动量中弹簧模型 ppt课件

合集下载

高三总复习物理课件 动量守恒中的三类典型模型

高三总复习物理课件 动量守恒中的三类典型模型
动量守恒中的三类典型模型
01
着眼“四翼” 探考点
题型·规律·方法
பைடு நூலகம்
02
聚焦“素养” 提能力
巧学·妙解·应用
01
着眼“四翼” 探考点
题型·规律·方法
模型一 “滑块—弹簧”模型
模型 图示
模型 特点
(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的 矢量和为零,则系统动量守恒。 (2)在能量方面,若系统所受的外力和除弹簧弹力以外的内力不做功,系 统机械能守恒。 (3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动 能通常最小(完全非弹性碰撞拓展模型)。 (4)弹簧恢复原长时,弹性势能为零,系统动能最大(完全弹性碰撞拓展模 型,相当于碰撞结束时)
[例 1] 如图甲所示,物块 A、B 的质量分别是 mA=4.0 kg 和 mB=3.0 kg。用轻弹 簧拴接,放在光滑的水平地面上,物块 B 右侧与竖直墙相接触。另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4 s 时与物块 A 相碰,并立即与 A 粘在一起不再分开, 物块 C 的 v-t 图像如图乙所示。求:
()
A.13mv02 C.112mv02
B.15mv02 D.145mv02
解析:当 C 与 A 发生弹性正碰时,根据动量守恒定律和能量守恒定律有 mv0=mv1+ 2mv2,12mv02=12mv12+12(2m)v22,联立解得 v2=23v0,当 A、B 速度相等时,弹簧的弹 性势能最大,设共同速度为 v,以 A 的初速度方向为正方向,则由动量守恒定律得 2mv2 =(2m+3m)v,由机械能守恒定律可知,Ep+12(5m)v2=12(2m)v22,解得 Ep=145mv02; 当 C 与 A 发生完全非弹性正碰时,根据动量守恒定律有 mv0=3mv1′,当 A、B、C 速度相等时弹簧的弹性势能最大,设共同速度为 v′,则由动量守恒定律得 3mv1′= 6mv′,由机械能守恒定律可知,Ep′=12(3m)v1′2-12(6m)v′2,解得 Ep′=112mv02,由 此可知,碰后弹簧的最大弹性势能范围是112mv02≤Ep≤145mv02,故选 A。 答案:A

动量弹簧

动量弹簧
v
A B C
两物块A、B用轻弹簧相连,质量均为2 kg,初始时弹 簧处于原长,A、B两物块都以v=6 m/s的速度在光滑 的水平地面上运动,质量4 kg的物块C静止在前方,如 图所示。B与C碰撞后二者会粘在一起运动。求在以后 的运动中: (1)当弹簧的弹性势能最大时,物块A的速度为多大? (2)系统中弹性势能的最大值是多少? (3)A的最大速度和最小速度?B和C粘合后的最大速度 和最小速度?
在光滑的水平面上,静止的物体B侧面固定一个轻弹簧, 物体A以速度v0沿水平方向向右运动,通过弹簧与物体B 发生作用,两物体的质量均为m。 (1)求它们相互作用过程中弹簧获得的最大弹性势能 Ep; (2)若B的质量变为2m,再使物体A以同样的速度通过 弹簧与静止的物体B发生作用,求当弹簧获得的弹性势 能也为Ep时,物Байду номын сангаасA的速度大小。

