2010年浙江省湖州市初二年级数学竞赛试卷
初二数学竞赛试题7套整理版(含答案)
初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
2010年八年级竞赛试卷参考答案
参考答案一、选择题。
CBDDA DBBBA 二、填空题。
11、(X-2Y)(X+Y-2) 12、-1 13、-1 14、15- 15、25 16、(1,2) 17、180゜或360゜或540゜ 18、x 轴 19、±25 20、332 三、解答题21、解:原式=3-1+1-9=-622. 解:∵BD 2 +AD 2=62 +82=102=AB 2∴△ABD 是直角三角形 ∴AD ⊥BC在Rt △ACD 中,158172222=-=-=AD AC CD∴S △ABC =8482121)(2121=⨯⨯=•+=•AD CD BD AD BC 因此△ABC 的面积为84。
23、解:∵四边形ABCD 是等腰梯形,∴∠ADC=∠BCD ,AD=BC 。
∴∠PDC=∠PCD∴∠ADC-∠PDC=∠BCD-∠PCD 即∠ADP=∠BCP∴△ADP ≌△BCP (SAS ) ∴PA=PB24、解:BE=FC 。
理由如下:∵DE ∥BC ,EF ∥AC , ∴四边形CDEF 是平行四边形. ∴ED=FC.∵BD 是∠ABC 的平分线, ∴∠ABD=∠CBD. ∵DE ∥BC,∴∠EDB=∠CBD.∴∠ABD=∠EDB. ∴BE=ED. ∴BE=FC. 25. 如图,过C 作CE ⊥AD 于E ,过D 作DE ⊥BC 于F . ∵∠CAD=30°,∴∠ACE=60°,且CE=21AC , ∵AC=AD ,∠CAD=30°,∴∠ACD=75°,∴∠FCD=90°―∠ACD=15°,∠ECD=∠ACD―∠ACE=15 ∴△CED ≌△CFD , ∴CF=CE=21AC=21BC ,∴CF=BF . ∴Rt △CDF ≌Rt △BDF ,∴BD=CD . 证法二:如图,作正方形AEBC ,连结ED . ∵∠BAD=45°―∠CAD=45°―30°=15°, ∴∠EAD=∠EAB+∠BAD=60°, 又AD=AC=AE ,∴△ADE 是等边三角形, ∴ED=AD=AC=EB ,∴∠DEB=90°―∠AED=30°∴△ACD ≌△EBD ,∴CD=BD26、解:(1)根据题意,装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,那么装运C 种脐橙的车辆数为()y x --20,则有:()10020456=--++y x y x 整理得:202+-=x y(2)由(1)知,装运A 、B 、C 三种脐橙的车辆数分别为x 、202+-x 、x ,由题意得:⎩⎨⎧≥+-≥42024x x ,解得:4≤x ≤8,因为x 为整数,所以x 的值为4、5、6、7、8,所以安排方案共有5种。
八年级数学竞赛试题及参考答案
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
2010—2011学年度第一学期八年级数期八年级数学竞赛试卷21
-11oyx-22yxO2010—2011学年度第一学期八年级数学竞赛试卷说明:1、本试卷共四大题,23小题。
2、考试时间100分钟,满分100分。
一、选择题(每小题3分,共24分) 1、下列运算正确的是( )A 、632a a a =⨯B 、44)(a a =- C 、532a a a =+ D 、532)(a a =2、下列图形中一定是轴对称图形的是( )A 、梯形B 、直角三角形C 、角D 、平行四边形 3、如果53-x 有意义,则x 可以取的最小的整数为( )A 、0 B、1 C 、2 D 、3 4、正比例函数如图所示,则这个函数的解析式为( )A 、y+xB 、y=-xC 、y=-2xD 、x y 21-= 5、下列条件中,不能判定三角形全等的是( )A 、三条边对应相等B 、两边和一角对应相等C 、两角和其中一角的对边对应相等D 、两角和它们的夹边对应相等6、在锐角△ABC 内一点P 满足PA=PB=PC,则点P是△ABC的( ) A、三条角平分线的交点 B、三条中线的交点 C 、三条高的交点 D 、三边垂直平分线的交点7、等腰三角形的各边长均为整数,且周长不大于6, 则这样的等腰三角形有( )A 、1个B 、2个C 、3个D 、4个8、一次函数y=kx+b (k 、b 是常数,k≠0)的图像如图所示,则不等式kx+b >0的解集是( ) A 、x >-2 B 、x >0 C 、x <-2 D 、x <0 二、填空题(每小题3分,共24分)9、|-9|的平方根为____________;=-2)5(_________;327的立方根是____________。
10、因式分解:=-822a _______________________________。
11、如图,AB=AC,BD=BC ,若∠A=40°,则∠ABD 的度数为________________。
12、如图,△ABC 中,D、E 分别是AC 、AB 上的点,BD 与CE 交于点O ,给出下列三个条件:①∠EBO=∠DCO ;②∠BEO=∠CDO ;③BE=CD 。
2009-2010学年上学期八年级竞赛数赛数学试题(含答案)97
2009--2010学年上学期八年级竞赛数 学 试 题(总分100分)一、选择题(每小题5分,共30分)1、已知三点A (2,3),B(5,4),C (-4,1)依次连接这三点,则( ) A.构成等边三角形 B.构成直角三角形 C.构成锐角三角形 D.三点在同一直线上2、边长为整数,周长为20的三角形个数是( ) **个 B.6个 C.8个 D.123.已知a+b+c≠0,且a+b c =b+c a =a+cb =p ,则直线y=px+p 不经过( )A.第一象限B.第二象限C.第三象限D.第四象限4.若交换代数式中的任意两个字母,代数式不变,则称这个代数式为完全对称式,如a+b+c 就是一个完全对称式.已知三个代数式:①a(b+c)+b(a+c)+c(a+b);②ab c ac b bc a 222++;③ac bc ab c b a ---++222.其中是完全对称式的( ) A .只有①② B .只有①③C .只有②③D .有①②③5.已知=++++++++2009200913312211112222 ( ) A.1 B.20092008 C .20102009 D .200920106.下图是韩老师早晨出门散步时,离家的距离y 与时间x 之间的函数图象,若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是( )二、填空题(每小题5分,共30分)7.已知正数a,b,c, 满足ab+a+b=bc+b+c=ca+c+a=99,则(a+1)(b+1)(c+1)= . 8.当x =3时,函数y=33++qx px 的值是2005,则当x =-3时,函数y=33++qx px 的值为 .9.已知62-+x x 是多项式12234-+++-+b a bx ax x x 的因式,则=a ,=b .10.如图,已知Rt △ABC ,∠C =90°,∠A =30°,在直线BC 或AC 上取一点P ,使得△PAB 是等腰三角形,则符合条件的P 点有 . 11.一次函数111+++-=k x k k y (k 为正整数)的图像与x 轴、y 轴的交点是O B A ,,为原点.设Rt △ABO 的面积是k S ,则2009321S S S S ++++ = .12.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为 .三、解答题(每小题10分,共40分)13.阅读下列解题过程:2545)4()5()45()45()45()45(145122-=-=--=-⨯+-⨯=+;56)5()6(56)56()56()56(156122-=--=-⨯+-⨯=+.请回答下列问题:(1)观察上面的解题过程,请直接写出式子=-+11n n ;(2)利用上面所提供的解法,请化简9101451341231121++++++++++ 的值.第6题图C BA14.已知△ABC 是等边三角形,E 是AC 延长线上一点,选择一点D ,使得△CDE 是等边三角形,如果M 是线段AD 的中点,N 是线段BE 的中点. 求证:△CMN 是等边三角形.15.设关于x 的一次函数11b x a y +=与22b x a y +=,则称函数)()(2211b x a n b x a m y +++=(其中1=+n m )为此两个函数的生成函数.(1)当x=1时,求函数1y x =+与y=2x 的生成函数的值;(2)若函数11b x a y +=与22b x a y +=的图象的交点为P ,判断点P 是否在此两个函数的生成函数的图象上,并说明理由.16.我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售。
