分子热运动 知识讲解
九年级物理第十三章第一节分子热运动知识点归纳
九年级物理第十三章第一节分子热运动知识点
归纳
学习是一个循序渐进的过程,也是一个不断积累不断创新的过程。
下面小编为大家整理了九年级物理第十三章第一节分子热运动知识点归纳,欢迎大家参考阅读!
1、分子运动理论的初步认识
(1)物质由分子组成的。
(2)一切物质的分子都在不停地做无规则的运动——扩散现象。
(3)分子之间有相互作用的引力和斥力。
2、(1)分子运动理论的基本内容:物质是由分子组成的;分
子不停地做无规则运动;分子间存在相互作用的引力和斥力。
(2)扩散现象:不同物质在相互接触时,彼此进入对方的现
象叫扩散。
气体、液体、固体均能发生扩散现象。
扩散的快慢与温度有关。
扩散现象表明:一切物质的分子都在永不停息地做无规则运动,并且间接证明了分子间存在间隙。
(3)分子间的相互作用力既有引力又有斥力,引力和斥力是
同时存在的。
当两分子间的距离等于10—10米时,分子间
引力和斥力相等,合力为零,叫做平衡位置;当两分子间的
距离小于10—10米时,分子间斥力大于引力,合力表现为
斥力;当两分子间的距离大于10—10米时,分子间引力大于斥力,合力表现为引力;当分子间的距离很大(大于分子直径
的10倍以上)时,分子间的相互作用力变得十分微弱,可近似认为分子间无相互作用力。
以上就是查字典物理网为大家整理的九年级物理第十三章第一节分子热运动知识点归纳,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!。
第1讲 分子热运动
第1讲分子热运动【知识点1】物质的构成1、物质的构成:常见的物质是由极其微小的粒子——分子、原子构成的。
分子很小,是由肉眼和光学显微镜分辨不出的。
通常以10-10m为单位来量度分子【知识点2】分子热运动固体扩散现象铅块和金块之间的接触后实验观察【知识点3】分子间的作用力1.分子间的引力作用说明分子间存在引力的现象有:①固体很难拉伸;②物体有一定的形状和体积;③两块表面光滑的铅块相互挤压会结合在一起等;2.分子间的斥力作用例:物体很难被压缩。
虽然分子间有间隙,但要压缩固体和液体却很困难,这是因为分子间存在着斥力。
3.分子间同时存在着引力和斥力现象当r=r0引力=斥力(平衡)当r>r0引力>斥力当r<r0引力<斥力当r>10r0作用力十分微弱,忽略不计【知识点4】分子动理论(1)物质是由大量分子、原子构成的;(2)物质内的分子在不停地做无规则的运动;(3)分子之间存在相互作用的引力和斥力。
随堂练习1、对于飘在空中的尘埃,正确的说法是()A.它和一个原子差不多大 B.它包含有几个分子C.它有几个“纳米” D.它是由许多分子组成的2、下列现象中,属于扩散现象的是()A.春天沙尘暴,飞沙满天B.擦黑板时,粉笔灰四处飞扬C.槐树开花时,空气中弥漫着槐花的香气D.甲型H1N1流感病毒通过飞沫传播3、下列现象中是由于分子热运动引起的是()A. 春天,柳絮飞物B. 夏天,槐花飘香C. 秋天,黄沙扑面D. 冬天,雪花飘飘4、我们在实验室用酒精进行实验时,整个实验室很快就闻到了刺鼻的酒精气味,这是一种扩散现象。
以下有关分析错误的是()A.扩散现象只发生在气体、液体之间 B.扩散现象说明分子在不停息地运动C.温度越高时扩散现象越剧烈 D.扩散现象说明分子间存在着间隙5、机场安检过程中,防暴犬功不可没.即使隔着多层包装,防暴犬也能嗅出炸药的气味,这说明组成炸药的分子()A.一直处于静止状态B.处于永不停息的运动中C.相互之间存在排斥力D.相互之间存在吸引力6、如右图所示,上瓶内装有空气,下瓶内装有红棕色的二氧化氮气体,将上下两瓶间的玻璃板抽掉后,两瓶气体混合在一起,颜色变得均匀,这个现象主要说明()A.物质是由分子组成的B.分子不停做无规则运动C.分子间有作用力D.分子有一定的质量7、通常把青菜腌成咸菜需要几天时间,而把青菜炒熟,使之具有相同的咸味,仅需几分钟,造成这种差别的主要原因是()A.炒菜时盐多些,盐分子很容易进入青菜中B. 炒菜时青菜分子有空隙,盐分子易进入C.炒菜时温度高,分子热运动加剧,扩散加快D. 盐分子间有相互作用的斥力8、“墙角数枝梅,凌寒独自开,遥知不是雪,为有暗香来.”诗人在远处就能闻到淡淡梅花香味的原因是()A.分子间有引力B.分子间有斥力C.分子在不停地做无规则运动 D.分子很小9、下列现象能说明分子运动快慢跟温度有关的是()A.打开一盒香皂,很快就会闻到香味B.空气容易被压缩C.湿衣服在阳光下比在阴天更容易干D.两块用水刚洗干净的平玻璃板叠在一起不易分开10、把两块光滑的玻璃贴紧,它们不能吸在一起,原因是()A.两块玻璃分子间存在斥力B.两块玻璃的分子间距离太大C.玻璃分子间隔太小,不能形成扩散D.玻璃分子运动缓慢11、下列说法中正确的是()A.雪花飞舞,说明分子在运动 B. 花香扑鼻,说明分子在运动C.破镜难圆,说明了分子间没有作用力D. 一潭死水,说明了水分子是静止的12、“破镜”不能“重圆”的原因是()A.分子间的作用力因玻璃被打碎而消失B.玻璃的分子间只有斥力没有引力C.玻璃碎片间的距离太大,大于分子间发生相互吸引的距离D.玻璃表面太光滑13、分子动理论是从微观角度看待宏观现象的基本理论。