微专题6:动量守恒定律的典型模型(共33张PPT)优秀课件

微专题6:动量守恒定律的典型模型(共33张PPT)优秀课件
对系统应用能量转化和守恒定律:
力对空间的积累效应是功, 功是能量发生变化的原因
根本模型:
S2 L
S1
根本模型:
S2 L
S1
子弹射穿木块的条件:
①假设共速,相对位移d>L ②假设到木板最右端,那么子弹速度大于木板速 度
动量关系 :
能量关系 :
变式一:图像应用
S1、S2、S相对的大小与m、 M的关系?
假设m1= m2物块m1从圆弧面滑下后,二者速度
m1 v0
m2
v
m
m
0
1
2
v0
1
2
完全非弹性碰撞: 二者共速;动能
损失最大即转化为其它形式能最多
E=12m1v12 12m2v2212m1 m2v2 2m m11m1m2v1 v22
二.子弹打木块的模型
1.运动性质:子弹对地在滑动摩擦力作用下匀减
速直线运动;木块在滑动摩擦力作用下做匀加速 运动。
〔1〕木块A的最终速度; 〔2〕滑块C离开A时的速度。
变式训练3:如下图,A、B是静止在水平地面上完全 相同的两块长木板,A的左端和B的右端相接触,两板 的质量均为,长度均为l =1.0m,C 是一质量为的木 块.现给它一初速度v0,使它从B板的左端开始向右运 动.地面是光滑的,而C与A、B之间的动摩擦因数皆 为.求最后A、B、C各以多大的速度做匀速运动.取 重力加速度g=10m/s2.
m=1.0kg
C
.0kg M=2.0kg
根本知识
根本概念:与动量有关:冲量、动量、弹性碰撞、非弹性碰撞 与能量有关:功、功率、动能、势能、内能
根本规律:与动量有关:
动量定理、 动量守恒
定律
与能量有关:

动量守恒定律应用2:弹簧模型

动量守恒定律应用2:弹簧模型
F
VP>VQ 弹簧一直缩短
弹簧最短时 VP=VQ
弹簧原长时 弹性势能为零
变式训练
如图所示,位于光滑水平桌面上的小滑块P和Q都 可视为质点,质量相等,都为m。P、Q与轻质弹簧 相连,弹簧处于原长。设P静止, Q以初速度v0向 右运动,在弹簧拉伸过程中,弹簧具有的最大弹性 势能是多少?
V0
弹簧模型规律
1滑块和木板 2弹簧模型 3光滑1/4圆轨道轨道 (某一方向的动量守恒) 4人船模型 (平均动量守恒)
动量和机械能守恒情况常见模型图
m
v0
A
B
O
h
R
M
b
a
动量守恒定律
一、动量(P)
1、概念: 物体的质量m和速度v的乘积叫做动量。
2、定义式: P = m v
3、单位: 千克米每秒,符号是 kg ·m/s
m1=2kg的物块以v1=2m/s的初速冲向
质量为m2=6kg静止的光滑圆弧面斜
1
劈体,物块不会冲出斜劈。求:
1. 物块m1滑到最高点位置时,二者的速度 2. 物体上升的最大高度 3. 物块m1从圆弧面滑下后,二者速度 4. 若m1= m2物块m1从圆弧面滑下后,二者速度
动量和能量综合典型物理模型
弹簧最短时 VP=VQ
弹簧模型1
如图所示,位于光滑水平桌面上的小滑块 P 和 Q 都可视为质点,质量相等,都为 m.Q 与轻质弹簧相 连.设 Q 静止, P 以初速度 v0 向 Q 运动并与弹簧发 生碰撞. (1)在整个碰撞过程中,弹簧具有的最大弹性势能是多 少? (2)弹簧再次恢复原长时,P 的动能是多少?
4、方向:与运动方向相同
(1)矢量性 (2)瞬时性
运算遵循平行四边形定则 是状态量。

高考物理二轮复习课件微专题模型建构——弹簧模型PPT

高考物理二轮复习课件微专题模型建构——弹簧模型PPT

高 考物理 二轮复 习课件 微专题 模型建 构—— 弹簧模 型PPT【 PPT实 用课件 】 高 考物理 二轮复 习课件 微专题 模型建 构—— 弹簧模 型PPT【 PPT实 用课件 】
高 考物理 二轮复 习课件 微专题 模型建 构—— 弹簧模 型PPT【 PPT实 用课件 】
真题演变·辨知规律
mB 2
2
【解析】选C。 当A、B两球静止时,弹簧弹力F=(mA+mB)gsinθ,当绳被剪断的瞬
间,弹簧弹力F不变,对B球分析,则F-mBgsinθ=mBaB,可解得aB= m A g ,当绳被剪
mB 2
断后,球A受的合力为重力沿斜面向下的分力,F合=mAgsinθ=mAaA,所以aA= g ,综
(3)小环刚到达D点的临界条件为mg(h1+R)=Ep
解得h1=1.6 m
改变h,小环做平抛运动,分析可得小环水平方向位移应有最大值
根据机械能守恒定律得:Ep-mg(h2+R)12=m
v
2 D
小环平抛运动时间为t′= 2 ( h 2 R )
g
得:x′=vD′t′=2 [ 1 .8(h2R )] (h2R )
高 考物理 二轮复 习课件 微专题 模型建 构—— 弹簧模 型PPT【 PPT实 用课件 】
高 考物理 二轮复 习课件 微专题 模型建 构—— 弹簧模 型PPT【 PPT实 用课件 】
情境命题3 功能问题 【典例3】某高中兴趣学习小组成员,在学习完必修1与必修2后设计出如图所示 的实验。OA为一水平弹射器,弹射口为A。ABCD为一光滑曲杆,其中AB水平,BC为 竖直杆(长度可调节),CD为四分之一圆环轨道(各连接处均圆滑连接),其圆心为 O′,半径为R=0.2 m。D的正下方E开始向右水平放置一块橡皮泥板EF,长度足够 长。现让弹射器弹射出一质量m=0.1 kg的小环,小环从弹射口A射出后沿光滑曲 杆运动到D处飞出,不计小环在各个连接处的能量损失和空气阻力。已知弹射器 每次弹射出的小环具有相同的初速度。某次实验中小组成员调节BC高度h=0.8 m。 弹出的小环从D处飞出,现测得小环从D处飞出时速度vD=4 m/s,求:

