(,)(,)x x -∞+∞U ;(1) (2) (3)(2)当240b ac ∆=-=时,方程20ax bx c ++=有两个相等的实数解0x ,一元二次函数2y ax bx c =++的图像与x 轴只有一个交点0(,0)x (如图(2)所示).此时,不等式20ax bx c ++<的解集是∅;不等式20ax bx c ++>的解集是00(,)(,)x x -∞+∞U .(3)当240b ac ∆=-<时,方程20ax bx c ++=没有实数解,一元二次函数2y ax bx c =++的图像与x 轴没有交点(如图(3)所示).此时,不等式20ax bx c ++<的解集是∅;不等式20ax bx c ++>的解集是R .讲解分析强调 讲解观察 理解 领会 记忆殊到 一般 的提 炼过 程 强化 图像 作用 熟练 数形 结合 应用40*理论升华 整体建构当0a >时,一元二次不等式的解集如下表所示: 方程或不等式解集0∆>0∆=0∆<20ax bx c ++= {}12,x x{}0x∅20ax bx c ++>12(,)(,)x x -∞+∞U00(,)(,)x x -∞+∞UR 20ax bx c ++…(][)12,,x x -∞+∞URR引领 归纳领会 总结综合 归纳 便于 学生 理解 记忆【课题】2.4含绝对值的不等式【教学目标】知识目标:(1) 理解含绝对值不等式x a <或x a >的解法; (2)了解ax b c +<或ax b c +>的解法. 能力目标:(1) 通过含绝对值不等式的学习;培养学生的计算技能与数学思维能力; (2)通过数形结合的研究问题,培养学生的观察能力.【教学重点】(1)不等式x a <或x a >的解法 .(2)利用变量替换解不等式ax b c +<或ax b c +>.【教学难点】利用变量替换解不等式ax b c +<或ax b c +>. 【教学设计】(1) 从数形结合的认识绝对值入手,有助于学生对知识的理解; (2) 观察图形得到不等式x a <或x a >的解集; (3) 运用变量替换,化繁为简,培养学生的思维能力;(4) 加强解题实践,讨论、探究,培养学生分析与解决问题的能力,培养团队精神.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间*揭示课题2.4含绝对值的不等式 *回顾思考 复习导入 问题任意实数的绝对值是如何定义的?其几何意义是什么? 解决对任意实数x ,有,0,0,0,,0.x x x x x x >⎧⎪==⎨⎪-<⎩其几何意义是:数轴上表示实数x 的点到原点的距离. 拓展不等式2x <和2x >的解集在数轴上如何表示? 根据绝对值的意义可知,方程2x =的解是2x =或2x =-,不等式2x <的解集是(2,2)-(如图(1)所示);不等式2x >的解集是(,2)(2,)-∞-+∞U (如图(2)所示).介绍 提问 归纳总结引导 分析了解 思考 回答 观察 领会复习 相关 知识 点为 进一 步学 习做 准备 充分过 程行为 行为 意图 间借助 图像 进行 分析10*动脑思考 明确新知一般地,不等式x a <(0a >)的解集是(),a a -;不等式x a >(0a >)的解集是()(),,a a -∞-+∞U . 试一试:写出不等式x a „与x a …(0a >)的解集. 总结 强化理解 记忆强调 特点15*巩固知识 典型例题 例1 解下列各不等式:(1)310x ->; (2)26x ?.分析:将不等式化成x a <或x a >的形式后求解.解 (1)由不等式310x ->,得13x >,所以原不等式的解集为11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭U ;(2)由不等式26x ?,得3x „,所以原不等式的解集为[]3,3-.分析讲解 强调 细节思考 主动 求解进一 步巩 固知 识点20*运用知识 强化练习 教材练习2.4.1 解下列各不等式:(1)28x …;(2) 2.6x <;(3)10x ->. 巡视 辅导 解题 交流 反馈 学习 效果 25 *实际操作 探索新知 问题如何通过x a <(0a >)求解不等式213x +<? 解决质疑思考通过 实例 使学(2)第三章函数3.1.1函数的概念【教学目标】1. 理解函数的概念,会求简单函数的定义域.2. 理解函数符号y=f (x)的意义,会求函数在x=a处的函数值.3. 通过教学,渗透一切事物相互联系和相互制约的辩证唯物主义观点.【教学重点】函数的概念及两要素,会求函数在x=a处的函数值,求简单函数的定义域.【教学难点】用集合的观点理解函数的概念.【教学方法】这节课主要采用问题解决法和分组教学法.运用现代化教学手段,通过两个实例,分析抽象出函数概念,使学生更容易理解函数关系的实质以及函数两要素.然后通过求函数值与定义域的两类题目,深化对函数概念的理解.。
中职数学(基础模块)上册教案
中职数学(基础模块)教案1.1集合的概念知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合的表示法.教学难点:集合表示法的选择与规范书写.课时安排:2课时.1。
2集合之间的关系知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力。
教学重点:集合与集合间的关系及其相关符号表示.教学难点:真子集的概念.课时安排:2课时.1。
3集合的运算(1)知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.教学重点:交集与并集.教学难点:用描述法表示集合的交集与并集.课时安排:2课时.1.3集合的运算(2)知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.教学重点:集合的补运算.教学难点:集合并、交、补的综合运算.课时安排:2课时.1.4充要条件知识目标:了解“充分条件"、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.教学重点:(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“”,“”,“"的正确使用.教学难点:“充分条件”、“必要条件”、“充要条件”的判定.课时安排:2课时.2.1不等式的基本性质知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.教学重点:⑴比较两个实数大小的方法;⑵不等式的基本性质.教学难点:比较两个实数大小的方法.课时安排:1课时.2.2区间知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合的学习过程,培养学生的观察能力和数学思维能力.教学重点:区间的概念.教学难点:区间端点的取舍.课时安排:1课时.2.3一元二次不等式知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.教学重点:⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.教学难点:一元二次不等式的解法.课时安排:2课时.2.4含绝对值的不等式知识目标:(1)理解含绝对值不等式或的解法;(2)了解或的解法.能力目标:(1)通过含绝对值不等式的学习;培养学生的计算技能与数学思维能力;(2)通过数形结合的研究问题,培养学生的观察能力.教学重点:(1)不等式或的解法.(2)利用变量替换解不等式或.教学难点:利用变量替换解不等式或.课时安排:2课时.3.1函数的概念及其表示法知识目标:(1)理解函数的定义;(2)理解函数值的概念及表示;(3)理解函数的三种表示方法;(4)掌握利用“描点法”作函数图像的方法.能力目标:(1)通过函数概念的学习,培养学生的数学思维能力;(2)通过函数值的学习,培养学生的计算能力和计算工具使用技能;(3)会利用“描点法”作简单函数的图像,培养学生的观察能力和数学思维能力.教学重点:(1)函数的概念;(2)利用“描点法"描绘函数图像.教学难点:(1)对函数的概念及记号的理解;(2)利用“描点法”描绘函数图像.3。
中职数学基础模块上册(人教版)教案
中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念教学目标:理解集合的含义及集合中元素的特点。
掌握集合的表示方法,如列举法、描述法等。
教学内容:集合的定义与表示方法。
集合的性质与运算。
教学过程:1. 引入新课:通过生活中的实例引入集合的概念。
2. 讲解与演示:讲解集合的定义,展示不同类型的集合及其表示方法。
3. 练习与讨论:学生独立完成练习题,分组讨论集合的性质与运算。
1.2 集合的关系教学目标:理解集合之间的大小关系,包括子集、真子集、并集、交集等。
教学内容:集合之间的基本关系。
集合关系的表示方法。
教学过程:1. 引入新课:通过图形展示集合之间的关系。
2. 讲解与演示:讲解集合之间的子集、真子集、并集、交集等概念。
3. 练习与讨论:学生独立完成练习题,分组讨论集合关系的应用。
第二章:函数2.1 函数的概念教学目标:理解函数的定义及其表示方法。
掌握函数的性质,如单调性、奇偶性等。
教学内容:函数的定义与表示方法。
函数的性质。
教学过程:1. 引入新课:通过生活中的实例引入函数的概念。
2. 讲解与演示:讲解函数的定义,展示不同类型的函数及其表示方法。
3. 练习与讨论:学生独立完成练习题,分组讨论函数的性质。
2.2 函数的图像教学目标:理解函数图像的特点及绘制方法。
学会利用函数图像分析函数的性质。
教学内容:函数图像的特点。
绘制函数图像的方法。
教学过程:1. 引入新课:通过实例展示函数图像的特点。
2. 讲解与演示:讲解函数图像的绘制方法,展示不同类型函数的图像。
3. 练习与讨论:学生独立完成练习题,分组讨论函数图像的应用。
第三章:不等式与不等式组3.1 不等式的概念教学目标:理解不等式的定义及其性质。
学会解一元一次不等式。
教学内容:不等式的定义与性质。
一元一次不等式的解法。
教学过程:1. 引入新课:通过生活中的实例引入不等式的概念。
2. 讲解与演示:讲解不等式的定义,展示不等式的性质。
3. 练习与讨论:学生独立完成练习题,分组讨论一元一次不等式的解法。
职高数学(基础模块)上教案(完整版)
【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】},99,正偶数集可以表示为}2,4,6,.在花括号内画一条竖线,竖线的左侧写出集合的代表元素,竖线的右侧写出元素所具有的特征性质.如小于强调的实数所组成的集合可表示为如果从上下文能明显看出集合的元素为实数,那么可以0的解集;)所有奇数组成的集合;)由第一象限所有的点组成的集合.用描述法表示集合关键是找出元素的特征性质.0得12x-,1 2⎫-⎬⎭;)奇数集合}∈Z;)第一象限所有的点组成的集合为(){,x y x>运用知识强化练习的解集.本次课学了哪些内容?重点和难点各是什么?)本次课学了哪些内容?)通过本次课的学习,你会解决哪些新问题了?)在学习方法上有哪些体会?【课题】1.2 集合之间的关系【教学目标】知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】}6x<.是用来表示集合与集合之间关系的符号;”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.的元素,因此}6x<的元素,}6x<.∈”或“∉(2){∅;2,3(4){}}2的子集,并且集合叫做集合B(或B A),读作“.空集是任何非空集合的真子集.对于集合A、B、C,如果A{2}{1}{1,2,3,4,5,6}=9}={3,-3}x x=={x x= |2};⑸a{0}∅;2{|x x |10}x x+=}2【课题】 1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】B,读作“过 程行为 行为 意图 间交B ”.即{}AB x x A x B =∈∈且.集合A 与集合B 的交集可用下图表示为:求两个集合交集的运算叫做交运算. 仔细 分析 讲解 关键 词语 强调 图像 含义 理解 记忆 观察 总结 三个 问题 的共 同点 得到 交集 的定义10 *巩固知识 典型例题例1 已知集合A ,B ,求A ∩B . (1) A ={1,2},B ={2,3}; (2) A ={a ,b },B ={c ,d , e , f }; (3) A ={1,3,5},B = ∅; (4) A ={2,4},B ={1,2,3,4}.分析 集合都是由列举法表示的,因为 A ∩B 是由集合A 和集合B 中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集.解 (1) 相同元素是2,A ∩B ={1,2}∩{2,3 }={2};(2) 没有相同元素A ∩B ={a , b }∩{c , d , e , f }=∅;(3) 因为A 是含有三个元素的集合, ∅是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A ∩B =∅;(4) 因为A 中的每一个元素的都是集合B 中的元素,所以A ∩B =A .例2设(){},|0A x y x y =+=,(){},|4B x y x y =-=,求A B . 分析 集合A 表示方程0x y +=的解集;集合B 表示方程4x y -=的解集.两个解集的交集就是二元一次方程组0,4x y x y +=⎧⎨-=⎩的解集. 解 解方程组0,4.x y x y +=⎧⎨-=⎩得2,2x y =⎧⎨=-⎩.所以(){}2,2AB =-.说明 强调 引领讲解说明观察 思考 主动 求解 观察通过 例题 进一 步领 会交 集 注意 观察 学生 是否 理解 知识 点 复习 方程 组的 解法过 程行为 行为 意图 间例3 设{}|12A x x=-<,{}|03B x x=<,求AB .分析 这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解 {}{}|12|03AB x x x x =-<<{}|02x x =<.由交集定义和上面的例题,可以得到: 对于任意两个集合A ,B ,都有 (1)A B B A =;(2)A A A = ,∅=∅ A ; (3)B B A A B A ⊆⊆ ,;(4)如果A B A B A =⊆ 那么,. 引领强调 含义说明 启发 引导思考 求解 领会 思考 求解 了解突出 数轴 的作 用 强调 数形 结合 可以 交给 学生 自我 发现 归纳25 *运用知识 强化练习 练习1.3.11.设{}1,0,1,2A =-,{}0,2,4,6B =,求AB .2.设(){},|21A x y x y =-=,(){},|23B x y x y =+=,求A B . 3.设{}|22A x x =-<≤,{}|04B x x=,求AB . 提问巡视指导动手 求解 交流 及时 了解 学生 知识 掌握 情况 35 *创设情景 兴趣导入问题1 某班有团员34名,非团员11名,那么该班有多少名同学?用我们学过的集合来表示:A ={该班团员};B ={该班非团员};C ={该班同学}.那么这三个集合之间有什么关系?问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;第二学期的三好学生有王燕、李炎、王勇、孙颖,那么该班第一学年的三好学生都有哪些同学?用我们学过的集合来表示:A ={李佳,王燕,张洁,王勇};B ={王燕,李炎,王勇,孙颖};C ={李佳,王燕,张洁,王勇,李炎,孙颖}.那么这三个集合之间有什么关系?介绍 质疑了解 观看 课件 思考从实 际事 例使 学生 自然 的走 向知 识点 引导B.}2,}4B x,求A B.整体建构思考并回答下面的问题:.集合的并集和交集有什么区别?(含义和符号).在进行集合的并运算和交运算时各自的特点是什么?.集合用列举法和描述法表示时进行运算需要注意的问题是教 学 过 程教师 行为 学生 行为 教学 意图 时间{}{}2,1,0,15,3,2-= B A {}5,3,2,1,0,1-=.例6 设{0{1A x x B x x =<=<≤2},≤3},求B A ,B A . 解 将集合A 、B 在数轴上表示:{1AB x x =<≤2},{0AB x x =<≤3}.分析 讲解 说明 思考 求解比例 题讲 解巩 固所 归纳 的强 化点 75 *归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.{}{}1,0,1,2,0,2,4,6A B =-=,求B A ,B A .2.{}{}22,04A x xB x x=-<=,求B A ,B A .引导 提问 巡视 指导 回忆 反思 动手 求解 培养 学生 总结 反思 学习 过程 的能 力 85 *继续探索 活动探究(1)读书部分: 教材章节1.3; (2)书面作业: 学习与训练1.3;(3)实践调查: 举出交集和并集的生活实例. 说明记录90【课题】 1.3集合的运算(2)【教学目标】知识目标:(1)理解全集与补集的概念; (2)会求集合的补集. 能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力; (2)通过全集与补集问题的研究,培养学生的数学思维能力.【教学重点】集合的补运算.【教学难点】集合并、交、补的综合运算.【教学设计】(1)通过生活中的实例导入全集与补集的概念,提高学生的学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲练结合,数形结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】B,A B.}2,}4B x=,求A B,A B.下面我们将学习另外一种集合的运算.介绍兴趣导入过 程行为 行为 意图 间某学习小组学生的集合为U={王明,曹勇,王亮,李冰,张军,赵云,冯佳,薛香芹,钱忠良,何晓慧},其中在学校应用文写作比赛与技能大赛中获得过金奖的学生集合为P ={王明,曹勇,王亮,李冰,张军},那么没有获得金奖的学生有哪些? 解决没有获得金奖的学生的集合为Q ={赵云,冯佳,薛香芹,钱忠良,何晓慧}. 结论可以看到,P 、Q 都是U 的子集,并且集合Q 是由属于集合U 但不属于集合P 的元素所组成的集合. 质疑 引导 分析 总结 归纳思考 自我 分析 领会引导 式启 发学 生理 解集 合之 间元 素的 关系15*动脑思考 探索新知 概念如果一个集合含有我们所研究的各个集合的全部元素,在研究过程中,可以将这个集合叫做全集,一般用U 来表示,所研究的各个集合都是这个集合的子集.在研究数集时,常把实数集R 作为全集.如果集合A 是全集U 的子集,那么,由U 中不属于A 的所有元素组成的集合叫做A 在全集U 中的补集. 表示集合A 在全集U 中的补集记作UA ,读作“A 在U 中的补集”.即{}|UA x x U x A =∈∉且.如果从上下文看全集U 是明确的,特别是当全集U 为实数集R 时,可以省略补集符号中的U ,将UA 简记为A ,读作“A 的补集”.集合A 在全集U 中的补集的图形表示,如下图所示:仔细 分析 讲解 强调引导说明思考 理解 记忆 观察 领会特别 注意 讲解 关键 词的 含义 强调 表示 方法 的书 写规 范性 充分 利用 图形 的直 观性过 程行为 行为 意图 间求集合A 在全集U 中的补集的运算叫做补运算. 20 *巩固知识 典型例题例1设{}0,1,2,3,4,5,6,7,8,9U =,{}1,3,4,5A =,{}3,5,7,8B =.求A U 及B U .分析 集合A 的补集是由属于全集U 而且不属于集合A 的元素组成的集合. 解{}0,2,6,7,8,9A =U ;{}0,1,2,4,6,9B =U .例2 设U =R ,{}|12A x x=-<,求A .分析 作出集合A 在数轴上的表示,观察图形可以得到A .解 {}|12A x xx =->或.说明 通过观察图形求补集时,要特别注意端点的取舍.本题中,因为端点−1不属于集合A ,所以−1属于其补集A ;因为端点2属于集合A ,所以2不属于其补集A .由补集定义和上面的例题,可以得到: 对于非空集合A : A ∩(UA )=∅,A ∪(UA )=U ,U U=∅,U ∅=U ,U(UA )=A .说明 讲解引领 引导 分析讲解 说明理解观察 思考 主动 求解 观察 思考 理解 自我 总结通过 例题 进一 步领 会补 集的 含义 及其 运算 特点 突出 数轴 的作 用 交给 学生 自我 发现 归纳 35*运用知识 强化练习 教材 练习1.3.31.设{}U =小于10的正整数,{}147A =,,,求UA .2.设U R =,{}|24A x x=-,求A .提问 巡视指导互动 求解 交流反馈 学习 效果45*理论升华 整体建构 思考并回答下面的问题:1.什么是集合交运算?如何用符号表示?如何用图形表示?质疑小组 讨论以学 生小 组讨A U,B U ,()()ABU U ,)()UU A B,()U AB ,()A B U.分析 这些集合都是用列举法表示的,可以通过列举集合的元素分别得到所求的集合. 解{}0,2,6,7,8,9A =U ; {}0,1,2,4,6,9B =U ()(){}0,2,6,9UU A B =; ()(){}0,1,2,4,6,7,8,9U U AB=因为{}3,5AB =,所以 (){0,1,2,4,6,7,8,9UAB =因为{1,3,4,5,7,8AB =(){0,2,6,9UA B = 设全集U =R ,集合U A , U B , AB ,A B .分析 在理解集合运算的含义基础上,充分运用数轴的表示来引领分析UA ={x | ,所以U B ={x | {B x =-A B =R .运用知识 强化练习{1,2,3,4,5,6,7,8U =B ,B ,UA ,U B ,()()U U A B ,()()U U A B .设{}|0180U αα=<<,{}|090A αα=<<,{}|90180αα=<<,求UA ,U B,()()U U A B ,)()U U A B .提问巡视 指导归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? 引导【课题】 1.4 充要条件【教学目标】知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.【教学重点】(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“⇒”,“⇐”,“⇔”的正确使用.【教学难点】“充分条件”、“必要条件”、“充要条件”的判定.【教学设计】(1)以学生的活动为主线.在条件与结论的关系的判断上,尽可能多的教给学生在独立尝试解决问题的基础上进行交流;(2)由易到难,具有层次性.从内涵上引导学生体会复合命题中条件和结论的关系. 【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】【课题】2.1不等式的基本性质【教学目标】知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.【教学重点】⑴比较两个实数大小的方法;⑵不等式的基本性质.【教学难点】比较两个实数大小的方法.【教学设计】(1)以实例引入知识内容,提升学生的求知欲;(2)抓住解不等式的知识载体,复习与新知识学习相结合;(3)加强知识的巩固与练习,培养学生的思维能力.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】【课题】2.2区间【教学目标】知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合的学习过程,培养学生的观察能力和数学思维能力.【教学重点】区间的概念.【教学难点】区间端点的取舍.【教学设计】⑴实例引入知识,提升学生的求知欲;⑵数形结合,提升认识;⑶通过知识的巩固与练习,培养学生的思维能力;⑷通过列表总结知识,提升认知水平.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】过 程行为 行为 意图 间概念一般地,由数轴上两点间的一切实数所组成的集合叫做区间.其中,这两个点叫做区间端点.不含端点的区间叫做开区间.如集合{}|24x x <<表示的区间是开区间,用记号(2,4)表示.其中2叫做区间的左端点,4叫做区间的右端点.含有两个端点的区间叫做闭区间.如集合{}|24x x表示的区间是闭区间,用记号[2,4]表示.只含左端点的区间叫做右半开区间,如集合{|24}x x <表示的区间是右半开区间,用记号[2,4)表示;只含右端点的区间叫做左半开区间,如集合{|24}x x <表示的区间是左半开区间,用记号(2,4]表示.引入问题中,新时速旅客列车的运行速度值(单位:公里/小时)区间为(200,350). 说明引导 讲解强调 细节理解 记忆 领会认知 各种 有限 区间 强调 各区 间的 规范 书写10*巩固知识 典型例题例1 已知集合()1,4A =-,集合[0,5]B =,求:AB ,A B .解 两个集合的数轴表示如下图所示,(1,5]A B =-, [0,4)A B =.质疑 分析 讲解 思考 理解 复习 相关 集合 运算 知识 15*运用知识 强化练习 教材练习2.2.11.已知集合(2,6)A =,集合()1,7B =-,求A B ,A B .2.已知集合[3,4]A =-,集合[1,6]B =,求A B ,A B .3. 已知集合(1,2]A =-,集合[0,3)B =,求A B ,A B . 巡视辅导思考 解题 交流 反馈 学习 效果20*动脑思考 明确新知 问题过 程行为 行为 意图 间集合{|2}x x >可以用数轴上位于2右边的一段不包括端点的射线表示,如何用区间表示? 解决集合{|2}x x >表示的区间的左端点为2,不存在右端点,为开区间,用记号(2,)+∞表示.其中符号“+∞”(读作“正无穷大”),表示右端点可以任意大,但是写不出具体的数.类似地,集合{|2}x x <表示的区间为开区间,用符号(,2)-∞表示(“-∞”读作“负无穷大”). 集合{|2}x x 表示的区间为右半开区间,用记号[2,)+∞表示;集合{|2}x x表示的区间为左半开区间,用记号(,2]-∞表示;实数集R 可以表示为开区间,用记号(,)-∞+∞表示. 注意“-∞”与“+∞”都是符号,而不是一个确切的数. 质疑 讲解 说明 强调 细节 思考 领会 记忆 理解 明确 学习 各种 区间25 *巩固知识 典型例题例 2 已知集合(,2)A =-∞,集合(,4]B =-∞,求AB ,A B .解 观察如下图所示的集合A 、B 的数轴表示,得 (1)(,4]AB B =-∞=;(2)(,2)A B A =-∞=.例3 设全集为R ,集合(0,3]A =,集合(2,)B =+∞, (1)求A ,B ;(2)求AB .解 观察如下图所示的集合A 、B 的数轴表示,得 (1) (,0](3,)A =-∞+∞,(,2]B =-∞; (2) (0,2]AB =.质疑 说明 讲解 启发 强调观察 思考 领会 主动 求解通过 例题 巩固 区间 的概 念 注意 规范 书写 30*理论升华 整体建构B,A B.(0,3),求A,B,B A.巡视指导*归纳小结强化思想(1)本次课学了哪些内容?(2)通过本次课学习,你会解决哪些新问题了?(3)在学习方法上有哪些体会?引导提问【课题】2.3 一元二次不等式【教学目标】知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.【教学重点】⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.【教学难点】一元二次不等式的解法.【教学设计】⑴从复习一次函数图像、一元一次方程、一元一次不等式的联系入手;⑵类比观察一元二次函数图像,得到一元二次不等式的图像解法;⑶加强知识的巩固与练习,培养学生的数学思维能力;⑷讨论、交流、总结,培养团队精神,提升认知水平.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*揭示课题2.3 一元二次不等式*回顾思考复习导入问题一次函数的图像、一元一次方程与一元一次不等式之间存在着哪些联系?解决观察函数26y x=-的图像:方程260x-=的解3x=恰好是函数图像与x轴交点的横坐标;在x轴上方的函数图像所对应的自变量x的取值范围,介绍提出问题了解思考观察复习相关知识内容()0或()0(a≠感受新知二次函数的图像、一元二次方程与一元二次不等式之间存过 程行为 行为 意图 间吗?其交点将x 轴分成几段?3.观察抛物线找出纵坐标y =0、y >0、y <0的点.4.观察图像上纵坐标y =0、y >0、y <0的那些点所对应的横坐标x 的取值范围? 解决解方程260x x --=得122,3x x =-=.