分子热运动九年级知识点
分子热运动九年级知识点分子热运动是物质微观领域中分子或原子由于热的引起而发生的无规则运动。
了解分子热运动的知识有助于我们理解物质的性质与变化。
本文将从分子热运动的定义、分子的三种基本运动、热力学量与分子热运动的关系以及温度与分子热运动的关系等方面进行论述。
1. 分子热运动的定义分子热运动指的是物质微观领域中分子或原子由于热的引起而发生的无规则运动。
根据分子动能与温度之间的关系,分子热运动可以分为热平衡运动和非热平衡运动两种类型。
热平衡运动是指分子在一定温度下,表现出相同的平均动能和速率。
非热平衡运动则是指分子在非均匀温度分布的情况下,具有不同的动能和速率。
2. 分子的三种基本运动分子在热运动中表现出三种基本运动:平动、转动和振动。
平动是指分子在空间中直线运动。
平动的速率与分子的质量和动能有关,温度越高,平动速率越快。
转动是指分子在不改变位置的情况下绕自身轴线旋转。
转动的速率与分子的形状和结构有关。
振动是指分子内部原子的振动运动。
分子振动的频率和能量大小由分子的结构和化学键的强度决定。
3. 热力学量与分子热运动的关系热力学量是描述物质热运动状态的物理量,与分子热运动密切相关。
其中,温度是反映物质分子平均动能的物理量,温度越高,分子热运动越剧烈,反之则越缓慢。
压强则是分子热运动对容器壁施加的力的量度。
温度一定的情况下,分子热运动越剧烈,分子碰撞容器壁的次数越多,压强越大。
体积与分子热运动也有关系。
当温度不变时,分子热运动越剧烈,分子碰撞壁面的次数越多,容器承受的压力增加,体积减小。
4. 温度与分子热运动的关系温度是分子热运动的量度,是物质内能的一种表现形式。
温度与分子热运动之间存在着密切的关系。
温度越高,分子热运动越剧烈,分子平均动能越大,分子速率增加。
以固体为例,温度升高会使晶格振动的幅度加大,导致晶格结构变松散。
相反地,当温度降低时,分子热运动减缓,分子平均动能减小,分子速率降低。
固体会逐渐变为液体,液体又逐渐变为气体,这是因为温度的降低使得分子热运动变得不够剧烈。
分子热运动知识点
第一节、分子热运动一、物质结构1、物质是由极其微小的分子、原子构成的。
2、分子之间有间隔。
二、分子热运动1、扩散现象:不同物质在相互接触时,彼此进入对方的现象。
扩散可以发生在固液气三种状态之间,但看不到颗粒存在。
扩散的实质:(1)、分子永不停息的做无规则运动。
(2)、分子间有间隔。
2、分子热运动:分子无规则运动与温度有关,所以称为分子热运动。
三、分子间的作用力:分子间有相互作用的引力和斥力。
当分子间距离处于平衡位置r=r0时,分子所受引力和斥力相等;当分子间的距离r﹤r0时,引力小于斥力,作用力表现为斥力;当分子间的距离r﹥r0时,引力大于斥力,作用力表现为引力;如果分子相距很远r﹥10r0,作用力就变得十分微弱,可以忽略第二节、内能一、内能1、内能:物体内部所有分子热运动的动能和分子势能的总和,叫做物体的内能。
注意:内能与机械能是两种形式的能,物体的机械能可以为零,但内能永不为零,也即是说任何物体都具有内能。
2、内能的影响因素:质量、材料、温度、状态。
在物体的质量,材料、状态相同时,温度越高物体内能越大。
3、在所有的表述中,只有说物体温度升高内能一定增加和物体温度降低内能一定减少是对的,其他的只能是不一定。
二、改变内能的方式1、热传递(1)、热传递:使温度不同的物体互相接触时,高温物体将能量传给低温物体的现象。
(能量的转移)(2)、在热传递过程中,传递内能的多少称为热量,用Q表示,单位为J注意:热量是热传递过程中内能的特殊称呼,不能说具有、含有多少热量。
2、做功(1)、做功:通过压缩、摩擦、敲打等方式将机械能转化为内能使物体内能增加。
(能量的转化)(2)、对物体做功,物体内能增加;物体对外界做功,物体内能减小。
第三节、比热容一、比较不同物质的吸热能力1、选用相同的电加热器(使物体单位时间吸收的热量相同),为质量和初温相同的两种物质进行加热,记录加热时间和温度。
2、加热相同的时间,比较温度的变化量,温度变化量越小说明吸热能力越强;变化相同的温度比较加热时间,用时越长,说明吸热能力越强。
高中物理之分子的热运动知识点
高中物理之分子的热运动知识点分子的热运动扩散现象1.定义:不同物质相互接触时彼此进入对方的现象叫做扩散2.原因:物质分子的无规则运动扩散现象在气体、液体、固体都能发生。
3. 温度越高,扩散现象越明显4.扩散现象说明(1)直接说明了组成物体的分子总是不停地做无规则运动(2)分子间有间隙布朗:英国的一位植物学家。
1827年,布朗用显微镜观察植物的花粉微粒悬浮在静止水面上的形态时,却惊奇地发现这些花粉微粒在不停地作无规则运动。
布朗经过反复观察后,写下了这样的一段文字:“我确信这种运动不是由于液体的流动所引起,也不是由于液体的逐渐蒸发所引起,而是属于粒子本身的运动。
”布朗运动悬浮在液体(气体)中的固体微粒永不停息的无规则运动叫做布朗运动。
追踪一个微粒的运动将每隔30s观察到的微粒的位置,用直线把他们依次连接起来。
花粉微粒的运动是无规则的。
不同的花粉微粒的运动路线是不同的。
