1导数的概念
导数1:导数的概念(1)
6t 24
新课导学
例2.已知函数f(x)=-x2+x,试求函数在x=-1到
x=-1+Δ x的平均变化率。 【答案】: 3-Δx
新课导学
2.导数的概念
前面介绍的平均膨胀率、平均速度、平均
变化率都只能反映函数在某一区间段内的平均
变化情况,
并不能刻划在某个时刻的瞬时变化趋势.
但如果区间段|△x|很小,这一平均变化率
数的函数值的改变量:△y=f(x2)-f(x1)与自变量的改 变量:△x=x2–x1的比值 y f ( x 2 ) f ( x1 ) 称为函数
x x 2 x1
f(x)从x1到x2的平均变化率.
函数的平均变化率就是增量比:
y f ( x 2 ) f ( x1 ) x x 2 x1
令x 0 x x
lim
x x0
f ( x) f ( x0 ) (等价形式)。 x x0
x 0
3.导函数的定义: f ( x) lim
f ( x x ) f ( x ) x
4.求导步骤:一差,二比,三极限
0.49 0.13 0.09 0.07
0.985 0.256 0.180 0.143
随着充气量逐渐变大,它在各段的平均膨胀率逐渐变小
新课导学
事实上:
气球的的半径r是充气量V的函数: r (V )
3
3V 4
当充气量从V1增加到V2时,气球的平均膨胀率是:
r (V2 ) r (V1 ) V2 V1
速度.
据以上思路,我们定义:
新课导学
设函数y=f(x)在x0及其附近有定义,在[x0,x0+△x]
y y 时的平均变化率 ,当 x 0 时,若 趋于一个 x x 定值a,则称a为f(x)在x0处的平均变化率的极限.
1导数的概念及其几何意义-中档难度-讲义 - 副本
导数的概念及其几何意义知识讲解一、导数的概念1.函数的平均变化率:定义:一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ∆=-, 10y y y ∆=-10()()f x f x =-00()()f x x f x =+∆-,则当0x ∆≠时,商00()()f x x f x yx x+∆-∆=∆∆称作函数()y f x =在区间00[,]x x x +∆(或00[,]x x x +∆)的平均变化率. 注:这里x ∆,y ∆可为正值,也可为负值.但0x ∆≠,y ∆可以为0.2.函数的瞬时变化率、函数的导数:瞬时变化率:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ∆时,函数值相应的改变00()()y f x x f x ∆=+∆-.如果当x ∆趋近于0时,平均变化率00()()f x x f x y x x +∆-∆=∆∆趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率. 函数的导数:“当x ∆趋近于零时,00()()f x x f x x+∆-∆趋近于常数l ”可以用符号“→”记作:“当0x ∆→时,00()()f x x f x l x +∆-→∆”,或记作“000()()lim x f x x f x l x∆→+∆-=∆”,符号“→”读作“趋近于”.函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作“当0x ∆→时,000()()()f x x f x f x x +∆-'→∆”或“0000()()lim ()x f x x f x f x x∆→+∆-'=∆”.3.可导与导函数:定义:如果()f x 在开区间(,)a b 内每一点都是可导的,则称()f x 在区间(,)a b 可导.这样,对开区间(,)a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(,)a b 内,()f x '构成一个新的函数,我们把这个函数称为函数()y f x =的导函数.记为()f x '或y '(或x y ').注:导函数通常简称为导数.如果不特别指明求某一点的导数,那么求导数指的就是求导函数.二、导数的几何意义1.导数的几何意义:意义:设函数()y f x =的图象如图所示.AB 为过点00(,())A x f x 与00(,())B x x f x x +∆+∆的一条割线.由此割线的斜率是00()()f x x f x y x x +∆-∆=∆∆,可知曲线割线的斜率就是函数的平均变化率.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线过点A 的切线,即000()()lim x f x x f x x∆→+∆-=∆切线AD 的斜率.由导数意义可知,曲线()y f x =过点00(,())x f x 的切线的斜率等于0()f x '.2.求曲线的切线方程方法:若曲线()y f x =在点00(,)P x y 及其附近有意义,给横坐标0x 一个增量x ,相应的纵坐标也有一个增量00()()y f x x f x =+-,对应的点00(,)Q x x y y ++.则PQ 为曲线()y f x =的割线.当0x →时Q P →,如果割线PQ 趋近于一确定的直线,则这条确定的直线即为曲线的切线.当然,此时割线PQ 的斜率yx就趋近于切线的斜率.切线的方程为00()y y k x x -=-.典型例题一.选择题(共2小题)1.(2018•海南三模)已知函数f (x )=﹣x 4+2ax 2+(a ﹣1)x 为偶函数,则f (x )的导函数f′(x )的图象大致为( )A.B.C.D.【解答】解:函数f(x)=﹣x4+2ax2+(a﹣1)x为偶函数,则a﹣1=0,解得a=1,∴f(x)=﹣x4+2x2,∴f′(x)=﹣4x3+4x;设g(x)=f′(x),则g′(x)=﹣12x2+4,令g′(x)=0,解得x=±,∴当0<x<时,g′(x)<0,当x>时,g′(x)<0;∴g(x)在x=时取得极大值为g()=﹣4×+4×=<2,∴导函数f′(x)的图象大致为选项A所示.故选:A.2.(2018•邯郸二模)若过点P(﹣1,m)可以作三条直线与曲线C:y=xe x相切,则m的取值范围是()A.(﹣,+∞)B.(,)C.(0,+∞)D.(,)【解答】解:设切点为(x0,y0),过点P的切线程为,代入点P坐标化简为m=,即这个方程有三个不等根即可,令,求导得到f′(x)=(﹣x﹣1)(x+2)e x,函数在(﹣∞,﹣2)上单调递减,在(﹣2,﹣1)上单调递增,在(﹣1,+∞)上单调递减,故得到f(﹣2)<m<f(﹣1),即,故选:D.二.填空题(共10小题)3.(2018•天心区校级一模)已知f(x)=|x﹣2018|+|x﹣2017|+…+|x﹣1|+|x+1|+…+|x+2017|+|x+2018|(x∈R),且满足f(a2﹣3a+2)=f(a﹣1)的整数a共有n个,(x≥0)的最大值为m,且m+n=3,则实数k的取值范围为[,+∞).【解答】解:∵函数f(x)=|x﹣2018|+|x﹣2017|+…+|x﹣1|+|x+1|+…+|x+2017|+|x+2018|,∴f(﹣x)=|﹣x﹣2018|+|﹣x﹣2017|+…+|﹣x﹣1|+|﹣x+1|+…+|﹣x+2017|+|﹣x+2018|=|x﹣2018|+|x﹣2017|+…+|x﹣1|+|x+1|+…+|x+2017|+|x+2018|=f (x),即函数f(x)是偶函数;若f(a2﹣3a+2)=f(a﹣1),则a2﹣3a+2=a﹣1①,或a2﹣3a+2=﹣(a﹣1)②;由①得a2﹣3a+2=(a﹣1)(a﹣2)=a﹣1,即(a﹣1)(a﹣3)=0,解得a=1或a=3;由②得a2﹣3a+2=(a﹣1)(a﹣2)=﹣(a﹣1),即(a﹣1)(a﹣1)=0,解得a=1;综上a=1或a=3;又f(0)=f(1)=f(﹣1)∴当a=2时,也满足要求,∴a的值有3个,即n=3;又m+n=3,∴m=0;∴g(x)=﹣kx=﹣kx的最大值为m=0,可得≤kx(*)恒成立,其中x≥0,h(x)=设直线y=kx与曲线y=h(x)=相切于点(m,n),∵h′(x)=,∴k=h′(m)=,n=km,n=,解得cosm=1,∴k=由于≤kx(*)恒成立,其中x≥0,∴k≥故答案为:[,+∞)4.(2017秋•海陵区校级期中)已知点P在曲线y=sinx上,α为曲线在点P处的切线的倾斜角,则α的取值范围是[0,]∪[,π).【解答】解:y′=cosx∴tana=cosx∵﹣1≤cosx≤1即﹣1≤tanα≤1∵0≤α≤π∴0≤α≤或≤α<π故答案为:[0,]∪[,π).5.(2014春•三亚校级期中)点P在曲线y=x3﹣x+2上移动,设曲线在点P处切线的倾斜角是α,则α的取值范围是,,.【解答】解:∵y=x3﹣x+2,∴y′=f′(x)=3x2﹣1≥﹣1,则tanα≥﹣1,解得α∈,,,故答案为:,,6.(2014•淮阴区校级模拟)已知f(x)=x3﹣3x,过A(1,m)可作曲线y=f(x)的三条切线,则m的取值范围是(﹣3,﹣2).【解答】解:已知点(1,m)在直线x=1上;由f'(x)=3x2﹣3=0得两个极值点x=±1;由f''(x)=6x=0;得一个拐点x=0;在(﹣∞,0)f(x)上凸,在(0,+∞)f(x)下凸;切线只能在凸性曲线段的外侧取得,在拐点x=0处有一条上凸和下凸部分的公共切线L其斜率k=f'(0)=﹣3,方程为:y=﹣3x;L与直线x=1的交点为(1,﹣3)设过点(1,m)的直线为l当m>﹣2时,l与函数f(x)上凸部分相切且有两条切线,l与下凸部分只能相交;当m<﹣3时,l与f(x)下凸部分相切且有两条切线,l与上凸部分只能相交;当﹣3<m<﹣2时,l与f(x)下凸部分相切且有两条切线,l与上凸部分也相切但只有一条,共3条;其中,当m=﹣3时下凸部分的切线之一与上凸部分的切线重合,共有2条所以m的取值范围是﹣3<m<﹣2故答案为:(﹣3,﹣2)7.(2016春•全州县校级期中)正弦曲线y=sinx上一点P,正弦曲线的以点P为切点的切线为直线l,则直线l的倾斜角的范围是[0,]∪[,π).【解答】解:根据题意得f′(x)=cosx,∵﹣1≤cosx≤1,则曲线y=f(x)上切点处的切线的斜率﹣1≤k≤1,又∵k=tanα,结合正切函数的图象由图可得α∈[0,]∪[,π),故答案为:[0,]∪[,π).8.(2015春•湛江校级期中)已知f(x)=log a x(a>1)的导函数是f′(x),记A=f′(a),B=,C=f′(a+1),则由导数的几何意义和斜率公式可得A,B,C的大小关系是A>B>C.【解答】解:记M(a,f(a)),N(a+1,f(a+1)),则由于,表示直线MN的斜率;A=f'(a)表示函数f(x)=log a x在点M处的切线斜率;C=f'(a+1)表示函数f(x)=log a x在点N处的切线斜率.所以A>B>C.故答案为:A>B>C.9.(2016春•邯郸期中)已知f′(2)=2,则=﹣1.【解答】解:∵则==﹣f′(2)=﹣1,故答案为:﹣1.10.(2014秋•巫溪县校级月考)若函数f(x)=x2+2x+a(a∈R,x<0)图象上两点A(x1,f(x1)),B(x2,f(x2))(x1<x2)处的切线相互垂直,则x2﹣x1的最小值为1.【解答】解:根据导数的几何意义,得:f′(x1)f′(x2)=﹣1,即(2x1+2)(2x2+2)=﹣1(x1<x2<0),所以(2x1+2)<0,(2x2+2)>0,且[﹣(2x1+2)](2x2+2)=1,因此x2﹣x1=[﹣(2x1+2)+(2x2+2)]≥=1,当且仅当﹣(2x1+2)=(2x2+2)=1,即,时等号成立;所以x2﹣x1的最小值为1.故答案为:1.11.(2014秋•肥东县校级月考)若函数f(x)满足:“对于区间(1,2)上的任意实数x1,x2(x1≠x2),|f(x2)﹣f(x1)|<|x2﹣x1|恒成立”,则称f(x)为完美函数.给出以下四个函数①f(x)=②f(x)=|x|③f(x)=④f(x)=x2其中是完美函数的序号是①.【解答】解:在区间(1,2)上的任意实数x1,x2(x1≠x2),分别验证下列4个函数.对于①:f(x)=,|f(x2)﹣f(x1)|=|﹣|=||<|x2﹣x1|(因为x1,x2在区间(1,2)上,故x1x2大于1)故成立.对于②:f(x)=|x|,|f(x2)﹣f(x1)|=||x2|﹣|x1||=|x2﹣x1|(因为故x1和x2大于0)故对于等于号不满足,故不成立.对于③:f(x)=()x,|f(x2)﹣f(x1)|=|()x2﹣()x1|<|x2﹣x1|,故不成立.对于④:f(x)=x2,|f(x2)﹣f(x1)|=|x22﹣x12|=(x2+x1)|x2﹣x1|>|x2﹣x1|,故不成立.故答案为:①.12.(2013•房山区二模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心.若,则该函数的对称中心为,,计算=2012.【解答】解:∵,则f′(x)=x2﹣x+,f″(x)=2x ﹣1,令f″(x)=2x﹣1=0,求得x=,故函数y=f(x)的“拐点”为(,1).由于函数的对称中心为(,1),∴f(x)+f(1﹣x)=2,∴=2×1006=2012,故答案为(,1),2012.三.解答题(共4小题)13.(2018春•小店区校级月考)已知函数f(x)=x﹣1+.(Ⅰ)若函数f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值.【解答】解:(Ⅰ)由f(x)=x﹣1+,得f′(x)=1﹣由函数f(x)在点(1,f(1))处的切线平行于x轴,得f′(1)=1﹣=0,解得a=e(Ⅱ)f′(x)=1﹣①当a≤0时,f′(x)>0,f(x)在R上为增函数,f(x)无极值②当a>0时,令f′(x)=0,解得x=lna,∴x∈(﹣∞,lna)时,f′(x)>0,x∈(lna,+∞)时,f′(x)<0,∴函数f(x)在(﹣∞,lna)上单调递增;在(lna,+∞)上单调递减.∴f(x)在x=lna处取得极da值,且极da值为f(lna)=lna,无极小值综上,当a≤0时,函数f(x)无极值;当a>0时,f(x)在x=lna处取得极大值lna,无极小值.14.(2017秋•吕梁期中)吕梁市在创建全国旅游城市的活动中,对一块以O为圆心,R(R为常数,单位:米)为半径的半圆形荒地进行治理改造,其中弓形BCD区域(阴影部分)种植草坪,△OBD区域用于儿童乐园出租,其余区域用于种植观赏植物.已知种植草坪和观赏植物的成本分别是每平方米5元和55元,儿童乐园出租的利润是每平方米95元.(1)设∠BOD=θ(单位:弧度),用θ表示弓形BCD的面积S弓=f(θ);(2)如果该市规划办邀请你规划这块土地,如何设计∠BOD的大小才能使总利润最大?并求出该最大值.【解答】解:(1)S扇=R2θ,S△OBD=R2sinθ,S弓=f(θ)=R2(θ﹣sinθ),θ∈(0,π)(2)设总利润为y元,儿童乐园利润为y1元,种植草坪成本为y2元,种植观赏植物成本为y3元;则y1=R2sinθ•95,y2=R2(θ﹣sinθ)•5,y3=R2(π﹣θ)•55,∴y=y1﹣y2﹣y3=R2(100sinθ+50θ﹣55π),设g(θ)=100sinθ+50θ﹣55π,θ∈(0,π).∴g′(θ)=100cosθ+50∴g′(θ)<0,cosθ>﹣,g(θ)在θ∈(0,)上为减函数;g′(θ)>0,cosθ<﹣,g(θ)在θ∈(,π)上为增函数;当θ=时,g(θ)取到最大值,此时总利润最大,此时总利润最大:y=R2(100sinθ+50θ﹣55π)=R2(50﹣π).答:所以当园林公司把扇形的圆心角设计成时,总利润取最大值R2(50﹣π)15.(2016春•广安校级月考)水以20米3/分的速度流入一圆锥形容器,设容器深30米,上底直径12米,试求当水深10米时,水面上升的速度.【解答】解:设容器中水的体积在t分钟时为V,水深为h则V=20t又V=πr2h由图知∴r=∴V=π•()2•h3=h3∴20t=h3,∴h=于是h′=.当h=10时,t=π,此时h′=.∴当h=10米时,水面上升速度为米/分.16.(2016春•泸州期末)已知函数f(x)=x3﹣2x.(1)若将函数f(x)的图象向下平移个单位长度得函数h(x)的图象,求函数h(x)的图象在x=1处的切线方程;(2)若函数g(x)=f(x)﹣x2﹣x+m在[﹣2,4]上有零点,求实数m的取值范围.【解答】解:(1)h(x)=f(x)﹣=x3﹣2x﹣,∴h′(x)=x2﹣2,∴切线的斜率k=h′(1)=﹣1,又h(1)=﹣2,∴h(x)的图象在x=1处的切线方程为y+2=﹣(x﹣1),即x+y+1=0.(2)g(x)=x3﹣x2﹣3x+m,∴g′(x)=x2﹣2x﹣3,令g′(x)=0得x2﹣2x﹣3=0,解得x=﹣1或x=3.∴当x<﹣1或x>3时,g′(x)>0,当﹣1<x<3时,g′(x)<0.∴g(x)在[﹣2,﹣1]上为增函数,在[﹣1,3]上为减函数,在[3,4]上为增函数.∵g(﹣2)=﹣+m,g(﹣1)=+m,g(3)=﹣9+m,g(4)=﹣+m,∴g(x)在[﹣2,4]上的最大值为为+m,最小值为﹣9+m,∵函数g(x)在[﹣2,4]上有零点,∴,解得﹣≤m≤9.。
1导数的概念
( f (x0 ) 0)
例5.