观察图像可以看到,方程260x x --=的解,恰好分别为函数图像与x 轴交点的横坐标;在x 轴上方的函数图像,所对应的自变量x 的取值范围,即{|23}x x x <->或内的值,使得260y x x =-->;在x 轴下方的函数图像所对应的自变量x 的取值范围,即{|23}x x -<<内的值,使得260y x x =--<. 引领 分析 讲解 理解 领会受一 元二 次不 等式 的图 像解 法30*动脑思考 探索新知 解法利用一元二次函数2y ax bx c=++()0a >的图像可以解不等式20ax bx c ++>或20ax bx c ++<.(1)当240b ac ∆=->时,方程20ax bx c ++=有两个不相等的实数解1x 和2x 12()x x <,一元二次函数2y ax bx c =++的图像与x 轴有两个交点1(,0)x ,2(,0)x (如图(1)所示).此时,不等式20ax bx c ++<的解集是()12,x x ,不等式20a x bx c ++>的解集是12(,)(,)x x -∞+∞;(1) (2) (3)(2)当240b ac ∆=-=时,方程20ax bx c ++=有两个相等的实数解0x ,一元二次函数2y ax bx c =++的图像与x 轴只归纳 总结讲解分析强调思考 观察 理解引导 学生 经历 由特 殊到 一般 的提 炼过 程 强化 图像 作用 熟练 数形 结合0(,)x +∞)当2b ∆=-一元二次函数y )所示).此时,不等式0bx c +>2(,)x +∞ 0(,)x +∞[)2,x +∞][12,)x x +∞ R12,)x x∅ ]12,x x 0.首先判定二次项系数是否为正数,再研究对应一元二次方程解的情况,最后对照表格写出不等式的解集.(3,)+∞.)29x <可化为290-=的解集为)253x x -两边同乘1-,得30.由于判别式43x -+=0的解集为0的解集为是什么实数时,有意义. 题意需要解20-.解0=得1x =.由于二次项系数为30>以不等式的解集为[)1,⎛-∞+∞.[)1,+∞时,32有意义. 解下列各一元二次不等式:;(2)0x -.本次课学了哪些内容?重点和难点各是什么?【课题】2.4含绝对值的不等式【教学目标】知识目标:(1) 理解含绝对值不等式x a <或x a >的解法; (2)了解ax b c +<或ax b c +>的解法. 能力目标:(1) 通过含绝对值不等式的学习;培养学生的计算技能与数学思维能力; (2)通过数形结合的研究问题,培养学生的观察能力.【教学重点】(1)不等式x a <或x a >的解法 .(2)利用变量替换解不等式ax b c +<或ax b c +>.【教学难点】利用变量替换解不等式ax b c +<或ax b c +>. 【教学设计】(1) 从数形结合的认识绝对值入手,有助于学生对知识的理解; (2) 观察图形得到不等式x a <或x a >的解集; (3) 运用变量替换,化繁为简,培养学生的思维能力;(4) 加强解题实践,讨论、探究,培养学生分析与解决问题的能力,培养团队精神.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间*揭示课题2.4含绝对值的不等式 *回顾思考 复习导入 问题任意实数的绝对值是如何定义的?其几何意义是什么? 解决对任意实数x ,有,0,0,0,,0.x x x x x x >⎧⎪==⎨⎪-<⎩其几何意义是:数轴上表示实数x 的点到原点的距离. 拓展不等式2x <和2x >的解集在数轴上如何表示? 根据绝对值的意义可知,方程2x =的解是2x =或2x =-,不等式2x <的解集是(2,2)-(如图(1)所示);不等式2x >的解集是(,2)(2,)-∞-+∞(如图(2)所示).介绍 提问 归纳总结引导 分析了解 思考 回答 观察 领会复习 相关 知识 点为 进一 步学 习做 准备 充分 借助 图像 进行 分析10 *动脑思考 明确新知一般地,不等式x a <(0a >)的解集是(),a a -;不等式x a >(0a >)的解集是()(),,a a -∞-+∞.试一试:写出不等式xa 与x a (0a >)的解集.总结 强化理解 记忆强调 特点15(2)(1)6.a >的形式后求解.,得13x >,所以原不等式的1,3⎛⎫+∞ ⎪⎝⎭)由不等式26x ,得3x ,所以原不等式的解集强化练习 8;(2) 2.6x <;(3)1x ->实际操作 探索新知如何通过x a <等式2x +3.3213x --, 224x -, 12x-,所以原不等式的解集为 []1,2-. 7>.257x +>,整理,得6- 或 1x >,)()61,+∞.1142; 12.本次课学了哪些内容?重点和难点各是什么?【课题】 3.1 函数的概念及其表示法【教学目标】知识目标:(1) 理解函数的定义; (2) 理解函数值的概念及表示; (3) 理解函数的三种表示方法;(4) 掌握利用“描点法”作函数图像的方法. 能力目标:(1) 通过函数概念的学习,培养学生的数学思维能力;(2) 通过函数值的学习,培养学生的计算能力和计算工具使用技能;(3) 会利用“描点法”作简单函数的图像,培养学生的观察能力和数学思维能力.【教学重点】(1) 函数的概念;(2) 利用“描点法”描绘函数图像.【教学难点】(1) 对函数的概念及记号)(x f y 的理解; (2) 利用“描点法”描绘函数图像.【教学设计】(1)从复习初中学习过的函数知识入手,做好衔接; (2)抓住两个要素,突出特点,提升对函数概念的理解水平; (3)抓住函数值的理解与计算,为绘图奠定基础; (4)学习“描点法”作图的步骤,通过实践培养技能; (5)重视学生独立思考与交流合作的能力培养.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】}中的任意一个值,有唯一的值与之对应.两个变量之间的这种对应关系叫做动脑思考探索新知() 1,-+∞0,得12 x.因此函数的定义域为1,2⎛⎤-∞⎥⎝⎦.代数式中含有分式,使得代数式有意义的条件是分母不等于零;代数式中含有二次根式,使得代数式有意义的条件是被开方式大于或等于零.。
中职数学(基础模块)上册教案
中职数学(基础模块)上册教案1.1集合的概念知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合的表示法.教学难点:集合表示法的选择与规范书写.课时安排:2课时.1.2集合之间的关系知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合与集合间的关系及其相关符号表示.教学难点:真子集的概念.课时安排:2课时.1.3集合的运算(1)知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.教学重点:交集与并集.教学难点:用描述法表示集合的交集与并集.课时安排:2课时.1.3集合的运算(2)知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.教学重点:集合的补运算.教学难点:集合并、交、补的综合运算.课时安排:2课时.1.4充要条件知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.教学重点:(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“”,“”,“”的正确使用.教学难点:“充分条件”、“必要条件”、“充要条件”的判定.课时安排:2课时.2.1不等式的基本性质知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.教学重点:⑴比较两个实数大小的方法;⑵不等式的基本性质.教学难点:比较两个实数大小的方法.课时安排:1课时.2.2区间知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合的学习过程,培养学生的观察能力和数学思维能力.教学重点:区间的概念.教学难点:区间端点的取舍.课时安排:1课时.2.3一元二次不等式式的图像解法.观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.2.4含绝对值的不等式知识目标:(1)理解含绝对值不等式或的解法;(2)了解或的解法.能力目标:(1)通过含绝对值不等式的学习;培养学生的计算技能与数学思维能力;(2)通过数形结合的研究问题,培养学生的观察能力.教学重点:(1)不等式或的解法.(2)利用变量替换解不等式或.教学难点:利用变量替换解不等式或.课时安排:2课时.3.1函数的概念及其表示法知识目标:(1)理解函数的定义;(2)理解函数值的概念及表示;(3)理解函数的三种表示方法;(4)掌握利用“描点法”作函数图像的方法.能力目标:(1)通过函数概念的学习,培养学生的数学思维能力;(2)通过函数值的学习,培养学生的计算能力和计算工具使用技能;(3)会利用“描点法”作简单函数的图像,培养学生的观察能力和数学思维能力.教学重点:(1)函数的概念;(2)利用“描点法”描绘函数图像.教学难点:(1)对函数的概念及记号的理解;(2)利用“描点法”描绘函数图像.课时安排:2课时.3.2函数的性质知识目标:⑴理解函数的单调性与奇偶性的概念;⑵会借助于函数图像讨论函数的单调性;⑶理解具有奇偶性的函数的图像特征,会判断简单函数的奇偶性.能力目标:⑴通过利用函数图像研究函数性质,培养学生的观察能力;⑵通过函数奇偶性的判断,培养学生的数学思维能力.教学重点:⑴函数单调性与奇偶性的概念及其图像特征;⑵简单函数奇偶性的判定.教学难点:函数奇偶性的判断.(某函数单调性的判断)课时安排:2课时.3.3函数的实际应用举例知识目标:(1)理解分段函数的概念;(2)理解分段函数的图像;(3)了解实际问题中的分段函数问题.能力目标:(1)会求分段函数的定义域和分段函数在点处的函数值;(2)掌握分段函数的作图方法;(3)能建立简单实际问题的分段函数的关系式.教学重点:(1)分段函数的概念;(2)分段函数的图像.教学难点:(1)建立实际问题的分段函数关系;(2)分段函数的图像.课时安排:2课时.4.1实数指数幂(1)知识目标:⑴复习整数指数幂的知识;⑵了解n次根式的概念;⑶理解分数指数幂的定义.能力目标:⑴掌握根式与分数指数幂之间的转化;⑵会利用计算器求根式和分数指数幂的值;⑶培养计算工具使用技能.教学重点:分数指数幂的定义.教学难点:根式和分数指数幂的互化.课时安排:2课时.4.1实数指数幂(2)知识目标:⑴掌握实数指数幂的运算法则;⑵通过几个常见的幂函数,了解幂函数的图像特点.能力目标:⑴正确进行实数指数幂的运算;⑵培养学生的计算技能;⑶通过对幂函数图形的作图与观察,培养学生的计算工具使用能力与观察能力.教学重点:有理数指数幂的运算.教学难点:有理数指数幂的运算.课时安排:2课时.4.2指数函数知识目标:⑴理解指数函数的图像及性质;⑵了解指数模型,了解指数函数的应用.能力目标:⑴会画出指数函数的简图;⑵会判断指数函数的单调性;⑶了解指数函数在生活生产中的部分应用,从而培养学生分析与解决问题能力.教学重点:⑴指数函数的概念、图像和性质;⑵指数函数的应用实例.教学难点:指数函数的应用实例.课时安排:2课时.4.3对数知识目标:⑴理解对数的概念,理解常用对数和自然对数的概念;⑵掌握利用计算器求对数值的方法;⑶了解积、商、幂的对数.能力目标:⑴会进行指数式与对数式之间的互化;⑵会运用函数型计算器计算对数值;⑶培养计算工具的使用技能.教学重点:指数式与对数式的关系.教学难点:对数的概念.课时安排:2课时.4.4对数函数知识目标:⑴了解对数函数的图像及性质特征;⑵了解对数函数的实际应用.能力目标:⑴观察对数函数的图像,总结对数函数的性质,培养观察能力;⑵通过应用实例的介绍,培养学生数学思维能力和分析与解决问题能力.教学重点:对数函数的图像及性质.教学难点:对数函数的应用中实际问题的题意分析.课时安排:2课时.5.1角的概念推广知识目标:⑴了解角的概念推广的实际背景意义;⑵理解任意角、象限角、界限角、终边相同的角的概念.能力目标:(1)会判断角所在的象限;(2)会求指定范围内与已知角终边相同的角;(3)培养观察能力和计算技能.教学重点:终边相同角的概念.教学难点:终边相同角的表示和确定.课时安排:2课时.5.2弧度制知识目标:⑴理解弧度制的概念;⑵理解角度制与弧度制的换算关系.能力目标:(1)会进行角度制与弧度制的换算;(2)会利用计算器进行角度制与弧度制的换算;(3)培养学生的计算技能与计算工具使用技能.教学重点:弧度制的概念,弧度与角度的换算.教学难点:弧度制的概念.课时安排:2课时.5.3任意角的正弦函数、余弦函数和正切函数知识目标:⑴理解任意角的三角函数的定义及定义域;⑵理解三角函数在各象限的正负号;⑶掌握界限角的三角函数值.能力目标:⑴会利用定义求任意角的三角函数值;⑵会判断任意角三角函数的正负号;⑶培养学生的观察能力.教学重点:⑴任意角的三角函数的概念;⑵三角函数在各象限的符号;⑶特殊角的三角函数值.教学难点:任意角的三角函数值符号的确定.课时安排:2课时.5.4同角三角函数的基本关系知识目标:理解同角的三角函数基本关系式.能力目标:⑴已知一个三角函数值,会利用同角三角函数的基本关系式求其他的三角函数值;⑵会利用同角三角函数的基本关系式求三角式的值.教学重点:同角的三角函数基本关系式的应用.教学难点:应用平方关系求正弦或余弦值时,正负号的确定.课时安排:2课时.5.5诱导公式知识目标:了解“”、“”、“180°”的诱导公式.能力目标:(1)会利用简化公式将任意角的三角函数的转化为锐角的三角函数;(2)会利用计算器求任意角的三角函数值;(3)培养学生的数学思维能力及应用计算工具的能力.教学重点:三个诱导公式.教学难点:诱导公式的应用.课时安排:2课时.5.6三角函数的图像和性质知识目标:(1)理解正弦函数的图像和性质;(2)理解用“五点法”画正弦函数的简图的方法;(3)了解余弦函数的图像和性质.能力目标:(1)认识周期现象,以正弦函数、余弦函数为载体,理解周期函数;(2)会用“五点法”作出正弦函数、余弦函数的简图;(3)通过对照学习研究,使学生体验类比的方法,从而培养数学思维能力.教学重点:(1)正弦函数的图像及性质;(2)用“五点法”作出函数y=sin某在上的简图.教学难点:周期性的理解.课时安排:2课时.5.7已知三角函数值求角知识目标:(1)掌握利用计算器求角度的方法;(2)了解已知三角函数值,求指定范围内的角的方法.能力目标:(1)会利用计算器求角;(2)已知三角函数值会求指定范围内的角;(3)培养使用计算工具的技能.教学重点:已知三角函数值,利用计算器求角;利用诱导公式求出指定范围内的角.教学难点:已知三角函数值,利用计算器求指定范围内的角.。
中职数学基础模块上下册全册教案【配套人教版教材】
中职数学教材基础模块上下册全册教案目录第一章集合 (1)1.1.1 集合的概念 (1)1.1.2 集合的表示方法 (5)1.1.3 集合之间的关系(一) (8)1.1.3 集合之间的关系(二) (11)1.1.4 集合的运算(一) (14)1.1.4 集合的运算(二) (18)1.2.1 充要条件 (21)1.2.2 子集与推出的关系 (24)第二章不等式 (27)2.1.1 实数的大小 (27)2.1.2 不等式的性质 (31)2.2.1 区间的概念 (35)2.2.2 一元一次不等式(组)的解法 (38)2.2.3 一元二次不等式的解法(一) (42)2.2.3 一元二次不等式的解法(二) (45)2.2.4 含有绝对值的不等式 (48)2.3 不等式的应用 (51)第三章函数 (54)3.1.1 函数的概念 (54)3.1.2 函数的表示方法 (58)3.1.3 函数的单调性 (61)3.1.4 函数的奇偶性 (65)3.2.1 一次、二次问题 (69)3.2.2 一次函数模型 (72)3.2.3 二次函数模型 (76)3.3 函数的应用 (81)第四章指数函数与对数函数 (83)4.1.1 有理指数(一) (83)4.1.1 有理指数(二) (87)4.1.2 幂函数举例 (91)4.1.3 指数函数 (94)4.2.1 对数 (98)4.2.2 积、商、幂的对数 (101)4.2.3 换底公式与自然对数 (105)4.2.4 对数函数 (107)4.3 指数、对数函数的应用 (110)第五章三角函数 (113)5.1.1 角的概念的推广 (113)5.1.2 弧度制 (117)5.2.1 任意角三角函数的定义 (120)5.2.2 同角三角函数的基本关系式 (124)5.2.3 诱导公式 (128)5.3.1 正弦函数的图象和性质 (133)5.3.2 余弦函数的图象和性质 (137)5.3.3 已知三角函数值求角 (140)第六章数列 (1)6.1.1 数列的定义 (1)6.1.2 数列的通项 (5)6.2.1 等差数列的概念 (9)6.2.2 等差数列的前n 项和 (15)6.3.1 等比数列的概念 (19)6.3.2 等比数列的前n项和 (23)6.4 数列的应用 (26)第七章平面向量 (29)7.1.1 位移与向量的表示 (29)7.1.2 向量的加法 (33)7.1.3 向量的减法 (37)7.2 数乘向量 (41)7.3.1 向量的分解 (45)7.3.2 向量的直角坐标运算 (48)7.4.1 向量的内积 (55)7.4.2 向量内积的坐标运算与距离公式 (59)7.5 向量的应用 (63)第八章直线和圆的方程 (66)8.1.1 数轴上的距离公式与中点公式 (66)8.1.2 平面直角坐标系中的距离公式和中点公式 (69)8.2.1 直线与方程 (73)8.2.2 直线的倾斜角与斜率 (75)8.2.3 直线方程的几种形式(一) (78)8.2.3 直线方程的几种形式(二) (81)8.2.4 直线与直线的位置关系(一) (85)8.2.4 直线与直线的位置关系(二) (90)8.2.5 点到直线的距离 (93)8.3.1 圆的标准方程 (95)8.3.2 圆的一般方程 (97)8. 4 直线与圆的位置关系 (101)8.5 直线与圆的方程的应用 (104)第九章立体几何 (106)9.1.1立体图形及其表示方法 (106)9.1.2 平面的基本性质 (109)9.2.1空间中的平行直线 (112)9.2.2 异面直线 (116)9.2.3 直线与平面平行 (119)9.2.4 平面与平面的平行关系 (123)9.3.1 直线与平面垂直 (128)9.3.2 直线与平面所成的角 (131)9.3.3 平面与平面所成的角 (134)9.3.4 平面与平面垂直 (136)9.4.1棱柱 (139)9.4.2棱锥 (142)9.4.3 直棱柱和正棱锥的侧面积 (144)9.4.4 圆柱、圆锥(一) (147)9.4.4圆柱、圆锥(二) (150)9.4.5 球 (153)9.4.6 多面体与旋转体的体积(一) (156)9.4.6多面体与旋转体的体积(二) (159)第十章概率与统计初步 (163)10.3.4 一元线性回归 (163)10.1计数原理 (167)10.2概率初步 (171)10.3.1 总体、样本和抽样方法(一) (175)10.3.1 总体、样本和抽样方法(二) (178)10.3.1 总体、样本和抽样方法(三) (181)10.3.2频率分布直方图 (184)10.3.3 用样本估计总体 (187)第一章集合1.1.1集合的概念【教学目标】1. 初步理解集合的概念;理解集合中元素的性质.2. 初步理解“属于”关系的意义;知道常用数集的概念及其记法.3. 引导学生发现问题和提出问题,培养独立思考和创造性地解决问题的意识.【教学重点】集合的基本概念,元素与集合的关系.【教学难点】正确理解集合的概念.【教学方法】本节课采用问题教学和讲练结合的教学方法,运用现代化教学手段,通过创设情景,引导学生自己独立地去发现、分析、归纳,形成概念.【教学过程】1.1.2集合的表示方法【教学目标】1. 掌握集合的表示方法;能够按照指定的方法表示一些集合.2. 发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力.3. 让学生感受集合语言的意义和作用,学习从数学的角度认识世界;通过合作学习培养学生的合作精神.【教学重点】集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合.【教学难点】集合特征性质的概念,以及运用描述法表示集合.【教学方法】本节课采用实例归纳,自主探究,合作交流等方法.在教学中通过列举例子,引导学生讨论和交流,并通过创设情境,让学生自主探索一些常见集合的特征性质.【教学过程】1.1.3集合之间的关系(一)【教学目标】1. 理解子集、真子集概念;掌握子集、真子集的符号及表示方法;会用它们表示集合间的关系.2. 了解空集的意义;会求已知集合的子集、真子集并会用符号及Venn图表示.3. 培养学生使用符号的能力;建立数形结合的数学思想;培养学生用集合的观点分析问题、解决问题的能力.【教学重点】子集、真子集的概念.【教学难点】集合间包含关系的正确表示.【教学方法】本节课采用讲练结合、问题解决式教学方法,并运用现代化教学手段辅助教学.设计典型题目,并提出问题,层层引导学生探究知识,让学生在完成题目的同时,思维得以深化;切实体现以人为本的思想,充分发挥学生的主观能动性,培养其探索精神和运用数学知识的意识.【教学过程】1.1.3集合之间的关系(二)【教学目标】1. 理解两个集合相等概念.能判断两集合间的包含、相等关系.2. 理解掌握元素与集合、集合与集合之间关系的区别.3. 学习类比方法,渗透分类思想,提高学生思维能力,增强学生创新意识.【教学重点】1. 理解集合间的包含、真包含、相等关系及传递关系.2. 元素与集合、集合与集合之间关系的区别.【教学难点】弄清元素与集合、集合与集合之间关系的区别.【教学方法】本节课采用讲练结合、问题解决式教学方法,并运用现代化教学手段进行教学.使学生初步经历使用最基本的集合语言表示有关数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力.精心设计问题情境,引起学生强烈的求知欲望,通过启发,使学生的思考、发现、归纳等一系列的探究思维活动始终处于自主的状态中.【教学过程】1.1.4集合的运算(一)【教学目标】1. 理解交集与并集的概念与性质.2. 掌握交集和并集的表示法,会求两个集合的交集和并集.3. 发展学生运用数学语言进行表达、交流的能力;培养学生观察、归纳、分析的能力.【教学重点】交集与并集的概念与运算.【教学难点】交集和并集的概念、符号之间的区别与联系.【教学方法】这节课主要采用发现式教学法和自学法.运用现代化教学手段,通过创设情景,提出问题,引导学生自己独立地去发现问题、分析归纳、形成概念.并通过对比,自学相似概念,深化对概念的理解.【教学过程】1.1.4集合的运算(二)【教学目标】1. 了解全集的意义;理解补集的概念,掌握补集的表示法;理解集合的补集的性质;会求一个集合在全集中的补集.2. 发展学生运用数学语言进行表达、交流的能力;培养学生建立数形结合的思想,将满足条件的集合用Venn图或数轴一一表示出来;提高学生观察、比较、分析、概括的能力.3. 鼓励学生主动参与“教”与“学”的整个过程,激发其求知欲望,增强其学习数学的兴趣与自信心.【教学重点】补集的概念与运算.【教学难点】全集的意义;数集的运算.【教学方法】本节课采用发现式教学法,通过引入实例,进而分析实例,引导学生寻找、发现其一般结果,归纳其普遍规律.【教学过程】新课我们在研究数集时,常常把实数集R作为全集.二、补集1. 定义.如果A 是全集U的一个子集,由U中的所有不属于A 的元素构成的集合,叫做A 在U 中的补集.记作U A.读作“A 在U中的补集”.2. 补集的Venn图表示.例1 已知:U={1,2,3,4,5,6},A={1,3,5}.则U A=;A ∩U A=;A ∪U A=.解{2,4,6};∅;U.例2已知U={ x | x是实数},Q={ x | x 是有理数}.则U Q=;Q∩U Q=;Q∪U Q=.解{ x | x 是无理数};∅;U.3. 补集的性质.(1) A ∪U A=U;(2) A ∩U A=∅;(3) U(U A)=A.例3已知全集U=R,A={x | x>5},求U A.解U A={x | x≤5}.练习 1(1) 已知全集U=R,A={ x | x<1},求U A.(2) 已知全集U=R,A={ x | x师:通过引导学生回答引例中的问题2“没有购进的品种构成的集合是什么?”,得出补集的定义和特征;介绍补集的记法和读法.生:根据定义,试用阴影表示补集.师:订正、讲解补集Venn图表示法.生:对例1口答填空.师:引导学生画出例2的Venn图,明确集合间关系,请学生观察并说出结果.师:以填空的形式出示各条性质.生:填写性质.师:结合数轴讲解例3.学生解答练习1,并总结解题规律.从引例的集合关系中直观感知补集涵义.通过画图来理解补集定义,突破难点.借助简单题目使学生初步理解补集定义.例2中补充两问,为学生得出性质做铺垫.结合具体例题和Venn图,使学生自己得出补集的各个性质,深化对补集概念的理解.培养学生数形结合的数学意识.AUC U A新课≤1},求U A.练习2设U={1,2,3,4,5,6},A={5,2,1},B={5,4,3,2}.求U A;U B;U A ∩U B;UA ∪U B.练习3 已知全集U=R,A={x | -1< x < 1}.求U A,U A∩U,U A∪U,A ∩U A,A ∪U A.学生做练习2、3,老师点拨、解答学生疑难.通过练习加深学生对补集的理解.小结补集定义记法图示性质1. 学生读书、反思,说出自己学习本节课的收获和存在问题.2. 老师引导梳理,总结本节课的知识点,学生填表巩固.让学生读书、反思,培养学生形成良好的学习习惯,提高学习能力.作业教材P17,练习A组第1~4题.学生课后完成.巩固拓展.1.2.1充要条件【教学目标】1. 使学生正确理解充分条件、必要条件和充要条件三个概念.2. 能在判断、论证中灵活运用上述三个概念.3. 培养学生思维的严密性.【教学重点】正确理解充分条件、必要条件和充要条件三个概念.【教学难点】正确区分充分条件、必要条件.【教学方法】本节课采用启发式教学和讲练结合的教学方法,引导学生分析归纳,形成概念.【教学过程】1.2.2子集与推出的关系【教学目标】1. 正确理解子集和推出的关系.2. 掌握通过“推出”判断集合的关系.3. 启发学生发现问题和提出问题,培养学生独立思考的能力,学会分析问题和解决问题;培养学生抽象概括能力和逻辑思维能力.【教学重点】理解子集和推出的关系.【教学难点】理解通过“推出”判断集合的包含关系.【教学方法】本节课采用启发式教学和讲练结合的教学方法,运用现代化教学手段进行教学.通过创设情景,用普遍联系的观点审视事物,引导学生自己去发现、分析、归纳,形成概念.穿插有针对性的练习及讲解,并配以题组训练模式,使学生边学边练,及时巩固,深化对概念的理解.【教学过程】第二章不等式2.1.1实数的大小【教学目标】1.理解并掌握实数大小的基本性质,初步学习用作差比较法来比较两个实数或代数式的大小.2.从学生身边的事例出发,体会由实际问题上升为数学概念和数学知识的过程.3.培养学生勤于分析、善于思考的优秀品质.善于将复杂问题简单化也是我们着意培养的一种优秀的思维品质.【教学重点】理解实数的大小的基本性质,初步学习作差比较的思想.【教学难点】用作差比较法比较两个代数式的大小.【教学方法】这节课主要采用讲练结合法.通过联系公路上的限速标志,引入不等式的问题,并且从关注数字的大小入手,引导学生学习用作差比较法来比较两个实数、代数式的大小.通过穿插有针对性的练习,引导学生边学边练,及时巩固,逐步掌握作差比较法.【教学过程】教学环节教学内容师生互动设计意图导入右面是公路上对汽车的限速标志,表示汽车在该路段行使的速度不得超过40 km/h.若用v(km/h)表示汽车的速度,那么v 与40之间的数量关系用怎样的式子表示?右面是公路上对汽车的限速标志,表示汽车在该路段行使的速度不得低于50 km/h.若用v(km /h)表示汽车的速度,那么v 与50之间的数量关系用怎样的式子表示?学生根据生活经验回答情境问题.答:v≤40.答:v≥50.从学生身边的生活经验出发进行新知的学习,有助于调动学生学习积极性.2.1.2不等式的性质【教学目标】1.掌握不等式的三条基本性质以及推论,能够运用不等式的基本性质将不等式变形解决简单的问题.2. 掌握应用作差比较法比较实数的大小.3.通过教学,培养学生合作交流的意识和大胆猜想、乐于探究的良好思维品质.【教学重点】不等式的三条基本性质及其应用.【教学难点】不等式基本性质3的探索与运用.【教学方法】这节课主要采用讲练结合法与分组探究教学法.通过引导学生回顾玩跷跷板的经验,师生共同探究天平两侧物体的质量的大小,引导学生理性地认识不等式的三条基本性质,并运用作差比较法来证明之.通过题组训练,使学生逐步掌握不等式的基本性质,为后面运用不等式的基本性质解不等式打下理论基础.【教学过程】教学环节教学内容师生互动设计意图导入【课件展示情境1】创设天平情境问题:观察课件,说出物体a和c哪个质量更大一些?由此判断:如果a>b,b>c,那么a和c的大小关系如何?从学生身边的生活经验出发进行新知的学习,有助于调动学生学习的积极性.新性质1(传递性) 学生思考、课新课如果a>b,b>c,则a>c.分析要证a>c,只要证a-c>0.证明因为a-c=(a-b)+(b-c),又由a>b,b>c,即a-b>0,b-c>0,所以(a-b)+(b-c)>0.因此a-c>0.即a>c.【课件展示情境2】性质2(加法法则)如果a>b,则a+c>b+c.证明因为(a+c)-(b+c)=a-b,又由a>b,即a-b>0,所以a+c>b+c.思考:如果a>b,那么a-c>b-c.是否正确?不等式的两边都加上(或减去)同一个数,不等号的方向不变.推论1如果a+b>c,则a>c-b.证明因为a+b>c,所以a+b+(-b)>c+(-b),即a>c-b.不等式中任何一项,变号后可以从一边移到另一边.练习1(1)在-6<2 的两边都加上9,得;(2)在4>-3 的两边都减去6,得;(3)如果a<b,那么a-3 b-3;(4)如果x>3,那么x+2 5;(5)如果x+7>9,那么两边都,得x>2.回答得出性质1.引导学生判断:不等式的两边都加上(或减去)同一个数,不等号的方向是否改变?学生口答,教师点评.创设一种情境,给学生提供了想象的空间,为后续学习做好了铺垫.让学生在“做”数学中学数学,真正成为学习的主人.把课堂变为学生再发现、再创造的乐园.对不等式的性质及时练习,进行巩固.2.2.1区间的概念【教学目标】1. 理解区间的概念,掌握用区间表示不等式解集的方法,并能在数轴上表示出来.2. 通过教学,渗透数形结合的思想和由一般到特殊的辩证唯物主义观点.3. 培养学生合作交流的意识和乐于探究的良好思维品质,让学生从数学学习活动中获得成功的体验,树立自信心.【教学重点】用区间表示数集.【教学难点】对无穷区间的理解.【教学方法】本节课主要采用数形结合法与讲练结合法.通过不等式介绍闭区间的有关概念,并与学生一起在数轴上表示两种不同的区间,学生类比得出其它区间的记法.在此基础上引导学生用区间表示不等式的解集,为学习用区间法求不等式组的解集打下坚实的基础.【教学过程】新课全体实数也可用区间表示为(-∞,+∞),符号“+∞”读作“正无穷大”,“-∞”读作“负无穷大”.例1用区间记法表示下列不等式的解集:(1) 9≤x≤10;(2) x≤0.4.解(1) [9,10];(2) (-∞,0.4].练习1用区间记法表示下列不等式的解集,并在数轴上表示这些区间:(1) -2≤x≤3;(2) -3<x≤4;(3) -2≤x<3;(4) -3<x<4;(5) x>3;(6) x≤4.例2用集合的性质描述法表示下列区间:(1) (-4,0);(2) (-8,7].解(1) {x | -4<x<0};(2) {x | -8<x≤7}.练习2用集合的性质描述法表示下列区间,并在数轴上表示这些区间:(1) [-1,2);(2) [3,1].例3在数轴上表示集合{x|x<-2或x≥1}.解如图所示.练习3已知数轴上的三个区间:(-∞,-3),(-3,4),用表格呈现相应的区间,便于学生对比记忆.教师强调“∞”只是一种符号,不是具体的数,不能进行运算.学生在教师的指导下,得出结论,师生共同总结规律.学生抢答,巩固区间知识.学生代表板演,其它学生练习,相互评价.同桌之间讨论,完学生理解无穷区间有些难度,教师要强调“∞”只是一种符号,并结合数轴多加练习。