八年级数学竞赛试题(含答案)-
C DAB八年级数学竞赛试题 一、选择题:1.方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ).2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ). (A ) 14 (B ) 16 (C )18 (D )20 3.已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx恰有一个公共实数根,则222a b c bc ca ab++的值为( ).(A ) 0 (B )1 (C )2 (D )34.若3210x x x +++=,则2627--+x x + … +x x ++-11+ … +2726x x +的值是( ) (A )1 (B )0 (C )-1 (D )2 5.若a b c t b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) (A )第一、二象限 (B )第一、二、三象限 (C )第二、三、四象限 (D )第三、四象限6.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( ) (A)1个 (B) 2个 (C) 3个 (D)无穷多个7.如图在四边形ABCD 中,∠DAB=∠BCD=90°,AB=AD ,若这个四边形的面积是10,则BC+CD 等于( )A .54B .102C .64D .288、已知一组正数x 1,x 2,x 3,x 4,x 5的方差222222123451(20)5S x x x x x =++++-,则关于数据123452,2,2,2,2x x x x x +++++,的说法:(1)方差为2S ;(2)平均数为2;(3)平均数为4; (4)方差为42S ,其中正确的说法是( )(A )(1)与(2) (B )(1)与(3) (C )(2)与(4) (D )(3)与(4)二、填空题:9、已知对所有的实数x,12x m x +≥--恒成立, 则m 可取得的最大值为_______.10.已知方程0322=-+mx x 的方程03232=++m x 有一个公共根α,则实数m=_________;这两个方程的公共根α= _________。
初二竞赛数学试题及答案
初二竞赛数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个等腰三角形的两边长分别为5和8,那么这个三角形的周长是多少?A. 18B. 21C. 26D. 30答案:B3. 如果一个数的平方等于36,那么这个数是多少?A. 6B. -6C. 6或-6D. 以上都不是答案:C4. 一个圆的半径是3厘米,那么它的面积是多少平方厘米?A. 28.26B. 36C. 9答案:A5. 一个数除以2余1,除以3余2,除以5余4,这个数是多少?A. 29B. 34C. 39D. 44答案:A6. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,那么它的体积是多少立方厘米?A. 24B. 12C. 8D. 6答案:A7. 一个数的立方等于-125,那么这个数是多少?A. -5B. 5C. -5或5D. 以上都不是答案:A8. 一个直角三角形的两个直角边长分别是3和4,那么它的斜边长是多少?A. 5B. 7C. 9D. 129. 一个数的倒数等于它本身,这个数是多少?A. 1B. -1C. 1或-1D. 0答案:C10. 一个数的绝对值等于5,那么这个数是多少?A. 5B. -5C. 5或-5D. 0答案:C二、填空题(每题3分,共30分)1. 一个数的平方根是2,那么这个数是______。
答案:42. 一个数的立方根是-2,那么这个数是______。
答案:-83. 一个数的平方等于64,那么这个数是______。
答案:±84. 一个圆的直径是10厘米,那么它的半径是______厘米。
答案:55. 一个直角三角形的斜边长是13厘米,一个直角边长是5厘米,那么另一个直角边长是______厘米。
6. 一个长方体的体积是48立方厘米,长和宽分别是4厘米和3厘米,那么它的高是______厘米。
答案:47. 一个数除以4余1,除以5余2,除以7余3,那么这个数是______。
浙教版初二上数学竞赛试题(1—3章)
初二数学第一次竞赛试卷班级 姓名一、填空题(30分)1. 如图,在一个正方体的两个面上画了两条对角线AB ,AC ,那么这两条对角线的夹角等于 度. 2. 已知,11x x -=(x >0),则441x x-= . 3.在等腰三角形ABC 中,底角∠B=15°,腰长AB=10,则这个三角形的面积为____. 4.在正方形ABCD 中,点E 是BC 上的一定点,且BE =10,EC =14,点P 是BD 上的一动点,则PE +PC 的最小值是 .5.如图,在等腰三角形ABC 中,AB=AC ,顶角A=200,在边AB 上取 点D ,使AD=BC ,则∠BDC= .6.如图,已知三个边长相等的正方形相邻并排,求 ∠EBF+∠EBG= .二、选择题(30分)1、等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( ) A .30° B .30°或150°C . 120°或150° D .30°或120°或150°2、如图是一个立方体的表面展开图,已知立方体的每一个面上 都有一个实数,且相对面上的两数互为倒数,那么代数式b ca-的值等于( ) A 、43- B 、6- C 、43D 、63、在△ABC 中,AB=13,AC=15,高AD=12,则BC 的长是 ( ). (A )14 (B )4 (C )14或4 (D )以上都有可能4、已知四边形的四条边的长分别是m 、n 、p 、q ,且满足m 2+n 2+p 2+q 2=2mn+2pq.则这个四边形是 ( ) (A)平行四边形 (B)对角线互相垂直的四边形 (C)平行四边形或对角线互相垂直的四边形 (D)对角线相等的四边形5、已知20042005+=a x ,20052005+=a y ,20062005+=a z ,则xz yz xy z y x ---++222的值为 ( )A BD PE(第4题) A E F G H ADBC第5题A 、2B 、3C 、4D 、56、直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形的周长为 ( )(A )d S d 22++ (B )d S d +-2 (C ))(22d S d ++ (D )d S d ++22 三、计算题(60分)1、如图,△ABC 中,∠ACB =90°,CD 为∠ACB 平分线,CH ⊥AB 于H ,若AD =P ,BD =q ,求CH 的长。