解:
切线斜率
k1 y
x1 2
1 x2
x1
4 ,
2
切线方程为
即
所求法线斜率
k2
1 k1
1 4
,
法线方程为
即
四、 单侧导数
1. 左、右导数的定义
定义2 . 设函数 有定义, 若极限
在点 的某个右 (左) 邻域内
x0
( x 0 )
( (左) 导数, 记作
h0
h
lim f (x0 h) f (x0)
h0
h
f (x0)
五、 可导与连续的关系
定理2.
反之: 函数在点 x 连续
可导.
如1:
在 x = 0 处连续 , 但不可导.
如2:
y x
在 x = 0 处连续 , 但不可导.
y
y
o
x
o
x
内容小结
1. 导数的实质: 增量比的极限;
2. f (x0 ) a
2 x0
(x)
所以
2. 设 在
在
处连续, 且
处可导.
证:因为
存在,则有
又在 所以 即
处连续, 故
lim f (x) f (0)
x0
x
在
处可导.
存在,证明:
lim x0
f (x0 x) x
f (x0 )
瞬时速度
切线斜率 k lim f (x0 x) f (x0)
x0
x
两个问题的共性: 所求量为函数增量与自变量增量之比的极限 .
函数的变化率问题
二、导数的定义
定义1 . 设函数
1导数的概念及其几何意义-拔高难度-讲义
导数的概念及其几何意义引入中国跳水皇后郭晶晶在高台跳水运动中,平均速度不一定能反映她在某一时刻的运动状态,需要用瞬时速度描述运动状态.我们把物体在某一时刻的速度称为瞬时速度.那么,如何求瞬时速度呢?解读1、导数的概念(1).函数的平均变化率:一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ∆=-,10y y y ∆=-10()()f x f x =-00()()f x x f x =+∆-,则当0x ∆≠时,商00()()f x x f x yx x+∆-∆=∆∆称作函数()y f x =在区间00[,]x x x +∆(或00[,]x x x +∆)的平均变化率.注:这里x ∆,y ∆可为正值,也可为负值.但0x ∆≠,y ∆可以为0.(2).函数的瞬时变化率、函数的导数:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ∆时,函数值相应的改变00()()y f x x f x ∆=+∆-.如果当x ∆趋近于0时,平均变化率00()()f x x f x y x x+∆-∆=∆∆趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率.“当x ∆趋近于零时,00()()f x x f x x+∆-∆趋近于常数l ”可以用符号“→”记作:“当0x ∆→时,00()()f x x f x l x +∆-→∆”,或记作“000()()lim x f x x f x l x∆→+∆-=∆”,符号“→”读作“趋近于”.函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作“当0x ∆→时,000()()()f x x f x f x x +∆-'→∆”或“0000()()lim ()x f x x f x f x x∆→+∆-'=∆”.(3).可导与导函数:如果()f x 在开区间(,)a b 内每一点都是可导的,则称()f x 在区间(,)a b 可导.这样,对开区间(,)a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(,)a b 内,()f x '构成一个新的函数,我们把这 个函数称为函数()y f x =的导函数.记为()f x '或y '(或x y ').导函数通常简称为导数.如果不特别指明求某一点的导数,那么求导数指的就是求导函数.2、导数的几何意义(1).导数的几何意义:设函数()y f x =的图象如图所示.AB 为过点00(,())A x f x 与00(,())B x x f x x +∆+∆的一条割线.由此割线的斜率是00()()f x x f x y x x+∆-∆=∆∆,可知曲线割线的斜率就是函数的平均变化率.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线过点A 的切线,即000()()lim x f x x f x x∆→+∆-=∆切线AD 的斜率.由导数意义可知,曲线()y f x =过点00(,())x f x 的切线的斜率等于0()f x '.(2).求曲线的切线方程若曲线()y f x =在点00(,)P x y 及其附近有意义,给横坐标0x 一个增量x ,相应的纵坐标也有一个增量00()()y f x x f x =+-,对应的点00(,)Q x x y y ++.则PQ 为曲线()y f x =的割线.当0x →时Q P →,如果割线PQ趋近于一确定的直线,则这条确定的直线即为曲线的切线.当然,此时割线PQ 的斜率yx就趋近于切线的斜率.切线的方程为00()y y k x x -=-.探究类型一、求曲线()y f x =在点0,0x y ()的切线:'000()()y y f x x x -=-.类型二、求曲线()y f x =过点0,0x y ()的切线: 步骤一:设切点1,1x y ();步骤二:联立方程组11'01001()()()y f x y y f x x x =⎧⎨-=-⎩解出1x ; 步骤三:写出切线方程'010()()y y f x x x -=-. 归纳总结1、导数的概念0000()()()limx f x x f x f x x∆→+∆-'=∆叫函数)(x f y =在0x x →处的导数,记作0|x x y =' . 注意:①函数应在点0x 的附近有定义,否则导数不存在.②在定义导数的极限式中,x ∆趋近于0可正、可负、但不为0,而y ∆可能为0.③xy∆∆是函数)(x f y =对自变量x 在x ∆范围内的平均变化率,它的几何意义是过曲线)(x f y =上点(0x ,)(0x f )及点(0x +x ∆,)(00x x f ∆+)的割线斜率. ④导数0000()()()limx f x x f x f x x∆→+∆-'=∆是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在0x 点处变化的快慢程度,它的几何意义是曲线)(x f y =上点(0x ,)(0x f )处的切线的斜率. ⑤若极限xx f x x f x ∆-∆+→∆)()(lim000不存在,则称函数)(x f y =在点0x 处不可导.⑥如果函数)(x f y =在开区间),(b a 内每一点都有导数,则称函数)(x f y =在开区间),(b a 内可导;此时对于每一个x ∈),(b a ,都对应着一个确定的导数()f x ',从而构成了一个新的函数()f x ',称这个函数()f x '为函数)(x f y =在开区间),(b a 内的导函数,简称导数.导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值.2、导数的几何意义函数)(x f 在0x x =处的导数0()f x '的几何意义:曲线)(:x f y C =在其上点0(x P ,)0y 处的切线的斜率.用导数研究切线问题,切点是关键(切点在切线上、切点在曲线上、切点横坐标的导函数值为切线斜率).一般地,过三次曲线的对称中心(不难证明三次曲线一定是中心对称图形,且对称中心在曲线上)的切线有且仅有一条;而过三次曲线上除对称中心外的任一点的切线有二条.以下给出简单证明(不要求学生掌握):由于三次曲线都是中心对称曲线,因此,将其对称中心移至坐标原点便可将三次函数的解析式简化为bx ax x f +=3)(.若()11M x y ,是三次曲线bx ax x f +=3)(上的任一点, 设过M 的切线与曲线()y f x =相切于()00,x y , 则切线方程为))((000x x x f y y -'=-,因为点M 在此切线上,故))((01001x x x f y y -'=-, 又13110300,bx ax y bx ax y +=+=,所以))(3()(0120030131x x b ax bx ax bx ax -+=+-+,整理得:0)2()(10210=+-x x x x , 解得,10x x =或210x x -=. 当点M 是对称中心即1x =-21x =0时,过点M 作曲线的切线切点是惟一的,且为M ,故只有一条切线;当点M 不是对称中心即01≠x 时,过点M 作曲线的切线可产生两个不同的切点,故必有两条切线,其中一条就是以M 为切点(亦即曲线在点M 处)的切线.典例精讲一.选择题(共5小题)1.(2016春•孝感期中)质点M的运动规律为s=4t+4t2,则质点M在t=t0时的速度为()A.4+4t0B.0 C.8t0+4 D.4t0+4t02,在x=0处f(x)2.(2014春•市南区校级期中)设函数f(x)=,()A.不连续B.连续,但不可导C.可导,但导数不连续D.可导,且导数连续3.(2014•上城区校级模拟)函数f(x)的导函数f′(x)的图象如图所示,则f (x)的函数图象可能是()A.B.C.D.4.(2011•上高县校级模拟)已知函数,,<其图象在点(1,f(1))处的切线方程为y=2x+1,则它在点(﹣3,f(﹣3))处的切线方程为()A.y=﹣2x﹣3 B.y=﹣2x+3 C.y=2x﹣3 D.y=2x+35.(2012•浉河区校级模拟)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现:“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,解答问题:若函数g(x)=x3﹣x2+3x﹣+,则的值是()A.2010 B.2011 C.2012 D.20136.(2016春•宁德期中)一质点的运动方程为s(t)=,则它在t=3时的速度为.7.(2012春•东湖区校级期中)已知定义在R上的函数f(x)满足0<f′(x)<1,对任意实数a≠b,的取值范围是.8.(2015春•宁德期末)若曲线y=x2+1的一条切线的斜率是4,则切点的横坐标x=.9.(2017•红桥区模拟)已知函数f(x)=﹣x3﹣x2,则曲线y=f(x)在点(1,f(1))处的切线斜率为.二、填空题10.(2011春•巴南区校级期末)已知f(x)是可导的函数,且,则曲线y=f (x)在点(2,2)处的切线的一般式方程是.11.(2013•泗阳县校级一模)若直线y=x是曲线y=x3﹣3x2+ax的切线,则a=.12.(2017春•昌平区校级月考)曲线y=x3﹣2在点(﹣1,﹣)处的切线的倾斜角为.13.(2016春•姜堰区期中)函数f(x)的导函数f′(x)在R上恒大于0,则对任意x1,x2(x1≠x2)在R上的符号是(填“正”、“负”)14.(2015•广州校级二模)已知函数f(x)=﹣x3+ax2+b(a,b∈R)图象上任意一点处的切线的斜率都小于1,则实数a的取值范围是.15.(2014秋•巫溪县校级月考)若函数f(x)=x2+2x+a(a∈R,x<0)图象上两点A(x1,f(x1)),B(x2,f(x2))(x1<x2)处的切线相互垂直,则x2﹣x1的最小值为.16.(2012春•高明区校级月考)一列火车正以40m/s的速度行驶,前方遇到特殊情况需采取紧急制动,已知在采取制动后t秒时刻的速度(单位:m/s)为v=40﹣5T+T2,则火车从采取制动时到完全停下共行驶的距离为m.三、解答题(共4小题)17.(2014春•微山县校级期中)求曲线f(x)=x3﹣3x2+2x过原点的切线方程.18.(2016春•广安校级月考)水以20米3/分的速度流入一圆锥形容器,设容器深30米,上底直径12米,试求当水深10米时,水面上升的速度.19.(2012•威远县校级模拟)二次函数f(x)满足:f(0)=2,f(x)=f(﹣2﹣x),导函数的图象与直线垂直(1)求f(x)的解析式(2)若函数g(x)=在(0,2)上是减函数,求实数m的取值范围.。
导数1
导数复习(1)1.导数的概念(1)函数y =f(x)在x =x 0处的导数称函数y =f(x)在x =x 0处的瞬时变化率lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0 ΔyΔx 为函数y =f(x)在x =x 0处的导数,记作f′(x 0)或y′|x =x0,即f′(x 0)=lim Δx →0Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)导数的几何意义函数f(x)在点x 0处的导数f′(x 0)的几何意义是在曲线y =f(x)上点P(x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t 的导数).相应地,切线方程为y -y 0=f′(x 0)(x -x 0).(3)函数f(x)的导函数:称函数f′(x)=lim Δx →0f (x +Δx )-f (x )Δx为f(x)的导函数.2.基本初等函数的导数公式3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0). 4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 5.导数运算的技巧(1)要准确地把函数分割为基本函数的和、差、积、商及其复合运算的形式,再利用运算法则求导数;(2)对于不具备求导法则结构形式的,要适当恒等变形,转化为较易求导的结构形式,再求导数.但必须注意变形的等价性,避免不必要的运算失误.对数函数的真数是根式或者分式时,可用对数的运算性质将真数转化为有理式或整式,然后再求解比较方便;当函数表达式含有三角函数时,可优先考虑利用三角公式进行化简后再求导.(3)复合函数的求导,要正确分析函数的复合层次,通过设中间变量,确定复合过程,然后求导一、变化率与导数(3.24发,3.26晚收) 1、若'0()3f x =-,则000()()limh f x h f x h h→+--=( )A .-3B .-6C .-9D .-122、已知函数21y x =+的图象上一点(1,2)及邻近一点(1,2)x y +∆+∆,则yx∆∆等于( ) A .22()x +∆ B .2x +∆ C .2x D .23、设)(x f 在0x x =处可导,且1)()3(lim000=∆-∆+→∆xx f x x f x ,则)(0x f '= ( )A .1B .0C .3D .314、函数)(x f y =在点(x 0,y 0)处的切线方程为12+=x y ,则xx x f x f x ∆∆--→∆)2()(lim 000等于( )A .-4B .-2C .2D .4 5、已知函数()1f x =,则0(1)(1)limx f x f x∆→-∆-∆的值为( )A .13-B. 13C. 23D. 0 6、一物体的运动方程为225s t t =-+,其中s 的单位是米,t 的单位是秒,那么物体在4秒末的瞬时速度是( )A .8米/秒 B .7米/秒 C .6米/秒 D .5米/秒 7、设函数)(x f 在0x x =处可导,则hx f h x f h )()(lim000-+→ ( )A .仅与x 0有关而与h 无关B .仅与h 有关而与x 0无关C .与x 0,h 都有关D .与x 0、h 均无关8、已知f(x)=aln(x+1)-x 2在区间(0,1)内任取两个实数p 、q ,且p ≠q ,不等式qp q f p f -+-+)1()1(>1恒成立,则实数a 的取值范围为( )A .(-∞,15]B .[15,+∞)C .(-12,15]D .(12,30] 9、设()f x 为可导函数,且满足()()1212limx f x f x∆→+∆-=-∆,则函数()y f x =在1x =处的导数为( )A .1 B .1- C .1或1- D .以上答案都不对 10、若()0'3,f x =-则()()0003limh f x h f x h h→+--=( )A .3-B .12-C .9-D .6-二、求下列各函数的导数(其中a,b 为常数)235y x x =-+(1)1y x =+(2)2222x y x =+(3)3y =(4) 11-x +11+x (6) (y x =+(7) ()()y x a x b =-- (8)ln y x x = (10)ln ny x x=11.log a y =(12)11x y x +=- (13)251xy x=+(14)232x y x x =-- (15)sin cos y x x x =+ (16)1cos xy x=-(17)5sin 1cos x y x=+ (18)25(1)y x =+ (22) 2log (1)a y x =+(23) sin y nx = (24) sin n y x = (25) sin ny x =(26)y =x nlg x ; (27)y =1x +2x 2+1x 3; (28)y =ln 2x -12x +1.三、导数的几何意义1、已知曲线y =ln x 的切线过原点,则此切线的斜率为( )A .eB .-e C.1e D .-1e2、曲线y =x 3-2x 在(1,-1)处的切线方程为( )A .x -y -2=0B .x -y +2=0C .x +y -2=0D .x +y +2=03、设曲线y =ax -ln x 在点(1,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .34、设a ∈R ,函数f (x )=e x +a ·e -x的导函数是f ′(x ),且f ′(x )是奇函数.若曲线y =f (x )的一条切线的斜率是32,则切点的横坐标为( )(最后一步换元法)A .ln 2B .-ln 2 C.ln 22 D .-ln 225、线y =32x 2+x -12的某一切线与直线y =4x +3平行,则切线方程为________.6、若曲线y =e -x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________. 7.已知曲线y =x 22-3ln x 的一条切线的斜率为2,则切点的横坐标为( )A .3B .2C .1D.128. 设曲线y =1+cos x sin x 在点⎝ ⎛⎭⎪⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( )A .-1B.12C .-2D .2 9知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标;(3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.10.已知曲线y =1x.(1)求该曲线过点A (1,0)的切线方程;(2)求满足斜率为-13的该曲线的切线方程.四、导数的单调性(3.26晚发,3.28早收)(1)f ′(x )≥0⇔f (x )在(a ,b )上为增函数.f ′(x )≤0⇔f (x )在(a ,b )上为减函数.(2)注意:由函数f (x )在区间[a ,b ]内单调递增(或递减),可得f ′(x )≥0(或≤0)在该区间恒成立,而不是f ′(x )>0(或<0)恒成立,“=”不能少. (3)导数法求函数单调区间的一般步骤:(1)确定函数f (x )的定义域;(2)求导数f ′(x );(3)在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0; (4)根据(3)的结果确定函数f (x )的单调区间.1.若函数y =cos x +ax 在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,则实数a 的取值范围是( ) A .(-∞,-1] B .(-∞,1] C .[-1,+∞) D .[1,+∞) 2.