中职数学(基础模块)上册教案
中职数学(基础模块)教案1.1集合的概念知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合的表示法.教学难点:集合表示法的选择与规范书写.课时安排:2课时.1.2集合之间的关系知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合与集合间的关系及其相关符号表示.教学难点:真子集的概念.课时安排:2课时.1.3集合的运算(1)知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.教学重点:交集与并集.教学难点:用描述法表示集合的交集与并集.课时安排:2课时.1.3集合的运算(2)知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.教学重点:集合的补运算.教学难点:集合并、交、补的综合运算.课时安排:2课时.1.4充要条件知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.教学重点:(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“”,“”,“”的正确使用.教学难点:“充分条件”、“必要条件”、“充要条件”的判定.课时安排:2课时.2.1不等式的基本性质知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.教学重点:⑴比较两个实数大小的方法;⑵不等式的基本性质.教学难点:比较两个实数大小的方法.课时安排:1课时.2.2区间知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合的学习过程,培养学生的观察能力和数学思维能力.教学重点:区间的概念.教学难点:区间端点的取舍.课时安排:1课时.2.3一元二次不等式知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.教学重点:⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.教学难点:一元二次不等式的解法.课时安排:2课时.2.4含绝对值的不等式知识目标:(1)理解含绝对值不等式或的解法;(2)了解或的解法.能力目标:(1)通过含绝对值不等式的学习;培养学生的计算技能与数学思维能力;(2)通过数形结合的研究问题,培养学生的观察能力.教学重点:(1)不等式或的解法.(2)利用变量替换解不等式或.教学难点:利用变量替换解不等式或.课时安排:2课时.3.1函数的概念及其表示法知识目标:(1)理解函数的定义;(2)理解函数值的概念及表示;(3)理解函数的三种表示方法;(4)掌握利用“描点法”作函数图像的方法.能力目标:(1)通过函数概念的学习,培养学生的数学思维能力;(2)通过函数值的学习,培养学生的计算能力和计算工具使用技能;(3)会利用“描点法”作简单函数的图像,培养学生的观察能力和数学思维能力.教学重点:(1)函数的概念;(2)利用“描点法”描绘函数图像.教学难点:(1)对函数的概念及记号的理解;(2)利用“描点法”描绘函数图像.课时安排:2课时.3.2函数的性质知识目标:⑴理解函数的单调性与奇偶性的概念;⑵会借助于函数图像讨论函数的单调性;⑶理解具有奇偶性的函数的图像特征,会判断简单函数的奇偶性.能力目标:⑴通过利用函数图像研究函数性质,培养学生的观察能力;⑵通过函数奇偶性的判断,培养学生的数学思维能力.教学重点:⑴函数单调性与奇偶性的概念及其图像特征;⑵简单函数奇偶性的判定.教学难点:函数奇偶性的判断.(*函数单调性的判断)课时安排:2课时.3.3函数的实际应用举例知识目标:(1)理解分段函数的概念;(2)理解分段函数的图像;(3)了解实际问题中的分段函数问题.能力目标:(1)会求分段函数的定义域和分段函数在点处的函数值;(2)掌握分段函数的作图方法;(3)能建立简单实际问题的分段函数的关系式.教学重点:(1)分段函数的概念;(2)分段函数的图像.教学难点:(1)建立实际问题的分段函数关系;(2)分段函数的图像.课时安排:2课时.4.1实数指数幂(1)知识目标:⑴复习整数指数幂的知识;⑵了解n次根式的概念;⑶理解分数指数幂的定义.能力目标:⑴掌握根式与分数指数幂之间的转化;⑵会利用计算器求根式和分数指数幂的值;⑶培养计算工具使用技能.教学重点:分数指数幂的定义.教学难点:根式和分数指数幂的互化.课时安排:2课时.4.1实数指数幂(2)知识目标:⑴掌握实数指数幂的运算法则;⑵通过几个常见的幂函数,了解幂函数的图像特点.能力目标:⑴正确进行实数指数幂的运算;⑵培养学生的计算技能;⑶通过对幂函数图形的作图与观察,培养学生的计算工具使用能力与观察能力. 教学重点:有理数指数幂的运算.教学难点:有理数指数幂的运算.课时安排:2课时.4.2指数函数知识目标:⑴理解指数函数的图像及性质;⑵了解指数模型,了解指数函数的应用.能力目标:⑴会画出指数函数的简图;⑵会判断指数函数的单调性;⑶了解指数函数在生活生产中的部分应用,从而培养学生分析与解决问题能力.教学重点:⑴指数函数的概念、图像和性质;⑵指数函数的应用实例.教学难点:指数函数的应用实例.课时安排:2课时.4.3对数知识目标:⑴理解对数的概念,理解常用对数和自然对数的概念;⑵掌握利用计算器求对数值的方法;⑶了解积、商、幂的对数.能力目标:⑴会进行指数式与对数式之间的互化;⑵会运用函数型计算器计算对数值;⑶培养计算工具的使用技能.教学重点:指数式与对数式的关系.教学难点:对数的概念.课时安排:2课时.4.4对数函数知识目标:⑴了解对数函数的图像及性质特征;⑵了解对数函数的实际应用. 能力目标:⑴观察对数函数的图像,总结对数函数的性质,培养观察能力;⑵通过应用实例的介绍,培养学生数学思维能力和分析与解决问题能力. 教学重点:对数函数的图像及性质.教学难点:对数函数的应用中实际问题的题意分析.课时安排:2课时.5.1角的概念推广知识目标:⑴了解角的概念推广的实际背景意义;⑵理解任意角、象限角、界限角、终边相同的角的概念.能力目标:(1)会判断角所在的象限;(2)会求指定范围内与已知角终边相同的角;(3)培养观察能力和计算技能.教学重点:终边相同角的概念.教学难点:终边相同角的表示和确定.课时安排:2课时.5.2弧度制知识目标:⑴理解弧度制的概念;⑵理解角度制与弧度制的换算关系.能力目标:(1)会进行角度制与弧度制的换算;(2)会利用计算器进行角度制与弧度制的换算;(3)培养学生的计算技能与计算工具使用技能.教学重点:弧度制的概念,弧度与角度的换算.教学难点:弧度制的概念.课时安排:2课时.5.3任意角的正弦函数、余弦函数和正切函数知识目标:⑴理解任意角的三角函数的定义及定义域;⑵理解三角函数在各象限的正负号;⑶掌握界限角的三角函数值.能力目标:⑴会利用定义求任意角的三角函数值;⑵会判断任意角三角函数的正负号;⑶培养学生的观察能力.教学重点:⑴任意角的三角函数的概念;⑵三角函数在各象限的符号;⑶特殊角的三角函数值.教学难点:任意角的三角函数值符号的确定.课时安排:2课时.5.4 同角三角函数的基本关系知识目标:理解同角的三角函数基本关系式.能力目标:⑴已知一个三角函数值,会利用同角三角函数的基本关系式求其他的三角函数值;⑵会利用同角三角函数的基本关系式求三角式的值.教学重点:同角的三角函数基本关系式的应用.教学难点:应用平方关系求正弦或余弦值时,正负号的确定.课时安排:2课时.5.5诱导公式知识目标:了解“”、“”、“180°”的诱导公式.能力目标:(1)会利用简化公式将任意角的三角函数的转化为锐角的三角函数;(2)会利用计算器求任意角的三角函数值;(3)培养学生的数学思维能力及应用计算工具的能力.教学重点:三个诱导公式.教学难点:诱导公式的应用.课时安排:2课时.5.6三角函数的图像和性质知识目标:(1)理解正弦函数的图像和性质;(2)理解用“五点法”画正弦函数的简图的方法;(3)了解余弦函数的图像和性质.能力目标:(1)认识周期现象,以正弦函数、余弦函数为载体,理解周期函数;(2)会用“五点法”作出正弦函数、余弦函数的简图;(3)通过对照学习研究,使学生体验类比的方法,从而培养数学思维能力.教学重点:(1)正弦函数的图像及性质;(2)用“五点法”作出函数y=sin x在上的简图.教学难点:周期性的理解.课时安排:2课时.5.7已知三角函数值求角知识目标:(1)掌握利用计算器求角度的方法;(2)了解已知三角函数值,求指定范围内的角的方法.能力目标:(1)会利用计算器求角;(2)已知三角函数值会求指定范围内的角;(3)培养使用计算工具的技能.教学重点:已知三角函数值,利用计算器求角;利用诱导公式求出指定范围内的角.教学难点:已知三角函数值,利用计算器求指定范围内的角.课时安排:2课时.6.1数列的概念知识目标:(1)了解数列的有关概念;(2)掌握数列的通项(一般项)和通项公式.能力目标:通过实例引出数列的定义,培养学生的观察能力和归纳能力.教学重点:利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项.教学难点:根据数列的前若干项写出它的一个通项公式.课时安排:2课时.6.2等差数列(一)知识目标:(1)理解等差数列的定义;(2)理解等差数列通项公式.能力目标:通过学习等差数列的通项公式,培养学生处理数据的能力.教学重点:等差数列的通项公式.教学难点:等差数列通项公式的推导.课时安排:2课时.6.2等差数列知识目标:理解等差数列通项公式及前项和公式.能力目标:通过学习前项和公式,培养学生处理数据的能力.教学重点:等差数列的前项和的公式.教学难点:等差数列前项和公式的推导.课时安排:2课时.6.3等比数列知识目标:(1)理解等比数列的定义;(2)理解等比数列通项公式.能力目标:通过学习等比数列的通项公式,培养学生处理数据的能力.教学重点:等比数列的通项公式.教学难点:等比数列通项公式的推导.课时安排:2课时.6.3等比数列知识目标:理解等比数列前项和公式.能力目标:通过学习等比数列前项和公式,培养学生处理数据的能力.教学重点:等比数列的前项和的公式.教学难点:等比数列前项和公式的推导.课时安排:3课时.7.1平面向量的概念及线性运算知识目标:(1)了解向量、向量的相等、共线向量等概念;(2)掌握向量、向量的相等、共线向量等概念.能力目标:通过这些内容的学习,培养学生的运算技能与熟悉思维能力.教学重点:向量的线性运算.教学难点:已知两个向量,求这两个向量的差向量以及非零向量平行的充要条件.课时安排:2课时.7.2平面向量的坐标表示知识目标:(1)了解向量坐标的概念,了解向量加法、减法及数乘向量运算的坐标表示;(2)了解两个向量平行的充要条件的坐标形式.能力目标:培养学生应用向量知识解决问题的能力.教学重点:向量线性运算的坐标表示及运算法则.教学难点:向量的坐标的概念.采用数形结合的方法进行教学是突破难点的关键.课时安排:2课时.7.3平面向量的内积知识目标:(1)了解平面向量内积的概念及其几何意义;(2)了解平面向量内积的计算公式.为利用向量的内积研究有关问题奠定基础.能力目标:通过实例引出向量内积的定义,培养学生观察和归纳的能力.教学重点:平面向量数量积的概念及计算公式.教学难点:数量积的概念及利用数量积来计算两个非零向量的夹角.课时安排:2课时.8.1两点间的距离与线段中点的坐标知识目标:掌握两点间的距离公式与中点坐标公式;能力目标:用“数形结合”的方法,介绍两个公式.培养学生解决问题的能力与计算能力.教学重点:两点间的距离公式与线段中点的坐标公式的运用教学难点:两点间的距离公式的理解课时安排:2课时.8.2直线的方程知识目标:(1)理解直线的倾角、斜率的概念;(2)掌握直线的倾角、斜率的计算方法.能力目标:采用“数形结合”的方法,培养学生有条理地思考问题.教学重点:直线的斜率公式的应用.教学难点:直线的斜率概念和公式的理解.课时安排:2课时.8.2直线的方程(二)知识目标:(1)了解直线与方程的关系;(2)掌握直线的点斜式方程、斜截式方程,理解直线的一般式方程.能力目标:培养学生解决问题的能力与计算能力.教学重点:直线方程的点斜式、斜截式方程.教学难点:根据已知条件,选择直线方程的适当形式求直线方程.课时安排:2课时.8.3两条直线的位置关系(一)知识目标:(1)掌握两条直线平行的条件;(2)能应用两条直线平行的条件解题.能力目标:培养学生的数学思维及分析问题和解决问题的能力.教学重点:两条直线平行的条件.教学难点:两条直线平行的判断及应用.课时安排:2课时.8.3两条直线的位置关系(二)知识目标:(1)掌握两条直线平行的条件;(2)能应用点到直线的距离公式解题.能力目标:培养学生的数学思维及分析问题和解决问题的能力.教学重点:两条直线的位置关系,点到直线的距离公式.教学难点:两条直线的位置关系的判断及应用.课时安排:2课时.8.4圆(一)知识目标:(1)了解圆的定义;(2)掌握圆的标准方程和一般方程.能力目标:培养学生解决问题的能力与计算能力.教学重点:圆的标准方程和一般方程的理解与应用.教学难点:对圆的标准方程和一般方程的正确认识.课时安排:2课时.8.4圆(二)知识目标:(1)理解直线和圆的位置关系;(2)了解直线与圆相切在实际中的应用.能力目标:培养学生的数学思维及分析问题和解决问题的能力.教学重点:直线与圆的位置关系的理解和掌握.教学难点:直线与圆的位置关系的判定.课时安排:2课时.9.1平面的基本性质知识目标:(1)了解平面的概念、平面的基本性质;(2)掌握平面的表示法与画法.能力目标:培养学生的空间想象能力和数学思维能力.教学重点:平面的表示法与画法.教学难点:对平面的概念及平面的基本性质的理解.课时安排:2课时.9.2直线与直线、直线与平面、平面与平面平行的判定与性质知识目标:(1)了解两条直线的位置关系;(2)掌握异面直线的概念与画法,直线与直线平行的判定与性质;直线与平面的位置关系,直线与平面平行的判定与性质;平面与平面的位置关系,平面与平面平行的判定与性质.能力目标:培养学生的空间想象能力和数学思维能力.教学重点:直线与直线、直线与平面、平面与平面平行的判定与性质.教学难点:异面直线的想象与理解.课时安排:2课时.9.3直线与直线、直线与平面、平面与平面所成的角知识目标:(1)了解两条异面直线所成的角的概念;(2)理解直线与平面垂直、直线与平面所成的角的概念,二面角及其平面角的概念.能力目标:培养学生的空间想象能力和数学思维能力.教学重点:异面直线的概念与两条异面直线所成的角的概念、直线与平面所成的角的概念、二面角及其平面角的概念.教学难点:两条异面直线所成的角的概念、二面角的平面角的确定.课时安排:2课时.9.4直线与直线、直线与平面、平面与平面垂直的判定与性质知识目标:(1)了解空间两条直线垂直的概念;(2)掌握与平面垂直的判定方法与性质,平面与平面垂直的判定方法与性质.能力目标:培养学生的空间想象能力和数学思维能力.教学重点:直线与平面、平面与平面垂直的判定方法与性质.教学难点:判定空间直线与直线、直线与平面、平面与平面垂直.课时安排:2课时.9.5柱、锥、球及其简单组合体(一)知识目标:(1)了解棱柱、棱锥的结构特征;(2)掌握棱柱、棱锥面积和体积计算.能力目标:培养学生的观察能力,数值计算能力及计算工具使用技能.教学重点:正棱柱、正棱锥的结构特征及相关的计算.教学难点:正棱柱、正棱锥的相关计算.课时安排:2课时.9.5柱、锥、球及其简单组合体(二)知识目标:(1)了解圆柱、圆锥、球的结构特征;(2)掌握圆柱、圆锥、球的面积和体积计算.能力目标:培养学生的观察能力,数值计算能力及计算工具使用技能.教学重点:圆柱、圆锥、球的结构特征及相关的计算.教学难点:简单组合体的结构特征及其面积、体积的计算.课时安排:2课时.10.1计数原理知识目标:掌握分类计数原理和分步计数原理.能力目标:培养学生的观察、分析能力.教学重点:掌握分类计数原理和分步计数原理.教学难点:区别与运用分类计数原理和分步计数原理.课时安排:2课时.10.2概率(一)知识目标:(1)理解必然事件、不可能事件、随机事件的意义;(2)理解事件的频率与概率的意义以及二者的区别与联系.能力目标:培养学生的观察、分析能力.教学重点:事件的概率的定义.教学难点:概率的计算.课时安排:2课时.10.2概率(二)知识目标:掌握古典概型,互斥事件的概念.能力目标:培养学生的观察、分析能力.教学重点:运用公式计算等可能事件的概率.教学难点:概率的计算.课时安排:2课时.10.3总体、样本与抽样方法(一)知识目标:理解总体、个体、样本等概念.能力目标:培养学生认识世界、探索世界的辩证唯物观.教学重点:总体、个体、样本、样本的容量的概念.教学难点:总体、个体、样本之间的关系.课时安排:2课时.10.3总体、样本与抽样方法(二)知识目标:了解简单随机抽样、系统抽样、分层抽样等三种抽样方法.能力目标:培养学生认识世界、探索世界的辩证唯物观.教学重点:了解简单随机抽样、系统抽样、分层抽样等三种抽样方法.教学难点:对简单随机抽样、系统抽样、分层抽样等三种抽样方法的理解.课时安排:2课时.10.4用样本估计总体知识目标:(1)了解用样本的频率分布估计总体;(2)掌握用样本均值、方差和标准差估计总体的均值、方差和标准差.能力目标:培养学生认识世界、探索世界的辩证唯物观.教学重点:计算样本均值、样本方差及样本标准差.教学难点:列频率分布表,绘频率分布直方图.课时安排:2课时.10.5一元线性回归知识目标:(1)了解相关关系的概念;(2)掌握一元线性回归思想及回归方程的建立.能力目标:增强学生的数据处理能力,计算工具的使用能力,分析问题和解决问题的能力,培养严谨、细致的学习和工作作风.教学重点:掌握一元回归方程.教学难点:理解相关关系、回归分析概念.课时安排:2课时。
中职数学基础模块上册全套教案
中职数学基础模块上册全套教案中职数学基础模块上册全套教案课程类型:中职数学课程目标:本课程的目标是帮助学生掌握数学基础知识和技能,为进一步学习数学和其他相关学科打下坚实的基础。
课程内容:本课程包括以下内容:第一章数与代数1.1 整数与有理数 1.2 代数式与方程 1.3 不等式与不等式组 1.4 函数与图像第二章几何与三角2.1 直线与角 2.2 三角形与四边形 2.3 坐标与方程 2.4 圆第三章概率与统计3.1 概率初步 3.2 统计初步第四章应用数学4.1 线性规划 4.2 数学建模 4.3 算法初步教学方法:本课程采用多种教学方法,包括讲解、演示、练习、讨论和项目实践等。
教师将通过课堂互动、问题解决和合作学习等方式,激发学生的学习兴趣和积极性。
教学步骤:1、导入新课:通过问题或案例导入新课,引起学生的兴趣和思考。
2、讲解知识:详细讲解每个知识点的概念、方法和应用。
3、演示例题:通过演示例题,让学生了解如何运用所学知识解决问题。
4、学生练习:让学生进行练习,加深对知识点的理解和掌握。
5、讨论与交流:组织学生进行讨论和交流,加深对知识点的理解和应用。
6、课堂小结:对本节课所学内容进行总结和回顾,强化学生对知识点的记忆。
7、布置作业:布置适当的课后作业,帮助学生巩固所学知识。
教学评估:本课程的教学评估将采用以下方式:1、平时作业:通过平时的作业和练习,了解学生对知识点的掌握情况。
2、期中考试:通过期中考试,检查学生对本学期所学内容的掌握情况。
3、期末考试:通过期末考试,全面了解学生对本课程的学习效果。
教学反思:在教学结束后,教师将对学生的表现进行反思和总结,分析成功之处和需要改进之处,以便更好地提高教学质量。
人教版中职数学教材-基础模块上册全册教案[1-5章共41份教案][精品全套]
人教版中职数学教材基础模块上册全册教案目录第三章函数 (1)3.1.1 函数的概念 (1)3.1.2 函数的表示方法 (5)3.1.3 函数的单调性 (8)3.1.4 函数的奇偶性 (13)3.2.1 一次、二次问题 (17)3.2.2 一次函数模型 (20)3.2.3 二次函数模型 (24)3.3 函数的应用 (29)第四章指数函数与对数函数 (32)4.1.1 有理指数(一) (32)4.1.1 有理指数(二) (36)4.1.2 幂函数举例 (40)4.1.3 指数函数 (43)4.2.1 对数 (48)4.2.2 积、商、幂的对数 (51)4.2.3 换底公式与自然对数 (55)4.2.4 对数函数 (57)4.3 指数、对数函数的应用 (60)第五章三角函数 (63)5.1.1 角的概念的推广 (63)5.1.2 弧度制 (67)5.2.1 任意角三角函数的定义 (71)5.2.2 同角三角函数的基本关系式 (76)5.2.3 诱导公式 (80)5.3.1 正弦函数的图象和性质 (85)5.3.2 余弦函数的图象和性质 (89)5.3.3 已知三角函数值求角 (92)第三章函数3.1.1函数的概念【教学目标】1. 理解函数的概念,会求简单函数的定义域.2. 理解函数符号y=f (x)的意义,会求函数在x=a处的函数值.3. 通过教学,渗透一切事物相互联系和相互制约的辩证唯物主义观点.【教学重点】函数的概念及两要素,会求函数在x=a处的函数值,求简单函数的定义域.【教学难点】用集合的观点理解函数的概念.【教学方法】这节课主要采用问题解决法和分组教学法.运用现代化教学手段,通过两个实例,分析抽象出函数概念,使学生更容易理解函数关系的实质以及函数两要素.然后通过求函数值与定义域的两类题目,深化对函数概念的理解.3.1.2函数的表示方法【教学目标】1. 了解函数的解析法、列表法、图象法三种主要表示方法.2. 已知函数解析式会用描点法作简单函数的图象.3. 培养学生数形结合、分类讨论的数学思想方法,通过小组合作培养学生的协作能力.【教学重点】函数的三种表示方法;作函数图象.【教学难点】作函数图象.【教学方法】这节课主要采用问题解决法和分组讨论教学法.本节课先借助一个实例,简要介绍函数的三种表示方法,进一步刻画函数概念;然后通过两个例题,使学生初步感知如何由解析式分析函数性质以指导画图,避免画图的盲目性.通过本节教学,使学生初步了解数形结合研究函数的方法,为下面学习函数的单调性和奇偶性做铺垫.【教学过程】新课3.针对上面的例子,思考并回答下列问题:(1) 在上例描点时,是怎样确定一个点的位置的?哪个变量作为点的横坐标?哪个变量作为点的纵坐标?(2) 函数的定义域是什么?(3) s的值能大于200吗?能是负值吗?为什么?函数的值域是什么?(4) 距离s 随行驶时间t 的增大有怎样的变化?4.例1作函数y=x3 的图象.解列表画图5.结合例1完成下列问题:(1) 函数y=x3 的定义域、值域是什么?(2) 函数值y随x的增大有怎样的变化?(3) f(a)与f(-a)相等吗?有怎样的关系?(4) 函数图象是轴对称图形还是中心对称图教师引导学生利用函数图象分析回答函数的性质.师:由上例可以看出,我们在列表、作图时,要认真分析函数,避免盲目列表计算.函数的图象有利于我们研究函数的性质,如本例中函数的定义域、值域以及y随x增大而增大等性质.教师引导学生分析:函数y=x3 的定义域是R,当x>0时,y>0,这时函数的图象在第一象限,y 的值随着x 的值增大而增大;当x<0时,y<0,这时函数的图象在第三象限,y 的值随着x 的值减小而减小.教师引导学生完成列表、描点及连线,完成函数图象.师生合作完成例1,让学生体会取值前如何分析研究函数式的特点.学生分组讨论完成,从讨论中掌握分析函数性质的方法.力.本题的设置起到了承上启下的作用.为突破本节课难点而设计.问题(4)为下节引入函数的单调性做准备.让学生在作图过程中体会函数的性质,从做中学.尽可能把主动权交给学生,使学生在自主探索中发现问题解决问题.问题(3)(4)的设置是为引入函数的奇偶性作准备.新课形?6.例2作函数y=1x2的图象.解列表画图7.结合例2解答下列问题:(1) 函数y=1x2的定义域、值域是什么?(2) 在第一象限中,函数值y随x的增大有怎样的变化?在第二象限中呢?(3) f (a)与f (-a)相等吗?有怎样的关系?(4) 函数图象是轴对称图形还是中心对称图形?学生小组合作分析课本例2如何取值.学生作出例2图象,教师针对出现的情况进行点评或让学生互评.教师强调自变量的取值,即{x | x≠0}.学生分组讨论完成,从讨论中掌握分析函数性质的方法.避免为作图象而作图象,让学生在画图的过程中学习.让学生进一步掌握分析函数性质的方法.并为下一步学习函数的单调性与奇偶性做准备.小结1. 函数的三种表示方法.2. 作函数图象.学生畅谈本节课的收获,老师引导梳理,总结本节课的知识点.梳理总结也可针对学生薄弱或易错处进行强调和总结.作业教材P65 ,练习A组第3题;练习B 组第2题.巩固拓展.3.1.3函数的单调性【教学目标】1.理解函数单调性的概念,掌握判断函数的单调性的方法.2.通过教学,使学生领会数形结合的数学方法;培养学生发现问题、分析问题、解决问题的能力.3.体验数学的严谨性,渗透由一般到特殊的辩证唯物主义观点.【教学重点】函数单调性的概念;学会运用图象法观察函数的单调性和用定义法证明一些函数的单调性.【教学难点】利用函数单调性的定义判断和证明函数的单调性.【教学方法】这节课主要采用类比教学法和分组教学法.教师用问题引导学生从函数图象的变化趋势类比得出增减函数的概念,然后对图象进行代数分析,得出用定义证明函数单调性的步骤.从形的直观感知到严密的代数分析,使学生领会数形结合研究函数的方法.借助两个证明题,深化学生对单调性概念的理解.【教学过程】环节教学内容师生互动设计意图导入从常见的美丽的建筑物图片入手,让学生感知数学的美,激发学生的学习兴趣.师:播放动画,师生共同欣赏后,引导学生观察部分曲线的变化趋势,引入课题.联系实际,激发兴趣.新课1.课件展示下列函数图象师:提出问题,引导观察思考:1.观察图象的变化趋势怎样?2.你能看出当自变量增大或减少时函数值如何变化吗?生:观察动画,思考回答.从图象直观感知函数的单调性.新课2.增函数与减函数的定义:增函数:在给定的区间上自变量增大(减少)时,函数值也随着增大(减少).