2017-2018学年广西南宁市八年级(上)期中数学试卷
2017【联合体】初二(上)数学期中@试卷+答案
21.(6 分)如图,甲、乙两艘轮船同时从港口 O 出发,甲轮船向南偏东 45°方向航行,乙轮 船以每小时 15 海里的速度向南偏西 45°方向航行,2 小时后两艘轮船之间的距离为 50 海里,问甲轮船平均每小时航行多少海里?
( 第 21 题)
22.(8 分)如图,正方形网格中每个小正方形边长都是 1. (1)画出△ABC 关于直线 l 对称的图形△A1B1C1; (2)在直线 l 上找一点 P.使 PB=PC(要求在直线 l 上标出点 P 的位置) (3)连接 PA、PC,计算四边形 PABC 的面积
图4
图5
图6
南京学而思教研中心出品
第8题
A. 1
B. 2
C. 3
D. 4
二、填空题(每小题 2 分,共 20 分)
9. 化简: 16 =
,3 8 =
.
27
1 10. 比较大小:
2
1 3 .(用“ ”,“=”或“ ”填空).
4
11. 太阳的半径约是 696000 千米,用科学记数法表示(精确到万位)约是
千米.
12. 如图,PD⊥AB,PE⊥AC,垂足分别为 D、E,要使△APD≌△APE,可添加的条件
16. 如图,正方形 OABC 的边 OC 落在数轴上,点 C 表示的数为 1,点 P 表示的数为 1,以
P 点为圆心,PB 长为半径作圆弧与数轴交于点 D,则点 D 表示的数为
.
17. 下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程. 已知:直线 l 和 l 外一点 P
求作:直线 l 的垂线,使它经过 点P
∴△DEF 是等边三角形
26、⑴△ABC 和△ACD , △ABC 和△CBD , △ACD 和△CBD (三选二即可) ⑵∵ A 40 , B 60 ∴ ACB 180 A B 80 ∵ CD 平分 ACB ∴ ACD BCD 1 ACB 40 2 ∵ A ACD ∴ △ACD 是等腰三角形
广西南宁市西乡塘区2017-2018学年八年级第一学期段考数学试卷
2017年秋季学期南宁八年级段考数学试卷考试时间:120分钟 赋分:120分一、选择题(本大题共12小题,每小题3分,共36分)1. 如图,下列图形中是轴对称图形的是:(A) (B) (C) (D)2.以下是四位同学在钝角△ABC 中画BC 边上的高,其中画法正确的是:(A) (B) (C) (D)3. 有下列长度的三条线段,能组成三角形的是:(A) 1cm ,2cm ,4cm (B) 4cm ,6cm ,8cm (C) 5cm ,6cm ,12cm (D) 2cm ,3cm ,5cm4.如图,在△ABC 中,∠A=60°,∠B =40°,则∠C 的度数为:(A)40° (B)60° (C) 80° (D)100°第4题图 第5题图5. 如图,△ABC ≌△CDA ,并且AB=CD ,那么下列结论错误的是:(A)∠1=∠2 (B)AC=CA (C)∠B=∠D (D)AC=BC6.点M (1,2)关于x 轴对称的点的坐标为:(A) (-1,-2) (B) (-1,2) (C) (1,-2) (D) (2,-1)7.5()m n x x ⋅的计算结果是:(A)5m n x ++ (B) 5mn x (C)5mn x + (D)3()m n x +8.已知等腰三角形的一个角等于42°,则它的底角为:(A) 42° (B) 69° (C)69°或84° (D)42°或69°9. 一个多边形的内角和为720°,则该多边形是:(A) 五边形 (B) 六边形 (C) 七边形 (D) 八边形10.如图,点C 在∠AOB 的OB 边上,用尺规作图作∠AOB=∠NCB.在作图痕迹中,弧FG 是:(A)以点C 为圆心,OD 为半径的弧 (B)以点C 为圆心,DM 为半径的弧(C)以点E 为圆心,OD 为半径的弧 (D)以点E 为圆心,DM 为半径的弧11.如图,已知OC 平分∠AOB,CD//OB ,若OD=3 cm ,则CD 等于:(A) 1.5cm (B) 2cm (C) 3cm (D) 4cm12.如图,是三条两两相交的笔直公路,现欲修建一个加油站,使它到三条公路的距离相等,这个加油站应建在: (A) △ABC 三边的中线的交点上 (B) △ABC 三边垂直平分线的交点上(C) △ABC 三条边高的交点上 (D) △ABC 三内角平分线的交点上第10题图 第11题图 第12题图二、填空题(本大题共6小题,每小题3分,共18分)13. 如图,工人师傅砌门时,常用木条EF 固定矩形门框ABCD ,使其不变形,这种做法的根据是_________________.14. 在直角坐标系中,点P(-2,-4)关于y 轴的对称点的坐标为___________.15. 已知3,2==n m a a ,则n m a += .16. 如图,在△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,△ADC 的周长为9cm ,则△ABC 的周长是______________.17.如图,在Rt△ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,若BD =10,则CD =__________.18.如图,等边△ABC 中,D,E 分别在AB 、AC 上,且AD=CE ,BE 、CD 交于点P ,若2:1:=∠∠CBE ABE ,则∠BDP =__________ 度.。
广西南宁市八年级上学期数学期中考试试卷
广西南宁市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各组长度的线段为边,能构成三角形的是()A . 7 、5、12B . 6、8、15C . 8、4、3D . 4、6、52. (2分)下列图形中,既是轴对称图形又是中心对称图形的共有()个A . 1B . 2C . 3D . 43. (2分) (2018八上·太原期中) 如图,点A的坐标(﹣1,2),点A关于y轴的对称点的坐标为()A . (1,2)B . (﹣1,﹣2)C . (1,﹣2)D . (2,﹣1)4. (2分) (2019八上·九龙坡期中) 如图,若,,则的度数为()A .B .C .D .5. (2分)如图,在下列条件中,不能证明△ABD≌△ACD的是().A . BD=DC , AB=ACB . ∠ADB=∠ADC , BD=DCC . ∠B=∠C ,∠BAD=∠CADD . ∠B=∠C , BD=DC6. (2分) (2020八上·贵州月考) 已知△ABC≌△DEF,且△ABC中最大角的度数为100°,则△DEF中最大角的度数是()A . 90°B . 100°C . 120°D . 150°7. (2分)一个多边形的内角和与外角和相等,则这个多边形是()A . 四边形B . 五边形C . 六边形D . 八边形8. (2分) (2019七下·右玉期末) 如图,AD是∠EAC的平分线,,∠B=30°,则∠C为A . 30°B . 60°C . 80°D . 120°9. (2分)如图,在△ABC 中,∠C=90°.若BD∥AE,∠DBC=20°,则∠CAE的度数是()A . 40°B . 60°C . 70°D . 80°10. (2分) (2020八上·秦淮月考) 如图,锐角△ABC 中,D 、E 分别是 AB 、AC 边上的点,△ADC≌△ADC',△AEB≌△AEB' ,且C'D∥EB'∥BC , BE 、CD 交于点 F ,若∠BAC = α,∠BFC = β,则()A . 2α+β= 180°B . 2β-α= 145°C . α+β= 135°D . β-α= 60°二、填空题 (共5题;共5分)11. (1分)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=________.12. (1分)如图,△ABC中,点D、E在BC边上,∠BAD=∠CAE请你添加一对相等的线段或一对相等的角的条件,使△ABD≌△ACE.你所添加的条件________13. (1分) (2017八上·湖北期中) 如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为________.14. (1分) (2017八下·柯桥期中) 如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s)当t=________s时,以A、C、E、F为顶点四边形是平行四边形.15. (1分)(2017·宜兴模拟) 如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是________(只填一个).三、解答题 (共8题;共56分)16. (2分) (2017八上·临颍期中) 已知△ABC中,∠ABC=∠C=2∠A,BD是AC边上的高,求∠DBC的度数.17. (5分) (2019八上·海淀期中) 如图,是线段的中点,,,求证:.18. (2分) (2019八下·南沙期末) 如图,在梯形ABCD中,AD∥BC,AB=AD=DC,∠B=60°.(1)求证:AB⊥AC;(2)若DC=2,求梯形ABCD的面积.19. (10分) (2020八上·顺义期末) 在平面内,给定∠AOB=60°,及OB边上一点C,如图所示.到射线OA,OB距离相等的所有点组成图形G,线段OC的垂直平分线交图形G于点D,连接CD.(1)依题意补全图形;直接写出∠DCO的度数;(2)过点D作OD的垂线,交OA于点E,OB于点F.求证:CF=DE.20. (5分) (2019八上·信阳期中) 如图,在平面直角坐标系中,A(−3,2),B(−4,−3),C(−1,−1).(1)在图中作出△ABC关于y轴对称的△ ;(2)写出点△ , , 的坐标(直接写答案): ________; ________; ________;(3)△ 的面积为________;(4)在y轴上画出点P,使PB+PC最小21. (10分) (2017八上·济源期中) 已知:∠MON=40°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则①∠ABO的度数是________;②当∠BAD=∠ABD时,x=________;当∠BAD=∠BDA时,x=________.(2)如图2,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.22. (11分) (2020八上·永嘉期中) 如图1,己知Rt△ABC中,∠ACB=Rt∠,AC=6,BC=8,射线AM∥BC,射线CN平分∠ACB交AB于点D,交AM于点E,P是射线AM上的动点。
广西南宁市八年级上学期期中数学试卷