初二数学竞赛试题及答案
初二数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 4B. 2/3C. √2D. 0.5答案:C2. 如果一个三角形的两边长分别为3和4,且第三边长为整数,那么第三边长可能是:A. 1B. 2C. 5D. 7答案:C3. 计算下列表达式的值:(3x - 2) / (x + 1),当x = 2时,结果为:A. 1/3B. 1C. 4D. 5答案:C4. 一个数的平方是其本身的数有:A. 0和1B. 0和-1C. 1和-1D. 0和2答案:A5. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A6. 一个数的立方是-8,这个数是:A. 2B. -2C. 3D. -3答案:B7. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 负数C. 0D. 正数或08. 计算下列表达式的值:(2x + 3) / (x - 1),当x = 2时,结果为:A. 5B. 7C. 9D. 11答案:B9. 一个等腰三角形的两边长分别为5和8,那么其周长可能是:A. 18B. 21C. 26D. 30答案:C10. 一个数的相反数是-3,这个数是:A. 3B. -3C. 0D. 6答案:A二、填空题(每题4分,共20分)11. 一个数的平方根是4,那么这个数是______。
12. 一个数的立方根是2,那么这个数是______。
答案:813. 如果一个角的补角是120°,那么这个角的度数是______。
答案:60°14. 一个数的倒数是1/2,那么这个数是______。
答案:215. 一个数的绝对值是5,那么这个数可能是______或______。
答案:5或-5三、解答题(每题10分,共50分)16. 已知一个直角三角形的两个直角边长分别为6和8,求斜边的长度。
答案:根据勾股定理,斜边的长度为√(6² + 8²) = √(36 + 64) = √100 = 10。
八年级数学竞赛试题含参考答案
八年级竞赛试题(数学)(本卷满分150分,时间120分钟)一、填空题(每小题5分,共50分)1.点P (3,-5)关于y 轴对称的点的坐标为( )A . (3,5)--B .(5,3)C .(3,5)-D .(3,5) 2.下列四组数据中,不能..作为直角三角形的三边长的是( ) A . 7,24,25 B .6,8,10 C .9,12,15 D .3,4,63.已知△ABC 中,AB=AC ,高BD ,CE 交于点O ,连接AO ,则图中全等三角形的对数为( )A .3B .4C .5D .64.如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=8,AD 平分∠BAC ,点PQ 分别是AB 、AD 边上的动点,则PQ+BQ 的最小值是( )A .4B .5C .6D .7 5.设M=(x -3)(x -7),N=(x -2)(x -8),则M 与N 的关系为( )A.M <NB.M >NC.M=N D .不能确定6.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面,已知正多边形的边数为x ,y ,z ,则zy x 111++的值为( )A .1B .32 C .21 D .31 7.如图,长方形ABCD 中,△ABP 的面积为a ,△CDQ 的面积为b ,则阴影四边形的面积等于( )A .b a +B . b a -C .2ba + D .无法确定 8.若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是( )A .0x y z ++=B .20x y z +-=C . 20y z x +-=D . 20z x y +-=9.已知3030--+-+-=a x x a x y ,其中0<a <30,30≤≤x a ,那么y 的最小值为.( ) A .10B .20C .30D .4010.如图,ABE ∆和ADC ∆是ABC ∆分别沿着AB ,AC 边翻折0180形成的,若∠1:∠2:∠3=28:5:3,则a ∠的度数为.( )A .60oB .70oC .80oD .90o二、填空题(每小题7分,共49分)11.如果2222(2)(2)45a b a b +++-=,则a 2+b 2的值为 .12.将五个分数:23 ,58 ,1523 ,1017 ,1219 ;由小到大或由大到小排列,排在中间位置的分数是 13.x 表示a 与b 的和的平方,y 表示a 与b 的平方的和,则a=7,b=-5时,x -y 的值是14.计算:|11992 -11991 |+|11993 -11992 |-|11993 -11991 |= 15.观察下列运算:12=1;22=1+3;32=1+3+5;42=1+3+5+7;52=1+3+5+7+9;则n 2= (n 为正整数)。
奥数-2009-2010年度八年级(上)学科竞赛数学试题(含答案)-卷
2009~2010年度八年级上学期学科竞赛数 学 试 卷题号 一 二 三 四 五总分 21 22 23 24 25 26 27 28 29 得分(说明:全卷共8页,满分120分)一、选择题(本题共10小题,每小题3分,共30分,每小题给的四个答案中,有且只有一个是正确的,将你认为正确的选项填在题后的括号内)1.在227,8,–3.1416 ,π,25,0.61161116……,39中无理数有( )A .2个B .3个C .4个D .5个 2.下列说法不正确的是 ( )A 、51251±的平方根是;B 、0.2的算术平方根是0.02;C 、的一个平方根是819- ;D 、3273-=-3.如图在所示的象棋盘上,建立适当的平面直角坐标系,使帅位于点(-1,0)上、相位于点(1,0)上,则炮位于点( ) A 、(-3,3) B 、(0,3) C 、(-4,3)D 、(4,3)4.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是( ) A 、矩形 B 、三角形 C 、梯形 D 、菱形5. 函数y =-2x-5的图象不经过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 6.下列图形中,是中心..对称图形的是( ) 学校:班级:座号:姓名:密封线内不要答题○帅 ○相 ○炮12-3-210-13A7.若532+y x b a 与x y b a 2425-是同类项,则( ) A 、⎩⎨⎧==2,1y x B 、⎩⎨⎧-==1,2y x C 、⎩⎨⎧==2,0y x D 、⎩⎨⎧==1,3y x8.下列各组条件中,能判定四边形ABCD 为矩形的是( )A 、∠A+∠B=900B 、AB ∥CD ,AB=CD ,AC=BDC 、AB ∥CD ,AD=BC ,AC=BD D 、AC=BD ,∠A=9009.已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而减小,则一次函数k x y +=的图象大致是( ).xyxyxyxyOOOOA B C D 10.如图,在菱形ABCD 中,∠BAD=700,AB 的垂直平分线交对角线AC于点F ,E 为垂足,连结DF ,则∠CDF 等于( ) A. 600B. 700C. 750D. 85二、填空题(本题共10小题,每小题3分,共30分,请把你认为正确的答案写在横线上)11.比较实数的大小:————.12.计算:3123-= .13.已知⎩⎨⎧==1,2y x 方程2x -ay=5的一个解,则a = ,14.如图所示:数轴上点A 所表示的数为a ,则a 的值是______. (14题图) 15. 一个正数的两个平方根分别是2m-1和 4-3m,则这个正数是_____________.F ED CBA16. 若点A (-2,3)先向右平移3个单位,在向下平移1个单位,得到的点的坐标为_______. 17.正方形切去一角后,所得多边形的内角和为 . 18.将平面直角坐标系内某个图形各个点的横坐标不变,纵坐标都乘以-1,所得图形与原图形关于_______对称。