图中的连线是不是花粉微粒运动的实际路线?不是布朗运动是怎样产生的大量液体分子永不停息地做无规则运动时,对悬浮在其中的微粒撞击作用的不平衡性是产生布朗运动的原因。
即:液体分子永不停息的无规则运动是产生布朗运动的原因。
布朗运动是观察到的悬浮小颗粒(足够小)的无规则运动,不是分子的运动。
但它间接反映了气体、液体分子在不停地做无规则的热运动。
布朗运动跟什么因素有关布朗运动是分子的运动吗?布朗运动是悬浮于液体中微粒的无规则运动,这种微粒是由成千上万个分子组成的集合体,因此它的无规则运动不是分子的热运动。
液体分子永不停息的无规则运动是产生布朗运动的原因,微粒运动的无规则性反映了液体内部分子运动的无规则性。
为什么颗粒越小,布朗运动越明显?为什么随着温度的升高微粒的布朗运动越加激烈?温度升高,反映了液体分子运动的平均动能增大。
液体分子对微粒的碰撞次数将增加,而且每次撞击作用将增强。
这就使微粒受到来自各方向的液体分子的撞击作用的不平衡现象加剧,引起微粒的布朗运动越加激烈布朗运动的特点无规则;永不停息;温度越高,颗粒越小,运动越激烈;布朗运动能够在液体和气体中发生。
第十三章 内能 第1节分子热运动(人教版)
第1节:分子热运动知识点精析1.分子热运动(1)分子动理论:物质是由分子和原子组成的,分子在永不停息地做无规则运动,分子之间存在相互作用的斥力和引力。
(2)热运动:分子运动快慢与温度有关,温度越高,分子热运动越剧烈。
(3)扩散:不同物质相互接触时,彼此进入对方的现象叫做扩散现象,固体、液体和气体都能发生扩散现象,温度越高,扩散越快。
2.分子间作用力分子间相互作用的引力和斥力是同时存在的。
当固体被压缩时,分子间距离变小,分子作用力表现为斥力;当固体被拉伸时,分子间距离变大,作用力表现为引力。
如果分子间距离很大,作用力几乎为零,可以忽略不计;因此,气体具有流动性,也容易被压缩。
液体间分子之间距离比气体小,比固体大,液体分子之间的作用力比固体小,没有固定的形状,具有流动性。
考点概览1.考点解析分子热运动是本章基础,也是物质分子了解物质分子运动规律的基础。
分子热运动可以从许多生活中的现象中提现出来,如扩散现象、物质三态的物理性质等。
本节主要知识点有物质的构成、分子热运动和分子间相互作用力。
考点主要集中在分子热运动和分子之间的作用力两个方面;主要题型是选择题和填空题,并以选择题居多。
从历年中考来看,从现象解释分子无规则热运动、分子之间的作用力、物质三态和分子热运动的关系等。
2.中考题型分析纵观各地中考考纲和近三年考卷来看,对本节知识点的考查主要集中在分子热运动上,对于分子之间的作用力的考查也不容忽视;常见考查方式是用分子热运动和分子间作用力解释生活中的现象,对分子热运动进行判断等。
此部分考题不多,一般在一个题目或者和其他知识点结合组成一个题目,分值在1-3分之间,平均分值在1.5分左右。
本节考点在2019年中考物理试卷中出现概率还会很高,也会延续以前的考查方式和规律,不会有很大变化。
考查思路主要分为三个方面:(1)对分子热运动的理解;(2)用分子热运动解释现象;(3)用分子间作用力解释现象等。
3.考点分类:考点分类见下表考点分类考点内容考点分析与常见题型常考热点分子无规则热运动选择题或填空题较多,用分子热运动解释现象一般考点分子之间作用力选择题和填空题较多,用规律解释现象冷门考点对组成物质的分子理解选择题和填空题,考查对物质结构的理解典例精析★考点一:分子热运动◆典例一:(2018·东营)水煎包是东营特色名吃,其特色在于兼得水煮油煎之妙,色泽金黄,一面焦脆,三面嫩软,皮薄馅大,香而不腻。
分子热运动知识总结
分子热运动一物质是由分子组成的1分子⑴定义:热学中,把构成物质的分子、原子、离子统称为分子。
注意:热学中的分子不同于化学上的分子,化学上的分子是物质具有各种化学性质的最小粒子。
⑵其直径的数量级是10-10m。
质量的数量级是10-26kg;球形(求固体和气体直径时)⑶分子的模型立方形(求气体分子间距时)2、阿伏伽德罗常数⑴定义:把1mol物质所含的微粒个数叫做阿伏伽德罗常熟,N A=6.02×1023mol-1⑵分子的质量:mo=MA/NA=p VA/NA;分子的体积:Vo=VA/NA= MA/p VA;物质所含分子数:N=nN;二、分子做无规则热运动一布朗运动⑴定义:悬浮在液体或气体中的固体小微粒做的永不停息的、不规则的运动。
⑵对象:在液体和固体中悬浮的细小微粒;⑶原因:包围固体小微粒的液体或气体分子无规则的地撞击小微粒,在同一时刻来自各方向的分子的冲击不平衡,在不同时刻装机的合力大小、方向不同,所以固体小微粒作无规则运动。
⑷意义:间接反应液体、气体分子的无规则运动。
注意:布朗运动不是液体和气体分子无规则运动。
三、分子间相互作用力1、分子间引力和斥力同时存在,同时消失,分子距离r=ro时,引力和斥力相等;2、分子间距增大时,引力和斥力都减小,斥力减小的更快;3、当分子间距离r大于10ro时,可以认为分子间作用力为零;四.物体的内能、热量1、分子动能:分子由于运动而具有的能叫做动能;注意:研究单个分子的动能是没有意义的,这里研究分子动能的平均值,即平均动能。