动量守恒定律的应用弹簧问题ppt课件

动量守恒定律的应用弹簧问题ppt课件
11
[解析] 设碰后 A、B 和 C 的共同速度大小为 v,由动量守
恒有 mv0=3mv

设 C 离开弹簧时,A、B 的速度大小为 v1,由动量守恒有
3mv=2mv1+mv0

设弹簧的弹性势能为 Ep,从细线断开到 C 与弹簧分开的过
程中机械能守恒,有
12(3m)v2+Ep=12(2m)v1 2+12mv0 2
3.如图所示,P物体与一个连着弹簧的Q物体正碰,碰 撞后P物体静止,Q物体以P物体碰撞前速度v离开,已 知P与Q质量相等,弹簧质量忽略不计,那么当弹簧被
压缩至最短时,下列的结论中正确的应是( BD)
A.P的速度恰好为零 B.P与Q具有相同速度 C.Q刚开始运动 D.P、Q弹簧组成的系统动量守恒
理解:弹簧被压缩至最短时的临界条件。 7
动量守恒定律的应用 —— 弹簧模型
1
水平面光滑,弹簧开始时处于原长
(1)何时两物体相距最近,即弹簧最短
Nv N
F弹
F弹
G
G
两物体速度相等时弹簧最短,且损失的动能
转化为弹性势能
(2)何时两物体相距最远,即弹簧最长
v
两物体速度相等时弹簧最长,且损失的动能转
化为弹性势能
2
弹簧模型的特点与方法
1.注意弹簧弹力特点及运动过程。
v
AB
C
9
6.如图所示,一轻质弹簧的一端固定在滑块B上,另 一端与滑块C接触但未连接,该整体静止放在离地面 高为H的光滑水平桌面上。现有一滑块A从光滑曲面 上离桌面h高处由静止开始滑下,与滑块B发生碰撞 (时间极短)并粘在一起压缩弹簧推动滑块C向前运 动,经一段时间,滑块C脱离弹簧,继续在水平桌面 上匀速运动一段时间后从桌面边缘飞出。已知

高考物理 动量的弹簧问题中课件

高考物理 动量的弹簧问题中课件
m1 v(mm )v2 ②
过程三:A和B一起压缩弹簧直到A、B速度变为零,然后A、
B在弹簧弹力的作用下一起返回,直到弹簧恢复原长。设当弹
簧恢复原长时,A、B的速度为v3,在这一过程中,弹簧的弹性 势能始末两态都为零,对A、B和弹簧,由能量守恒定律得
1 22 m v 2 21 22 m v 3 22 m g 2 l2 ③
2010年高三复习备考
弹簧问题中的 能量与动量
思考与讨论:
在如图1所示的装置中,木块B与水平桌面间的接触是 光滑的,子弹A沿水平方向射入木块后,留在木块内, 将弹簧压缩到最短。若木块的质量为M,子弹的质量 为m,弹簧为轻质弹簧,子弹以速度v0射入木块B后 能在极短时间内达到共同速度。求弹簧的最大弹性势 能。
(3)整个运动过程中,车槽运动的位移?
例3:质量为m的钢板与直立轻弹簧的上端连接,
弹簧下端固定在地上。平衡时,弹簧的压缩量
为x0,如图3所示。一物块从钢板正上方距离为 3x0的A处自由落下,打在钢板上并立刻与
钢板一起向下运动,但不粘连。它
们到达最低点后又向上运动。已知
A
物块质量也为m时,它们恰能回到 3x0 O
v0
C
B
A
l1
P
图4
在光滑水平面上放着两块质量都是m的木块A和B,中间
用一根倔强系数为k的轻弹簧连接着,如图,现从水平方
向射来一颗子弹,质量为,速度为v0,射中木块A后,留
在A中求:①在击中瞬间A、B的速度
②在以后
运动中弹簧的最大弹性势能是多少?
③A的最
小速度,B的最大速度是多少?
v0
B
A
图1
例2:如图2所示,轻弹簧的一端固定,另一端与