广西南宁市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2015八上·青山期中) △ABC中,∠CAB=∠CBA=50°,O为△ABC内一点,∠OAB=10°,∠OBC=20°,则∠OCA的度数为()A . 55°B . 60°C . 70°D . 80°2. (2分) (2019八上·乐东月考) 下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A . 2,2,5B . 3,2,6C . 1,2,2D . 1,2,33. (2分) (2019八上·肥城开学考) 等腰三角形的底角是顶角的2倍,则底角度数为()A .B .C .D .4. (2分) (2019八下·永春期中) 在平面直角坐标系中,点(2,-3)关于y轴对称的点的坐标是()A . (2,3)B . (-3,2)C . (-2,3)D . (-2,-3)5. (2分)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A . 4B . 3C . 2D . 16. (2分) (2020八上·金山期末) 下列四个命题:①有两边及其中一边的对角对应相等的两个三角形全等;②三角形的一条中线把三角形分成面积相等的两部分:③若 ,则>0:④点P(1,2)关于原点的对称点坐标为P(-1,-2);其中真命题的是()A . ①、②B . ②、④C . ③、④D . ①、③7. (2分) (2015八上·哈尔滨期中) 与三角形三个顶点距离相等的点,是这个三角形的()A . 三条中线的交点B . 三条角平分线的交点C . 三条高的交点D . 三边的垂直平分线的交点8. (2分) (2020八上·百色期末) 下列命题中,是假命题的是()A . 同旁内角互补B . 对顶角相等C . 两点确定一条直线D . 全等三角形的面积相等9. (2分) (2018八上·防城港期中) △ABC中,∠C=90°,∠A的平分线交BC于点D,如果AB=8,CD=3,则△ABD的面积为()A . 24B . 12C . 8D . 610. (2分)(2018·遂宁) 已知如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG,交AF于点M,则以下结论:①DE+BF=EF,②BF= ,③AF= ,④S△MEF= 中正确的是()A . ①②③B . ②③④C . ①③④D . ①②④11. (2分) (2020八下·曹县月考) 如图,AB,CD相交于点O,OA=OC,∠A=∠C,下列结论:(1) △AOD ≌△COB;(2) AD=CB;(3)AB=CD.其中正确的个数为()A . 0个B . 1个C . 2个D . 3个12. (2分) (2018八上·江苏月考) 如果一个三角形的一条角平分线恰好是对边上的高,那么这个三角形一定是()A . 直角三角形B . 等边三角形C . 等腰三角形D . 等腰直角三角形二、填空题 (共8题;共8分)13. (1分) (2020七下·广陵期中) 如图,在六边形,,则________°.14. (1分) (2018八上·达州期中) 某机器零件的横截面如图所示,按要求线段和的延长线相交成直角才算合格.一工人测得,,,请你帮他判断该零件是否合格________(填“合格”或“不合格”).15. (1分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是________.16. (1分) (2015八上·应城期末) 如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=3,则EF的长为________17. (1分) (2019八上·三台月考) 如图,已知中,,,,,则 ________ .18. (1分)(2014·遵义) 正多边形的一个外角等于20°,则这个正多边形的边数是________.19. (1分)(2019·广西模拟) 在平面直角坐标系中,点A的坐标是(2,-3),作点A关于x轴的对称点,得到点A’ ,再作点A’关于y轴的对称点,得到点A”,则点A”的坐标是________20. (1分) (2019八下·武汉月考) 如图,已知的平分线与的垂直平分线相交于点,,,垂足分别为,,,,则的长为________.三、解答题 (共6题;共65分)21. (5分)已知:∠AOB(如图所示)求作:∠AOB的平分线.(可以不写作法,但要保留作图痕迹)22. (15分)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD(2)求证:四边形AECF是菱形(3)若AD=3,AE=5,则菱形AECF的面积是多少?23. (10分)(2017·南开模拟) 如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A,B,C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.24. (10分)如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求的长.(2)求弦BD的长.25. (15分)如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.26. (10分)(2019·百色) 如图,菱形中,作、,分别交、的延长线于点 .(1)求证:;(2)若点恰好是的中点,,求的值.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共8题;共8分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共6题;共65分)答案:21-1、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:答案:26-1、答案:26-2、考点:解析:。
广西南宁市第八 中学2017-2018学年八年级上学期数学期中考试试卷
第1页,总17页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………广西南宁市第八 中学2017-2018学年八年级上学期数学期中考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 六 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共12题)1. 一个多边形的内角和是720°,这个多边形是( ) A . 五边形 B . 六边形 C . 七边形 D . 八边形2. 如图是三条两两相交的笔直公路,现欲修建一个加油站,使它到三条公路的距离相等,这个加油站应建在( )A . △ABC 三边的中线的交点上B . △ABC 三边垂直平分线的交点上 C . △ABC 三条边高的交点上D . △ABC 三内角平分线的交点上3. 以下列各组线段为边,能组成三角形的是( )A . 1cm ,2cm ,4cmB . 4cm ,6cm ,8cmC . 5cm ,6cm ,12cmD . 2cm ,3cm ,5cm4. 如图,下列图形中是轴对称图形的是:( )A .B .C .D .5. 以下是四位同学在钝角△ABC 中画BC 边上的高,其中画法正确的是( )答案第2页,总17页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .B .C .D .6. 在△ABC 中,△A=40°,△B=60°,则△C 的度数是:( )A . 40°B . 60°C . 80°D . 100°7. 如图所示,△ABC△△CDA ,且AB =CD ,则下列结论错误的是( )A.△1=△2 B.AC =CAC . △B =△D D . AC =BC8. 点M (1,2)关于x 轴对称的点的坐标为( )A (-1,-2)B (-1,2)C (1,-2)D (2,-1) 9.的计算结果是: ( )A .B .C .D .10. 已知等腰三角形的一个角等于42°,则它的底角为:( ) A . 42° B . 69° C . 69°或84° D . 42°或69°11. 如图,点C 在△AOB 的OB 边上,用尺规作出了CN△OA ,作图痕迹中,是( )A . 以点C 为圆心,OD 为半径的弧B . 以点C 为圆心,DM 为半径的弧 C . 以点E 为圆心,OD 为半径的弧 D . 以点E 为圆心,DM 为半径的弧12. 如图,已知OC 平分△AOB,CD//OB ,若OD=3cm ,则CD 等于( )第3页,总17页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . 1.5cmB . 2cmC . 3cmD . 4cm第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共5题)1. 如图,等边△ABC 中,D 、E 分别在AB 、AC 上,且AD=CE ,BE 、CD 交于点P ,若△ABE :△CBE=1:2,则△BDP= 度.2. 如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这种做法的根据是 .3. 在直角坐标系中,点P(-2,-4)关于y 轴的对称点的坐标为 .4. 已知m 、n 为正整数,且 ,则 的值为 .5. 如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,△ADC△的周长为9cm ,则△ABC 的周长是评卷人 得分二、计算题(共2题)答案第4页,总17页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)(2) (3)7. 先化简,再求值.,其中.评卷人得分三、解答题(共4题)8. 如图,△ABC 中,AB=AC=CD ,BD=AD ,求△ABC 中各角的度数.9. 如图,在Rt△ABC 中,△C=90°,△A=30°,BD 是△ABC 的平分线,AD=20,求DC 的长.10. 如图,已知:△D =△C ,OA=OB ,求证:AD=BC .11. 如图,△ABC 中,△B=34°,△ACB=104°,AD 是BC 边上的高,AE 是△BAC 的平分线,求△DAE 的度数.第5页,总17页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人 得分四、作图题(共1题)12. 如图,在平面直角坐标系中,A(-3,2),B(-4,-3),C(-1,-1).(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)直接写出△ABC 关于x 轴对称的△A 2B 2C 2的各顶点坐标. 评卷人 得分五、综合题(共2题)13. 如图,C 为线段AE 上一动点(不与点A 、E 重合),在AE 同侧分别作等边△ABC 和等边△CDE ,AD 与BC 相交于点P ,BE 与CD 相交于点Q ,连接PQ.求证:(1)△ACD△△BCE.答案第6页,总17页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)△PCQ 为等边三角形.14. 如图:在△ABC 中,△C=90°,AC=BC ,过点C 在△ABC 外作直线MN ,AM△MN 于M ,BN△MN 于N 。
广西南宁市八年级上学期期中数学试卷
