人教A版选修2-2导数应用:含参函数的单调性讨论(二)

合集下载

高中新课程数学(新课标人教A版)选修2-2《第一章 导数及其应用》知识点、考点、及其例题

高中新课程数学(新课标人教A版)选修2-2《第一章 导数及其应用》知识点、考点、及其例题

第一章导数及其应用知识点及练习题知识点1:导数概念的引入1. 导数的物理意义:瞬时速率。

一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。

容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim ()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆考点:导数的几何意义及其应用[例题] 已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程; (3)求斜率为4的曲线的切线方程.[变式训练] 已知函数f(x)=x3+x -16.(1)求曲线y =f(x)在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f(x)的切线,且经过原点,求直线l 的方程及切点坐标.知识点2:导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x xαα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln x f x a a '=6 若()x f x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'= 3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A 4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是() A.30° B.45° C.60° D.90° 5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =知识点3:导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.考点:1.导数在研究函数单调性中的应用2.导数在求函数极值与最值中的应用题型一:导数在研究函数单调性中的应用[例题] 设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y=(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间.[变式训练] 设函数f(x)=xekx(k ≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k 的取值范围.题型二:导数在求函数极值与最值中的应用[例题]已知函数f(x)=-x3+ax2+bx在区间(-2,1)内,当x=-1时取极小值,当x=23时取极大值.(1)求函数y=f(x)在x=-2时的对应点的切线方程;(2)求函数y=f(x)在[-2,1]上的最大值与最小值.[变式训练] 设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线方程与x轴平行,求a;(2)若f(x)在x=2处取得极小值,求a的取值范围.知识点4:解决实际问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用题型一:导数在切线方程中的运用1.曲线3x y =在P 点处的切线斜率为k,若k=3,则P 点为( ) A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)2.曲线53123+-=x x y ,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为( ) A.6π B.4π C.3π D.π43题型二:导数在单调性中的运用1.函数32()31f x x x =-+是减函数的区间为( ) A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)2.关于函数762)(23+-=x x x f ,下列说法不正确的是( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数 C .在区间(2,∞+)内,)(x f 为增函数 D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数3.已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )4、(2010年山东21)(本小题满分12分)已知函数).(111)(R a xaax nx x f ∈--+-= (Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1f x f y a=-=(Ⅱ)当12a ≤时,讨论()f x 的单调性.题型三:导数在最值、极值中的运用1.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2B. 3C. 4D.52.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 163.已知函数)0()(3≠++=adcxaxxf是R上的奇函数,当1=x时)(xf取得极值-2.(1)试求a、c、d的值;(2)求)(xf的单调区间和极大值;4.设函数2312)(bxaxexxf x++=-,已知12=-=xx和为)(xf的极值点。

高中数学人教A版选修2-2(课时训练):第一章 导数及其应用 章末复习 Word版含答案

高中数学人教A版选修2-2(课时训练):第一章 导数及其应用 章末复习 Word版含答案

章末复习1.对于导数的定义,必须明确定义中包含的基本内容和Δx→0的方式,导数是函数的增量Δy与自变量的增量Δx的比ΔyΔx的极限,即limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率.2.曲线的切线方程利用导数求曲线过点P的切线方程时应注意:(1)判断P点是否在曲线上;(2)如果曲线y=f(x)在P(x0,f(x0))处的切线平行于y轴(此时导数不存在),可得方程为x=x0;P点坐标适合切线方程,P点处的切线斜率为f′(x0).3.利用基本初等函数的求导公式和四则运算法则求导数,熟记基本求导公式,熟练运用法则是关键,有时先化简再求导,会给解题带来方便.因此观察式子的特点,对式子进行适当的变形是优化解题过程的关键.4.判断函数的单调性(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中,只能在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间;(2)注意在某一区间内f ′(x )>0(或f ′(x )<0)是函数f (x )在该区间上为增(或减)函数的充分条件.5.利用导数研究函数的极值要注意(1)极值是一个局部概念,是仅对某一点的左右两侧领域而言的.(2)连续函数f (x )在其定义域上的极值点可能不止一个,也可能没有极值点,函数的极大值与极小值没有必然的大小联系,函数的一个极小值也不一定比它的一个极大值小.(3)可导函数的极值点一定是导数为零的点,但函数的导数为零的点,不一定是该函数的极值点.因此导数为零的点仅是该点为极值点的必要条件,其充要条件是加上这点两侧的导数异号.6.求函数的最大值与最小值(1)函数的最大值与最小值:在闭区间[a ,b ]上连续的函数f (x ),在[a ,b ]上必有最大值与最小值;但在开区间(a ,b )内连续的函数f (x )不一定有最大值与最小值,例如:f (x )=x 3,x ∈(-1,1).(2)求函数最值的步骤一般地,求函数y =f (x )在[a ,b ]上最大值与最小值的步骤如下: ①求函数y =f (x )在(a ,b )内的极值;②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.7.应用导数解决实际问题,关键在于建立恰当的数学模型(函数关系),如果函数在区间内只有一个点x 0,使f ′(x 0)=0,则f (x 0)是函数的最值.题型一 应用导数解决与切线相关的问题根据导数的几何意义,导数就是相应切线的斜率,从而就可以应用导数解决一些与切线相关的问题.例1 (2013·福建)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.解 函数f (x )的定义域为(0,+∞),f ′(x )=1-a x .(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),∴f (1)=1,f ′(1)=-1,∴y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax,x >0.①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a ;∵x ∈(0,a )时,f ′(x )<0,x ∈(a ,+∞)时,f ′(x )>0∴f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.跟踪演练1 已知曲线C 的方程是y =x 3-3x 2+2x . (1)求曲线在x =1处的切线方程;(2)若l 2:y =kx ,且直线l 2与曲线C 相切于点(x 0,y 0)(x 0≠0),求直线l 2的方程及切点坐标. 解 (1)∵y ′=3x 2-6x +2, ∴y ′|x =1=3×1-6×1+2=-1. ∴l 1的斜率为-1,且过点(1,0). ∴直线l 1的方程为y =-(x -1), 即l 1的方程为x +y -1=0.(2)直线l 2过原点,则k =y 0x 0(x 0≠0),由点(x 0,y 0)在曲线C 上,得y 0=x 30-3x 20+2x 0,∴y 0x 0=x 20-3x 0+2. ∵y ′=3x 2-6x +2,∴k =3x 20-6x 0+2.又k =y 0x 0,∴3x 20-6x 0+2=y 0x 0=x 20-3x 0+2, 整理得2x 20-3x 0=0.∵x 0≠0,∴x 0=32, 此时y 0=-38,k =-14,因此直线l 2的方程为y =-14x ,切点坐标为⎝⎛⎭⎫32,-38. 题型二 利用导数求函数的单调区间在区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在区间(a ,b )内单调递增;在区间(a ,b )内,如果f ′(x )<0,那么函数y =f (x )在区间(a ,b )内单调递减. 例2 已知函数f (x )=x -2x +a (2-ln x ),a >0.讨论f (x )的单调性.解 由题知,f (x )的定义域是(0,+∞),f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8.①当Δ<0即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数.②当Δ=0即a =22时,仅对x =2,有f ′(x )=0,对其余的x >0都有f ′(x )>0.此时f (x )也是(0,+∞)上的单调递增函数.③当Δ>0即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x )、f (x )的变化情况如下表:在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.跟踪演练2 求下列函数的单调区间: (1)f (x )=(x -3)e x ,x ∈(0,+∞); (2)f (x )=x (x -a )2.解 (1)f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x ,令f ′(x )>0,解得x >2,又x ∈(0,+∞),所以函数的单调增区间(2,+∞),函数的单调减区间(0,2). (2)函数f (x )=x (x -a )2=x 3-2ax 2+a 2x 的定义域为R , 由f ′(x )=3x 2-4ax +a 2=0,得x 1=a3,x 2=a .①当a >0时,x 1<x 2.∴函数f (x )的单调递增区间为⎝⎛⎭⎫-∞,a 3,(a ,+∞),单调递减区间为⎝⎛⎭⎫a 3,a . ②当a <0时,x 1>x 2,∴函数f (x )的单调递增区间为(-∞,a ),⎝⎛⎭⎫a 3,+∞, 单调递减区间为⎝⎛⎭⎫a ,a3. ③当a =0时,f ′(x )=3x 2≥0,∴函数f (x )的单调区间为(-∞,+∞),即f (x )在R 上是递增的.综上,a >0时,函数f (x )的单调递增区间为⎝⎛⎭⎫-∞,a 3,(a ,+∞),单调递减区间为⎝⎛⎭⎫a3,a . a <0时,函数f (x )的单调递增区间为(-∞,a ),⎝⎛⎭⎫a 3,+∞,单调递减区间为⎝⎛⎭⎫a ,a3. a =0时,函数f (x )的单调递增区间为(-∞,+∞). 题型三 利用导数求函数的极值和最值 1.利用导数求函数极值的一般步骤 (1)确定函数f (x )的定义域; (2)解方程f ′(x )=0的根;(3)检验f ′(x )=0的根的两侧f ′(x )的符号. 若左正右负,则f (x )在此根处取得极大值; 若左负右正,则f (x )在此根处取得极小值; 否则,此根不是f (x )的极值点.2.求函数f (x )在闭区间[a ,b ]上的最大值、最小值的方法与步骤 (1)求f (x )在(a ,b )内的极值;(2)将(1)求得的极值与f (a )、f (b )相比较,其中最大的一个值为最大值,最小的一个值为最小值.特别地,①当f (x )在[a ,b ]上单调时,其最小值、最大值在区间端点取得;②当f (x )在(a ,b )内只有一个极值点时,若在这一点处f (x )有极大(或极小)值,则可以断定f (x )在该点处取得最大(最小)值, 这里(a ,b )也可以是(-∞,+∞). 例3 已知函数f (x )=12x 2-a ln x (a ∈R ),(1)若f (x )在x =2时取得极值,求a 的值; (2)求f (x )的单调区间;(3)求证:当x >1时,12x 2+ln x <23x 3.(1)解 f ′(x )=x -a x ,因为x =2是一个极值点,所以2-a 2=0,则a =4.此时f ′(x )=x -4x =(x +2)(x -2)x ,因为f (x )的定义域是(0,+∞),所以当x ∈(0,2)时,f ′(x )<0;当x ∈(2,+∞),f ′(x )>0,所以当a =4时,x =2是一个极小值点,故a =4.(2)解 因为f ′(x )=x -a x =x 2-ax ,所以当a ≤0时,f (x )的单调递增区间为(0,+∞).当a >0时,f ′(x )=x -a x =x 2-a x =(x +a )(x -a )x,所以函数f (x )的单调递增区间(a ,+∞);递减区间为(0,a ).(3)证明 设g (x )=23x 3-12x 2-ln x ,则g ′(x )=2x 2-x -1x,因为当x >1时,g ′(x )=(x -1)(2x 2+x +1)x >0,所以g (x )在x ∈(1,+∞)上是增函数,所以g (x )>g (1)=16>0,所以当x >1时,12x 2+ln x <23x 3.跟踪演练3 已知函数f (x )=x 3+ax 2+b 的图象上一点P (1,0),且在点P 处的切线与直线3x +y =0平行.(1)求函数f (x )的解析式;(2)求函数f (x )在区间[0,t ](0<t <3)上的最大值和最小值;(3)在(1)的结论下,关于x 的方程f (x )=c 在区间[1,3]上恰有两个相异的实根,求实数c 的取值范围.解 (1)因为f ′(x )=3x 2+2ax ,曲线在P (1,0)处的切线斜率为:f ′(1)=3+2a ,即3+2a =-3,a =-3.又函数过(1,0)点,即-2+b =0,b =2.所以a =-3,b =2,f (x )=x 3-3x 2+2. (2)由f (x )=x 3-3x 2+2得,f ′(x )=3x 2-6x . 由f ′(x )=0得,x =0或x =2.①当0<t ≤2时,在区间(0,t )上f ′(x )<0,f (x )在[0,t ]上是减函数,所以f (x )max =f (0)=2, f (x )min =f (t )=t 3-3t 2+2.②当2<t <3时,当x 变化时,f ′(x )、f (x )的变化情况如下表:min max f (t )-f (0)=t 3-3t 2=t 2(t -3)<0. 所以f (x )max =f (0)=2.(3)令g (x )=f (x )-c =x 3-3x 2+2-c , g ′(x )=3x 2-6x =3x (x -2).在x ∈[1,2)上,g ′(x )<0;在x ∈(2,3]上,g ′(x )>0.要使g (x )=0在[1,3]上恰有两个相异的实根,则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (3)≥0,解得-2<c ≤0.题型四 导数与函数、不等式的综合应用利用导数研究函数是高考的必考内容,也是高考的重点、热点.考题利用导数作为工具,考查求函数的单调区间、函数的极值与最值,参数的取值范围等问题,若以选择题、填空题出现,以中低档题为主;若以解答题形式出现,则难度以中档以上为主,有时也以压轴题的形式出现.考查中常渗透函数、不等式等有关知识,综合性较强.例4 设函数f (x )=-13x 3+2ax 2-3a 2x +b (0<a <1).(1)求函数f (x )的单调区间和极值;(2)若当x ∈[a +1,a +2]时,恒有|f ′(x )|≤a ,试确定a 的取值范围;(3)当a =23时,关于x 的方程f (x )=0在区间[1,3]上恒有两个相异的实根,求实数b 的取值范围.解 (1)f ′(x )=-x 2+4ax -3a 2=-(x -a )(x -3a ). 令f ′(x )=0,得x =a 或x =3a .当x 变化时,f ′(x )、f (x )的变化情况如下表:值,f (x )极小值=f (a )=b -43a 3;当x =3a 时,f (x )取得极大值,f (x )极大值=f (3a )=b .(2)f ′(x )=-x 2+4ax -3a 2,其对称轴为x =2a . 因为0<a <1,所以2a <a +1.所以f ′(x )在区间[a +1,a +2]上是减函数.当x =a +1时,f ′(x )取得最大值,f ′(a +1)=2a -1; 当x =a +2时,f ′(x )取得最小值,f ′(a +2)=4a -4.于是有⎩⎪⎨⎪⎧2a -1≤a ,4a -4≥-a ,即45≤a ≤1.又因为0<a <1,所以45≤a <1.(3)当a =23时,f (x )=-13x 3+43x 2-43x +b .f ′(x )=-x 2+83x -43,由f ′(x )=0,即-x 2+83x -43=0,解得x 1=23,x 2=2,即f (x )在⎝⎛⎭⎫-∞,23上是减函数, 在⎝⎛⎭⎫23,2上是增函数,在(2,+∞)上是减函数. 要使f (x )=0在[1,3]上恒有两个相异实根, 即f (x )在(1,2),(2,3)上各有一个实根,于是有⎩⎪⎨⎪⎧f (1)≤0,f (2)>0,f (3)≤0,即⎩⎪⎨⎪⎧-13+b ≤0,b >0,-1+b ≤0,解得0<b ≤13.跟踪演练4 证明:当x ∈[-2,1]时,-113≤13x 3-4x ≤163.证明 令f (x )=13x 3-4x ,x ∈[-2,1],则f ′(x )=x 2-4.因为x ∈[-2,1],所以f ′(x )≤0, 即函数f (x )在区间[-2,1]上单调递减.故函数f (x )在区间[-2,1]上的最大值为f (-2)=163,最小值为f (1)=-113.所以,当x ∈[-2,1]时,-113≤f (x )≤163,即-113≤13x 3-4x ≤163成立.题型五 定积分及其应用定积分的几何意义表示曲边梯形的面积,它的物理意义表示做变速直线运动物体的位移或变力所做的功,所以利用定积分可求平面图形的面积以及变速运动的路程和变力做功等问题.利用定积分解决问题时要注意确定被积函数和积分上下限. 例5 求曲线y =sin x 与直线x =-π2,x =54π,y =0所围成图形的面积.解所求面积S =∫54π-π2||sin x d x=-⎠⎛0-π2sin x d x +⎠⎛0πsin x d x -∫54ππsin x d x =1+2+⎝⎛⎭⎫1-22=4-22. 跟踪演练5 求由曲线y =e x ,y =e -x及x =1所围成的图形面积.解如图,由⎩⎪⎨⎪⎧y =e x,y =e -x,解得交点为(0,1).所求面积为S =⎠⎛01(e x -e -x )d x =(e x+e -x)⎪⎪10=e +1e-2.1.求函数中参数的取值范围问题,可以有两种类型:一是已知函数单调性(或极值),求参数范围;二是已知函数最值(或恒成立)等性质,求参数范围.这两种类型从实质上讲,可以统一为:已知函数值的变化规律,探求其参数变化范围.2.在解决问题的过程中主要处理好下面的问题:(1)注意定义域;(2)函数在某区间上递增(或递减)的充要条件是:f ′(x)≥0(或f ′(x)≤0),且f ′(x)不恒为零;(3)与函数最值有关问题要注意最值能否取得的情况,一般我们可以研究临界值取舍即可.高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。

