Dynamical overlap fermions techniques and results
曲率无关方向扩散及改进型Chan-Vese主动轮廓模型
曲率无关方向扩散及改进型Chan-Vese主动轮廓模型一、引言1.1 研究背景和意义1.2 相关研究综述1.3 研究内容和方法二、曲率无关方向扩散2.1 常规方向扩散模型2.2 曲率无关方向扩散模型的原理和优点2.3 数值实现及实验结果分析三、Chan-Vese主动轮廓模型3.1 Chan-Vese模型的基本原理3.2 模型的优缺点分析3.3 修改型Chan-Vese主动轮廓模型提出及原理四、改进型Chan-Vese主动轮廓模型实验4.1 实验数据集及方法4.2 结果分析与对比4.3 模型评价及应用前景展望五、结论5.1 研究成果总结5.2 存在问题及未来工作展望5.3 对相关领域的启示和贡献注:上述提纲是一般模式的论文提纲,实际情况根据所选材料确定第一章:引言1.1 研究背景和意义图像处理技术在医学成像、工业检测、交通监控等领域应用广泛。
主动轮廓模型是图像处理中常用的技术之一,能够对图像中感兴趣的区域进行分割。
常规的主动轮廓模型使用曲率流方法对轮廓进行演化,但是这种方法容易出现边缘模糊或者断裂的问题,同时处理高曲率区域的精度较低。
曲率无关方向扩散模型是一种新的主动轮廓模型,它不仅可以保持边缘的清晰度,而且对高曲率区域的处理效果也很好。
因此,优化主动轮廓模型的方法成为图像处理研究的热点之一。
1.2 相关研究综述主动轮廓模型和曲率流方法已经被广泛研究和应用。
为了解决曲率流方法的问题,相继提出了很多曲率无关的方法,如全变分模型(Variational model)、水平集方法(Level-set method)和区域竞争模型(Region competition model)等。
这些方法在实际应用中有较好的效果,但是也存在一些问题,如计算量大、收敛速度慢等。
近年来,针对主动轮廓模型的不足之处,采用改进型的方法进行研究。
例如,针对区域竞争模型的计算量大的问题,提出了基于快速多分辨率分析的算法;针对全变分模型的边缘细化不明显,提出了可以减少计算量的全变分-动态正则化模型等。
小生境遗传算法综述
反映个体之间相似程度的共享函数来调整群体中各个个体的适应度,以维护群体的多样性,
从而在这以后的群体进化过程中,算法能够依据这个调整后的新适应度来进行选择运算。其
中:个体i、j的相似程度可以是基因型的海明距离或表现型的欧氏距离,以dij表示;经调整 后个体的适应度为其原适应度值除以小生境数mi,mi为个体i与群体内其他个体之间的共享 函数
nbWinners = 1; for (j = i+1 ; j< n-1 ; j++) { if (Fitness(P[j])>0 && Distance (P[I], P[j])<Sigma){ if (nbWinners < Kappa) { nbWinners++; }
内最佳个体数。据说该方法适用于求解具有非常复 杂搜索空间的优化问题。
数随着群体的进化而变化。每个小生境i有两个参数:midi和σshi;分别代表小生境的中心点 位置和小生境的半径。当群体中的个体与midi的距离小于σshi时,则该个体为小生境i的成员。
1、计算群体的初始适应度; 2、运行 FSGA 或其他算法,记录最佳个体 S; 3、以 G(S)修正群体的适应度,目的是抑制 S 所在 区域的个体参与下一次进化; 4、如果最佳个体超出某一设定的临界值,则该个 体作为问题的一个峰值输出; 5、如果所有的峰值都输出,则停止;否则,转步 2;
图 2 Sequential Niching 的实现步骤 Fig 2 The pseudocode of Sequential Niching
Fi+1(x) = Fi (x)G(x, ) Si−1
(6)
同年Yin & Germay[17]将MacQueen’s KMEAN聚类算法引入FSGA。该方法的基本思想是: 先将群体分成k组,对应于k个小生境;个体的共享适应度由其原适应度除以小生境数mi,mi 由下式给出:
Experimental investigation of air–water, two-phase flow regimes in
Scientia Iranica B(2011)18(4),923–929Sharif University of TechnologyScientia IranicaTransactions B:Mechanical EngineeringExperimental investigation of air–water,two-phase flow regimes in vertical mini pipeP.Hanafizadeh,M.H.Saidi∗,A.Nouri Gheimasi,S.GhanbarzadehSchool of Mechanical Engineering,Sharif University of Technology,Tehran,P.O.Box11155-9567,IranReceived8November2010;revised28April2011;accepted12June2011KEYWORDSMini pipes;Two-phase flow; Flow pattern; Visualization; Flow pattern map.Abstract In this study,the flow patterns of air–water,two-phase flows have been investigated experimentally in a vertical mini pipe.The flow regimes were observed by a high speed video recorder in pipes with diameters of2,3and4mm and length27,31and25cm,respectively.The comprehensive visualization of air–water,two-phase flow in a vertical mini pipe has been performed to realize the physics of such a two-phase flow.Different flow patterns of air–water flow were observed simultaneously in the mini pipe at different values of air and water flow rates.Consequently,the flow pattern map was proposed for flow in the mini-pipe,in terms of superficial velocities of liquid and gas phases.The flow pattern maps are compared with those of other researchers in the existing literature,showing reasonable agreement.©2011Sharif University of Technology.Production and hosting by Elsevier B.V.All rights reserved.1.IntroductionGas–liquid,two-phase flow in micro structures has played an important role in several industrial and medical applications, such as micro heat exchangers,lab-on-chips,bio-MEMS and micro cooling electronics.Physical perception of micro flows is critical in order to optimize and develop the design of such devices.Two-phase flows at mini and micro scale have recently attracted the attention of scientists as a result of its wide usage in advanced science and technology,namely Micro-Electro-Mechanical Systems(MEMS),chemical engineering, bioengineering,medical devises,micro cooling systems,micro structures in computers,etc.The literature survey on this issue has been categorized into adiabatic and phase change work, which has been summarized in this paper.∗Corresponding author.E-mail address:saman@(M.H.Saidi).1.1.Adiabatic worksThe works of Suo and Griffith[1]were among the first studies concentrating on flow patterns in microchannels.They detected three different flow patterns,namely,bubbly/slug, slug and annular flow,in their studies,using channels with widths in the range of0.514–0.795mm.Sadatomi et al.[2] proposed flow regime maps in vertical rectangular channels and indicated that channel geometries have little influence in noncircular channels with large hydraulic diameters greater than10mm.Xu et al.[3]investigated concurrent vertical two-phase flow in a vertical rectangular channel with a narrow gap, experimentally.They reported that with a decrease in channel gap,the transition from one flow regime to another occurs at smaller gas flow rates.They developed a new criterion to predict transition from annular flow,as well.Hestroni et al.[4] performed experiments for air–water and steam–water flow in parallel triangular micro-channels,developed a practical modeling approach for two-phase micro-channel heat sinks and considered the discrepancy between flow patterns of air–water and steam–water flow in parallel micro-channels. Fukagata et al.[5]simulated an air–water two-phase flow in a20µm ID tube,numerically,with focus upon flow and heat transfer characteristics in the bubble train flows.He and Kasagi[6]simulated numerically adiabatic air water slug flow in a micro tube.They focused on pressure drop characteristics and their modeling.They found that the total pressure drop of a slug flow can be decomposed into a frictional pressure drop and a pressure drop over the bubble itself.Carlson et al.[7]1026-3098©2011Sharif University of Technology.Production and hosting by Elsevier B.V.All rights reserved.Peer review under responsibility of Sharif University of Technology.doi:10.1016/j.scient.2011.07.003924P.Hanafizadeh et al./Scientia Iranica,Transactions B:Mechanical Engineering18(2011)923–929investigated characteristics of multiphase dynamics,especially two-phase gas–liquid flow,by means of advanced numerical simulations.They compared two Computational Multi-Fluid Dynamic(CMFD)codes,Fluent and TransAT,and reported a prediction of recirculating flow in the bubbly flow case using TransAT,while significant recirculation was not observed in the solution using Fluent.Saison and Wongwises[8]performed a series of experiments in a horizontal circular micro channel with an inner diameter of0.15mm.They presented a flow pattern map in terms of the phase superficial velocities, and proposed a new pressure drop correlation for practical application.1.2.Phase change worksThe pool boiling heat transfer,in a vertical narrow annular with closed bottoms,was observed through a transparent quartz shroud by Yao and Chang[9],and stages of evolving boiling phenomena with an increase in heat flux were reported. Several researchers observed three basic flow patterns,namely, bubbly,slug and annular flow,in the mini pipe and channel. Damianides and Westwater[10]performed experiments with a1mm tube,and Mertz et al.[11]and Kasza et al.[12] studied the flow visualization of water nucleation in a single rectangular channel of2.5mm by6mm.Lin et al.[13]used a single round tube with2.1mm inside diameter for their experiments,and compared the flow transitions with those predicted by Bernea et al.[14].Sheng and Palm[15]performed their experiments with1–4mm diameter tubes.Cornwell and Kew[16]found three different flow patterns for R-113, namely,isolated bubbles confined bubbles and slug/annular flow,in rectangular channels with cross sectional areas of 1.2–0.9mm and3.5–1.1mm.Ory et al.[17]considered the effects of capillary,inertia,friction and gravity forces on the velocity distribution and temperature field along a single capillary two-phase flow in a heated micro-channel.Research dealing with gas–liquid,two-phase flow in micro-channels,in situations where fluid inertia was significant in comparison with surface tension,was reviewed by Ghiaasiaan and Abdel-Khalik[18].Jiang et al.[19]studied the boiling of water in triangular micro-channels,having widths of50and100µm. They observed individual bubbles at low heat fluxes,and an abrupt change in flow pattern to an unstable slug flow with increasing heat flux.Chedester and Ghiaasiaan[20]addressed the hydro-dynamically controlled Onset of a Significant Void (OSV)in heated micro tubes.They derived a simple semi-empirical correlation for the radius of departing bubbles at the OSV point to show the accuracy of their hypothesis.Some experimental studies have been reported on gas liquid two-phase flow in mini and micro conduits by Kandlikar[21],Lee and Mudawar[22]and Serizawa et al.[23].The three zone boiling heat transfer model was developed by Thome et al.[24]. Revellin and Thome[25]used an optical measurement method for two-phase characteristics of R-134a and R-245fa,in0.5mm and0.8mm diameter channels,to determine the frequency of bubbles existing in the microevaporator.They detected four flow patterns,namely,bubbly,slug,semi-annular and annular flow,whose transitions were not well compatible with neither the macroscale map of refrigerants nor the microscale map of air–water flow.Sobierska et al.