广西南宁市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016八上·昆山期中) 已知等腰三角形的两边长分別为a、b,且a、b满足 +(2a+3b ﹣13)2=0,则此等腰三角形的周长为()A . 7或8B . 6或10C . 6或7D . 7或102. (2分) (2020八上·张店期末) 下列说法错误的是()A . 关于某直线成轴对称的两个图形一定能完全重合B . 线段是轴对称图形C . 全等的两个三角形一定关于某直线成轴对称D . 轴对称图形的对称轴至少有一条3. (2分) (2017九上·梅江月考) 如图,菱形ABCD中,∠B=60°,AB=2,E,F分别是BC,CD的中点,连接AE,EF,AF,则△AEF的周长为()A . 2B . 3C . 4D . 34. (2分) (2016八上·自贡期中) 如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A . 带①去B . 带②去C . 带③去D . 带①和②去5. (2分)(2017·巨野模拟) 下列计算正确的是()A . 2a3+a2=2a5B . (﹣2ab)3=﹣2ab3C . 2a3÷a2=2aD .6. (2分) (2020八上·安丘期末) 在平面直角坐标系中,点与点关于轴对称,则点的坐标是()A .B .C .D .7. (2分)如图,点C是△ABE的BE边上一点,点F在AE上,D是BC的中点,且AB=AC=CE,给出下列结论:①AD⊥BC;②CF⊥AE;③∠1=∠2;④AB+BD=DE,其中正确的结论有()A . 1个B . 2个C . 3个D . 4个8. (2分) (2019八上·双流开学考) 如图,∠ABD、∠ACD的角平分线交于点P,若∠A = 50°,∠D =10°,则∠P的度数为()A . 15°B . 20°C . 25°D . 30°9. (2分)(2019·镇海模拟) 下列运算中,正确的是()A . =-3B . a3•a6=a18C . 6a6÷3a2=2a3D . (﹣2ab2)2=2a2b410. (2分)(2017·滨江模拟) 如图,△ABC的两条高线BD,CE相交于点F,已知∠ABC=60°,AB=10,CF=EF,则△ABC的面积为()A . 20B . 25C . 30D . 40二、填空题 (共8题;共12分)11. (1分)如图,在△ABC中,∠A=80°,∠ABC和∠ACD的平分线交于点E,则∠E=________.12. (1分) (2018八上·南充期中) 一个等腰三角形的两边长分别为2㎝和6㎝,则它的周长为________.13. (1分)(2016·浙江模拟) 如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是________.14. (1分)(2016·防城) 计算:a2•a4=________.15. (2分)如图是百度地图的一部分(比例尺1:4000000).按图可估测杭州在嘉兴的南偏西________度方向上,杭州到嘉兴的图上距离约2cm,则杭州到嘉兴的实际距离约为________.16. (2分) (2020七下·西湖期末) 已知ax=2,ay=3,则ax+y=________;a3x﹣2y=________.17. (2分) (2016八上·大悟期中) 在△ABC中,BC=8,∠BAC=110°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E.则△ADE的周长为________;∠DAE的度数为________.18. (2分) (2020八上·右玉月考) 在中,如果,根据三角形按角进行分类,这个三角形是________三角形. ________度.三、解答题 (共8题;共76分)19. (10分) (2016七上·南开期中) 合并下列多项式:(1) x2+5y﹣(4x2﹣3y﹣1);(2) 3(4x2﹣3x+2)﹣2(1﹣4x2+x)20. (15分)如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴对称的△A′B′C′;(2)写出A′、B′、C′三点的坐标(直接写答案);(3)在(1)(2)条件下,连接OAB′三点,求△OAB′的面积.21. (10分) (2018八上·山东期中) 如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O.(1)求证:BD=CE;(2)若∠A=80°,求∠BOC的度数.22. (5分) (2019七下·河池期中) 如图所示,直线,交于点,平分,于点,,求的度数23. (6分)(2020·牡丹江) 如图,抛物线与x轴交于A,B两点,与y轴交于点C,抛物线的顶点为P.已知.请解答下列问题:(1)求抛物线的解析式,并直接写出点P的坐标;(2)抛物线的对称轴与x轴交于点E,连接,的垂直平分线交直线于点M,则线段的长为________.注:抛物线的对称轴是直线,顶点坐标是.24. (10分) (2016九上·北京期中) 已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点.(1)求证:∠AOC=∠BOD;(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.25. (10分) (2019八下·温岭期末) 如图△ABC中,点D是边AB的中点,CE∥AB,且AB=2CE,连结BE、CD。
广西南宁市八年级上学期期中数学试卷
广西南宁市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020八下·灵璧月考) 如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于点D,若AC=5cm,则AE+DE等于()A . 3cmB . 4cmC . 5cmD . 6cm2. (2分)下列说法中,错误的是()A . 三角形任意两个角的平分线的交点在三角形的内部B . 任意两个角的平分线的交点到三角形三个顶点的距离相等C . 三角形两个角的平分线的交点到三边的距离相等D . 三角形两个角的平分线的交点在第三个角的平分线上3. (2分)(2017·孝感模拟) 如图,AB∥CD,射线AE交CD于点F,若∠1=105°,则∠2的度数是()A . 75°B . 85°C . 95°D . 105°4. (2分) (2019七下·海珠期末) 关于x的不等式(a﹣5)x>(a﹣5)的解集是x>1,则a的取值范围在数轴上表示正确的是()A .B .C .D .5. (2分) (2017七下·自贡期末) 不等式组的最小整数解是()A . 0B . ﹣1C . 1D . 26. (2分) (2019七下·江门期末) 若,则下列各式中,错误的是()A .B .C .D .7. (2分)不等式4x<11的正整数解是()A . 1;2;3B . 0;1;2C . 1;2;﹣1D . 1;28. (2分)以下图的右边缘所在直线为轴将该图案向右翻折后,再绕中心旋转180°,所得到的图形是()A .B .C .D .9. (2分)下列大写英文字母,既可以看成是轴对称图形,又可以看成是中心对称图形的是()A . OB . LC . MD . N10. (2分) (2016九上·营口期中) 如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1 .则其旋转中心一定是()A . 点EB . 点FC . 点GD . 点H二、填空题 (共8题;共9分)11. (1分)(2017·抚顺模拟) 不等式组的解集为________.12. (1分) (2019八上·呼和浩特期中) 在平面直角坐标系中,,,若的面积为,且点在坐标轴上,则符合条件的点的坐标为________.13. (1分)(2014·南京) 铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为________cm.14. (1分)斜边边长为6.5cm,一条直角边长为6cm的直角三角形的另一条直角边长是________.15. (1分) (2016九上·石景山期末) 如图,在平面直角坐标系xOy中,点A在y轴上,点B在x轴上,∠ABO=60°,若点D(1,0)且BD=2OD.把△ABO绕着点D逆时针旋转m°(0<m<180)后,点B恰好落在初始Rt△ABO 的边上,此时的点B记为B′,则点B′的坐标为________.16. (1分) (2019七下·温岭期末) 已知x、y满足方程组,则2x-2y的值是________.17. (2分) (2019八下·锦江期中) 如图,在等边三角形ABC中,AB=9,D是BC边上一点,且BC=3BD,△ABD绕点A旋转后得到△ACE,则CE的长度为________,旋转的角度为________.18. (1分)如图,△ABC中,∠ACB=90°,BC=2,AC=4,将△ABC绕C点旋转一个角度到△DEC,直线AD、EB交于F点,在旋转过程中,△ABF的面积的最大值是________.三、解答题 (共8题;共61分)19. (5分) (2016八上·桐乡月考) 如图,在△ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连结DE,已知DE=2 cm,BD=3 cm,求线段BC的长.20. (10分) (2019七上·绍兴期末) 已知方程与关于 x 的方程3a-8=2(x+a)-a的解相同.(1)求 a 的值;(2)若 a、b在数轴上对应的点在原点的两侧,且到原点的距离相等,c 是倒数等于本身的数,求(a + b -c)的值.21. (10分) (2019八上·余姚期中) 2022年冬奥会和冬残奥会将在北京举行,前不久首批7家特许商品零售店在北京开业。
2017-2018学年第一学期初二数学期末试题和答案
2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
广西南宁市八年级上学期期中数学试卷
广西南宁市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018九上·仙桃期中) 下列图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .2. (2分)如图,在△ABC中,D是BC延长线上一点,∠B= 40°,∠ACD= 120°,则∠A等于()A . 90°B . 80°C . 70°D . 60°3. (2分)(2016·赤峰) 等腰三角形有一个角是90°,则另两个角分别是()A . 30°,60°B . 45°,45°C . 45°,90°D . 20°,70°4. (2分) (2018八上·太原期中) 如图,点A的坐标(﹣1,2),点A关于y轴的对称点的坐标为()A . (1,2)B . (﹣1,﹣2)C . (1,﹣2)D . (2,﹣1)5. (2分)如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1 的大小为().A . 120°B . 36°C . 108°D . 90°6. (2分) (2016八上·江阴期中) 一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是()A . 2B .C . 1D .7. (2分)图,△ABC中,∠A=90°,∠C=75°,AC=6,DE垂直平分BC,则BE的值为()A . 12B . 6C . 8D . 98. (2分) (2020八上·苍南期末) 如图,在△ABC中,点D是BC边上任一点,点F,G,E分别是AD,BF,CF的中点,连结GE,若△FGE的面积为8,则△ABC的面积为()A . 32B . 48C . 64D . 729. (2分)如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有()A . 1个B . 2个C . 3个D . 4个10. (2分) (2017九上·浙江月考) 如图所示,菱形ABCD的边长为a,点O是对角线AC上的一点,且OA=a,OB=OC=OD=1,则a等于()A .B .C . 1D . 2二、填空题 (共8题;共9分)11. (1分) (2017八下·沧州期末) 一个五边形有三个内角是直角,另两个内角都等于n°,则n=________12. (1分)如图所示,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=4,则AB与CD之间的距离等于________.13. (2分) (2015八上·武汉期中) 若正n边形的每个内角都等于150°,则n=________,其内角和为________.14. (1分)将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是________ .15. (1分) (2016八上·海南期中) 如图,点B、D、C、F在同一条直线上,且BC=FD,AB=EF、请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是________16. (1分)如图,在△ABC中,∠BAD=∠B,∠EAC=∠C,BC=12,则△ADE的周长为________.17. (1分)如图,点A、B、C都在⊙O上,OC⊥OB,点A在劣弧BC上,且OA=AB,则∠ABC=________.18. (1分) (2016八上·河西期末) 如图是一个直角三角形,若以这个直角三角形的一边为边画一个等腰三角形,使它的第三个顶点在这个直角三角形的其他边上,那么这样的等腰三角形在图中能够作出的个数为________.