高二数学(选修2-2人教A版)-函数的单调性与导数

高二数学(选修2-2人教A版)-函数的单调性与导数

2
2
由f (x) 0,得 1 17 x 1 17 .
2
2
所以 f (x) 2x3 3x2 24x 1 的单调递增区间是
(, 1 17 )和 ( 1 17 , ) ;
2
2
单调递减区间是( 1 17 , 1 17 ).
2
2
【反思】能否说f (x)在 (, 1 17 ) ( 1 17 , )
函数的单调性与导数
高二年级 数学
1.请同学们根据基本初等函数导数公式填空.
①若 f (x) c( c 为常数),则 f (x) __________.
1.请同学们根据基本初等函数导数公式填空.
①若 f (x) c( c 为常数),则 f (x) _0_________.
1.请同学们根据基本初等函数导数公式填空.
f (x) x3 3x的单调区间.
解:求导得 f (x) 3x2 3 .
因为 f (x) 0在R上恒成立, 所以 f (x)在 R上单调递增.
例2 利用函数的单调性与导数的关系,求函数
f (x) x3 3x的单调区间.
【反思】同学们还有其它方法吗?
例3 求函数 f (x) sin x x, x (0, )的单调区间.
不一定,常值函数就是反例.
思考3:函数 f (x)在区间(a,b) 内单调递增,能否得到 f (x) 0 在此区间内恒成立呢?
思考3:函数 f (x)在区间(a,b) 内单调递增,能否得到 f (x) 0 在此区间内恒成立呢?
不能.
例1 已知导函数f (x) 的下列信息:
当1 x 4时,f (x) 0 ; 当 x 4 或 x 1 时,f (x) 0; 当 x 4 或 x 1 时,f (x) 0.

高二数学人教A版选修2-2导数的计算(二)课件

高二数学人教A版选修2-2导数的计算(二)课件

复合函数的导数
• 复合函数y=f(g(x))的导数和函数y=f(u),u =g(x)的导数间的关系为yx′=__y_u_′·_u_x_′___.即y对 x的导数等于__y_对__u_的__导_数___ __与__u_对__x的__导__数__的_乘__积____.
• 2.复合函数求导应注意的问题
(1)y=3-14x4;(2)y=cos(2 008x+8); (3)y=21-3x;(4)y=ln(8x+6).
[思路点拨] 选取中间变量 → 分解 → 求导 → 转化
解析: (1)引入中间变量 u=φ(x)=3-4x. 则函数 y=3-14x4是由函数 f(u)=u14=u-4 与 u=φ(x)=3-4x 复合而成的. 查导数公式表可得 f′(u)=-4u-5=-u45,φ′(x)=-4. 根据复合函数求导法则可得3-14x4′=f′(u)φ′(x) =-u45·(-4)=1u65 =3-164x5.
高中数学人教A 版选修2-2
1.2.2 导数的计算(二)
• 1.能利用导数的四则运算法则求解导函数.
• 2.能利用复合函数的求导法则进行复合函数 的求导.(难点)
• 3.掌握求曲线切线方程的方法和切线问题求 参数的题型.(重点)
导数的运算法则
• 设两个函数分别为f(x)和g(x)
两个函数的 和的导数
两个函数的 商的导数
gfxx′=_f_′__x__g__[xg_-_x_f]_2x__g_′___x_(_g_(_x)_≠__0_)___
• 1.应用导数的运算法则应注意的问题
• (1)对于教材中给出的导数的运算法则,不 要求根据导数定义进行推导,只要能熟练运用 运算法则求简单函数的导数即可.
• (2)对于和差的导数运算法则,此法则可推 广到任意有限个可导函数的和或差,即 [f1(x)±f2(x)±…±fn(x)]′=f′1(x)± f′2(x) ±…±f′n(x).