减函数:在给定的区间上自变量增大(减少)时,函数值也随着减少(增大).3.例1给出函数y=f (x)的图象,如图所示,根据图象指出这个函数在哪个区间上是增函数?在哪个区间上是减函数?解函数y=f (x)在区间[-1,0],[2,3]上是减函数;在区间[0,1],[3,4]上是增函数.4.练习1(1) 观察教材P64 例1的函数图象,说出函数在(-∞,+∞)上是增函数还是减函数;(2) 观察教材P65 例2的函数图象,分别说出函数在(-∞,0)和(0,+∞)上是增函数还是减函数.5.设y=f (x),在给定的区间教师引导学生归纳增函数与减函数的定义.学生观察图象完成此题,掌握用图象来判断函数单调性的方法.教师强调,在说明函数单调性时,要指出明确的区间.学生回答,教师点评.教师带领学生结合增函数图象分析如何利通过观察函数图象直接给出增函数、减函数的定义,符合学生的特点,容易被学生接受.从观察直观图象入手,加深对单调性定义的理解,掌握用图象法判定函数单调性的方法,使学过的知识及时得到应用.通过练习1,让学生进一步掌握利用函数的图象来判断函数单调性的方法,从而提高学生的读图能力,并与前面学过的知识结合,对学过的函数有更新的认识.新在此图象上任取两点A(x1,y1),B(x2,y2),记∆x=x2-x1,∆y=y2-y1.6.例2 证明函数f (x)=3 x+2在区间(-∞,+∞)上是增函数.证明设x1,x2是任意两个不相等的实数,则∆x=x2-x1∆y=f (x2)-f (x1)用函数的解析式来判断一个函数是增函数.学生类比分析如何利用函数的解析式来判断一个函数是减函数.教师指出利用函数图象判断单调性的局限性,引导学生从函数解析式入手证明单调性的思路与步骤.教师讲解例题2,板书详细的解题过程.将增函数、减函数定义中的定性说明转化为定量分析.从而给出利用函数解析式来判断函数单调性的方法.启发学生思考,完成从直观到抽象、从感性思维到理性思维的升华.在板书例题的过程中,突出解题思路与步骤.通过例题解答,加深对函数单调性定义的理解,并自然而然地将定义运用到判定函数单调性中,理论与实践相辅相成.课新课=(3 x2+2)-(3 x1+2)=3(x2-x1),∆y∆x=3(x2-x1)x2-x1>0.因此,函数f (x)=3 x+2在区间(-∞,+∞)上是增函数.7.总结由函数的解析式判定函数单调性的步骤:S1 计算∆x和∆y;S2 计算k=∆y∆x.当k>0时,函数在这个区间上是增函数;当k<0时,函数在这个区间上是减函数.8.例3证明函数f (x)=1x在区间(0,+∞)上是减函数.证明:设x1,x2是任意两个不相等的正实数.因为∆x=x2-x1,∆y=f(x2)-f(x1)=1x2-1x1=2121xxxx-=-2112xxxx-=-21xxx∆.又因为x1 x2>0,所以∆y∆x=-211xx<0.因此,函数f (x)=x1在区间(0,+∞)上是减函数.9.练习2证明函数f (x)=3x在区间(-∞,0)上是减函数.教师引导学生总结解题步骤,可简记为:一设、二求、三判定.学生讨论并试解例题.老师点拨、解答学生疑难.学生模仿练习.突出重点,深化证明步骤,分解难点.通过学生讨论、老师点拨,顺利帮助学生判断∆y∆x的正负.巩固用函数解析式来判定单调性的思路和步骤.巩固理解,形成技能.小结1. 函数单调性的定义;2. 判定函数单调性的方法.学生阅读课本P66~68,畅谈本节课的收获.老师引导梳理,总结本节课的知识点.梳理总结也可针对学生薄弱或易错处进行强调和总结.作业教材P 69,练习A组第2题;练习B组第1、2题.巩固拓展.3.1.4函数的奇偶性【教学目标】1. 理解奇函数、偶函数的概念;掌握奇函数、偶函数的图象特征.2. 掌握判断函数奇偶性的方法.3. 通过教学,渗透数形结合思想,培养学生类比推理的能力,体会由具体到抽象、由特殊到一般的辩证唯物主义思想.【教学重点】奇偶性概念与函数奇偶性的判断.【教学难点】理解奇偶性概念与奇函数、偶函数的定义域.【教学方法】这节课主要采用类比教学法.先由两个具体的函数入手,引导学生发现函数f(x)在x与在-x的函数值之间的关系,由特殊到一般引出奇函数的定义,再由点的对称关系得出奇函数的图象特征.然后由学生自主探索,类比得出偶函数定义.结合定义与例题总结出判断函数奇偶性的步骤,在解题过程中深化对概念的理解.【教学过程】3.2.1一次、二次问题【教学目标】1. 通过实际问题感知一次、二次函数在实际生活中的应用.2. 培养学生从实际问题中抽象出数学模型并应用模型去解决实际问题的能力.3. 通过教学,培养学生应用数学的意识,提高学生分析问题、解决问题的能力.【教学重点】从实际问题中抽象简单的数学模型.【教学难点】从实际问题中抽象简单的数学模型.【教学方法】这节课主要采用问题解决法.教师引导学生对实际问题先用列表计算与画图的方法来直观感知,然后抽象成一次函数和二次函数来研究,通过教学,培养学生从实际问题中抽象出一次、二次函数模型并应用模型去解决实际问题的能力.【教学过程】3.2.2一次函数模型【教学目标】1. 掌握正比例函数和一次函数的关系;理解并掌握一次函数的性质.2. 培养学生数形结合研究函数性质的能力,渗透平移变换的数学思想.3. 体验数学的严谨性,培养学生理性分析问题的良好习惯.【教学重点】一次函数的性质.【教学难点】对正比例函数和直线的关系的理解.【教学方法】这节课主要采用讲练结合法.先定义一次函数,对特殊的一次函数——正比例函数,则采用由曲线与方程的角度来描述正比例函数与直线的关系,然后再考察一次函数与正比例函数的关系,从而得出一次函数的图象也是一条直线的结论,并结合函数的单调性深入分析一次函数的性质,将学生初中对具体的一次函数的认识上升到一般的理性结论.【教学过程】3.2.3二次函数模型【教学目标】1. 理解并掌握二次函数的图象和性质;了解二次函数与一元二次方程、一元二次不等式之间的关系;2. 通过教学,使学生初步掌握数形结合研究二次函数的方法;3. 渗透数形结合思想,渗透由特殊到一般的辩证唯物主义观点,培养学生观察分析、类比抽象的能力.【教学难点】函数对称性的分析与数形结合研究二次函数的方法.【教学方法】这节课主要采用启发式教学法和讲练结合法.本节课通过对例题中的二次三项式进行代数分析,探究二次函数性质的由来,使学生从初中对二次函数的直观感知上升到理性认识的高度.更重要的是在学习函数的一般通性之后,以二次函数为载体较系统地呈现数形结合研究函数的方法,为后面学习其它函数的性质奠定基础.【教学过程】新课观察图象并完成填空函数y=a x2的图象,当a>0时开口.当a<0时开口,对称轴是,顶点坐标是.函数是函数(用奇或偶填空).| a | 越大,开口越.例1研讨二次函数f (x)=12x2+4 x+6的性质与图象.解(1) 因为f (x)=12x2+4 x+6=12(x2+8 x+12)=12(x+4)2-2.由于对任意实数x,都有12(x+4)2≥0,所以 f (x)≥-2,并且,当x=-4时取等号,即f(-4)=-2.得出性质:x=-4时,取得最小值-2.记为y min=-2.点(-4,-2)是这个图象的顶点.(2) 当y=0时,12x2+4 x+6=0,x2+8 x+12=0,解得x1=-6,x2=-2.生:观察图象,小组合作讨论.然后每组选一名代表汇报各组的交流结果,最后师生一起汇总得出结论.师生共同解决例1,教师详细板书解题过程,带领学生仔细分析各个性质的由来.教师引导学生观察图象可得出:函数的对称轴是直线x=-4.师:这个结论是否是正确的呢?教师通过问题1、2,引导学生证明上述结论正确.通过对例1中二次三项式的代数分析,使学生对二次函数的直观感知上升到理性认识的高度,更重要的是使学生掌握数形结合研究函数的方法,初步培养学生的画图、识图能力.分析图象与x轴的交点,一方面为描点作图,另一方面为下节研究函数与方程,不等式的关系做铺垫.对称性的教学设计是为了启发学生完成从直观到抽象、从感性思维到理性思维的升华.教师让学生经历“观察—发现—验证—归纳”四2xy=2xy-=22xy=23xy=22xy-=23xy-=新课故该函数图象与x 轴交于两点(-6,0),(-2,0).(3) 列表作图.以x=-4为中间值,取x 的一些值,列出这个函数的对应值表然后画出函数的图象.观察上表或图形回答:1.关于x=-4对称的两个自变量的值对应的函数值有什么特点?答:相同.2.-4-h 与-4+h (h>0) 关于x=-4对称吗?分别计算-4-h与-4+h的函数值,你能发现什么?答:f (-4-h)=f (-4+h).得出性质:直线x=-4为该函数的对称轴.函数在(-∞,-4]上是减函数,在[-4,+∞)上是增函数.小结例2中的函数性质:1.开口.2.最值.3.顶点.4.对称轴.5.单调性.练习2(课本例3)用配方法求函数f (x)=3 x2+2 x+1的最小值和图象的对称轴,并说出它在哪个区间上是增函数,在哪个区间上是减函数?解:f (x)=3 x2+2 x+1=3(x2+23x)+1=3(x2+23x+19-19)+1=3(x+13)2+23学生模仿练习.老师巡回观察点拨、解答学生疑难.例2是二次函数中a<0的类型,学生可类比例1,自己得出图象与性质.例1与例2分别是二次函数中a>0,a<0的两种类型,教师引导学生填表,自己总结出二次函数的性质表格,对比记忆.个过程,感受数学的严密性、科学性.小结函数性质,将例1的分析条理化.通过练习2,进一步练习配方法以及巩固二次函数的性质.以表格的形式整理二次函数性质,使知识结构一目了然.y-2-6 O x-4-2新课所以y=f(-13)=23,函数图象的对称轴是直线x=-13,在(-∞,-13]上是减函数,在[-13,+∞)上是增函数.例2 研讨二次函数f (x)=-x2-4x+3的性质与图象.小结二次函数的性质.(表格见课件)例3 已知二次函数y=x2-x-6说出:(1) x 取哪些值时,y=0;(2) x 取哪些值时,y>0,x 取哪些值时,y<0.解 (1)求使y=0的x 的值,即求二次方程x2-x-6=0的所有根.方程的判别式∆=(-1)2-4×1×(-6)=25>0,解得:x1=-2,x2=3.(2)画出简图,函数的开口向上.从图象上可以看出,它与x轴相交于两点(-2,0),(3,0),这两点把x轴分成三段.所以当x∈(-2,3)时,y<0.当x∈(-∞,-2)∪(3,+∞)时,y>0.练习3 下列函数自变量在什么范围内取值时,函数值大于0、小于0或等于0.(1) y=x2+7 x-8;(2) y=-x2+2 x+8.例3板书详细的解题过程.通过此例题,教师总结一元二次方程、一元二次不等式与二次函数之间的关系:求二次方程ax2+bx+c=0的解,就是求二次函数:y=a x2+bx+c(a≠0)的根;求不等式 a x2+b x+c<0的解集,就是求使二次函数:y=ax2+bx+c(a≠0 )的函数值小于0的自变量的取值范围;求不等式 a x2+b x+c>0的解集,就是求使二次函数y=a x2+b x+c(a≠0)的函数值大于0的自变量的取值范围.学生模仿练习.老师巡回观察点拨、解答学生疑难.本例题有两种方法,方法一:在图象中用区间分析法,方法二;求一元二次方程或一元二次不等式的解集的方法.教师在讲解时可根据学生的实际情况进行讲解和拓展.方法一:在图象中用区间分析法是比较简单的一种方法,通过此法可进一步培养学生的读图,识图能力,培养学生数形结合的思想.巩固用图象法解一元二次不等式的步骤.利用表格总结,使所学知识系统化.o-2 3-6yx3.3函数的应用【教学目标】1. 会应用一次函数和二次函数解决有关简单实际问题.2. 培养学生建立简单的数学模型及应用模型去解决实际问题的能力.3. 通过教学,培养学生应用数学的意识,提高学生分析问题、解决问题的能力.【教学重点】应用函数知识解决一些简单的实际问题.【教学难点】从实际问题中抽象出函数模型.【教学方法】这节课主要采用讲练结合法.教师将四个例题与练习穿插在一起,教师引导与学生主动参与相结合,培养学生的审题能力,以及从实际问题中抽象出数学模型并应用模型去解决实际问题的能力.【教学过程】第四章指数函数与对数函数4.1.1有理指数(一)【教学目标】1. 理解整数指数幂及其运算律,并会进行有关运算.2. 培养学生的观察、分析、归纳等逻辑思维能力.3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养学生合作交流等良好品质.【教学重点】零指数幂、负整指数幂的定义.【教学难点】零指数幂及负整指数幂的定义过程,整数指数幂的运算.【教学方法】这节课主要采用问题解决法和分组教学法.在引入指数幂时,以在国际象棋棋盘上放米粒为导入素材,既体现数学的应用价值,也能引起学生的学习兴趣.从正整指数的运算法则中的a mm-n (m>n,a ≠ 0)a n=a这一法则出发,通过取消m>n的限制引入了零指数幂和负整指数幂的定义,从而把正整指数幂推广到整数指数幂.在本节教学中,要以取消m>n这一条件为出发点,让学生积极大胆地猜想,以此增强学生的参与意识,从而提高学生的学习兴趣.4.1.1有理指数(二)【教学目标】1. 了解根式的概念和性质;理解分数指数幂的概念;掌握有理数指数幂的运算性质.2. 会对根式、分数指数幂进行互化.培养学生的观察、分析、归纳等逻辑思维能力.3. 培养学生用事物之间普遍联系的观点看问题.【教学重点】分数指数幂的概念以及分数指数幂的运算性质.【教学难点】对分数指数幂概念的理解.【教学方法】这节课主要采用问题解决教学法.在引入分数指数幂时,先讲方根的概念,根据方根的定义,得到根式具有的性质.在利用根式的运算性质对根式的化简过程中,引导学生注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.在对根式的性质进行练习以后,为了解决运算的合理性,引入了分数指数幂的概念,从而将指数幂推广到了有理数范围.在学生掌握了有理指数幂的运算性质后,将有理指数幂推广到实数指数幂.考虑到职校学生的实际情况,并没有给出严格的推证.【教学过程】4.1.2 幂函数举例【教学目标】1. 了解幂函数的概念,会求幂函数的定义域,会画简单幂函数的图象.2. 培养学生用数形结合的方法解决问题.注重培养学生的作图、读图的能力.3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养合作交流等良好品质. 【教学重点】 幂函数的定义. 【教学难点】会求幂函数的定义域,会画简单幂函数的图象. 【教学方法】这节课主要采用启发式和讲练结合的教学方法.从函数y =x ,y =x 2,y =1x 等导入,通过观察这类函数的解析式,归纳其共性,引入幂函数的概念.在例1求函数的定义域中,对于分数指数及负整指数的幂函数要转化为分式或根式的形式,讲解时,注意引导,让学生在解答问题的过程中自己归纳总结规律.函数图象是研究函数性质的有利工具,教师在讲授例2时,可以采用分组的方式,让学生一起合作完成函数的图象,并从本例中找出幂函数的某些性质.【教学过程】24.1.3指数函数【教学目标】1. 掌握指数函数的定义、图象、性质及其简单的应用.2. 培养学生用数形结合的方法解决问题的能力.3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养独立思考等良好的个性品质.【教学重点】指数函数的图象与性质.【教学难点】指数函数的图象性质与底数a的关系.【教学方法】这节课主要采用讲练结合和小组合作的教学方法.本节课由生活中的真实例子导入新课,引入指数函数的定义,并通过一组练习深化指数函数的定义.先通过列表——描点——连线得到指数函数的图象,然后在教师的启发下,充分利用函数的图象来研究函数的性质.为了加强学生对函数性质的应用,增加了一道求函数定义域的例题,然后安排一定数量的练习,体现练为主线,讲练结合的教学方法.【教学过程】4.2.1对数【教学目标】1. 理解对数的概念,掌握对数式与指数式的互化.2. 培养学生的类比、分析、转化能力,提高理解和运用数学符号的能力.3. 通过对数概念的建立,明确事物的辩证发展和矛盾转化的观点,培养学生科学严谨的治学态度.【教学重点】对数的概念,对数式与指数式的相互转化.【教学难点】对数概念及性质的理解掌握.【教学方法】这节课主要采用启发式和分组合作教学法.在教学过程中遵循学生是教学的主体的精神,要给学生提供各种可能的参与机会,调动学生学习的积极性,使学生化被动为主动.利用多媒体辅助教学,引导学生从实例出发,认识对数的模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生积极思维,通过课堂练习、学生讨论的方式来加深理解重点,更好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.。
中职数学基础模块上册(人教版)教案
中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念【教学目标】1. 了解集合的概念,掌握集合的表示方法。
2. 能够运用集合的概念解决实际问题。
【教学内容】1. 集合的定义及表示方法。
2. 集合的性质。
3. 集合之间的基本关系。
【教学重点】1. 集合的概念及表示方法。
2. 集合的性质。
【教学难点】1. 集合的表示方法。
2. 集合之间的基本关系。
【教学过程】1. 引入新课:通过生活中的实例,引导学生理解集合的概念。
2. 讲解集合的定义及表示方法,如列举法、描述法等。
3. 讲解集合的性质,如无序性、确定性、互异性。
4. 讲解集合之间的基本关系,如子集、真子集、并集、交集等。
5. 课堂练习:让学生运用集合的概念解决实际问题。
1.2 集合之间的关系【教学目标】1. 掌握集合之间的基本关系,如子集、真子集、并集、交集等。
2. 能够运用集合之间的关系解决实际问题。
【教学内容】1. 集合之间的子集、真子集关系。
2. 集合之间的并集、交集关系。
3. 集合的补集概念。
【教学重点】1. 集合之间的基本关系。
2. 集合的补集概念。
【教学难点】1. 集合之间的基本关系。
2. 集合的补集概念。
【教学过程】1. 复习上节课的内容,引导学生理解集合之间的关系。
2. 讲解集合之间的子集、真子集关系。
3. 讲解集合之间的并集、交集关系。
4. 讲解集合的补集概念。
5. 课堂练习:让学生运用集合之间的关系解决实际问题。
第二章:函数与方程2.1 函数的概念【教学目标】1. 了解函数的概念,掌握函数的表示方法。
2. 能够运用函数的概念解决实际问题。
【教学内容】1. 函数的定义及表示方法。
2. 函数的性质。
【教学重点】1. 函数的概念及表示方法。
2. 函数的性质。
【教学难点】1. 函数的表示方法。
2. 函数的性质。
【教学过程】1. 引入新课:通过生活中的实例,引导学生理解函数的概念。
2. 讲解函数的定义及表示方法,如解析式、表格法等。
中职数学基础模块上册全册优秀教学设计汇编(配套高教版精美整理版)
中职数学基础模块上册全册优秀教学设计汇编(配套高教版精美整理版)高教版中职数学基础模块上册全册优秀教学设计汇编目录第一章集合 (1)【课题】1.1 集合的概念 (1)【课题】1.2 集合之间的关系 (9)【课题】1.3集合的运算(1) (16)【课题】1.3集合的运算(2) (23)【课题】1.4 充要条件 (28)第二章不等式 (33)【课题】2.1不等式的基本性质 (33)【课题】2.2区间 (37)【课题】2.3 一元二次不等式 (41)【课题】2.4含绝对值的不等式 (47)第三章函数 (51)【课题】3.1 函数的概念及其表示法 (51)【课题】3.2函数的性质 (59)【课题】3.3函数的实际应用举例 (70)第四章指数函数与对数函数 (76)【课题】4.1实数指数幂(1) (76)【课题】4.2指数函数 (88)【课题】4.3 对数 (95)【课题】4.4 对数函数 (101)第五章三角函数 (106)【课题】5.1 角的概念推广 (106)【课题】5.2弧度制 (112)【课题】5.3任意角的正弦函数、余弦函数和正切函数 (118)【课题】5.4 同角三角函数的基本关系 (124)【课题】5.5 诱导公式 (128)【教学目标】知识目标:第一章集合【课题】1.1 集合的概念(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】( 1 )通过生活中的实例导入集合与元素的概念;( 2 )引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5 )依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2 课时.( 90分钟)【教学过程】第 1 页共 1 3 5 页【课题】1.2 集合之间的关系【教学目标】知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力. 【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】第 9 页共 1 3 5 页。
中职数学基础模块[精品全套]
人教版中职数学教材基础模块上册全册教案目录第三章函数 03.1.1 函数的概念 03.1.2 函数的表示方法 (4)3.1.3 函数的单调性 (7)3.1.4 函数的奇偶性 (12)3.2.1 一次、二次问题 (16)3.2.2 一次函数模型 (19)3.2.3 二次函数模型 (23)3.3 函数的应用 (28)第四章指数函数与对数函数 (31)4.1.1 有理指数(一) (31)4.1.1 有理指数(二) (35)4.1.2 幂函数举例 (39)4.1.3 指数函数 (42)4.2.1 对数 (47)4.2.2 积、商、幂的对数 (50)4.2.3 换底公式与自然对数 (54)4.2.4 对数函数 (56)4.3 指数、对数函数的应用 (59)第五章三角函数 (62)5.1.1 角的概念的推广 (62)5.1.2 弧度制 (66)5.2.1 任意角三角函数的定义 (70)5.2.2 同角三角函数的基本关系式 (75)5.2.3 诱导公式 (79)5.3.1 正弦函数的图象和性质 (84)5.3.2 余弦函数的图象和性质 (88)5.3.3 已知三角函数值求角 (91)第三章函数3.1.1函数的概念【教学目标】1. 理解函数的概念,会求简单函数的定义域.2. 理解函数符号y=f (x)的意义,会求函数在x=a处的函数值.3. 通过教学,渗透一切事物相互联系和相互制约的辩证唯物主义观点.【教学重点】函数的概念及两要素,会求函数在x=a处的函数值,求简单函数的定义域.【教学难点】用集合的观点理解函数的概念.【教学方法】这节课主要采用问题解决法和分组教学法.运用现代化教学手段,通过两个实例,分析抽象出函数概念,使学生更容易理解函数关系的实质以及函数两要素.然后通过求函数值与定义域的两类题目,深化对函数概念的理解.3.1.2函数的表示方法【教学目标】1. 了解函数的解析法、列表法、图象法三种主要表示方法.2. 已知函数解析式会用描点法作简单函数的图象.3. 培养学生数形结合、分类讨论的数学思想方法,通过小组合作培养学生的协作能力.【教学重点】函数的三种表示方法;作函数图象.【教学难点】作函数图象.【教学方法】这节课主要采用问题解决法和分组讨论教学法.本节课先借助一个实例,简要介绍函数的三种表示方法,进一步刻画函数概念;然后通过两个例题,使学生初步感知如何由解析式分析函数性质以指导画图,避免画图的盲目性.通过本节教学,使学生初步了解数形结合研究函数的方法,为下面学习函数的单调性和奇偶性做铺垫.【教学过程】新课3.针对上面的例子,思考并回答下列问题:(1) 在上例描点时,是怎样确定一个点的位置的?哪个变量作为点的横坐标?哪个变量作为点的纵坐标?(2) 函数的定义域是什么?(3) s的值能大于200吗?能是负值吗?为什么?函数的值域是什么?(4) 距离s 随行驶时间t 的增大有怎样的变化?4.例1作函数y=x3 的图象.解列表画图5.结合例1完成下列问题:(1) 函数y=x3 的定义域、值域是什么?(2) 函数值y随x的增大有怎样的变化?(3) f(a)与f(-a)相等吗?有怎样的关系?(4) 函数图象是轴对称图形还是中心对称图教师引导学生利用函数图象分析回答函数的性质.师:由上例可以看出,我们在列表、作图时,要认真分析函数,避免盲目列表计算.函数的图象有利于我们研究函数的性质,如本例中函数的定义域、值域以及y随x增大而增大等性质.教师引导学生分析:函数y=x3 的定义域是R,当x>0时,y>0,这时函数的图象在第一象限,y 的值随着x 的值增大而增大;当x<0时,y<0,这时函数的图象在第三象限,y 的值随着x 的值减小而减小.教师引导学生完成列表、描点及连线,完成函数图象.师生合作完成例1,让学生体会取值前如何分析研究函数式的特点.学生分组讨论完成,从讨论中掌握分析函数性质的方法.力.本题的设置起到了承上启下的作用.为突破本节课难点而设计.问题(4)为下节引入函数的单调性做准备.让学生在作图过程中体会函数的性质,从做中学.尽可能把主动权交给学生,使学生在自主探索中发现问题解决问题.问题(3)(4)的设置是为引入函数的奇偶性作准备.新课形?6.例2作函数y=1x2的图象.解列表画图7.结合例2解答下列问题:(1) 函数y=1x2的定义域、值域是什么?(2) 在第一象限中,函数值y随x的增大有怎样的变化?在第二象限中呢?(3) f (a)与f (-a)相等吗?有怎样的关系?(4) 函数图象是轴对称图形还是中心对称图形?学生小组合作分析课本例2如何取值.学生作出例2图象,教师针对出现的情况进行点评或让学生互评.教师强调自变量的取值,即{x | x≠0}.学生分组讨论完成,从讨论中掌握分析函数性质的方法.避免为作图象而作图象,让学生在画图的过程中学习.让学生进一步掌握分析函数性质的方法.并为下一步学习函数的单调性与奇偶性做准备.小结1. 函数的三种表示方法.2. 作函数图象.学生畅谈本节课的收获,老师引导梳理,总结本节课的知识点.梳理总结也可针对学生薄弱或易错处进行强调和总结.作业教材P65 ,练习A组第3题;练习B 组第2题.巩固拓展.3.1.3函数的单调性【教学目标】1.理解函数单调性的概念,掌握判断函数的单调性的方法.2.通过教学,使学生领会数形结合的数学方法;培养学生发现问题、分析问题、解决问题的能力.3.体验数学的严谨性,渗透由一般到特殊的辩证唯物主义观点.【教学重点】函数单调性的概念;学会运用图象法观察函数的单调性和用定义法证明一些函数的单调性.【教学难点】利用函数单调性的定义判断和证明函数的单调性.【教学方法】这节课主要采用类比教学法和分组教学法.教师用问题引导学生从函数图象的变化趋势类比得出增减函数的概念,然后对图象进行代数分析,得出用定义证明函数单调性的步骤.从形的直观感知到严密的代数分析,使学生领会数形结合研究函数的方法.借助两个证明题,深化学生对单调性概念的理解.【教学过程】环节教学内容师生互动设计意图导入从常见的美丽的建筑物图片入手,让学生感知数学的美,激发学生的学习兴趣.师:播放动画,师生共同欣赏后,引导学生观察部分曲线的变化趋势,引入课题.联系实际,激发兴趣.新课1.课件展示下列函数图象师:提出问题,引导观察思考:1.观察图象的变化趋势怎样?2.你能看出当自变量增大或减少时函数值如何变化吗?生:观察动画,思考回答.从图象直观感知函数的单调性.新课2.增函数与减函数的定义:增函数:在给定的区间上自变量增大(减少)时,函数值也随着增大(减少).减函数:在给定的区间上自变量增大(减少)时,函数值也随着减少(增大).3.例1给出函数y=f (x)的图象,如图所示,根据图象指出这个函数在哪个区间上是增函数?在哪个区间上是减函数?解函数y=f (x)在区间[-1,0],[2,3]上是减函数;在区间[0,1],[3,4]上是增函数.4.练习1(1) 观察教材P64 例1的函数图象,说出函数在(-∞,+∞)上是增函数还是减函数;(2) 观察教材P65 例2的函数图象,分别说出函数在(-∞,0)和(0,+∞)上是增函数还是减函数.5.设y=f (x),在给定的区间教师引导学生归纳增函数与减函数的定义.学生观察图象完成此题,掌握用图象来判断函数单调性的方法.教师强调,在说明函数单调性时,要指出明确的区间.学生回答,教师点评.教师带领学生结合增函数图象分析如何利通过观察函数图象直接给出增函数、减函数的定义,符合学生的特点,容易被学生接受.从观察直观图象入手,加深对单调性定义的理解,掌握用图象法判定函数单调性的方法,使学过的知识及时得到应用.通过练习1,让学生进一步掌握利用函数的图象来判断函数单调性的方法,从而提高学生的读图能力,并与前面学过的知识结合,对学过的函数有更新的认识.新在此图象上任取两点A(x1,y1),B(x2,y2),记∆x=x2-x1,∆y=y2-y1.6.例2 证明函数f (x)=3 x+2在区间(-∞,+∞)上是增函数.证明设x1,x2是任意两个不相等的实数,则∆x=x2-x1用函数的解析式来判断一个函数是增函数.学生类比分析如何利用函数的解析式来判断一个函数是减函数.教师指出利用函数图象判断单调性的局限性,引导学生从函数解析式入手证明单调性的思路与步骤.教师讲解例题2,板书详细的解题过程.将增函数、减函数定义中的定性说明转化为定量分析.从而给出利用函数解析式来判断函数单调性的方法.启发学生思考,完成从直观到抽象、从感性思维到理性思维的升华.在板书例题的过程中,突出解题思路与步骤.