三、解答题 (共6题;共51分)19. (10分)多边形的内角和随着边数的变化而变化.设多边形的边数为n,内角和为N,则变量N与n之间的关系可以表示为N=(n﹣2)•180°.例如:如图四边形ABCD的内角和:N=∠A+∠B+∠C+∠D=(4﹣2)×180°=360°(1)利用这个关系式计算五边形的内角和(2)当一个多边形的内角和N=720°时,求其边数n.20. (20分)(2016·赤峰) 在平面直角坐标系内按下列要求完成作图(不要求写作法,保留作图痕迹).(1)以(0,0)为圆心,3为半径画圆;(2)以(0,﹣1)为圆心,1为半径向下画半圆;(3)分别以(﹣1,1),(1,1)为圆心,0.5为半径画圆;(4)分别以(﹣1,1),(1,1)为圆心,1为半径向上画半圆.(向上、向下指在经过圆心的水平线的上方和下方)21. (6分)平面直角坐标系中,△ABC的BC边平行于x轴,BC=2,点A的坐标为(﹣4,3),点B的坐标为(﹣3,1).(1)直接写出C点的坐标:________;.(2)画出△ABC关于y轴对称的△A1B1C1,并写出A1、B1、C1的坐标.22. (5分)如图,已知AB∥CD,AF=CE,∠B=∠D,证明BE和DF的关系.23. (5分)如图,P1.P2是反比例函数y=(k>0)在第一象限图象上的两点,点A1的坐标为(2,0),若△P1OA1与△P2A1A2均为等边三角形.(1)求此反比例函数的解析式;(2)求A2点的坐标.24. (5分)如图,在△ABC中,若∠B=2∠C,AD⊥BC,E为BC边中点,求证:AB=2DE.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共51分)19-1、19-2、20-1、20-2、20-3、20-4、21-1、21-2、22-1、23-1、24-1、第11 页共11 页。
人教版八年级上学期期中考试数学试卷及答案解析(共六套)
人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。
广西南宁市八年级上学期数学期中考试试卷
广西南宁市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分)如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定()A . △ABD≌△ACDB . △BDE≌△CDEC . △ABE≌△ACED . 以上都不对2. (2分)下列说法中不正确的是()A . 线段有1条对称轴B . 等边三角形有3条对称轴C . 角只有1条对称轴D . 底与腰不相等的等腰三角形只有一条对称轴3. (2分)如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A . ①B . ②C . ③D . ①和②4. (2分)下列说法不正确的是()A . 如果三角形有一个外角是锐角,那么这个三角形必为钝角三角形B . 三角形的一个外角大于任何一个与它不相邻的内角C . 含盐20%的盐水80克与含盐40%的盐水20克混合后就得到含盐30%的盐水100克D . 方程2x+y=5的正整数解只有2组.5. (2分)(2019·南山模拟) 下列图形既是轴对称图形也是中心对称图形的是()A .B .C .D .6. (2分) (2017八上·满洲里期末) 已知点P(1,a)与Q(b,2)关于x轴成轴对称,则a﹣b的值为()A . ﹣1B . 1C . ﹣3D . 37. (2分) (2015八下·成华期中) 如图,在以BC为底边的等腰△ABC中,∠A=30°,AC=8,则AC边上的高BD的长是()A . 4B . 8C . 2D . 48. (2分)如果等腰三角形的两边长是6cm和3cm,那么它的周长是()A . 6cmB . 12cmC . 15cmD . 12cm或15cm9. (2分) (2019八上·获嘉月考) 如图,D,E分别是△ABC的边AC,BC的中点,那么下列说法中不正确的是()A . DE是△BCD的中线B . BD是△ABC的中线C . AD=DC,BE=ECD . AD=EC,DC=BE10. (2分) (2019八上·榆树期末) 如图,在△ABC中,AB=AC ,∠A=36°,BD , CE分别平分∠ABC ,∠ACB ,若CD=3,则CE等于()A . 2B . 2.5C . 3D . 3.511. (2分) (2016八上·铜山期中) 如图,在△ABC中,BC边上的高为()A . BEB . AEC . BFD . CF12. (2分)如图OP平分∠AOB,PC⊥OA于C,D在OB上,PC=3,则PD的大小关系是()A . PD≥3B . PD=3C . PD≤3D . 不能确定13. (2分) (2018八上·腾冲期中) 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A .B .C .D .14. (2分)已知:如图,AB,BC,AC是⊙O的三条弦,∠OBC=50°,则∠A=()A . 25°B . 40°C . 80°D . 100°15. (2分) (2018七下·深圳期末) 如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,恒成立的结论有()A . ①③⑤B . ①③④⑤C . ①②③⑤D . ①②③④⑤二、解答题 (共9题;共85分)16. (5分) (2019八上·天山期中) 已知一个多边形的内角和与外角和的和为1080°,且这个多边形的各个内角都相等.求这个多边形的每个外角度数.17. (10分) (2019八上·顺德月考) 已知一次函数y=2x﹣4(1)在平面直角坐标系中画出图象;(2)该直线与x轴相交于点A,与y轴相交于点B,线段AB上有点C(1,-2),在y轴上有一动点P,请求出PA+PC的最小值。
2018-2019学 年八年级上学期期中考试数学试题(含答案)
2018-2019学年八年级(上)期中数学试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)实数﹣3的倒数是()A.﹣3 B.﹣C.D.32.(4分)25的算术平方根是()A.5 B.±5 C.﹣5 D.253.(4分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=x(x+2)﹣1 B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2 D.ax2﹣a=a(x2﹣1)4.(4分)下列计算正确的是()A.6a8÷3a2=2a5 B.a4•a3=a7 C.(2a)2=4a D.(a2)3=a55.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.66.(4分)多项式2x2+6x3中各项的公因式是()A.x2 B.2x C.2x3 D.2x27.(4分)下列式子正确的是()A.=±3 B.=3 C.=﹣3 D.8.(4分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>09.(4分)已知+(b+3)2=0,则(a+b)2017的值为()A.0 B.2017 C.﹣1 D.110.(4分)若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3 B.﹣1 C.1 D.﹣3或111.(4分)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣112.(4分)已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A.0 B.1 C.2 D.3二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)﹣的绝对值是.14.(4分)若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为.15.(4分)若x2+kx+16是完全平方式,则k的值为.16.(4分)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为.三、解答题(本大题共6小题,共56分)17.(9分)计算或化简:(1)|﹣3|﹣(2)(m4)2+m5•m3+(﹣m)4•m4(3)(1+a)(1﹣a)+a(a﹣2)18.(9分)把下列各数分别填在相应的集合中:,﹣6,,0,,3.1415926,,﹣.19.(8分)先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.20.(9分)把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.21.(9分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.22.(12分)(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①:;方法②:;(2)根据(1)写出一个等式:;(3)若x+y=8,xy=3.75,利用(2)中的结论,求x,y;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)实数﹣3的倒数是()A.﹣3 B.﹣C.D.3【解答】解:﹣3的倒数是﹣,故选:B.2.(4分)25的算术平方根是()A.5 B.±5 C.﹣5 D.25【解答】解:∵52=25,∴25的算术平方根是5.故选:A.3.(4分)下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=x(x+2)﹣1 B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2 D.ax2﹣a=a(x2﹣1)【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、符合因式分解的定义,故本选项正确;D、右边分解不彻底,不是因式分解,故本选项错误;故选:C.4.(4分)下列计算正确的是()A.6a8÷3a2=2a5 B.a4•a3=a7 C.(2a)2=4a D.(a2)3=a5【解答】解:A、原式=2a6,不符合题意;B、原式=a7,符合题意;C、原式=4a2,不符合题意;D、原式=a6,不符合题意,故选:B.5.(4分)下列选项中的整数,与最接近的是()A.3 B.4 C.5 D.6【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.6.(4分)多项式2x2+6x3中各项的公因式是()A.x2 B.2x C.2x3D.2x2【解答】解:2x2+6x3=2x2(1+3x),故选:D.7.(4分)下列式子正确的是()A.=±3 B.=3 C.=﹣3 D.【解答】解:A、原式=±3,符合题意;B、原式=﹣3,不符合题意;C、原式=3,不符合题意;D、原式=±2,不符合题意,故选:A.8.(4分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>0【解答】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、|a|>4=|d|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.9.(4分)已知+(b+3)2=0,则(a+b)2017的值为()A.0 B.2017 C.