《导数的概念》说课稿(人教A版选修2-2)

《导数的概念》说课稿(人教A版选修2-2)

说课稿一、教材分析导数的概念是高中新教材人教A 版选修2-2第一章1.1.2的内容, 是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。

新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的“逼近”方法定义导数。

问题1 气球平均膨胀率--→瞬时膨胀率 问题2 高台跳水的平均速度--→瞬时速度--难点二、 教学目标1、知识与技能:通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数。

2、过程与方法:① 通过动手计算培养学生观察、分析、比较和归纳能力② 通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法3、情感、态度与价值观:通过运动的观点体会导数的内涵,使学生掌握导数的概念不再困难,从而激发学生学习数学的兴趣. 三、 重点、难点重点:导数概念的形成,导数内涵的理解难点:在平均变化率的基础上去探求瞬时变化率,深刻理解导数的内涵 通过逼近的方法,引导学生观察来突破难点 四、 教学设想(具体如下表)五、学法与教法学法与教学用具学法:(1)合作学习:引导学生分组讨论,合作交流,共同探讨问题。

(如问题2的处理)(2)自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动。

(如问题3的处理)(3)探究学习:引导学生发挥主观能动性,主动探索新知。

(如例题的处理)教学用具:电脑、多媒体、计算器教法:整堂课围绕“一切为了学生发展”的教学原则,突出①动——师生互动、共同探索。

②导——教师指导、循序渐进(1)新课引入——提出问题, 激发学生的求知欲(2)理解导数的内涵——数形结合,动手计算,组织学生自主探索,获得导数的定义(3)例题处理——始终从问题出发,层层设疑,让他们在探索中自得知识(4)变式练习——深化对导数内涵的理解,巩固新知六、评价分析这堂课由平均速度到瞬时速度再到导数,展示了一个完整的数学探究过程。

人教版选修2-2第一章函数的单调性与导数2(共20张PPT)教育课件

人教版选修2-2第一章函数的单调性与导数2(共20张PPT)教育课件
所 以 f( x ) 的 单 调 减 区 间 为 ( 2 a , 0 )
例求1参:数求的参取数值范的围范围 若函数f(x) ax3 - x2 x - 5在(-,+)上单调递增, 求a的取值范围
a1 3
求参数
已知函数(f x) 2ax
1
,x (0,1],若(f x)在
x2
x (0,1]上是增函数,求a的取值范围.
解:由已知得
f
'(x)
2a
2 x3
因为函数在(0,1]上单调递增
f '(x)>0,即a - 2 在x (0,1]上恒成立
而g(x)
1
x3
在(0,1]上单调递增,
x3
g(x)max g(1)=-1 a〉- 1
已知函数( f x) 2ax 1 ,x (0,1],若( f x)在 x2
x (0,1]上是增函数,求a的取值范围.
练习2
已知函数f(x)=2ax - x3,x (0,1],a 0,
若f(x)在(0,1]上是增函数,求a的取值范围。
[
3 2
,)
已知函数f(x)=ax³+3x²-x+1在R上是减函数, 求a的取值范围。
; 陌陌红包群 / 陌陌红包群 ;
y
y f (x)
y
y f (x)
y
y f '(x)
o 1 2x o 1 2x
o
2x
(A)
(B)
y y f (x)
y y f (x)
2
o1
x o 12
x
(C)
(D)
函 数 yxcosxsinx在 下 面 哪 个 区 间 内 是 增 函 数 (B )

人教版高二数学选修2-2导数及其应用《函数单调性与导数》课件(共33张PPT)

人教版高二数学选修2-2导数及其应用《函数单调性与导数》课件(共33张PPT)
x
内是减函数
方程根的问题
1 求证:方程 x sin x 0只有一个根。 2
1 f ( x ) x - sin x,x ( , ) 2 1 f '( x ) 1 cos x 0 2 f(x)在( , )上是单调函数, 而当x 0时,( f x )=0 1 方程x sin x 0有唯一的根x 0. 2
4.讨论函数y=x2-4x+3的单调性. 图象法 定义法
单增区间:(2,+∞). 单减区间:(-∞,2).
5.确定函数f(x)=xlnx在哪个区间内是增函数?哪个区 间内是减函数? 提出问题:(1)你能画出函数的图象吗?
(2)能用单调性的定义吗?
发现问题:定义是解决单调性最根本的工具,但有时很
麻烦,甚至解决不了.尤其是在不知道函数的图象的时
2 f '(x) 0,即a - 3 在x (0, 1]上恒成立 x
a -1
练习2 已知函数f (x)=2ax - x ,x (0, 1],a 0,
3
若f (x)在(0, 1]上是增函数,求a的取值范围。
3 [ , ) 2
变式2.函数y=ax bx 6 x 1的
x x 在x (0, )上单调递减.
(0, )
练习:求下列函数的单调区间.
(1) f ( x) x ln x (2) f ( x) e x x 1
变式2:求f ( x) 2 x 6ax 7(a 0) 的单调减区间
3 2
解:
2 f ( x)=6x 12ax
候,如该例,这就需要我们寻求一个新的方法来解决.
函数的单调性可简单的认为是:
f ( x2 ) f ( x1 ) 若 0, 则函数f ( x)为增函数 x2 x1

高中数学《导数在研究函数中应用函数单调性与导数》教案2新人教A版选修22

高中数学《导数在研究函数中应用函数单调性与导数》教案2新人教A版选修22

函数的单调性与导数〔二〕一、教学目标:了解可导函数的单调性与其导数的关系.掌握利用导数判断函数单调性的方法.二、教学重点:利用导数判断一个函数在其定义区间内的单调性.教学难点:判断复合函数的单调区间及应用;利用导数的符号判断函数的单调性.三、教学过程⑴〔一〕复习1.确定以下函数的单调区间:y=x3-9x2+24x;⑵y=x-x3.〔4〕f(x)=2x3-9x2+12x-32.讨论二次函数y=ax2+bx+c(a>0)的单调区间.3.在区间(a, b)内f'(x)>0是f (x)在(a,b)内单调递增的A.充分而不必要条件 B .必要但不充分条件C.充要条件 D .既不充分也不必要条件( A)〔二〕举例例1.求以下函数的单调区间(1) f (x)=x-lnx(x>0);(2)(log(3x2)x(3)3(2x1)(1x)2〔4〕f(x)ln(3xb)〔b>0〕〔5〕判断f(x)lg(xx2)的单调性。

分三种方法:〔定义法〕〔复合函数〕〔导数〕例2.〔1〕求函数y1x31(aa2)x2a3xa2的单调减区间.2〔2〕讨论函数f(x)bx(11,b0)的单调性.x2〔3〕)a–+1x+1),≥–)的单调设函数=x()ln(其中1,求区间.a〔1〕解:y′=2–(a+a2)x+a3=(x–a)(x–a2),令y′<0得(x–a)(x–a2)<0.〔1〕当a<0时,不等式解集为a<x<a2此时函数的单调减区间为(a,a 2);〔2〕当0<a<1时,不等式解集为a2<x<a此时函数的单调减区间为(a2,a);3〕当a>1时,不等式解集为a<x<a2此时函数的单调减区间为(a,a2);4〕a=0,a=1时,y′≥0此时,无减区间.综上所述:当a<0或a>1时的函数y1x3aa2)x2a3xa2的单调减区间为(a,a2);3当0<a<1时的函数y 112322a);x(aa)xax的单调减区间为(a,32当a=0,a=1时,无减区间.〔2〕解:∵f(x)bxbx f(x),∴f(x)在定义域上是奇函数.(x)21x21在这里,只需讨论f(x)在(0,1)上的单调性即可.当0<x<1时,f′(x)=b(xbx21x(x21)bx22x21=bx22(x21)2(x21)2(x21)2假设b>0,那么有f ′(x)<0,∴函数fx)在(0,1)上是单调递减的;假设b<0,那么有f ′(x)>0,∴函数fx)在(0,1)上是单调递增的.由于奇函数在对称的两个区间上有相同的单调性,从而有如下结论:当b>0时,函数f(x)在(–1,1)上是单调递减的;当b<0时,函数f(x)在(–1,1)上是单调递增的.〔3〕解:由得函数f(x)的定义域为(–1,+∞),且f(x)ax1(a≥–1).x1〔1〕当–1≤a≤0时,f′(x)<0,函f(x)在(–1,+∞)上单调递减.1〔2〕当a>0时,由f′(x)=0,解得x.a′(x)、f(x)随x的变化情况如下表:x(1,1)1(1, )a a af′(x)–0+f(x)↘极小值↗从上表可知,当x∈(1,1a)时,f ′(x)<0,函数f(x)在(1,1)上单调递减a.当x ∈( 1, a )时,f′(x)>0,函数f(x)在(1,a)上单调递增.综上所述,当–1≤a≤0时,函数f(x)在(–1,+∞)上单调递减;当a>0时,函数f(x)在(1,1)上单调递减,函数a f(x)在(1,a)上单调递增.作业:?习案?作业八。

人教a版数学【选修2-2】1.2.2《基本初等函数的导数公式(二)》ppt课件

人教a版数学【选修2-2】1.2.2《基本初等函数的导数公式(二)》ppt课件

3.写出下列复合函数的导数: (1)y=sin2x,y′=________. 1 (2)y=lnx,y′=________. (3)y= 1-3x,y′=________. (4)y=22x-1,y′=________. (5)y=e2x-ex+3,y′=________. (6)y=(lnx-1)(lnx+2),y′=________. 1 (7)y=cosx,y′=________.
(8)y′=2sinx(sinx)′=2sinxcosx=sin2x. (9)∵y=sin2x-2sinx+3,∴y′=sin2x-2cosx. x x x x x cos2′· x-cos2 -2sin2-cos2 (10)y′= = x2 x2 x x xsin2+2cos2 =- . 2 x2
1 3 (2)y′= · (6x+4)′= . 6x+4 3x+2 (3)y′=e2x+1· (2x+1)′=2e2x+1. 1 1 (4)y′= · (2x-1)′= . 2 2x-1 2x-1
π π π 3x- ′=3cos3x- . (5)y′=cos3x-4· 4 4
1 3 (3)y′= · (1-3x)′=- . 2 1-3x 2 1-3x (4)y′=22x-1ln2· (2x-1)′=22xln2. (5)y′=2e2x-ex. (6)∵y=ln2x+lnx-2, 1 2lnx+1 ∴y′=2lnx· (lnx)′+x= x . 1 sinx (7)y′=-cos2x· (cosx)′=cos2x.
u对x的导数
牛刀小试 x2+a2 1.(2013· 天津红桥区高二检测)函数y= x 的导数值为0 时,x等于( A.a C.-a [答案] B ) B.± a D.a2
2x2-x2+a2 x2-a2 [解析] y′= = x2 , x2 x2-a2 由y′=0得, x2 =0,∴x=± a.