分子平均动能的标志是温度,即温度越高,分子的平均动能就越大;说明:⑴温度是分子平均动能的标志,对个别分子来讲毫无意义;⑵温度是大量分子的宏观表现,高温物体里也有速度很小的分子;⑶不同的物体,如果温度相同,则具有相同的平均动能,但平均速度不一定相同;2、分子势能⑴定义:由分子间的作用力和相对位置决定的能量叫做分子势能;⑵量度:由分子力做功来量度,即分子力做正功,分子势能减小,分子力作负功,分子势能增大;⑶影响因素:物体的体积;3内能⑴定义:物体内所有分子做无规则运动的分子动能和分子势能的总和;⑵决定因素:温度、体积、摩尔数;⑶对象:任何物体在任何时候都具有内能;4改变物体内能的两种方式①热传递---把内能从一个物体移到另一个物体;②做功---把某种形式的能量转化为另一种能量;五、热力学第一定律⑴内容:外界对物体做的功W加上物体与外界交换的热量Q等于物体内能的该变量⊿U;即⊿U=W+Q;⑵符号法则:①内能增加,⊿U取正值,内能减少,⊿U取负值;②外界对物体做功,W取正值,物体对外界做功,W取负值;③物体吸收热量,Q取正值,物体放出热量,Q取负值;六。
分子的热运动课件
科学研究:分子的热运动是众多科学领域研究的重要课题,如化学、物理和 材料科学。
总结
分子热运动的重要性:分子的热运动是物质行为和性质的基础,对于实现能 量转换和理解物质行为具有重要意义。
继续研究分子热运动的意义:深入研究分子热运动有助于我们更好地理解和 应用自然界中的各种现象,推动科学技术的发展。
分子的热运动ppt课件
本课件将介绍分子的热运动及其重要性。通过深入探讨分子的运动状态、性 质和与物质性质的关系,我们可以更好地理解热学量和温度的概念。
引言
什么是分子热运动? 分子的不断运动和碰撞,其中包括振动、旋转和平动。 为何研究分子的热运动? 分子的热运动是物质性质的基础,对于我们了解和 掌握物质行为具有重要意义。
分子的热运动和物质的性质
物质的热膨胀:热膨胀是物质由于受热而体积膨胀的现象,与分子的热运动 密切相关。
物态变化:分子的热运动能引起物质从一个态转变为另一个态,如气化、液 化和固化。
热传导和热对流:分子热运动是热传导和热对流的基础,影响了物质的热传 导速率和热对流流动。
ห้องสมุดไป่ตู้ 应用
工业应用:分子的热运动在工业生产中有广泛应用,如变压操作、能源转换 和材料加工。
分子的热运动的基本原理
常温下分子的运动状态:分子以高速无规律地运动,具有热运动的动力学特性。 热力学第一定律:能量守恒原理,说明了热量、功和内能之间的关系。 统计力学观点:通过统计分析大量分子的运动,揭示了热运动的微观规律和统计规律。
分子热运动的性质
分子速度分布规律:分子的速度呈现高斯分布,其中存在最概然速度和平均速度。 热学量和温度的关系:热学量(如内能、焓、熵)与温度之间存在着密切的关系。 摩尔热容量:摩尔热容量是单位摩尔物质吸收或放出的热量与温度变化之间的比值。
第十三章内能知识点
第十三章内能知识点第十三章内能第一节分子的热运动1、分子动理论(1)分子动理论的内容是:①物质由分子、原子构成的,分子间有间隙;②一切物体的分子都永不停息地做无规则运动;③分子间存在相互作用的引力和斥力。
2、分子很小,通常用10-10m为单位来量度分子。
3、扩散现象①定义:不同的物质在互相接触时彼此进入对方的现象。
②扩散现象表明:一切物质的分子都不停地做无规则运动;分子之间有间隙。
4、注意:能够用肉眼看到的物体或微粒,无论多小,都不是分子,它们在外力的作用下的运动属于机械运动,不属于分子热运动。
如:灰尘在空中飞舞,雪花飞舞,空气流动形成风。
都不是扩散现象。
5、分子热运动与温度的关系:温度越高,分子热运动越剧烈,扩散现象越明显。
6、分子间的作用力:(1)分子间存在相互作用的引力和斥力(2)分子间有个平衡距离(r0 )①当分子间的距离r = r0时,引力等于斥力,分子间的作用力表现为0②当分子间的距离r > r0时,引力大于斥力,分子间的作用力表现为引力③当分子间的距离r < r0时,引力小于斥力,分子间的作用力表现为斥力④当分子间的距离r> 10r0时,分子间的作用力十分微弱,可以忽略7、说明分子间存在引力和斥力的现象:(1)铁棒很难被拉伸、平整的铅块紧压后结合在一起,说明分子间存在引力(2)固体很难被压缩,说明分子间存在斥力第二节内能1.内能:物体内部所有分子做无规则运动的动能和分子势能的总和。
2.物体的内能与温度有关:物体的温度越高,分子运动速度越快,内能就越大。
3.改变物体的内能两种方法:做功和热传递,这两种方法对改变物体的内能是等效的。
4.物体对外做功,物体的内能减小;外界对物体做功,物体的内能增大。
5.热量:在热传递过程中,传递能量的多少叫热量。
6. 热传递的理解(1)热传递的条件是:不同物体或同一物体的不同部分之间存在温度差。
(2)热传递的方向:热量由从高温物体转移到低温物体或由同一物体的高温部分转移到低温部分(3)过程:高温物体放出了热量,内能减小;低温物体获得热量内能增大。
对于分子热运动的认识
对于分子热运动的认识
分子热运动是指物质中分子无规则的运动状态,是热能的微观本质。
通过对分子热运动的认识,我们可以更好地理解热现象的本质。