2010年秋季八年级数学竞赛(决赛)试题(含答案)
2010年秋季八年级数学竞赛(决赛)试题题 号 一 二 三 总 分得 分温馨提示:本卷共三道大题,满分120分,时量120分钟。
一、选择题,把唯一正确选项写在方框内。
(每小题5分,共40分)题号 1 2 3 4 5 6 7 8 选项1. 102213+-等于 ( ) A.7-B.3-C.6-D.122. 一种叫水浮莲的水草生长很快,每天增加1倍,10天刚好长满池塘,到几天刚好长满池塘面积的一半?( ) A. 6天B. 5天C. 8天D. 9天3. 在代数式2xy z 中,若x 与y 的值各减少25%,z 的值增加25%,则代数式的值( )A. 减少12 B. 减少34 C. 减少135256 D. 减少121256 4. 如果111,1a b b c +=+=,那么1c a+=( )A. 1B. 2C. 12D. 145. 将平行四边形ABCD 对角线的交点与直角坐标系的原点重合,且点A 与点B 的坐标分别是(2,1)--,1(,1)2-,则点C 和点D 的坐标分别为 ( )A.(2,1)和1(,1)2-B.(2,1)-和1(,1)2-C.(2,1)-和1(,1)2D.(1,2)--和1(1,)2-6. 一本词典售价a 元,利润是成本的20%;如果把利润提高到成本的30%,那么应提高售价为 ( ) A.15a元 B.12a元 C.10a元 D.8a 元 7. 若有理数,ab 在数轴上的位置如图1所示.则下列各式中错误的是( )得 分 评卷人A.2ab -<B.1b >1a- C.ab<-1D. a b +<12-8. 如果,,a b c 都是正整数,且,a b 是奇数,则23(1)a b c +-是( )。
A. 只当C 为奇数时,其值为奇数 B. 只当C 为偶数时,其值为奇数 C. 只当C 为3的倍数,其值为奇数 D. 无论C 为任何正整数,其值均为奇数二、填空题(每小题5分,共40分)9. 已知5,3a b ==,且a b <,则23a b -= . 10.111112233420092010++++=⨯⨯⨯⨯ .11. 当2a >时,不等式32ax x b +<+的解集是0x <,则b = .12. 姚明在一次“NBA”常规赛中,22投14中得28分,除了3个3分球全中外,他还投中了个两分球和 个罚球. 13. 已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 .14. 等腰三角形的一个外角为100°,那么它的底角为 .15. “*”表示一种运算符号,其意义是*2a b a b =-,如果*(2*1)3x =,那么x =_____. 16. A 、B 、C 、D 四位同学参加比赛并包揽了前四名。
2010年八年级上学期数学竞赛试题
C 1A 1B 2CB 1BAab120︒X 48︒30︒30︒2010——2011学年第一学期八年级数学竞赛题(考试时间:100分钟)一、选择题(每题4分,共36分)1.小亮、小英、大刚在一起照镜子,小亮说:“你们发现了吗?我们衣服上的号码和镜子里的一模一样。
”按照小亮的说法,他们衣服上的号码不可能是( ) A 、808 B 、181 C 、801 D 、101 2.如图,直线a ∥b ,那么x ∠的度数是( )A 、72oB 、78oC 、108oD 、90o第2题3. 如图,△ABC 为等边三角形,且BM=CN ,AM 与BN 相交于点P ,则∠APN ( )A 、等于700B 、等于600C 、等于500D 、大小不确定 4. 等边三角形两条角平分线所夹的锐角的度数是( ) A 、30 B 、45 C 、60 D 、90 5、已知关于x 的方程()x m mx -=+22的解满足0121=--x ,则m 的值是( ) A、10或52 B、10或52-C、-10或52 D、-10或52-6、一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如左图),那么B 点从开始至结束走过的路径长度为 ( ) A 、34π B 、23π C 、4 D 、2 +23π7、如图所示的4个的半径均为1,那么图中的阴影部分的面积为( ) A 、1+πB 、π2C 、 4D 、68、关于x 的方程023)2(=---b a x b a 的解是34=x ,则方程0=+b ax 的解为( ) A 、101=x B 、1011=x C 、101-=x D 、1011-=x9、如图,L 1、L 2、L 3表示三条公路相互交叉,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选的地方有几处( ) A 、1 B 、2 C 、3 D 、4二、填空题(每题4分,共32分)10、某班级共48人,春游时到江心屿划船,每只小船坐3人,租金16元,每只大船坐5人,租金24元,则该班至少要花租金_________元;11、将正偶数按右表排列成5列:根据表中的规律,偶数2004应排在第 行, 第 列;12、如图(1),∆ABC 中,DE 是边AC 的垂直平分线,AC = 6 cm ,∆ABD 的周长为13cm ,则∆ABC 的周长为______cm .13、若等腰三角形腰上的高与底边的夹角为30°,则它的顶角为_________度。
初中数学八年级(上)数学竞赛试题(含答案)
1 2-1A 八年级〔上〕数学竞赛试题一、填空题:〔40分〕1、在ABC Rt ∆中,b a 、为直角边,c 为斜边,若14=+b a ,10=c ,则ABC ∆的面积是;2、计算:=⋅27 311 ;3 313÷⨯=;2 3 2 +-=;3、某位老师在讲实数时,画了一个图〔如图1〕,即以数轴的单位长线段为边作一个正方形,然后以0点为圆心,正方形的对角线长为半径画图,交x 轴于一点A ,作这样的图是用来说明;〔1〕4、在电子游戏中有一种方格拼图游戏,若在游戏过程中,已拼好的图案如图2,又出现了一个方格体正向下运动,为了使所有图案消失,你必须按后才能拼一个完整图案,从而使图案自动消失〔游戏机有此功能〕。
5、如图3,=∠+∠+∠+∠+∠+∠F E D C B A ;6、图4是一住宅小区的长方形花坛图样,阴影部分是草地,空地是四块同样的菱形,则草地与空地的面积之比为;<4> <5> <6>7、如图5,一块白色的正方形木板,边长是cm 18,上面横竖各有两根木条〔阴影部分〕,宽都是cm 2,则白色部分面积是2cm ;8、如图6,一块正方形地板由全等的正方形瓷砖铺成,这地板上的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,则瓷砖的总数是; 二、选择题:〔30分〕9、CD 是ABC Rt ∆斜边AB 上的高,若2=AB ,1:3:=BC AC ,则CD 为〔 〕A 、51B 、52 C 、53 D 、5410、如图,长方形ABCD 中,3=AB ,4=BC ,若将该矩形折叠,使C 点与A 点重合,则折痕EF 的长为〔 〕A 、3.74B 、3.75 C 、3.76 D 、3.77DFD)(A '11、如果a a -=-1 1 ,则a 的取值范围是〔 〕A 、1=aB 、10<<aC 、0≥aD 、10≤≤a 12、若2 2 -+-x x 有意义,则x 的取值为〔 〕A 、2>xB 、2<xC 、2≤xD 、2=x13、如上中图所示,一块边长为cm 10的正方形木板ABCD ,在水平桌面上绕点D 按顺时针方向转到D C B A ''''的位置时,顶点B 从开始到结束所经过的路径为〔 〕A 、cm 20B 、cm 220C 、cm 10πD 、cm 25π14、如上右图所示,设M 是边上任意一点,设CMB ∆的面积为2S ,CDM ∆的面积为S ,AMD ∆的面积为1S ,则有〔 〕A 、21S S S +=B 、21S S S +>C 、21S S S +<D 、不能确定 三、画图题:〔12分〕15、如图,历史上最有名的军师诸葛亮,率精骑兵与司马懿对阵,诸葛亮一挥羽扇,军阵瞬时由左图变为右图,其实只移动了其中的3骑而己,请问如何移动?〔在图形上画出来即可〕16、有一等腰梯形纸片,其上底和腰长都是a ,下底的长是a 2,你能将它剪成形状、大小完全一样的四块吗?若能,请画出图形。