选修二:含参函数单调性的分类讨论解题技巧与专题训练

选修二:含参函数单调性的分类讨论解题技巧与专题训练

高中数学选修二:含参函数单调性的分类讨论解题技巧【思维导图】考点一 导函数为一根【例1】.已知函数3()f x x ax =+.讨论()f x 的单调性;【一隅三反】1.已知函数()()22e xx x f a x =-+.讨论函数()f x 的单调性;2.已知函数()()ln 21f x x ax a =-+∈R .讨论()f x 的单调性;3.已知函数,1()ln ()f x a x a R x=+∈.讨论()f x 的单调性;考点二 导函数为两根【例2】.已知函数()()22ln f x ax a x x =+--,()a R ∈.(1)讨论()f x 的单调性;(2)若对任意0x >,都有()0f x ≥成立,求实数a 的取值范围.【一隅三反】1.已知函数21()ln ()2f x x ax x a R =-+∈,函数()23g x x =-+.判断函数1()()()2F x f x ag x =+的单调性;2.已知函211()()().22x f x x e a x =-++讨论()f x 的单调性;若()f x 有两个零点,求a 的取值范围.3.已知函数()321(1)32a x x ax f x +=-+,讨论函数()f x 的单调性;考点三 不能因式分解 【例3】.设函数1()ln ()f x x a x a R x=--∈讨论()f x 的单调性;【一隅三反】1.已知函数2()ln 2x f x x kx =+-,其中R k ∈.(Ⅰ)若曲线()y f x =在1x =处的切线与直线2x y +=平行,求实数k 的值; (Ⅱ)讨论函数()f x 的单调性;2.已知函数221()ln ()x f x a x a R x-=-∈,讨论()f x 的单调性;答案解析考点一 导函数为一根【例1】.已知函数3()f x x ax =+.讨论()f x 的单调性;【答案】见解析【解析】因为()3f x x ax =+,所以()23f x x a ='+.①当0a ≥时,因为()230f x x a '=+≥,所以()f x 在R 上单调递增;②当0a <时,令()0f x '>,解得x <x >.令()0f x '<,解得x <<,则()f x 在,⎛-∞ ⎝⎭,⎫+∞⎪⎪⎝⎭上单调递增;在⎛ ⎝⎭上单调递减.【一隅三反】1.已知函数()()22e xx x f a x =-+.讨论函数()f x 的单调性;【答案】答案见解析【解析】()f x 的定义域为R ,()()()()2222e 2e 2e xxxx x x a f x a x =-+-+=+-',当2a ≥时,()0f x '≥,则()f x 在R 上是增函数;当2a <时,()(2(2)e e xx x a x x f x ⎡⎤=--=⎣⎦',所以()0x f x =⇔='()0x f x >⇔<'或x > ()0f x x ⇔<<'<所以()f x 在(上是减函数,在(,-∞和)+∞上是增函数.2.已知函数()()ln 21f x x ax a =-+∈R .讨论()f x 的单调性; 【答案】具体见解析【解析】函数()ln 21f x x ax =-+,定义域为()0,∞+,()12f x a x'=-, 当0a ≤时,()0f x '>.故()f x 在定义域()0,∞+上单调递增,此时无减区间.当0a >时,令()120f x a x'=-=,得102x a =>; 当10,2x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,故()f x 单调递增; 当1,2x a ⎛⎫∈+∞⎪⎝⎭时,()0f x '<,故()f x 单调递减. 综上所述,当0a ≤时,()f x 在定义域()0,∞+上单调递增,此时无减区间; 当0a >时,()f x 在10,2a ⎛⎫ ⎪⎝⎭上单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭上单调递减.3.已知函数,1()ln ()f x a x a R x=+∈.讨论()f x 的单调性; 【答案】当0a 时,()f x 在(0,)+∞上单调递减; 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增;【解析】因为1()ln =+f x a x x ,所以2211()(0)'-=-=>a ax f x x x x x. 当0a 时,()0f x '<恒成立,()f x 在(0,)+∞上单调递减; 当0a >时,由()0f x '<,得10x a <<;由()0f x '>,得1x a>. 故()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞⎪⎝⎭上单调递增. 综上,当0a 时,()f x 在(0,)+∞上单调递减; 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.考点二 导函数为两根【例2】.已知函数()()22ln f x ax a x x =+--,()a R ∈.(1)讨论()f x 的单调性;(2)若对任意0x >,都有()0f x ≥成立,求实数a 的取值范围.【答案】(1)当0a ≤时,在()0,+∞上,()f x 是减函数, 当0a >时,在10,a ⎛⎫ ⎪⎝⎭上,()f x 是减函数,在1,a ⎛⎫+∞ ⎪⎝⎭上,()f x 是增函数;【解析】解:函数f (x )的定义域为(0,+∞)又()()()()()2/221211122ax a x x ax f x ax a x x x+--+-=+--==当a≤0时,在(0,+∞)上,f′(x )<0,f (x )是减函数 当a >0时,由f′(x )=0得:1x a =或12x =-(舍) 所以:在10a ⎛⎫ ⎪⎝⎭,上,f′(x )<0,f (x )是减函数在1a ⎛⎫+∞ ⎪⎝⎭,上,f′(x )>0,f (x )是增函数 【一隅三反】1.已知函数21()ln ()2f x x ax x a R =-+∈,函数()23g x x =-+.判断函数1()()()2F x f x ag x =+的单调性;【答案】答案见解析【解析】由题意得2113()()()ln (1)222F x f x ag x x ax a x a =+=-+-+,(0,)x ∈+∞; ∴21(1)1(1)(1)()1ax a x ax x F x ax x a x x-+-+-++'=-+-==. 当0a ≤时,()0F x '≥,函数()F x 在(0,)+∞上单调递增; 当0a >时,令()0F x '>,有10x a <<:()F x 在10,a ⎛⎫⎪⎝⎭上单调递增;令()0F x '<,有1x a >:()F x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减; 综上,当0a ≤时,函数()F x 在(0,)+∞上单调递增;当0a >时,函数()y F x =在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞⎪⎝⎭上单调递减.2.已知函211()()().22x f x x e a x =-++讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【答案】答案见解析 【解析】()1()22xf x x e a ⎛⎫'=++ ⎪⎝⎭. 当0a ≥时,令()0f x '<,得1,2x ⎛⎫∈-∞-⎪⎝⎭, 令()0f x '>,得1,2x ⎛⎫∈-+∞ ⎪⎝⎭.故()f x 在1,2⎛⎫-∞-⎪⎝⎭单调递减,在1,2⎛⎫-+∞ ⎪⎝⎭单调递增.当0a <时,令()0f x '=,得112x =-,2ln(2)x a =-.①当1ln(2)2a -=-即a =时,()0f x '≥,()f x 在R 上单调递增.②当1ln(2)2a -<-即0a <<时,()f x 在1ln(2),2a ⎛⎫-- ⎪⎝⎭上单调递减,在()(),ln 2a -∞-,1,2⎛⎫-+∞ ⎪⎝⎭上单调递增.③当1ln(2)2a ->-即2a e<-时,()f x 在1,ln(2)2a ⎛⎫-- ⎪⎝⎭上单调递减, 在1,2⎛⎫-∞- ⎪⎝⎭,()ln(2)a -∞,+上单调递增.3.已知函数()321(1)32a x x ax f x +=-+,讨论函数()f x 的单调性;【答案】见解析 【解析】因为()321(1)32a x x ax f x +=-+,所以2()(1)0f x x a x a '=-++=. 令()0f x '=,解得x a =或1x =.若1a >,当()0f x '>即1x <或x a >时, 故函数()f x 的单调递增区间为()(),1,,a -∞+∞;当()0f x '<即1x a <<时,故函数()f x 的单调递减区间为()1,a . 若1a =,则22()21(1)0f x x x x '=-+=-≥,当且仅当1x =时取等号,故函数()f x 在(),-∞+∞上是增函数. 若1a <,当()0f x '>即x a <或1x >时, 故函数()f x 的单调递增区间为()(),,1,a -∞+∞;当()0f x '<即1<<a x 时,故函数()f x 的单调递减区间为(),1a .综上,1a >时,函数()f x 单调递增区间为(1)()a -∞∞,,,+,单调递减区间为(1,)a ; 1a =时,函数()f x 单调递增区间为(,)-∞+∞;1a <时,函数()f x 单调递增区间为()(1)a -∞∞,,,+,单调递减区间为(,1)a .考点三 不能因式分解 【例3】.设函数1()ln ()f x x a x a R x=--∈讨论()f x 的单调性; 【答案】答案见解析【解析】()f x 定义域为()0,∞+,()22211'1a x ax f x x x x -+=+-=, 令()221,4g x x ax a =-+∆=-,①当22a -≤≤时,0∆≤,()'0f x ≥,故()f x 在()0,∞+上单调递增, ②当2a <-时,>0∆,()0g x =的两根都小于零,在()0,∞+上,()'0f x >, 故()f x 在()0,∞+上单调递增,③当2a >时,>0∆,()0g x =的两根为12,22a a x x +==,当10x x <<时,()'0f x >;当12x x x <<时,()'0f x <;当2x x >时,()'0f x >; 故()f x 分别在()()120,,,x x +∞上单调递增,在()12,x x 上单调递减. 【一隅三反】1.已知函数2()ln 2x f x x kx =+-,其中R k ∈.(Ⅰ)若曲线()y f x =在1x =处的切线与直线2x y +=平行,求实数k 的值; (Ⅱ)讨论函数()f x 的单调性;【答案】(Ⅰ)3k =;(Ⅱ)答案见解析; 【解析】(Ⅰ)()1()0f x x k x x'=+->,∵曲线()y f x =在1x =处的切线与直线2x y +=平行,∴(1)1f '=-,即21k -=-,故3k =; (Ⅱ)函数()f x 的定义域为(0,)+∞.当k 2≤时,1()20f x x k k k x '=+-≥=-≥恒成立,故()f x 在(0,)+∞上单调递增;② 当2k >时,211()x kx f x x k x x-+'=+-=,令()0f x '=,得210x kx -+=.∵240k ∆=->,∴方程()0f x '=有两不等实根12x x ==. ∵120x x k +=>,1210x x =>,∴210x x >>.令()0f x '>,得10x x <<或2x x >;令()0f x '<,得12x x x <<. 综上所述,当k 2≤时,()f x 在(0,)+∞上单调递增;当2k >时,()f x 在⎛ ⎝⎭上单调递增,在⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增.另法(常规方法):讨论24k ∆=-的符号.当240k ∆=-≤,即22k -≤≤时,210-+≥x kx 恒成立,则()0f x '≥,()f x 在(0,)+∞上递增;② 当240k ∆=->,即2k <-或2k >时,方程()0f x '=有两不等实根12,x x . (i )当2k <-时,由12120,10x x k x x +=<=>知120x x <<,则12()()()0x x x x f x x--'=>恒成立,故()f x 在(0,)+∞上递增;(ii )当2k >时,由12120,10x x k x x +=>=>知210x x >>, 令()0f x '>,得10x x <<或2x x >;令()0f x '<,得12x x x <<. 故()f x 在1(0,)x 、2(,)x +∞上递增,在12(,)x x 上递减.综上,当k 2≤时,()f x 在(0,)+∞上单调递增;当2k >时,()f x 在⎛ ⎝⎭上单调递增,在⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 2.已知函数221()ln ()x f x a x a R x-=-∈,讨论()f x 的单调性;【答案】见解析【解析】()f x 的定义域为(0,)+∞,1()2ln f x x a x x=-- 21()2f x x '=+2221a x ax x x -+-=,对于2210x ax -+=,28a ∆=-,当[a ∈-时,()0f x '≥,则()f x 在(0,)+∞上是增函数.当(,a ∈-∞-时,对于0x >,有()0f x '>,则()f x 在(0,)+∞上是增函数.当)a ∈+∞时,令()0f x '>,得0x <<x >,令()0f x '<,得44a a x <<,所以()f x 在(0,4a ,()4a +∞上是增函数,在上是减函数.综上,当(,a ∈-∞时,()f x 在(0,)+∞上是增函数;当)a ∈+∞时,()f x 在,)+∞上是增函数,在上是减函数.《含参函数单调性的分类讨论》专题训练【题组一 导函数为一根】1.设函数()1ln f x ax x =--.讨论函数()f x 的单调性;2.已知函数2()2ln 2f x x m x m =--,m R ∈. (1)讨论函数()f x 的单调性;(2)若函数()f x 有极小值,求该极小值的取值范围.3.已知函数(),()ln x f x e g x x a x ==+.讨论()g x 的单调性;4.已知a R ∈,函数()ln f x x a x =-,()212g x x ax =-. (1)讨论()f x 的单调性;(2)记函数()()()h x g x f x =-,求()h x 在1,12⎡⎤⎢⎥⎣⎦上的最小值.5.设函数f (x )=ax 2–a –lnx ,g (x )=1ee xx -,其中a ∈R ,e=2.718…为自然对数的底数.