弹簧模型动量守恒定律应用PPT课件

弹簧模型动量守恒定律应用PPT课件

水平向右为正方向,有Ep=
1 2
mBv12
I=mBvB-mBv1
代入数据得I=-4 N·s,其大小为4 N·s
(3)设绳断后A的速度为vA,取水平向右为正方
向,有mBv1=mBvB+mAvA
W= 1
2
mAvA2
代入数据得W=8 J
答案 (1)5 m/s (2)4 N·s (2)8 J
选修3-5 动量 近代物理初步
选修3-5 动量 近代物理初步
SUCCESS
THANK YOU
2019/8/24
选修3-5 动量 近代物理初步
解析 (1)设B在绳被拉断后瞬间的速度为vB, 到达12 Cm点BvB时2=的12 速mBv度C2为+2vmCB,g有R mB代g=入mB数vRc2据得vB=5 m/s (2)设弹簧恢复到自然长度时B的速度为v1,取
选修3-5 动量 近代物理初步
选修3-5 动量 近代物理初步
第一讲 动量 动量守恒定律
第7课 弹簧模型
水平面光滑,弹簧开始时处于原长
(1)何时两物体相距最近,即弹簧最短
Nv
N
F弹F弹GG Nhomakorabea两物体速度相等时弹簧最短,且损失的动能
转化为弹性势能
(2)何时两物体相距最远,即弹簧最长
v
两物体速度相等时弹簧最长,且损失的动能转

由①②③式得弹簧所释放的势能为 Ep=13mv0 2
[答案]
1 3mv0
2
选修3-5 动量 近代物理初步
1.如图所示,光滑轨道上,小车A、B用轻弹 簧连接,将弹簧压缩后用细绳系在A、B上, 然后使A、B以速度v0沿轨道向右运动,运动 中细绳突然断开, 当弹簧第一次恢复到自 然长度时, A的速度刚好为0 ,已知A、B的 质量分别为mA、mB,且mA<mB ,求:被压缩的弹 簧具有的弹性势能Ep.

力学中的弹簧类问题课件

力学中的弹簧类问题课件

控制与执行机构
弹簧在航空航天器的控制与执行机构 中起到关键作用,如起落架的缓冲和 收放系统。
减震装置
卫星姿态调整
弹簧在卫星姿态调整机构中发挥重要 作用,通过弹簧的伸缩实现卫星姿态 的微调。
为了减轻着陆时对航空器的冲击,弹 簧被用于减震装置的设计。
CHAPTER
05
弹簧类问题04
弹簧在工程问题中的应用
弹簧在车辆工程中的应用
01
02
03
悬挂系统
弹簧用于车辆悬挂系统中 ,以吸收和缓冲路面不平 整引起的振动,提高乘坐 舒适性。
减震器
弹簧在减震器中起到关键 作用,控制车辆在行驶过 程中产生的冲击和振动。
弹性支撑
弹簧用于支撑车辆重要部 件,如发动机和变速器, 起到减震和保护作用。
总结词
弹簧的振动频率与阻尼系数有关,影响 振动的持续时间。
VS
详细描述
当一个振动物体连接到一个弹簧上时,弹 簧的劲度系数和阻尼系数将影响振动的频 率和持续时间。根据振动理论,弹簧的振 动周期与劲度系数和阻尼系数有关。因此 ,通过调整弹簧的劲度系数和阻尼系数, 可以改变振动的频率和持续时间。
弹簧的振动频率与阻尼
CHAPTER
02
弹簧动力学问题
弹簧与力的平衡
总结词
弹簧在力的作用下会产生形变,从而影响力的平 衡。
总结词
弹簧的弹力与形变量的关系是线性关系,可以用 胡克定律表示。
详细描述
当弹簧受到外力作用时,会发生形变,形变的大 小与外力的大小成正比,同时弹簧的弹力与形变 量的大小成正比。因此,弹簧可以用于平衡外力 ,维持系统的稳定。
将采集到的数据整理成表格,绘制形变量与作用力之间的关系图。

