霍耳效应法测磁场2015
霍尔效应法测量磁场实验原理
霍尔效应法测量磁场实验原理
霍尔效应是一种将磁场转化为电场的现象。
在导体中通过一定大小的电流时,磁场将
激发在导体中的自由电子,在磁场的作用下,自由电子受力偏移其轨迹,导致电子在垂直
于电流流动方向和磁场方向的方向上产生横向漂移,于是就在导体上产生了横向电场。
这
个现象被称为霍尔效应,相应的电压称为霍尔电压,而产生这种电压的元件称为霍尔元件。
通过测量霍尔电压可以精确测量磁场的大小。
在磁场B作用下,在宽度为w,长度为l的薄片导体上通过电流I,在导体中激发载流子,随后载流子受到洛伦兹力的作用,在y方向上发生位移,导致产生的跨导G与磁感应
强度B直接成正比关系:
G=Vxy/I = RH B
其中Vxy为横向电压,I为电流,RH是霍尔系数,容易得知,做定量测量时,RH是定值,而在实验条件不变的情况下,Vxy与I成正比,Vxy与B成正比,因此,B∝Vxy,也就是说,磁场强度与横向电压成正比。
因此,可以通过测量横向电压Vxy的大小,从而获得磁场B的大小。
但需要注意的是,为了保证测量的准确性,霍尔元件应该放置在磁场的均匀区域内,且磁场的方向应与导体
中电流的前进方向垂直。
总之,霍尔效应是一种精准测量磁场的方法,它可以广泛应用于科学研究和工程实践中。
霍尔法测磁场
霍尔法测磁场
霍尔法是一种测量磁场强度的方法,利用霍尔效应的原理。
霍尔效应是指当电流通过一块具有特定材料的导体时,垂直于电流和磁场方向的电压差产生。
这个电压差被称为霍尔电压,它与通过导体的电流和磁场强度成正比。
霍尔法测量磁场强度的步骤如下:
1. 准备霍尔元件:选择一块具有霍尔效应的材料,通常为霍尔片或霍尔传感器。
2. 连接电路:将霍尔元件连接到电路中,通常包括一个电流源以供电流通过霍尔元件,以及一个电压测量器来测量霍尔电压。
3. 设置磁场:将待测磁场放置在霍尔元件附近,确保磁场垂直于电流方向。
4. 测量电压:通过调节电流源使得电流通过霍尔元件,同时使用电压测量器测量霍尔电压。
5. 计算磁场强度:利用已知的电流值和比例关系,根据测量到的霍尔电压计算出磁场强度。
需要注意的是,为了准确测量磁场强度,霍尔元件应该被放置在磁场的均匀区域,并且不受其他电磁干扰。
另外,不同的霍尔元件对应不同的电路连接方式和计算公式,具体操作需要根据具体的霍尔元件和电路要求来确定。
霍尔效应法测量磁场
实验3.7 霍尔效应法测量磁场随着电子技术的不断发展,霍尔器件越来越得到广泛的应用。
霍尔效应不但是测定半导体材料电学参数的主要手段,而且,随着实验电子技术的进展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量电测、自动控制和信息处理等方面。
置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年在研究载流导体载磁场中受力性质时发现的一种电磁现象,后被称为霍尔效应。
【实验目的】1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。
2.掌握测试霍尔元件的工作特性的方法。
3.学习用霍尔效应测量磁场的方法。
4.学习用“对称测量法”消除副效应的影响。
5.描绘霍尔元件试样的V H− I S和V H− I M曲线。
6.学习用霍尔元件测绘长直螺线管的轴向磁场分布,描绘B - X曲线。
【实验原理】1.霍尔效应法测量磁场原理霍尔效应从本质上讲是指运动的带电粒子在磁场中受洛伦兹力作用而引起偏转的现象。
当带电粒子(电子或空穴)被约束在固定材料中时,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。
对于图3-20所示的半导体试样,若在X方向通以电流I S ,在Z方向加磁场B,则在Y方向即试样A、A' 方向电极两侧就开始聚积异号电荷而产生相应的附加电场—霍尔电场,电场的指向取决于试样的导电类型。
图3-20 霍尔效应法测量磁场原理显然,该电场阻止载流子继续向侧面偏移,当载流子所受到的横向电场力eE H与洛伦兹力相等时,样品两侧电荷的积累就达到平衡,故有eE H (3-44)v eB其中H E 为霍尔电场,v 是载流子在电场方向上的平均漂移速度。