若f (x )=ln xx,e<a <b ,则( )A .f (a )>f (b )B .f (a )=f (b )C .f (a )<f (b )D .f (a )f (b )>1 3若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞) 4.下列函数中,为增函数的是( )A .y =-1x 2B .y =x 3+x 2+x C .y =lg|x | D .y =x +1x5.已知a ≥0,函数f (x )=(x 2-2ax )e x,若f (x )在[-1,1]上是单调减函数, 则a 的取值范围是( )A .0<a <34 B.12<a <34 C .a ≥34D .0<a <126.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是________.7.若函数f (x )=13x 3-32x 2+ax +4恰在[-1,4]上单调递减,则实数a 的值为________.8.若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.9.函数f (x )=e x-x 的单调递增区间是________.10.已知f (x )=x 3-ax 在[1,+∞)上是增函数,则a 的最大值是________.11.设()3221f x x ax bx =+++的导数为()'f x ,若函数()'y f x =的图象关于直线12x =-对称,且()'10f =.(1)实数,a b 的值; (2)求函数()f x 的单调区间.12.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x . (1)求a 的值; (2)求函数f (x )的单调区间.13设函数f (x )=x (e x-1)-12x 2,求f (x )的单调区间.14.已知函数f (x )=ln x -ax (a ∈R ),求函数f (x )的单调区间.15、设函数()21ln 2f x x x =-.讨论函数()f x 的单调性;16(已知函数f (x )=2x 2-ax +ln x 在其定义域上不单调,求实数a 的取值范围.17已知函数f (x )=x 2+2a ln x (a ≠0).①若函数f (x )的图象在点(2,f (2))处的切线斜率为2,求实数a 的值;②若函数g (x )=2x+f (x )在[1,2]上是减函数,求实数a 的取值范围.五、极值与最值 1.函数的极值函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极大值点、极小值点统称为极值点,极大值、极小值统称为极值. 2.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值. (2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 1. 已知a 是函数()312f x x x =-的极小值点,则a =( )A .-4B .-2C .4D .22、函数()f x 的定义域为开区间(,)a b ,导函数'()f x 在(,)a b 内的图象如图所示,则函数()f x 在开区间(,)a b 内有极小值点( )A .1个B .2个 C. 3个 D .4个3设函数()313f x x x m =-+的极大值为1,则函数()f x 的极小值为( )A.13- B.1- C.13D.14已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或185.函数3211()32f x x x cx d =-++有极值,则c 的取值范围为( )A .14c < B .14c ≤ C.14c ≥ D .14c >6已知函数()()221xf x ae x a x =--+,若函数()f x 在区间()0,ln 2上有最值,则实数a 的取值范围是( )A .(),1-∞- B .()1,0- C. ()2,1-- D .()(),00,1-∞ 7函数33y x x =-在[]1,2-上的最小值为( )A .2B .-2C .0D .-48函数xy xe -=,[0,4]x ∈的最小值为( )A .0B .1e C.44e D .22e9若函数()ln a f x x x =+在区间[]1e ,上最小值为32,则实数a 的值为( ) A.322eD.非上述答案 10知函数b kx kx x f +-=233)(在区间]2,2[-上的最大值为3,最小值为-17,求b k ,的值11函数()34f x ax bx =-+,当2x =时,函数()f x 有极值为43-. (1)求函数()f x 的解析式;(2)若()f x k=有3个解,求实数k 的取值范围.12已知函数f (x )=xlnx .(1)求函数f (x )的极值点; (2)设函数g (x )=f (x )-a (x -1),其中a∈R,求函数g (x )在区间[1,e]上的最小值.(其中e 为自然对数的底数).13已知函数(),0xf x e ax a =->.(1)记()f x 的极小值为()g a ,求()g a 的最大值; (2)若对任意实数x 恒有()0f x ≥,求()f a 的取值范围.。
高中数学 第一章 导数及其应用 1.2 导数的计算 导数概念与运算基础知识总结素材 新人教A版选修2-2
导数概念与运算基础知识总结知识清单 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,xy ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim →∆x xy∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果xy∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳):(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0); (2)求平均变化率xy ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=xyx ∆∆→∆0lim 。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f(x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。
3.几种常见函数的导数:①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '=⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛v u ‘=2''v uv v u -(v ≠0)。
高中数学选择性必修二 5 1 2导数的概念及其几何意义(知识梳理+例题+变式+练习)(含答案)
5.1.2导数的概念及其几何意义要点一 导数的概念1.平均变化率:对于函数y =f (x ),设自变量x 从x 0变化到x 0+Δx ,则把Δy Δx =f (x 0+Δx )-f (x 0)Δx 叫做函数y =f (x )从x 0到x 0+Δx 的平均变化率.2.导数:如果Δx →0时,平均变化率Δy Δx 无限趋近于一个确定的值,即ΔyΔx 有极限,则称y =f (x )在x =x 0处可导,并把这个确定的值叫做y =f (x )在x =x 0处的导数(也称瞬时变化率),记作f ′(x 0)或y ′|0x x = ,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →f (x 0+Δx )-f (x 0)Δx . 【重点小结】(1)当Δx ≠0时,比值Δy Δx 的极限存在,则f(x)在x =x 0处可导;若ΔyΔx的极限不存在,则f(x)在x =x 0处不可导或无导数.(2)在x =x 0处的导数的定义可变形为f ′(x 0)=lim Δx →0 f (x 0-Δx )-f (x 0)-Δx 或f ′(x 0)=lim x →x 0 f (x )-f (x 0)x -x 0.要点二 导数的几何意义对于曲线y =f (x )上的点P 0(x 0,f (x 0))和P (x ,f (x )),当 点P 0趋近于点P 时,割线P 0P 趋近于确定的位置,这个确定位置的直线P 0T 称为点P 0处的切线.割线P 0P 的斜率是k =f (x )-f (x 0)x -x 0.当点P 无限趋近于点P 0时,k 无限趋近于切线P 0T 的斜率.因此,函数f (x )在x =x 0处的导数就是切线P 0T 的斜率k ,即k =li m Δx →0f (x 0+Δx )-f (x 0)Δx 【重点总结】(1)曲线的切线与割线①曲线的切线是由割线绕一点转动,当另一点无限接近这一点时割线趋于的直线. ②曲线的切线就是割线趋近于某一确定位置的直线,体现了无限趋近的思想. (2)曲线的切线与导数①函数f(x)在x =x 0处有导数,则在该点处函数f(x)表示的曲线必有切线,且导数值是该切线的斜率. ②函数f(x)表示的曲线在点(x 0,f(x 0))处有切线,但函数f(x)在该点处不一定可导,如f(x)=3x 在x =0处有切线,但不可导.曲线的切线并不一定与曲线只有一个交点,可以有多个,甚至可以有无穷多个.与曲线只有一个公共点的直线也不一定是曲线的切线. 要点三 导函数对于 函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数,当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y=f(x)的导函数(简称为导数),即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx【重点总结】函数在某点处的导数与导函数的区别(1)函数在某点处的导数是一个定值,导函数是一个函数.(2)函数f(x)在x0处的导数就是导函数f ′(x)在x=x0处的函数值.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)函数f(x)在x=x0处有意义,则f′(x0)存在.()(2)直线与曲线相切,则直线与已知曲线只有一个公共点.()(3)导函数f′(x)的定义域与函数f(x)的定义域相等.()(4)曲线f(x)=x2在原点(0,0)处的切线方程为y=0.()【答案】(1)×(2)×(3)×(4)√2.若函数f(x)=-3x-1,则f′(x)=()A.0 B.-3xC.3 D.-3【答案】D【解析】k=li mΔx→0-3(x+Δx)-1-(-3x-1)Δx=-3.3.设曲线y=x2+x-2在点M处的切线斜率为3,则点M的坐标为() A.(0,-2) B.(1,0)C.(0,0) D.(1,1)【答案】B【解析】设点M(x0,y0),∴k=limΔx→0(x0+Δx)2+(x0+Δx)-2-(x20+x0-2)Δx=2x0+1,令2x0+1=3,∴x0=1,则y0=0.故选B.4.如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=________.【答案】2【解析】点(5,f(5))在切线y=-x+8上,∴f(5)=-5+8=3.且f′(5)=-1,∴f(5)+f′(5)=2.题型一 求函数在某点处的导数【例1】(1)已知函数f (x )=2x 2+4x ,则f ′(3)=________. 【答案】(1)16【解析】(1)Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3) =12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx , ∴Δy Δx =2(Δx )2+16Δx Δx=2Δx +16. ∴f ′(3)=li m Δx →0(2Δx +16)=16.(2)已知函数f (x )=2x 2+4x ,若f ′(x 0)=12,则x 0=________. 【答案】(2)2【解析】(2)根据导数的定义f ′(x 0)=li m Δx →0ΔyΔx =li m Δx →f (x 0+Δx )-f (x 0)Δx=li m Δx →2(x 0+Δx )2+4(x 0+Δx )-(2x 20+4x 0)Δx=li m Δx →04x 0·Δx +2(Δx )2+4ΔxΔx =li m Δx →(4x 0+2Δx +4)=4x 0+4,∴f ′(x 0)=4x 0+4=12,解得x 0=2.【方法归纳】用导数定义求函数在某一点处的导数的三个步骤 (1)作差Δy =f (x 0+Δx )-f (x 0). (2)作比Δy Δx =f (x 0+Δx )-f (x 0)Δx .(3)取极限f ′(x 0)=li m Δx →0ΔyΔx. 简记为一差、二比、三极限.【跟踪训练1】已知函数f (x )=x +1x,则f ′(1)=________.【答案】0【解析】f ′(1)=lim Δx →f (1+Δx )-f (1)Δx=lim Δx →0⎣⎡⎦⎤(1+Δx )+11+Δx -(1+1)Δx=lim Δx →0⎝⎛⎭⎫Δx +11+Δx -1Δx=lim Δx →0⎝⎛⎭⎫1-11+Δx =0题型二 求曲线的切线方程【例2】已知曲线y =13x 3,求曲线在点P (3,9)处的切线方程.【解析】由y =13x 3,得y ′=li m Δx →0 ΔyΔx =li m Δx →013(x +Δx )3-13x 3Δx=13li m Δx →3x 2Δx +3x (Δx )2+(Δx )3Δx=13li m Δx →[3x 2+3xΔx +(Δx )2]=x 2, y ′|x =3=32=9,即曲线在P (3,9)处的切线的斜率等于9. 由直线的点斜式方程可得,所求切线方程为y -9=9(x -3), 即9x -y -18=0.【变式探究】本例条件不变,求曲线过点M (1,0)的切线方程.【解析】设切点坐标为⎝⎛⎭⎫x 0,13x 30,由例2知切线方程为:y -13x 30=x 20(x -x 0) ∵切线过点(1,0), ∴-13x 30=x 20(1-x 0)即23x 30-x 20=0,解得x 0=0或x 0=32. ∴切点坐标为(0,0)或⎝⎛⎭⎫32,98,∴切线方程为:y =0或y -98=94⎝⎛⎭⎫x -32. 即y =0或9x -4y -9=0. 设切点,写出切线方程,已知点代入,求切点. 【方法归纳】1.求曲线上某点切线方程的三个步骤2.过曲线外的点P (x 1,y 1)求曲线的切线方程的步骤 (1)设切点为Q (x 0,y 0).(2)求出函数y =f (x )在点x 0处的导数f ′(x 0).(3)利用Q 在曲线上和f ′(x 0)=k PQ ,解出x 0,y 0及f ′(x 0). (4)根据直线的点斜式方程,得切线方程为y -y 0=f ′(x 0)(x -x 0). 【跟踪训练2】已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由. 【解析】将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx=3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0,解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 题型三 导数几何意义的应用 探究1 求切点坐标【例3】已知曲线y =x 2+6的切线分别符合下列条件,求切点. (1)平行于直线y =4x -3; (2)垂直于直线2x -y +5=0. 【解析】设切点坐标为(x 0,y 0).f ′(x )=li m Δx →f (x +Δx )-f (x )Δx=li m Δx →0 (x +Δx )2+6-(x 2+6)Δx=li m Δx →0(2x +Δx )=2x .∴过(x 0,y 0)的切线的斜率为2x 0.(1)∵切线与直线y =4x -3平行,∴2x 0=4,x 0=2,y 0=x 20+6=10, 即过曲线y =x 2+6上点(2,10)的切线与直线y =4x -3平行. (2)∵切线与直线2x -y +5=0垂直,∴2x 0×2=-1,得x 0=-14,y 0=9716,即过曲线y =x 2+6上点⎝⎛⎭⎫-14,9716的切线与直线2x -y +5=0垂直. 【方法归纳】求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0); (2)求导函数f ′(x ); (3)求切线的斜率f ′(x 0);(4)由斜率间的关系列出关于x 0的方程,解方程求x 0; (5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.探究2 与曲线的切点相关的问题【例4】已知直线l 1为曲线y =x 2+x -2在(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2. (1)求直线l 2的方程;(2)求由直线l 1,l 2和x 轴围成的三角形面积.【解析】(1)y ′=lim Δx →0(x +Δx )2+(x +Δx )-2-x 2-x +2Δx=lim Δx →02xΔx +(Δx )2+ΔxΔx=lim Δx →0(2x +Δx +1)=2x +1.所以y ′|x =1=2×1+1=3,所以直线l 1的方程为y =3(x -1),即y =3x -3.设直线l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2), 则l 2的方程为y =(2b +1)x -b 2-2.因为l 1⊥l 2,则有2b +1=-13,b =-23,B ⎝⎛⎭⎫-23,-209,所以直线l 2的方程为y =-13x -229.(2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1,l 2与x 轴交点的坐标分别为(1,0),⎝⎛⎭⎫-223,0. 所以所求三角形的面积S =12×253×52=12512.(1)先由已知求出l 1的斜率,再由l 1⊥l 2,求出l 2的斜率,进而求出切点坐标,得出l 2的方程. (2)求出l 1与l 2的交点坐标,l 1,l 2与x 轴的交点,求出直线l 1,l 2和x 轴围成的三角形的面积. 【方法归纳】利用导数的几何意义处理综合应用题的两种思路(1)与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线的方程、直线间的位置关系等,因此要综合应用所学知识解题.(2)与导数的几何意义相关的综合问题解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点的坐标是常设的未知量.【跟踪训练3】(1)已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是( ) A .f ′(x A )>f ′(x B ) B .f ′(x A )=f ′(x B ) C .f ′(x A )<f ′(x B )D .f ′(x A )与f ′(x B )大小不能确定 【答案】A【解析】由y =f (x )的图象可知,k A >k B ,根据导数的几何意义有f ′(x A )>f ′(x B ).故选A.(2)曲线f (x )=x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 围成的三角形的面积为16,则a =________.【答案】(2)±1【解析】(2)因为f ′(a )=li m Δx →(a +Δx )3-a 3Δx =3a 2,所以曲线在点(a ,a 3)处的切线方程为y -a 3=3a 2(x -a ).