1. 分子热运动的存在
所有物质都由分子组成,无论固体、液体还是气体,分子都处于不断运动的状态。
分子的运动速度取决于温度,温度越高,分子运动越剧烈。
2. 分子热运动的性质
分子热运动具有以下几个特点:
- 无规则性:分子在空间中沿着各个方向无规则地运动。
- 永恒性:只要温度不为绝对零度,分子就永远处于运动状态。
- 相互独立性:分子之间的相互作用很小,可以近似认为它们的运动是相互独立的。
3. 分子热运动的影响
分子热运动对物质的各种性质有重要影响,如:
- 物质的扩散现象
- 气体的压强
- 固体和液体的熔化和汽化过程
- 热传导现象
4. 分子动理论
分子动理论是描述分子热运动的理论基础,它通过研究分子运动规律
来解释热学现象。
该理论为我们认识热现象的本质提供了微观解释。
对分子热运动的认识有助于我们深入理解热学现象的本质,是现代热力学和统计物理学的重要基础。
分子热运动原理
分子热运动原理分子热运动原理是描述分子在热力学平衡下的运动规律和统计性质的理论。
它是从分子运动的微观角度出发,通过分析大量分子的运动状态,得出宏观物理量的统计规律。
分子热运动原理在研究物质的热传导、热容量、热膨胀等热学现象时起到了重要的作用。
分子是组成物质的最基本单位,它们具有质量、速度和能量等性质。
分子热运动是分子由于热量作用而产生的无规则运动。
在物质处于热力学平衡时,分子热运动是无序的,分子的平均速度和能量是一定的。
分子之间的相互作用力很强,使得分子不停地碰撞、转动和振动。
这些运动是不断变化的,因此分子热运动具有随机性和不可预测性。
分子热运动的统计规律可以通过玻尔兹曼分布函数来描述。
玻尔兹曼分布函数表示了在给定温度下,不同能级上分子数目的比例。
分子的能量和速度是相关联的,根据分子平均动能定理,分子的平均动能正比于温度。
当温度升高时,分子的平均速度和能量也会增加。
在分子热运动中,分子之间会发生碰撞,碰撞分为弹性碰撞和非弹性碰撞。
在弹性碰撞中,分子之间的能量转移不会损失,分子只是改变或反向运动的速度。
在非弹性碰撞中,分子之间的能量转移会损失一定的能量,产生热能。
分子碰撞的频率与分子浓度、体积和速度等因素有关。
分子热运动还涉及分子的转动和振动。
分子的转动可分为转轴自由度和转子自由度。
转轴自由度是指分子绕着一个轴线旋转的能力,而转子自由度是指分子内部固有结构的旋转能力。
分子的振动是由于分子内部原子之间的键的振动引起的。
分子的转动和振动受到温度的影响,随着温度升高,转动和振动的能级也会增加。
分子热运动原理也解释了物质的热传导现象。
热传导是指物质内部热量的传递过程。
在分子热运动中,高温区分子的运动速度和能量较大,会与低温区的分子发生碰撞,将一部分能量传递给低温区的分子,从而实现热量的传递。
这种传递是无序的、随机的,并且遵循热量传递的微观原理。
分子热运动原理对于理解和研究物质的热学性质有重要意义。
例如,热容量是指物质在温度变化时吸收或释放的热量。
分子热运动、内能知识点总结
一、基础知识:分子热运动篇1、物质的组成(1)物质是由分子、原子组成的。
(2)分子非常小,不借助仪器,肉眼是看不见的,如果把分子看成一个个的小圆球(物理模型法),那么一般一个分子的直径大约是10-10m,因此一个物体是由数量巨大的分子组成的。
(3)分子很小,它的直径的数量级是10-10m,1cm3的空气中大约有2.7×1019个分子。
2、扩散现象(1)定义:不同的物质相互接触时,彼此进入对方的现象叫做扩散.(2)扩散现象表明:一切物质的分子都在不停的做无规则运动,间接证明分子之间有间隙。
注意:不同的物质一定要相互接触才能发生扩散,必须是两种物质相互进入彼此。
扩散现象是不同物质的分子运动造成的,要注意和微小颗粒状物体运动的区别。
3、分子热运动(1)定义:一切物质的分子都在不停的做无规则运动,这种无规则的分子运动叫做分子的热运动(2)影响分子热运动的影响因素:分子的热运动与温度有关,温度越高,分子热运动越剧烈,分子扩散的就越快。
4、分子间的作用力(1)固体和液体中的分子之所以不会分散开,而总是聚合在一起,是因为分子间存在引力的作用,从而使固体和液体能保持一定的体积。
由于分子间也存在斥力作用,因此固体与液体很难被压缩。
(2)分子间的引力和斥力总是同时存在的。
它们都随分子间距离的增大而减小,随分子间距离的减小而增大,只是斥力变化的比引力要快。
当分子间距离很小时,作用力表现为斥力;当分子间作用力稍大时,作用力表现为引力。
如果分子间距很远,作用力就变得十分微弱,可以忽略。
内能篇1、内能(1)宏观物体的能表现为机械能,是物体外在的能量;微观物体的能表现为内能,是物体内在的能量。
(2)分子动能:物体是由大量分子组成的,分子在永不停息的做无规则运动,所以分子都具有动能,叫做分子动能。
(3)分子势能:分子之间存在相互作用的引力和斥力,所以分子又具有势能,叫做分子势能。
(4)构成物体的所有分子,其热运动的动能和分子势能的总和叫做物体的内能。
(完整版)分子热运动知识讲解
分子热运动【学习目标】1知道扩散现象说明分子永不停息地做无规则运动;扩散现象可在固体、液体、气体中发生;2、知道物体内部大量分子的无规则运动叫分子热运动,温度的高低是物体分子热运动激烈程度的标志;3、知道分子间存在着作用力;4、能用分子热运动的知识解释有关现象,设计并解决有关问题。