设试样的宽度为b ,厚度为d ,载流子浓度为n ,则bd v ne I S = (3-45)由式(3-44)和式(3-45)可得dB I R d BI ne b E V S H S H H ===1(3-46) 即霍尔电压V H (A 、A ′电极之间的电压)与I S B 乘积成正比,与试样厚度d 成反比。
霍尔效应测磁场
霍尔效应测磁场
“霍尔效应”,是一种物理现象,当一个移动电流存在于有磁场
的物体周围时,会在电流和磁场之间产生一个受力,这个受力则能够把电流按照一定规律导引到特定的位置。
在1820年的时候,瑞士物
理学家哈兹贝里霍尔(HeinrichHertz)在研究电磁学时,发现了这
种“霍尔效应”。
霍尔效应在地球上是普遍存在的,它控制着多种电子器件的特性,比如电机、磁开关、扬声器、动力发生器等等。
霍尔效应也用于测量地球表面的磁场强度,比如磁力计、磁谱分析仪和磁性定位系统。
磁力计用来测量地球表面的磁场强度,是利用霍尔效应实现的。
它是一种非接触式传感器,通过被磁场激励的发电磁芯来检测磁场强度,然后通过电路计算得出最终的测量结果。
使用磁力计测量磁场强度,可以用来判断磁脉冲状态。
另外,磁谱分析仪也是用霍尔效应实现的。
磁谱分析仪可以测量出特定位置的磁场强度和方位角,并且可以通过计算得出磁场的分布特性。
磁谱分析仪的精度比磁力计高,更加准确,可以提供更多的细节信息。
最后,磁性定位系统是一种由全球定位系统(GPS)和地磁定位
系统(MLS)共同组成的新型定位系统,也是基于霍尔效应实现的。
它可以通过测量磁场强度和方位角,结合GPS信号来确定特定位置的坐标,从而实现更精准的定位。
从上面可以看出,霍尔效应是地球表面磁场测量的基础,它在磁
力计、磁谱分析仪和磁性定位系统中起到了重要作用。
它为我们提供了一种便捷的手段,测量、分析并定位磁场,为我们在日常生活中的很多场景提供了可靠的磁场信息。
霍尔效应的发展,既给科学技术的发展带来了巨大的改变,也为我们的日常生活提供了很多的便利。
霍耳效应法测量磁场
霍耳效应法测量磁场实验指导1.实验内容:2.测定霍耳器件的霍耳灵敏度、霍耳系数和载流子浓度3.测量电磁铁磁极气隙间磁感应强度的横向分布实验步骤:..1.实验系统的连接、初始设置与参数记录(1)分别连接好实验仪上“I S输入”、“I M输入”、“V H、Vσ输出”端与测量仪面板“Is输出”、“I M 输出”、“V H、Vσ输入”端之间的导线;开机前将“I S调节”、“I M调节”旋钮逆时针方向旋到底。
(2)将霍耳元件位置调整到电磁铁气隙内中心附近(其水平位置标尺为0.0mm处),记录仪器电磁铁线圈上的标签上的励磁常数α值(其数值按1 KGS/A=0.1T/A单位换算成T/A值记录)。
(3)将实验仪上霍耳元件电流换向开关“K1”、励磁电流换向开关“K3”均掷向正向位置, “VH、Vσ”输出开关和测量仪面板上的“VH、Vσ”选择开关均选在VH位置。
2.霍耳灵敏度测量操作(1)接通实验测试仪电源, 调节励磁电流使IM=0.500A;(2)调节霍耳元件工作电流, 分别使IS=0.50mA、1.00mA、1.50mA、2.00mA、2.50mA、3.00mA, 测量记录各IS值下电流换向开关“K1”和“K3”分别在“++”、“+-”、“--”、“-+”四种组合方式下的霍耳电压V1、V2、V3、V4, 数据记录表格如下:..3.电磁铁磁极气隙间磁感应强度的横向分布测量保持励磁电流IM=0.500A, 霍耳元件工作电流IS=3.00mA, 分别测量记录霍耳探头水平位置处在x =0.0mm、10.0mm、20.0mm、23.0mm、26.0mm、29.0mm、32.0mm、35.0mm、38.0mm、41.0mm等处时, 电流换向开关“K1”和“K3”分别在“++”、“+-”、“--”、“-+”四种组合方式下的霍耳电压V1、V2、V3、V4, 数据记录表格如下:1. 实验数据处理指导:表一中, 各KHi 值不确定度计算式为: 其中: 01.0%8.0+⨯=∆S S I I mA ; 001.0%8.0+⨯=∆M M I I A 2/)m V 01.0%5.0(+⨯=∆H H V V2. 计算出表一中6个KH 值的平均值 、及其不确定度的A 类分量 值和不确定度B 类分量 值, 再合成为 值。