讨论f (x )的单调性;【题组二 导函数为两根】1.已知函数2()ln (21)f x x ax a x =+++.讨论()f x 的单调性;2.已知函数22()ln f x a x a x x=++,实数0a >. 讨论函数()f x 在区间(0,10)上的单调性;3.设函数()()2122xf x x e ax ax =-+-,讨论()f x 的单调性;4.已知函数22()ln f x x ax a x =+-()a ∈R ,求函数()f x 的单调区间【题组三 不能因式分解】1.已知函数221()ln ()x f x a x a R x-=-∈,讨论()f x 的单调性;2.已知函数()()4ln 02x af x ax a x=-+>,讨论()f x 的单调性;3.已知函数()()2ln 1f x x ax =++,0a >,讨论函数()f x 的单调性;答案解析【题组一 导函数为一根】1.设函数()1ln f x ax x =--.讨论函数()f x 的单调性;【答案】(1)()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增;(2)133,e ⎡⎫+∞⎪⎢⎣⎭. 【解析】()()10ax f x x x-'=> 当0a ≤时,()0f x '<,∴()f x 在()0,∞+上单调递减; 当0a >时,令()0f x '=,则1x a=, ∴当10x a <<时,()0f x '<;当1x a>时,()0f x '<, ∴()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增;2.已知函数2()2ln 2f x x m x m =--,m R ∈. (1)讨论函数()f x 的单调性;(2)若函数()f x 有极小值,求该极小值的取值范围.【答案】(Ⅰ):当0m ≤时,函数()f x 的单调递增区间为()0,+∞;当0m >时,函数()f x 的单调递增区间为)+∞,单调递减区间为(;(Ⅱ)(2,e -⎤-∞⎦【解析】(Ⅰ)函数()f x 的定义域为()0,+∞,()()2222x m m f x x x x-=-=', ①当0m ≤时,()0f x '>,函数()f x 在()0,+∞内单调递增,②当0m >时,令()0f x '=得x =,当0x <<()0f x '<,()f x 单调递减;当x >时,()0f x '>,()f x 单调递增;综上所述:当0m ≤时,函数()f x 的单调递增区间为()0,+∞;当0m >时,函数()f x 的单调递增区间为)+∞,单调递减区间为(.(Ⅱ)①当0m ≤时,()0f x '>,函数()f x 在()0,+∞内单调递增,没有极值;②当0m >时,函数()f x 的单调递增区间为)+∞,单调递减区间为(,所以()()ln 1f x fm m ==-+极小值,记()()()ln 1,0h m m m m =-+>,则()()2ln h m m '=-+,由()0h m '=得2m e -=, 所以()()()22222ln h m h eee e e -----≤=-+=,所以函数()f x 的极小值的取值范围是(2,e -⎤-∞⎦3.已知函数(),()ln xf x eg x x a x ==+.讨论()g x 的单调性; 【答案】分类讨论,详见解析 【解析】()g x 定义域为(0,)+∞, 因为()1a x ag x x x+'=+=, 若0a ,则()0g x '>,所以()g x 在(0,)+∞单调递增,若0a <,则当(0,)x a ∈-时,()0g x '<,当(,)x a ∈-+∞时,()0g x '>, 所以()g x 在(0,)a -单调递减,在(,)a -+∞单调递增. 4.已知a R ∈,函数()ln f x x a x =-,()212g x x ax =-. (1)讨论()f x 的单调性;(2)记函数()()()h x g x f x =-,求()h x 在1,12⎡⎤⎢⎥⎣⎦上的最小值. 【答案】(1)答案见解析;(2)答案见解析. 【解析】(1)()()ln 0f x x a x x =->,则()1a x a f x x x'-=-=. 当0a ≤时,当()0,x ∈+∞时,()0f x '>,函数()y f x =单调递增; 当0a >时,当(),x a ∈+∞时,()0f x '>,函数()y f x =单调递增, 当()0,x a ∈时,()0f x '<,函数()y f x =单调递减.综上所述,当0a ≤时,函数()y f x =的单调递增区间为()0,∞+;当0a >时,函数()y f x =的单调递减区间为()0,a ,单调递增区间为(),a +∞;(2)()()()21ln 2h x g x f x x ax x a x =-=--+,1,12x ⎡⎤∈⎢⎥⎣⎦, ()()()()2111x a x a x a x a h x x a x x x-++--'=--+==. ①当1a ≥时,对任意的1,12x ⎛⎫∈⎪⎝⎭,()0h x '>,函数()y h x =单调递增, 所以,函数()y h x =在1,12⎡⎤⎢⎥⎣⎦上的最小值为()min 13ln 2282a h x h a ⎛⎫==---⎪⎝⎭; ②若12a ≤,对任意的1,12x ⎛⎫∈ ⎪⎝⎭,()0h x '<,函数()y h x =单调递减,所以,函数()y h x =在1,12⎡⎤⎢⎥⎣⎦上的最小值为()()min 112h x h a ==--; ③若112a <<时,当1,2x a ⎛⎫∈ ⎪⎝⎭时,()0h x '>,函数()y h x =单调递增,当(),1x a ∈时,()0h x '<,函数()y h x =单调递减, 又因为13ln 2282a h a ⎛⎫=---⎪⎝⎭,()112h a =--, ()13111ln 2ln 2282282a a h h a a a ⎛⎫⎛⎫⎛⎫-=------=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(i )当1ln 2082a a +-≥时,即当1128ln 24a <≤-时,()112h h ⎛⎫≥ ⎪⎝⎭, 此时,函数()y h x =在区间1,12⎡⎤⎢⎥⎣⎦上的最小值为()()min 112h x h a ==--;(ii )当1ln 2082a a +-<时,即当118ln 24a <<-时,()112h h ⎛⎫< ⎪⎝⎭. 此时,函数()y h x =在区间1,12⎡⎤⎢⎥⎣⎦上的最小值为()min 13ln 2282ah x h a ⎛⎫==--- ⎪⎝⎭.综上所述,()min31ln 2,828ln 2411,28ln 24aa a h x a a ⎧--->⎪⎪-=⎨⎪--≤⎪-⎩.5.设函数f (x )=ax 2–a –lnx ,g (x )=1ee xx -,其中a ∈R ,e=2.718…为自然对数的底数.讨论f (x )的单调性;【答案】当x∈(时,'()f x <0,()f x 单调递减;当x∈+)∞时,'()f x >0,()f x 单调递增;【解析】2121()2(0).ax f x ax x x x --=>'=0a ≤当时,()f x '<0,()f x 在0+(,)∞内单调递减. 0a >当时,由()f x '=0有x =当x∈(时,()f x '<0,()f x 单调递减; 当x∈+)∞时,()f x '>0,()f x 单调递增. 【题组二 导函数为两根】1.已知函数2()ln (21)f x x ax a x =+++.讨论()f x 的单调性;【答案】见解析【解析】f (x )的定义域为(0,+∞),()()‘1211)22(1x ax f x ax a x x++=+++=.若a≥0,则当x ∈(0,+∞)时,’)(0f x >,故f (x )在(0,+∞)单调递增. 若a <0,则当x ∈’)(0f x >时,’)(0f x >;当x ∈1()2a∞-+,时,’)(0f x <.故f (x )在’)(0f x >单调递增,在1()2a∞-+,单调递减.2.已知函数22()ln f x a x a x x=++,实数0a >. 讨论函数()f x 在区间(0,10)上的单调性; 【答案】见解析;【解析】由题知()f x 的定义域为(0,)+∞,2222(2)(1)()a ax ax f x a x x x'+-=-++=. ∵0a >,20ax +>,∴由()0f x '=可得1x a=. (i )当10,10a ⎛⎤∈ ⎥⎝⎦时, 110a,当(0,10)x ∈时,()0,()f x f x '<单递减; (ii )当1,10a ⎛⎫∈+∞⎪⎝⎭时,110a <,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减; 当1,10x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增.综上所述,10,10a ⎛⎤∈ ⎥⎝⎦时,()f x 在区间(0,10)上单调递减; 当1,10a ⎛⎫∈+∞ ⎪⎝⎭时,()f x 在区间10,a ⎛⎫ ⎪⎝⎭上单调递减, 在区间1,10a ⎛⎫⎪⎝⎭上单调递增.3.设函数()()2122xf x x e ax ax =-+-,讨论()f x 的单调性; 【答案】见解析【解析】(1)由题意得()()(),1xx R f x x e a ∈=-+',当0a ≥时,当()(),1,0x f x '∈-∞<;当()1,x ∈+∞时,()0f x '>;()f x 在(),1-∞单调递减,在()1,+∞单调递增,当0a <时,令()0f x '=得()1,ln x x a ==-,当a e <-时,()(),1,0x f x '∈-∞>;当()()1,ln x a ∈-时,()0f x '<; 当()()ln ,x a ∈-+∞时,()0f x '>;所以()f x 在()()(),1,ln ,a -∞-+∞单调递增,在()()1,ln a -单调递减; ②当a e =-时,()0f x '≥,所以()f x 在R 单调递增, ③当0e a -<<时,()()(),ln ,0x a f x ∈-∞->';当()()ln ,1x a ∈-时,()0f x '<;当()1,x ∈+∞时,()0f x '>; ∴()f x 在()()(),ln ,1,a -∞-+∞单调递增,在()()ln ,1a -单调递减;4.已知函数22()ln f x x ax a x =+-()a ∈R ,求函数()f x 的单调区间【答案】见解析【解析】函数()f x 的定义域为()0,∞+.222121()2a x ax f x a a x x x-++'=+-=.若0a =,1()0f x x'=>.所以函数()f x 的单调递增区间为()0,∞+; 若0a >,令(21)(1)()0ax ax f x x +-+'==,解得112x a =-,21x a=.当0a >时,()f x ',()f x 的变化情况如下表∴函数()y f x =的单调递增区间是10,a ⎛⎫ ⎪⎝⎭,单调递减区间是1,a ⎛⎫+∞ ⎪⎝⎭;当0a <时,()f x ',()f x 的变化情况如下表∴函数()y f x =的单调递增区间是10,2a ⎛⎫- ⎪⎝⎭,单调递减区间是1,2a ⎛⎫-+∞ ⎪⎝⎭.综上所述:0a =,()f x 的单调递增区间为()0,∞+;0a >,单调递增区间是10,a ⎛⎫ ⎪⎝⎭,单调递减区间是1,a ⎛⎫+∞ ⎪⎝⎭;0a <,单调递增区间是10,2a ⎛⎫- ⎪⎝⎭,单调递减区间是1,2a ⎛⎫-+∞ ⎪⎝⎭【题组三 不能因式分解】1.已知函数221()ln ()x f x a x a R x-=-∈,讨论()f x 的单调性;【答案】见解析【解析】()f x 的定义域为(0,)+∞,1()2ln f x x a x x=-- 21()2f x x '=+2221a x ax x x -+-=,对于2210x ax -+=,28a ∆=-,当[a ∈-时,()0f x '≥,则()f x 在(0,)+∞上是增函数.当(,a ∈-∞-时,对于0x >,有()0f x '>,则()f x 在(0,)+∞上是增函数.当)a ∈+∞时,令()0f x '>,得04a x <<或4a x >,令()0f x '<x <<,所以()f x 在(0,4a ,()4a +∞上是增函数,在(44a a 上是减函数.综上,当(,a ∈-∞时,()f x 在(0,)+∞上是增函数;当)a ∈+∞时,()f x 在(0,)4a -,()4a ++∞上是增函数,在上是减函数.2.已知函数()()4ln 02x af x ax a x=-+>,讨论()f x 的单调性; 【答案】见解析 【解析】()()4ln02x af x ax a x-+=>, ()()222214402a ax x af x a x x x x-+-'⋅--==>. 令()24g x ax x a +=--.2116a ∆=-.若21160a ∆≤=-,即14a ≥,则()0g x ≤,即()0f x '≤, ∴()f x 在()0+∞,上单调递减; 若21160a ∆=->,即104a <<. 由()240g x ax x a +=--=,解得10x =>,20x >.∴当12(0,)(,)x x x ∈+∞时, ()0g x <,即()0f x <′,()f x 在)0+∞(上单调递减;当12(,)x x x ∈时, ()0g x >,即()0f x >′,()f x在上单调递增;3.已知函数()()2ln 1f x x ax =++,0a >,讨论函数()f x 的单调性;【答案】见解析【解析】()21221'211ax ax f x ax x x ++=+=++,1x >-, 令()2221g x ax ax =++,()24842a a a a ∆=-=-,若0∆<,即02a <<,则()0g x >,当()1,x ∈-+∞时,()'0f x >,()f x 单调递增, 若0∆=,即2a =,则()0g x ≥,仅当12x =-时,等号成立, 当()1,x ∈-+∞时,()'0f x ≥,()f x 单调递增. 若0∆>,即2a >,则()g x 有两个零点1x =,2x =由()()1010g g -==>,102g ⎛⎫-< ⎪⎝⎭得121102x x -<<-<<, 当()11,x x ∈-时,()0g x >,()'0f x >,()f x 单调递增; 当()12,x x x ∈时,()0g x <,()'0f x <,()f x 单调递减; 当()2,x x ∈+∞时,()0g x >,()'0f x >,()f x 单调递增. 综上所述,当02a <≤时,()f x 在()1,-+∞上单调递增;当2a >时,()f x在⎛ - ⎝⎭和⎫⎪+∞⎪⎝⎭上单调递增, 在⎝⎭上单调递减.。