湖州八年级数学竞赛试题
湖州八年级数学竞赛试题一、选择题(每题3分,共30分)1. 如果一个数的平方等于这个数本身,那么这个数是:A. 0B. 1C. -1D. 0或12. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 83. 以下哪个不是二次根式:A. √3B. √(2x)C. √x²D. √x²y4. 一个数列的通项公式为an = 2n - 1,那么第5项的值是:A. 7B. 9C. 11D. 135. 如果一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π6. 一个多项式P(x) = 2x³ - 5x² + 3x - 1,它的首项系数是:A. 2B. -5C. 3D. -17. 以下哪个是完全平方数:A. 16B. 18C. 20D. 228. 如果一个数的立方等于它本身,那么这个数是:A. 0B. 1C. -1D. 0, 1, 或 -19. 一个等差数列的首项是2,公差是3,那么第6项的值是:A. 17B. 20C. 23D. 2610. 以下哪个是二项式定理的展开式:A. (a + b)² = a² + 2ab + b²B. (a - b)³ = a³ - 3a² b + 3ab² - b³C. (a + b)⁴ = a⁴ + 4a³ b + 6a²b² + 4ab³ + b⁴D. 所有选项都是二、填空题(每题4分,共20分)11. 如果一个数的相反数是-5,那么这个数是______。
12. 一个数的绝对值是10,这个数可以是______或______。
13. 一个多项式P(x) = x³ - 6x² + 11x - 6,它的常数项是______。
14. 如果一个圆的直径是10,那么它的周长是______π。
2010年全国 初中数学联赛(含答案)
12010年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1.若a ,b ,c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-=( )A .1B .2C .3D .4【答案】 B【解析】 因为()()10101a b a c ---=,而左边的两个加数都是非负整数,所以一个等于0,另一个等于1,也就是说,a ,b ,c 三个数中有两个相等,另一个和它们相差1.因此,所求的和式中,两项等于1,另一项等于2,结果为2.2.若实数a ,b ,c 满足等式3||6a b =,49||6a b c =,则c 可能取的最大值为( )A .0B .1C .2D .3【答案】 C【解析】 为了使c 尽量大,a 应该尽量大,b 应该尽量小.因为它们都是非负数,3a ,0b =,不难观察到所求答案为2.3.若a ,b 是两个正数,且1110,a b b a--++= 则( )2A .103a b <+≤B .113a b <+≤C .413a b <+≤D .423a b <+≤. 【答案】 C【解析】 去分母之后得到()()110a a b b ab -+-+=,即220a ab b a b ++--=.给定a 和b 是两个正数,那么如果让它们中的一个等于0,则另一个等于0或14.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( )A .13-B .9-C .6D .0【答案】 A【解析】 这需要使得前者是后者的因式,用综合除法可得,余式为()()33310a b x a c +++++,它应该等于0.所以两个系数都为0,特别地,()()333210a b a c ++-++,所以所求答案为13-.5.在ABC △中,已知60CAB ∠=︒,D ,E 分别是边AB ,AC 上的点,且60AED ∠=︒,ED DB CE +=,2CDB CDE ∠=∠,则DCB ∠= ( )A .15oB .20oC .25oD .30o【答案】 B【解析】 观察可得ADE △为正三角形,6.对于自然数n ,将其各位数字之和记为n a ,如2009200911a =+++=,201020103a =+++=,则312320092010a a a a a +++++=L ( )A .28062B .28065C .28067D .28068.【答案】 D【解析】 根据弃九法,它和1到2010的和被9除的余数相等.每连续9个自然数之和被9整除,2010被9除余3,1236++=,所以只有D 符合.二、填空题:(本题满分28分,每小题7分)1.已知实数x ,y 满足方程组33191x y x y ⎧+=⎨+=⎩,,则22x y += .【答案】 13【解析】 第一式除以第二式可得2219x xy y -+=,第二式平方可得2221x xy y ++=,那么所求答案就是()1921313⨯+÷=.2.二次函数2y x bx c =++的图象与x 轴正方向交于A ,B 两点,与y 轴正方向交于点C .已知3AB ,30CAO ∠=︒,则c = .【答案】 19【解析】 观察可知A 必须在B 左边,否则B 会跑到x 轴负半轴上.设A 的横坐标为a ,则C 的纵坐标3,23AC =,2AB a =.因此,考虑两根之积,33a a ⨯,3a =319=. 3.在等腰直角ABC △中,5AB BC ==,P 是ABC △内一点,且5PA ,5PC =,则PB = .4【答案】 10【解析】 设()00B ,,()50A ,,()05C ,,根据熟知的勾三股四弦五,可观察到()31P ,,(另一个点在三角形外,不符合),所以10PB =.4.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放 个球.【答案】 15【解析】 也就是说,编号之差为6或11的两个球颜色相同.下面从1号球开始,依次写出颜色相同的球的编号:11261711516104159314821371→→→→→→→→→→→→→→→→→也就是说,如果有17个球,则全部同色;如果超过17个,则任何连续17个同色,也不行.如果有16个,则上面的圈去掉17号球仍然是一条链,仍然不行;如果有15个,则上面的圈去掉17号球和16号球后断成两部分,所以可以.第二试 (A )一.(本题满分20分)设整数()a b c a b c ≥≥,,为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长5不超过30的三角形的个数.【解析】 由已知等式可得222()()()26a b b c a c -+-+-= ①令a b m -=,b c n -=,则a c m n -=+,其中m ,n 均为自然数.于是,等式①变为222()26m n m n +++=,即2213m n mn ++= ②由于m ,n 均为自然数,判断易知,使得等式②成立的m ,n 只有两组:31m n =⎧⎨=⎩,,和13.m n =⎧⎨=⎩,⑴ 当3m =,1n =时,1b c =+,34a b c =+=+.