令y =0,得切线与x 轴的交点为⎝⎛⎭⎫23a ,0,由题意知三角形面积为12⎪⎪⎪⎪a -23a ·|a 3|=12×⎪⎪⎪⎪a 3·|a 3|=16a 4=16.∴a 4=1,即a =±1. 【易错辨析】求切线方程时忽略“过”与“在”的差异致错【例5】已知抛物线y =x 2+x +1,则过抛物线原点的切线方程为________. 【答案】3x -y =0或x +y =0【解析】设切点坐标为(x 0,y 0),则f ′(x 0)=lim Δx →(x 0+Δx )2+(x 0+Δx )+1-(x 20+x 0+1)Δx=lim Δx →0(2x 0+1+Δx )=2x 0+1,所以斜率k =2x 0+1,故所求的切线方程为y -y 0=(2x 0+1)(x -x 0),将(0,0)及y 0=x 20+x 0+1代入上式得:-(x 20+x 0+1)=-x 0(2x 0+1), 解得x 0=1或x 0=-1,所以k =3或k =-1,所以切线方程为y =3x 或y =-x , 即3x -y =0或x +y =0. 【易错警示】 1.出错原因把原点当作切点,易求的是在原点处的切线方程. 2.纠错心得(1)看清楚求的是原点处的切线,还是过原点的切线. (2)过原点的切线,原点不一定是切点,需设切点为(x 0,y 0).一、单选题1.设()f x 在0x x =处可导,则()()000lim2h f x h f x h h→+--=( ). A .()02f x ' B .()012f x ' C .()0f x ' D .()04f x '【答案】C 【分析】根据导数的定义即可求解. 【解析】解:∵()f x 在0x 处可导, ∵()()()0000lim2h f x h f x h f x h→+--'=,故选:C.2.函数()y f x =在0x x =处的导数可表示为0x x y =',即( ). A .()()()000f x f x x f x =+∆-' B .()()()0000lim x f x f x x f x ∆→'=+∆-⎡⎤⎣⎦ C .()()()0000lim x f x x f x f x x∆→+∆-'=∆D .()()()000f x x f x f x x+∆-'=∆【答案】C 【分析】结合导数定义直接选择即可. 【解析】x x y ='是()0f x '的另一种记法,根据导数的定义可知C 正确.故选:C3.若函数()f x 在0x x =处可导,则()()000limh f x h f x h→+-的结果( ).A .与0x ,h 均无关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 均有关【答案】B 【分析】根据导数的定义即可求解. 【解析】 解:因为()()()0000limh f x h f x f x h→+-'=,所以结果仅与0x 有关,而与h 无关, 故选:B.4.设()f x 为可导函数,且满足0(1)(12)lim12x f f x x→--=-,则'(1)f 为( )A .1B .1-C .2D .2-【答案】B 【分析】利用导数的定义进行求解. 【解析】 因为0(1)(12)lim12x f f x x →--=-,所以20(1)(12)lim =12x f f x x→---,即20(12)(1)lim12x f x f x-→--=--所以'(1)1f =-. 故选:B.5.已知函数f (x )可导,且满足0(3)l (m 2i 3)x f f x x∆→-+∆=∆,则函数y =f (x )在x =3处的导数为( )A .-1B .-2C .1D .2【分析】根据导数的定义即可得到答案. 【解析】 由题意,()()()()()003333lim lim3x x f f x f x f f xx∆→∆→-+∆+∆-=-=-∆'∆,所以()32f '=-.故选:B.6.已知函数()f x 的图像如图所示,()f x '是()f x 的导函数,则下列结论正确的是( )A .()()()()310132f f f f '<-'<< B .()()()()310312f f f f -''<<< C .()()()()310312f f f f '<-'<< D .()()()()310132f f f f ''<<-< 【答案】B 【分析】结合图象,判断出()()()()310,3,,12f f f f ''-的大小关系. 【解析】由题图可知函数()f x 的图像在1x =处的切线的斜率比在3x =处的切线的斜率大,且均为正数,所以()()031f f ''<<. AB 的斜率为()()3131f f --,其比在1x =处的切线的斜率小,但比在3x =处的切线的斜率大,所以()()()()310312f f f f -''<<<. 故选:B7.已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为( )A .20-B .10-C .10D .20【分析】根据导数的定义可得()()()0121lim 21x f x f f x∆→+∆='-∆,再用求导公式可得()28f x x'=+,代入1x =即可得解. 【解析】因为()2ln 8f x x x =+,所以()28f x x'=+, 所以()()()()()020121121lim2lim 21202x x f x f f x f f xx∆→∆→+∆-+∆-=∆'==∆.故选:D8.下列说法正确的是( )A .曲线的切线和曲线有且只有一个交点B .过曲线上的一点作曲线的切线,这点一定是切点C .若()0f x '不存在,则曲线()y f x =在点()()00,x f x 处无切线D .若曲线()y f x =在点()()00,x f x 处有切线,但()0f x '不一定存在 【答案】D 【分析】根据瞬时变化率和导数的基本概念对各选项逐一判断即可. 【解析】对于A ,曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,故A 错误;对于B ,过曲线上的一点作曲线的切线,由于曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,所以这个点不一定是切点,故B 错误;对于C ,()0f x '不存在,曲线()y f x =在点()()00,x f x 处切线的斜率不存在,但切线可能存在,故C 错误; 对于D ,曲线()y f x =在点()()00,x f x 处有切线,但切线斜率可能不存在,所以()0f x '不一定存在,故D 正确. 故选:D二、多选题9.已知函数()f x 的图象如图所示,()f x '是()f x 的导函数,则下列数值的排序正确的是( )A .()()32f f ''<B .()()()332f f f '<-C .()()()232f f f '<-D .()()320f f -<【答案】AB 【分析】根据导数的几何意义可得()()23f f ''>,记()()22A f ,,()()33B f ,,作直线AB ,根据两点坐标求出直线AB 的斜率,结合图形即可得出()()()323f f f '->. 【解析】由函数的图象可知函数()f x 是单调递增的,所以函数图象上任意一点处的导函数值都大于零,并且由图象可知,函数图象在2x =处的切线斜率1k 大于在3x =处的切线斜率2k ,所以()()23f f ''>; 记()()22A f ,,()()33B f ,,作直线AB ,则直线AB 的斜率()()()()323232f f k f f -==--,由函数图象,可知120k k k >>>,即()()()()23230f f f f ''>->>. 故选:AB10.(多选题)若函数f (x )在x =x 0处存在导数,则000()()limh f h x f x h→+-的值( )A .与x 0有关B .与h 有关C .与x 0无关D .与h 无关【答案】AD 【分析】由导数的定义进行判定. 【解析】由导数的定义,得:'0000()()lim()h f x f x f x hh →-=+,即函数f (x )在x =x 0处的导数与x 0有关,与h 无关. 故选:AD.11.甲、乙两个学校同时开展节能活动,活动开始后两学校的用电量()W t 甲(单位:kW h ⋅),()W t 乙(单位:kW h ⋅)与时间t (单位:h )的关系如图所示,则一定有( )A .甲校比乙校节能效果好B .甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小C .两学校节能效果一样好D .甲校与乙校在活动期间的用电量总是一样大 【答案】AB 【分析】根据切线斜率的实际意义判断AC 选项的正确性.根据平均变化率的知识确定B 选项的正确性.根据图象判断用电量是否“总是一样大”,由此判断D 选项的正确性. 【解析】由图可知,对任意的()100,t t ∈,曲线()W t 甲在1t t =处的切线斜率的绝对值比曲线()W t 乙在1t t =处的切线斜率的绝对值大,所以甲校比乙校节能效果好,A 正确,C 错误; 由图可知,()() 000W t W t -甲甲()()000W t W t -<乙乙,则甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小,B 正确;由于曲线()W t 甲和曲线()W t 乙不重合,故D 错误. 故选:AB.12.(多选)设()f x 在0x 处可导,下列式子中与()0f x '相等的是( ) A .()()0002lim2x f x f x x x∆→--∆∆B .()()000limx f x x f x x x∆→+∆--∆∆C .()()0002limx f x x f x x x∆→+∆-+∆∆D .()()0002limx f x x f x x x∆→+∆--∆∆【答案】AC 【分析】利用导数的定义对各选项逐一分析计算并判断作答. 【解析】 对于A ,()()()()()000000202222lim lim 22x x f x f x x f x x x f x x f x x x ∆→∆→--∆-∆+∆--∆'==∆∆,A 满足; 对于B ,()()()()()000000202lim 2lim 22x x f x x f x x f x x x f x x f x x x ∆→∆→+∆--∆-∆+∆--∆'==∆∆,B 不满足; 对于C ,()()()00002limx f x x f x x f x x∆→+∆-+∆'=∆,C 满足;对于D ,()()()()()000000302232lim 3lim 33x x f x x f x x f x x x f x x f x x x∆→∆→+∆--∆-∆+∆--∆'==∆∆,D 不满足. 故选:AC第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.某生物种群的数量Q 与时间t 的关系近似地符合10()9tt e Q t e =+.给出下列四个结论:①该生物种群的数量不会超过10;②该生物种群数量的增长速度先逐渐变大后逐渐变小; ③该生物种群数量的增长速度与种群数量成正比; ④该生物种群数量的增长速度最大的时间()02,3t ∈. 根据上述关系式,其中所有正确结论的序号是__________. 【答案】①②④ 【分析】对解析式上下同时除以t e ,结合反比例函数模型可判断①正确;对10()9tt e Q t e =+求导,()Q t '即为该生物种群数量的增长速度与时间的关系式,结合导函数特征和对勾函数模型可判断③错,②④正确 【解析】1010()991t t t e Q t e e ==++,因为0te >,故()911,t e+∈+∞,()100,1091t e ∈+,故该生物种群的数量不会超过10,①正确;由()28109090()()89191t tt t t t e e Q t Q t e e e e=⇒'=+++=+,显然该生物种群数量的增长速度与种群数量不成正比,③错;因为81tt e e +为对勾函数模型,故81tt e e+≥,当且仅当9t e =时取到等号,故811890t t e e++整体先增加后减小,当()03ln92,t =∈时,()Q t '最大,故②④正确, 综上所述,①②④正确, 故答案为:①②④ 14.若02)(=f x ',则00Δ0()(Δ)lim2Δx f x f x x x→-+=________.【答案】1- 【分析】利用导数的定义进行求解. 【解析】00Δ0()(Δ)lim2Δx f x f x x x→-+00Δ0(Δ)()1lim 2Δx f x x f x x →+-=- '01()2f x =-1=-.故答案为1-.15.已知函数f (x ),则()1f '=________. 【答案】12 【分析】根据导数的定义即可得到答案. 【解析】()()()001111lim lim 21x x f x f f x x →→+∆-'====∆+∆+.故答案为:12.16.函数()f x 在R 上可导,且()02f '=,x y R ∀∈,,若函数()()()f x y f x f y +=成立,则()0f =________.【答案】1 【分析】令0y =,则有()()()0f x f x f =,再根据条件即可求出答案. 【解析】解:令0y =,则有()()()0f x f x f =,()02f '=, ()f x ∴不恒为0, ()01f ∴=,故答案为:1.四、解答题17.已知2()f x x =,利用2'(1)11,(1)2,Δ0.03f f x ====,求(1.03)f 的近似值. 【答案】1.06 【分析】将'(1)1,(1)2,Δ0.03f f x ===代入'000()()()f x x f x f x x +∆≈+⋅∆中计算即可得到答案.【解析】由'000()()()f x x f x f x x +∆≈+⋅∆,可知'(1.03)(1)(1)0.03120.03 1.06f f f ≈+⨯=+⨯=.18.已知某产品的总成本函数为22C Q Q =+,总成本函数在0Q 处导数()0f Q '称为在0Q 处的边际成本,用()0MC Q 表示.求边际成本(500)MC 并说明它的实际意义.【答案】(500)1002MC =,其实际意义是:此时多生产1件产品,成本要增加1002. 【分析】利用导数的定义计算即可. 【解析】设500Q =时,产量的改变量为Q ∆,22(500)2(500)(5002500)C Q Q Q Q ∆+∆++∆-+⨯=∆∆ 1002Q =∆+,则0(500)lim (1002)1002Q MC Q ∆→=∆+=,即产量为500时的边际成本为1002,其实际意义是:此时多生产1件产品,成本要增加1002.。
高考数学导数专题1:导数的概念及运算
导数的概念及运算1.导数的概念及几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算(1)能根据导数的定义求函数y=C(C为常数),y=x,y=x(1),y=x2,y=x3,y=的导数.(2)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.(3)能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.一导数的概念(1)函数y=f(x)在x=x0处的导数:称函数y=f(x)在x=x0处的瞬时变化率limΔx→0Δx(f(x0+Δx)-f(x0))=limΔx→0Δx(Δy)为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0Δx(Δy)=limΔx→0Δx(f(x0+Δx)-f(x0)).(2)导数的几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).(3)函数f(x)的导函数:称函数f′(x)=limΔx→0Δx(f(x+Δx)-f(x))为f(x)的导函数.易错点1.求曲线切线时,要分清在点P处的切线与过P点的切线的区别,前者只有一条,而后者包括了前者.2.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.二导数的运算1.基本初等函数的导数公式2.导数的运算法则2.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x g ′x [g x ]2(g (x )≠0).3.复合函数的导数复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为yx ′=yu ′·ux ′,即y 对x的导数等于y 对u 的导数与 u 对x 的导数的乘积. 易误提醒1.利用公式求导时,一定要注意公式的适用范围及符号,如(xn)′=nxn -1中n ≠0且n ∈Q ,(cos x)′=-sin x.2.注意公式不要用混,如(ax)′=axln a ,而不是(ax)′=xax -1. 3.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆易误提醒1.利用公式求导时,一定要注意公式的适用范围及符号,如(x n)′=nxn -1中n ≠0且n ∈Q ,(cosx )′=-sin x .2.注意公式不要用混,如(a x)′=a xln a ,而不是(a x)′=xax -1.3.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 题型一 导数的概念1.已知函数f(x)=2ln 3x +8x , 求f(1-2Δx)-f(1)Δx的值.解析f(1-2Δx)-f(1)Δx=-2f(1-2Δx)-f(1)-2Δx=-2f ′(1)=-20.【点拨】导数的实质是求函数值相对于自变量的变化率,即求当Δx →0时, 平均变化率ΔyΔx2.某市在一次降雨过程中,降雨量y(mm)与时间t(min)的函数关系可以近似地表示为f(t)=t2100,则在时刻t =10 min 的降雨强度为( ) A.15 mm/min B.14 mm/min C.12mm/minD.1 mm/min【解析】选A.3.(2015·陕西一检)已知直线y =-x +m 是曲线y =x 2-3ln x 的一条切线,则m 的值为( )A .0B .2C .1D .3解析:因为直线y =-x +m 是曲线y =x 2-3ln x 的切线,所以令y ′=2x -3x =-1,得x =1,x =-32(舍),即切点为(1,1),又切点(1,1)在直线y =-x +m 上,所以m =2,故选B.4.(2015·洛阳期末)函数f (x )=e xsin x 的图象在点(0,f (0))处的切线的倾斜角为( )A.3π4 B.π3 C.π4D.π6解析:因为f ′(x )=e xsin x +e xcos x ,所以f ′(0)=1,即曲线y =f (x )在点(0,f (0))处的切线的斜率为1, 题型二 导数运算 1. 求下列函数的导数. (1)y =ln(x +1+x2); (2)y =(x2-2x +3)e2x ;(3)y =3x 1-x. 【解析】运用求导数公式及复合函数求导数法则.(1)y ′=1x +1+x2(x +1+x2)′=1x +1+x2(1+x 1+x2)=11+x2. (2)y ′=(2x -2)e2x +2(x2-2x +3)e2x =2(x2-x +2)e2x.Δlim →x 0Δlim →x 0Δlim →x(3)y ′=13(x 1-x 1-x +x(1-x)2=13(x 1-x1(1-x)2=13x (1-x) 2. 如下图,函数f(x)的图象是折线段ABC ,其中A 、B 、C 的坐标分别为(0,4),(2,0),(6,4),则f(f(0))=( );f(1+Δx)-f(1)Δx=( ) (用数字作答).【解析】f(0)=4,f(f(0))=f(4)=2, 由导数定义f(1+Δx)-f(1)Δx=f ′(1).