﹣1 D.1【解答】解:由题意得,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则(a+b)2017=﹣1,故选:C.10.(4分)若2m﹣4与3m﹣1是同一个数的平方根,则m的值是()A.﹣3B.﹣1 C.1 D.﹣3或1【解答】解:当2m﹣4=3m﹣1时,m=﹣3,当2m﹣4+3m﹣1=0时,m=1.故选:D.11.(4分)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣1【解答】解:∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∵a2+b2=7,∴7+2ab=9,∴ab=1.故选:B.12.(4分)已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A.0 B.1 C.2 D.3【解答】解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴a4﹣2a3﹣2a+1=a2(a2﹣2a)﹣2a+1=a2﹣2a+1=1+1=2.故选:C.二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)﹣的绝对值是.【解答】解:|﹣|=.故本题的答案是.14.(4分)若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为2.【解答】解:(ax+2y)(x﹣y)=ax2+(2﹣a)xy﹣2y2,含xy的项系数是2﹣a.∵展开式中不含xy的项,∴2﹣a=0,解得a=2.故答案为:2.15.(4分)若x2+kx+16是完全平方式,则k的值为±8.【解答】解:∵x2+kx+16=x2+kx+42,∴kx=±2•x•4,解得k=±8.故答案为:±8.16.(4分)若m2=n+2,n2=m+2(m≠n),则m3﹣2mn+n3的值为﹣2.【解答】解:∵m2=n+2,n2=m+2(m≠n),∴m2﹣n2=n﹣m,∵m≠n,∴m+n=﹣1,∴原式=m(n+2)﹣2mn+n(m+2)=mn+2m﹣2mn+mn+2n=2(m+n)=﹣2.故答案为﹣2.三、解答题(本大题共6小题,共56分)17.(9分)计算或化简:(1)|﹣3|﹣(2)(m4)2+m5•m3+(﹣m)4•m4(3)(1+a)(1﹣a)+a(a﹣2)【解答】解:(1)原式=3﹣4+4=3;(2)原式=m8+m8+m8=3m8;(3)原式=1﹣a2+a2﹣2a=1﹣2a.18.(9分)把下列各数分别填在相应的集合中:,﹣6,,0,,3.1415926,,﹣.【解答】解:如图,故答案为:﹣6,,0,3.1415926,,﹣;,;﹣6,﹣.19.(8分)先化简,再求值:(a+3)2﹣2(3a+4),其中a=﹣2.【解答】解:原式=a2+6a+9﹣6a﹣8=a2+1,当a=﹣2时,原式=4+1=5.20.(9分)把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.【解答】解:(1)27xy2﹣3x=3x(9y2﹣1)=3x(3y+1)(3y﹣1);(2)2x2+12x+18=2(x2+6x+9)=2(x+3)2;(3)(a﹣b)(a﹣4b)+ab=a2﹣5ab+4b2+ab=a2﹣4ab+4b2=(a﹣2b)2.21.(9分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.【解答】解:(1)[(9+1)2﹣(9﹣1)2]×25÷9=18×2×25÷9=100;(2)[(a+1)2﹣(a﹣1)2]×25÷a=4a×25÷a=100.22.(12分)(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①:(m+n)2﹣4mn;方法②:(m﹣n)2;(2)根据(1)写出一个等式:(m+n)2﹣4mn=(m﹣n)2;(3)若x+y=8,xy=3.75,利用(2)中的结论,求x,y;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2.【解答】解:(1)方法①:(m+n)2﹣4mn,方法②:(m﹣n)2;故答案为:(m+n)2﹣4mn,(m﹣n)2;(2)由①可得:(m+n)2﹣4mn=(m﹣n)2;故答案为:(m+n)2﹣4mn=(m﹣n)2;(3)由②可得:(x﹣y)2=(x+y)2﹣4xy,∵x+y=﹣8,xy=3.75,∴(x﹣y)2=64﹣15=49,∴x﹣y=±7;又∵x+y=8,∴或;(4)如图,表示(2m+n)(m+2n)=2m2+5mn+2n2:。
广西南宁市八年级上学期数学期中试卷
广西南宁市八年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016八上·江阴期末) 9的平方根是()A . 3B . -3C . ±3D . ±2. (2分)(2020·绥化) 下列等式成立的是()A .B .C .D .3. (2分) (2019八上·清镇期中) 点P(m+3,m+1)在x轴上,则点P坐标为()A . (0,﹣4)B . (4,0)C . (0,﹣2)D . (2,0)4. (2分)如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A . y=-x+2B . y=x+2C . y=x-2D . y=-x-25. (2分)(2018·遵义模拟) 若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是()A .B .C .D .6. (2分)两个一次函数y=ax+b和y=bx+a在同一直角坐标系中的图象可能是()A .B .C .D .7. (2分) (2020八下·陆丰期中) 如图,平行四边形ABCD的对角线AC与BD相交于点O ,AE⊥BC于E ,AB=,AC=2,BD=4,则AE的长为()A .B .C .D .8. (2分)弦AB把⊙O分成两条弧,它们的度数比为4:5,M为AB的中点,则∠AOM的度数为()A . 50°B . 80°C . 100°D . 160°9. (2分)(2017·哈尔滨模拟) 在哈市地铁2号线的建设中,甲、乙两个建设公司同时挖掘两段长度相等的隧道,如图是甲、乙两公司挖掘隧道长度y(米)与挖掘时间x(时)之间关系的部分图象.如果甲队施工速度始终不变,乙队在开挖6小时后,施工速度每小时增加了7米,结果两队同时完成了任务,那么甲队从开挖到完工所挖隧道的总长度为()米.A . 100B . 110C . 120D . 13010. (2分)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为A .B .C .D .二、填空题 (共6题;共6分)11. (1分)用代数式表示实数a(a>0)的平方根:________ .12. (1分)(2017·长安模拟) 已知m= ﹣2,a,b为两个连续的整数,且a<m<b,则a﹣b=________.13. (1分) (2017八下·宜城期末) 若点M(k﹣1,k+1)在第三象限内,则一次函数y=(k﹣1)x+k的图象不经过第________象限.14. (1分) (2019八下·哈尔滨期中) 已知,函数与的图像交于点A,则点A的坐标为________.15. (1分) (2017七下·德州期末) 在平面直角坐标系中,按照一定规律写出了如下各点坐标:点A1(2,2),A2(3,5),A3(4,10),A4(5,17),…请你仔细观察,按照此规律点A10的坐标应为________.16. (1分) (2019八上·平川期中) 如图,正方体的底面边长分别为2cm和3cm,高为5cm.若一只蚂蚁从P 点开始经过四个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为________cm.三、解答题 (共7题;共87分)17. (20分)阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:== .(1)请用其中一种方法化简;(2)化简:.18. (10分) (2020八下·霍林郭勒期末) 如图,直线的解析表达式为,且与轴交于点,直线经过点,直线,交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)求的面积.19. (18分) (2020八下·北京期末) 有这样一个问题:探究函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数的自变量x的取值范围是________;(2)下表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…-2m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的其它性质(一条即可)________.20. (11分) (2020七下·舒兰期末) 对非负实数x“四舍五入”到个位的值记为[x].即当n为非负整数时,若n﹣≤x<n+ ,则[x]=n.如:[2.9]=3;[2.4]=2;……根据以上材料,解决下列问题:(1)填空[1.8]=________,[ ]=________;(2)若[2x+1]=4,则x的取值范围是________;(3)求满足[x]= x﹣1的所有非负实数x的值.21. (7分) (2020九下·凤县月考) 问题探究如图①②,在四边形ABCD中,AB=AD,CB=CD,∠A=90°;(1)在图①中作一条直线将四边形ABCD的面积二等分;(2)已知AB=2,BC= ,在图②四边形ABCD内部求作一点P,使得PB=PD,且折线B-P-D将四边形ABCD 面积二等分;并求折线段B-P-D的长度;(3)问题解决:如图③,植物园有一块空地ABCD,其中AB=AD=100m,CB=CD=100 m,∠A=90°.根据视觉效果和花期特点,植物园设计部门想在这块空地上种上等面积的两种不同的花,要求从入口B修一条笔直的小路将这块地的面积二等分(小路面积忽略不计),以方便游客观赏,请通过计算,画图说明设计部门能否实现,若能实现,求出小路的长度;若不能,说明理由.22. (11分) (2020八下·和平期末) 甲、乙两家商场平时以同样价格出售相同的商品春节期间两家商场都让利酬宾,其中甲商场所有商品按折出售,乙商场对一次购物中超过元后的价格部分打折.设原价购物金额累计为元.(1)根据题意,填写下表:原价购物金额累计元130300500700甲商场实际购物金额元104________________560乙商场实际购物金额元130270________________(2)设在甲商场实际购物金额为元,在乙商场实际购物金额为元,分别写出,关于x 的函数解析式;(3)根据题意填空:①若在甲商场和在乙商场实际购物花费金额一样多,则在同一商场所购商品原价金额累计为________元;②若在同一商场购物,商品原价购物金额累计为元,则在甲、乙两家商场中的________商场实际购物花费金额少;③若在同一商场实际购物金额为元,则在甲、乙两家商场中的________商场商品原价购物累计金额多23. (10分)如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A.(1)求点A的坐标;(2)设x轴上一点P(a,b),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC= OA,求△OBC的面积.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共87分)17-1、17-2、18-1、18-2、18-3、19-1、19-2、19-3、19-4、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、。