1.3动量守恒定律在碰撞中的应用几种常见模型分析优秀课件

1.3动量守恒定律在碰撞中的应用几种常见模型分析优秀课件
16
(1)光滑水平面上的A物体以速度V0去撞 击静止的B物体,A、B物体相距最近时,两 物体速度必相等(此时弹簧最短,其压缩量最 大)。
17
课堂练习
质量均为2kg的物体A、B,在B物体上 固定一轻弹簧,则A以速度6m/s碰上弹簧并 和速度为3m/s的B相碰,则碰撞中AB相距最 近时AB的速度为多少?弹簧获得的最大弹 性势能为多少?
18
(2)物体A以速度V0滑到静止在光滑 水平面上的小车B上,当A在B上滑行的 距离最远时,A、B相对静止, A、B两 物体的速度必相等。
A V0 B
19
课堂练习
质量为M的木板静止在光滑的水平面上, 一质量为m的木块(可视为质点)以初速度 V0向右滑上木板,木板与木块间的动摩擦 因数为μ ,求:木板的最大速度?
v0
分析:第一问即是在它们有共同速度时的,发生的相对位移d 必须得小于小车的长度 第二问:由动量守恒定律即可求得
7
模型3:人船模型
例:静止在水面上的小船长为L,质量为M,在 船的最右端站有一质量为m的人,不计水的阻力, 当人从最右端走到最左端的过程中,小船移动的 距离是多大?
S2
S1
8
m M
S2
3.共性特征:一物体在另一物体上,在恒定的阻 力作用下相对运动,系统动量守恒,机械能不守
恒,ΔEK=Q = f 滑d相对
6
类似题型
如图所示,把质量m=20kg的物体以水平速度v0=5m/s抛上 静止在水平地面的平板小车的左端。小车质量M=80kg,已知 物体与平板间的动摩擦因数μ=0.8,小车与地面间的摩擦可忽略 不计,g取10m/s2,求:(1)要物块不从小车上掉下,小车至 少多长?(2)物体相对小车静止时,物体和小车相对地面的加 速度各是多大?

动量守恒滑块—弹簧模型

动量守恒滑块—弹簧模型
转到解析
备选训练1.(课标全国卷)如图1所示,A、B、C三个 木块的质量均为m,置于光滑的水平面上,B、C之 间有一轻质弹簧,弹簧的两端与木块接触可不固连 ,将弹簧压紧到不能再压缩时用细线把B、C紧连, 使弹簧不能伸展,以至于B、C可视为一个整体。现 A以初速度v0沿B、C的连线方向朝B运动,与B相碰 并黏合在一起。以后细线突然断开,弹簧伸展,从 而使C与A、B分离。已知C离开弹簧后的速度恰为v0 ,求弹簧释放的势能
动量守恒 “滑块—弹簧”模型
水平面光滑,弹簧与两物体栓在一起,木块 的初速度为v0;
模型特点: 1.动量是否守恒? 系统合外力为零,动量守恒; 2.机械能是否守恒? 只存在动能与势能转化,机械能守恒;
3.什么时候弹簧弹性势能最大? 当弹簧最长(最短)时,两者速度相等;弹性 势能最大,但处于原长时,弹性势能为零。
m1v0 m2 m1 v
EP
1 2
m1v02
1 2
m2
m1 v2
m2m1
2 m2 m1
v02
4.弹簧第一次恢复到原长速度m1与m2速度为多少?
m1V0= m1V1 + m2V2 ………(1)
1 2
m1V02
1 2
m1V12
1 2
m2V22

解得
V1
m1 m1
m2 m2
V0
Hale Waihona Puke V22m1 m1 m2
答案 (1)2 kg (2)9 J
(1)物块C的质量mC; (2)B离开墙后的运动过程中弹簧具有的最大弹性势能Ep。
备选训练
备选训练3.(2016·河北石家庄质检)如图8所示,光 滑水平面上木块A的质量mA=1 kg,木块B的质量mB =4 kg,质量为mC=2 kg 的木块C置于足够长的木块 B上,B、C之间用一轻弹簧相拴接并且接触面光滑。 开始时B、C静止,A以v0=10 m/s的初速度向右运动, 与B碰撞后瞬间B的速度为3.5 m/s,碰撞时间极短。 求: (1)A、B碰撞后A的速度; (2)弹簧第一次恢复原长时C的速度。