[26] experimentally investigated the water boiling phenomena in a vertical rectangular microchannel,with a hydraulic diameter of0.48mm.They observed three main flow patterns,namely, bubbly,slug and annularflow.Figure1:Schematic of test apparatus.Due to the effects of surface tension,two-phase flows at mini and micro scale have different behavior in comparison with the macro scale.The aim of the present work is to visualize flow regimes in air–water two-phase flows and propose a flow regime map for such flows in vertical mini pipes.The neural network technique is implemented to recognize and predict a gas–liquid,two-phase flow pattern in mini tubes,having diameters of2,3and4mm.2.Experimental setupThis study is carried out by experimental apparatus schematically shown in Figure1.Air and water are used as gas and liquid phases in the experiments.The water flow rates are regulated by the needle valves and are measured by the cali-brated rotameter.Air and water are mixed together in a mixer made of acrylic glass and placed at the bottom of the riser pipe. The compressed air is fed by the compressor via an air injec-tor,which is schematically depicted in Figure2.The water flows from the center hole of a mixer,with a diameter of2mm,while air is injected into the holes around the center hole,each having 1mm diameter.The air flow rates are set by the regulator valve and are continuously measured by the calibrated gas rotameter. The overall height and inside diameter of the riser pipe are sum-marized in Table1.In order to have the opportunity to visually observe the two-phase flow patterns,the riser pipe was made of transparent glass.The air water mixture was directed upward through the riser,separated in the separation tank at the top of the riser and the air was discharged into the atmosphere.Differ-ent flow regime images were captured by a digital high speed camera,with a frame rate of1200fps,from the test section of the upriser.The test section is placed after the entrance section to diminish the effect of the entrance region.The length of the entrance section is about500mm.The superficial air and water velocities are0.5–10m/s and0.05–1m/s,respectively.P.Hanafizadeh et al./Scientia Iranica,Transactions B:Mechanical Engineering 18(2011)923–929925Figure 2:Schematic of air and watermixer.Figure 3:(a)RGB picture;(b)gray picture;and (c)subtracting and median process of flow in the pipe (3mm diameter).3.Experimental results 3.1.Image processingImage processing techniques must be performed in order to extract features from the images of the two-phase flow.Each picture has 8bit RGB (red,green and blue)color format,being converted from RGB to a grey scale mode.The output image has 256grey levels from 0(black)to 255(white).It is difficult to extract the bubbles directly from an original digital image and therefore preprocessing procedures must be undertaken to reduce noise and improve the quality of the images.An image-subtracted algorithm was used to reduce background noise by subtracting the background image from each dynamic image.In order to smooth the image border,a median filter was also used.A sliding window (3×3)was used in this process,and the median gray level of the pixels in the window was ter,the gray level of the pixels located at the center of the window was replaced by the median.The result of these processes is shown in Figure 3.3.1.1.Inverting binary imageThe images were converted from grayscale to binary mode by threshold segmentation,and an iterative procedure was used to calculate the optimizing threshold as follows [27]:Figure 4:Binary image of two-phase flow in the mini pipe.(a)The minimum and maximum of the gray level,namely Z land Z k ,are found in the image,and the initial value of the threshold is derived from their arithmetic average as:T 0=(Z k +Z l )/2.(1)(b)According to the initial value of threshold T K ,the imageis divided into two parts,namely,object and background,and the average value of the gray level in each part is calculated as:Z O =−Z (i ,j )<T kZ (i ,j )N O,(2)Z B =−Z (i ,j )>T kZ (i ,j )N B,(3)where Z (i ,j )is the gray level of the pixel (i ,j )in the image,N O is the number of the pixels in which Z (i ,j )is less than T K ,and N B is the number of pixels in which Z (i ,j )is more than T K .(c)The new threshold is calculated based on the arithmeticaverage of the object and background segments of the image as:T k +1=(Z O +Z B )/2.(4)If T K =T K +1,then the algorithm is finished,else K ≪=K +1,and turn to step (b).The binary image of the bubbles in the vertical pipe,which is the result of the above procedure,is shown in Figure 4.3.1.2.Image morphology processingSome morphological functions,such as dilation,erosion,opening and closing operations,were applied to modify the shapes of bubbles.Dilation adds pixels to the boundaries of the objects in an image,while erosion removes pixels on the object boundaries.The definition of a morphological opening of an image is erosion followed by dilation,using the same structuring element for both operations.The related operation,morphological closing of an image,is the reverse.It consists of dilation followed by erosion,with the same structuring element.Both of them do not significantly alter the area or shape of objects.The opening operation removes small objects and smoothes boundaries.Borders removed by erosion are restored by dilation,but small objects that were absorbed during erosion do not reappear after dilation.The closing operation was used to fill tiny holes and smooth boundaries.Objects were expanded by dilation and then reduced by erosion,so borders were smoothed and holes were filled [28,29].After926P.Hanafizadeh et al./Scientia Iranica,Transactions B:Mechanical Engineering 18(2011)923–929Figure 5:Final image of two-phase flow in the mini pipe.these operations,the result of image processing is shown in Figure 5.Bubble images of two-phase flow were clear using the above image processing,and it prepared bubbles for quantitative analysis,such as measuring area,perimeter and diameter.3.2.Flow pattern mapIn the experimental procedure while varying gas or liquid mass flow rate,a 10s film was recorded from the flow regime at a speed of 1200fps.The recorded film was replayed in slow motion for recognition of flow regimes.Each film converted to separate frames in a picture format using Adobe Premiere software.The achieved pictures were used as inputs of image processing techniques.The final binary pictures were used for the mentioned post processing procedure,such as flow regimedetection,void fraction and bubble velocity calculation,etc.Figure 6shows those typical flow regimes observed in the vertical,co-current,air–water,two-phase flows,in the 3mm mini pipe.Four basic flow patterns,namely,bubbly,slug,churn and annular,accompanied by their transitions,are illustrated in these figures.The visualization shows that air–water two-phase flows in mini pipes do not have three dimensional behaviors,especially in bubbly and slug flows.The final processed images of different flow regimes in air–water,two-phase flow in mini pipes have been presented in Figure 7.Figures 8–10show the flow pattern map for a vertical round tube with inner diameters of 2,3and 4mm,respectively.The proposed maps are in terms of superficial velocities of phases,and the four main flow patterns are depicted in these maps.In Figure 11,the achieved flow pattern for the pipe with 2mm ID was compared to the work of Ide et al.[30],shown by a solid line.They divided the flow pattern map into the four main regions,namely,dispersed bubbly flow,intermittent flow,churn flow and annular flow.The comparison shows that the bubbly and annular flows in the present work are not well in accordance with those of Ide et al.In the present work,the dispersed bubbles were not seen,because the air bubble injector did not have very thin holes.As a result,the created bubbles mostly have diameters in the range of the pipe diameter.Even the existence of air injectors with thin holes cannot guarantee the creation of bubbly flow.In the case of small bubbles occurring,as a result of thin holes in the air injector and the developed two-phase flow,they would collapse,resulting in large bubbles know as intermittent flow.Bubbly flows are mainly promoted by bubble breaking mechanisms,due to turbulence effects.It seems that in small diameter pipes,the formation of a specific flowpatterns(a)Bubbly.(b)Bubbly-slug.(c)Slug.(d)Messy-slug.(e)Churn.(f)Wispy-annular.(g)Ring.(h)Wavy-annular.(i)Annular.Figure 6:Different flow patterns in a vertical pipe with 2mm diameter.P.Hanafizadeh et al./Scientia Iranica,Transactions B:Mechanical Engineering18(2011)923–929927(a)Bubbly.(b)Slug.(c)Messy-slug.(d)Churn.(e)Ring.(f)Wavy-annular.Figure7:Final processed image of different two-phase flow regimes in the minipipe.Figure8:Flow patterns for2mm innerdiameter.Figure9:Flow patterns for3mm inner diameter.mainly depends on mixer configuration.The radial air supplierused in this study makes intermittent flow patterns,such asslug and churn flows,while the air supply in the tube centerfavors annular flow.This can be the reason for an absence ofannular flow in the proposed flow patterns.The comparison offlow patterns also reveals that the slug,messy slug andsemi-Figure10:Flow patterns for4mm inner diameter.annular flows in the proposed map are in accordance with theintermittent flow of Ide et al.