【要点梳理】要点一、物质是由分子组成的任何一个物体都是由大量的分子组成的,分子数目是巨大的,而分子体积是很小的。
要点二、扩散现象不同物质相互接触时,彼此进入对方的现象叫扩散。
要点诠释:1、条件:①不同的物质;②互相接触。
2、影响扩散快慢的主要因素:(1 )物质的温度:温度越高,扩散越快。
(2)物质的种类:气体之间的扩散最快,其次是液体,固体之间的扩散最慢。
3、扩散现象说明了:(1 )一切物质的分子都在不停地做无规则运动。
(2)分子之间有间隙。
4、扩散现象是反映分子的无规则运动的。
而灰尘颗粒、大雾中的微粒及烟尘中的微粒等肉眼能观察到的分子聚合体在外力下的机械运动,都不是扩散现象。
5、分子的热运动物体内部大量分子的无规则运动叫做分子热运动。
温度的高低是物体内分子热运动激烈程度的标志。
温度越高,分子热运动越快,扩散越快。
例如,炒菜时,老远就能闻到菜的香味,当菜冷下来后,香味就逐渐减少了。
要点三、分子间的作用力分子间相互作用的引力和斥力是同时存在的,它们的大小与分子间的距离有关。
分子间距离r=r o(r o 为分子处于平衡位置时的距离)时引力和斥力大小相等;在r<r o时斥力和引力都增大,但斥力增大得快,所用分子力表现为斥力;在r>r o时斥力和引力都减小,但斥力减小得快,分子力表现为引力;在r>10r o时斥力和引力都变得非常微弱,此时分子力可忽略不计。
要点诠释:分子间存在引力和斥力,但这种力只有在距离很小才比较显著。
当两个分子间距大于10倍分子的限度时,弓I力和斥力就不大了。
打碎的玻璃不能吸引在一起,是因为两块玻璃碎片不可能相距很近,无法达到引力明显的距离,所以不能吸引在一起。
第1节 分子热运动知识点梳理
第1节 分子热运动知识点与考点解析 ★考点概览一、知识点与考点二、考点解析1.分子热运动是本章基础,也是了解物质分子运动规律的基础。
分子热运动可以从许多生活中的现象中提现出来,如扩散现象、物质三态的物理性质等。
本节主要知识点有物质的构成、分子热运动和分子间相互作用力。
考点主要集中在分子热运动和分子之间的作用力两个方面。
从历年中考来看,常见的是用现象解释分子无规则热运动、分子之间的作用力、物质三态和分子热运动的关系。
2.纵观各地中考考纲和近三年考卷来看,对本节知识点的考查主要集中在分子热运动上,对于分子之间的作用力的考查也不容忽视。
常见考查方式是用分子热运动和分子间作用力解释生活中的现象,对分子热运动现象进行判断等。
此内容考题不多,一般在一个题目或者和其他知识点结合组成一个题目。
本节考点在中考试卷中出现概率很高,也会延续以前的考查方式和规律,不会有很大变化。
考查思路主要分为三个方面:(1)对分子热运动的理解;(2)用分子热运动解释现象;(3)用分子间作用力解释现象等。
3.考点分类:考点分类见下表★知识点精析1.分子热运动(1)分子动理论:物质是由分子和原子组成的,分子在永不停息地做无规则运动,分子之间有间隙。
(2)热运动:分子运动快慢与温度有关,温度越高,分子热运动越剧烈。
分子热运动(3)扩散:不同物质相互接触时,彼此进入对方的现象叫做扩散现象,固体、液体和气体都能发生扩散现象,温度越高,扩散越快。
2.分子间作用力分子间相互作用的引力和斥力是同时存在的。
当固体被压缩时,分子间距离变小,分子作用力表现为斥力;当固体被拉伸时,分子间距离变大,作用力表现为引力。
如果分子间距离很大,作用力几乎为零,可以忽略不计;因此,气体具有流动性,也容易被压缩。
液体间分子之间距离比气体小,比固体大,液体分子之间的作用力比固体小,没有固定的形状,具有流动性。
★典例精析★考点一:分子热运动◆典例一:(2020·山东泰安)下列现象中,说明分子在不停地做无规则运动的是()。
分子热运动分子运动的速度分布和温度的概念
分子热运动分子运动的速度分布和温度的概念分子热运动——分子运动的速度分布和温度的概念分子热运动是指物质中分子的无规则运动。
根据动能定理,分子的热运动可以转化为宏观物体的热运动,从而引起物体的温度变化。
本文将探讨分子运动的速度分布以及温度的概念。
一、分子运动的速度分布物质中的分子以不同的速度做无规则运动,这种速度可以通过求解分子运动速度分布曲线来描述。
麦克斯韦-玻尔兹曼速度分布定律描述了理想气体中分子速度的分布情况。
麦克斯韦-玻尔兹曼速度分布定律可以通过以下公式表示:f(v) = 4π (m /2πkT)^(3/2) * v^2 * exp(-mv^2 / 2kT)其中,f(v)表示单位体积内速度为v的分子数,m为分子的质量,k 为玻尔兹曼常数,T为温度。
根据麦克斯韦-玻尔兹曼速度分布定律,分子的速度分布曲线呈现高斯分布(也称为正态分布)。
在该曲线中,速度较小和速度较大的分子数较少,而速度较中等的分子数较多。
这导致了分子的平均速度存在,且平均速度与温度成正比。
二、温度的概念温度是衡量物体热运动程度的物理量,它与物体中分子的热运动有直接关系。
温度的单位是开尔文(K)。
在科学上,温度是根据理想气体状态方程的等式来定义的。