人教A版高中数学选修2-2课件§1.3.1导数在研究函数中的应用——单调性.pptx

人教A版高中数学选修2-2课件§1.3.1导数在研究函数中的应用——单调性.pptx
函数的单调性(增函数)
对于I上的任意两个自变量的值x1,x2,
当时x1,都x2有,则f(x)在f (区x1间) If上( x是2) 单调增函
数.
y
f(x2)
Q
y f ( x2 ) f ( x1 ) 0
x
x2 x1
f(x1) P
O
x1
平均变化率 x2 x (几何意义:割线PQ的斜率)
的单调性如何?
温故知新
函数的单调性
设函数y=f(x)的定义域为A,区间IA. 如果对于I上的任意两个自变量的值x1,x2,
当时x1, 都x2有,则f(x)在f ( x区1)间 fI(上x2是) 单调增函
数.
当时x1 , 都x2有,则f(x)在f (区x1)间 fI上( x2是) 单调减函
数.
合作交流
苏教版高中数学选修2-2
y
y
O
x
O
x
合作交流
利用函数探f (求x)导 数x2与单调性的关系.
建构新知
对于函数y=f(x),
如果在某区间上f(x)>0,则f(x)在该区间上
为增函数; 如果在某区间上f(x)<0,则f(x)在该区间上为
减函数.
y
f(x)>0
y
f(x)<0
O a x bx
O ax b x
合作交流
活动一:试确定函数的f (单x调) 性x.2 4 x 3
活动二:求下列函数的单调区间.
(1)f ( x) 2 x3 6 x2 7; (2)f ( x) x 4ln x 1.
合作交流
利用导数求函数单调区间的步骤: ①求函数定义域; ②求导函数f(x); ③解不等式f(x)>0,得f(x)单调递增区间; 解不等式f(x)<0,得f(x)单调递减区间.

高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案

高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案

导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).