又a ,b ,c 为三角形的三边长,所以b c a +>,即(1)4c c c ++>+,解得3c >.又因为三角形的周长不超过30,即(4)(1)30a b c c c c ++=++++≤,解得253c ≤. 因此2533c <≤, 所以c 可以取值4,5,6,7,8,对应可得到5个符合条件的三角形.6⑵ 当1m =,3n =时,3b c =+,14a b c =+=+.又a ,b ,c 为三角形的三边长,所以b c a +>,即(3)4c c c ++>+,解得1c >.又因为三角形的周长不超过30,即(4)(3)30a b c c c c ++=++++≤,解得233c ≤. 因此2313c <≤, 所以c 可以取值2,3,4,5,6,7,对应可得到6个符合条件的三角形.综合可知:符合条件且周长不超过30的三角形的个数为5611+=.二.(本题满分25分)已知等腰三角形ABC △中,AB AC =,C ∠的平分线与AB 边交于点P ,M 为ABC △的内切圆I e 与BC 边的切点,作MD AC ∥,交I e 于点D .证明:PD 是I e 的切线.【解析】 过点P 作I e 的切线PQ (切点为Q )并延长,交BC 于点N .因为CP 为ACB ∠的平分线,所以ACP BCP ∠=∠.又因为PA 、PQ 均为I e 的切线,所以APC NPC ∠=∠.IP QNB7又CP 公共,所以ACP NCP △≌△,所以PAC PNC ∠=∠.由NM QN =,BA BC =,所以QNM BAC △≌△,故NMQ ACB ∠=∠,所以MQ AC ∥.又因为MD AC ∥,所以MD 和MQ 为同一条直线.又点Q 、D 均在I e 上,所以点Q 和点D 重合,故PD 是I e 的切线.三.(本题满分25分)已知二次函数2y x bx c =+-的图象经过两点()1P a ,,()210Q a ,. ⑴ 如果a ,b ,c 都是整数,且8c b a <<,求a ,b ,c 的值.⑵ 设二次函数2y x bx c =+-的图象与x 轴的交点为A 、B ,与y 轴的交点为C .如果关于x 的方程20x bx c +-=的两个根都是整数,求ABC △的面积.【解析】 点()1P a ,、()210Q a ,在二次函数2y x bx c =+-的图象上,故1b c a +-=,4210a c a +-=,解得93b a =-,82c a =-.⑴ 由8c b a <<知8293938a a a a -<-⎧⎨-<⎩,,解得13a <<.又a 为整数,所以2a =,9315b a =-=,8214c a =-=.⑵ 设m ,n 是方程的两个整数根,且m n ≤,旗开得胜8由根与系数的关系可得39m n b a +=-=-,28mn c a =-=-,消去a ,得98()6mn m n -+=-,两边同时乘以9,得8172()54mn m n -+=-,分解因式,得(98)(98)10m n --=.所以9819810m n -=⎧⎨-=⎩,,或982985m n -=⎧⎨-=⎩,,或9810981m n -=-⎧⎨-=-⎩,,或985982m n -=-⎧⎨-=-⎩,,解得12m n =⎧⎨=⎩,,或109139m n ⎧=⎪⎪⎨⎪=⎪⎩,,或2979m n ⎧=-⎪⎪⎨⎪=⎪⎩,,或19323m n ⎧=⎪⎪⎨⎪=⎪⎩,,又m ,n 是整数,所以后面三组解舍去,故1m =,2n =.因此,()3b m n =-+=-,2c mn =-=-,二次函数的解析式为232y x x =-+.易求得点A 、B 的坐标为()10,和()20,,点C 的坐标为()02,, 所以ABC △的面积为1(21)212⨯-⨯=.第二试 (B )旗开得胜9一.(本题满分20分)设整数a ,b ,c 为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数(全等的三角形只计算1次).【解析】 不妨设a b c ≥≥,由已知等式可得222()()()26a b b c a c -+-+-= ①令a b m -=,b c n -=,则a c m n -=+,其中m ,n 均为自然数.于是,等式①变为222()26m n m n +++=,即2213m n mn ++= ②由于m ,n 均为自然数,判断易知,使得等式②成立的m ,n 只有两组:31m n =⎧⎨=⎩,,和13.m n =⎧⎨=⎩,⑴ 当3m =,1n =时,1b c =+,34a b c =+=+.又a ,b ,c 为三角形的三边长,所以b c a +>,即(1)4c c c ++>+,解得3c >.又因为三角形的周长不超过30,即(4)(1)30a b c c c c ++=++++≤,解得253c ≤. 因此2533c <≤,旗开得胜10所以c 可以取值4,5,6,7,8,对应可得到5个符合条件的三角形.⑵ 当1m =,3n =时,3b c =+,14a b c =+=+.又a ,b ,c 为三角形的三边长,所以b c a +>,即(3)4c c c ++>+,解得1c >.又因为三角形的周长不超过30,即(4)(3)30a b c c c c ++=++++≤,解得233c ≤. 因此2313c <≤, 所以c 可以取值2,3,4,5,6,7,对应可得到6个符合条件的三角形.综合可知:符合条件且周长不超过30的三角形的个数为5611+=.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )11一.(本题满分20分)题目和解答与(B )卷第一题相同.二.(本题满分25分)题目和解答与(A )卷第二题相同.三.(本题满分25分)设p 是大于2的质数,k 为正整数.若函数2(1)4y x px k p =+++-的图象与x 轴的两个交点的横坐标至少有一个为整数,求k 的值.【解析】 由题意知,方程2(1)40x px k p +++-=的两根1x ,2x 中至少有一个为整数.由根与系数的关系可得12x x p +=-,12(1)4x x k p =+-,从而有()()()()12121222241x x x x x x k p ++=+++=- ①⑴ 若1k =,则方程为22(2)0x px p ++-=,它有两个整数根2-和2p -.⑵ 若1k >,则10k ->.因为12x x p +=-为整数,如果1x ,2x 中至少有一个为整数,则1x ,2x 都是整数.又因为p 为质数,由①式知1|2p x +或2|2p x +.不妨设1|2p x +,则可设12x mp +=(其中m 为非零整数),则由①式可得212k x m-+=,12故()()12122k x x mp m -+++=+,即1214k x x mp m-++=+. 又12x x p +=-,所以14k p mp m--+=+, 即1(1)4k m p m-++= ② 如果m 为正整数,则(1)(11)36m p ++⨯=≥,10k m->, 从而1(1)6k m p m-++>,与②式矛盾. 如果m 为负整数,则(1)0m p +<,10k m-<, 从而1(1)0k m p m-++<,与②式矛盾. 因此,1k >时,方程2(1)40x px k p +++-=不可能有整数根.综上所述,1k =.旗开得胜13。
2010年全国初中数学联赛试题和答案