南宁市2019-2020学年八年级上学期数学期中考试试卷(II)卷
南宁市2019-2020学年八年级上学期数学期中考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共16分)1. (1分)(2019·宝鸡模拟) ﹣的立方根是()A . ﹣B .C .D . ﹣2. (1分) (2018八上·灌云月考) 已知点A(a,1)与点B(5,b)关于y轴对称,则实数a,b的值分别是()A . 5,1B . ﹣5,1C . 5,﹣1D . ﹣5,﹣13. (1分) (2017八下·乌海期末) 下列三角形中,是直角三角形的是()A . 三角形的三边满足关系a+b=cB . 三角形的三边为9,40,41C . 三角形的一边等于另一边的一半D . 三角形的三边比为1∶2∶34. (1分)在平面直角坐标系中,以点(2,3)为圆心、3为半径的圆,一定()A . 与x轴相切,与y轴相切B . 与x轴相切,与y轴相交C . 与x轴相交,与y轴相切D . 与x轴相交,与y轴相交5. (1分)下列二次根式中,最简二次根式的是()A .B .C .D .6. (1分) (2019八下·长春月考) 下列计算正确的是()A .B .C .D .7. (1分)下列运算正确的是()A . =±5B . 4-=1C . ÷=9D . •=68. (1分)若直线y=kx+3与y=3x-2b的交点在x轴上,当k=2时,b等于()A .B .C .D .9. (1分)已知一次函数y=kx+1,若y随x的增大而减小,则该函数的图象经过()A . 第一、二、三象限B . 第一、二、四象限C . 第二、三、四象限D . 第一、三、四象限10. (1分) (2019八下·安岳期中) 在同一坐标系中,函数和的图像大致是()A .B .C .D .11. (1分) (2018八上·天台期中) 已知M(2,2).规定“把点M先作关于x轴对称,再向左平移1个单位”为一次变换.那么连续经过2018次变换后,点M的坐标变为().A . (-2016,2)B . (-2016,-2)C . (-2017,-2)D . (-2017,2)12. (1分)(2014·茂名) 一次函数y=x+2的图象不经过的象限是()A . 一B . 二C . 三D . 四13. (1分) (2017八下·重庆期中) 放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为()A . 600米B . 800米C . 1000米D . 不能确定14. (1分) (2016八上·淮安期末) 八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A . y=﹣xB . y=﹣ xC . y=﹣ xD . y=﹣ x15. (1分) (2017八下·和平期末) 某个一次函数的图象与直线y= x平行,并且经过点(﹣2,﹣4),则这个一次函数的解析式为()A . y=﹣ x﹣5B . y= x+3C . y= x﹣3D . y=﹣2x﹣816. (1分) (2017九上·河东开学考) 已知P1(﹣1,y1),P2(2,y2)是一次函数y=﹣x+1图象上的两个点,则y1 , y2的大小关系是()A . y1=y2B . y1<y2C . y1>y2D . 不能确定二、填空题 (共3题;共3分)17. (1分) (2019八上·利辛月考) 点P在平面直角坐标系中的坐标是(-2,6),则点P到y轴的距离是________。
2017-2018年广西南宁市八年级上学期数学期中试卷与答案
赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
DBC2017-2018学年广西南宁市八年级(上)期中数学试卷一、精心选一选(本题共12个小题,每小题3分,共36分)1.(3分)下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.2.(3分)如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10 B.6 C.4 D.23.(3分)如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.30°B.50°C.90°D.100°4.(3分)已知等腰三角形的一边等于3,一边等于7,那么它的周长等于()A.13 B.13或17 C.17 D.14或175.(3分)下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.6.(3分)在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点7.(3分)在△ABC和△FED中,如果∠A=∠F,∠B=∠E,要使这两个三角形全等,还需要的条件是()A.AB=DE B.BC=EF C.AB=FE D.∠C=∠D8.(3分)如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有()A.2对 B.3对 C.4对 D.5对9.(3分)AD是△ABC的中线,DE=DF.下列说法:①CE=BF;②△ABD和△ACD 面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个 B.2个 C.3个 D.4个10.(3分)已知等腰三角形的一个外角等于100°,则它的顶角是()A.80°B.20°C.80°或20°D.不能确定11.(3分)已知AB=AC=BD,则∠1与∠2的关系是()A.∠1=2∠2 B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°12.(3分)如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为()A.2 B.3 C.4 D.5二、细心填一填(本大题共8小题,每小题3分,共24分)13.(3分)已知过一个多边形的某一顶点共可作2017条对角线,则这个多边形的边数是.14.(3分)如图,在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD 的周长为20cm,AE=5cm,则△ABC的周长是cm.15.(3分)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.16.(3分)已知等腰三角形的一个角的度数是50°,那么它的顶角的度数是.17.(3分)点A(﹣2,a)和点B(b,﹣5)关于x轴对称,则a+b=.18.(3分)如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD 于点E,BC=5,DE=2,则△BCE的面积等于.19.(3分)将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=41°,∠2=51°,那么∠3的度数等于.20.(3分)如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是(填序号)三、解答题(本大题共6小题,共60分)21.(8分)一个多边形的内角和是它的外角和的6倍,求这个多边形的边数.22.(8分)如图,AD是△ABC的外角平分线,交BC的延长线于D点,若∠B=30°,∠DAE=55°,求∠ACD的度数.23.(10分)如图,△ABC中,AD为∠BAC的平分线,且DF⊥AC于F,∠B=90°,DE=DC.求证:BE=CF.24.(10分)如图,AB∥ED,点F、C在AD上,AB=DE,AF=DC,试说明BC=EF.25.(12分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3),(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)直接写出点A1、B1、C1的坐标.26.(12分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN 于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请写出新的结论并说明理由.2017-2018学年广西南宁市八年级(上)期中数学试卷参考答案与试题解析一、精心选一选(本题共12个小题,每小题3分,共36分)1.(3分)下面有4个汽车标致图案,其中不是轴对称图形的是()A.B.C.D.【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故选:D.2.(3分)如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10 B.6 C.4 D.2【解答】解:∵△ABD≌△ACE,∴AB=AC=6,AE=AD=4,∴CD=AC﹣AD=6﹣4=2,故选:D.3.(3分)如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.30°B.50°C.90°D.100°【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°;∴∠B=180°﹣80°=100°.故选:D.4.(3分)已知等腰三角形的一边等于3,一边等于7,那么它的周长等于()A.13 B.13或17 C.17 D.14或17【解答】解:当3为底时,其它两边都为7,7、7、3可以构成三角形,周长为17;当7为底时,其它两边都为3,因为3+3=6<7,所以不能构成三角形,故舍去.所以它的周长等于17.故选:C.5.(3分)下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【解答】解:线段BE是△ABC的高的图是选项D.故选:D.6.(3分)在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点【解答】解:∵在△ABC内一点P满足PA=PB=PC,∴点P一定是△ABC三边垂直平分线的交点.故选:B.7.(3分)在△ABC和△FED中,如果∠A=∠F,∠B=∠E,要使这两个三角形全等,还需要的条件是()A.AB=DE B.BC=EF C.AB=FE D.∠C=∠D【解答】解:A、加上AB=DE,不能证明这两个三角形全等,故此选项错误;B、加上BC=EF,不能证明这两个三角形全等,故此选项错误;C、加上AB=FE,可用ASA证明两个三角形全等,故此选项正确;D、加上∠C=∠D,不能证明这两个三角形全等,故此选项错误;故选:C.8.(3分)如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有()A.2对 B.3对 C.4对 D.5对【解答】解:∵AD平分∠BA∴∠BAD=∠CAD∵AB=AC,AD=AD∴△ABD≌△ACD(SAS)∴BD=CD,∠B=∠C∵∠EDB=∠FDC∴△BED≌△CFD(ASA)∴BE=FC∵AB=AC∴AE=AF∵∠BAD=∠CAD,AD=AD∴△AED≌△AFD9.(3分)AD是△ABC的中线,DE=DF.下列说法:①CE=BF;②△ABD和△ACD 面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:∵AD是△ABC的中线,∴BD=CD,在△BDF和△CDE中,,∴△BDF≌△CDE(SAS),故④正确∴CE=BF,∠F=∠CED,故①正确,∴BF∥CE,故③正确,∵BD=CD,点A到BD、CD的距离相等,∴△ABD和△ACD面积相等,故②正确,综上所述,正确的是①②③④.故选:D.10.(3分)已知等腰三角形的一个外角等于100°,则它的顶角是()A.80°B.20°C.80°或20°D.