理想气体状态方程可以表示为:PV = nRT其中,P表示物体的压力,V表示物体的体积,n表示物体中分子的摩尔数,R表示气体常数,T表示温度。
根据理想气体状态方程的等式,我们可以得到温度的定义为:T = PV / (nR)这个定义的温度被称为绝对温度,在绝对零度时等于0K。
绝对温度与摄氏温度之间的关系可以用以下公式表示:T(K)= t(℃)+ 273.15通过温度的定义,我们可以知道温度是分子热运动的反映。
当温度升高时,分子的平均动能增加,分子的运动速度将增加。
而当温度降低时,分子的平均动能减小,分子的运动速度将减小。
三、结论分子热运动是物质中分子的无规则运动,通过分子运动的速度分布和温度的概念,我们可以更好地理解物质热现象的本质。
分子热运动知识点解析及同步练习
分子热运动【知识点解读】分子动理论的基本观点主要包括三个方面:1.常见的物质是由大量分子、原子构成的常见的物质是由分子、原子构成的,酒精和水混合后总体积变小,说明分子间存在空隙。
利用此微观机理可以解释宏观的一些现象,如长时间放置的气球会变小、液压机的液压筒的外壁会向外渗油等。
2.物质内的分子在不停地做热运动生活中能闻到各种气味、二氧化氮气体和空气接触后会逐渐混合均匀等现象都说明了构成物质的分子在不停地做无规则运动。
不仅仅气体分子在不停地无规则运动,液体、固体分子都在不停地无规则运动,液体扩散和固体扩散等现象都说明了这一点。
归纳总结这些生活中的简单现象,知道分子在不停地做无规则运动。
液体扩散时间较长,固体扩散的时间更长。
红墨水在冷水和热水中扩散速度明显不同,说明分子热运动与温度有关,温度越高,分子热运动就越剧烈。
利用此规律可以解释生活中的一些现象,如炒菜放盐要比腌菜咸得快,这就是由于温度对分子运动的影响。
但也要注意,温度越低,分子热运动减慢,但分子始终在不停地做热运动,分子热运动不可能停止。
3.分子间存在引力和斥力物质的构成比较复杂,物质有可能是由分子或单个原子直接构成的,也可能是由其他微粒构成的,分子是物理学中的一种描述语言,它实际是保持物质化学性质的最小微粒。
固体和液体不容易被压缩,说明分子间存在斥力;不容易被拉伸,说明分子间存在引力。
分子间的引力和斥力是同时存在的,当物体被压缩时,对外表现为斥力;当物体被拉伸时,对外表现为引力。
分子间的作用力与分子间的距离有关,气体分子间距离太大,分子间几乎没有作用力;固体分子间距离小,分子间作用力大,所以固体不容易拉伸和压缩,具有一定的形状和体积;液体分子介于气体和固体之间,具有一定的体积,没有一定的形状。
这是利用粒子的微观规律解释物质常见的三种状态特征。
【典型例题】1.如图1的示意图形象反映物质气、液、固三态分子排列的特点,下列说法正确的是()图1A.甲是气态 B.乙是气态 C.丙是气态 D.甲是固态答案:C解析:利用分子动理论的初步知识解释气态、液态和固态的特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子热运动
撰稿:史会娜审稿:雒文丽
【学习目标】
1、了解物质的构成;
2、知道扩散现象说明分子永不停息地做无规则运动;扩散可在固体、液体、气体中发生;
3、知道物体内部大量分子的无规则运动叫分子热运动,温度的高低是物体分子热运动剧烈程度的标志;
4、知道分子间存在着作用力,了解固体、气体、液体的分子构成特点;
5、知道分子动理论的初步知识。
【要点梳理】
要点一、物质的构成
常见的物质是由极其微小的粒子——分子、原子构成的。
要点诠释:
分子、原子的体积很小,用肉眼和光学显微镜都分辨不出它们。
不过,电子显微镜可以观察到分子、原子。
要点二、分子热运动【高清课堂《分子热运动、内能》分子动理论】
1、扩散:不同的物质在互相接触时彼此进入对方的现象,叫扩散。
2、影响扩散快慢的主要因素:
(1)物质的温度:温度越高,扩散越快。
(2)物质的种类:气体之间的扩散最快,其次是液体,固体之间的扩散最慢。
3、扩散现象说明了:
(1)一切物质的分子都在不停地做无规则运动。
(2)分子之间有间隙。
4、分子的热运动:由于分子的运动跟温度有关,所以这种无规则运动叫做分子的热运动。
要点诠释:
1、扩散现象只能发生在不同的物质之间,同种物质间是不能发生扩散现象的。
例如:冷热水混合,虽然冷水分子和热水分子都能彼此进入对方,但不是扩散现象。
2、扩散现象是反映分子的无规则运动的。
而灰尘颗粒、大雾中的微粒及烟尘中的微粒等肉眼能观察到的分子聚合体在外力下的机械运动,都不是扩散现象。
3、扩散是人能够直接观察或感知到的宏观现象;分子的无规则运动是微观现象,人无法直接观察。
因此不能说“观察到分子无规则运动”,或“分子的扩散现象”。
4、物体内部大量分子的无规则运动叫做分子热运动。
温度的高低是物体内分子热运动剧烈程度的标志。
温度越高,分子热运动越剧烈,扩散越快。
例如,炒菜时,老远就能闻到菜的香味,当菜冷下来后,香味就逐渐减少了。
要点三、分子间的作用力
1、分子之间存在斥力:当固体被压缩时,分子间的距离变小,作用力表现为斥力。
2、分子之间存在引力:当固体被拉伸时,分子间的距离变大,作用力表现为引力。
3、分子动理论的基本观点:
(1)常见物质是由大量的分子、原子构成的;