通过例题解答,加深对函数单调性定义的理解,并自然而然地将定义运用到判定函数单调性中,理论与实践相辅相成.课新课∆y=f (x2)-f (x1)=(3 x2+2)-(3 x1+2)=3(x2-x1),∆y∆x=3(x2-x1)x2-x1>0.因此,函数f (x)=3 x+2在区间(-∞,+∞)上是增函数.7.总结由函数的解析式判定函数单调性的步骤:S1 计算∆x和∆y;S2 计算k=∆y∆x.当k>0时,函数在这个区间上是增函数;当k<0时,函数在这个区间上是减函数.8.例3证明函数f (x)=1x在区间(0,+∞)上是减函数.证明:设x1,x2是任意两个不相等的正实数.因为∆x=x2-x1,∆y=f(x2)-f(x1)=1x2-1x1=2121xxxx-=-2112xxxx-=-21xxx∆.又因为x1 x2>0,所以∆y∆x=-211xx<0.因此,函数f (x)=x1在区间(0,+∞)上是减函数.9.练习2证明函数f (x)=3x在区间(-∞,0)上是减函数.教师引导学生总结解题步骤,可简记为:一设、二求、三判定.学生讨论并试解例题.老师点拨、解答学生疑难.学生模仿练习.突出重点,深化证明步骤,分解难点.通过学生讨论、老师点拨,顺利帮助学生判断∆y∆x的正负.巩固用函数解析式来判定单调性的思路和步骤.巩固理解,形成技能.小结1. 函数单调性的定义;2. 判定函数单调性的方法.学生阅读课本P66~68,畅谈本节课的收获.老师引导梳理,总结本节课的知识点.梳理总结也可针对学生薄弱或易错处进行强调和总结.作业教材P 69,练习A组第2题;练习B组第1、2题.巩固拓展.3.1.4函数的奇偶性【教学目标】1. 理解奇函数、偶函数的概念;掌握奇函数、偶函数的图象特征.2. 掌握判断函数奇偶性的方法.3. 通过教学,渗透数形结合思想,培养学生类比推理的能力,体会由具体到抽象、由特殊到一般的辩证唯物主义思想.【教学重点】奇偶性概念与函数奇偶性的判断.【教学难点】理解奇偶性概念与奇函数、偶函数的定义域.【教学方法】这节课主要采用类比教学法.先由两个具体的函数入手,引导学生发现函数f(x)在x与在-x的函数值之间的关系,由特殊到一般引出奇函数的定义,再由点的对称关系得出奇函数的图象特征.然后由学生自主探索,类比得出偶函数定义.结合定义与例题总结出判断函数奇偶性的步骤,在解题过程中深化对概念的理解.【教学过程】3.2.1一次、二次问题【教学目标】1. 通过实际问题感知一次、二次函数在实际生活中的应用.2. 培养学生从实际问题中抽象出数学模型并应用模型去解决实际问题的能力.3. 通过教学,培养学生应用数学的意识,提高学生分析问题、解决问题的能力.【教学重点】从实际问题中抽象简单的数学模型.【教学难点】从实际问题中抽象简单的数学模型.【教学方法】这节课主要采用问题解决法.教师引导学生对实际问题先用列表计算与画图的方法来直观感知,然后抽象成一次函数和二次函数来研究,通过教学,培养学生从实际问题中抽象出一次、二次函数模型并应用模型去解决实际问题的能力.【教学过程】3.2.2一次函数模型【教学目标】1. 掌握正比例函数和一次函数的关系;理解并掌握一次函数的性质.2. 培养学生数形结合研究函数性质的能力,渗透平移变换的数学思想.3. 体验数学的严谨性,培养学生理性分析问题的良好习惯.【教学重点】一次函数的性质.【教学难点】对正比例函数和直线的关系的理解.【教学方法】这节课主要采用讲练结合法.先定义一次函数,对特殊的一次函数——正比例函数,则采用由曲线与方程的角度来描述正比例函数与直线的关系,然后再考察一次函数与正比例函数的关系,从而得出一次函数的图象也是一条直线的结论,并结合函数的单调性深入分析一次函数的性质,将学生初中对具体的一次函数的认识上升到一般的理性结论.【教学过程】3.2.3二次函数模型【教学目标】1. 理解并掌握二次函数的图象和性质;了解二次函数与一元二次方程、一元二次不等式之间的关系;2. 通过教学,使学生初步掌握数形结合研究二次函数的方法;3. 渗透数形结合思想,渗透由特殊到一般的辩证唯物主义观点,培养学生观察分析、类比抽象的能力.【教学难点】函数对称性的分析与数形结合研究二次函数的方法.【教学方法】这节课主要采用启发式教学法和讲练结合法.本节课通过对例题中的二次三项式进行代数分析,探究二次函数性质的由来,使学生从初中对二次函数的直观感知上升到理性认识的高度.更重要的是在学习函数的一般通性之后,以二次函数为载体较系统地呈现数形结合研究函数的方法,为后面学习其它函数的性质奠定基础.【教学过程】新课观察图象并完成填空函数y=a x2的图象,当a>0时开口.当a<0时开口,对称轴是,顶点坐标是.函数是函数(用奇或偶填空).| a | 越大,开口越.例1研讨二次函数f (x)=12x2+4 x+6的性质与图象.解(1) 因为f (x)=12x2+4 x+6=12(x2+8 x+12)=12(x+4)2-2.由于对任意实数x,都有12(x+4)2≥0,所以 f (x)≥-2,并且,当x=-4时取等号,即f(-4)=-2.得出性质:x=-4时,取得最小值-2.记为y min=-2.点(-4,-2)是这个图象的顶点.(2) 当y=0时,12x2+4 x+6=0,x2+8 x+12=0,解得x1=-6,x2=-2.生:观察图象,小组合作讨论.然后每组选一名代表汇报各组的交流结果,最后师生一起汇总得出结论.师生共同解决例1,教师详细板书解题过程,带领学生仔细分析各个性质的由来.教师引导学生观察图象可得出:函数的对称轴是直线x=-4.师:这个结论是否是正确的呢?教师通过问题1、2,引导学生证明上述结论正确.通过对例1中二次三项式的代数分析,使学生对二次函数的直观感知上升到理性认识的高度,更重要的是使学生掌握数形结合研究函数的方法,初步培养学生的画图、识图能力.分析图象与x轴的交点,一方面为描点作图,另一方面为下节研究函数与方程,不等式的关系做铺垫.对称性的教学设计是为了启发学生完成从直观到抽象、从感性思维到理性思维的升华.教师让学生经历“观察—发现—验证—归纳”四2xy=2xy-=22xy=23xy=22xy-=23xy-=新课故该函数图象与x 轴交于两点(-6,0),(-2,0).(3) 列表作图.以x=-4为中间值,取x 的一些值,列出这个函数的对应值表然后画出函数的图象.观察上表或图形回答:1.关于x=-4对称的两个自变量的值对应的函数值有什么特点?答:相同.2.-4-h 与-4+h (h>0) 关于x=-4对称吗?分别计算-4-h与-4+h的函数值,你能发现什么?答:f (-4-h)=f (-4+h).得出性质:直线x=-4为该函数的对称轴.函数在(-∞,-4]上是减函数,在[-4,+∞)上是增函数.小结例2中的函数性质:1.开口.2.最值.3.顶点.4.对称轴.5.单调性.练习2(课本例3)用配方法求函数f (x)=3 x2+2 x+1的最小值和图象的对称轴,并说出它在哪个区间上是增函数,在哪个区间上是减函数?解:f (x)=3 x2+2 x+1=3(x2+23x)+1=3(x2+23x+19-19)+1=3(x+13)2+23学生模仿练习.老师巡回观察点拨、解答学生疑难.例2是二次函数中a<0的类型,学生可类比例1,自己得出图象与性质.例1与例2分别是二次函数中a>0,a<0的两种类型,教师引导学生填表,自己总结出二次函数的性质表格,对比记忆.个过程,感受数学的严密性、科学性.小结函数性质,将例1的分析条理化.通过练习2,进一步练习配方法以及巩固二次函数的性质.以表格的形式整理二次函数性质,使知识结构一目了然.y-2-6 O x-4-2新课所以y=f(-13)=23,函数图象的对称轴是直线x=-13,在(-∞,-13]上是减函数,在[-13,+∞)上是增函数.例2 研讨二次函数f (x)=-x2-4x+3的性质与图象.小结二次函数的性质.(表格见课件)例3 已知二次函数y=x2-x-6说出:(1) x 取哪些值时,y=0;(2) x 取哪些值时,y>0,x 取哪些值时,y<0.解 (1)求使y=0的x 的值,即求二次方程x2-x-6=0的所有根.方程的判别式∆=(-1)2-4×1×(-6)=25>0,解得:x1=-2,x2=3.(2)画出简图,函数的开口向上.从图象上可以看出,它与x轴相交于两点(-2,0),(3,0),这两点把x轴分成三段.所以当x∈(-2,3)时,y<0.当x∈(-∞,-2)∪(3,+∞)时,y>0.练习3 下列函数自变量在什么范围内取值时,函数值大于0、小于0或等于0.(1) y=x2+7 x-8;(2) y=-x2+2 x+8.例3板书详细的解题过程.通过此例题,教师总结一元二次方程、一元二次不等式与二次函数之间的关系:求二次方程ax2+bx+c=0的解,就是求二次函数:y=a x2+bx+c(a≠0)的根;求不等式 a x2+b x+c<0的解集,就是求使二次函数:y=ax2+bx+c(a≠0 )的函数值小于0的自变量的取值范围;求不等式 a x2+b x+c>0的解集,就是求使二次函数y=a x2+b x+c(a≠0)的函数值大于0的自变量的取值范围.学生模仿练习.老师巡回观察点拨、解答学生疑难.本例题有两种方法,方法一:在图象中用区间分析法,方法二;求一元二次方程或一元二次不等式的解集的方法.教师在讲解时可根据学生的实际情况进行讲解和拓展.方法一:在图象中用区间分析法是比较简单的一种方法,通过此法可进一步培养学生的读图,识图能力,培养学生数形结合的思想.巩固用图象法解一元二次不等式的步骤.利用表格总结,使所学知识系统化.o-2 3-6yx3.3函数的应用【教学目标】1. 会应用一次函数和二次函数解决有关简单实际问题.2. 培养学生建立简单的数学模型及应用模型去解决实际问题的能力.3. 通过教学,培养学生应用数学的意识,提高学生分析问题、解决问题的能力.【教学重点】应用函数知识解决一些简单的实际问题.【教学难点】从实际问题中抽象出函数模型.【教学方法】这节课主要采用讲练结合法.教师将四个例题与练习穿插在一起,教师引导与学生主动参与相结合,培养学生的审题能力,以及从实际问题中抽象出数学模型并应用模型去解决实际问题的能力.【教学过程】第四章指数函数与对数函数4.1.1有理指数(一)【教学目标】1. 理解整数指数幂及其运算律,并会进行有关运算.2. 培养学生的观察、分析、归纳等逻辑思维能力.3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养学生合作交流等良好品质.【教学重点】零指数幂、负整指数幂的定义.【教学难点】零指数幂及负整指数幂的定义过程,整数指数幂的运算.【教学方法】这节课主要采用问题解决法和分组教学法.在引入指数幂时,以在国际象棋棋盘上放米粒为导入素材,既体现数学的应用价值,也能引起学生的学习兴趣.从正整指数的运算法则中的a mm-n (m>n,a ≠ 0)a n=a这一法则出发,通过取消m>n的限制引入了零指数幂和负整指数幂的定义,从而把正整指数幂推广到整数指数幂.在本节教学中,要以取消m>n这一条件为出发点,让学生积极大胆地猜想,以此增强学生的参与意识,从而提高学生的学习兴趣.4.1.1有理指数(二)【教学目标】1. 了解根式的概念和性质;理解分数指数幂的概念;掌握有理数指数幂的运算性质.2. 会对根式、分数指数幂进行互化.培养学生的观察、分析、归纳等逻辑思维能力.3. 培养学生用事物之间普遍联系的观点看问题.【教学重点】分数指数幂的概念以及分数指数幂的运算性质.【教学难点】对分数指数幂概念的理解.【教学方法】这节课主要采用问题解决教学法.在引入分数指数幂时,先讲方根的概念,根据方根的定义,得到根式具有的性质.在利用根式的运算性质对根式的化简过程中,引导学生注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.在对根式的性质进行练习以后,为了解决运算的合理性,引入了分数指数幂的概念,从而将指数幂推广到了有理数范围.在学生掌握了有理指数幂的运算性质后,将有理指数幂推广到实数指数幂.考虑到职校学生的实际情况,并没有给出严格的推证.【教学过程】4.1.2 幂函数举例【教学目标】1. 了解幂函数的概念,会求幂函数的定义域,会画简单幂函数的图象.2. 培养学生用数形结合的方法解决问题.注重培养学生的作图、读图的能力.3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养合作交流等良好品质. 【教学重点】 幂函数的定义. 【教学难点】会求幂函数的定义域,会画简单幂函数的图象. 【教学方法】这节课主要采用启发式和讲练结合的教学方法.从函数y =x ,y =x 2,y =1x 等导入,通过观察这类函数的解析式,归纳其共性,引入幂函数的概念.在例1求函数的定义域中,对于分数指数及负整指数的幂函数要转化为分式或根式的形式,讲解时,注意引导,让学生在解答问题的过程中自己归纳总结规律.函数图象是研究函数性质的有利工具,教师在讲授例2时,可以采用分组的方式,让学生一起合作完成函数的图象,并从本例中找出幂函数的某些性质.【教学过程】24.1.3指数函数【教学目标】1. 掌握指数函数的定义、图象、性质及其简单的应用.2. 培养学生用数形结合的方法解决问题的能力.3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养独立思考等良好的个性品质.【教学重点】指数函数的图象与性质.【教学难点】指数函数的图象性质与底数a的关系.【教学方法】这节课主要采用讲练结合和小组合作的教学方法.本节课由生活中的真实例子导入新课,引入指数函数的定义,并通过一组练习深化指数函数的定义.先通过列表——描点——连线得到指数函数的图象,然后在教师的启发下,充分利用函数的图象来研究函数的性质.为了加强学生对函数性质的应用,增加了一道求函数定义域的例题,然后安排一定数量的练习,体现练为主线,讲练结合的教学方法.【教学过程】4.2.1对数【教学目标】1. 理解对数的概念,掌握对数式与指数式的互化.2. 培养学生的类比、分析、转化能力,提高理解和运用数学符号的能力.3. 通过对数概念的建立,明确事物的辩证发展和矛盾转化的观点,培养学生科学严谨的治学态度.【教学重点】对数的概念,对数式与指数式的相互转化.【教学难点】对数概念及性质的理解掌握.【教学方法】这节课主要采用启发式和分组合作教学法.在教学过程中遵循学生是教学的主体的精神,要给学生提供各种可能的参与机会,调动学生学习的积极性,使学生化被动为主动.利用多媒体辅助教学,引导学生从实例出发,认识对数的模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生积极思维,通过课堂练习、学生讨论的方式来加深理解重点,更好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.。
2018高教版中职教材—数学(基础模块)上册全套精品教案
2018高教版中职教材—数学(基础模块)上册全套精品教案【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】},99,正偶数集可以表示为}2,4,6,.在花括号内画一条竖线,竖线的左侧写出集合强调的代表元素,竖线的右侧写出元素所具有的特征性质.如小于的实数所组成的集合可表示为如果从上下文能明显看出集合的元素为实数,那么可以0的解集;)所有奇数组成的集合;)由第一象限所有的点组成的集合.用描述法表示集合关键是找出元素的特征性质.解不等式就可以得到不等式解集元素的特征性质;的特征性质是“元素都能写成0得12x-,1 2⎫-⎬⎭;)奇数集合}∈Z;)第一象限所有的点组成的集合为(){,x y x>运用知识强化练习的解集.本次课学了哪些内容?重点和难点各是什么?)本次课学了哪些内容?)通过本次课的学习,你会解决哪些新问题了?)在学习方法上有哪些体会?【课题】1.1.3 集合之间的关系【教学目标】知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】}6x<.是用来表示集合与集合之间关系的符号;”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.的元素,因此}6x<的元素,}6x<.∈”或“∉(2){}2的子集,并且集合叫做集合B(或B A),读作“.空集是任何非空集合的真子集.对于集合A、B、C,如果A{2}{1}{1,2,3,4,5,6}=9}={3,-3}x x=={x x=|2};⑸a{0}∅;2{|x x|10}x x+=}2【课题】 1.2集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过程行为行为意图间问题3 集合A={直角三角形};B={等腰三角形};C={等腰直角三角形}.那么这三个集合之间有什么关系?解决通过上面的三个问题的思考,可以看出集合C中的元素是由既属于集合A又属于集合B中的所有元素构成的,也就是由集合A、B的相同元素所组成的,这时,将C称作是A与B 的交集.归纳总结了解合元素之间的关系5*动脑思考探索新知一般地,对于两个给定的集合A、B,由集合A、B的相同元素所组成的集合叫做A与B的交集,记作A B,读作“A 交B”.即{}A B x x A x B=∈∈且.集合A与集合B的交集可用下图表示为:求两个集合交集的运算叫做交运算.总结归纳仔细分析讲解关键词语强调图像含义思考理解记忆观察带领学生总结三个问题的共同点得到交集的定义10*巩固知识典型例题例1已知集合A,B,求A∩B.(1) A={1,2},B={2,3};(2) A={a,b},B={c,d , e , f };(3) A={1,3,5},B= ∅;(4) A={2,4},B={1,2,3,4}.分析集合都是由列举法表示的,因为A∩B是由集合A和集合B中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集.解(1) 相同元素是2,A∩B={1,2}∩{2,3 }={2};(2) 没有相同元素A∩B={a , b}∩{c, d , e , f }=∅;说明强调引领观察思考主动求解通过例题进一步领会交集注意观察学生是否过 程行为 行为 意图 间(3) 因为A 是含有三个元素的集合, ∅是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A ∩B =∅;(4) 因为A 中的每一个元素的都是集合B 中的元素,所以A ∩B =A .例2设(){},|0A x y x y =+=,(){},|4B x y x y =-=,求A B . 分析 集合A 表示方程0x y +=的解集;集合B 表示方程4x y -=的解集.两个解集的交集就是二元一次方程组0,4x y x y +=⎧⎨-=⎩的解集. 解 解方程组0,4.x y x y +=⎧⎨-=⎩得2,2x y =⎧⎨=-⎩.所以(){}2,2AB =-.例3 设{}|12A x x =-<,{}|03B x x =<,求AB .分析 这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解 {}{}|12|03A B x x x x =-<<{}|02x x =<.由交集定义和上面的例题,可以得到: 对于任意两个集合A ,B ,都有 (1)A B B A =;(2)A A A = ,∅=∅ A ; (3)B B A A B A ⊆⊆ ,;(4)如果A B A B A =⊆ 那么,.讲解 说明 引领强调 含义说明 启发 引导观察 思考 求解 领会 思考 求解 了解理解 知识 点 复习 方程 组的 解法 突出 数轴 的作 用 强调 数形 结合 可以 交给 学生 自我 发现 归纳25 *运用知识 强化练习 练习1.设{}1,0,1,2A =-,{}0,2,4,6B =,求AB .2.设(){},|21A x y x y =-=,(){},|23B x y x y =+=,求A B . 3.设{}|22A x x =-<≤,{}|04B x x=,求AB .提问 巡视指导动手 求解 交流及时 了解 学生 知识 掌握 情况35B.}2,}4B x,求A B.整体建构思考并回答下面的问题:.集合的并集和交集有什么区别?(含义和符号).在进行集合的并运算和交运算时各自的特点是什么?.集合用列举法和描述法表示时进行运算需要注意的问题是教 学 过 程教师 行为 学生 行为 教学 意图 时间A 与集合B 的交集{}B x A x x B A ∈∈=且 .由集合A 和集合B 的所有元素组成的集合叫做集合A 与集合B 的并集{}B x A x x B A ∈∈=或 ;(2)交运算是寻找两个集合都有的公共部分,并运算是将两个集合所有的元素进行合并.(3)列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端点的处理. 归纳强调回答 理解 强化归纳 的形 式强 调重 点突 破难 点70 *巩固知识 典型例题 例5 设{}{}2,1,0,1,5,3,2-==B A ,求B A ,B A .解 {}{}{}22,1,0,15,3,2=-= B A ;{}{}2,1,0,15,3,2-= B A {}5,3,2,1,0,1-=.例6 设{0{1A x x B x x =<=<≤2},≤3},求B A ,B A . 解 将集合A 、B 在数轴上表示:{1AB x x =<≤2},{0AB x x =<≤3}.引领 分析 讲解 说明领会 思考 求解进行 并交 的对 比例 题讲 解巩 固所 归纳 的强 化点75 *归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.{}{}1,0,1,2,0,2,4,6A B =-=,求B A ,B A .2.{}{}22,04A x xB x x=-<=,求B A ,B A .引导 提问 巡视 指导 回忆 反思 动手 求解 培养 学生 总结 反思 学习 过程 的能 力 85 *继续探索 活动探究(1)读书部分: 教材章节1.3; (2)书面作业: 学习与训练1.3;(3)实践调查: 举出交集和并集的生活实例. 说明记录90【课题】 1.2.3集合的运算(2)【教学目标】知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.【教学重点】集合的补运算.【教学难点】集合并、交、补的综合运算.【教学设计】(1)通过生活中的实例导入全集与补集的概念,提高学生的学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲练结合,数形结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】B,A B.}2,}4=,求A B,A B.B x下面我们将学习另外一种集合的运算.介绍兴趣导入质疑某学习小组学生的集合为{王明,曹勇,王亮,李冰,张军,赵云,冯佳,薛香芹,钱忠良,何晓慧}过 程行为 行为 意图 间表示集合A 在全集U 中的补集记作UA ,读作“A 在U 中的补集”.即{}|U A x x U x A =∈∉且.如果从上下文看全集U 是明确的,特别是当全集U 为实数集R 时,可以省略补集符号中的U ,将UA 简记为A ,读作“A 的补集”.集合A 在全集U 中的补集的图形表示,如下图所示:求集合A 在全集U 中的补集的运算叫做补运算. 强调引导 说明记忆 观察 领会表示 方法 的书 写规 范性 充分 利用 图形 的直 观性20*巩固知识 典型例题例1设{}0,1,2,3,4,5,6,7,8,9U =,{}1,3,4,5A =,{}3,5,7,8B =.求A U 及B U .分析 集合A 的补集是由属于全集U 而且不属于集合A 的元素组成的集合. 解{}0,2,6,7,8,9A =U ;{}0,1,2,4,6,9B =U .例2 设U =R ,{}|12A x x=-<,求A .分析 作出集合A 在数轴上的表示,观察图形可以得到A .解 {}|12A x xx =->或.说明 通过观察图形求补集时,要特别注意端点的取舍.本题中,因为端点−1不属于集合A ,所以−1属于其补集A ;因为端点2属于集合A ,所以2不属于其补集A .说明 讲解引领 引导 分析讲解观察 思考 主动 求解 观察 思考 理解通过 例题 进一 步领 会补 集的 含义 及其 运算 特点 突出 数轴 的作 用 交给 学生UA )=∅,UA )=U ,U U=∅,U ∅=U ,U(UA )=A .运用知识 强化练习 练习1.3.3.设{}U =小于10的正整数,{}17A =,,UA .}4x,求A .思考并回答下面的问题:.什么是集合交运算?如何用符号表示?如何用图形表示?什么是集合并运算?如何用符号表示?如何用图形表示?A U,B U ,()()ABU U ,)()UU A B,()U AB ,()A B U.分析 这些集合都是用列举法表示的,可以通过列举集合的元素分别得到所求的集合. 解{}0,2,6,7,8,9A =U ; {}0,1,2,4,6,9B =U ()(){}0,2,6,9UU A B=;)(){0,1,2,4,6,7,8,9U U A B =因为{}3,5AB =,所以(){0,1,2,4,6,7,8,9UA B =因为{1,3,4,5,7,8AB =(){0,2,6,9UA B = 设全集U =R ,集合U A , U B, A B ,A B .分析 在理解集合运算的含义基础上,充分运用数轴的表示来进行求解.解 因为全集U =R ,A ={x | x ≤UA ={x | ,所以U B={x | {B x =-A B =R .引领分析运用知识 强化练习{1,2,3,4,5,6,7,8U =B ,B ,UA ,U B,()()UU A B ,()()U U A B .设{}|0180U αα=<<,{}|090A αα=<<,{}|90180αα=<<,求UA ,U B,()()U U A B ,)()U U A B .提问巡视 指导归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? 引导【课题】1.4 充要条件【教学目标】知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.【教学重点】(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“⇒”,“⇐”,“⇔”的正确使用.【教学难点】“充分条件”、“必要条件”、“充要条件”的判定.【教学设计】(1)以学生的活动为主线.在条件与结论的关系的判断上,尽可能多的教给学生在独立尝试解决问题的基础上进行交流;(2)由易到难,具有层次性.从内涵上引导学生体会复合命题中条件和结论的关系. 【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】【课题】2.1不等式的基本性质【教学目标】知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.【教学重点】⑴比较两个实数大小的方法;⑵不等式的基本性质.【教学难点】比较两个实数大小的方法.【教学设计】(1)以实例引入知识内容,提升学生的求知欲;(2)抓住解不等式的知识载体,复习与新知识学习相结合;(3)加强知识的巩固与练习,培养学生的思维能力.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】【课题】2.2区间【教学目标】知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合的学习过程,培养学生的观察能力和数学思维能力.【教学重点】区间的概念.【教学难点】区间端点的取舍.【教学设计】⑴实例引入知识,提升学生的求知欲;⑵数形结合,提升认识;⑶通过知识的巩固与练习,培养学生的思维能力;⑷通过列表总结知识,提升认知水平.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】过 程行为 行为 意图 间概念一般地,由数轴上两点间的一切实数所组成的集合叫做区间.其中,这两个点叫做区间端点.不含端点的区间叫做开区间.如集合{}|24x x <<表示的区间是开区间,用记号(2,4)表示.其中2叫做区间的左端点,4叫做区间的右端点.含有两个端点的区间叫做闭区间.如集合{}|24x x表示的区间是闭区间,用记号[2,4]表示.只含左端点的区间叫做右半开区间,如集合{|24}x x <表示的区间是右半开区间,用记号[2,4)表示;只含右端点的区间叫做左半开区间,如集合{|24}x x <表示的区间是左半开区间,用记号(2,4]表示.引入问题中,新时速旅客列车的运行速度值(单位:公里/小时)区间为(200,350). 说明引导 讲解强调 细节理解 记忆 领会认知 各种 有限 区间 强调 各区 间的 规范 书写10*巩固知识 典型例题例1 已知集合()1,4A =-,集合[0,5]B =,求:AB ,A B .解 两个集合的数轴表示如下图所示,(1,5]A B =-, [0,4)A B =.质疑 分析 讲解 思考 理解 复习 相关 集合 运算 知识 15*运用知识 强化练习 教材练习2.2.11.已知集合(2,6)A =,集合()1,7B =-,求A B ,A B .2.