当0≤x ≤2时,f(x)=4-2x ,f ′(x)=-2,f ′(1)=-2.3.(2015·济宁模拟)已知f (x )=x (2 014+ln x ),f ′(x 0)=2 015,则x 0=( )A .e 2B .1C .ln 2D .e解析:由题意可知f ′(x )=2 014+ln x +x ·1x=2 015+ln x .由f ′(x 0)=2 015,得ln x 0=0,解得x 0=1.答案:B4.若函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________.解析:∵f ′(x )=1x-2f ′(-1)x +3,∴f ′(-1)=-1+2f ′(-1)+3,解得f ′(-1)=-2,∴f ′(1)=1+4+3=8. 答案:85.下列求导运算正确的是( )A.⎝ ⎛⎭⎪⎫x +1x ′=1+1x2B .(log 2x )′=1x ln 2C .(3x )′=3xlog 3eD .(x 2cos x )′=-2sin x解析:选B ⎝ ⎛⎭⎪⎫x +1x ′=1-1x 2;(log 2x )′=1x ln 2;(3x )′=3x ln 3;(x 2cos x )′=2x cos x -x 2sin x ,故选B.32)-32)-32-34-0Δlim →x 0Δlim →x6.函数f (x )=(x +2a )(x -a )2的导数为( )A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C ∵f (x )=(x +2a )(x -a )2=x 3-3a 2x +2a 3, ∴f ′(x )=3(x 2-a 2).6.函数f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.103解析:选D 因为f ′(x )=3ax 2+6x , 所以f ′(-1)=3a -6=4, 所以a =103.4.(2016·天津高考)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为________.解析:因为f (x )=(2x +1)e x,所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x, 所以f ′(0)=3e 0=3. 答案:3题型三 导数的几何意义导数的几何意义为高考热点内容,考查题型多为选择、填空题,也常出现在解答题中前几问,难度较低.归纳起来常见的命题探究角度有: 1.求切线方程问题. 2.确定切点坐标问题. 3.已知切线问题求参数. 4.切线的综合应用.求切线方程问题1.(2015·云南一检)函数f (x )=ln x -2xx的图象在点(1,-2)处的切线方程为( )已知切线求参数范围3.(2015·河北五校联考)若曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x存在公共切线,则a 的取值范围为( )A.⎣⎢⎡⎭⎪⎫e 28,+∞ B.⎝ ⎛⎦⎥⎤0,e 28C.⎣⎢⎡⎭⎪⎫e 24,+∞ D.⎝ ⎛⎦⎥⎤0,e 24 解析:结合函数y =ax 2(a >0)和y =e x的图象可知,要使曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x存在公共切线,只要ax 2=e x在(0,+∞)上有解,从而a =ex x 2.令h (x )=e x x 2(x >0),则h ′(x )=e x ·x 2-e x·2xx4=x -2e x x 3,令h ′(x )=0,得x =2,易知h (x )min =h (2)=e 24,所以a ≥e 24.答案:C 切线的综合应用4.(2015·重庆一诊)若点P 是函数f (x )=x 2-ln x 图象上的任意一点,则点P 到直线x -y -2=0的最小距离为( )A.22B. 2C.12D .3解析:由f ′(x )=2x -1x=1得x =1(负值舍去),所以曲线y =f (x )=x 2-ln x 上的切线斜率为1的点是(1,1),所以点P 到直线x -y -2=0的最小距离为|1-1-2|2=2,故选B.答案:B导数的几何意义是切点处切线的斜率,应用时主要体现在以下三个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)已知过某点M (x 1,f (x 1))(不是切点)的切线斜率为k 时,常需设出切点A (x 0,f (x 0)),利用k =f x 1-f x 0x 1-x 0求解.易错题:混淆“在某点处的切线”与“过某点的切线”致误1. 若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7[解析] 因为y =x 3,所以y ′=3x 2, 设过(1,0)的直线与y =x 3相切于点(x 0,x 30), 则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由y =0与y =ax 2+154x -9相切,可得a =-2564,当x 0=32时,由y =274x -274与y =ax 2+154x -9相切,可得a =-1,所以选A.[答案] A2.(2015·兰州一模)已知直线y =2x +1与曲线y =x 3+ax +b 相切于点(1,3),则实数b 的值为________.解析:因为函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,所以此函数的图象在点(1,3)处的切线斜率为3+a ,所以⎩⎪⎨⎪⎧3+a =2,3=1+a +b ,解得⎩⎪⎨⎪⎧a =-1,b =3.答案:3[易误点评] 没有对点(1,0)的位置进行分析,误认为是切点而失误. [防范措施]对于曲线切线方程问题的求解,对曲线的求导是一个关键点,因此求导公式,求导法则及导数的计算原则要熟练掌握.(2)对于已知的点,应首先确定其是否为曲线的切点,进而选择相应的方法求解. 随堂测试1、已知函数y =f (x )的图象在点(1,f (1))处的切线方程x -2y +1=0,则f (1)+2f ′(1)的值是( ) A.12 B .1 C .32D .2【答案】D【解析】∵函数y =f (x )的图象在点(1, f (1))处的切线方程是x -2y +1=0,∴f (1)=1, f ′(1)=12.∴f (1)+2f ′(1)=2.故选D.2、曲线y =sin x +e x 在点(0,1)处的切线方程是( ) A .x -3y +3=0 B .x -2y +2=0 C .2x -y +1=0 D .3x -y +1=0 【答案】C【解析】y ′=cos x +e x ,故切线斜率为k =2,切线方程为y =2x +1,即2x -y +1=0.3、.已知奇函数y=f (x )在区间(-∞,0]上的解析式为f (x )=x 2+x ,则曲线y=f (x )在横坐标为1的点处的切线方程是( ) A.x+y+1=0 B.x+y-1=0 C.3x-y-1=0 D.3x-y+1=0【答案】B【解析】由函数y=f (x )为奇函数,可得f (x )在[0,+∞)内的解析式为f (x )=-x 2+x ,故切点为(1,0). 因为f'(x )=-2x+1, 所以f'(1)=-1,故切线方程为y=-(x -1), 即x+y -1=0.4、已知函数f (x )=sin x -cos x ,且f ′(x )=12f (x ),则tan 2x 的值是( )A .-23B .-43C .43D .34【答案】D【解析】因为f ′(x )=cos x +sin x =12sin x -12cos x ,所以tan x =-3,所以tan 2x =2tan x1-tan 2x =-61-9=34.故选D.5、过函数f (x )=13x 3-x 2图像上一个动点作函数的切线,则切线倾斜角的范围为( )A.⎣⎡⎦⎤0,3π4 B .⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π C.⎣⎡⎭⎫3π4,π D .⎝⎛⎦⎤π2,3π4 【答案】B【解析】设切线的倾斜角为α.由题意得k =f ′(x )=x 2-2x =(x -1)2-1≥-1,即k =tan α≥-1,解得0≤α<π2或3π4≤α<π,即切线倾斜角的范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π.故选B. 6.(2015·长春二模)若函数f (x )=ln xx ,则f ′(2)=________.解析:由f ′(x )=1-ln x x 2,得f ′(2)=1-ln 24.答案:1-ln 247.如果f ′(x )是二次函数,且f ′(x )的图象开口向上,顶点坐标为(1,3),那么曲线y =f (x )上任意一点的切线的倾斜角α的取值范围是________.解析:根据已知可得f ′(x )≥ 3,即曲线y =f (x )上任意一点的切线的斜率k =tan α≥ 3,结合正切函数的图象,可知α∈⎣⎡⎭⎫π3,π2.答案:⎣⎡⎭⎫π3,π28.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或1.(2)∵曲线y =f (x )存在两条垂直于y 轴的切线,∴关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, ∴Δ=4(1-a )2+12a (a +2)>0,即4a 2+4a +1>0, ∴a ≠-12.∴a 的取值范围是⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞. 94.(2016·临沂一模)已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围. 解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).。
第1讲 导数及其应用(知识点串讲)(解析版)
第1讲 导数及其应用(知识点串讲)知识整合考点1.导数的概念(1)函数y =f (x )在x =x 0处的导数: 函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0ΔyΔx =lim Δx →0()()00f x x f x x+∆-∆为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即 f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0()()00f x x f x x+∆-∆. (2)导数的几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数:称函数f ′(x )=lim Δx →0()()f x x f x x+∆-∆为f (x )的导函数. 例1、(2018·山东东营期中)曲线f (x )=x 2-3x +2ln x 在x =1处的切线方程为____________.【答案】x -y -3=0 [f ′(x )=2x -3+2x ,f (1)=-2,f ′(1)=1,故切线方程为y +2=x -1,即x -y -3=0.][跟踪训练]1、(2019·山东济南联考)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2【答案】B [设直线y =x +1与曲线y =ln(x +a )的切点为(x 0,y 0),则y 0=1+x 0,y 0=ln(x 0+a ). 又y ′=1x +a ,所以y ′|x =x 0=1x 0+a =1,即x 0+a =1. 又y 0=ln(x 0+a ), 所以y 0=0,则x 0=-1,所以a =2.]考点2.基本初等函数的导数公式考点3.导数的运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)()()()()()()()2'''f x f xg x f x g xg x g x⎡⎤-=⎢⎥⎡⎤⎣⎦⎣⎦(g(x)≠0).考点4.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y对x的导数等于y 对u的导数与u对x的导数的乘积.例2、(2019·山东菏泽模拟)已知函数f(x)=f′(1)x2+2x+2f(1),则f′(2)的值为()A.-2B.0C.-4D.-6【答案】D[由题意f(1)=f′(1)+2+2f(1),化简得f(1)=-f′(1)-2,而f′(x)=2f′(1)x+2,所以f′(1)=2f′(1)+2,得f′(1)=-2,f(x)=-2·x2+2x+2f(1).所以f′(x)=-4·x+2.所以f′(2)=-4×2+2=-6.] [跟踪训练]2、(2019·山东临沂期中)设函数f(x)在(0,+∞)可导,其导函数为f′(x),若f(ln x)=x2-ln x,则f′(1)=________.【答案】2e2-1[设ln x=t,则x=e t,∵f(ln x)=x2-ln x,∴f(t)=e2t-t,∴f(x)=e2x-x,∴f′(x)=2e2x -1,∴f′(1)=2e2-1.]考点5.与导数相关的重要结论(1)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.(2)[af(x)+bg(x)]′=af′(x)+bg′(x).(3)函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.考点6.函数的单调性(1)在(a ,b )内函数f (x )可导,f ′(x )在(a ,b )任意子区间内都不恒等于0. f ′(x ) ≥0⇔f (x )在(a ,b )上为增函数. f ′(x ) ≤0⇔f (x )在(a ,b )上为减函数.(2)在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.(3)可导函数f (x )在(a ,b )上是增(减)函数的充要条件是:对∀x ∈(a ,b ),都有f ′(x ) ≥0(f ′(x ) ≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.例3、(2019·山东青岛模拟)已知函数f (x )=x 2+ax ,若函数f (x )在x ∈[2,+∞)上是单调递增的,则实数a的取值范围为( )A .(-∞,8)B .(-∞,16]C .(-∞,-8)∪(8,+∞)D .(-∞,-16]∪[16,+∞)【答案】B[f (x )=x 2+a x 在x ∈[2,+∞)上单调递增,则f ′(x )=2x -a x 2=2x 3-ax2 ≥0在x ∈[2,+∞)上恒成立. 则a ≤2x 3在x ∈[2,+∞)上恒成立. 所以a ≤16.][跟踪训练]3、(2019·山东临沂阶段检测)已知函数f (x )的导函数为f ′(x ),且f ′(x )<f (x )对任意的x ∈R 恒成立,则下列不等式均成立的是( )A .f (ln 2)<2f (0),f (2)<e 2f (0)B .f (ln 2)>2f (0),f (2)>e 2f (0)C .f (ln 2)<2f (0),f (2)>e 2f (0)D .f (ln 2)>2f (0),f (2)<e 2f (0)【答案】A [令()()xf xg x e =,则()()()2''x x x e f x e f x g x e -==()()'x f x f x e -.∵f ′(x )<f (x ),∴g ′(x )<0,∴g (x )是减函数,则有g (ln 2)<g (0),g (2)<g (0),即()ln 2ln 2f e <()00f e,()()2020f f e e <,所以f (ln 2)<2f (0),f (2)<e 2f (0).]考点7.函数的极值 (1)函数的极小值:函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.(2)函数的极大值:函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近的其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.(3)对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件. 例4、(2017·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( )A .-1B .-2e -3 C .5e -3D .1【答案】A [函数f (x )=(x 2+ax -1)e x -1,则f ′(x )=(2x +a )e x -1+(x 2+ax -1)·e x -1=e x -1·[x 2+(a +2)x +a -1].由x =-2是函数f (x )的极值点得f ′(-2)=e -3·(4-2a -4+a -1)=(-a -1)e -3=0,所以a =-1. 所以f (x )=(x 2-x -1)e x -1,f ′(x )=e x -1·(x 2+x -2).由e x -1>0恒成立,得x =-2或x =1时,f ′(x )=0,且x <-2时,f ′(x )>0; -2<x <1时,f ′(x )<0;x >1时,f ′(x )>0. 所以x =1是函数f (x )的极小值点. 所以函数f (x )的极小值为f (1)=-1.] [跟踪训练]4、(2019·山东淄博模拟)若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为( ) A .⎣⎡⎭⎫32,+∞ B .⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞C .⎝⎛⎭⎫32,+∞D .⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞ 【答案】D [因为f (x )=x 3-2cx 2+x 有极值点,f ′(x )值有正有负,所以f ′(x )=3x 2-4cx +1=0有两个不同的根,Δ=(4c )2-12>0,解得c <-32或c >32.]考点8.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.例5、已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ,n ∈[-1,1],则f (m )+f ′(n )的最小值是________.【答案】-13 [f ′(x )=-3x 2+2ax ,根据已知2a3=2,得a =3,即f (x )=-x 3+3x 2-4.根据函数f (x )的极值点,可得函数f (m )在[-1,1]上的最小值为f (0)=-4,f ′(n )=-3n 2+6n 在[-1,1]上单调递增,所以f ′(n )的最小值为f ′(-1)=-9.[f (m )+f ′(n )]min =f (m )min +f ′(n )min =-4-9=-13.]。
1导数的定义(精)
x
4
2 . 2
同理可得 : (cos x) sin x
( 3) y lnx
y ln( x x ) ln( x ) lim 解: (ln x ) lim x o x x 0 x x x ln(1 ) 1 x x lim lim x0 x 0 x x x
例7 设f(x)在[a, b]上连续, f(a) f(b) 0, (a) 0, f (b ) 0, 证 : f ( x)在(a, b )内必有一根 f
六、小结
1. 导数的实质: 增量比的极限;
2. f ( x 0 ) a f ( x 0 ) f ( x 0 ) a;
( xn ) nxn1 .
例2 讨论函数 f ( x ) x 在x 0处的可导性.