高考不提分,赔付1万元,关注快乐学了解详情。

解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为

A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。

第1章导数及其应用专解3 求函数的单调区间-人教A版高中数学选修2-2专题考点训练(必备知识点)

第1章导数及其应用专解3 求函数的单调区间-人教A版高中数学选修2-2专题考点训练(必备知识点)

【必备知识点】1.函数的单调性与导数的关系我们知道,如果函数()f x在某个区间是增函数或减函数,那么就说()f x在这一区间具有单调性.已知函数2()43f x x x=-+的图象如图所示,由函数的单调性易知,当2x<时,()f x是减函数;当2x>时,()f x是增函数.现在我们看看各个单调区间内任意一点的切线情况:考虑到曲线()y f x=的在某点处切线的斜率就是函数()f x在改点的导数值,从图象可以看到:在区间(-∞,2)内,任意一点的切线的斜率为负,即'()240f x x=<时,()f x为减函数.在区间(2,+∞)内,任意一点的切线的斜率为正,即'()240f x x=>时,()f x为增函数.导数的符号与函数的单调性:一般地,设函数()y f x=在某个区间内有导数,则在这个区间上,(1)若()0f x '>,则()f x 在这个区间上为增函数; (2)若()0f x '<,则()f x 在这个区间上为减函数; (3)若恒有()0f x '=,则()f x 在这一区间上为常函数.反之,若()f x 在某区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);若()f x 在某区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0).2.利用导数研究函数的单调性利用导数判断函数单调性的基本方法: 设函数()y f x =在区间(a ,b )内可导,(1)如果恒有'()0f x >,则函数()f x 在(a ,b )内为增函数; (2)如果恒有'()0f x <,则函数()f x 在(a ,b )内为减函数; (3)如果恒有'()0f x =,则函数()f x 在(a ,b )内为常数函数.【典例展示】例1. 确定函数32()267f x x x =-+的单调区间.【解析】第一步:确定函数的定义域: ()f x 的定义域为R ;第二步:求导:2'()6126(2)f x x x x x =-=-, 第三步:方法一:解不等式'()0f x >确定函数的单调增区间: 令'()0f x >,解得x <0或x >2, 则函数()f x 在x <0或x >2时是增函数; 方法二:列表法:令'()=0f x ,解得x =0或x =2.当x 变化时,()f x '、()f x 的变化状态如下表:第四步:确定单调区间:因此,函数()f x 的单调增区间为(-∞,0)和(2,+∞),而单调减区间为(0,2).例2 求函数22ln y x x =-的单调区间.【解析 】第一步:确定函数的定义域:函数22ln y x x =-的定义域为(-∞,0)∪(0,+∞);第二步:求导:222(1)2(1)(1)()2x x x f x x x x x --+'=-==;第三步:方法一:解不等式()0f x '>确定单调增区间:令2(1)(1)x x x -+>,利用穿线法解不等式,得1<0x < 或1x >.方法二:令()=0f x '得,=1x ±.当x 变化时,()f x '、()f x 的变化状态如下表:第四步:确定单调区间:函数()f x 的单调增区间是(-1,0)和(1,+∞),减区间是(-∞,-1)和(0,1).例3. 已知函数22()(1)(1)x bf x x x -=≠-,求导函数'()f x ,并确定()f x 的单调区间.【解析】第一步:确定函数的定义域:()f x 的定义域为(,1)(1,)-∞+∞;第二步:求导:2432(1)(2)2(1)2[(1)]'()(1)(1)x x b x x b f x x x ---⋅----==--; 第三步:解不等式'()0f x >,求单调增区间: 令'()0f x >,得32[(1)]0(1)x b x --->-,同解于[(1)](1)0x b x ---<.当11b ->,即2b >,不等式的解为11x b <<-; 当11b -=,即2b =,不等式的解为空集; 当11b -<,即2b <,不等式的解为11b x -<<.综上,当2b >时,()f x 的单调增区间为(1,1)b -,单调减区间为(,1)(1,)b -∞-+∞和; 当2b =时,()f x 的单调减区间为(,1)(1,)-∞+∞和,无增区间;当2b <时,()f x 的单调增区间为(1,1)b -,单调减区间为(,1)(1,)b -∞-+∞和.例4.证明不等式2(1)ln 1x x x ->+,其中1x >.【解析】设2(1)()ln ,(1)1x f x x x x -=->+,214'()(1)f x x x =-+,1,'()0x f x >∴>,()f x ∴在(1,)+∞内为单调增函数.又(1)0f =,当1x >时,()(1)0f x f ∴>=,即2(1)ln 01x x x -->+,2(1)ln 1x x x -∴>+.【思路总结与方法】1. 思路:求函数的单调区间即为求使其导函数为正(或负)的x 值的范围,先正确求出函数的导函数,然后再在函数的定义域内解导函数的不等式即可。

选修2-2 专题二导数背景下的函数单调性问题

选修2-2 专题二导数背景下的函数单调性问题

2( x2 1) (x2 1)2 当x (2,)时h( x) 0
h( x)在(2,)上单调递减
h( x) h(2) 4

a

4
时f
(
5 x)在(2,)上单调递增
5
题型三:已知单调区间,求参数的取值范围
(1)已知函数f(x)在某个区间上的单调性,求参数 的取值范围时,将问题转化为导数f'(x)在区 间上大于等于0(或小于等于0)恒成立。
2a
2a
题型二:求含参数的函数的单调区间
• (1)在判断函数单调性时,若求导后的解析式中含有参数, 利用函数单调性与导数的关系转化为含参不等式进行讨论。
• (2)常讨论二次项的系数是否为0、有无根、根的大小等 • (3)在判断含参数函数的单调性时,不仅要考虑到参数的
范围,而且要结合定义域来确定最后的单调区间。
题型二:求含参数的函数的单调区间
变式2.已知函数 f (x) (a 1) ln x ax2 1, 讨论函数 f (x)的单调性.
解:f (x)的定义域为(0, ).f (x) a+1 2ax 2ax2 a+1
x
x
当a 0时, f (x) 0,故f (x)在(0, )单调递增;
在(2a, 2)上f (x) 0,故f (x)是减函数。 当a 1时,仅对x 2有f (x) 0, 对其余x 0都有f (x) 0.
故f (x)在(, )上是增函数.
分析:利用导数求含参函数单调区间时,要注意对参数进行讨论
题型二:求含参数的函数的单调区间
变式1.已知函数f (x) 1 x2 ax (a 1) ln x, a 1, 讨论函数f (x)的单调性.

人教A版选修2-2导数及其应用优质课:函数的单调性与导数

人教A版选修2-2导数及其应用优质课:函数的单调性与导数

[对点训练]
1.函数 f(x)=2x2-ln x 的递增区间是
()
A.0,12
B.0,12和12,+∞
C.12,+∞
D.-∞,12和0,12
解析:选 C ∵f(x)=2x2-ln x,
∴f′(x)=4x-1x=4x2x-1=2x-1x2x+1(x>0),
(2)函数 f(x)的定义域为(-∞,0)∪(0,+∞), f′(x)=x+bx′=1-xb2, 令 f′(x)>0,则x12(x+ b)(x- b)>0, ∴x> b,或 x<- b. ∴函数的单调递增区间为(-∞,- b)和( b,+∞). 令 f′(x)<0,则x12(x+ b)(x- b)<0, ∴- b<x< b,且 x≠0. ∴函数的单调递减区间为(- b,0)和(0, b).
(1)利用导数求函数 f(x)的单调区间的一般步骤为: ①确定函数 f(x)的定义域; ②求导数 f′(x); ③ 在 函 数 f(x) 的 定 义 域 内 解 不 等 式 f′(x)>0 和 f′(x)<0; ④根据(3)的结果确定函数 f(x)的单调区间. (2)如果一个函数具有相同单调性的单调区间不止一 个,那么这些单调区间不能用“∪”连接,而只能用“逗 号”或“和”字隔开.
1.利用导数法解决取值范围问题的两个基本思路 (1)将问题转化为不等式在某区间上的恒成立问题,即 f′(x)≥0(或 f′(x)≤0)恒成立,利用分离参数或函数性质 求解参数范围,然后检验参数取“=”时是否满足题意. (2)先令 f′(x)>0(或 f′(x)<0),求出参数的取值范围后, 再验证参数取“=”时 f(x)是否满足题意. 2.恒成立问题的重要思路 (1)m≥f(x)恒成立⇒m≥f(x)max. (2)m≤f(x)恒成立⇒m≤f(x)min.

人教A版选修2-2导数应用:含参函数的单调性讨论(二).docx

人教A版选修2-2导数应用:含参函数的单调性讨论(二).docx

导数应用:含参函数的单调性讨论(二)对函数(可求导函数)的单调性讨论可归结为对相应导函数在何处正何处负的讨论,若有多个讨论点时,要注意讨论层次与顺序,一般先根据参数对导函数类型进行分类,从简单到复杂。

一、典型例题例1、已知函数32()331,f x ax x x a R =+++∈,讨论函数)(x f 的单调性.分析:讨论单调性就是确定函数在何区间上单调递增,在何区间单调递减。

而确定函数的增区间就是确定0)('>x f 的解区间;确定函数的减区间就是确定0)('<x f 的解区间;讨论单调性与讨论不等式的解区间相应。

解: 因为32()331,f x ax x x a R =+++∈, 所以/2()3(21)f x ax x =++(1) 当0a =时,/()3(21)f x x =+,当1,2x ≤-时,/()0f x ≤;当1,2x ≥-时,/()0f x ≥;所以函数()f x 在1(,]2-∞-上单调递增,在1[,)2-+∞上单调递减; (2) 当0a >时,/2()3(21)f x ax x =++的图像开口向上,36(1)a ∆=-I) 当136(1)0,a a ≥∆=-≤时,时,/()0f x ≥,所以函数()f x 在R 上递增; II) 当0136(1)0,a a <<∆=->时,时,方程/()0f x =的两个根分别为12x x ==且12,x x <所以函数()f x 在1(,a --∞,1()a-++∞上单调递增,在11()a a---+上单调递减; (3) 当0a <时,/2()3(21)f x ax x =++的图像开口向下,且36(1)0a ∆=->方程/()0f x =的两个根分别为12x x ==且12,x x >所以函数()f x 在(-∞,)+∞上单调递减,在11(a a-+--上单调递增。