2010年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分)1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-= ( )A .1.B .2.C .3.D .4.2.若实数,,a b c 满足等式3||6b =,9||6b c =,则c 可能取的最大值为 ()A .0.B .1.C .2.D .3.3.若b a ,是两个正数,且,0111=+-+-ab b a 则 ( ) A .103a b <+≤. B .113a b <+≤. C .413a b <+≤. D .423a b <+≤. 4.若方程2310x x --=的两根也是方程420x ax bxc +++=的根,则2a b c +-的值为 ()A .-13.B .-9.C .6.D . 0.5.在△ABC 中,已知︒=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB ( )A .15°.B .20°.C .25°.D .30°.6.对于自然数n ,将其各位数字之和记为n a ,如2009200911a =+++=,201020103a =+++=,则12320092010a a a a a +++++= ( )A .28062.B .28065.C .28067.D .28068.二、填空题:(本题满分28分,每小题7分)1.已知实数,x y 满足方程组3319,1,x y x y ⎧+=⎨+=⎩则22x y += .2.二次函数c bx x y ++=2的图象与x 轴正方向交于A ,B 两点,与y 轴正方向交于点C .已知AC AB 3=,︒=∠30CAO ,则c = .3.在等腰直角△ABC 中,AB =BC =5,P 是△ABC 内一点,且PA PC =5,则PB =_____.4.将若干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放_______个球.第二试 (A )一.(本题满分20分)设整数,,a b c (a b c ≥≥)为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数.二.(本题满分25分)已知等腰三角形△ABC 中,AB =AC ,∠C 的平分线与AB 边交于点P ,M 为△ABC 的内切圆⊙I 与BC 边的切点,作MD//AC ,交⊙I 于点D.证明:PD 是⊙I 的切线.三.(本题满分25分)已知二次函数2y x bx c =+-的图象经过两点P (1,)a ,Q (2,10)a .(1)如果,,a b c 都是整数,且8c b a <<,求,,a b c 的值.(2)设二次函数2y x bx c =+-的图象与x 轴的交点为A 、B ,与y 轴的交点为 C.如果关于x 的方程20x bx c +-=的两个根都是整数,求△ABC 的面积..第二试 (B )一.(本题满分20分)设整数,,a b c 为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数(全等的三角形只计算1次).第二试 (C )三.(本题满分25分)设p 是大于2的质数,k 为正整数.若函数4)1(2-+++=p k px x y 的图象与x轴的两个交点的横坐标至少有一个为整数,求k 的值.。
初二数学竞赛题(含答案)
初中数学竞赛初二第1试试题一、选择题(每小题7分共56分)1、某商店售出两只不同的计算器,每只均以90元成交,其中一只盈利20%,另一只亏本20%,则在这次买卖中,该店的盈亏情况是( )A 、不盈不亏B 、盈利2.5元C 、亏本7.5元D 、亏本15元2、设20012000,20001999,19991998===c b a ,则下列不等关系中正确的是( )A 、c b a <<B 、b c a <<C 、a c b <<D 、a b c <<3、已知,511b a b a +=+则b a a b +的值是( ) A 、5 B 、7 C 、3D 、314、已知x B x A x x x +-=--1322,其中A 、B 为常数,那么A +B 的值为( )A 、-2B 、2C 、-4D 、45、已知△ABC 的三个内角为A 、B 、C ,令B A A C C B +=+=+=γβα,,则γβα,,中锐角的个数至多为( )A 、1B 、2C 、3D 、06、下列说法:(1)奇正整数总可表示成为14+n 或34+n 的形式,其中n 是正整数;(2)任意一个正整数总可表示为n 3或13+n 或23+n 的形式,其中;(3)一个奇正整数的平方总可以表示为18+n 的形式,其中n 是正整数;(4)任意一个完全平方数总可以表示为n 3或13+n 的形式A、0B、2C、3D、47、本题中有两小题,请你选一题作答:(1)在199910011000 这1000个二次根式中,与2000,,1002是同类二次根式的个数共有……………………( )A、3B、4C、5D、6(2)已知三角形的每条边长是整数,且小于等于4,这样的互不全等的三角形有( )A、10个B、12个C、13个D、14个8、钟面上有十二个数1,2,3,…,12。
将其中某些数的前面添上一个负号,使钟面上所有数之代数和等于零,则至少要添n个负号,这个数n是( )A、4B、5C、6D、7二、填空题(每小题7分共84分)9、如图,XK,ZF是△XYZ的高且交于一点H,∠XHF=40°,那么∠XYZ=°。
2010年浙江省湖州市初二年级数学竞赛试卷
CD AB 2010年浙江省湖州市初二年级数学竞赛试卷答题时注意: 1.用圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.可以用计算器一、选择题(共8小题,每小题5分,满分40分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分)1.计算022=-+-x x ,则x 的取值范围是 ( ) A .x >2 B .x <2 C .x ≥2 D .x ≤22.一项工程,甲队独做需用m 天,乙队独做需用n 天,若甲,乙两队合作完成这项工程,则所需天数为 ( )A.n m 11+B.mn n m +C.nm mn + D.n m + 3. 线段a x y +-=21(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积为 ( )A .6B .8C .9D .104.已知实数a 、b 满足:1=ab 且b a M +++=1111,bba a N +++=11,则M 、N 的关系为( ) (A )N M > (B )N M < (C )N M = (D )M 、N 的大小不能确定 5. 如图在四边形ABCD 中,∠DAB=∠BCD=90°,AB=AD ,若这个四边形的面积是10,则BC+CD 等于A .54B .102C .64D .286. 正三角形ABC 所在平面内有一点P ,使得⊿PAB 、⊿PBC 、⊿PCA 都是等腰三角形,则这样的P 点有( )(A )1个 (B )4个 (C )7个 (D )10个( )7.已知))((2233b ab a b a b a +±=± ,如果一列数12,,a a 满足对任意的正整数n 都有312n a a a n ++=,则23100111111a a a ++---的值为()A.33100B.11100 C.1199D.331018.如图,表示阴影区域的不等式组为 ( ) 2x +.y ≥5, 2x + y ≤5, 2x +.y ≥5, 2x + y ≤5, (A ) 3x + 4y ≤9, (B ) 3x + 4y ≥9, (C ) 3x + 4y ≤9, (D ) 3x + 4y ≥9, y ≥0 y ≥0 x ≥0 x ≥0二、填空题(共6小题,每小题5分,满分30分) 9.方程5665-=+x x 的解是 ;10.观察下面一列分式:2345124816,,,,,...,x x x x x---根据规律,它的第n 项是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
D A
B 2010年浙江省湖州市初二年级数学竞赛试卷
(2010年5月9日 上午9:00—11:00)
答题时注意: 1.用圆珠笔或钢笔作答.