已知集合[3,4]A =-,集合[1,6]B =,求A B ,A B .3. 已知集合(1,2]A =-,集合[0,3)B =,求A B ,A B . 巡视辅导思考 解题 交流 反馈 学习 效果20*动脑思考 明确新知 问题过 程行为 行为 意图 间集合{|2}x x >可以用数轴上位于2右边的一段不包括端点的射线表示,如何用区间表示? 解决集合{|2}x x >表示的区间的左端点为2,不存在右端点,为开区间,用记号(2,)+∞表示.其中符号“+∞”(读作“正无穷大”),表示右端点可以任意大,但是写不出具体的数.类似地,集合{|2}x x <表示的区间为开区间,用符号(,2)-∞表示(“-∞”读作“负无穷大”). 集合{|2}x x 表示的区间为右半开区间,用记号[2,)+∞表示;集合{|2}x x表示的区间为左半开区间,用记号(,2]-∞表示;实数集R 可以表示为开区间,用记号(,)-∞+∞表示. 注意“-∞”与“+∞”都是符号,而不是一个确切的数. 质疑 讲解 说明 强调 细节 思考 领会 记忆 理解 明确 学习 各种 区间25 *巩固知识 典型例题例 2 已知集合(,2)A =-∞,集合(,4]B =-∞,求AB ,A B .解 观察如下图所示的集合A 、B 的数轴表示,得 (1)(,4]AB B =-∞=;(2)(,2)A B A =-∞=.例3 设全集为R ,集合(0,3]A =,集合(2,)B =+∞, (1)求A ,B ;(2)求AB .解 观察如下图所示的集合A 、B 的数轴表示,得 (1) (,0](3,)A =-∞+∞,(,2]B =-∞; (2) (0,2]AB =.质疑 说明 讲解 启发 强调观察 思考 领会 主动 求解通过 例题 巩固 区间 的概 念 注意 规范 书写 30*理论升华 整体建构B,A B.(0,3),求A,B,B A.巡视指导*归纳小结强化思想(1)本次课学了哪些内容?(2)通过本次课学习,你会解决哪些新问题了?(3)在学习方法上有哪些体会?引导提问【课题】2.3 一元二次不等式【教学目标】知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.【教学重点】⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.【教学难点】一元二次不等式的解法.【教学设计】⑴从复习一次函数图像、一元一次方程、一元一次不等式的联系入手;⑵类比观察一元二次函数图像,得到一元二次不等式的图像解法;⑶加强知识的巩固与练习,培养学生的数学思维能力;⑷讨论、交流、总结,培养团队精神,提升认知水平.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*揭示课题2.3 一元二次不等式*回顾思考复习导入问题一次函数的图像、一元一次方程与一元一次不等式之间存在着哪些联系?解决观察函数26y x=-的图像:方程260x-=的解3x=恰好是函数图像与x轴交点的横坐标;在x轴上方的函数图像所对应的自变量x的取值范围,介绍提出问题了解思考观察复习相关知识内容()0或()0(a≠感受新知二次函数的图像、一元二次方程与一元二次不等式之间存过 程行为 行为 意图 间吗?其交点将x 轴分成几段?3.观察抛物线找出纵坐标y =0、y >0、y <0的点.4.观察图像上纵坐标y =0、y >0、y <0的那些点所对应的横坐标x 的取值范围? 解决解方程260x x --=得122,3x x =-=.观察图像可以看到,方程260x x --=的解,恰好分别为函数图像与x 轴交点的横坐标;在x 轴上方的函数图像,所对应的自变量x 的取值范围,即{|23}x x x <->或内的值,使得260y x x =-->;在x 轴下方的函数图像所对应的自变量x 的取值范围,即{|23}x x -<<内的值,使得260y x x =--<. 引领 分析讲解 理解 领会受一 元二 次不 等式 的图 像解 法30*动脑思考 探索新知 解法利用一元二次函数2y ax bx c=++()0a >的图像可以解不等式20ax bx c ++>或20ax bx c ++<.(1)当240b ac ∆=->时,方程20ax bx c ++=有两个不相等的实数解1x 和2x 12()x x <,一元二次函数2y ax bx c =++的图像与x 轴有两个交点1(,0)x ,2(,0)x (如图(1)所示).此时,不等式20ax bx c ++<的解集是()12,x x ,不等式20a x bx c ++>的解集是12(,)(,)x x -∞+∞;(1) (2) (3)(2)当240b ac ∆=-=时,方程20ax bx c ++=有两个相等的实数解0x ,一元二次函数2y ax bx c =++的图像与x 轴只归纳 总结讲解分析强调思考 观察 理解引导 学生 经历 由特 殊到 一般 的提 炼过 程 强化 图像 作用 熟练 数形 结合0(,)x +∞)当2b ∆=-一元二次函数y )所示).此时,不等式0bx c +>2(,)x +∞0(,)x +∞0([)2,x +∞R0< 12,)x∅]12,x }0x224b ac x =-. 典型例题解下列各一元二次不等式:26x x --0.首先判定二次项系数是否为正数,再研究对应一元二次方程解的情况,最后对照表格写出不等式的解集.26x --=0的解(3,)+∞.)29x <可化为0.由于判别式43x -+=0的解集为0的解集为是什么实数时,有意义. 题意需要解20-.解0=得1x =.由于二次项系数为30>以不等式的解集为[)1,⎛-∞+∞.[)1,+∞时,32有意义. 解下列各一元二次不等式:0.本次课学了哪些内容?重点和难点各是什么?【课题】2.4含绝对值的不等式【教学目标】知识目标:(1) 理解含绝对值不等式x a <或x a >的解法; (2)了解ax b c +<或ax b c +>的解法. 能力目标:(1) 通过含绝对值不等式的学习;培养学生的计算技能与数学思维能力; (2)通过数形结合的研究问题,培养学生的观察能力.【教学重点】(1)不等式x a <或x a >的解法 .(2)利用变量替换解不等式ax b c +<或ax b c +>.【教学难点】利用变量替换解不等式ax b c +<或ax b c +>. 【教学设计】(1) 从数形结合的认识绝对值入手,有助于学生对知识的理解; (2) 观察图形得到不等式x a <或x a >的解集; (3) 运用变量替换,化繁为简,培养学生的思维能力;(4) 加强解题实践,讨论、探究,培养学生分析与解决问题的能力,培养团队精神.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间*揭示课题2.4含绝对值的不等式 *回顾思考 复习导入 问题任意实数的绝对值是如何定义的?其几何意义是什么? 解决对任意实数x ,有,0,0,0,,0.x x x x x x >⎧⎪==⎨⎪-<⎩其几何意义是:数轴上表示实数x 的点到原点的距离. 拓展不等式2x <和2x >的解集在数轴上如何表示? 根据绝对值的意义可知,方程2x =的解是2x =或2x =-,不等式2x <的解集是(2,2)-(如图(1)所示);不等式2x >的解集是(,2)(2,)-∞-+∞(如图(2)所示).介绍 提问 归纳总结 引导 分析了解 思考 回答 观察 领会复习 相关 知识 点为 进一 步学 习做 准备 充分 借助 图像 进行 分析10 *动脑思考 明确新知一般地,不等式x a <(0a >)的解集是(),a a -;不等式x a >(0a >)的解集是()(),,a a -∞-+∞.试一试:写出不等式x a 与x a (0a >)的解集.总结 强化理解 记忆强调 特点15*巩固知识 典型例题 例1 解下列各不等式:(2)(1)6.a >的形式后求解.,得13x >,所以原不等式的1,3⎛⎫+∞ ⎪⎝⎭)由不等式26x ,得3x,所以原不等式的解集强化练习 8;(2) 2.6x <;(3)1x ->实际操作 探索新知如何通过x a <等式2x +3.3213x --, 224x -, 12x-,所以原不等式的解集为 []1,2-. 7>.257x +>,整理,得6- 或 1x >,)()61,+∞.1142; 12.本次课学了哪些内容?重点和难点各是什么?【课题】 3.1 函数的概念及其表示法【教学目标】知识目标:(1) 理解函数的定义; (2) 理解函数值的概念及表示; (3) 理解函数的三种表示方法;(4) 掌握利用“描点法”作函数图像的方法. 能力目标:(1) 通过函数概念的学习,培养学生的数学思维能力;(2) 通过函数值的学习,培养学生的计算能力和计算工具使用技能;(3) 会利用“描点法”作简单函数的图像,培养学生的观察能力和数学思维能力.【教学重点】(1) 函数的概念;(2) 利用“描点法”描绘函数图像.【教学难点】(1) 对函数的概念及记号)(x f y 的理解; (2) 利用“描点法”描绘函数图像.【教学设计】(1)从复习初中学习过的函数知识入手,做好衔接;(2)抓住两个要素,突出特点,提升对函数概念的理解水平;(3)抓住函数值的理解与计算,为绘图奠定基础;(4)学习“描点法”作图的步骤,通过实践培养技能;(5)重视学生独立思考与交流合作的能力培养.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】}中的任意一个值,有唯一的值与之对应.两个变量之间的这种对应关系叫做动脑思考探索新知。
中职数学基础模块上册(人教版)教案
中职数学基础模块上册(人教版)全套教案一、教案内容:第1章集合1.1 集合的概念教学目标:了解集合的概念,掌握集合的表示方法。
教学重点:集合的概念,集合的表示方法。
教学难点:理解集合的相等性和包含性。
教学准备:教材、黑板、粉笔。
教学过程:引入集合的概念,讲解集合的表示方法,举例说明。
1.2 集合的关系教学目标:了解集合之间的关系,掌握集合的并、交、补运算。
教学重点:集合之间的关系,集合的并、交、补运算。
教学难点:理解集合的运算法则。
教学准备:教材、黑板、粉笔。
教学过程:讲解集合之间的关系,举例说明并、交、补运算。
二、教案内容:第2章函数2.1 函数的概念教学目标:了解函数的概念,掌握函数的表示方法。
教学重点:函数的概念,函数的表示方法。
教学难点:理解函数的定义域和值域。
教学准备:教材、黑板、粉笔。
教学过程:引入函数的概念,讲解函数的表示方法,举例说明。
2.2 函数的性质教学目标:了解函数的性质,掌握函数的单调性、奇偶性、周期性。
教学重点:函数的性质,函数的单调性、奇偶性、周期性。
教学难点:理解函数的性质。
教学准备:教材、黑板、粉笔。
教学过程:讲解函数的性质,举例说明单调性、奇偶性、周期性。
三、教案内容:第3章实数与不等式3.1 实数的概念教学目标:了解实数的概念,掌握实数的分类。
教学重点:实数的概念,实数的分类。
教学难点:理解实数的性质。
教学准备:教材、黑板、粉笔。
教学过程:引入实数的概念,讲解实数的分类,举例说明。
3.2 不等式的解法教学目标:了解不等式的解法,掌握不等式的解法技巧。
教学重点:不等式的解法,不等式的解法技巧。
教学难点:理解不等式的解法。
教学准备:教材、黑板、粉笔。
教学过程:讲解不等式的解法,举例说明解法技巧。
四、教案内容:第4章平面几何4.1 点、线、面的关系教学目标:了解点、线、面的关系,掌握直线、平面的方程。
教学重点:点、线、面的关系,直线、平面的方程。
教学难点:理解点、线、面的关系。
中职数学基础模块上册教案精编版
人教版中职数学教材基础模块上册全册教案【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】的代表元素,竖线的右侧写出元素所具有的特征性质.如小于2-2-⎬⎭)奇数集合}∈Z ;)第一象限所有的点组成的集合为本次课学了哪些内容?重点和难点各是什么?)本次课学了哪些内容?【课题】1.2 集合之间的关系【教学目标】知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】是用来表示集合与集合之间关系的符号;”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.的子集,并且集合.空集是任何非空集合的真子集.对于集合A、B、C,如果A{2}{1}=9}={3,-3}x x==x x= |2};⑸a{0}∅;2}2{|x x【课题】 1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间5 *动脑思考 探索新知一般地,对于两个给定的集合A 、B ,由集合A 、 B 的相同元素所组成的集合叫做A 与B 的交集,记作A B ,读作“A交B ”.即{}AB x x A x B =∈∈且.集合A 与集合B 的交集可用下图表示为:求两个集合交集的运算叫做交运算. 总结 归纳 仔细 分析 讲解 关键 词语 强调 图像 含义 思考 理解 记忆 观察 带领 学生 总结 三个 问题 的共 同点 得到 交集 的定义10 *巩固知识 典型例题例1 已知集合A ,B ,求A ∩B . (1) A ={1,2},B ={2,3}; (2) A ={a ,b },B ={c ,d , e , f }; (3) A ={1,3,5},B = ∅; (4) A ={2,4},B ={1,2,3,4}.分析 集合都是由列举法表示的,因为 A ∩B 是由集合A 和集合B 中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集.解 (1) 相同元素是2,A ∩B ={1,2}∩{2,3 }={2};(2) 没有相同元素A ∩B ={a , b }∩{c , d , e , f }=∅;(3) 因为A 是含有三个元素的集合, ∅是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A ∩B =∅;(4) 因为A 中的每一个元素的都是集合B 中的元素,所以A ∩B =A .例2设(){},|0A x y x y =+=,(){},|4B x y x y =-=,求A B . 分析 集合A 表示方程0x y +=的解集;集合B 表示方程说明 强调 引领讲解观察 思考 主动 求解 观察通过 例题 进一 步领 会交 集 注意 观察 学生 是否 理解 知识 点 复习过 程行为 行为 意图 间4x y -=的解集.两个解集的交集就是二元一次方程组0,4x y x y +=⎧⎨-=⎩的解集. 解 解方程组0,4.x y x y +=⎧⎨-=⎩得2,2x y =⎧⎨=-⎩.所以(){}2,2AB =-.例3 设{}|12A x x =-<,{}|03B x x =<,求AB .分析 这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解 {}{}|12|03AB x x x x=-<<{}|02x x =<.由交集定义和上面的例题,可以得到: 对于任意两个集合A ,B ,都有 (1)A B B A =;(2)A A A = ,∅=∅ A ; (3)B B A A B A ⊆⊆ ,;(4)如果A B A B A =⊆ 那么,.说明 引领 强调 含义 说明 启发 引导思考 求解 领会 思考 求解 了解方程 组的 解法 突出 数轴 的作 用 强调 数形 结合 可以 交给 学生 自我 发现 归纳25 *运用知识 强化练习 练习1.3.11.设{}1,0,1,2A =-,{}0,2,4,6B =,求AB .2.设(){},|21A x y x y =-=,(){},|23B x y x y =+=,求A B .3.设{}|22A x x =-<≤,{}|04B x x=,求A B . 提问巡视指导动手 求解 交流 及时 了解 学生 知识 掌握 情况 35 *创设情景 兴趣导入问题1 某班有团员34名,非团员11名,那么该班有多少名同学?用我们学过的集合来表示:A ={该班团员};B ={该班非团员};C ={该班同学}.那么这三个集合之间有什么关系?问题2 某班第一学期的三好学生有李佳、王燕、张洁、王勇;介绍 质疑了解 观看 课件 思考从实 际事 例使 学生 自然}4,求A 整体建构思考并回答下面的问题:.集合的并集和交集有什么区别?(含义和符号)教 学 过 程教师 行为 学生 行为 教学 意图 时间(3)列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端点的处理.强化70*巩固知识 典型例题 例5 设{}{}2,1,0,1,5,3,2-==B A ,求B A ,B A .解 {}{}{}22,1,0,15,3,2=-= B A ;{}{}2,1,0,15,3,2-= B A {}5,3,2,1,0,1-=.例6 设{0{1A x x B x x =<=<≤2},≤3},求B A ,B A . 解 将集合A 、B 在数轴上表示:{1AB x x =<≤2},{0AB x x =<≤3}.引领 分析 讲解 说明领会 思考 求解进行 并交 的对 比例 题讲 解巩 固所 归纳 的强 化点75 *归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.{}{}1,0,1,2,0,2,4,6A B =-=,求B A ,B A .2.{}{}22,04A x xB x x=-<=,求B A ,B A .引导 提问 巡视 指导 回忆 反思 动手 求解 培养 学生 总结 反思 学习 过程 的能 力 85 *继续探索 活动探究(1)读书部分: 教材章节1.3; (2)书面作业: 学习与训练1.3;(3)实践调查: 举出交集和并集的生活实例. 说明记录90【课题】 1.3集合的运算(2)【教学目标】知识目标:(1)理解全集与补集的概念; (2)会求集合的补集. 能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.【教学重点】集合的补运算.【教学难点】集合并、交、补的综合运算.【教学设计】(1)通过生活中的实例导入全集与补集的概念,提高学生的学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲练结合,数形结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】,求A B,A B.介绍下面我们将学习另外一种集合的运算.兴趣导入U.U如果从上下文看全集是明确的,特别是当全集时,可以省略补集符号中的过 程行为 行为 意图 间作“A 的补集”.集合A 在全集U 中的补集的图形表示,如下图所示:求集合A 在全集U 中的补集的运算叫做补运算. 引导 说明观察 领会充分 利用 图形 的直 观性20 *巩固知识 典型例题例1设{}0,1,2,3,4,5,6,7,8,9U =,{}1,3,4,5A =,{}3,5,7,8B =.求A U及B U .分析 集合A 的补集是由属于全集U 而且不属于集合A 的元素组成的集合. 解{}0,2,6,7,8,9A =U ;{}0,1,2,4,6,9B =U .例2 设U =R ,{}|12A x x=-<,求A .分析 作出集合A 在数轴上的表示,观察图形可以得到A .解 {}|12A x xx =->或.说明 通过观察图形求补集时,要特别注意端点的取舍.本题中,因为端点−1不属于集合A ,所以−1属于其补集A ;因为端点2属于集合A ,所以2不属于其补集A .由补集定义和上面的例题,可以得到: 对于非空集合A : A ∩(UA )=∅,A ∪(UA )=U ,U U=∅,U ∅=U ,U(UA )=A .说明 讲解引领 引导 分析讲解 说明理解观察 思考 主动 求解 观察 思考 理解 自我 总结通过 例题 进一 步领 会补 集的 含义 及其 运算 特点 突出 数轴 的作 用 交给 学生 自我 发现 归纳 35*运用知识 强化练习 提问互动反馈思考并回答下面的问题:.什么是集合交运算?如何用符号表示?如何用图形表示?U U U U )()UU ()U AB ,()A B U.分析 这些集合都是用列举法表示的,可以通过列举集合的元素分别得到所求的集合. {U {U ()(){}0,2,6,9UU A ; ()(){}0,1,2,4,6,7,8,9UU A B=因为{}3,5AB =,所以(){0,1,2,4,6,7,8,9UB =(){0,2,6,9UB = 设全集U =R ,集合UU ,A B ,A 分析 在理解集合运算的含义基础上,充分运用数轴的表示来进行求解.,所以U B ={x | x -A B =R .分析 运用知识 强化练习{1,2,3,4,5,6,7,8U =设{}|0180U αα=<<,{}|090A αα=<<,{}|90180αα=<<,求UA ,U B,()()U U A B ,)U U B .巡视 指导归纳小结 强化思想本次课学了哪些内容?【课题】1.4 充要条件【教学目标】知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.【教学重点】(1)对“充分条件”、“必要条件”及“充要条件”的理解.(2)符号“⇒”,“⇐”,“⇔”的正确使用.【教学难点】“充分条件”、“必要条件”、“充要条件”的判定.【教学设计】(1)以学生的活动为主线.在条件与结论的关系的判断上,尽可能多的教给学生在独立尝试解决问题的基础上进行交流;(2)由易到难,具有层次性.从内涵上引导学生体会复合命题中条件和结论的关系. 【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】【课题】2.1不等式的基本性质【教学目标】知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.【教学重点】⑴比较两个实数大小的方法;⑵不等式的基本性质.【教学难点】比较两个实数大小的方法.【教学设计】(1)以实例引入知识内容,提升学生的求知欲;(2)抓住解不等式的知识载体,复习与新知识学习相结合;(3)加强知识的巩固与练习,培养学生的思维能力.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】【课题】2.2区间【教学目标】知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合的学习过程,培养学生的观察能力和数学思维能力.【教学重点】区间的概念.【教学难点】区间端点的取舍.【教学设计】⑴实例引入知识,提升学生的求知欲;⑵数形结合,提升认识;⑶通过知识的巩固与练习,培养学生的思维能力;⑷通过列表总结知识,提升认知水平.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】过 程行为 行为 意图 间时之间.如何表示列车的运行速度的范围? 解决不等式:200<v <350; 集合:{}|200350v v <<;数轴:位于2与4之间的一段不包括端点的线段; 还有其他简便方法吗? 引导 讲解思考 了解 领会复习 相关 知识5*动脑思考 明确新知 概念一般地,由数轴上两点间的一切实数所组成的集合叫做区间.其中,这两个点叫做区间端点.不含端点的区间叫做开区间.如集合{}|24x x <<表示的区间是开区间,用记号(2,4)表示.其中2叫做区间的左端点,4叫做区间的右端点.含有两个端点的区间叫做闭区间.如集合{}|24x x表示的区间是闭区间,用记号[2,4]表示.只含左端点的区间叫做右半开区间,如集合{|24}x x <表示的区间是右半开区间,用记号[2,4)表示;只含右端点的区间叫做左半开区间,如集合{|24}x x <表示的区间是左半开区间,用记号(2,4]表示.引入问题中,新时速旅客列车的运行速度值(单位:公里/小时)区间为(200,350). 说明 引导讲解 强调 细节理解 记忆 领会认知 各种 有限 区间 强调 各区 间的 规范 书写10*巩固知识 典型例题例1 已知集合()1,4A =-,集合[0,5]B =,求:AB ,A B .解 两个集合的数轴表示如下图所示,(1,5]A B =-, [0,4)A B =.质疑 分析 讲解思考 理解复习 相关 集合 运算 知识15过 程行为 行为 意图 间*运用知识 强化练习 教材练习2.2.11.已知集合(2,6)A =,集合()1,7B =-,求A B ,A B .2.已知集合[3,4]A =-,集合[1,6]B =,求A B ,A B .3. 已知集合(1,2]A =-,集合[0,3)B =,求A B ,A B .巡视 辅导思考 解题 交流 反馈 学习 效果20 *动脑思考 明确新知 问题集合{|2}x x >可以用数轴上位于2右边的一段不包括端点的射线表示,如何用区间表示? 解决集合{|2}x x >表示的区间的左端点为2,不存在右端点,为开区间,用记号(2,)+∞表示.其中符号“+∞”(读作“正无穷大”),表示右端点可以任意大,但是写不出具体的数.类似地,集合{|2}x x <表示的区间为开区间,用符号(,2)-∞表示(“-∞”读作“负无穷大”). 集合{|2}x x 表示的区间为右半开区间,用记号[2,)+∞表示;集合{|2}x x表示的区间为左半开区间,用记号(,2]-∞表示;实数集R 可以表示为开区间,用记号(,)-∞+∞表示. 注意“-∞”与“+∞”都是符号,而不是一个确切的数. 质疑 讲解 说明 强调 细节思考 领会 记忆 理解 明确学习 各种 区间 25 *巩固知识 典型例题例 2 已知集合(,2)A =-∞,集合(,4]B =-∞,求AB ,A B .解 观察如下图所示的集合A 、B 的数轴表示,得 (1)(,4]AB B =-∞=;(2)(,2)A B A =-∞=.例3 设全集为R ,集合(0,3]A =,集合(2,)B =+∞,质疑 说明 讲解观察 思考通过 例题 巩固 区间 的概 念 注意过 程行为 行为 意图 间(1)求A ,B ;(2)求AB .解 观察如下图所示的集合A 、B 的数轴表示,得 (1) (,0](3,)A =-∞+∞,(,2]B =-∞; (2) (0,2]AB =.启发 强调领会 主动 求解规范 书写30*理论升华 整体建构下面将各种区间表示的集合列表如下(表中a 、b 为任意实数,且a b <). 区间(,)a b[,]a b (,]a b 集合 {|}x a x b << {|}x a x b ≤≤ {|}x a x b <≤ 区间[,)a b(,)b -∞ (,]b -∞ 集合 {|}x a x b <≤ {|}x x b < {|}x x b ≤ 区间(,)a +∞[,)a +∞ (,)-∞+∞集合 {|}x x a >{|}x x a ≥R引导分析思考 互动 总结小组 讨论 教师 归纳35*运用知识 强化练习 教材练习2.2.21. 已知集合[)1,4A =-,集合(]0,5B =,求AB ,A B . 2.设全集为R ,集合(,1)A =-∞-,集合(0,3)B =,求A ,B ,B A .巡视指导求解 交流反馈 学习 效果40 *归纳小结 强化思想(1)本次课学了哪些内容?(2)通过本次课学习,你会解决哪些新问题了? (3)在学习方法上有哪些体会? 引导 提问 总结 反思 交流引导 学生 总结43 *继续探索 活动探究(1)读书部分: 教材章节2.2,学习与训练2.2; (2)书面作业: 教材习题2.2,学习与训练2.2训练题. 说明记录45【课题】2.3 一元二次不等式【教学目标】知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.【教学重点】⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.【教学难点】一元二次不等式的解法.【教学设计】⑴从复习一次函数图像、一元一次方程、一元一次不等式的联系入手;⑵类比观察一元二次函数图像,得到一元二次不等式的图像解法;⑶加强知识的巩固与练习,培养学生的数学思维能力;⑷讨论、交流、总结,培养团队精神,提升认知水平.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间*揭示课题2.3 一元二次不等式*回顾思考复习导入问题一次函数的图像、一元一次方程与一元一次不等式之间存在着哪些联系?解决观察函数26y x=-的图像:介绍提出问题了解思考复习感受新知过 程行为 行为 意图 间二次函数的图像、一元二次方程与一元二次不等式之间存在着哪些联系? 问题已知二次函数y =x 2-x -6,问: 1.怎样画这个二次函数的草图?2.根据二次函数的图像,能求出抛物线y =x 2-x -6与x 轴的交点吗?其交点将x 轴分成几段?3.观察抛物线找出纵坐标y =0、y >0、y <0的点.4.观察图像上纵坐标y =0、y >0、y <0的那些点所对应的横坐标x 的取值范围? 解决解方程260x x --=得122,3x x =-=.观察图像可以看到,方程260x x --=的解,恰好分别为函数图像与x 轴交点的横坐标;在x 轴上方的函数图像,所对应的自变量x 的取值范围,即{|23}x x x <->或内的值,使得260y x x =-->;在x 轴下方的函数图像所对应的自变量x 的取值范围,即{|23}x x -<<内的值,使得260y x x =--<. 质疑 说明引领 分析 讲解 思考 观察 理解 领会 通过 实例 介绍 使学 生感 受一 元二 次不 等式 的图 像解 法30 *动脑思考 探索新知 解法利用一元二次函数2y ax bx c=++()0a >的图像可以解不等式20ax bx c ++>或20ax bx c ++<.(1)当240b ac ∆=->时,方程20ax bx c ++=有两个不相等的实数解1x 和2x 12()x x <,一元二次函数2y ax bx c =++的图像与x 轴有两个交点1(,0)x ,2(,0)x (如图(1)所示).此时,不等式20ax bx c ++<的解集是()12,x x ,不等式20a x bx c ++>的解集是12(,)(,)x x -∞+∞;归纳 总结讲解分析思考 观察 理解引导 学生 经历 由特 殊到 一般 的提 炼过 程)当2b ∆=-一元二次函数y [)2,x +∞R 0< 12,)x∅]12,x 24b ac =-典型例题解下列各一元二次不等式:首先判定二次项系数是否为正数,再研究对应一元二次)29x<可化为290-=的解集为)2-x x53-+=x430的解集为是什么实数时,有意义.-.题意需要20=得x=.由于二次项系数为30 0>)+∞时,3【课题】2.4含绝对值的不等式【教学目标】知识目标:(1) 理解含绝对值不等式x a <或x a >的解法; (2)了解ax b c +<或ax b c +>的解法. 能力目标:(1) 通过含绝对值不等式的学习;培养学生的计算技能与数学思维能力; (2)通过数形结合的研究问题,培养学生的观察能力.【教学重点】(1)不等式x a <或x a >的解法 .(2)利用变量替换解不等式ax b c +<或ax b c +>.【教学难点】利用变量替换解不等式ax b c +<或ax b c +>. 【教学设计】(1) 从数形结合的认识绝对值入手,有助于学生对知识的理解; (2) 观察图形得到不等式x a <或x a >的解集; (3) 运用变量替换,化繁为简,培养学生的思维能力;(4) 加强解题实践,讨论、探究,培养学生分析与解决问题的能力,培养团队精神.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间*揭示课题2.4含绝对值的不等式 *回顾思考 复习导入 问题任意实数的绝对值是如何定义的?其几何意义是什么? 解决对任意实数x ,有,0,0,0,,0.x x x x x x >⎧⎪==⎨⎪-<⎩其几何意义是:数轴上表示实数x 的点到原点的距离. 拓展不等式2x <和2x >的解集在数轴上如何表示? 根据绝对值的意义可知,方程2x =的解是2x =或2x =-,不等式2x <的解集是(2,2)-(如图(1)所示);不等式2x >的解集是(,2)(2,)-∞-+∞(如图(2)所示).介绍 提问 归纳总结引导 分析了解 思考 回答 观察 领会复习 相关 知识 点为 进一 步学 习做 准备 充分 借助 图像 进行 分析10 *动脑思考 明确新知(2)(1)a (0a >)的解集.)26x.或x a >的形式后求解.,得13x >,所以原不等式的,3⎛ ⎝⎭)由不等式26x ,得如何通过x a <2- 12x-,所以原不等式的解集为 []1,2-. 57x +>,整理,得2;12.本次课学了哪些内容?重点和难点各是什么?第三章函数3.1.1函数的概念【教学目标】1. 理解函数的概念,会求简单函数的定义域.2. 理解函数符号y=f (x)的意义,会求函数在x=a处的函数值.3. 通过教学,渗透一切事物相互联系和相互制约的辩证唯物主义观点.【教学重点】函数的概念及两要素,会求函数在x=a处的函数值,求简单函数的定义域.【教学难点】用集合的观点理解函数的概念.【教学方法】这节课主要采用问题解决法和分组教学法.运用现代化教学手段,通过两个实例,分析抽象出函数概念,使学生更容易理解函数关系的实质以及函数两要素.然后通过求函数值与定义域的两类题目,深化对函数概念的理解.。