[30].In the present study,a noticeable difference between flowpattern maps for vertical pipes with various diameters of2,3and4mm is not seen.This can be justified in regard tothe fact that the dominant forces acting on the air–watermixture in the small diameter pipes,namely,gravitation,inertia,surface tension and buoyancy forces,are in the sameorder of magnitude.This concept clearly indicates that thesethree flow patterns can be combined to form a new flow patternfor the gas–liquid,two-phase flow in small diameter pipes.A combination of these three flow patterns results in a newflow pattern map,which is illustrated in Figure12.A FuzzyC-Means clustering technique(FCM)was used to classify theflow patterns.The solid lines in the figure show the transitionregion of the flow patterns.This figure shows the achieved flowmap for mini pipes with diameters in the range of2–4mm.4.ConclusionIn this paper,air–water,two-phase flow patterns wereinvestigated experimentally for mini pipes with diameters of2,3and4mm.An image processing technique was used fordetection of flow patterns from pictures derived from filmsrecorded with a high speed camcorder.The obtained flowpatterns reveal that there is no noticeable difference between928P.Hanafizadeh et al./Scientia Iranica,Transactions B:Mechanical Engineering 18(2011)923–929Figure 11:Comparison between the achieved flow patterns with the work of Ide et al.[30]for a pipe with diameter of 2mm.Figure 12:Proposed two-phase vertical upward flow pattern map.two-phase,upward flow patterns in this range of diameters.A new flow pattern map was achieved for vertical mini pipes,due to a comparison of the flow patterns of these three diameters of pipe.The proposed map was compared with existing research.A comparison of the present work and previous research shows that the flow patterns of slug,messy slug and semi-annular in the present work are compatible with the intermittent flow pattern of Ide et al.[30].However,in the present study,the annular flow is seen at a lower superficial air velocity than that in the work of Ide et al.[30].AcknowledgmentsThis research was funded by Iran Supplying Petrochemical Industries,Parts,Equipment and Chemical Design Corporation (SPEC),as a joint research project with Sharif University of Technology (project No.KPR-8628077).References[1]Suo,M.and Griffith,P.‘‘Two-phase flow in capillary tubes’’,Int.J.Basic Eng.,86,pp.576–582(1964).[2]Sadatomi,Y.,Sato,Y.and Saruwatari,S.‘‘Two-phase flow in verticalnoncircular channels’’,Int.J.Multiphase Flow ,8,pp.641–655(1982).[3]Xu,J.L.,Cheng,P.and Zhao,T.S.‘‘Gas–liquid two-phase flow regimes inrectangular channels with mini/micro gaps’’,Int.J.Multiphase Flow ,25,pp.411–432(1999).[4]Hetsroni,G.,Mosyak, A.,Segal,Z.and Pogrebnyak, E.‘‘Two-phaseflow patterns in parallel micro-channels’’,Int.J.Multiphase Flow ,29,pp.341–360(2003).[5]Fugakata,K.,Kasagi,N.,Ua-arayaporn,P.and Himeno,T.‘‘Numericalsimulation of gas liquid two-phase flow and convective heat transfer in a micro tube’’,Int.J.Heat and Fluid Flow ,28,pp.72–82(2007).[6]He,Q.and Kasagi,N.‘‘Numerical investigation on flow pattern andpressure drop characteristics of slug flow in a micro tube’’,6th Int.ASME Conf.on Nanochannels,Microchannels and Minichannels ,Darmstadt,Germany,pp.24–35(2008).[7]Carlson,A.,Kudinov,P.and Narayanan,C.‘‘Prediction of two-phase flowin small tubes:a systematic comparison of state-of-the-art CMFD codes’’,5th Europe Thermal-Sci.Conf.,The Netherlands,pp.138–150(2008).[8]Saisorn,S.and Wongwises,S.‘‘An experimental investigation of two-phaseair–water flow through a horizontal circular micro-channel’’,Exp.Thermal Fluid Sci.,33,pp.306–315(2009).[9]Yao,S.C.and Chang,Y.‘‘Pool boiling heat transfer in a confined space’’,Int.J.Heat Mass Transf.,26,pp.841–848(1983).[10]Damianides,D.A.and Westwater,J.W.‘‘Two-phase flow patterns in acompact heat exchanger and in small tubes’’,2nd UK National Conf.on Heat Transf.,11,United Kingdom,London,pp.1257–1268(1988).[11]Mertz,R.,Wein,A.and Groll,C.‘‘Experimental investigation of flow boilingheat transfer in narrow channels’’,Calore e Technologia ,14(2),pp.47–54(1996).[12]Kasza,K.E.,Didascalou,T.and Wambsganss,M.W.‘‘Microscale flow visu-alization of nucleate boiling in small channels:mechanisms influencing heat transfer’’,Int.Conf.on Compact Heat Exchanges for the Process Indus-tries ,New York,USA,pp.343–352(1997).[13]Lin,S.,Kew,P.A.and Cornwell,K.‘‘Two-phase flow regimes and heattransfer in small tubes and channels’’,11th Int.Heat Transf.Conf.,Kyongju,Korea,2,pp.45–50(1998).[14]Barnea,D.,Luninsky,Y.and Taitel,Y.‘‘Flow pattern in horizontal andvertical two-phase flow in small diameter pipes’’,Canadian J.Chem.Eng.,61,pp.617–620(1983).[15]Sheng, C.H.and Palm, B.‘‘The visualization of boiling in small-diameter tubes’’,Int.Conf.on Heat Transport and Transport Phenomena in Microsystems ,Banff,Canada,pp.44–53(2001).[16]Cornwell,K.and Kew,P.A.‘‘Boiling in small parallel channels’’,CEC Conf.on Energy Eff.in Process Tech.,Athens,Greece,pp.624–638(1992).[17]Ory, E.,Yuan,H.,Prosperetti, A.,Popinet,S.and Zaleski,S.‘‘Growthand collapse of a vapor bubble in a narrow tube’’,Phys.Fluids ,12,pp.1268–1277(2000).[18]Ghiaasiaan,S.M.and Abdel-Khalik,S.I.‘‘Two-phase flow in micro-channels’’,Adv.Heat Transf.,34,pp.145–253(2001).[19]Jiang,L.,Wong,M.and Zohar,Y.‘‘Forced convection boiling in a micro-channel heat sink’’,Int.J.Micro-Electro-Mech.Sys.,10,pp.80–87(2000).[20]Chedester,R.C.and Ghiaasiaan,S.M.‘‘A proposed mechanism for hydrodynamically-controlled onset of significant void in microtubes’’,Int.J.Heat Fluid Flow ,23,pp.769–775(2002).[21]Kandlikar,S.G.‘‘Fundamental issues related to flow boiling in minichan-nels and microchannels’’,Exp.Therm.Fluid Sci.,26,pp.389–407(2002).[22]Lee,J.and Mudawar,I.‘‘Two phase flow in high heat flux micro channelheat sink for refrigeration cooling applications’’,Int.J.Heat Mass Transf.,48,pp.928–955(2005).[23]Serizawa,A.‘‘Gas liquid two-phase flow in microchannels’’,In MultiphaseFlow Handbook ,C.T.Crowe,Ed.,2nd ed.,pp.830–887,CRC Press (2006).[24]Thome,J.R.,Dupont,V.and Jacobi, A.M.‘‘Heat transfer model forevaporation in micro channels’’,Int.J.Heat Mass Transf.,47,pp.3375–3385(2004).P.Hanafizadeh et al./Scientia Iranica,Transactions B:Mechanical Engineering18(2011)923–929929[25]Revellin,R.and Thome,J.R.‘‘Experimental investigation of R-134a andR-245fa two-phase flow in microchannels for different flow conditions’’, Int.J.Heat Fluid Flow,28,pp.63–71(2007).[26]Sobierska, E.,Kulenovic,R.and Mertz,R.‘‘Heat transfer mechanismand flow pattern during flow boiling of water in a vertical narrow channel experimental results’’,Int.J.Thermal Sci.,46,pp.1172–1181 (2007).[27]Shi,L.‘‘Fuzzy recognition for gas–liquid two-phase flow pattern based onimage processing’’,Proc.of13rd IEEE Int.Conf.on Control and Automation, pp.1424–1427(2007).[28]Heijmans,H.J.A.M.,Morphological Image Operators,Academic Press,NewYork(1994).[29]/help/toolbox/images/index.html.[30]Ide,H.,Kariyasaki,A.and Fukano,T.‘‘Fundamental data on the gas–liquidtwo-phase flow in minichannels’’,Int.J.Thermal Sci.,46,pp.519–530 (2007).Pedram Hanafizadeh received his M.S.and Ph.D.Degrees in Mechanical Engineering from the Centre of Excellence in Energy Conversion at Sharif University of Technology,Tehran,Iran,in2005and2010,respectively.His work is mainly concentrated on the field of Multiphase Flow,Experimentally, Numerically and Analytically.His research interests include Characteristics of Multiphase Flow,Heat Transfer,Boiling and Condensation,Instrumentation in Fluid Flow,Image Processing for Flow Field Analysis,and Industrial and Applicable Usage of Multiphase Flow.Mohammad Hassan Saidi is Professor and Chairman of the School of Mechanical Engineering at Sharif University of Technology,Tehran,Iran. His current research interests include Multiphase Flows,Heat Transfer Enhancement in Boiling and Condensation,Modelling of Pulse Refrigeration, Vortex Tube Refrigerator,Indoor Air Quality and Clean Room Technology, Energy Efficiency in Home Appliances and Desiccant Cooling Systems.Arash Nouri Gheimasi obtained his B.S.Degree in Mechanical Engineering in2010,and is currently an M.S.student at the Centre of Excellence in Energy Conversion at the School of Mechanical Engineering,Sharif University of Technology,Tehran,Iran,under the supervision of Professor Saidi.His B.S. thesis involved work on the Characteristics of Gas-Liquid Two-Phase Flow in Mini Pipes and he is now working on Application of Visual Techniques in Two-Phase Flow.His research interests include the area of Two Phase Flow and Its Industrial Applications.Soheil Ghanbarzade received his B.S.and M.S.Degrees in Mechanical Engineering from the Centre of Excellence in Energy Conversion at Sharif University of Technology in2008and2010,respectively.Since then he has worked under the supervision of Professor M.H.Saidi as research staff in the Multiphase Group.His research interests include:Analytical,Numerical and Experimental Methods to Study Characteristics of Large Scale and Mini Scale Air-Water,Two-Phase Flows.He holds a Gold medal from the13th National Olympiad of Mechanical Engineering in Iran,and is currently a Ph.D.student of Petroleum Engineering at the University of Texas,Austin,USA.。
A Comprehensive Survey of Multiagent Reinforcement Learning
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 38, NO. 2, MARCH 2008
A Comprehensive Survey of Multiagent ReinfoN
A
MULTIAGENT system [1] can be defined as a group of autonomous, interacting entities sharing a common environment, which they perceive with sensors and upon which they act with actuators [2]. Multiagent systems are finding applications in a wide variety of domains including robotic teams, distributed control, resource management, collaborative decision support systems, data mining, etc. [3], [4]. They may arise as the most natural way of looking at the system, or may provide an alternative perspective on systems that are originally regarded as centralized. For instance, in robotic teams, the control authority is naturally distributed among the robots [4]. In resource management, while resources can be managed by a central authority, identifying each resource with an agent may provide a helpful, distributed perspective on the system [5].