不能确定【解答】解:①若100°是顶角的外角,则顶角=180°﹣100°=80°;②若100°是底角的外角,则底角=180°﹣100°=80°,那么顶角=180°﹣2×80°=20°.故选:C.11.(3分)已知AB=AC=BD,则∠1与∠2的关系是()A.∠1=2∠2 B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°【解答】解:∵AB=AC=BD,∴∠B=∠C=180°﹣2∠1,∴∠1﹣∠2=180°﹣2∠1,∴3∠1﹣∠2=180°.故选:D.12.(3分)如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为()A.2 B.3 C.4 D.5【解答】解:如上图:①OA为等腰三角形底边,符合符合条件的动点P有一个;②OA为等腰三角形一条腰,符合符合条件的动点P有三个.综上所述,符合条件的点P的个数共4个.故选:C.二、细心填一填(本大题共8小题,每小题3分,共24分)13.(3分)已知过一个多边形的某一顶点共可作2017条对角线,则这个多边形的边数是2020.【解答】解:∵过一个多边形的某一顶点共可作2017条对角线,设这个多边形的边数是n,则n﹣3=2017,解得n=2020.故答案为:2020.14.(3分)如图,在△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD 的周长为20cm,AE=5cm,则△ABC的周长是30cm.【解答】解:∵DE是AC的中垂线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,又∵AE=5cm,∴AC=2AE=2×5=10cm,∴△ABC的周长=20+10=30(cm).故答案为:30.15.(3分)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为75度.【解答】解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.16.(3分)已知等腰三角形的一个角的度数是50°,那么它的顶角的度数是80°或50°.【解答】解:(1)当50°角为顶角,顶角度数即为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故答案为:80°或50°.17.(3分)点A(﹣2,a)和点B(b,﹣5)关于x轴对称,则a+b=3.【解答】解:∵A(﹣2,a)和点B(b,﹣5)关于x轴对称,∴a=5,b=﹣2,∴a+b=5﹣2=3.故答案为:3.18.(3分)如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD 于点E,BC=5,DE=2,则△BCE的面积等于5.【解答】解:过E作EF⊥BC于点F,∵CD是AB边上的高,BE平分∠ABC,∴BE=DE=5,=BC•EF=×5×1=5,∴S△BCE故答案为:5.19.(3分)将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=41°,∠2=51°,那么∠3的度数等于10°.【解答】解:等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=10°.故答案是:10°.20.(3分)如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长=AB+AC;④BF=CF.其中正确的是①②③(填序号)【解答】解:∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB,∵BF是∠ABC的平分线,CF是∠ACB的平分线,∴∠FBC=∠DFB,∠FCE=∠FCB,∵∠DBF=∠DFB,∠EFC=∠ECF,∴△DFB,△FEC都是等腰三角形.∴DF=DB,FE=EC,即有DE=DF+FE=DB+EC,∴△ADE的周长AD+AE+DE=AD+AE+DB+EC=AB+AC.综上所述,命题①②③正确.故答案为①②③.三、解答题(本大题共6小题,共60分)21.(8分)一个多边形的内角和是它的外角和的6倍,求这个多边形的边数.【解答】解:设这个多边形是n边形,由题意得(n﹣2)×180°=360°×6,解得n=14.答:这个多边形的边数是14.22.(8分)如图,AD是△ABC的外角平分线,交BC的延长线于D点,若∠B=30°,∠DAE=55°,求∠ACD的度数.【解答】解:∵∠DAE=55°,AD平分∠CAE,∴∠CAE=110°,∵∠CAE是△ABC的外角,∠B=30°,∴∠ACB=110°﹣30°=80°,∴∠ACD=180°﹣80°=100°.23.(10分)如图,△ABC中,AD为∠BAC的平分线,且DF⊥AC于F,∠B=90°,DE=DC.求证:BE=CF.【解答】证明:∵∠B=90°,∴BD⊥AB.∵AD为∠BAC的平分线,且DF⊥AC,∴DB=DF.在Rt△BDE和Rt△FDC中,,∴Rt△BDE≌Rt△FDC(HL),∴BE=CF.24.(10分)如图,AB∥ED,点F、C在AD上,AB=DE,AF=DC,试说明BC=EF.【解答】证明:∵AB∥ED,∴∠BAC=∠EDF,∵AF=DC,∴AC=DF,∴在△ABC和△DEF中,,∴△ABC≌△DEF,∴BC=EF.25.(12分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3),(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)直接写出点A1、B1、C1的坐标.=×5×3=7.5;【解答】解:(1)S△ABC(2)如图,△A1B1C1即为所求;(3)由图可知,A1(1,5),B1(1,0),C1(4,3);26.(12分)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN 于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请写出新的结论并说明理由.【解答】解:(1)如图1,∵∠ACB=90°,AD⊥MN于D,BE⊥MN于E,∴∠DAC+∠DCA=∠BCE+∠DCA,∴∠DAC=∠BCE;在△DAC与△ECB中,∵,∴△DAC≌△ECB(AAS),∴AD=CE,DC=BE,∴DE=AD+BE.(2)如图2,(1)中的结论不成立;新的结论为:DE=AC﹣BE;∵∠ACB=90°,AD⊥MN,∴∠DAC+∠ACD=∠ACD+∠BCE,∴∠DAC=∠BCE;在△ACD与△CBE中,∵,∴△ACD≌△CBE(AAS),∴AC=CE,CD=BE,∴DE=CE﹣CD=AC﹣BE;即DE=AC﹣BE.。
广西南宁市八年级上学期数学期中考试试卷(B)
广西南宁市八年级上学期数学期中考试试卷(B)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分) (2019七下·杭锦旗期中) 在下列各数3.1415、0.2060060006…、、、、、、无理数的个数是()A . 1B . 2C . 3D . 42. (1分)下列数据中是勾股数的有()组(1)3,5,7 ;(2)5,15,17 ;(3)1.5,2,2.5 ;(4)7,24,25 ;(5)10,24,26.A . 1B . 2C . 3D . 43. (1分)下列函数中,是一次函数但不是正比例函数的为()A . y=—B . y=—C . y=—D . y=4. (1分) (2019七下·昭通期末) 在平面直角坐标系中,点(2018,﹣)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限5. (1分) (2015八下·宜昌期中) 下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A . 1,2,3B . 2,3,4C . 3,4,5D . 4,5,66. (1分) (2016七上·苍南期中) 8的立方根是()A . 4B . 2C . ±2D . ﹣27. (1分) (2019九上·南关期末) 如图,在△ABC中,∠C=90°,AB=13,AC=12,下列三角函数表示正确的是()A . =B . =C . =D . =8. (1分) (2017八下·路南期中) 如图所示:数轴上点A所表示的数为a,则a的值是()A . +1B . ﹣ +1C . ﹣1D .9. (1分)(2018·河南模拟) 在平面直角坐标系中,已知点P( t,2﹣t)在第二象限,则t的取值范围在数轴上可表示为()A .B .C .D .10. (1分)已知x2=5,那么在数轴上与实数x对应的点可能是()A . P2B . P2或P4C . P1或P5D . P1或P3二、填空题 (共8题;共8分)11. (1分) (2016七下·虞城期中) 的算术平方根是________,﹣2的相反数是________,的绝对值是________12. (1分)计算:-= ________.13. (1分) (2016八上·江苏期末) 将点A(﹣2,﹣3)先向右平移3个单位长度再向上平移2个单位长度得到点B,则点B所在象限是第________象限.14. (1分)(2017·蓝田模拟) 请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A、正八边形的一个中心角的度数为________°.B、用科学计算器比较大小:cos20°________π.15. (1分)(2014·宜宾) 在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B 关于x轴的对称点C的坐标是________.16. (1分) (2016七下·宝丰期中) 等腰三角形的周长为16cm,底边长为x cm,腰长为y cm,则x与y之间的关系式为________.17. (1分)如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=4,则CD=________18. (1分)(2012·绍兴) 如图,在矩形ABCD中,点E、F分别在BC、CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为________.三、解答题 (共7题;共12分)19. (1分)把下列各数填入表示它所在的数集的大括号:3π,﹣2,﹣,3.020020002…,0,,﹣(﹣3),0.333分数集合:{ …}负有理数集合:{ …}无理数集合:{ …}.20. (2分)综合题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年广西南宁市八年级(上)期中数学试卷一、选择题(本题共12个小题,每小题3分,共36分)1.(3分)随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.(3分)已知方程(m﹣2)x﹣2x+10=0是关于x的一元二次方程,则m 的值为()A.2 B.﹣2 C.±D.±23.(3分)下列一元二次方程有两个不等的实数根的是()A.(n﹣25)2=0 B.y2+1=0 C.x2+3x﹣5=0 D.2m2+m=﹣14.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>55.(3分)在平面直角坐标系中,将抛物线y=x2﹣4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是()A.y=(x+2)2+2 B.y=(x﹣2)2﹣2 C.y=(x﹣2)2+2 D.y=(x+2)2﹣2 6.(3分)对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7) D.图象与x轴有两个交点7.