中职数学基础模块上册全册教案[3-5章共41份教案][精品全套]
人教版中职数学教材基础模块上册全册教案目录第三章函数 (1)3.1.1 函数的概念 (1)3.1.2 函数的表示方法 (5)3.1.3 函数的单调性 (8)3.1.4 函数的奇偶性 (13)3.2.1 一次、二次问题 (17)3.2.2 一次函数模型 (20)3.2.3 二次函数模型 (24)3.3 函数的应用 (28)第四章指数函数与对数函数 (30)4.1.1 有理指数(一) (30)4.1.1 有理指数(二) (34)4.1.2 幂函数举例 (38)4.1.3 指数函数 (41)4.2.1 对数 (45)4.2.2 积、商、幂的对数 (48)4.2.3 换底公式与自然对数 (52)4.2.4 对数函数 (54)4.3 指数、对数函数的应用 (57)第五章三角函数 (60)5.1.1 角的概念的推广 (60)5.1.2 弧度制 (64)5.2.1 任意角三角函数的定义 (67)5.2.2 同角三角函数的基本关系式 (71)5.2.3 诱导公式 (75)5.3.1 正弦函数的图象和性质 (80)5.3.2 余弦函数的图象和性质 (84)5.3.3 已知三角函数值求角 (87)第三章函数3.1.1函数的概念【教学目标】1. 理解函数的概念,会求简单函数的定义域.2. 理解函数符号y=f (x)的意义,会求函数在x=a处的函数值.3. 通过教学,渗透一切事物相互联系和相互制约的辩证唯物主义观点.【教学重点】函数的概念及两要素,会求函数在x=a处的函数值,求简单函数的定义域.【教学难点】用集合的观点理解函数的概念.【教学方法】这节课主要采用问题解决法和分组教学法.运用现代化教学手段,通过两个实例,分析抽象出函数概念,使学生更容易理解函数关系的实质以及函数两要素.然后通过求函数值与定义域的两类题目,深化对函数概念的理解.3.1.2函数的表示方法【教学目标】1. 了解函数的解析法、列表法、图象法三种主要表示方法.2. 已知函数解析式会用描点法作简单函数的图象.3. 培养学生数形结合、分类讨论的数学思想方法,通过小组合作培养学生的协作能力.【教学重点】函数的三种表示方法;作函数图象.【教学难点】作函数图象.【教学方法】这节课主要采用问题解决法和分组讨论教学法.本节课先借助一个实例,简要介绍函数的三种表示方法,进一步刻画函数概念;然后通过两个例题,使学生初步感知如何由解析式分析函数性质以指导画图,避免画图的盲目性.通过本节教学,使学生初步了解数形结合研究函数的方法,为下面学习函数的单调性和奇偶性做铺垫.【教学过程】新课3.针对上面的例子,思考并回答下列问题:(1) 在上例描点时,是怎样确定一个点的位置的?哪个变量作为点的横坐标?哪个变量作为点的纵坐标?(2) 函数的定义域是什么?(3) s的值能大于200吗?能是负值吗?为什么?函数的值域是什么?(4) 距离s 随行驶时间t 的增大有怎样的变化?4.例1作函数y=x3 的图象.解列表画图5.结合例1完成下列问题:(1) 函数y=x3 的定义域、值域是什么?(2) 函数值y随x的增大有怎样的变化?(3) f(a)与f(-a)相等吗?有怎样的关系?(4) 函数图象是轴对称图形还是中心对称图形?教师引导学生利用函数图象分析回答函数的性质.师:由上例可以看出,我们在列表、作图时,要认真分析函数,避免盲目列表计算.函数的图象有利于我们研究函数的性质,如本例中函数的定义域、值域以及y随x增大而增大等性质.教师引导学生分析:函数y=x3 的定义域是R,当x>0时,y>0,这时函数的图象在第一象限,y 的值随着x 的值增大而增大;当x<0时,y<0,这时函数的图象在第三象限,y 的值随着x 的值减小而减小.教师引导学生完成列表、描点及连线,完成函数图象.师生合作完成例1,让学生体会取值前如何分析研究函数式的特点.学生分组讨论完成,从讨论中掌握分析函数性质的方法.设置起到了承上启下的作用.为突破本节课难点而设计.问题(4)为下节引入函数的单调性做准备.让学生在作图过程中体会函数的性质,从做中学.尽可能把主动权交给学生,使学生在自主探索中发现问题解决问题.问题(3)(4)的设置是为引入函数的奇偶性作准备.避免为作图象而作新课6.例2作函数y=1x2的图象.解列表画图7.结合例2解答下列问题:(1) 函数y=1x2的定义域、值域是什么?(2) 在第一象限中,函数值y随x的增大有怎样的变化?在第二象限中呢?(3) f (a)与f (-a)相等吗?有怎样的关系?(4) 函数图象是轴对称图形还是中心对称图形?学生小组合作分析课本例2如何取值.学生作出例2图象,教师针对出现的情况进行点评或让学生互评.教师强调自变量的取值,即{x | x≠0}.学生分组讨论完成,从讨论中掌握分析函数性质的方法.图象,让学生在画图的过程中学习.让学生进一步掌握分析函数性质的方法.并为下一步学习函数的单调性与奇偶性做准备.小结1. 函数的三种表示方法.2. 作函数图象.学生畅谈本节课的收获,老师引导梳理,总结本节课的知识点.梳理总结也可针对学生薄弱或易错处进行强调和总结.作业教材P65 ,练习A组第3题;练习B 组第2题.巩固拓展.3.1.3函数的单调性【教学目标】1.理解函数单调性的概念,掌握判断函数的单调性的方法.2.通过教学,使学生领会数形结合的数学方法;培养学生发现问题、分析问题、解决问题的能力.3.体验数学的严谨性,渗透由一般到特殊的辩证唯物主义观点.【教学重点】函数单调性的概念;学会运用图象法观察函数的单调性和用定义法证明一些函数的单调性.【教学难点】利用函数单调性的定义判断和证明函数的单调性.【教学方法】这节课主要采用类比教学法和分组教学法.教师用问题引导学生从函数图象的变化趋势类比得出增减函数的概念,然后对图象进行代数分析,得出用定义证明函数单调性的步骤.从形的直观感知到严密的代数分析,使学生领会数形结合研究函数的方法.借助两个证明题,深化学生对单调性概念的理解.【教学过程】环节教学内容师生互动设计意图导入从常见的美丽的建筑物图片入手,让学生感知数学的美,激发学生的学习兴趣.师:播放动画,师生共同欣赏后,引导学生观察部分曲线的变化趋势,引入课题.联系实际,激发兴趣.新课1.课件展示下列函数图象2.增函数与减函数的定义:师:提出问题,引导观察思考:1.观察图象的变化趋势怎样?2.你能看出当自变量增大或减少时函数值如何变化吗?生:观察动画,思考回答.教师引导学生归纳从图象直观感知函数的单调性.通过观察函数图新课增函数:在给定的区间上自变量增大(减少)时,函数值也随着增大(减少).减函数:在给定的区间上自变量增大(减少)时,函数值也随着减少(增大).3.例1给出函数y=f (x)的图象,如图所示,根据图象指出这个函数在哪个区间上是增函数?在哪个区间上是减函数?解函数y=f (x)在区间[-1,0],[2,3]上是减函数;在区间[0,1],[3,4]上是增函数.4.练习1(1) 观察教材P64 例1的函数图象,说出函数在(-∞,+∞)上是增函数还是减函数;(2) 观察教材P65 例2的函数图象,分别说出函数在(-∞,0)和(0,+∞)上是增函数还是减函数.5.设y=f (x),在给定的区间在此图象上任取两点A(x1,y1),B(x2,y2),记增函数与减函数的定义.学生观察图象完成此题,掌握用图象来判断函数单调性的方法.教师强调,在说明函数单调性时,要指出明确的区间.学生回答,教师点评.教师带领学生结合增函数图象分析如何利用函数的解析式来判断一个函数是增函数.象直接给出增函数、减函数的定义,符合学生的特点,容易被学生接受.从观察直观图象入手,加深对单调性定义的理解,掌握用图象法判定函数单调性的方法,使学过的知识及时得到应用.通过练习1,让学生进一步掌握利用函数的图象来判断函数单调性的方法,从而提高学生的读图能力,并与前面学过的知识结合,对学过的函数有更新的认识.将增函数、减函数定义中的定性说明新课x=x2-x1,y=y2-y1.6.例2 证明函数f (x)=3 x+2在区间(-∞,+∞)上是增函数.证明设x1,x2是任意两个不相等的实数,则x=x2-x1y=f (x2)-f (x1)=(3 x2+2)-(3 x1+2)=3(x2-x1),学生类比分析如何利用函数的解析式来判断一个函数是减函数.教师指出利用函数图象判断单调性的局限性,引导学生从函数解析式入手证明单调性的思路与步骤.教师讲解例题2,板书详细的解题过程.转化为定量分析.从而给出利用函数解析式来判断函数单调性的方法.启发学生思考,完成从直观到抽象、从感性思维到理性思维的升华.在板书例题的过程中,突出解题思路与步骤.通过例题解答,加深对函数单调性定义的理解,并自然而然地将定义运用到判定函数单调性中,理论与实践相辅相成.增函数自变量增大(x >0),函数值增大(y∆y∆x>0减函数自变量增大(x>0),函数值增大(y∆y∆x<0新课∆y∆x=3(x2-x1)x2-x1>0.因此,函数f (x)=3 x+2在区间(-∞,+∞)上是增函数.7.总结由函数的解析式判定函数单调性的步骤:S1 计算x和y;S2 计算k=∆y∆x.当k>0时,函数在这个区间上是增函数;当k<0时,函数在这个区间上是减函数.8.例3证明函数f (x)=1x在区间(0,+∞)上是减函数.证明:设x1,x2是任意两个不相等的正实数.因为x=x2-x1,y=f(x2)-f(x1)=1x2-1x1=2121xxxx-=-2112xxxx-=-21xxx∆.又因为x1 x2>0,所以∆y∆x=-211xx<0.因此,函数f (x)=x1在区间(0,+∞)上是减函数.9.练习2证明函数f (x)=3x在区间(-∞,0)上是减函数.教师引导学生总结解题步骤,可简记为:一设、二求、三判定.学生讨论并试解例题.老师点拨、解答学生疑难.学生模仿练习.突出重点,深化证明步骤,分解难点.通过学生讨论、老师点拨,顺利帮助学生判断∆y∆x的正负.巩固用函数解析式来判定单调性的思路和步骤.巩固理解,形成技能.小结1. 函数单调性的定义;2. 判定函数单调性的方法.学生阅读课本P66~68,畅谈本节课的收获.老师引导梳理,总梳理总结也可针对学生薄弱或易错处进行强调和总结.结本节课的知识点.作业教材P 69,练习A组第2题;练习B组第1、2题.巩固拓展.3.1.4函数的奇偶性【教学目标】1. 理解奇函数、偶函数的概念;掌握奇函数、偶函数的图象特征.2. 掌握判断函数奇偶性的方法.3. 通过教学,渗透数形结合思想,培养学生类比推理的能力,体会由具体到抽象、由特殊到一般的辩证唯物主义思想.【教学重点】奇偶性概念与函数奇偶性的判断.【教学难点】理解奇偶性概念与奇函数、偶函数的定义域.【教学方法】这节课主要采用类比教学法.先由两个具体的函数入手,引导学生发现函数f(x)在x与在-x的函数值之间的关系,由特殊到一般引出奇函数的定义,再由点的对称关系得出奇函数的图象特征.然后由学生自主探索,类比得出偶函数定义.结合定义与例题总结出判断函数奇偶性的步骤,在解题过程中深化对概念的理解.【教学过程】所以函数 f (x )=x +1不是奇函数.(4) 函数 f (x )=x +x 3+x 5+x 7的定义域为R ,所以当x ∈ R 时,-x ∈ R .因为 f (-x )=-x -x 3-x 5-x 7=-(x +x 3+x 5+x 7) =-f (x ).所以函数f (x )=x +x 3+x 5+x 7是奇函数.练习1 教材 P 73,练习A 组 第1题. 二、偶函数 1. 定义.如果对于函数 y =f (x )的定义域A 内的任意一个x 都有f (-x )=f (x ),则这个函数叫做偶函数. 2. 图象特征.偶函数的图象都是以y 轴为对称轴的轴对称图形.一个函数是偶函数的充要条件是,它的图象是以y 轴为对称轴的轴对称图形. 例2 判断下列函数是不是偶函数: (1) f (x )=x 2+x 4; (2) f (x )=x 2+1; (3) f (x )=x 2+x 3;(4) f (x )=x 2+1,x ∈-1,3.解(2) 函数 f (x )=x 2+1的定义域为R , 所以当 x ∈ R 时,-x ∈ R .因为 f (-x )=(-x )2+1=x 2+1=f (x ),所以函数 f (x )=x 2+1是偶函数.(4) 因为2∈-1,3,-2-xO(x ,f (x ))(-x ,f (x )) y1,3,所以函数f (x)=x2+1,x∈-1,3不是偶函数.3. 对定义域的要求一个函数为奇函数或者偶函数的前提条件是这个函数的定义域关于原点对称.练习2判断下列函数是不是偶函数:(1) f (x)=(x+1)(x-1);(2) f (x)=x2+1,x∈(-1,1];(3) f (x)=1x2-1.x y3.2.1一次、二次问题【教学目标】1. 通过实际问题感知一次、二次函数在实际生活中的应用.2. 培养学生从实际问题中抽象出数学模型并应用模型去解决实际问题的能力.3. 通过教学,培养学生应用数学的意识,提高学生分析问题、解决问题的能力.【教学重点】从实际问题中抽象简单的数学模型.【教学难点】从实际问题中抽象简单的数学模型.【教学方法】这节课主要采用问题解决法.教师引导学生对实际问题先用列表计算与画图的方法来直观感知,然后抽象成一次函数和二次函数来研究,通过教学,培养学生从实际问题中抽象出一次、二次函数模型并应用模型去解决实际问题的能力.【教学过程】3.2.2一次函数模型【教学目标】1. 掌握正比例函数和一次函数的关系;理解并掌握一次函数的性质.2. 培养学生数形结合研究函数性质的能力,渗透平移变换的数学思想.3. 体验数学的严谨性,培养学生理性分析问题的良好习惯.【教学重点】一次函数的性质.【教学难点】对正比例函数和直线的关系的理解.【教学方法】这节课主要采用讲练结合法.先定义一次函数,对特殊的一次函数——正比例函数,则采用由曲线与方程的角度来描述正比例函数与直线的关系,然后再考察一次函数与正比例函数的关系,从而得出一次函数的图象也是一条直线的结论,并结合函数的单调性深入分析一次函数的性质,将学生初中对具体的一次函数的认识上升到一般的理性结论.【教学过程】y 轴的交点坐标是什么? 结论(1) 一次函数 y =kx +b 的图象与正比例函数 y =k x 图象的关系:一次函数 y =kx +b 的图象是一条直线,我们称它为直线 y =kx +b , 它可以看作由直线 y =kx 沿y 轴平移 |b | 个单位长度得到.(当 b >0时,向上平移;当 b <0时,向下平移.)(2) 一次函数 y =k x +b 的图象是过点(0,b ),(-bk ,0)的一条直线.练习1 指出下列直线是由哪个正比例函数的图象平移得到的,并求下列直线与 x 轴,y 轴的交点坐标. (1)直线 y =5 x +1; (2)直线 y =5x -3; (3)直线 y =x +5; (4)直线 y =x -3. 三、一次函数的单调性 当 k >0时,函数 f (x )=kx +b 是增函数.当 k <0时,函数f (x )=kx +b 是减函数. 例2 证明 一次函数f (x )=kx +b (k >0)在(-∞,+∞)上是增函数. 证明 设 x 1,x 2 是任意两个不相等的实数,因为 Δ x =x 2-x 1,而且 Δy =k x 2+b -k x 1-b =k (x 2-x 1)=k Δx , 所以 Δy Δx =xx k ∆∆=k >0. 所以当 k >0时,函数 f (x )=k x +b 在(-∞,+∞) 上是增函数. 同理我们可以证明:当 k <0 时,函数 f (x )=k x +b 在(-∞,+∞) 上是减函数. 因为 y 是函数值的改变量,x 是自变量的改变量,所以由 y =k x 还可知:函数值的改变量与相应自变量的改变量成正比. 四、总结一次函数的性质 1.一次函数 y =k x +b 的图象是过点(0,b ),(-b k,0)的一条直线.3.2.3二次函数模型【教学目标】1. 理解并掌握二次函数的图象和性质;了解二次函数与一元二次方程、一元二次不等式之间的关系;2. 通过教学,使学生初步掌握数形结合研究二次函数的方法;3. 渗透数形结合思想,渗透由特殊到一般的辩证唯物主义观点,培养学生观察分析、类比抽象的能力.【教学难点】函数对称性的分析与数形结合研究二次函数的方法.【教学方法】这节课主要采用启发式教学法和讲练结合法.本节课通过对例题中的二次三项式进行代数分析,探究二次函数性质的由来,使学生从初中对二次函数的直观感知上升到理性认识的高度.更重要的是在学习函数的一般通性之后,以二次函数为载体较系统地呈现数形结合研究函数的方法,为后面学习其它函数的性质奠定基础.【教学过程】环节教学内容师生互动设计意图导入二次函数的一般形式:y=a x2+b x+c (a≠0),定义域是R.练习1 下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项.(1)y=2 x2+3 x-1;(2)y=x+1x;(3) y=3(x-1)2+1;(4) y=(x+3)2-x2;(5) s=3-2 t2;(6) v=4 πr2.教师引导学生回忆二次函数的一般式,并让学生举例.学生口答.教师在引导学生复习旧知识的同时,让学生自主探索新知识,激发学生获取新知的动力.新课引例在同一坐标系内作出下列函数的图象.y=x2,y=2 x2,y=3 x2,y=-x2,y=-2x2,y=-3 x2.师:如果b=c=0,则一般式变为y=a x2 (a≠0),下面我们先来研究这类函数的性质.出示引例.学生在初中已经重点学过二次函数的作图,所以教师只讲述y=x2的图象画法,其余5个函数的图象,学生分组合作解答,教师巡回观察.最后通过屏幕演示,集体对照.生:观察图象,小组合作讨论.然后每组选一名代表汇报各通过引例,使学生进一步掌握二次函数图象的描点作图法,并根据所做图象来分析函数y=a x2中系数a 对图象的影响,提高学生读图能力.学生合作,集体回忆初中所学二次函数的知识.2xy=2xy-=22xy=23xy=22xy-=23xy-=新课观察图象并完成填空函数y=a x2的图象,当a>0时开口.当a<0时开口,对称轴是,顶点坐标是.函数是函数(用奇或偶填空).| a | 越大,开口越.例1研讨二次函数f (x)=12x2+4 x+6的性质与图象.解(1) 因为f (x)=12x2+4 x+6=12(x2+8 x+12)=12(x+4)2-2.由于对任意实数x,都有12(x+4)2≥0,所以 f (x)≥-2,并且,当x=-4时取等号,即f(-4)=-2.得出性质:x=-4时,取得最小值-2.记为y min=-2.点(-4,-2)是这个图象的顶点.(2) 当y=0时,12x2+4 x+6=0,x2+8 x+12=0,解得x1=-6,x2=-2.故该函数图象与x 轴交于两点(-6,0),(-2,0).(3) 列表作图.以x=-4为中间值,取x 的一些值,列出这个函数的对应值表然后画出函数的图象.组的交流结果,最后师生一起汇总得出结论.师生共同解决例1,教师详细板书解题过程,带领学生仔细分析各个性质的由来.教师引导学生观察图象可得出:函数的对称轴是直线x=-4.师:这个结论是否是正确的呢?教师通过问题1、2,引导学生证明上述结论正确.通过对例1中二次三项式的代数分析,使学生对二次函数的直观感知上升到理性认识的高度,更重要的是使学生掌握数形结合研究函数的方法,初步培养学生的画图、识图能力.分析图象与x轴的交点,一方面为描点作图,另一方面为下节研究函数与方程,不等式的关系做铺垫.对称性的教学设计是为了启发学生完成从直观到抽象、从感性思维到理性思维的升华.教师让学生经历“观察—发现—验证—归纳”四个过程,感受数学的严密性、科学性.y-2-6 O x-4-2新课(1) x 取哪些值时,y=0;(2) x 取哪些值时,y>0,x 取哪些值时,y<0.解 (1)求使y=0的x 的值,即求二次方程x2-x-6=0的所有根.方程的判别式=(-1)2-4×1×(-6)=25>0,解得:x1=-2,x2=3.(2)画出简图,函数的开口向上.从图象上可以看出,它与x轴相交于两点(-2,0),(3,0),这两点把x轴分成三段.所以当x(-2,3)时,y<0.当x(-∞,-2)∪(3,+∞)时,y>0.练习3 下列函数自变量在什么范围内取值时,函数值大于0、小于0或等于0.(1) y=x2+7 x-8;(2) y=-x2+2 x+8.总结二次函数,二次方程,二次不等式三者之间的关系(表格见课件).二次方程、一元二次不等式与二次函数之间的关系:求二次方程ax2+bx+c=0的解,就是求二次函数:y=a x2+bx+c(a≠0)的根;求不等式 a x2+b x+c<0的解集,就是求使二次函数:y=ax2+bx+c(a≠0 )的函数值小于0的自变量的取值范围;求不等式 a x2+b x+c>0的解集,就是求使二次函数y=a x2+b x+c(a≠0)的函数值大于0的自变量的取值范围.学生模仿练习.老师巡回观察点拨、解答学生疑难.程或一元二次不等式的解集的方法.教师在讲解时可根据学生的实际情况进行讲解和拓展.方法一:在图象中用区间分析法是比较简单的一种方法,通过此法可进一步培养学生的读图,识图能力,培养学生数形结合的思想.巩固用图象法解一元二次不等式的步骤.利用表格总结,使所学知识系统化.小结1.二次函数的性质.2.一元二次方程、一元二次不等式与二次函数的关系.3.数形结合研究二次函数的方法.学生阅读课本畅谈本节课的收获,老师引导梳理,总结本节课的知识点.梳理总结也可针对学生薄弱或易错处进行强调和总结.作业教材P84,练习 A组第1、2题;教材P85,练习 B组1、2题(选做).巩固拓展.o-2 3-6yx3.3函数的应用【教学目标】1. 会应用一次函数和二次函数解决有关简单实际问题.2. 培养学生建立简单的数学模型及应用模型去解决实际问题的能力.3. 通过教学,培养学生应用数学的意识,提高学生分析问题、解决问题的能力.【教学重点】应用函数知识解决一些简单的实际问题.【教学难点】从实际问题中抽象出函数模型.【教学方法】这节课主要采用讲练结合法.教师将四个例题与练习穿插在一起,教师引导与学生主动参与相结合,培养学生的审题能力,以及从实际问题中抽象出数学模型并应用模型去解决实际问题的能力.【教学过程】第四章指数函数与对数函数4.1.1有理指数(一)【教学目标】1. 理解整数指数幂及其运算律,并会进行有关运算.2. 培养学生的观察、分析、归纳等逻辑思维能力.3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养学生合作交流等良好品质.【教学重点】零指数幂、负整指数幂的定义.【教学难点】零指数幂及负整指数幂的定义过程,整数指数幂的运算.【教学方法】这节课主要采用问题解决法和分组教学法.在引入指数幂时,以在国际象棋棋盘上放米粒为导入素材,既体现数学的应用价值,也能引起学生的学习兴趣.从正整指数的运算法则中的a mm-n (m>n,a ≠ 0)a n=a这一法则出发,通过取消m>n的限制引入了零指数幂和负整指数幂的定义,从而把正整指数幂推广到整数指数幂.在本节教学中,要以取消m>n这一条件为出发点,让学生积极大胆地猜想,以此增强学生的参与意识,从而提高学生的学习兴趣.指数(n N+)4.1.1有理指数(二)【教学目标】1. 了解根式的概念和性质;理解分数指数幂的概念;掌握有理数指数幂的运算性质.2. 会对根式、分数指数幂进行互化.培养学生的观察、分析、归纳等逻辑思维能力.3. 培养学生用事物之间普遍联系的观点看问题.【教学重点】分数指数幂的概念以及分数指数幂的运算性质.【教学难点】对分数指数幂概念的理解.【教学方法】这节课主要采用问题解决教学法.在引入分数指数幂时,先讲方根的概念,根据方根的定义,得到根式具有的性质.在利用根式的运算性质对根式的化简过程中,引导学生注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.在对根式的性质进行练习以后,为了解决运算的合理性,引入了分数指数幂的概念,从而将指数幂推广到了有理数范围.在学生掌握了有理指数幂的运算性质后,将有理指数幂推广到实数指数幂.考虑到职校学生的实际情况,并没有给出严格的推证.【教学过程】一、根式有关概念定义:一般地,若x n=a (n>1,n N),则x叫做a 的n 次方根.例如:(1) 由32=9知,3是9的二次方根(平方根);由(-3)2=9知,-3也是9的二次方根(平方根);(2) 由(-5)3=-125知,-5是-125的三次方根(立方根);(3) 由64=1 296知,6是1 296 的4次方根.有关结论:一般地,我们规定:a 1n=na (a >0); a m n=na m=(na )m(a >0,m ,nN +,且 mn为既约分数).a-m n =1am n(a >0,m ,n N +,且 mn为既约分数) .四、实数指数幂的运算法则 (1) a α a β=a α+β; (2) (a α) β=a α β; (3) (a b ) α=a α b α.以上a α,a β中,a >0,b >0,且α,β为任意实数.练习1 835×825=83+25=81=8;823=(813)2=22=4;33×33 ×63=3×312×313×316=31+12+13+16=32=9;(a 23b 14)3=(a 23)3·(b 14)3=a 2b 34.例1 利用函数型计算器计算(精确到0.001): (1) 0.21.52; (2) 3.14-2; (3) 3.123.例2 利用函数型计算器计算函数值.已知 f (x )=2.71x ,求 f (-3),f (-2),f (-1),f (1),f (2),f (3) (精确到0.001).请同学们结合教材在小组内合作完成. 练习2教材 P 98,练习A 组 第3题,练习B 组第3题.4.1.2 幂函数举例【教学目标】1. 了解幂函数的概念,会求幂函数的定义域,会画简单幂函数的图象.2. 培养学生用数形结合的方法解决问题.注重培养学生的作图、读图的能力.3. 培养学生勇于发现、勇于探索、勇于创新的精神;培养合作交流等良好品质. 【教学重点】 幂函数的定义. 【教学难点】会求幂函数的定义域,会画简单幂函数的图象. 【教学方法】这节课主要采用启发式和讲练结合的教学方法.从函数y =x ,y =x 2,y =1x 等导入,通过观察这类函数的解析式,归纳其共性,引入幂函数的概念.在例1求函数的定义域中,对于分数指数及负整指数的幂函数要转化为分式或根式的形式,讲解时,注意引导,让学生在解答问题的过程中自己归纳总结规律.函数图象是研究函数性质的有利工具,教师在讲授例2时,可以采用分组的方式,让学生一起合作完成函数的图象,并从本例中找出幂函数的某些性质.【教学过程】 一、幂函数的概念一般地,形如y =x的函数我们称为幂函数.。