(2)物质内的分子在不停地做热运动;
(3)分子之间存在引力和斥力。
要点诠释:
1、分子之间的引力和斥力同时存在,只是对外表现不同。
2、分子间的引力和斥力的作用范围是很小的,只有分子彼此靠得很近时才能产生,分子间的距离太大时,分子间的作用力就十分微弱,可以忽略。
打碎的玻璃不能吸引在一起,是因为两块玻璃碎片不可能相距很近,无法达到引力明显的距离,所以不能吸引在一起。
电焊、气焊钢板时,用高温加热钢板,使钢熔化为钢水,钢水中的分子可以自由运动相互靠近,靠引力集结在一起。
当钢水冷却凝结为钢块时,
原来分离的钢板就被“焊接”在一起。
3、固体:固体分子间的距离小,不容易被压缩和拉伸,具有一定的体积和形状。
4、气体:气体分子之间的距离就很远,彼此之间几乎没有作用力,因此,气体具有流动性,容易被压缩。
5、液体:液体分子间的距离比气体的小,比固体的大;液体分子间的作用力比固体的小,分子没有固体的位置,运动比较自由。
所以液体很难被压缩,没有确定的形状,具有流动性。
【典型例题】
类型一、基础知识
1、甲、乙、丙三幅图中,能形象地描述气态物质分子排列方式的是()
甲.分子排列规则,就像坐在座位上的学生。
乙.分子可以移动,像课间教室中的学生。
丙.分子几乎不受力的作用,就像操场上乱跑的学生。
A.甲B.乙C.丙D.乙和丙
【答案】C
【解析】气体分子间距很大,作用力几乎为零,分子极度散乱,宏观上无固定的体积,无固定形状,具有流动性。
【总结升华】本题考查物质三种状态的微观特征,要求记住三种不同状态分子排列方式的不同特点。
2、(2012 本溪)下列现象中能用分子热运动知识解释的是()
A.春天,柳絮飞扬B.夏天,雷雨阵阵
C.秋天,丹桂飘香D.冬天,雪花漫天
【思路点拨】注意区分宏观的机械运动和分子的热运动。
宏观的机械运动是肉眼可见的,而分子热运动时肉眼不可见的,但是可以通过宏观的扩散现象证明。
【答案】C
【解析】(1)柳絮飞扬,雷雨阵阵、雪花漫天都是宏观物体的机械运动,不是分子的运动,分子运动是肉眼看不见的,故ABD选项错误;
(2)丹桂飘香是气体分子的运动,属于扩散现象。
【总结升华】本题主要考查学生对分子运动和物质运动的区别的了解和掌握,要把握住“分子运动是肉眼看不见的”这个前提。
举一反三:
【变式1】下列现象中,能够说明物体的分子在不停的做无规则运动的是()
A.水从高处流向低处
B.在一杯白开水中放一些盐,不久整杯水都变咸了
C.放在空气中的铁器过一段时间生锈了
D.房间几天不打扫就会有一层灰尘
【答案】B
【变式2】【高清课堂《分子热运动、内能》例1)下列各现象中,属于扩散现象的是()
A.空气流动形成风
B.打扫室内卫生室,可以看到灰尘在空中飞舞
C.将墨水滴入水中,可以看到沿途拉成一长串墨迹
D.将几粒粗盐放入盛水的杯子中,过一段时间整杯水都变咸了
【答案】D
3、“破镜”不能“重圆”的原因是()
A.分子间的作用力因玻璃被打碎而消失
B.玻璃表面太光滑
C.玻璃的分子间只有斥力没有引力
D.玻璃碎片间的距离太大,大于分子间发生相互吸引的距离
【答案】D
【解析】破镜不能重圆,是因为玻璃的硬度大,玻璃放在一起不容易发生形变,玻璃分子间的距离不能达到小于分子直径的10倍的程度,超出了分子力的作用范围,故无法产生引力。
【总结升华】本题主要考查学生对分子间作用力的条件的理解和掌握及应用,要明确玻璃无法重新粘合的原因。
举一反三:
【变式】(2012泉州)能够说明分子间存在引力的现象是()
A.用绸布摩擦过玻璃棒吸引小纸屑
B.铅笔很难被拉断
C.将橡皮吸盘紧压在玻璃上,很难被拉开
D.磁体能吸铁
【答案】B
类型二、知识应用
4、把1升酒精倒入容器中,再把2升水也倒入这个容器中并进行充分混合,发现混合后的总体积小于3升,请解释这个现象。
【答案与解析】由于分子间存在空隙和分子运动的原因,所以酒精分子和水分子之间会由于分子做无规则运动的原因而相互进入对方的空隙中,所以混合后总体积小于3升。
【总结升华】本题是综合提高训练题目,考查学生利用分子动理论知识来解释生活中现象的能力。
举一反三:
【变式】以下说法中不能说明分子间存在间隙的是()
A.海棉能吸水
B.物体热胀冷缩
C.酒精和水混合后总体积减小
D.粉笔能吸水
【答案】A
5、刘方学习了分子动理论的知识后,知道了分子动理论的内容为:
A、物体是由大量的分子、原子构成;
B、物质内的分子在不停地做热运动;
C、分子之间存在引力和斥力。
于是他准备了一个实验如图所示:把一块表面很干净的玻璃板挂在弹簧测力计下面,使玻璃板刚好和水面接触,再慢慢地提起弹簧测力计,那么你看到这里时,请提出你的猜想。
刘方可能是要验证上述分子动理论的内容(填序号)。
可能看到的现象是:。
结论是:。
【思路点拨】根据分子之间存在着引力解答。
【答案】C;弹簧测力计的标数将逐渐增大;分子间存在着引力
【解析】如题中图所示:把一块表面很干净的玻璃板挂在弹簧测力计下面,使玻璃板刚好和水面接触,再慢慢地提起弹簧测力计,由于分子间存在着相互作用的引力,所以可以观察到弹簧测力计的示数逐渐变大。
【总结升华】本题主要考查学生对分子间存在着相互作用的引力的理解和掌握,是中招的热点。