(3分)点(6,﹣5)关于x轴对称的点的坐标在()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)抛物线y=x2﹣4的开口方向()A.向上B.向下C.向左D.向右9.(3分)在图中,将左边方格纸中的图形绕O点顺时针旋转90°得到的图形是()A.B.C.D.10.(3分)用配方法将方程x2﹣4x+2=0变形,正确的是()A.(x﹣2)2=0 B.(x﹣2)2=2 C.(x+2)2=0 D.(x+2)2=211.(3分)若x=﹣2是关于x的一元二次方程x2﹣6x+k=0的一个根,则k的值为()A.8 B.12 C.﹣12 D.﹣1612.(3分)如图,在长70m,宽40m的长方形花园中,欲修宽度相等的观赏路(如阴影部分所示),要使观赏路面积占总面积的,则路宽x应满足的方程是()A.(40﹣x)(70﹣x)=350 B.(40﹣2x)(70﹣3x)=2450C.(40﹣2x)(70﹣3x)=350 D.(40﹣x)(70﹣x)=2450二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:ax﹣ay=.14.(3分)抛物线y=(x﹣1)2+2的顶点坐标是.15.(3分)设方程x2﹣3x﹣1=0的两根分别为x1,x2,则x1+x2=.16.(3分)方程2x2=3x的根是.17.(3分)在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为.18.(3分)若二次函数y=﹣x2+2x+k的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+k=0的一个解x1=3,另一个解x2=.三、解答题(本大题共8小题,共66分)19.(6分)用适当的方法解下列方程x2+2x﹣15=0.20.(6分)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点分别为A(﹣4,7),B(﹣1,8),C(﹣2,11)(1)画出△ABC向下平移6个单位后的△A1B1C1;(2)画出△A1B1C1绕原点O顺时针旋转90°后的△A2B2C2,并写出B2,C2的坐标.21.(8分)某市某楼盘准备以每平方米6000元的均价对外销售,由于购房者持币观望,销售不畅.房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.求平均每次下调的百分率.22.(8分)已知抛物线的顶点坐标为(﹣2,1),且该抛物线过点(﹣4,﹣3),试确定该抛物线解析式.23.(8分)已知抛物线y=﹣x2﹣3x﹣(1)求其开口方向、对称轴和顶点坐标;(2)x取何值时,y随x的增大而减小?24.(10分)如图,将Rt△ABC绕点A按顺时针旋转一角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=,∠B=60°,求CD的长.25.(10分)已知关于x的一元二次方程x2﹣(2m﹣1)x+3=0.(1)当m=2时,判断方程根的情况;(2)当m=﹣2时,求出方程的根.26.(10分)如图,二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.2017-2018学年广西南宁市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,共36分)1.(3分)随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,是中心对称图形.故选C.2.(3分)已知方程(m﹣2)x﹣2x+10=0是关于x的一元二次方程,则m 的值为()A.2 B.﹣2 C.±D.±2【解答】解:∵方程(m﹣2)x﹣2x+10=0是关于x的一元二次方程,∴m2﹣2=2,且m﹣2≠0.解得,m=﹣2.故选:B.3.(3分)下列一元二次方程有两个不等的实数根的是()A.(n﹣25)2=0 B.y2+1=0 C.x2+3x﹣5=0 D.2m2+m=﹣1【解答】解:A、n1=n2=25,所以A选项错误;B、△=0﹣4×1×1<0,方程没有实数根,所以B选项错误;C、△=32﹣4×1×(﹣5)>0,方程有两个不相等的实数根,所以C选项正确;D、2m2+m+1=0,△=12﹣4×2×1<0,方程没有实数根,所以D选项错误.故选C.4.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.5.(3分)在平面直角坐标系中,将抛物线y=x2﹣4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是()A.y=(x+2)2+2 B.y=(x﹣2)2﹣2 C.y=(x﹣2)2+2 D.y=(x+2)2﹣2【解答】解:函数y=x2﹣4向右平移2个单位,得:y=(x﹣2)2﹣4;再向上平移2个单位,得:y=(x﹣2)2﹣2;故选B.6.(3分)对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7) D.图象与x轴有两个交点【解答】解:∵二次函数y=﹣+x﹣4可化为y=﹣(x﹣2)2﹣3,又∵a=﹣<0∴当x=2时,二次函数y=﹣x2+x﹣4的最大值为﹣3.故选B.7.(3分)点(6,﹣5)关于x轴对称的点的坐标在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点(6,﹣5)关于x轴对称的点的坐标为(6,5),(6,5)在第一象限,故选:A.8.(3分)抛物线y=x2﹣4的开口方向()A.向上B.向下C.向左D.向右【解答】解:∵a=1>0,∴抛物线y=x2﹣4开口向上.故选A.9.(3分)在图中,将左边方格纸中的图形绕O点顺时针旋转90°得到的图形是()A.B.C.D.【解答】解:根据旋转的性质可知,绕O点顺时针旋转90°得到的图形是.故选B.10.(3分)用配方法将方程x2﹣4x+2=0变形,正确的是()A.(x﹣2)2=0 B.(x﹣2)2=2 C.(x+2)2=0 D.(x+2)2=2【解答】解:x2﹣4x+2=0,移项得x2﹣4x=﹣2,方程两边同加上4得,x2﹣4x+4=2,配方得(x﹣2)2=2,故选B.11.(3分)若x=﹣2是关于x的一元二次方程x2﹣6x+k=0的一个根,则k的值为()A.8 B.12 C.﹣12 D.﹣16【解答】解:把x=﹣2代入x2﹣6x+k=0得4+12+k=0,解得k=﹣16.故选D.12.(3分)如图,在长70m,宽40m的长方形花园中,欲修宽度相等的观赏路(如阴影部分所示),要使观赏路面积占总面积的,则路宽x应满足的方程是()A.(40﹣x)(70﹣x)=350 B.(40﹣2x)(70﹣3x)=2450C.(40﹣2x)(70﹣3x)=350 D.(40﹣x)(70﹣x)=2450【解答】解:设路宽为x,(40﹣2x)(70﹣3x)=(1﹣)×70×40,(40﹣2x)(70﹣3x)=2450.故选B.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)分解因式:ax﹣ay=a(x﹣y).【解答】解:ax﹣ay=a(x﹣y).14.(3分)抛物线y=(x﹣1)2+2的顶点坐标是(1,2).【解答】解:因为y=(x﹣1)2+2是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(1,2).15.(3分)设方程x2﹣3x﹣1=0的两根分别为x1,x2,则x1+x2=3.【解答】解:∵方程x2+3x﹣1=0的二次项系数a=1,一次项系数b=3,∴x1+x2=﹣=﹣=3.故答案是:3.16.(3分)方程2x2=3x的根是x1=0,x2=.【解答】解:2x2=3x,2x2﹣3x=0,x(2x﹣3)=0,x=0,2x﹣3=0,x1=0,x2=.故答案为:x1=0,x2=.17.(3分)在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为(2,3).【解答】解:由图知A点的坐标为(﹣3,2),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(2,3).18.(3分)若二次函数y=﹣x2+2x+k的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+k=0的一个解x1=3,另一个解x2=﹣1.【解答】解:由图可知,对称轴为x=1,根据二次函数的图象的对称性,=1,解得,x2=﹣1.故答案为:﹣1.三、解答题(本大题共8小题,共66分)19.(6分)用适当的方法解下列方程x2+2x﹣15=0.【解答】解:x2+2x﹣15=0,(x﹣3)(x+5)=0,解得x1=3,x2=﹣5.20.(6分)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点分别为A(﹣4,7),B(﹣1,8),C(﹣2,11)(1)画出△ABC向下平移6个单位后的△A1B1C1;(2)画出△A1B1C1绕原点O顺时针旋转90°后的△A2B2C2,并写出B2,C2的坐标.【解答】解:(1)如图所示:△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求,B2(2,1)、C2(5,2).21.(8分)某市某楼盘准备以每平方米6000元的均价对外销售,由于购房者持币观望,销售不畅.房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.求平均每次下调的百分率.【解答】解:设平均每次降价的百分率是x,根据题意列方程得,6000(1﹣x)2=4860,解得:x1=10%,x2=1.9(不合题意,舍去);答:平均每次降价的百分率为10%.22.(8分)已知抛物线的顶点坐标为(﹣2,1),且该抛物线过点(﹣4,﹣3),试确定该抛物线解析式.【解答】解:设该抛物线解析式为y=a(x+2)2+1,﹣3=a(﹣4+2)2+1,解得,a=﹣1,即该抛物线解析式是y=﹣(x+2)2+1.23.(8分)已知抛物线y=﹣x2﹣3x﹣(1)求其开口方向、对称轴和顶点坐标;(2)x取何值时,y随x的增大而减小?【解答】解:y=﹣x2﹣3x﹣,=﹣(x2+6x+9﹣9)﹣,=﹣(x+3)2+﹣,=﹣(x+3)2+2,(1)抛物线开口向下,对称轴是直线x=﹣3,顶点坐标为(﹣3,2);(2)x>﹣3时,y随x的增大而减小.24.(10分)如图,将Rt△ABC绕点A按顺时针旋转一角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=,∠B=60°,求CD的长.【解答】解:∵∠B=60°,∴∠C=90°﹣60°=30°,∵AC=,∴AB=AC•tan30°=×=1,∴BC=2AB=2,由旋转的性质得,AB=AD,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.25.(10分)已知关于x的一元二次方程x2﹣(2m﹣1)x+3=0.(1)当m=2时,判断方程根的情况;(2)当m=﹣2时,求出方程的根.【解答】解:(1)当m=2时,方程为x2﹣3x+3=0,△=(﹣3)2﹣4×1×3=﹣3<0,∴此方程没有实数根;(2)当m=﹣2时,方程为x2+5x+3=0,△=25﹣12=13>0,∴方程有两个不相等的实数根,∴x=,故方程的根为x1=,x2=.26.(10分)如图,二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.【解答】解:(1)把A(2,0)、B(0,﹣6)代入y=﹣x2+bx+c,得:解得,∴这个二次函数的解析式为y=﹣x2+4x﹣6.(2)∵该抛物线对称轴为直线x=﹣=4,∴点C的坐标为(4,0),∴AC=OC﹣OA=4﹣2=2,=×AC×OB=×2×6=6.∴S△ABC。