中职数学基础模块[精品全套]
人教版中职数学教材基础模块上册全册教案目录第三章函数.................................................. 错误!未定义书签。
函数的概念............................................. 错误!未定义书签。
函数的表示方法......................................... 错误!未定义书签。
函数的单调性........................................... 错误!未定义书签。
函数的奇偶性........................................... 错误!未定义书签。
一次、二次问题......................................... 错误!未定义书签。
一次函数模型........................................... 错误!未定义书签。
二次函数模型........................................... 错误!未定义书签。
函数的应用............................................. 错误!未定义书签。
第四章指数函数与对数函数.................................... 错误!未定义书签。
有理指数(一) ........................................... 错误!未定义书签。
有理指数(二) ........................................... 错误!未定义书签。
幂函数举例............................................. 错误!未定义书签。
指数函数............................................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版中职数学教材基础模块上册全册教案【课题】1.1 集合的概念【教学目标】知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合的表示法.【教学难点】集合表示法的选择与规范书写.【教学设计】(1)通过生活中的实例导入集合与元素的概念;(2)引导学生自然地认识集合与元素的关系;(3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华;(4)通过练习,巩固知识.(5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】},99,正偶数集可以表示为}2,4,6,.在花括号内画一条竖线,竖线的左侧写出集合强调的代表元素,竖线的右侧写出元素所具有的特征性质.如小于的实数所组成的集合可表示为如果从上下文能明显看出集合的元素为实数,那么可以0的解集;)所有奇数组成的集合;)由第一象限所有的点组成的集合.用描述法表示集合关键是找出元素的特征性质.解不等式就可以得到不等式解集元素的特征性质;的特征性质是“元素都能写成0得12x-,1 2⎫-⎬⎭;)奇数集合}∈Z;)第一象限所有的点组成的集合为(){,x y x>运用知识强化练习的解集.本次课学了哪些内容?重点和难点各是什么?)本次课学了哪些内容?)通过本次课的学习,你会解决哪些新问题了?)在学习方法上有哪些体会?【课题】1.2 集合之间的关系【教学目标】知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.【教学重点】集合与集合间的关系及其相关符号表示.【教学难点】真子集的概念.【教学设计】(1)从复习上节课的学习内容入手,通过实际问题导入知识;(2)通过实际问题引导学生认识真子集,突破难点;(3)通过简单的实例,认识集合的相等关系;(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】}6x<.是用来表示集合与集合之间关系的符号;”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.的元素,因此}6x<的元素,}6x<.∈”或“∉(2){(4){}2,3}2的子集,并且集合叫做集合B(或B A),读作“.空集是任何非空集合的真子集.对于集合A、B、C,如果A{2}{1}{1,2,3,4,5,6}=9}={3,-3}x x=={x x= |2}【课题】 1.3集合的运算(1)【教学目标】知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.【教学重点】交集与并集.【教学难点】用描述法表示集合的交集与并集.【教学设计】(1)通过生活中的实例导入交集与并集的概念,提高学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲与练结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间集合A 、B 的相同元素所组成的,这时,将C 称作是A 与B 的交集.5 *动脑思考 探索新知一般地,对于两个给定的集合A 、B ,由集合A 、 B 的相同元素所组成的集合叫做A 与B 的交集,记作A B ,读作“A交B ”.即{}AB x x A x B =∈∈且.集合A 与集合B 的交集可用下图表示为:求两个集合交集的运算叫做交运算. 总结 归纳 仔细 分析 讲解 关键 词语 强调 图像 含义 思考 理解 记忆 观察 带领 学生 总结 三个 问题 的共 同点 得到 交集 的定义10 *巩固知识 典型例题例1 已知集合A ,B ,求A ∩B . (1) A ={1,2},B ={2,3}; (2) A ={a ,b },B ={c ,d , e , f }; (3) A ={1,3,5},B = ∅; (4) A ={2,4},B ={1,2,3,4}.分析 集合都是由列举法表示的,因为 A ∩B 是由集合A 和集合B 中相同的元素组成的集合,所以可以通过列举出集合的所有相同元素得到集合的交集.解 (1) 相同元素是2,A ∩B ={1,2}∩{2,3 }={2};(2) 没有相同元素A ∩B ={a , b }∩{c , d , e , f }=∅;(3) 因为A 是含有三个元素的集合, ∅是不含任何元素的空集,所以它们的交集是不含任何元素的空集,即A ∩B =∅;(4) 因为A 中的每一个元素的都是集合B 中的元素,所以A ∩B =A .例2设(){},|0A x y x y =+=,(){},|4B x y x y =-=,求A B . 说明 强调 引领观察 思考 主动 求解通过 例题 进一 步领 会交 集 注意 观察 学生 是否 理解 知识 点过 程行为 行为 意图 间分析 集合A 表示方程0x y +=的解集;集合B 表示方程4x y -=的解集.两个解集的交集就是二元一次方程组0,4x y x y +=⎧⎨-=⎩的解集. 解 解方程组0,4.x y x y +=⎧⎨-=⎩得2,2x y =⎧⎨=-⎩.所以(){}2,2AB =-.例3 设{}|12A x x =-<,{}|03B x x =<,求AB .分析 这两个集合都是用描述法表示的集合,并且无法列举出集合的元素.我们知道,这两个集合都可以在数轴上表示出来,如下图所示.观察图形可以得到这两个集合的交集.解 {}{}|12|03AB x xx x=-<<{}|02x x =<.由交集定义和上面的例题,可以得到: 对于任意两个集合A ,B ,都有 (1)A B B A =;(2)A A A = ,∅=∅ A ; (3)B B A A B A ⊆⊆ ,;(4)如果A B A B A =⊆ 那么,. 讲解说明 引领强调 含义说明 启发 引导观察 思考 求解 领会 思考 求解 了解复习 方程 组的 解法 突出 数轴 的作 用 强调 数形 结合 可以 交给 学生 自我 发现 归纳25 *运用知识 强化练习 练习1.3.11.设{}1,0,1,2A =-,{}0,2,4,6B =,求AB .2.设(){},|21A x y x y =-=,(){},|23B x y x y =+=,求A B . 3.设{}|22A x x =-<≤,{}|04B x x=,求AB . 提问巡视指导动手 求解 交流 及时 了解 学生 知识 掌握 情况 35 *创设情景 兴趣导入问题1 某班有团员34名,非团员11名,那么该班有多少名同学?用我们学过的集合来表示:A ={该班团员};B ={该班非团员};C ={该班同学}.那么这三个集合之间有什么关系?介绍 质疑了解 观看 课件从实 际事 例使B.}2,}4B x,求A B.整体建构思考并回答下面的问题:.集合的并集和交集有什么区别?(含义和符号).在进行集合的并运算和交运算时各自的特点是什么?.集合用列举法和描述法表示时进行运算需要注意的问题是教 学 过 程教师 行为 学生 行为 教学 意图 时间将两个集合所有的元素进行合并.(3)列举法求解时要不重不漏,描述法求解时要利用好数轴并注意端点的处理. 强调理解 强化破难 点70 *巩固知识 典型例题 例5 设{}{}2,1,0,1,5,3,2-==B A ,求B A ,B A .解 {}{}{}22,1,0,15,3,2=-= B A ;{}{}2,1,0,15,3,2-= B A {}5,3,2,1,0,1-=.例6 设{0{1A x x B x x =<=<≤2},≤3},求B A ,B A . 解 将集合A 、B 在数轴上表示:{1AB x x =<≤2},{0AB x x =<≤3}.引领 分析 讲解 说明领会 思考 求解进行 并交 的对 比例 题讲 解巩 固所 归纳 的强 化点75 *归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?1.{}{}1,0,1,2,0,2,4,6A B =-=,求B A ,B A .2.{}{}22,04A x xB x x=-<=,求B A ,B A .引导 提问 巡视 指导 回忆 反思 动手 求解 培养 学生 总结 反思 学习 过程 的能 力 85 *继续探索 活动探究(1)读书部分: 教材章节1.3; (2)书面作业: 学习与训练1.3;(3)实践调查: 举出交集和并集的生活实例. 说明记录90【课题】 1.3集合的运算(2)【教学目标】知识目标:(1)理解全集与补集的概念; (2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.【教学重点】集合的补运算.【教学难点】集合并、交、补的综合运算.【教学设计】(1)通过生活中的实例导入全集与补集的概念,提高学生的学习兴趣;(2)通过对实例的归纳,针对用“列举法”及“描述法”表示集合的运算的不同特征,采用由浅入深的训练,帮助学生加深对知识的理解;(3)通过学生的解题实践,总结比较,理解交集与并集的特征,完成知识的升华;(4)讲练结合,数形结合,教学要符合学生的认知规律.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】B ,A B .}2,}4B x=,求AB ,A B .下面我们将学习另外一种集合的运算. 介绍兴趣导入 某学习小组学生的集合为{王明,曹勇,王亮,李冰,张军,赵云,冯佳,薛香芹,钱忠良,何晓慧} 质疑 U A ,读作“{|UA x =.如果从上下文看全集是明确的,特别是当全集过 程行为 行为 意图 间数集R 时,可以省略补集符号中的U ,将UA 简记为A ,读作“A 的补集”.集合A 在全集U 中的补集的图形表示,如下图所示:求集合A 在全集U 中的补集的运算叫做补运算. 引导 说明观察 领会范性 充分 利用 图形 的直 观性20*巩固知识 典型例题例1设{}0,1,2,3,4,5,6,7,8,9U =,{}1,3,4,5A =,{}3,5,7,8B =.求A U及B U .分析 集合A 的补集是由属于全集U 而且不属于集合A 的元素组成的集合. 解{}0,2,6,7,8,9A =U ;{}0,1,2,4,6,9B =U .例2 设U =R ,{}|12A x x=-<,求A .分析 作出集合A 在数轴上的表示,观察图形可以得到A .解 {}|12A x xx =->或.说明 通过观察图形求补集时,要特别注意端点的取舍.本题中,因为端点−1不属于集合A ,所以−1属于其补集A ;因为端点2属于集合A ,所以2不属于其补集A .由补集定义和上面的例题,可以得到: 对于非空集合A : A ∩(UA )=∅,A ∪(UA )=U ,U U=∅,U ∅=U ,U(UA )=A .说明 讲解引领 引导 分析讲解 说明理解观察 思考 主动 求解 观察 思考 理解 自我 总结通过 例题 进一 步领 会补 集的 含义 及其 运算 特点 突出 数轴 的作 用 交给 学生 自我 发现 归纳35UA .}4x,求A .思考并回答下面的问题:.什么是集合交运算?如何用符号表示?如何用图形表示?什么是集合并运算?如何用符号表示?如何用图形表示?什么是集合补运算?如何用符号表示?如何用图形表示?A U ,B U ,()()ABU U ,)()UU A B,()U AB ,()A B U.分析 这些集合都是用列举法表示的,可以通过列举集合的元素分别得到所求的集合. 解{}0,2,6,7,8,9A =U ;{}0,1,2,4,6,9B =U ()(){}0,2,6,9UU A B =; ()(){}0,1,2,4,6,7,8,9U U AB=因为{}3,5AB =,所以 (){0,1,2,4,6,7,8,9UAB ={1,3,4,5,7,8B =(){0,2,6,9UA B = 设全集U =R ,集合UA , UB ,A B ,A B .分析 在理解集合运算的含义基础上,充分运用数轴的表示来进行求解.解 因为全集U =R ,A ={x | x ≤UA ={x | ,所以U B ={x | {B x =-A B =R .引领分析 运用知识 强化练习{1,2,3,4,5,6,7,8U =B ,B ,UA ,U B ,()()U U A B ,()()U U A B .设{}|0180U αα=<<,{}|090A αα=<<,{}|90180αα=<<,求UA ,U B,()()U U A B ,)()U U A B .提问巡视 指导归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么? 引导【课题】 1.4 充要条件【教学目标】知识目标:了解“充分条件”、“必要条件”及“充要条件”. 能力目标:通过对条件与结论的研究与判断,培养思维能力.【教学重点】(1)对“充分条件”、“必要条件”及“充要条件”的理解. (2)符号“⇒”,“⇐”,“⇔”的正确使用.【教学难点】“充分条件”、“必要条件”、“充要条件”的判定.【教学设计】(1)以学生的活动为主线.在条件与结论的关系的判断上,尽可能多的教给学生在独立尝试解决问题的基础上进行交流;(2)由易到难,具有层次性.从内涵上引导学生体会复合命题中条件和结论的关系.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】【课题】2.1不等式的基本性质【教学目标】知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.【教学重点】⑴比较两个实数大小的方法;⑵不等式的基本性质.【教学难点】比较两个实数大小的方法.【教学设计】(1)以实例引入知识内容,提升学生的求知欲;(2)抓住解不等式的知识载体,复习与新知识学习相结合;(3)加强知识的巩固与练习,培养学生的思维能力.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】【课题】2.2区间【教学目标】知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合的学习过程,培养学生的观察能力和数学思维能力.【教学重点】区间的概念.【教学难点】区间端点的取舍.【教学设计】⑴实例引入知识,提升学生的求知欲;⑵数形结合,提升认识;⑶通过知识的巩固与练习,培养学生的思维能力;⑷通过列表总结知识,提升认知水平.【教学备品】教学课件.【课时安排】1课时.(45分钟)【教学过程】}4x|24}x<24}x<引入问题中,新时速旅客列车的运行速度值(单位:公里讲解强调细节B,B.两个集合的数轴表示如下图所示质疑过 程行为 行为 意图 间(1,5]A B =-, [0,4)A B =.分析 讲解 理解 运算 知识 15*运用知识 强化练习 教材练习2.2.11.已知集合(2,6)A =,集合()1,7B =-,求A B ,A B .2.已知集合[3,4]A =-,集合[1,6]B =,求A B ,A B .3. 已知集合(1,2]A =-,集合[0,3)B =,求A B ,A B .巡视 辅导思考 解题 交流 反馈 学习 效果20 *动脑思考 明确新知 问题集合{|2}x x >可以用数轴上位于2右边的一段不包括端点的射线表示,如何用区间表示? 解决集合{|2}x x >表示的区间的左端点为2,不存在右端点,为开区间,用记号(2,)+∞表示.其中符号“+∞”(读作“正无穷大”),表示右端点可以任意大,但是写不出具体的数.类似地,集合{|2}x x <表示的区间为开区间,用符号(,2)-∞表示(“-∞”读作“负无穷大”). 集合{|2}x x 表示的区间为右半开区间,用记号[2,)+∞表示;集合{|2}x x表示的区间为左半开区间,用记号(,2]-∞表示;实数集R 可以表示为开区间,用记号(,)-∞+∞表示. 注意“-∞”与“+∞”都是符号,而不是一个确切的数. 质疑 讲解 说明 强调 细节思考 领会 记忆 理解 明确学习 各种 区间 25 *巩固知识 典型例题例 2 已知集合(,2)A =-∞,集合(,4]B =-∞,求AB ,A B .解 观察如下图所示的集合A 、B 的数轴表示,得 (1)(,4]AB B =-∞=;(2)(,2)A B A =-∞=.质疑 说明观察 思考通过 例题 巩固 区间过 程行为 行为 意图 间例3 设全集为R ,集合(0,3]A =,集合(2,)B =+∞, (1)求A ,B ;(2)求AB .解 观察如下图所示的集合A 、B 的数轴表示,得 (1) (,0](3,)A =-∞+∞,(,2]B =-∞; (2) (0,2]AB =.讲解 启发 强调领会 主动 求解的概 念 注意 规范 书写30*理论升华 整体建构下面将各种区间表示的集合列表如下(表中a 、b 为任意实数,且a b <). 区间(,)a b[,]a b (,]a b 集合 {|}x a x b << {|}x a x b ≤≤ {|}x a x b <≤ 区间[,)a b(,)b -∞ (,]b -∞ 集合 {|}x a x b <≤ {|}x x b < {|}x x b ≤ 区间(,)a +∞[,)a +∞ (,)-∞+∞集合 {|}x x a >{|}x x a ≥R引导分析思考 互动 总结小组 讨论 教师 归纳35*运用知识 强化练习 教材练习2.2.21. 已知集合[)1,4A =-,集合(]0,5B =,求AB ,A B . 2.设全集为R ,集合(,1)A =-∞-,集合(0,3)B =,求A ,B ,B A .巡视指导求解 交流反馈 学习 效果40 *归纳小结 强化思想(1)本次课学了哪些内容?(2)通过本次课学习,你会解决哪些新问题了? (3)在学习方法上有哪些体会? 引导 提问 总结 反思 交流引导 学生 总结43 *继续探索 活动探究【课题】2.3 一元二次不等式【教学目标】知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.【教学重点】⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.【教学难点】一元二次不等式的解法.【教学设计】⑴从复习一次函数图像、一元一次方程、一元一次不等式的联系入手;⑵类比观察一元二次函数图像,得到一元二次不等式的图像解法;⑶加强知识的巩固与练习,培养学生的数学思维能力;⑷讨论、交流、总结,培养团队精神,提升认知水平.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间2.3 一元二次不等式 *回顾思考 复习导入 问题一次函数的图像、一元一次方程与一元一次不等式之间存在着哪些联系? 解决观察函数26y x =-的图像:方程260x -=的解3x =恰好是函数图像与x 轴交点的横坐标;在x 轴上方的函数图像所对应的自变量x 的取值范围,恰好是不等式260x ->的解集{|3}x x >;在x 轴下方的函数图像所对应的自变量x 的取值范围,恰好是不等式260x -<的解集{|3}x x <. 归纳一般地,如果方程0ax b +=(0)a >的解是0x ,那么函数y ax b =+图像与x 轴的交点坐标为0(,0)x ,并且(1)不等式0ax b +>(0)a >的解集是函数y ax b =+的图像在x 轴上方部分所对应的自变量x 的取值范围,即0{|}x x x >;(2)不等式0ax b +<(0)a >的解集是函数y ax b =+在x轴下方部分所对应的自变量x 的取值范围,即0{|}x x x <. 总结由此看到,通过对函数y ax b =+的图像的研究,可以求出不等式0ax b +>与0ax b +<的解集. 介绍 提出 问题 引领 分析 讲解 提炼了解 思考 观察 领悟 理解 认知复习 相关 知识 内容 强化 知识 点的 内在 联系 突出 数形 结合15*动脑思考 明确新知 概念()0或()0(a≠感受新知二次函数的图像、一元二次方程与一元二次不等式之间存过 程行为 行为 意图 间2y ax bx c =++的图像与x 轴有两个交点1(,0)x ,2(,0)x (如图(1)所示).此时,不等式20ax bx c ++<的解集是()12,x x ,不等式20a x bx c ++>的解集是12(,)(,)x x -∞+∞;(1) (2) (3) (2)当240b ac ∆=-=时,方程20ax bx c ++=有两个相等的实数解0x ,一元二次函数2y ax bx c =++的图像与x 轴只有一个交点0(,0)x (如图(2)所示).此时,不等式20ax bx c ++<的解集是∅;不等式20ax bx c ++>的解集是00(,)(,)x x -∞+∞.(3)当240b ac ∆=-<时,方程20ax bx c ++=没有实数解,一元二次函数2y ax bx c =++的图像与x 轴没有交点(如图(3)所示).此时,不等式20ax bx c ++<的解集是∅;不等式20ax bx c ++>的解集是R .讲解 分析 强调 讲解观察 理解 领会 记忆的提 炼过 程 强化 图像 作用 熟练 数形 结合 应用40*理论升华 整体建构当0a >时,一元二次不等式的解集如下表所示: 方程或不等式解集0∆>0∆=0∆<20ax bx c ++= {}12,x x{}0x∅20ax bx c ++> 12(,)(,)x x -∞+∞00(,)(,)x x -∞+∞R 20ax bx c++(][)12,,x x -∞+∞R R 20ax bx c ++<12(,)x x∅∅引领 归纳 强化领会 总结综合 归纳 便于 学生 理解 记忆24b ac =-典型例题解下列各一元二次不等式:26x x --0.首先判定二次项系数是否为正数,再研究对应一元二次方程解的情况,最后对照表格写出不等式的解集.26x --=0的解(3,)+∞.)29x <可化为290-=的解集为)253x x -两边同乘1-,得30.由于判别式43x -+=0的解集为0的解集为是什么实数时,有意义. 题意需要解20-.解0=得1x =.由于二次项系数为30>以不等式的解集为[)1,⎛-∞+∞.[)1,+∞时,解下列各一元二次不等式:0.本次课学了哪些内容?重点和难点各是什么? 【课题】2.4含绝对值的不等式【教学目标】知识目标:(1) 理解含绝对值不等式x a <或x a >的解法; (2)了解ax b c +<或ax b c +>的解法. 能力目标:(1) 通过含绝对值不等式的学习;培养学生的计算技能与数学思维能力; (2)通过数形结合的研究问题,培养学生的观察能力.【教学重点】(1)不等式x a <或x a >的解法 .(2)利用变量替换解不等式ax b c +<或ax b c +>.【教学难点】利用变量替换解不等式ax b c +<或ax b c +>. 【教学设计】(1) 从数形结合的认识绝对值入手,有助于学生对知识的理解; (2) 观察图形得到不等式x a <或x a >的解集; (3) 运用变量替换,化繁为简,培养学生的思维能力;(4) 加强解题实践,讨论、探究,培养学生分析与解决问题的能力,培养团队精神.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间*揭示课题2.4含绝对值的不等式 *回顾思考 复习导入 问题任意实数的绝对值是如何定义的?其几何意义是什么? 解决对任意实数x ,有,0,0,0,,0.x x x x x x >⎧⎪==⎨⎪-<⎩其几何意义是:数轴上表示实数x 的点到原点的距离. 拓展不等式2x <和2x >的解集在数轴上如何表示? 根据绝对值的意义可知,方程2x =的解是2x =或2x =-,不等式2x <的解集是(2,2)-(如图(1)所示);不等式2x >的解集是(,2)(2,)-∞-+∞(如图(2)所示).介绍 提问 归纳总结引导 分析了解 思考 回答 观察 领会复习 相关 知识 点为 进一 步学 习做 准备 充分 借助过 程行为 行为 意图 间图像 进行 分析10*动脑思考 明确新知一般地,不等式x a <(0a >)的解集是(),a a -;不等式x a >(0a >)的解集是()(),,a a -∞-+∞.试一试:写出不等式x a 与x a (0a >)的解集.总结 强化理解 记忆强调 特点15*巩固知识 典型例题 例1 解下列各不等式: (1)310x ->; (2)26x.分析:将不等式化成x a <或x a >的形式后求解.解 (1)由不等式310x ->,得13x >,所以原不等式的解集为11,,33⎛⎫⎛⎫-∞-+∞ ⎪⎪⎝⎭⎝⎭;(2)由不等式26x ,得3x ,所以原不等式的解集为[]3,3-.分析讲解强调 细节思考 主动 求解进一 步巩 固知 识点20*运用知识 强化练习 教材练习2.4.1 解下列各不等式: (1)28x;(2) 2.6x <;(3)10x ->. 巡视 辅导 解题 交流 反馈 学习 效果 25 *实际操作 探索新知 问题如何通过x a <(0a >)求解不等式213x +<? 解决在不等式213x +<中,设21m x =+,则不等式质疑思考通过 实例 使学 生初(2)3.3213x --, 224x -, 12x-,所以原不等式的解集为 []1,2-. 7>.257x +>,整理,得6- 或 1x >,)()61,+∞.1142;2.本次课学了哪些内容?重点和难点各是什么?第三章函数3.1.1函数的概念【教学目标】1. 理解函数的概念,会求简单函数的定义域.2. 理解函数符号y=f (x)的意义,会求函数在x=a处的函数值.3. 通过教学,渗透一切事物相互联系和相互制约的辩证唯物主义观点.【教学重点】函数的概念及两要素,会求函数在x=a处的函数值,求简单函数的定义域.【教学难点】用集合的观点理解函数的概念.【教学方法】这节课主要采用问题解决法和分组教学法.运用现代化教学手段,通过两个实例,分析抽象出函数概念,使学生更容易理解函数关系的实质以及函数两要素.然后通过求函数值与定义域的两类题目,深化对函数概念的理解.。