长筒弹力袜与中筒弹力袜在小腿段浅静脉曲张患者中的疗效比较及其对血流动力学的影响研究
中国现代医生2020年11月第58卷第33期•临床研究-长筒弹力袜与屮筒弹力袜在小腿段浅静脉曲张患者屮的疗效比较及其对血流动力学的影响研究甄杰生广东省台山市人民医院肝胆乳腺甲状腺血管外科,广东台山529200[摘要]目的探讨长筒弹力袜与中筒弹力袜在小腿段浅静脉曲张患者中的疗效比较及其对血流动力学的影响研究。
方法选取2015年1月-2019年11月我院收治的小腿段浅静脉曲张患者157例,所有患者均接受大隐静脉高位结扎剥脱术治疗,依据术后使用的医用弹力袜长度不同进行分组,对照组78例,研究组79例,对所有患者的临床资料进行回顾性分析。
对照组应用中筒弹力袜,研究组应用长筒弹力袜。
比较两组临床治疗总有效率及相关血流动力学指标。
结果研究组辅助治疗总有效率为98.7%.,显著高于对照组的89.7%(P<0.05)。
研究组隐股交界远端股静脉的反流时间为(2.6±0.9)s,显著短于对照组的(4.1±0.5)s(P<0.05),研究组股静脉内径为(10.5±0.4)m m,显著低于对照组的(14.4±0.7)mm(P<0.05)。
结论小腿段浅静脉曲张患者在大隐静脉高位结扎剥脱术后使用医用弹力袜,可起到十分显著有效的辅助效果,且长筒弹力袜的辅助效果更加理想,可更为显著地改善患者患肢的血流动力学指标水平。
[关键词]静脉曲张;大隐静脉;弹力袜;血流动力学[中图分类号]R82[文献标识码]B[文章编号]1673-9701渊2020冤33-0123-03Comparative observation on the curative effect of long-barreled compression stockings and middle-barreled compression stockings in patients with superficial varicose veins of the calf and the effect on hemodynamicsZHEN JieshengDeparLmenL of HepaLobiliary,BreasL and Thyroid and Vascular Surgery,People's HospiLal of Taishan CiLy in Guangdong Province,Taishan529200,China[Abstract]Objective To invesLigaLe Lhe comparaLive observaLion on Lhe curaLive effecL of long-barreled compression sLockings and middle-barreled compression sLockings in paLienLs wiLh superficial varicose veins of Lhe calf and Lhe sLudy of Lheir effecLs on hemodynamics.Methods A LoLal of157paLienLs wiLh superficial varicose veins of Lhe calf who were admiLLed Lo our hospiLal from January2015Lo November2019were selecLed.All paLienLs received high saphenous vein ligaLion and sLripping,and were grouped according Lo Lhe lengLh of Lhe medical compression sLockings afLer Lhe operaLion,including78cases in Lhe conLrol group,and79cases in Lhe sLudy group.The clinical daLa of all paLienLs were reLrospecLively analyzed.The conLrol group used middle-barreled compression sLockings,and Lhe sLudy group used long-barreled compression sLockings.The clinical LreaLmenL LoLal efficiency and Lhe relevanL hemodynamic indexes be-Lween Lhe Lwo groups were observed and compared.Results The LoLal effective raLe of adjuvanL Lherapy in Lhe sLudy group was98.7%,which was significanLly higher Lhan89.7%in Lhe conLrol group(P<0.05).The reflux Lime of Lhe disLal femoral vein of Lhe saphenous femoral juncLion in Lhe sLudy group was(2.6±0.9)s,which was significantly shorLer Lhan(4.1±0.5)s of Lhe conLrol group(P<0.05).The inLernal diameLer of Lhe femoral vein in Lhe sLudy group was(10.5±0.4)mm,which was significanLly lower Lhan(14.4±0.7)mm of Lhe conLrol group(P<0.05).Conclusion The use of medical compression sLockings afLer Lhe high ligaLion and sLripping of Lhe greaL saphenous vein in paLienLs wiLh superficial varicose veins of Lhe calf can play a very significanL and effecLive auxiliary effecL,and Lhe long-barreled elasLic sLockings has more ideal auxiliary effecL,which can more significantly improve Lhe hemodynamic index level of Lhe paLienL's affecLed limb.[Key words]Varicose veins;GreaL saphenous vein;Compression sLockings;Hemodynamics•临床研究・中国现代医生2020年11月第58卷第33期下肢浅静脉曲张中最常见的一种就是大隐静脉曲张,主要是指下肢浅静脉发生瓣膜关闭不全,导致静脉中的血液发生反流,瘀滞远端静脉血管[1]。
生化分离工程第4讲 膜分离技术
Pont
业、造纸工业等
Enka/AKZO,Gambro,Asahi Chemical
血液渗析、工业 废液等
Amicon Corp.,Koch Eng.Inc., 制药工业、乳品
Nittl Denko
工业等
Permea/Air Prod.,Ube Ind., Hoechst/Celanese
医疗、燃烧过程 等
膜分离优点和缺点
➢ 在常温下进行 ➢ 有效成分损失极少,特别适用于热敏性物质,如抗生素等医药、果汁、酶、蛋白的分离与浓缩
➢ 无相态变化 保持原有的风味,能耗极低,其费用约为蒸发浓缩或冷冻浓缩的1/3-1/8
➢ 无化学变化 典型的物理分离过程,不用化学试剂和添加剂,产品不受二次污染
➢ 选择性好 可在分子级内进行物质分离,具有普遍滤材无法取代的卓越性能
10. 亲和膜分离技术概念及特点 • 11 . 电渗析的工作原理 • 12.膜的污染与处理?
膜科学的发展史
年代
科学家
主要内容
1748 1827
Abbe Nollet Dutrochet
水能自发地穿过猪膀胱进入酒精溶液,发生 渗透现象
名词渗透作用(Osmosis)的引入
1831
J.V.Mitchell 气体透过橡胶膜的研究
硝酸纤维膜的出现。
初次成功使用了人工肾 合成膜的研究,发明了电渗析,微孔过滤和血液透析等 分离工程 相转化法制出了非对称反渗透膜 发明了液膜 制出了界面反应聚合复合膜
膜工业的发展史
分离过程 年代
目前主要厂商
应用
微滤 电渗析 反渗透
渗析 超滤 气体分离 渗透汽化
1925 1960 1965 1965 1970 1980 1990
用转子动力学及有限元建模分析大型工业涡轮压缩机
用转子动力学及有限元建模分析大型工业涡轮压缩机J. Jeffrey Moore Giuseppe Vannini Massimo Camatti Paolo Bianchi 用转子动力学分析一个大型工业压缩机箱体和转子—轴承支撑系统。
建立复杂箱体及支撑结构的三维有限元模型。
在这里介绍了两种方法,包括箱体与基础间的传递函数法以及转子—箱体—基础的完全联接模型。
获得了箱体模型对轴承支承及转子的影响。
第一种方法获得了有限元模型中轴承支撑位置的频响函数。
用该频响函数产生一维曲线。
然后将这些传递函数纳入转子动力学模型中。
第二种方法解决了完全联接的转子及箱体模型。
用一个不平衡响应计算进行了在这两种情况下的转子临界转速和箱体模型响应。
压缩机及支撑的影响导致第二临界转速的下降至工作速度,不符合美国石油协会(API)第6177版要求。
结合转子轴颈轴承,箱体,支撑修改得出了一个满意的API兼容的解决方案。
结果验证了完全联接模型传递函数的方法。
DOI: 10.1115/1.2938272介绍:在典型的大型涡轮机械中,基础和箱体对转子响应及临界转速有显著影响。
箱体还在其他应用场合包括液体火箭发动机和重要垂直泵浦用于海上钻井作业有影响.Darlow et al[1]包括箱体影响的一个长的垂直泵。
Corbo et al.[2]也提出了建立垂直泵工作箱体影响。
Childs et al.[3] 显示火箭发动机涡轮泵的一项分析,包括弹性箱体模式。
Kubany et al[4] 用三维有限元法模拟了10MV的电动马达并展示了这种联接方法记录所有的基础的模式在操作速度范围内的重要的意义。
多数现代有限元程序允许为有转子陀螺效应的元素包括梁用3 D建模。
轴承可以被精确地模拟出等效刚度和阻尼系数类似转子动力学参数。
这些轴承可以被纳入一个三维有限元模型,以代表复杂几何实体单元的箱体和基础。
虽然这种方法捕捉真实的动态互动的转子和外壳,有限元模型不允许使用依赖速度系数轴承,这需要大量人工操作来产生不平衡响应的情节。
流动在撕裂模非线性增长中扮演的角色-精选文档
P J B E B J B
中国科学技术大学
v Jz t U v U = B jz t
B e z
J 2
v e F z
2 U F
const , u 0 B0 ,
12
线性撕裂模的物理模型
• 磁通函数取为
~ ( r , , , t ) = ( r ) + ( r , ,, t ) 0
• 速度流函数取为
F ( r ,, , t ) F ( r ,, , t )
中国科学技术大学 ~
等离子体物理理论和计算机模拟研讨会
流动在撕裂模非线性增长中 扮演的角色
李 定,郭泽华
中国科学技术大学等离子体物理实验室
2019年9月13日
1 1