动量弹簧

动量弹簧

在光滑水平桌面上有质量为m=0.6Kg 和n=0.2Kg 的两个小物块,两物块间夹有一个被压缩的轻质弹簧,且用细线相连,处于静止状态,此时系统的弹性势能为10.8J ,若突然把两物块的连线烧断,此时n 沿着光滑水平桌面冲上1/4光滑圆弧,m 落在低于桌面h=5m 的水平地面上,g 取10米每二次方秒,则m 着地点距桌边的水平距离为多少?n 所能达到的最大高度为多少?(相对于桌面)
解:弹簧把两物体分开时,它们的速度分别为v 1、v 2在弹开过程中机械能守恒,动量也守恒
则mv 1-nv 2=0
J mv mv 8.102
1212221=+ 又m =0.6kg ,n =0.2kg
可得v 1=3m/s ,v 2=9m/s
以后m 离开桌面做平抛,平抛下落时间为t ,m 着地点距桌边的水平距离为x
则h =22
1gt x =v 1t 可得x =v 1·
m m g h 3105232=⨯⨯= n 所能到达的最大高度为H
则ngH =222
1nv 得H =m g v 5.40222=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O′
时距O′点的距离.
解: ⑴平板车和小物块组成的系统水平方向动量守恒,故小
物块恰能到达圆弧最高点A时,Leabharlann 二者的共同速度 v共 =0

设恒弹,簧则解有除E锁P=定m前g的R+弹μ性m势gL能为EP,上述过②程中系统能量守
代入数据解得 EP =7.5 J

⑵设小物块第二次经过O′时的速度大小为vm,此时平板车的
动量中弹簧模型
思考与讨论:
在如图所示的装置中,木块B与水平桌面间 的接触是光滑的,子弹A沿水平方向射入木块后, 留在木块内,将弹簧压缩到最短。若将子弹、木 块和弹簧合在一起作为研究对象(系统),此系 统从子弹开始射入木块到弹簧压缩到最短的整个 过程中,动量是否守恒?机械能是否守恒?说明 理由。
B
A
可能具有的最大弹性势能和滑块C可能达到的 最大速度。
C
B
A
EPmax112mv02
P
2 v 3 v0
例2.如图,轻弹簧的一端固定,另一端与滑块B相连,
B静止在水平导轨上的O点,此时弹簧处于原长。另一质
量与B相同的滑块A从导轨上的P点以初速度v0向B滑行, 当A滑过距离l时,与B相碰。碰撞时间极短,碰后A、B
(A) 0
(B) v/2
(C) v
(D) 2 v
2
变式1.如图示,在光滑的水平面上,质量为m的小球B连接着轻 质弹簧,处于静止状态,质量为2m的小球A以初速度v0向右运动, 接着逐渐压缩弹簧并使B运动,过了一段时间A与弹簧分离.
(1)当弹簧被压缩到最短时,弹簧的弹性势能EP多大?
(2)若开始时在B球的右侧某位置固定一块挡板,在A球与弹簧 未分离前使B球与挡板发生碰撞,并在碰后立即将挡板撤走,设 B球与挡板的碰撞时间极短,碰后B球的速度大小不变但方向相
反,欲使此后弹簧被压缩到最短时,弹性势能达到第(1)问中
EP的2.5倍,必须使B球在速度多大时与挡板发生碰撞?
v0 A
B甲
解:(1)当弹簧被压缩到最短时,AB两球的速度
相等设为v, 由动量守恒定律 2mv0=3mv
v0 A
由机械能守恒定律
EP=1/2×2mv02 -1/2×3mv2 = mv02/3
变式2.如图所示,质量相同的木块A和B,其间用一 轻质弹簧相连,置于光滑的水平桌面上,C为竖直 坚硬挡板.今将B压向A,弹簧被压缩,然后突然释放 B,若弹簧刚恢复原长时,B的速度大小为v,那么 当弹簧再次恢复原长时,B的速度大小应为( ).
(A) 0
(B) v/2
(C) v
(D) 2 v
2
变式2.如图所示,质量相同的木块A和B,其间用一 轻质弹簧相连,置于光滑的水平桌面上,C为竖直 坚硬挡板.今将B压向A,弹簧被压缩,然后突然释放 B,若弹簧刚恢复原长时,B的速度大小为v,那么 当弹簧再次恢复原长时,B的速度大小应为( A ).
v1 A
(2)画出碰撞前后的几个过程图
由甲乙图 2mv0=2mv1 +mv2
v1
由丙丁图 2mv1- mv2 =3mV
A
B甲 v2 B乙
v2