【精编】人教A版高中数学选修2-2课件导数在研究函数中的应用(单调性)课件-精心整理

【精编】人教A版高中数学选修2-2课件导数在研究函数中的应用(单调性)课件-精心整理
数学是研究现实世界中数 量关系和空间形式的科学。 简单地说,就是研究数和形 的科学。
提出问题
导数与函数的单调性(增)有什么联系呢?
数学建构
设函数f (x)在某区间内可导
如果f (x) 0,则f (x)单调递增; 如果f (x) 0,则f (x)单调递减.
数学应用
例1 函数f (x) x2 4x 3的单调区间为 __ .
数学应用
例2 确定函数f (x) 2x3 6x2 7的单调增区间.
数学应用
例3 用导数证明: f (x) sin x, x ( , 3 )
22 是减函数.
回顾反思
问题1:我们怎么想到要研究导数与单调性 之间的关系的? 问题2:我们是怎样研究这个问题的? 问题3:我们得到了哪些结论?
xaOPFra bibliotekx1,f(x1))
Q(x2,f(x2))
b
x
问题4:运用上述结论,解决了哪些问题?
课堂巩固
1.函数f (x) x ln x的单调减区间为 ___ .
2.用导数证明 (1) f (x) ex在区间(-,+)上是增函数; (2) f (x) ln x在定义域上是减函数.
制作不易 尽请参考
数学建构
y
? f (x) 0 y 0 增
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学学习材料金戈铁骑整理制作导数应用:含参函数的单调性讨论(二)对函数(可求导函数)的单调性讨论可归结为对相应导函数在何处正何处负的讨论,若有多个讨论点时,要注意讨论层次与顺序,一般先根据参数对导函数类型进行分类,从简单到复杂。

一、典型例题例1、已知函数32()331,f x ax x x a R =+++∈,讨论函数)(x f 的单调性.分析:讨论单调性就是确定函数在何区间上单调递增,在何区间单调递减。

而确定函数的增区间就是确定0)('>x f 的解区间;确定函数的减区间就是确定0)('<x f 的解区间;讨论单调性与讨论不等式的解区间相应。

解: 因为32()331,f x ax x x a R =+++∈, 所以/2()3(21)f x ax x =++(1) 当0a =时,/()3(21)f x x =+,当1,2x ≤-时,/()0f x ≤;当1,2x ≥-时,/()0f x ≥;所以函数()f x 在1(,]2-∞-上单调递增,在1[,)2-+∞上单调递减; (2) 当0a >时,/2()3(21)f x ax x =++的图像开口向上,36(1)a ∆=-I) 当136(1)0,a a ≥∆=-≤时,时,/()0f x ≥,所以函数()f x 在R 上递增; II) 当0136(1)0,a a <<∆=->时,时,方程/()0f x =的两个根分别为12x x ==且12,x x <所以函数()f x 在(-∞,)+∞上单调递增,在11()a a---+上单调递减; (3) 当0a <时,/2()3(21)f x ax x =++的图像开口向下,且36(1)0a ∆=->方程/()0f x =的两个根分别为1211x x a a--+==且12,x x >所以函数()f x 在(-∞,)+∞上单调递减,在上单调递增。

综上所述,当0a <时,所以函数()f x 在上单调递增,在(-∞,)+∞上单调递减; 当0a =时,()f x 在1(,]2-∞-上单调递增,在1[,)2-+∞上单调递减;当01a <<时,所以函数()f x 在(-∞,)+∞上单调递增,在11(a a--上单调递减; 当1a ≥时,函数()f x 在R 上递增; 小结:导函数为二次型的一股先根据二次项系数分三种情况讨论(先讨论其为0情形),然后讨论判别式(先讨论判别式为负或为0的情形,对应导函数只有一种符号,原函数在定义域上为单调的),判别式为正的情况下还要确定两根的大小(若不能确定的要进行一步讨论),最后根据导函数正负确定原函数相应单调性,记得写出综述结论。

例2.(2010山东理数改编) 已知函数1()ln 1af x x ax x-=-+-()a R ∈.讨论()f x 的单调性; 解:因为1()ln 1af x x ax x-=-+-的定义域为),0(+∞ 所以 2'22111()(0,)a ax x af x a x x x x--+-=-+=∈+∞, 令 2()1,(0,)h x ax x a x =-+-∈+∞,则)()('x g x f 与同号法一:根据熟知二次函数性质可知g(x)的正负符号与开口有关,因此可先分类型讨论:① 当0a <时,由于110a-<<1,)(x h 开口向下,结合其图象易知 (0,1)x ∈,()0h x >,此时'()0f x <,函数 ()f x 单调递减;(1,)x ∈+∞时,()0h x <,此时'()0f x >,函数()f x 单调递增.②当0>a 时, )(x h 开口向上,但2x 是否在定义域需要讨论:因10011≥<⇔≤-a a a或所以 i) 当1≥a 时,由于110a-<<1,)(x h 开口向上,结合其图象易知 (0,1)x ∈,()0h x <,此时'()0f x >,函数()f x 单调递增.(1,)x ∈+∞时,()0h x >,此时'()0f x <,函数 ()f x 单调递减;ii)当10<<a 时,g(x)开口向上且),0(,21+∞∈x x ,但两根大小需要讨论: a) 当12a =时,12,()0x x h x =≥恒成立, 此时'()0f x ≤,函数 ()f x 在∞(0,+)上单调递减; b) 当1101102a a-<<时,>>,g(x)开口向上且在(0,∞+)有两根(0,1)x ∈时,()0h x >,此时'()0f x <,函数()f x 单调递减; 1(1,1)x a∈-时()0h x <,此时'()0f x >,函数 ()f x 单调递增; 1(1,)x a∈-+∞时,()0h x >,此时'()0f x <,函数()f x 单调递减; c) 当121<<a 时,1110<-<a,g(x)开口向上且在(0,∞+)有两根 )11,0(-∈ax 时,()0h x >,此时'()0f x <,函数()f x 单调递减;),1(+∞∈x 时,()0h x >,此时'()0f x <,函数()f x 单调递减;小结:此法是把单调区间讨论化归为导函数符号讨论,而确定导函数符号的分子是常见二次型的,一般要先讨论二次项系数,确定类型及开口;然后由于定义域限制讨论其根是否在定义域内,再讨论两根大小注,结合g(x)的图象确定其在相应区间的符号,得出导函数符号。

讨论要点与解含参不等式的讨论相应。

法二:①10011≥<⇔≤-a a a或 i)当0a <时,由于110a-<<1,)(x h 开口向下,结合其图象易知 (0,1)x ∈,()0h x >,此时'()0f x <,函数 ()f x 单调递减;(1,)x ∈+∞时,()0h x <,此时'()0f x >,函数()f x 单调递增.ii)当1≥a 时,由于110a-<<1,)(x h 开口向上,结合其图象易知 (0,1)x ∈,()0h x <,此时'()0f x >,函数()f x 单调递增.(1,)x ∈+∞时,()0h x >,此时'()0f x <,函数 ()f x 单调递减;②10011<<⇔>-a a时 g(x)开口向上且),0(,21+∞∈x x i)当12a =时,12,()0x x h x =≥恒成立, 此时'()0f x ≤,函数 ()f x 在∞(0,+)上单调递减; ii)当1101102a a-<<时,>>,g(x)开口向上且在(0,∞+)有两根(0,1)x ∈时,()0h x >,此时'()0f x <,函数()f x 单调递减;1(1,)x a∈-+∞时,()0h x >,此时'()0f x <,函数()f x 单调递减; iii) 当121<<a 时,1110<-<a,g(x)开口向上且在(0,∞+)有两根 )11,0(-∈ax 时,()0h x >,此时'()0f x <,函数()f x 单调递减; )1,11(-∈ax 时()0h x <,此时'()0f x >,函数 ()f x 单调递增; ),1(+∞∈x 时,()0h x >,此时'()0f x <,函数()f x 单调递减;小结:单调性讨论化归为讨论导函数符号的问题,多数导数是连续函数,其正负所以区间可由其根划分,所以可根据相应导函数的零点个数(从少到多)分类,先讨论零点可能没意义的(如分母或偶次根等含参数,要先讨论分母是否为零,被开方式是否非负),然后讨论解出的根是否为增根(解方程时由于去分母,去根号,去对数符号时导致范围扩大而得出根,要讨论其是否在定义域内),再对有多个零点的讨论其大小,最后由导数的根将定义域划分为若干区间并结合导函数图象确定相应区间上确定导函数的正负(不能确定的再讨论何时正何时负)而得到相应单调性质。

最后确记要综合讨论情况,写出综上所述结论。

函数问题一定要注意先确定定义域,单调区间是定义域的子集。

为讨论导函数的根及导函数的符号情况,一般能因式分解的要先分解(包括分式先通分)。

例2.(2011年广东卷文19题)设0a >,讨论函数2()ln (1)2(1)f x x a a x a x =+---的单调性.解:函数()f x 的定义域为(0,)+∞212(1)2(1)1()2(1)2(1)a a x a x f x a a x a x x---+'=+---=(x>0)令2()2(1)2(1)1g x a a x a x =---+,则)('x f 与)(x g 同号(1)当1=a 时,x x f xx f x g ln )(,01)(',1)(=>==在定义域),0(+∞上为增函数 (2) 当1≠a 时, 224(1)8(1)121644(31)(1)a a a a a a a ∆=---=-+=--① 当⇔≤∆0113a ≤≤时,g(x)开口向上,图象在x 轴上方,所以0)(≥x g 所以()0f x '≥,则()f x 在(0,)+∞上单调递增② 当⇔>∆0131><a a 或,此时令()0f x '=,解得)1(21,)1(2121a a a x a a a x -∆+-=-∆--= 由于210)(100)1(2x x x g a a a <<⇔<<⇔>-开口向上且, 因此可进一步分类讨论如下:i) 当1a >时,120)(0)1(2x ,xx g a a <<⇒<-开口向下∵0x >,()0f x '>⇔10x x << ; ()0f x '<1x x >⇔则()f x 在上单调递增,在)+∞上单调递减ii)当103a <<时,()0f x '>⇔10x x <<或2x x >; ()0f x '<21x x x <<⇔则()f x 在,)+∞上单调递增,在上单调递减综上所述,f(x)的单调区间根据参数a 讨论情况如下表:增小结:求单调区间要确定定义域,确定导函数符号的关键是看分子相应函数,因此讨论点有:第一是类型(一次与二次的根个数显然不同);第二有没有根(二次的看判别式),第三是有根是否为增根(在不在定义根内;第四有根的确定谁大;第五看区间内导函数的正负号(二次函数要看开口)。

相关文档
最新文档