主要内容
研究背景与动因
几种模型之综述
中国科学技术大学
本文模型及方程 发展方程和特例 初步结论和讨论
2
研究背景和动因
托卡马克放电过程中,撕裂 模是造成大破裂的最危险的 MHD 不稳定性之一。
14
求解撕裂模方程的边界层方法
y
外区
内区
外区
中国科学技术大学
0 rs a
(0 ) 0
d
15
(a) 0
求解撕裂模方程的边界层方法
内区为奇异层,扰动函数及其一阶导数与二阶导数相 比均可忽略,与二阶导数相连的电阻率仅在内区起作 x 0 2 2 用,求出模方程的内区解和 。 ( ln / x ) dx
2019年,董家齐等人分析了反常电子粘滞双撕裂模的 线性增长,表明两个奇异层之间的极向扰动速度有剪 切,认为这也许是触发内部输运垒的机制。
基于“核心病机观”从脾胃浊毒辨治干燥综合征
ʌ临证验案ɔ基于 核心病机观 从脾胃浊毒辨治干燥综合征❋郝新宇1,王彦刚2ә,刘㊀宇1,周平平1,姜㊀茜2(1.河北中医学院,石家庄㊀050200;2.河北中医学院附属医院,石家庄㊀050011)㊀㊀摘要:介绍王彦刚教授运用化浊解毒法从脾胃辨治干燥综合征的临证经验,王彦刚教授从 核心病机观 出发,认为干燥综合征与脾胃关系密切,浊毒侵犯中焦脾胃,气机升降失常,津液输布失司,机体失养是干燥综合征的核心病机,贯穿疾病始末㊂在治疗上以化浊解毒为基本大法,遵循疾病发展之规律,抓住每一阶段主要病机,不忘核心病机,以虚实为纲,着眼于脾胃,佐以解毒㊁行气㊁祛湿㊁清热㊁祛瘀㊁滋阴等法,病证结合,辨证施治,治疗效果显著㊂文末以典型案例佐证,供同道参考借鉴㊂㊀㊀关键词:干燥综合征;核心病机观;脾胃;浊毒;王彦刚㊀㊀中图分类号:R442.8㊀㊀文献标识码:A㊀㊀文章编号:1006-3250(2021)01-0158-03Pattern Differentiation and Treatment of Sjogren's Syndrome According to Turbid Toxin of The Spleen and Stomach Based on The Theory of "Core Pathogenesis"HAO Xin-yu 1,WANG Yan-gang 2ә,LIU Yu 1,ZHOU Ping-ping 1,JIANG Qian 2(1.Hebei University of Chinese Medicine,Shijiazhuang 050200,China;2.Affiliated Hospital of Hebei University of Chinese Medicine,Shijiazhuang 050011,China)㊀㊀Abstract :The article introduces professor WANG Yan-gang's clinical experience of treating Sjogren s syndrome by using resolving turbid and eliminating toxin method of spleen and stomach.My tutor starts from the view of "core pathogenesis"and thinks that Sjogren's syndrome is closely related to the spleen and stomach ,and turbid toxin violating on the spleen and stomach ,leading to the disorder of Qi ,the body fluid ,and the nourishment is the core pathogenesis of Sjogren's syndrome which runs through the whole course of the disease.In the treatment ,my tutor uses resolving turbid and eliminating toxin method as the basic way ,follows the regular of disease development ,grasps the main pathogenesis of each stage and keeps the core pathogenesis in mind ,takes the deficiency and excess as the outline ,focuses on spleen and stomach ,uses methods of eliminating toxin ,moving Qi ,dispelling dampness ,clearing heat ,dispelling stasis and nourishing Yin ,combines the disease and syndrome ,uses the method of syndrome differentiation ,the treatment effect is remarkable.At the end of the article ,typical case is used for reference.㊀㊀Key words :Sjogren's syndrome ;Core pathogenesis ;Spleen and stomach ;Turbid toxin theory ;WANG Yan-gang❋基金项目:河北省临床医学优秀人才培养和基础课题研究项目(361025)-基于浊毒理论对慢性萎缩性胃炎癌变预警及其机制研究作者简介:郝新宇(1990-),女,河北石家庄人,在读博士研究生,从事中西医结合临床与基础研究㊂ә通讯作者:王彦刚(1967-),男,教授,主任医师,博士研究生,从事中西医结合临床与基础研究,Tel :*************,E-mail :piwei001@ ㊂㊀㊀干燥综合征(sjogren s syndrome ,SS )是一种主要累及外分泌腺功能的慢性炎症性自身免疫病,以唾液腺和泪腺受损㊁功能下降而出现的口干㊁眼干为主要表现,同时可累及其他组织器官,表现出皮肤干燥㊁关节疼痛㊁乏力㊁低热等全身症状㊂西医学主要采用糖皮质激素和免疫调节剂治疗[1],但其不良反应较大且疗效未得到普遍认可㊂中医学根据证候将此病归为 燥证 虚劳 渴证 等病证范畴,且在治疗本病能显著改善症状,控制延缓病情进展,提高患者的生活质量,存在一定优势[2-3]㊂王彦刚教授在治疗疑难杂症方面积累了丰富的临床经验㊂同时总结前人经验,结合临床实践,在各种病机理论基础上系统总结,提出 核心病机观 理论,其认为干燥综合征的核心病机为浊毒阻滞中焦,致机体失调诸症由生,治疗上从 浊毒 立论进行辨治,疗效显著㊂现笔者将王彦刚治疗干燥综合征经验总结如下㊂1㊀诸症丛生,责之脾胃,浊毒致病,核心病机王彦刚通过多年的临床实践,在各种病机理论基础上,将哲学理论与中医学理论相结合,提出 核心病机观 理论,认为在疾病的发生㊁发展㊁演变过程中,必定存在一种贯穿疾病始末㊁起决定作用的 基本矛盾 ,是疾病的本质所在,即 核心病机 ㊂而在疾病发展各阶段,常出现不同于核心病机的其他病机,是疾病某一阶段的 主要矛盾 ,即疾病当前所处阶段的主要病机,因此核心病机是推动整个疾病发生发展的内在因素,主要病机则决定了疾病各阶段的表现㊂故在治疗上需抓住疾病某一阶段的主要病机,同时不忘顾及疾病的本质原因,标本兼顾,辨证施治㊂王彦刚在浊毒理论[4]的基础上进行发挥,认为 浊毒 为滞㊁湿㊁热㊁瘀㊁毒[5]等诸邪胶结不解而成,故其认为SS 核心病机为浊毒侵犯中焦脾胃,气机升降失常,津液输布失司,机体失养以致病,851中国中医基础医学杂志Journal of Basic Chinese Medicine㊀㊀㊀㊀㊀㊀2021年1月第27卷第1期January 2021Vol.27.No.1同时气机不畅㊁气血津液阻滞或运行无力,不能将代谢产物及时排出,蕴积体内以致浊毒内生,浊毒日久,灼伤阴液,从而出现SS典型症状,如眼干㊁口干㊁鼻干,以及全身症状如身痒㊁乏力㊁肢体麻木㊁肌肉疼痛等症状㊂1.1㊀眼㊁口㊁鼻㊁唇干燥脾在窍为口,其华在唇㊂‘灵枢㊃五阅五使“曰: 口唇者,脾之官也 ,同时脾在液为涎, 涎出于脾而溢于胃 ,故若浊毒侵袭中焦,脾胃失健,津液乏源,化生不足,或浊毒日久,多从热化,伤气耗血,灼伤阴液,致阴液亏虚,则见口干㊁唇干㊁舌燥;脾主升清,输布水谷精微与津液濡养全身,若脾主升清功能异常,津液不得上承,则目鼻失养,见眼干㊁鼻干㊂1.2㊀周身乏力㊁肌肤干涩㊁身痒脾胃为气机升降之枢纽,脾主运化,胃主受纳,二者密切合作,维持饮食物的消化及精微㊁津液的传输,机体得以滋养㊂若浊毒外袭或机体失调,浊毒内生,损伤脾胃,脾失健运,胃失和降,气血津液生化乏源,输布失常,机体营养不足则见周身乏力;气血津液不足,一则不能濡养滋润肌肤,二则津伤化燥,燥盛则干,故见肌肤干涩㊁身痒等㊂1.3㊀肌肉疼痛㊁肢体麻木脾在体合肉主四肢,全身肌肉的壮实丰满,有赖于脾胃运化的水谷精微及津液的滋养濡润㊂正如‘素问㊃五脏生成篇“所云: 脾主运化水谷之精,以生养肌肉,故主肉㊂ 若浊毒阻滞中焦气机,脾胃升降失常,水谷精微的生成与输布障碍,肌肉失于营养滋润,不荣不通则痛,可见肌肉软弱无力㊁疼痛㊂四肢同样需要脾胃运化的水谷精微和津液滋养,以维持正常的生理功能㊂‘素问㊃太阴阳明论篇“云: 四肢皆禀气于胃,而不得至经,必因于脾,乃得禀也㊂ 故若脾失健运,不能为胃行其津液,四肢不得水谷之气濡养,则脉道不利,肢体麻木㊂2 浊毒立论,辨证施治基于核心病机观理论㊁SS的临床表现及与脾胃的生理病理关系,王彦刚认为SS的治疗应以化浊解毒为基本大法,遵循疾病发展之规律,抓住主要病机,不忘核心病机,以虚实为纲,着眼于脾胃,以解毒㊁行气㊁祛湿㊁清热㊁祛瘀㊁滋阴等法辨证施治㊂2.1㊀化浊解毒以清胃腑2.1.1㊀清热祛湿以截浊毒之源㊀浊毒因水湿代谢失常凝而成浊,蕴结日久化热而成[6],故当以清热祛湿治法,截断浊毒生成之源泉㊂王彦刚常用黄芩㊁黄连以清热燥湿㊁泻火解毒,用于清中焦湿热;当SS患者出现身痒时,常用苦参㊁白鲜皮㊁地肤子同用,既可清热燥湿㊁除脾胃之湿热,又可止痒以对症治疗;若湿浊较重,症见肢体困重,常用藿香㊁佩兰㊁苍术以燥湿健脾,用于湿阻中焦之证;砂仁为 醒脾调胃之要药 ,既可化湿醒脾又可行气,故王彦刚常用此药治疗脾胃气滞及湿阻中焦证,症见胃脘胀痛㊁大便黏腻不爽等,同时湿和痰常兼夹出现,若患者因胃气上逆出现恶心呕吐㊁头目眩晕等,常用半夏㊁旋覆花燥湿化痰㊁降逆止呕,若因胃热呕吐则当用竹茹清热化痰止呕㊂2.1.2㊀行气导滞以通浊毒之路㊀浊毒之邪易于阻滞气机,亦可随气机升降遍布全身㊂而脾胃为气机升降之枢纽,故当脾胃受邪㊁清阳不升㊁浊阴不降,以致气机升降失调,邪无以出路,积聚体内而致病,故需用行气导滞之药通胃腑㊁畅气机,给邪以出路㊂王彦刚常用陈皮㊁青皮以行气导滞㊁健脾和中,用于偏中焦寒湿之气滞;香橼㊁佛手气香醒脾,辛行苦泄,入脾胃以行气宽中,常用于SS患者出现脘腹胀痛之症状;枳实㊁厚朴同用,二者皆入脾胃经,辛行苦降,既能燥湿消痰又可下气除满,常用于食积气滞;SS患者除典型症状外,常表现出抑郁㊁胁痛㊁不思饮食等症状,故王彦刚常用甘松以芳香行气㊁开郁醒脾㊂‘本草纲目“记载: 甘松,芳香,能开脾郁,少加入脾胃药中,甚醒脾气㊂2.1.3㊀解毒消瘀以化浊毒之物㊀浊毒停滞体内,阻碍气机运行,气不行血则血液瘀滞致血瘀,故浊毒致病常形成瘀血之病理产物㊂‘血证论“中曰: 有瘀血,则气为血阻,不得上升,水津因不得随气上升 ,故当瘀血内停㊁气机受阻,以致津液不能正常输布,除出现SS典型症状眼干㊁口舌干燥㊁口渴等症状外,还常常伴有胃脘部疼痛不适及肌肤甲错㊁面色晦暗㊁舌有瘀点瘀斑等症状,故王彦刚采用活血祛瘀之药,如川芎㊁姜黄㊁郁金㊁延胡索等,既能活血祛瘀又能行气止痛,且延胡索能行血中气滞,气中血滞,专治一身上下诸痛,为活血化气第一要药,诸药合用旨在祛瘀血㊁畅气机㊁通津液㊁养机体;若热毒较深,SS患者可见紫癜㊁荨麻疹㊁结节红斑等血管病变[7],则常用板蓝根㊁青黛以凉血消斑,蒲公英㊁败酱草清热解毒㊁泄降滞气,同时对于解毒除湿效果显著㊂2.2㊀滋阴益气以健脾胃浊毒日久,灼伤阴液,深入脏腑,耗气伤津,导致阴液亏虚㊁正气亏损,以致SS疾病后期病性由实转虚或虚实夹杂㊂在诊治过程中需结合八纲辨证及脏腑辨证,根据证候表现综合考量㊂阴虚津伤是SS后期的主要病机,表现为眼干无泪㊁口唇干燥㊁皮肤干枯㊁舌有裂纹等,故治疗当滋阴生津为主,并着眼于脏腑,既要滋补脾胃之阴以复津液生化之源,又要顾及久病伤肝肾之阴,故王彦刚常选用北沙参㊁麦冬㊁石斛㊁玉竹以养阴益胃生津,此药皆入胃经,可养胃阴㊁清胃热,对于胃阴虚有热之口干多饮㊁大便干结㊁舌红少津效果尤甚㊂同时不忘滋肝肾之阴以护先天之气,故常选用入肝肾经之药枸杞子㊁女贞子㊁旱莲草㊁桑葚以滋补肝肾㊁生津润燥㊂病久则耗气,正气9512021年1月第27卷第1期January2021Vol.27.No.1㊀㊀㊀㊀㊀㊀中国中医基础医学杂志Journal of Basic Chinese Medicine虚弱,邪气可干,故亦当调护脏腑之气,尤重护脾胃之气㊂若SS患者兼见气短懒言㊁神疲倦怠㊁嗳气㊁面色萎黄㊁食少等,当以黄芪㊁白术㊁山药益气健脾㊂‘医学衷中参西录“记载: 黄芪能补气,兼能升气 ,白术为 脾脏补气健脾第一要药 ㊂‘神农本草经“云: 山药,补中,益气力,长肌肉 ㊂故此三者配伍使用,旨在调护后天之气,使水谷精微生化有源,气血津液输布畅达㊂3 典型病案王某,女,70岁,2017年1月21日初诊:主诉口眼干燥㊁皮肤瘙痒伴肢体麻木6个月,加重1个月㊂患者半年前感到口眼干燥,皮肤瘙痒,口渴欲饮,伴有肢体麻木㊁肌肉疼痛等症状㊂曾于某医院查抗核抗体谱抗SSA㊁抗dsDNA抗体阳性,行腮腺造影㊁唇腺活检等,确诊为干燥综合征㊂电子胃镜示慢性萎缩性胃炎㊂间断服用药物治疗病情改善不明显,后因症状加重就诊于本院㊂刻见口眼干燥,舌干辣,皮肤瘙痒,烧心,反酸,夜间肢体麻木,肌肉疼痛,脐上及下肢发凉,大便干燥,小便尚可,舌紫暗,苔黄腻,脉弦㊂中医诊断燥痹,治宜化浊解毒㊁养阴生津㊂处方:茵陈15g,黄芩12g,黄连12g,栀子12g,知母15g,生石膏30g,生大黄9g,玉竹10g,玄参20g,地肤子15g,白鲜皮15g,石斛9g,赤芍15g,蒲公英30g,海螵蛸15g,枳实15g,厚朴15g,瓦楞粉30 g,元明粉3g,焦槟榔15g,每日1剂,水煎服,分早晚2次温服㊂服药半个月后复诊,口眼干燥,舌干辣症状较前缓解,身痒不明显,肢体麻木较前改善,偶烧心,遂守原方,随症加减,继服6个月,口眼干燥㊁身痒㊁肢体麻木疼痛等症状基本消除,随访半年病情稳定㊂按语:患者以口眼干燥㊁皮肤瘙痒伴肢体麻木为主诉就诊,根据症状㊁舌脉及西医诊断,辨证属浊毒内蕴证㊂浊毒侵犯中焦脾胃,脾胃气机升降失常,气血生化乏源,水谷精微及津液输布障碍,机体失于濡养,出现口眼干燥㊁舌干㊁身痒㊁四肢麻木㊁肌肉疼痛等症状㊂同时浊毒侵犯,胃腑受损,胃失滋养,胃液减少,腺体萎缩,故SS患者常呈现慢性萎缩性胃炎及相关症状㊂浊毒内蕴日久,胃络瘀阻,阳气不能随血液输布于下肢及胃部,故见脐上及双下肢发凉,以黄芩㊁黄连㊁蒲公英化浊解毒共为君药;茵陈㊁栀子清利湿热;石膏㊁知母清热泻火,且知母清润兼备,能滋阴润燥;枳实㊁厚朴㊁焦槟榔行气消积,通降胃腑之气共为臣药;佐以玉竹㊁玄参㊁石斛养阴益胃生津滋养机体,同时防苦寒之药伤及脾胃;生大黄㊁元明粉通腑泄浊,给邪以出路;赤芍清热散瘀;地肤子㊁白鲜皮清热燥湿止痒;海螵蛸㊁瓦楞粉抑酸以对症治疗㊂全方攻补兼施,清润并用,气阴兼顾,补中有通,临床疗效显著㊂参考文献:[1]㊀赵福涛,周曾同,沈雪敏,等.原发性干燥综合征多学科诊治建议[J].老年医学与保健,2019,25(1):7-10.[2]㊀黄钰婷,汲泓.从中医五脏理论论治干燥综合征[J].现代医学与健康研究电子杂志,2018,2(16):132-134.[3]㊀姜兆荣,于静,金明秀.金明秀教授从 燥毒瘀血津枯 辨治干燥综合征的经验[J].时珍国医国药,2015,26(3):716-717. [4]㊀王彦刚,吕静静,董环,等.慢性糜烂性胃炎HGF㊁c-Met相关性研究[J].中国中西医结合杂志,2017,37(4):410-413. [5]㊀王彦刚,刘宇,李佃贵.化浊解毒法治疗慢性萎缩性胃炎疗效的Meta分析[J].中医杂志,2015,56(23):2017-2020. [6]㊀王彦刚,田雪娇,李佃贵,等.李佃贵治疗慢性萎缩性胃炎用药规律研究[J].中国中医基础医学杂志,2017,23(5):702-705.[7]㊀L.HERETIU,D.PREDEEANU.Sicca to Lymphoma:SjogrenSyndrome[J].Open Journal of Rheumatology and AutoimmuneDiseases,2013,3(1):26-30.收稿日期:2020-05-16(上接第123页)说“: 尝见一医方开小草,市人不知为远志之苗,而用甘草之细小者㊂又有一医方开蜀漆,市人不知为常山之苗,而另加干漆者㊂凡此之类,如写玉竹为萎蕤,乳香为薰陆,天麻为独摇草,人乳为蟠桃酒,鸽粪为左蟠龙,灶心土为伏龙肝者,不胜枚举㊂ 现代许多医生也常用此法处方保密,古今一致㊂保密 都会留下一些线索㊂裴松之借‘华佗别传“透露: 青黏者,一名地节,一名黄芝,主理五脏,益精气 ㊂据此才有 青蓁 凡蔽之草 凡薮之草 青菾 等线索,先贤洞悉青黏玄机,但看破未说破;叶天士破解漆叶为豺漆,使人知其然;李维贤的考证又点明因何名豺漆,使人知其所以然,都为考证提供了线索与证据㊂参考文献:[1]㊀刘自忠.华佗所传漆叶青黏散考辨[J].浙江中医杂志,1999,34(12):531-532.[2]㊀李永海,熊昌栋.漆叶青黏散治疗慢性腹泻200例[J].湖北中医杂志,1994,16(1):26.[3]㊀程从容,郭泉.古方漆叶青黏散中的青黏之考证[J].基层中药杂志,2001,15(1):48.[4]㊀江苏新医学院.中药大辞典[M].上海:上海科技出版社,1986.[5]㊀王明.新编诸子集成㊃抱朴子内篇校释[M].北京:中华书局,1980.[6]㊀吴征镒,王锦秀,汤彦承.胡麻是亚麻非脂麻辨 兼论中草药名称混乱的根源和‘神农本草经“的成书年代及作者[M].植物分类学报,2007,45(4):458-472.[7]㊀李维贤,曹先兰.古代药用五加品种的探讨[J].新中医,1984(4):55-57.[8]㊀李维贤,曹先兰.古代药用五加品种的探讨(一)[J].自然资源研究,1983(2):31-34.[9]㊀祝之友.青蘘临床注意事项[J].中国中医药现代远程教育,2019,17(6):62.收稿日期:2020-05-23061中国中医基础医学杂志Journal of Basic Chinese Medicine㊀㊀㊀㊀㊀㊀2021年1月第27卷第1期January2021Vol.27.No.1。
Overlap
¯ and ψ are Dirac fermions and the mass matrix M is infinite. It has a single zero ψ mode but its adjoint has no zero modes. As long as MM† > 0 this setup is stable under small deformations of the mass matrix implying that radiative corrections will not wash the zero mode away. Kaplan’s domain wall suggests the following realization: M = −∂s − f (s), (2)
where s ∈ (−∞, ∞) and f is fixed at −Λ′ for negative s and at Λ for positive s (Λ′ , Λ > 0. There is no mathematical difficulty associated with the discontinuity at s = 0. The infinite path integral over the fermions is easily “done”: on the positive and negative segments of the real line respectively one has propagation with an s-independent “Hamiltonian”. The infinite extent means that at s = 0 the path integrals produce the overlap (inner product) between the two ground states of the many fermion systems corresponding to each side of the origin in s. The infinite extent also means infinite exponents linearly proportional to the respective energies - these factors are subtracted. One is left 2
Two-dimensional Quantum Field Theory, examples and applications
Abstract The main principles of two-dimensional quantum field theories, in particular two-dimensional QCD and gravity are reviewed. We study non-perturbative aspects of these theories which make them particularly valuable for testing ideas of four-dimensional quantum field theory. The dynamics of confinement and theta vacuum are explained by using the non-perturbative methods developed in two dimensions. We describe in detail how the effective action of string theory in non-critical dimensions can be represented by Liouville gravity. By comparing the helicity amplitudes in four-dimensional QCD to those of integrable self-dual Yang-Mills theory, we extract a four dimensional version of two dimensional integrability.