解
x f ( x) x x x0 , x0
y
y x
f ( x ) f ( 0) x lim lim x 0 x 0 x x lim
1,
o
x
x 0
C
o
A
y y0 D
B
x0
x x0
x
x
y y0 f ( x ) f ( x0 ) 割线AB的斜率为 tan , x x0 x x0 C B 沿曲线 A, x x0 , f ( x ) f ( x0 ) . 切线AD的斜率为 k tan lim x x0 x x0
定义3.1
设函数 y f ( x )在点 x0的某个邻域内有定义,
给 x0一个改变量 x , 相应地函数 y的改变量为 y y f ( x0 x ) f ( x0 ); 如果 lim 存在, 则称函数 x 0 x y f ( x )在点 x0处可导, 并称这个极限为函数 y f ( x ) df ( x ) 在点 x0处的导数, 记为y x x0 , f ( x0 ), |x x0 dx
第1讲 导数的概念及其意义、导数的运算
第1讲导数的概念及其意义、导数的运算1.了解导数的概念,掌握基本初等函数的导数.2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数(形如f (ax +b ))的导数.1.导数的概念(1)函数y =f (x )在x =x 0处的导数记作□1f ′(x 0)或y ′|x =x 0.f ′(x 0)=lim Δx →0Δy Δx =□2lim Δx →0f (x 0+Δx )-f (x 0)Δx .(2)函数y =f (x )的导函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx称为函数y =f (x )的导函数.f ′(x0)表示函数f (x )在x =x 0处的导数值;但(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的□3斜率,相应的切线方程为□4y -f (x 0)=f ′(x 0)(x -x 0).曲线的切线与曲线不一定只有一个公共点.3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数)f ′(x )=0f (x )=x α(α∈R ,且α≠0)f ′(x )=□5αx α-1f (x )=sin x f ′(x )=□6cos x f (x )=cos x f ′(x )=□7-sin x f (x )=e xf ′(x )=e xf (x )=a x (a >0,且a ≠1)f ′(x )=□8a x ln af(x)=ln x f′(x)=1 xf(x)=log a x(a>0,且a≠1)f′(x)=□91 x ln a4.导数的运算法则若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=□10f′(x)±g′(x);(2)[f(x)·g(x)]′=□11f′(x)g(x)+f(x)g′(x);(3)[f(x)g(x)]′=□12f′(x)g(x)-f(x)g′(x)[g(x)]2(g(x)≠0).5.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y′x=□13y′u·u′x.常用结论1.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正、负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.2.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.1.思考辨析(在括号内打“√”或“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.()(2)若f(x)=sin(-x),则f′(x)=cos x.()(3)求f′(x0)时,可先求f(x0),再求f′(x0).()(4)曲线y=f(x)在某点处的切线与曲线y=f(x)过某点的切线意义是相同的.()答案:(1)×(2)×(3)×(4)×2.回源教材(1)(多选)下列导数运算正确的是()A.(3x)′=3x ln3B.(x2ln x)′=2x ln x+xC.(cos xx )′=x sin x -cos x x 2D.(sin x cos x )′=cos 2x 解析:ABD(cos xx )′=-x sin x -cos x x2,故C 错误,其余都正确.(2)已知函数f (x )=x (2022+ln x ),若f ′(x 0)=2023,则x 0等于()A.e 2B.1C.ln 2D.e解析:Bf ′(x )=2022+ln x +1=2023+ln x ,f ′(x 0)=2023+ln x 0=2023,得x 0=1.(3)已知曲线y =x e x 在点(1,e)处的切线与曲线y =a ln x +2在点(1,2)处的切线平行,则a =.解析:由y =x e x ,得y ′=(x +1)e x ,由y =a ln x +2,得y ′=ax ,故2e =a .答案:2e导数的运算1.(多选)下列求导运算正确的是()A.[(3x +5)3]′=9(3x +5)2B.(x 3ln x )′=3x 2ln x +x 2C.(2sin xx 2)′=2x cos x +4sin x x 3D.(2x +cos x )′=2x ln 2-sin x 解析:ABD对于A ,[(3x +5)3]′=3(3x +5)2(3x +5)′=9(3x +5)2,故A 正确;对于B ,(x 3ln x )′=(x 3)′ln x +x 3(ln x )′=3x 2ln x +x 2,故B 正确;对于C ,(2sin x x 2)′=(2sin x )′x 2-2sin x (x 2)′x 4=2x cos x -4sin x x 3,故C 错误;对于D ,(2x +cos x )′=(2x )′+(cos x )′=2x ln 2-sin x ,故D 正确.2.(多选)(2024·济南质检)下列求导运算正确的是()A.(1ln x )′=-1x ln 2xB.(x 2e x )′=2x +e xC.[cos(2x -π3=-sin(2x -π3)D.(x -1x )′=1+1x 2解析:AD (1ln x )′=-1ln 2x·(ln x )′=-1x ln 2x,故A 正确;(x 2e x )′=(x 2+2x )e x ,故B 错误;[cos(2x -π3)]′=-2sin(2x -π3),故C 错误;(x -1x )′=1+1x2,故D 正确.3.(2024·河北省部分学校模拟)已知函数f (x )=e 2x +f ′(1)x 2,则f ′(1)=()A.-2e 2B.2e 2C.e 2D.-e 2解析:A 由f (x )=e 2x +f ′(1)x 2,得f ′(x )=2e 2x +2f ′(1)x ,令x =1,得f ′(1)=2e 2+2f ′(1),则f ′(1)=-2e 2.4.已知函数f (x )=sin x +4x ,则lim Δx →0f (π+2Δx )-f (π)Δx=.解析:∵f ′(x )=cos x +4,∴f ′(π)=3,∴lim Δx →0f (π+2Δx )-f (π)Δx=2lim Δx →0f (π+2Δx )-f (π)2Δx=2f ′(π)=6.答案:6反思感悟1.求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.2.抽象函数求导,恰当赋值是关键,然后活用方程思想求解.3.复合函数求导,应由外到内逐层求导,必要时要进行换元.导数的几何意义求切线方程例1(1)(2023·全国甲卷)曲线y =e x x +1在点(1,e2)处的切线方程为()A.y =e4xB.y =e2xC.y =e 4x +e 4D.y =e 2x +3e 4解析:C y ′=e x (x +1)-e x (x +1)2=x e x (x +1)2,y ′|x =1=e4,所以曲线y =e x x +1在点(1,e 2)处的切线方程为y -e 2=e 4(x -1),整理得y =e 4x +e4.故选C.(2)(2022·新高考Ⅱ卷)曲线y =ln|x |过坐标原点的两条切线的方程为,.解析:当x >0时,y =ln x ,设切点为(x 0,y 0),x 0>0,则由y ′=1x ,得切线斜率k =1x 0.又切线的斜率为y 0x 0,所以1x 0=y0x 0,解得y 0=1,代入y =ln x ,得x 0=e.所以k =1e ,所以切线方程为y =1e x .同理可求得当x <0时的切线方程为y =-1e x .综上,两条切线方程分别为y =1e x ,y =-1ex .答案:y =1e x y =-1ex求切点坐标或参数的值(范围)例2(1)(2024·榆林模拟)已知函数f (x )=a ln x +x 2的图象在x =1处的切线方程为3x -y +b =0,则a +b =()A.-2B.-1C.0D.1解析:B因为f (x )=a ln x +x 2,所以f ′(x )=ax+2x .又f(x)的图象在x=1处的切线方程为3x-y+b=0,所以f′(1)=a+2=3,解得a=1,则f(x)=ln x+x2,所以f(1)=1,将点(1,1)代入切线方程得3-1+b=0,解得b=-2,故a+b=-1.故选B.(2)在平面直角坐标系xOy中,点A在曲线y=ln x上,且该曲线在点A处的切线经过点(-e,-1),则点A的坐标是.解析:设A(m,n),则曲线y=ln x在点A处的切线方程为y-n=1m(x-m).又切线过点(-e,-1),所以有n+1=1m(m+e).再由n=ln m,解得m=e,n=1.故点A的坐标为(e,1).答案:(e,1)由切线条数求参数例3(2024·杭州第一次质量检测)若过点(a,b)可以作曲线y=x-1x(x>0)的两条切线,则()A.b>a>0B.a>b>a-1aC.0<a-1a <b<a D.a-1a<b<0<a解析:B设切点为(x0,y0),则x0>0,由题知y′=1+1x2(x>0),设切线的斜率为k,则k=1+1x20=y0-bx0-a=x0-1x0-bx0-a,化简得(a-b)x20-2x0+a=0,①则Δ=4-4a(a-b).∵过点(a,b)可以作曲线y=x-1x(x>0)的两条切线,∴方程①有两个不同的正解,,∴a>b>a-1 a.其中,a>0,b与a-1a的符号不能确定,故选B.反思感悟1.求曲线的切线方程要分清“在点处”与“过点处”的切线方程的不同.求过某点的切线方程,要先设出切点坐标,再依据条件建立方程(组)求解,求出切点坐标是解题的关键.2.处理与切线有关的参数问题,通常利用曲线、切线、切点的三个关系列出参数的方程(组)并解出参数:(1)切点处的导数是切线的斜率;(2)切点在切线上,故满足切线方程;(3)切点在曲线上,故满足曲线方程.训练1(1)曲线f(x)=x2+x-2e x在(0,f(0))处的切线方程为()A.y=3x-2B.y=3x+2C.y=-3x-2D.y=-3x+2解析:A由题知f′(x)=(2x+1)e x-(x2+x-2)e x(e x)2=-x2+x+3e x,所以f′(0)=3,f(0)=-2,所以曲线f(x)在(0,f(0))处的切线方程为y-(-2)=3(x-0),即y=3x-2.(2)(2024·泸州模拟)已知曲线y=a cos xx在点(π,-aπ)处的切线方程为y=2π2x+b,则a的值是()A.4πB.-2C.-4πD.2解析:D令y=f(x)=a cos xx,则f′(x)=-a(x sin x+cos x)x2,曲线在点(π,-aπ)处的切线的斜率为f′(π)=aπ2=2π2,解得a=2.(3)(2024·南通模拟)已知过点A(a,0)作曲线y=(1-x)e x的切线有且仅有1条,则a=()A.-3B.3C.-3或1D.3或1解析:C设切点为(x0,(1-x0)e x0),由已知得y′=-x e x,则切线斜率k=-x0e x0,切线方程为y-(1-x0)e x0=-x0e x0 (x-x0),直线过点A(a,0),则-(1-x0)e x0=-x0e x0·(a-x0),化简得x20-(a+1)x0+1=0,切线有且仅有1条,即Δ=(a+1)2-4=0,化简得a2+2a-3=0,即(a+3)(a -1)=0,解得a=-3或1.两曲线的公切线例4(2024·扬州模拟)若直线l是曲线y=ln x的切线,也是曲线y=e x-2的切线,则直线l的方程为.解析:设y=kx+b与y=e x-2和y=ln x的切点分别为(x1,e x1-2),(x2,ln x2),由导数的几何意义可得k=e x1-2=1 x2,曲线y=e x-2在点(x1,e x1-2)处的切线方程为y-e x1-2=e x1-2(x-x1),即y=e x1-2x+(1-x1)e x1-2,曲线y=ln x在点(x2,ln x2)处的切线方程为y-ln x2=1x2(x-x2),即y=1x2x+ln x2-1,x1-2=1x2,1-x1)e x1-2=ln x2-1,解得x2=1或x2=e,所以k=1或1 e .代入得y=x-1或y=1 e x.答案:y=x-1或y=1 ex反思感悟公切线问题的解法公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.训练2已知定义在(0,+∞)上的函数f(x)=x2-m,h(x)=6ln x-4x,设两曲线y=f(x)与y=h(x)在公共点处的切线相同,则m等于()A.-3B.1C.3D.5解析:D依题意,设曲线y=f(x)与y=h(x)在公共点(x0,y0)处的切线相同.∵f(x)=x2-m,h(x)=6ln x-4x,∴f′(x)=2x,h′(x)=6x-4,(x0)=h(x0),′(x0)=h′(x0),20-m=6ln x0-4x0,x0=6x0-4,∵x0>0,∴x0=1,m=5.限时规范训练(十七)A级基础落实练1.(多选)下列求导运算正确的是()A.(x+1x)′=1+1x2B.(log2x)′=1x ln2C.(5x)′=5x log5xD.(x2cos x)′=2x cos x-x2sin x解析:BD A中,(x+1x)′=1-1x2,C中,(5x)′=5x ln5,其余正确.2.(2024·皖豫名校第二次联考)已知函数f(x)=ax3-x+b,若f′(x)为f(x)的导函数,f ′(1)=2,且f (1)=5,则b =()A.5 B.4C.3 D.2解析:A 因为f ′(x )=3ax 2-1,所以a -1=2,-1+b =5,解得a =1,b =5.故选A.3.(2024·宜春月考)曲线y =f (x )在点P (1,f (1))处的切线如图所示,则f (1)+f ′(1)=()A.0B.12C.32D.-12解析:A 因为切线过点(2,0)和(0,-1),所以f ′(1)=0+12-0=12,所以切线方程为y =12x -1,令x =1,则y =-12,所以f (1)=-12,所以f (1)+f ′(1)=-12+12=0.故选A.4.(2024·佛山禅城区第二次调研)曲线f (x )=x e 2x -1在点P (12,f (12))处的切线方程为()A.6x -4y -1=0B.6x -4y -5=0C.4x -2y -1=0D.4x -2y -3=0解析:C 因为f (x )=x e 2x -1,所以f ′(x )=e 2x -1+2x e 2x -1=(2x +1)e 2x -1.设切线的斜率为k,则k=f′(12)=2,又f(12)=12,故所求切线方程为y=2(x-12)+12,化简得4x-2y-1=0.故选C.5.(2024·山西部分学校联考)若函数f(x)=e x+ln x+a的图象在点(1,f(1))处的切线方程为y=kx-1,则a=()A.1B.0C.-1D.e解析:B因为f′(x)=e x+1x,所以f′(1)=e+1,设切线的斜率为k,故k=e+1.又f(1)=e+a=k-1=e,所以a=0.故选B.6.曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则点P的坐标为()A.(1,3)B.(-1,3)C.(-1,3)或(1,1)D.(-1,3)或(1,3)解析:D设切点P(x0,y0),由f′(x)=3x2-1,可得切线的斜率k=f′(x0)=3x20-1,所以3x20-1=2,解得x0=±1,当x0=1时,可得f(1)=3,此时P(1,3);当x0=-1时,可得f(-1)=3,此时P(-1,3).7.若f(x)=ln x与g(x)=x2+ax两个函数的图象有一条与直线y=x平行的公共切线,则a等于()A.1B.2C.3D.3或-1解析:D设在函数f(x)=ln x上的切点为(x1,y1),∴k=1x1=1,解得x1=1,故切点为(1,0),可求出切线方程为y=x-1,此切线和g(x)=x2+ax也相切,故x2+ax=x-1,化简得x2+(a-1)x+1=0,只需满足Δ=(a -1)2-4=0,解得a =-1或3.8.已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则()A.a =e ,b =-1B.a =e ,b =1C.a =e -1,b =1D.a =e -1,b =-1解析:D 因为y ′=a e x +ln x +1,所以k =y ′|x =1=a e +1,所以曲线在点(1,a e)处的切线方程为y -a e =(a e +1)(x -1),即y =(a e +1)x -1.e +1=2,=-1,=e -1,=-1.9.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a =.解析:∵f ′(x )=-(ax -1)′(ax -1)2+e x cos x -e xsin x =-a (ax -1)2+e x cos x -e x sin x ,∴f ′(0)=-a +1=-1,则a =2.答案:210.(2024·西安长安区模拟)函数f (x )=e x -e -x +ax 2的导函数为f ′(x ),若f ′(x )是偶函数,则实数a =,此时,曲线y =f (x )在原点处的切线方程为.解析:由题知f ′(x )=e x +e -x +2ax ,因为f ′(x )是偶函数,所以f ′(-x )=f ′(x )在x ∈R 上恒成立,则e -x +e x -2ax =e x +e -x +2ax 在x ∈R 上恒成立,故a =0.因为f (0)=0,f ′(0)=2,所以曲线y =f (x )在原点处的切线方程为y -0=2(x -0),即y =2x .答案:0y =2x11.(2024·南通期末)已知函数f (x )=x 3-2x 2+2x ,则曲线y =f (x )经过点A (1,1)的切线方程是.解析:设切点为(t ,t 3-2t 2+2t ),由题知f ′(x )=3x 2-4x +2,所以切线的斜率k =3t 2-4t +2,所以切线方程为y -(t 3-2t 2+2t )=(3t 2-4t +2)(x -t ).因为切线过点A (1,1),所以1-(t 3-2t 2+2t )=(3t 2-4t +2)(1-t ),即(t -1)2(2t -1)=0,解得t=12或t=1,所以斜率k=34或k=1,又切线过点A(1,1),得切线方程为3x-4y+1=0或x-y=0.答案:3x-4y+1=0或x-y=012.(2024·南京模拟)直线y=ax+b是曲线y=x+1的切线,则a+b的最小值为.解析:设直线y=ax+b与曲线y=x+1相切于点(x0,x0+1)(x0≥0),当x0=0时,曲线y=x+1无切线,故x0>0,由y=x+1得y′|x=x0=12x0,所以切线方程为y-(x0+1)=12x0(x-x0),即y=12x0x+x02+1,=12x0,=x02+1,所以a+b=12x0+x02+1≥212x0·x02+1=2,当且仅当x0=1时,等号成立,所以(a+b)min=2.答案:2B级能力提升练13.(2024·青岛模拟)已知定义在区间(0,+∞)上的函数f(x)=-2x2+m,g(x)=-3ln x-x,若以上两函数的图象有公共点,且在公共点处切线相同,则m的值为()A.2B.5C.1D.0解析:C根据题意,设两曲线y=f(x)与y=g(x)的公共点为(a,b),其中a>0,由f(x)=-2x2+m,可得f′(x)=-4x,则切线的斜率为k=f′(a)=-4a,由g(x)=-3ln x-x,可得g ′(x )=-3x-1,则切线的斜率为k =g ′(a )=-3a-1,因为两函数的图象有公共点,且在公共点处切线相同,所以-4a =-3a -1,解得a =1或a =-34(舍去),又由g (1)=-1,即公共点的坐标为(1,-1),将点(1,-1)代入f (x )=-2x 2+m ,可得m =1.14.(多选)(2024·烟台调研)若函数y =f (x )的图象上存在两点,使得函数图象在这两点处的切线互相垂直,则称函数y =f (x )具有“T 性质”.则下列函数中具有“T 性质”的是()A.y =x e xB.y =cos x +1C.y =1x 3D.y =ln 2·log 2x解析:AB由题意可知,若函数y =f (x )具有“T 性质”,则存在两点,使得函数在这两点处导数的乘积为-1.对于A ,(xe x )′=1-x ex ,存在x 1<1,x 2>1时满足条件;对于B ,(cos x +1)′=-sin x ,当x 1=π2,x 2=-π2时符合条件;对于C ,(1x 3)′=-3x 4<0恒成立,负数乘以负数不可能得到-1,不满足条件;对于D ,(ln 2·log 2x )′=ln 2·1x ln 2=1x>0恒成立,正数乘以正数不可能得到-1,不满足条件.15.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =.解析:y =ln x +2的切线为y =1x 1·x +ln x 1+1(设切点横坐标为x 1),y =ln(x+1)的切线为y=1x2+1x+ln(x2+1)-x2x2+1(设切点横坐标为x2),=1x2+1,x1+1=ln(x2+1)-x2x2+1,解得x1=12,x2=-12,∴b=ln x1+1=1-ln2.答案:1-ln216.曲线y=-1x(x<0)与曲线y=ln x的公切线的条数为条.解析:设(x1,y1)是公切线和曲线y=-1x的切点,则切线斜率k1=1 x21,切线方程为y+1x1=1x21(x-x1),整理得y=1x21·x-2x1.设(x2,y2)是公切线和曲线y=ln x的切点,则切线斜率k2=1 x2,切线方程为y-ln x2=1x2(x-x2),整理得y=1x2·x+ln x2-1.令1x21=1x2,-2x1=ln x2-1,消去x2得-2x1=ln x21-1.设t=-x1>0,即2ln t-2t-1=0,只需探究此方程解的个数.易知函数f(x)=2ln x-2x-1在(0,+∞)上单调递增,>0,f(1)=-3<0,f(e)=1-2e于是f(x)=0有唯一解,于是两曲线的公切线的条数为1.答案:1。