B
由甲丁图,机械能守恒定律(碰撞过程不做功)V
1/2×2mv02 =1/2×3mV2 +2.5EP
A
B丁
解得v1=0.75v0
v2=0.5v0 V=v0/3
变式3:在光滑水平导轨上放置着质量均为m 滑块B和C,B和C用轻质弹簧拴接,且都处于 静止状态。在B的右端有一质量也为m的滑块 A以速度V0向左运动,与滑块B碰撞的碰撞时 间极短,碰后粘连在一起,如图所示,求弹簧
以A、B为研究对象,碰撞瞬间,由动量守恒定律
mv1 = 2mv2
解得
v2
1 2
v02 2gl
(2)碰后A、B由O点向左运动,又返回到O点,设
弹簧的最大压缩量为x
由解功得能关系x(2m v02 )g2lx1 2(2m)v22
16 g 8
变式1.如图所示,质量为M=4kg的平板车静止在光滑水
平面上,其左端固定着一根轻弹,质量为m=1kg的小物
粘在一起运动。设滑块A和B均可视为质点,与导轨的动
摩擦因数均为μ 。重力加速度为g。求:
(1)碰后瞬间,A、B共同的速度大小;
(2)若A、B压缩弹簧后恰能返回到O点并停止,求弹簧
的最大压缩量。
v0
B
A
O
P
l
解:(1)设A、B质量均为m,A刚接触B时的速度为v1,
碰 由功后能瞬关间系共同的m速g度l为12m v2 02v,以12m A为12v研究对象,从P到O,
块间的动摩擦因数为μ,求在木块压缩弹簧过程中(一
直在弹性限度内)弹簧所具有的最大弹性势能。
例3.如图所示,光滑水平面上有一质量M=4.0kg的平板车,车
的上表面右侧是一段长L=1.0m的水平轨道,水平轨道左侧连
一半径R=0.25m的1/4光滑圆弧轨道,圆弧轨道与水平轨道在O′
点相切.车右端固定一个尺寸可以忽略、处于锁定状态的压缩
体以水平速度v0=5m/s从平板车右端滑上车,相对于平板 车向左滑动了L=1m后把弹簧压缩到最短,然后又相对于
平板车向右滑动到最右端而与之保持相对静止。求:
(1)小物体与平板车间的动摩擦因数;
(2)这过程中弹性势能的最大值。
v0
M
m
变式2. 如图所示,质量为2m的木板,静止放在光滑的 水平面上,木板左侧固定着一根劲度系数为k的轻质弹簧, 弹簧的自由端到小车右端的距离为L0,一个质量为m的 小木块从板的右端以初速度v0开始沿木块向左滑行,最 终回到木板右端,刚好不从木板右端滑出,设木板与木
速度大小为vM ,研究小物块在圆弧面上下滑过程,由系统动
量守恒和机械能守恒有 0=mvm -MvM ④
mgR12mm 2v12MM 2v
例1.如图所示,在光滑的水平面上放有两个小球A和B, 其质量mA<mB,B球上固定一轻质弹簧.若将A球以速 率v去碰撞静止的B球,下列说法中正确的是( ). (A)当弹簧压缩量最大时,两球速率都最小 (B)当弹簧恢复原长时,B球速率最大 (C)当A球速率为零时,B球速率最大 (D)当B球速率最大时,弹性势能不为零
弹簧,一质量m=1.0kg的小物块紧靠弹簧,小物块与水平轨道
间的动摩擦因数μ=0.5。整个装置处于静止状态,现将弹簧解
除锁定,小物块被弹出,恰能到达圆弧轨道的最高点A,g取
10m/s2.求:
(1)解除锁定前弹簧的弹性势能; (2)小物块第二次经过O′点 时的速度大小;
A RO M
m
(3)最终小物块与车相对静止
相关文档
最新文档