2 48 49 52 54 56
5 Four-dimensional analogies and consequences 6 Conclusions and Final Remarks
高维相依及Copula理论、建模及应用的最新科研成果
维相依和 C o p u l a 领域的最新科研成果。 本次会议 由中央财经大学 中国精算研究 院主
办, 由加拿大滑铁卢大学统计与精算系蔡军教授、 美
汇报了他们在河 口 海岸科学研究领域所做的开拓性 研究。
次, 会议承办单位和举办地点由国际河 口海岸科
涉及学科面广 。 来自 不 萎 分会场的报告内容丰富 , 同研究 区域、 不同专业背景的人员互相学习和借鉴, 象
学学会遴选 。2 0 1 0年国际河 口海岸科学学会主席 M i k e E l l i o t t 教授访 问华东师范大学河 口海岸学国家
重点实验室时 ,注意到这里有很强的科研队伍和国 讨论热烈。 会议还为青年学者、 研究生评选 出了最佳 际先进的仪器设备 ,故将此作为承办单位候选机构 口 头报告奖 、最佳展板奖和河 口海岸学国家重点实 之一, 2 0 1 2 年正式与其签约 , 合作举办 2 0 1 3 年的大 鼓励年轻人积极参会 、 共同研讨 。 会。 举办这样的国际会议 , 为展示河 口海岸学国家重 目 验室奖等 ,
择; ②藤 C o p u l a s 的潜在变量 ; ③保险公司运营和相
依建模 ; ④S i b u y a C o p u l a s ; ⑤C o p u l a s ( 非) 相依极值 渐近线在高频财务数据 中的应用 ;⑥运用藤方法学 习贝叶斯结构 ;⑦多种业务的相关损失三角结构 ;
尼 黑召开 了相近 主题 的 国际会议 。
拿大滑铁卢大学数学学 院统计 与精算学系副教授 、 中国中央财经大学长江学者陈建成教授合作主持。 本 次 会 议 的科 学 委 员 会 成 员 有 C l a u d i a C z a d o
PDLAMMPS近场动力学
Available to the public from U.S. Department of Commerce National Technical Information Service 5285 Port Royal Rd Springfield, VA 22161 Telephone: Facsimile: E-Mail: Online ordering: (800) 553-6847 (703) 605-6900 orders@ /help/ordermethods.asp?loc=7-4-0#online
Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: Facsimile: E-Mail: Online ordering: (865) 576-8401 (865) 576-5728 reports@ /bridge
轮廓波和非负稀疏编码收缩的毫米波图像恢复
1 引 言
通 常 情 况 下 ,由 毫 米 波 ( ii e rw v , Ml— t ae lm e
M W) M 成像系统获得 的图像 的可用性是 非常低 的,
这 主要 是 因为成 像 系统 外部 的复 杂性 以及 成像 系 统
基金项 目: 国家 自然科学基金项 目( o6 90 5 ; N .0 70 8) 江苏省 自然 科学基金项 目( o B 2 0 11 ; N . K 0 9 3 ) 江苏省 “ 青蓝 工程 ” 目; 项 苏州市 职 业大学创新 团队项 目( o3 0 15) N . 10 2 资助。 作者简介 : 尚 丽 ( 92一), , 17 女 副教 授 , 高级 工程 师 , 工学博 士, 主要研究方 向为 人工智 能和数 字 图像 处理 。E m i sagi 3 — al hnl 9 0 : 0
r s l i n. e outo
Ke r s n n n g t e s a s o i g c no r t r n f r ; r s o d s rn a e fau e e t cin;ma e d n iig y wo d : o - e ai p r e c d n ; o tu l a so m t e h l h k g ;e t r x r t v et h i a o i g e osn
s a s o i g s rn a e p rec dn h ik g
S HANG , Li SU n. a g , Pi g n ZHOU a . in Ch ng x o g
( . e at e t f l t ncIf ma o n ie r g S z o o a o a U i ri ,u h u 2 5 0 , hn ; 1 D p r n E e r i n r t n E g e n , uh u V c t n l n es y S z o 1 1 C i m o co o i n i i v t 4 a
面复原技术在潜在断层预测中的应用
向的F — 。其 中断层 F — 、 2 4 F — 、2 6 26 2 3 F — 、2 5 F — 已被两 口探 井所 证 实 , 一 步说 明面 复 原预 测 潜 在 断 层 的 进
收 稿 日期 : 0 I 0 — 8 2 1- 3 0
作者简介 : 鲜地 (9 5 )男 , 18 一 , 四川 南 充 人 , 南 石 油 大 学 在读 硕 士研 究 生 , 究 方 向 为 地 震 资 料解 释 和构 造 建 模 。 西 研
・
4 ・ 1
鲜 地 , 春宁, 邱 郝晋 进 , 志刚 , 丽花 : 复原技 术在 潜在 断 层预 测 中的应 用 李 陈 面
得 到构 造稳 定 指数 、 ma 、 张系 数上 的线性 构 造 K— x 拉 异常 可进 行潜 在 断层预 i 。 见 4
效识 别 , 者 由于其 在剖 面无 规律 出现 , 法查 明其 或 无
平 面 的展 布 情况 。在实 际工 作 中 , 们 称 这类 识 别 我 困难 的小 型 断层 为 “ 潜在 断层 ” 。这 类 断层 对于 油气 勘探 开 发意 义重 大 。潜在 断层 发育 的 区域有 可 能成 为 油气 聚 集 区 . 在勘 探 区 域 优选 以及 开 发 方案 设 计 时应 当予 以重视 。 G C D软 件 是 地质 、 矿 、 油 等 行 业 的 标 准 OA 采 石 三维 地学 建模 软 件 , 由法 [ a c 大学 的Ma e  ̄N n y lt L l J 教 授 首 次 提 出 的 G C D研 究 计 划 发 展 而 来 。 OA
属性 作 为判 别 参 数 , 以 对潜 在 断 层 发育 区域 进 行 可
什么是穆斯堡尔效应
什么是穆斯堡尔效应鲁道夫·穆斯堡尔(Rudolf Mössbauer,1929年1月31日-2011年9月14日),德国物理学家,穆斯堡尔效应(伽马射线的无反冲共振吸收现象)的发现者,1961年获得诺贝尔物理学奖。
生平鲁道夫·穆斯堡尔1929年1月31日出生在德国慕尼黑。
1948年中学毕业,在工作一年后,开始在慕尼黑工业大学学习物理学,在应用物理学实验室完成论文并于1955年获得硕士学位。
1955年至1957年继续攻读博士学位期间,他在海德堡的马克斯·普朗克协会医学研究所作出了一系列的发明,并于1957年首次在实验中观察到了伽马射线的无反冲共振吸收现象,这种现象被命名为“穆斯堡尔效应”。
由于这项工作,穆斯堡尔同美国物理学家罗伯特·霍夫施塔特一起获得1961年的诺贝尔物理学奖。
1958年他从慕尼黑工业大学获得博士学位,导师是海因茨·迈尔-莱布尼茨(Heinz Maier-Leibnitz),同年,仍旧是在海德堡的马克斯·普朗克研究所,他用实验直接证明了“穆斯堡尔效应”的存在。
1959年穆斯堡尔在慕尼黑工业大学工作,后来接受理查德·费曼的邀请于1960年前往美国加州理工学院,继续他对伽马射线吸收的研究,并在1962年成为加州理工学院的教授。
1953年起,穆斯堡尔的主要研究方向是伽马射线的吸收,尤其是原子核的共振吸收,并由此发现了原子核辐射的无反冲共振吸收现象及其理论解释。
此后他又用先前建立的方法,研究过原子核物理学和固体物理学问题。
穆斯堡尔在原子核的无反冲共振吸收领域的研究成功,为他赢得了纽约研究机构奖(1960年)、吉森大学的“伦琴奖”以及富兰克林研究所(Franklin Institute)的Elliot Cresson奖章。
1961年因“对伽马射线共振吸收现象的研究并发现了穆斯堡尔效应”,与罗伯特·霍夫施塔特一同获得诺贝尔物理学奖。
弹性波成像方法 面波勘探技术
(一)频散曲线的解释及层速度的计算
频点很密 (频率值的变化步长很小)的速度曲线, 其含义虽然与层速度不同,但比较各频点速度 值的展布规律,可以看到速度曲线突变处的深 度往往对应于介质的界面深度。理论和实践都 表明,曲线上"之"字型 (锯齿状)异常反映地下介 质的分界面。
如果把面波的平均速度曲线转换成层速度与 深度H的关系,解释结果将更为直观。
六、面波数据采集
1. Fixed spread (Short line)
2. Fixed Spread of Moving Style relying only on Takeout Cables (for Long Line)
3.End-on-spread (for Long Line) applying CDP switch
2 信号处理、频散曲线的建立与反演
面波频散曲线是对地层速度结构分层的基础。 若对每个面波测试点的频散曲线进行分层和层速 度计算,确定各层的厚度,计算各层的横波传播速 度,并对获得结果进行反演拟合处理,即可达到定 量解释的效果;同时对同一条测线上的相邻点在垂 直方向上相同的层速度连接起来,用一系列颜色代 表逐渐递增的速度,就可得到层速度彩色剖面图
在自由表面附近面波的形成可以用波动方 程作严密的推导。
略去公式推导部分。。。。。
在均匀弹性半空间存在的这种沿自由表面 传播的波,其速度略小于横波波速,振幅 随着离开表面距离的增加而衰减,这就是 面波。
面波 拉夫波 S波
P波
瑞雷波勘探方法是近年来发展起来的浅 层地震勘探新方法。由于瑞雷波速度同 剪切波速度及岩、土力学参数有着密切 的关系.