高三数学《导数》全章课件:1导数的概念
3.1 导数的概念
1.曲线的切线
如图,曲线C是函数y=f(x) y 的图象,P(x0,y0)是曲线C上的 任意一点,Q(x0+Δx,y0+Δy) 为P邻近一点,PQ为C的割线,
y=f(x) Q
PM//x轴,QM//y轴,β为PQ的
Δy
倾斜角. 则 : MP x, MQ y,
Pβ
Δx
M
1
x x0
x0
x
x0 x x x
1. 2x
例2:利用导数的定义求函数y | x | ( x 0)的导数.
解 : y | x |,当x 0时, y x,则 y ( x x) x
x
x
y 1, lim 1;
x0 x
当x 0时, y x, y ( x x) ( x) 1,
y tan .
O
x
x
表明:y 就是割线的斜率. x
请看当 点Q沿 着曲线 逐渐向 点P接 近时,割 线PQ 绕着点 P逐渐 转动的 情况.
y
y=f(x)
割
线 Q
T 切线
P
o
x
我们发现,当点Q沿着曲线无限接近点P即Δx→0 时,割线PQ有一个极限位置PT.则我们把直线PT称为曲 线在点P处的切线.
1 3x2x 3x(x)2 (x)3
x
y y 1 x3
4
3
lim
3 x0
x
3
P
1 lim[3x2 3xx (x)2 ] x2 . 3 x0
2 1
x
y |x2 22 4.
-2 -1 O 1 2
即点P处的切线的斜率等于4.
-1
-2
(2)在点P处的切线方程是y-8/3=4(x-2),即12x-3y-16=0.
第三章 第1讲 导数的概念及运算
第1讲导数的概念及运算基础知识整合1.导数的概念(1)f(x)在x=x0处的导数就是f(x)在x=x0处的□01瞬时变化率,记作:y′|x=x0或f′(x0),即f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx.(2)当把上式中的x0看作变量x时,f′(x)即为f(x)的导函数,简称导数,即y′=f′(x)=□02limΔx→0f(x+Δx)-f(x)Δx.2.导数的几何意义函数f(x)在x=x0处的导数就是曲线y=f(x)在点□03P(x0,f(x0))处的切线的斜率,即曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k=f′(x0),切线方程为□04y -y0=f′(x0)(x-x0).3.基本初等函数的导数公式(1)C′=□050(C为常数);(2)(x n)′=□06nx-(n∈Q*);(3)(sin x)′=□07cos x;(4)(cos x)′=□08-sin x;(5)(a x)′=□09a ln_a;(6)(e x)′=□10e;(7)(log a x)′=1x ln a;(8)(ln x)′=□111x.4.导数的运算法则(1)[f(x)±g(x)]′=□12f′(x)±g′(x).(2)[f (x )·g (x )]′=□13f ′(x )g (x )+f (x )g ′(x ). 特别地:[C ·f (x )]′=□14Cf ′(x )(C 为常数). (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=□15f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数设函数u =φ(x )在点x 处有导数u ′=φ′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′=f ′(u ),则复合函数y =f [φ(x )]在点x 处也有导数y ′x =f ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.f ′(x 0)与x 0的值有关,不同的x 0,其导数值一般也不同. 2.f ′(x 0)不一定为0,但[f (x 0)]′一定为0.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.1.(2019·海南模拟)曲线y =x2x -1在点(1,1)处的切线方程为( )A .x -y -2=0B .x +y -2=0C .x +4y -5=0D .x -4y -5=0答案 B 解析 y ′=2x -1-2x (2x -1)2=-1(2x -1)2,当x =1时,y ′=-1,所以切线方程是y -1=-(x -1),整理得x +y -2=0.故选B.2.函数f (x )=x (2017+ln x ),若f ′(x 0)=2018,则x 0的值为( ) A .e 2 B .1 C .ln 2 D .e 答案 B解析 f ′(x )=2017+ln x +x ·1x =2018+ln x ,故由f ′(x 0)=2018,得2018+ln x 0=2018,则ln x 0=0,解得x 0=1.故选B.3.若曲线y =e x +ax +b 在点(0,2)处的切线l 与直线x +3y +1=0垂直,则a +b =( )A .3B .-1C .1D .-3 答案 A解析 因为直线x +3y +1=0的斜率为-13,所以切线l 的斜率为3,即y ′|x=0=e 0+a =1+a =3,所以a =2;又曲线过点(0,2),所以e 0+b =2,解得b =1.故选A.4.(2019·河北质检)已知直线y =kx 是曲线y =ln x 的切线,则k 的值是( ) A .e B .-e C.1e D .-1e 答案 C解析 依题意,设直线y =kx 与曲线y =ln x 切于点(x 0,kx 0),则有⎩⎨⎧kx 0=ln x 0,k =1x 0,由此得ln x 0=1,x 0=e ,k =1e .故选C.5.f (x )=2x +3x 的图象在点(1,f (1))处的切线方程为________. 答案 x -y +4=0解析 f ′(x )=-2x 2+3,f ′(1)=1,即切线的斜率为1,又f (1)=5,即切点坐标为(1,5),故切线方程为y -5=x -1,即x -y +4=0.6.(2019·郑州模拟)直线x -2y +m =0与曲线y =x 相切,则切点的坐标为________.答案 (1,1)解析 ∵y =x =x12 ,∴y ′=12x -12 ,令y ′=12x -12 =12,则x =1,则y =1=1,即切点坐标为(1,1).核心考向突破考向一 导数的基本运算 例1 求下列函数的导数:(1)y =cos x e x ;(2)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3;(3)y =sin 3x +sin3x ;(4)y =1(2x -1)3.解 (1)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x.(2)因为y =x 3+1x 2+1,所以y ′=3x 2-2x 3. (3)y ′=(sin 3x )′+(sin3x )′=3sin 2x cos x +3cos3x . (4)y ′=⎣⎢⎡⎦⎥⎤1(2x -1)3′=[(2x -1)-3]′=-3(2x -1)-4×2=-6(2x -1)-4. 触类旁通导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导.(3)对数形式:先化为和、差的形式,再求导. (4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. (6)复合函数:确定复合关系,由外向内逐层求导.即时训练 1.求下列函数的导数: (1)y =(3x 2-4x )(2x +1);(2)y =x 2sin x ; (3)y =11-2x;(4)y =ln xx 2+1.解 (1)因为y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x ,所以y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(3)y ′=[(1-2x ) -12]′=-12(1-2x )-32 ×(-2)=(1-2x ) -32 .(4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x(x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2.考向二 导数的几何意义角度1 求切线的方程例2 (1)(2019·四川成都模拟)曲线y =x sin x 在点P (π,0)处的切线方程是( )A .y =-πx +π2B .y =πx +π2C .y =-πx -π2D .y =πx -π2答案 A解析 因为y =x sin x ,所以y ′=sin x +x cos x ,在点P (π,0)处的切线斜率为k =sinπ+πcosπ=-π,所以曲线y =x sin x 在点P (π,0)处的切线方程是y =-π(x -π)=-πx +π2.故选A.(2)曲线y =f (x )=e 2x +1在点⎝ ⎛⎭⎪⎫-12,1处的切线方程为________.答案 2x -y +2=0解析 ∵f ′(x )=e 2x +1·(2x +1)′=2e 2x +1, ∴f ′⎝ ⎛⎭⎪⎫-12=2e 0=2,∴曲线y =e 2x +1在点⎝ ⎛⎭⎪⎫-12,1处的切线方程为y -1=2⎝ ⎛⎭⎪⎫x +12,即2x -y +2=0.角度2 求切点的坐标例3 (1)(2019·陕西模拟)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则点P 的坐标为( )A .(1,1)B .(-1,-1)C .(1,-1)D .(-1,1)答案 A解析 对y =e x 求导得y ′=e x ,令x =0,得曲线y =e x 在点(0,1)处的切线斜率为1,故曲线y =1x (x >0)上点P 处的切线斜率为-1,由y ′=-1x 2=-1,得x =1,则y =1,所以点P 的坐标为(1,1).故选A.(2)(2018·江西模拟)若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.答案 (e ,e)解析 设点P (x 0,y 0),∵y =x ln x ,∴y ′=ln x +x ·1x =1+ln x .∴曲线y =x ln x 在点P 处的切线斜率k =1+ln x 0.又k =2,∴1+ln x 0=2,∴x 0=e ,y 0=eln e =e.∴点P 的坐标是(e ,e). 角度3 求公切线的方程例4 (1)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2 答案 D解析 ∵f ′(x )=1x ,∴直线l 的斜率为k =f ′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2.故选D.(2)若直线l 与曲线y =e x及y =-14x 2都相切,则直线l 的方程为________.答案 y =x +1解析 设直线l 与曲线y =e x 的切点为(x 0,e x 0),直线l 与曲线y =-14x 2的切点为⎝ ⎛⎭⎪⎫x 1,-x 214,因为y =e x 在点(x 0,e x 0)处的切线的斜率为y ′|x =x 0=e x0,y =-x 24在点⎝ ⎛⎭⎪⎫x 1,-x 214处的切线的斜率为y ′|x =x 1=⎝ ⎛⎭⎪⎫-x 2| x =x 1=-x 12,则直线l 的方程可表示为y =e x 0x -x 0e x 0+e x0或y =-12x 1x +14x 21,所以⎩⎪⎨⎪⎧e x0=-x 12,-x 0e x 0+e x0=x 214,所以e x 0=1-x 0,解得x 0=0,所以直线l 的方程为y =x +1.触类旁通(1)求曲线切线方程的步骤①求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率;②由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).(2)求曲线f (x ),g (x )的公切线l 的方程的步骤,①设点求切线,即分别设出两曲线的切点的坐标(x 0,f (x 0)),(x 1,g (x 1)),并分别求出两曲线的切线方程;,②建立方程组,即利用两曲线的切线重合,则两切线的斜率及在y 轴上的截距都分别相等,得到关于参数x 0,x 1的方程组,解方程组,求出参数x 0,x 1的值;,③求切线方程,把所求参数的值代入曲线的切线方程中即可.即时训练 2.(2019·衡水调研)已知曲线y =x 22-3ln x 的一条切线的斜率为2,则切点的横坐标为( )A .3B .2C .1 D.12 答案 A解析 设切点坐标为(x 0,y 0),且x 0>0,由y ′=x -3x ,得k =x 0-3x 0=2,∴x 0=3.故选A.3.曲线y =1-2x +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2答案 A 解析 ∵y =1-2x +2=x x +2,∴y ′=x +2-x(x +2)2=2(x +2)2,y ′|x =-1=2, ∴曲线在点(-1,-1)处的切线斜率为2, ∴所求切线方程为y +1=2(x +1),即y =2x +1.4.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =________.答案 1-ln 2解析 直线y =kx +b 与曲线y =ln x +2,y =ln (x +1)均相切,设切点分别为A (x 1,y 1),B (x 2,y 2),由y =ln x +2得y ′=1x ,由y =ln (x +1)得y ′=1x +1,∴k =1x 1=1x 2+1,∴x 1=1k ,x 2=1k -1,∴y 1=-ln k +2,y 2=-ln k .即A ⎝ ⎛⎭⎪⎫1k ,-ln k +2,B ⎝ ⎛⎭⎪⎫1k -1,-ln k ,∵A ,B 在直线y =kx +b 上, ∴⎩⎪⎨⎪⎧2-ln k =k ·1k +b ,-ln k =k ·⎝ ⎛⎭⎪⎫1k -1+b ⇒⎩⎪⎨⎪⎧b =1-ln 2,k =2.考向三 求参数的范围例5 (1)(2019·沈阳模拟)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( )A .1B .2C .5D .-1 答案 A解析 由题意可得3=k +1,3=1+a +b ,则k =2.又曲线的导函数y ′=3x 2+a ,所以3+a =2,解得a =-1,b =3,所以2a +b =1.故选A.(2)已知函数f (x )=e x -mx +1的图象为曲线C ,若曲线C 存在与直线y =e x 垂直的切线,则实数m 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫1e ,+∞解析 由题意知,方程f ′(x )=-1e 有解,即e x -m =-1e 有解,即e x=m -1e 有解,故只要m -1e >0,即m >1e 即可.故填⎝ ⎛⎭⎪⎫1e ,+∞.触类旁通处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.即时训练 5.已知函数f (x )=ax 2+2b ln x ,若曲线y =f (x )在点(2,f (2))处的切线方程为y =x +2-6ln 2,则a +b =( )A .-2B .-1C .2D .1 答案 A解析 由切线方程,得f (2)=4-6ln 2,f ′(2)=1. ∵f (x )=ax 2+2b ln x ,∴f ′(x )=2ax +2bx ,∴⎩⎪⎨⎪⎧4a +2b ln 2=4-6ln 2,4a +b =1,解得a =1,b =-3, ∴a +b =-2.故选A.6.若曲线y =13x 3+ax 2+x 存在垂直于y 轴的切线,则实数a 的取值范围为( )A.⎝ ⎛⎦⎥⎤-∞,-12∪[1,+∞) B .(-∞,-1]∪[1,+∞) C .(-∞,-1]∪[0,+∞) D.⎣⎢⎡⎭⎪⎫-12,+∞ 答案 B解析 令y =f (x )=13x 3+ax 2+x ,则f ′(x )=x 2+2ax +1,∵曲线y =f (x )存在垂直于y 轴的切线,∴f ′(x )=0有解,即x 2+2ax +1=0有解,∴Δ=(2a )2-4≥0,∴a ≥1或a ≤-1,即实数a 的取值范围为(-∞,-1]∪[1,+∞),故选B.。
一、1 导数的概念
xx0
x
考察函数 y x2 1(x≠1),当x无限趋近于1
x 1
(但不等于1)时,函数的变化趋势
Y
因为 y x2 1 x 1
x 1
观察y=x+1 (x∈R,x≠1)图象
2 1
-1 0 1
X
结论:自变量x从x轴上点x=1的左右两边无限趋近
于1,函数
y的 值x2无限1 趋近于2。 x 1
注意:虽然在x=1处没有定义,但仍有极限。
二、导数的定义
设函数y=f(x)的自变量x变化到x+△x,相 应的函数值y=f(x)变化到y=f(x+△x)
若
lim
x0
f (x x) f (x) lim y
x
x0 x
y f (x x) f (x)
存在,则称函数 在点 处可导, 并称此极限为
例1 求函数f(x)=C(C为常数)的导数。
解 f ( x) lim f ( x h) f ( x) lim C C 0.