2.解答书写时不要超过装订线. 3.可以用计算器
一、选择题(共8小题,每小题5分,满分40分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分)
1.计算022=-+-x x ,则x 的取值范围是 ( ) A .x >2 B .x <2 C .x ≥2 D .x ≤2
2.一项工程,甲队独做需用m 天,乙队独做需用n 天,若甲,乙两队合作完成这项工程,
则所需天数为 ( )
A.n m 11+
B.mn n m +
C.n
m mn + D.n m + 3. 线段
a x y +-=2
1(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积为
( )
A .6
B .8
C .9
D .10
4.已知实数a 、b 满足:1=ab 且b a M +++=1111,b
b a a N +++=11,则M 、N 的关系为( ) (A )N M > (B )N M < (C )N M = (D )M 、N 的大小不能确定 5. 如图在四边形ABCD 中,∠DAB=∠BCD=90°,AB=AD ,若这个四边形
的面积是10,则BC+CD 等于
A .54
B .102
C .64
D .28
6. 正三角形ABC 所在平面内有一点P ,使得⊿PAB 、⊿PBC 、⊿PCA 都是等腰三角形,则这样的P 点有( )
(A )1个
(B )4个 (C )7个 (D )10个
7.已知))((2
2
3
3
b ab a b a b a +±=± ,如果一列数12,,a a 满足对任意的正整数n 都有3
12n a a a n ++= ,则
23100111
111
a a a ++--- 的值为 ( )
A.33
100
B.
11100
C.
1199
D.
33101
( )
8.如图,表示阴影区域的不等式组为 ( )
x
+.y ≥5,
2x + y ≤5, 2x +.y ≥5, 2x +
y ≤5, (A ) 3x + 4y ≤9, (B ) 3x + 4y ≥9, (C ) 3x + 4y ≤9, (D ) 3x + 4y ≥9, ≥0 y ≥0 x ≥0 x ≥0
二、填空题(共6小题,每小题5分,满分30分)9.方程5665-=+x x 的解是 ;
10.观察下面一列分式:2345124816,,,,,...,x x x x x
---根据规律,它的第n 项是 。
11. 若n m -=
-625,则m = ,n = .
12.若||2a ==,且0ab <,则a b -= .
13. 如图,若长方形APHM 、BNHP 、CQHN 的面积分别是7、4、6,则△PDN 的面积是 .
14.一只青蛙从点A (-6,3)出发跳到点B (-2,5),再从点B 跳到y 轴上的点C ,继续从点C 跳到x 轴上的点D ,最后由点D 回到点A(青蛙每次所跳的距离不一定相等)。
当青蛙四步跳完的路程最短时,直线CD 的解析式是 .
三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分)
15.如图,平面内有公共端点的六条射线OA ,
OB ,OC ,OD ,OE ,OF ,
从射线OA 开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,
7,….
(1)“17”在射线 上.
(2)请任意写出三条射线上数字的排列规律. (3)“2010”在哪条射线上?
C D Q
N
图12
C
16.某仓储系统有20条输入传送带,20条输出传送带.某日, 控制室的电脑显示,每条输入传送带每小时进库的货物流量 如图(1),每条输出传送带每小时出库的货物流量如图 (2),
而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(3),则在0时至2时有多少条输入传送带和输出传送带在工作? 在4时至5时有多少条输入传送带和输出传送带在工作?
17.(1)已知:如图,在四边形ABCD 中,BC ⊥CD ,∠ACD=∠ADC 。
求证:
(2) 已知:如图,在△ABC 中,AB 上的高为CD 。
试判断(AC+BC)2与BA 2+4CD 2
之间的大小关系,并证明你的结论。
第17题(1)
第17题(2)
A
B
C D
B
C
18.某市对电话费作了调整,原市话费为每3分钟0.2元
(不足3分钟按3分钟计算).调整后,前3分钟为0.2元,
以后每分钟加收0.1元(不足1分钟按1分钟计算).
设通话时间x分钟时,调整前的话费为y1元,调整后的话费为y2元.
(1)当x=4,4.3,5.8时,计算对应的话费值y1、y2各为多少,并指出x在什么范围取值时,y1≤y2;
(2)当x=m(m>5,m为常数)时,设计一种通话方案,使所需话费最小.
2010年初二数学数学竞赛试题参考答案及评分意见
9. 11=x 10.n
n n
x 1
2)1(-- 11. 3,2 12.-7 13. 8.5 14. 3+=x y
三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分) 15.(12分) 解:(1)“17”在射线OE 上. (3分) (2)(6分)
射线OA 上数字的排列规律:65n - 射线OB 上数字的排列规律:64n - 射线OC 上数字的排列规律:63n - 射线OD 上数字的排列规律:62n - 射线OE 上数字的排列规律:61n - 射线OF 上数字的排列规律:6n
(3)在六条射线上的数字规律中,只有20106=n 有整数解.解为335n = “2010”在射线OF 上. (3分) 16.(12分)
解:由图(1),得输入传送带每小时进库的货物流量为13吨. (2分) 由图(2),得输出传送带每小时出库的货物流量为15吨. (2分) 设在0时至2时,有a 条输入传送带和b 条输出传送带在工作 由图(3),知:21513=-b a , 即22)(13+=-b b a (2分) 因为a ,b 都是正整数, 所以a =14,b =12 (2分)
同理, 在4时至5时,有121315=-b a , a a b 212)(15-=- (2分)
得: a =b =6 (2分)
综上所述: 在0时至2时内有14条输入传送带和12条输出传送带在工作;在4时至5时内有6条输入传送带和6条输出传送带在工作. 17.(12分)
(1)证明:连结BD 。
∵∠ACD=∠ADC , ∴ AC=AD ∵BC ⊥CD , ∴BD=22CD BC +
在△ABD 中,AB+AD>BD ∴AB+AC>22CD BC + (4分)
(2)解:大小关系是()2
22
4AC BC AB CD +≥+.
如图,过B 作EB ⊥AB ,在BE 上截取BE =2CD. (2分) 连接CE,过C 作CF ⊥BE,垂足为F.
则:CD=BF,又BE=2CD , ∴ BF=EF
∴ △BCE 上等腰三角形
∴BC=CE (4分)
由(1)得: AC+CB>22BE AB +
∴()222
4CD AB BC AC +≥+(等号只当AD=DB 时成立) (2分)
18.(14分)
解:
(1)当x=4时, y 1=0.4,y 2=0.3 (2分)
当x=4.3时,y 1=0.4,y 2=0.4 (2分) 当x=5.8时,y 1=0.4,y 2=0.5 (2分) 当0<x ≤3或x >4时,y 1≤y 2 (2分)
(2)参考方案:
设n ≥2且n 是正整数,通话m 分钟所需话费为y 元, ①当3n-1<m ≤3n 时,使所需话费最小的通话方案是:
B
D A
C
E
F
分n次拨打,其中(n-1)次每次通话3分钟,一次通话(m-3n+3)分钟, (2分) 最小话费是y=0.2n
②当3n<m≤3n+1时,使所需话费最小的通话方案是:
分n次拨打,其中(n-1)次每次通话3分钟,一次通话(m-3n+3)分钟, (2分) 最小话费是y=0.2(n-1)+0.3=0.2n+0.1
③当3n+1<m≤3n+2时,使所需话费最小的通话方案是:分n次拨打,
其中(n-2)次每次通话3分钟,一次通话4分钟,一次通话(m-3n+2)分钟, (2分)
最小话费是y=0.2(n-2)+0.6=0.2n+0.2
(注:其它符合要求的方案相应给分)。