优势:相对于体波而言,能量较强,速度低,易分 辨,在揭示浅表地层结构具有一定的优越性。
预测形状记忆聚合物恢复时间的一个新方法
预测形状记忆聚合物恢复时间的一个新方法M. Bonner,H. Montes de Oca,M. Brown,I.M. Ward英国,利兹路LS2 9JT,利兹大学,物理天文学院英国,黑斯林顿,纽约路YO10 5DF,纽约科技园区,Smith和Nephew集团研究中心文章信息文章历史:2009年10月15日被接收2010年1 月22日修改后重新接收2010年1月25日通过2010年2月2日允许网上发表关键词:形状记忆聚合物高分子物理恢复摘要这篇文章介绍了目前一个新颖的方法,可以预测形状记忆聚合物的恢复时间。
Fotheringham的瞬态压力点试验和cherry试验两种方法来确定Kelvin–Voigt元件的参数。
可以用此元件的特征相位差来计算和预测恢复时间。
结果表明这种方法能成功预测在一定温度范围内形状记忆聚合物的恢复时间。
此外,结果表明在拉伸条件非常相似的时候恢复应力对于拉伸应力的比率是相对独立的。
1.引言最近,人们对形状恢复聚合物很感兴趣,形状记忆聚合物已经被人们所知晓。
SMP 的最新进展及其在医疗业和非医疗行业的应用,可以再另外的文献中找到[1-3]。
若干关于SMP的描述已经被提出,最近的两次是被Nguyen[4]和Chen[5,6]提出的,然而,这些单单依靠本构方程进行研究是非常复杂的,需要大量的实验工作来确定相关的参数。
早期Li和Larock[7]和Lin和Chen[8,9]根据Maxwell和Kelvin–Voigt元件的不同组合提出了简单的模型。
这些都是很容易理解的模型,但是都有可能在正确的情况下使一个Kelvin或Voigt元件崩溃。
在这项工作中,我们提出了一种新的方法,通过一个简单的Kelvin-Voigt模型为基础来预测形状恢复时间,如图1所示,在Fotheringham 的瞬态应力点测试和Cherry [9]测试的范围内,确定每个臂的应力在一定的拉伸值下,计算出材料的恢复时间和可行的恢复应力。
Science述评:开辟强关联电子材料准确预测的理论之路
Science述评:开辟强关联电⼦材料准确预测的理论之路中科院青促会张秋菊(中科院宁波材料所)中科院青促会张骁骅(中科院苏州纳⽶所)评述论⽂:Toward a predictive theory of correlated materials (Science27 July 2018: Vol 361, Issue 6400)关联电⼦材料能够表现出从⾮常规超导到⾦属-绝缘体转变等⼀系列丰富特性。
然⽽,理论上的研究依然存在巨⼤的挑战,特别是针对强关联电⼦材料(主要指包含d和f电⼦),根本原因是基于第⼀性原理的理论和计算涉及到量⼦多体问题的求解。
早在量⼦⼒学诞⽣后的1929年,剑桥⼤学教授Paul Dirac就给出⼀段著名的评论:“把整个化学归结成⼀些数学⽅程的基本定律已经完全搞清楚了,唯⼀的问题是⽅程太复杂难于求解。
需要发展近似实⽤的求解⽅法,从⽽达到不需要太多计算量就可以揭⽰复杂原⼦体系的主要特性”。
近⼀个世纪以来,科学家们在探索理论预测之路上已经取得了长⾜的进步。
如1998年诺贝尔化学奖就颁发给了John Pople和Walter Kohn,⽤于奖励他们提出的电⼦波函数准确近似和电⼦密度函数构建。
密度泛函理论通过各种各样的近似,把难以解决的包含电⼦-电⼦相互作⽤的问题简化成⽆相互作⽤的问题,再将所有误差单独放进交换关联项,采⽤各种近似进⾏交换关联项的求解。
然⽽,对于强关联体系⽽⾔,半充满的d和f电⼦对电⼦、磁性和结构等性质等具有重要决定作⽤,⽽交换关联能的近似计算产⽣的任意⼩误差都会被放⼤,从⽽影响强关联体系的计算准确性。
在过去30多年⾥,强关联电⼦体系的计算⽅法取得了长⾜发展,这得益于新概念如量⼦嵌⼊,新算法的发展和计算能⼒的迅速增强。
发展了解决量⼦多体问题的两⼤互补⽅法:量⼦蒙特卡罗(QMC)和格林函数(Green’sfunctions)⽅法,从⽽推动了强关联电⼦体系的理论设计研究。
在本期《科学》杂志中,来⾃美国橡树岭国家实验室的Paul Kent以及来⾃布鲁克海⽂国家实验室和新泽西州⽴⼤学的Gabriel Kotliar针对这两种互补⽅法处理强关联体系的优缺点进⾏了批判性讨论,将近50多年来理论化学和分析⽅法在强关联电⼦材料中的应⽤进⾏了总结,并展望了强关联理论⽅法的未来发展趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
arXiv:h e p-la t/5825v126Aug2005PoS(LAT2005)140Dynamical overlap fermions:simulation andphysics results∗Speaker.PoS(LAT2005)1404)Pσ 1+σ∑iε(λi)|λi λi| Pσ+m2(2.1) with R0the radius of the Ginsparg–Wilson circle,Pσ=1N|π 2−2∆S f if N|π 2>2∆S f−2N N|π if N|π 2≤2∆S f(2.2)The discontinuity∆S of the effective action is caused by one eigenvalue changing sign,thus making the replacementH2σ(m)−→H2σ±(4R20−m2)Pσ|λ0 λ0|Pσ(2.3) with|λ0 the zero mode.The corresponding step in the effective action can be evaluated using the Sherman–Morrison formula[10]∆ φ|Pσ11±(4R20−m2) λ0|PσH−2σ(m)Pσ|λ0 | φ|Pσ1det H2σ(m)=1±(4R20−m2) λ0|Pσ1PoS(LAT2005)140PoS(LAT2005)140(2.6)H2(m i+1)with m1=m and m i<m i+1with suitably chosen larger masses.In this method,only determinantratios are evaluated using pseudo-fermions for the light quark masses.The change in the spectrawhile changing topological sector of the ratio H(m)/H(m′)is expected to be less dramatic than thechange of the spectrum of H(m).Only the determinant of H(m N)is evaluated directly.However,for a large mass m N the spectrum of H2is confined to a smaller region between m2N and4R20andthe change in the spectrum therefore less drastic than for a smaller mass.One or two extra pseudo-fermionfields(N p=2,3in Eq.2.6)help some,but do not solve the problem.To quantify our difficulty,we compare in Fig.1the discontinuity of the effective action withthe physical step from the fermion determinant.We subtracted the relevant quantity from thenormal component of the momentum so that positive values correspond to reflections whereas thetopology changes for negative values.We observe that the physical discontinuity would allow forsignificantly more changes in topology than the step in the effective action does.The low correlation between the estimator and the physical step height Eq.(2.5)shows up inthe large auto-correlation time of the topological charge.Even though part of it is physics—lighterquarks make it harder to get fromν=0toν=±1—the height of the step grows with1/m2insteadof the expected determinant ratio,log m.Since the normal component of the momentum is roughly independent of the quark mass,it becomes more and more difficult to change topology.Indeed,Fig.2shows that the mean time between topological changes varies inversely with the square of thequark mass.The large auto-correlation time for the topology is a phenomenon that is also knownwith other fermions,e.g.improved staggered quarks.To the extent that these formulations knowabout topology,the step in the fermion action for the overlap might be replaced for them by a steepregion which approximates the step.The result is the same:if the approximation of the determinantis bad,the step is overestimated most of the time and one does not change topology.3.The Topological SusceptibilityIn our second paper we made rough calculations of the topological susceptibility and chiralcondensate using eigenmodes of the Dirac operator.We made simulations on84lattices,at a latticePoS(LAT2005)140MS matching factor in perturbation theory and use it to convert the quark massesto their µ=2GeVχ=N fχq .(3.1)Taking Σfrom our RMT analysis in the next section (r 03Σ∼0.43)produces the curve shown in the figure.Most published measurements of the topological susceptibility present them as a function of the pseudoscalar mass.Since we don’t have spectroscopy,we can’t do that.We can,however,use the Dürr curve as a fiducial,since most published measurements of the topological susceptibility present it,too.Our data (as well as that of Ref.[14])lies below the Dürr curve.Most measurements with nonchiral actions lie above it.(See,for example the figures in Ref.[15]or [16]).Since our quenched results give a value typical of simulations on larger lattices,χ∼(190MeV )4),we don’t think we are seeing a finite volume effect.0 50 100 150 200-5 0 5 10 15 202 ∆S - <N ,π>2-2∆log(det H 2) - <N,π>2m q =0.03 050100 150200-5 0 5 10 15 202 ∆S-<N ,π>2-2∆log(det H 2) - <N,π>2m q =0.05Figure 1:The stochastic estimate of the height of the step compared to the actual change in the logarithm of the determinant from a subset of our ensemble.We subtracted the normal component of the momentum squared (which is typically less than 10)such that negative values mean refraction and positive ones reflec-tion.For mass m q =0.03on the left we have a number of events in the upper left quadrant that would have tunneled with the exact change of the determinant and only a few that actually tunneled (in the two lower quadrants).For m q =0.05the picture is similar,even though there are more tunneling events.PoS(LAT2005)140PoS(LAT2005)140ρΣr300.40(2)0.030.38(2)PoS(LAT2005)140PoS(LAT2005)140PoS(LAT2005)140。