h0
h
h0 h
即 (C) 0.
例2 求y=x2在点x=1处的导数。
解 y (1 x)2 12 2x (x)2
y 2x (x)2 2 x
3 x0
x
1 lim 3x2 3xx (x)2 x2 3 x0
点P处的切线的斜率等于4。
在点P处的切线方程是
y 8 4(x 2
已知 y
1 x
的导数为
y
1 x2
,求函数在点
(
1 2
,2)
处的切线的斜率,并写出在该点处的切线方程和法
函数的一阶导数表示函数
函数的一阶导数表示函数一阶导数(也称为导函数)表示了函数在其中一点上的变化率。
导数是微积分中的一个重要概念,帮助我们理解函数的性质,并应用于求解最值、判断增减性等问题。
下面将详细介绍函数的一阶导数的定义、意义、求导法则及其常用的应用。
1.一阶导数的定义对于函数f(x),如果存在一个极限lim(h->0)[f(x+h)-f(x)]/h,那么这个极限就称为f(x)的一阶导数,记作f'(x)或dy/dx。
也可以写成lim(h->0)[f(x_0+h)-f(x_0)]/h,其中x_0是f(x)的一个定义域内的点。
2.一阶导数的意义一阶导数表示了函数f(x)在其中一点上的变化率,也可以理解为切线的斜率。
如果f'(x)>0,表示函数在该点上是递增的;若f'(x)<0,表示函数在该点上是递减的;若f'(x)=0,表示该点上可能是函数的极值点。
3.求导法则常见的求导法则包括:a)常数法则:对于常数c,(c)'=0。
b) 幂次法则:对于函数f(x) = x^n,其中n为常数,(x^n)' =nx^(n-1)。
c)和差法则:对于函数f(x)=u(x)±v(x),其中u(x)和v(x)可导,(u±v)'=u'±v'。
d)乘法法则:对于函数f(x)=u(x)*v(x),其中u(x)和v(x)可导,(u*v)'=u'*v+u*v'。
e) 除法法则:对于函数f(x) = u(x) / v(x),其中u(x)和v(x)可导,(u / v)' = (u'v - uv') / v^2f)复合函数法则:如果y=f(g(x)),则y'=f'(g(x))*g'(x)。
4.一阶导数的应用一阶导数在微积分中有着广泛的应用,以下是几个常见的应用场景:a)判断函数的增减性:对于函数f(x),如果f'(x)>0,则函数在该区间上递增;如果f'(x)<0,则函数在该区间上递减。
常见的一阶导数公式
常见的一阶导数公式导数是微积分中一个非常重要的概念,它表示了函数在某一点处的变化率。
一阶导数是最基本的导数,它描述了函数在某一点处的斜率,即切线的斜率。
在实际应用中,一阶导数常常用来解决曲线的切线、最值、凹凸性等问题。
下面将介绍一些常见的一阶导数公式,帮助我们更好地理解和运用导数的概念。
1. 常数函数导数对于一个常数函数f(f)=f,其中f为常数,其导数为零,即$$ f'(x) = \\frac{d}{dx} c = 0 $$这是因为常数函数的图像是一条水平直线,斜率始终为零。
2. 幂函数导数2.1. f(f)=f f,其中f为常数幂函数的导数公式为$$ \\begin{aligned} f'(x) & = \\frac{d}{dx} x^n \\\\ & = nx^{n-1} \\end{aligned} $$这条规则是求导公式中最基本的一条,通过它可以求解很多函数的导数。
2.2. $f(x) = \\sqrt{x}$开平方函数的导数可以通过幂函数的导数公式推导得到。
假设$f(x) = \\sqrt{x}$,则$$ \\begin{aligned} f'(x) & = \\frac{d}{dx} x^{1/2} \\\\ & = \\frac{1}{2}x^{-1/2} \\\\ & = \\frac{1}{2\\sqrt{x}} \\end{aligned} $$3. 指数函数导数指数函数的导数是其自身的函数,即$$ \\frac{d}{dx} e^x = e^x $$其中,f是自然对数的底,约等于2.71828。
4. 对数函数导数对数函数的导数也具有特殊的形式,对数函数的导数公式如下:$$ \\frac{d}{dx} \\ln{x} = \\frac{1}{x} $$这是一个非常重要的结论,我们在许多求导的过程中会经常用到。
……以上是一些常见的一阶导数公式,它们是求导过程中的基础知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 0
0
0
条件
在点 P ( x , y ) 处的切线方程
0 0 0
在点 P ( x , y )处的法 线方程
0 0 0
0 0
f ′( x )存在
且不等于0 且不等于0
0
f ′( x ) = ∞ f ′( x ) = 0
0 0
y− y 1 y− y =− (x − x ) f ′( x ) = f ′( x )(x − x ) x=x y=y y=y x=x
f ( x0 + ∆x) − f ( x0 ) ∆y f ′( x0 ) = lim = lim (1) ∆x →0 ∆x ∆x →0 ∆x
若令 x = x0 + ∆x 则(1)式可以写为
f ( x) − f ( x0 ) (2) (2) x → x0 x − x0 f ( x) − f ( x0 ) 从(2)式可以看到凡是具有 lim 型式,都 x → x0 x − x0 是可用求导数的方法来解答。即 f ( x) − f ( x0 ) lim = f ′( x0 ) 。 (3) x → x0 x − x0
平均变化率
∆y ∆x
某点的变化率
∆y ∆x →0 ∆x lim
2.1 导数的概念
二、导数的概念
1. 导数的定义 定义2·1 定义 设函数 y = f (x ) 在 N ( x0 , δ ) 内有定义,当自变 内有定义, 量 x 在 x 处有改变量 ∆x时,函数 y 相应地有改变 量 ∆y = f ( x + ∆x) − f ( x ) 。当 ∆x → 0 时,若 ∆y ∆x 的极限存在,则称此极限为函数 的极限存在,则称此极限为函数
(2)当 趋于0 平均速度趋于极限值64英尺/ 64英尺 (2)当h趋于0时,平均速度趋于极限值64英尺/秒。(就是 =2的瞬时速度 的瞬时速度) 岩石在时刻t=2的瞬时速度)即:
∆s 16(2 + h) 2 − 16(2) 2 v(2) = lim = lim = 64 ∆t →0 ∆t ∆t →0 h
f ′( x ) ,或 y′ ,或
dy df 。 ,或 dx dx
x = x0
f ′( x0 ) = f ′( x )
2.1 导数的概念
二、导数的概念
4. 求导数的步骤
(1) 求增量 ∆y = f ( x + ∆x) − f ( x);
∆y f ( x + ∆x) − f ( x) (2) 算比值 ; = ∆x ∆x
0
∆x → 0
0
2.1 导数的概念
二、导数的概念
2. 左右导数的定义 左右导数的定义 根据左右极限的定义, 根据左右极限的定义,我们定义 f −′ ( x0 )
= lim∆x →0
的左导数;定义 f +′ ( x0 ) = lim ∆y x0 的左导数;
= lim+
f ( x0 + ∆x) − f ( x0 ) ∆y = lim∆x ∆x →0 ∆x
Q (t 0 + ∆ t ) − Q (t 0 ) ∆Q = lim ∆t → 0 ∆ t ∆t → 0 ∆t
2.1 导数的概念
一、 实例
变化率数学模型 以上例子如果不考察问题的实际内容, 以上例子如果不考察问题的实际内容,从数学 结构来看,都具有完全相同的数学模型 结构来看,
f ( x0 + ∆ x ) − f ( x0 ) ∆y lim = lim ∆x → 0 ∆ x ∆x → 0 ∆x
2.1 导数的概念
一、 实例
例 2
设曲线方程为y=f(x)=x 设曲线方程为y=f(x)=x3,求:
的割线的斜率? (1)过M(1,1),N(1+△x,(1+△x)3)的割线的斜率? M(1,1),N(1+△x,(1+△ (2)求过点M(1,1)的切线斜率? 求过点M(1,1)的切线斜率? M(1,1)的切线斜率
∆s f (t 0 + ∆t ) − f (t 0 ) 平均速度 v = = ∆t ∆t
当 ∆t → 0时, 平均速度的极限为
∆s
f (t 0 ) f (t 0 + ∆t )
f (t 0 + ∆t ) − f (t 0 ) ∆s lim lim lim 瞬时速度 v(t 0 ) = ∆t →0 v = ∆t →0 ∆t = ∆t →0 ∆t
2.1 导数的概念
一、 实例
2.曲线的切线斜率 2.曲线的切线斜率 割线的极限位置——切线 切线 割线的极限位置
2.1 导数的概念
一、 实例
2.曲线的切线斜率 2.曲线的切线斜率 割线的极限位置——切线 切线 割线的极限位置
2.1 导数的概念
一、 实例
2.曲线的切线斜率 2.曲线的切线斜率 割线的极限位置——切线 切线 割线的极限位置
∆y (3) 求极限 y′ = lim . ∆x→0 ∆x
2.1 导数的概念
二、导数的概念
例 3 答案:0 求函数 f ( x ) = C (C为常数 ) 的导数 . 答案
例 4
求函数 y = x 2的导数.
答案:2x 答案
2.1 导数的概念
二、导数的概念
5.导数的几何意义 导数的几何意义 导数的几何意义: 导数的几何意义:函数 y = f (x) 在点 x 处的 于函数所表示的曲线L在相应点 导数 f ′( x ) 等于函数所表示的曲线 在相应点 ( x , y ) 处的切线斜率。即 k切=f ′( x0 ) 处的切线斜率。
0
0 0 0 0 0 0 0
2.1 导数的概念
二、导数的概念
例5 求抛物线 y = x 在点 (1 , 1)处的切线方程与法线 方程。 方程。
2
例6 问曲线 y = x 上哪一点的切线与直线 y = 3 x − 1 平行? 平行?
3 2
2.1 导数的概念
三、可导与连续的关系
定理2·1 定理
处可导, 如果函数 y = f (x ) 在点 x 处可导,则它在点 处一定连续。 x 处一定连续。
(2)当 趋于0 割线的斜率趋于极限值3 就是M(1,1) M(1,1)处 (2)当△x 趋于0时,割线的斜率趋于极限值3,就是M(1,1)处 的切线斜率3 的切线斜率3。即: ∆y f (1 + ∆x) − f (1) k = lim = lim =3 ∆x → 0 ∆ x ∆x → 0 ∆x
2.1 导数的概念
0 0
反之,不一定成立。 反之,不一定成立。
三、可导与连续的关系
处连续, 函数 y = x 在 x = 0 处连续,但在 x = 0 例7 处不可导。 处不可导。 函数在某一点可导、连续、 函数在某一点可导、连续、有极限的关系 可表示为: 可表示为: 可导
⇒
连续
⇒
有极限
反之不成立。 反之不成立。
由导数定义知,函数 y = f ( x) 在 x0 的导数为
2.1 导数的概念
一、 实例
(1)
∆y f (1 + ∆x) − f (1) (1 + ∆x)3 − 13 k = tan ϕ = = = ∆x ∆x ∆x
区间的长度 △x 0.01 0.001 0.0001 0.00001 0.000001 0.0000001 0.00000001 该区间内割线的斜率 △y/△x △ 3.03010000 3.00300100 3.00030001 3.00003000 3.00000300 3.00000030 3.00000003
导数
导数
1 2 3 导数的概念 导数的运算 导数的应用
目 录
§1 导数的概念
一、实例 二、导数的概念 三、可导与连续的关系
主要内容
一、 实例
1. 变速直线运动的速度
如图, 物体运动位移与时间的关系为s = f (t )
求 t 0时刻的瞬时速度 v(t 0 ): 从 t 0 到t 0 + ∆t这段时间内,
2.1 导数的概念
一、 实例
例 1 一块岩石突然松动从峭壁顶上掉下来。实验表明: 一块岩石突然松动从峭壁顶上掉下来。实验表明: 一块致密的固体在地球表面附近从静止状态自由落下, 一块致密的固体在地球表面附近从静止状态自由落下, 下落的头t 下落的头t秒中下落的英尺数为 s = 16t 2 。 :(1 t=2到任何稍后一点的时间t=2+h,h>0的 到任何稍后一点的时间t=2+h 求:(1)从t=2到任何稍后一点的时间t=2+h,h>0的 区间上的平均速度? 区间上的平均速度? t=2瞬时速度 瞬时速度? (2) t=2瞬时速度?
2.1 导数的概念
一、 实例
2.曲线的切线斜率 2.曲线的切线斜率 割线的极限位置——切线 切线 割线的极限位置
2.1 导数的概念
一、 实例
2.曲线的切线斜率 2.曲线的切线斜率 割线的极限位置——切线 切线 割线的极限位置
2.1 导数的概念
一、 实例
2.曲线的切线斜率 2.曲线的切线斜率 割线的极限位置——切线 切线 割线的极限位置
二、导数的概念
3. 导(函)数 如果函数 y = f (x ) 在区间 ( a , b) 内每一点都 可导,则称函数 内可导。 可导,则称函数 y = f (x) 在区间 ( a , b) 内可导。 内每一点x, 此时对区间 ( a , b) 内每一点 ,都有函数 y = f (x ) 的一个导数值与之对应, 的一个导数值与之对应,这就定义了一个新的函 内对x的 数,我们称为函数 y = f (x ) 在区间 ( a , b) 内对 的 导函数,简称导 导函数,简称导数,记作
一、 实例
3. 非恒定电流在t0时刻的电流 非恒定电流在t 恒定电流的电流强度