@FB400霍尔效应法测螺线管线圈磁场讲义2015.11.20与仪器配套
用霍尔效应法测螺线管线圈磁场(FB400型螺线管磁场测定仪说明书)实验讲义杭州精科仪器有限公司霍尔效应和用霍尔效应法测量螺线管线圈磁场1879年美国霍普金斯大学研究生霍尔在研究载流导体在磁场中受力性质时发现了一种电磁现象,此现象称为霍尔效应,半个多世纪以后,人们发现半导体也有霍尔效应,而且半导体霍尔效应比金属强得多。
近30多年来,由高电子迁移率的半导体材料制成的霍尔传感器已广泛用于磁场测量和半导体材料的研究。
用于制作霍尔传感器的材料有许多种:单晶半导体材料有锗、硅;化合物半导体有锑化铟、砷化铟和砷化镓等等。
在科学技术发展中,磁的应用越来越被人们重视。
目前霍尔传感器典型的应用有:磁感应强度测量仪(又称特斯拉计),霍尔位置检测器,无触点开关,霍尔转速测定仪,A 2000~A 100大电流测量仪,电功率测量仪等。
在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。
近年来,霍尔效应实验不断有新发现。
1980年德国冯·克利青教授在低温和强磁场下发现了量子霍尔效应,这是近年来凝聚态物理领域最重要发现之一。
目前对量子霍尔效应正在进行更深入研究,并得到了重要应用。
例如用于确定电阻的自然基准,可以极为精确地测定光谱精细结构参数等。
通过本实验学会消除霍尔元件副效应的实验测量方法,用霍尔传感器测量螺线管线圈励磁电流与输出霍尔电压之间关系,证明霍尔电势与螺线管内磁感应强度成正比;了解和熟悉霍尔效应重要物理规律,证明霍尔电势差与霍尔工作电流成正比;通过实验测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量螺线管线圈中心轴线上磁感应强度与位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法。
【实验目的】1. 掌握用霍尔效应法测量磁场的原理,测量螺线管线圈中心轴线的磁感应强度分布。
2. 学会用FB400型螺线管磁场实验仪的使用方法。
3. 验证霍尔电势差与励磁电流(磁感应强度)及霍尔元件的工作电流成正比的关系式。
霍尔效应法测磁场的实验报告
霍尔效应法测磁场的实验报告一、实验目的本实验旨在通过霍尔效应法测量不同磁场强度下的霍尔电压,并计算出磁场的大小。
二、实验原理1. 霍尔效应当导体中有电流流过时,如果将另一个垂直于电流方向和导体面的磁场施加在导体上,则会产生一种称为霍尔效应的现象。
该效应表明,在垂直于电流方向和导体面的方向上,将会产生一个电势差,这个电势差就叫做霍尔电压。
2. 磁场大小计算公式根据霍尔效应原理,可以得到计算磁场大小的公式为:B = (VH/IR)×1/K其中,B表示磁场强度;VH表示测得的霍尔电压;I表示通过样品的电流;R表示样品材料的电阻率;K表示霍尔系数。
三、实验器材1. 万用表2. 稳压直流电源3. 磁铁4. 霍尔元件四、实验步骤及数据处理1. 将稳压直流电源接入到霍尔元件上,并设置合适的输出电压和输出电流。
2. 将磁铁放置在霍尔元件的两侧,使磁场垂直于霍尔元件的平面。
3. 测量不同磁场强度下的电压值,并记录数据。
4. 计算出每个电压值对应的磁场大小,并绘制磁场强度与电压之间的关系曲线。
5. 根据实验数据计算出样品材料的电阻率和霍尔系数,并进行比较分析。
五、实验结果分析通过实验测量得到了不同磁场强度下的霍尔电压,根据计算公式可以得到相应的磁场大小。
绘制出了磁场强度与电压之间的关系曲线,可以看出二者呈现线性关系。
通过计算得到样品材料的电阻率和霍尔系数,可以发现不同样品材料具有不同的电阻率和霍尔系数,这也说明了不同材料对于磁场强度的响应程度是不同的。
六、实验结论本次实验通过测量霍尔效应法测量了不同磁场强度下的霍尔电压,并计算出了相应的磁场大小。
通过数据处理得到了样品材料的电阻率和霍尔系数,并进行了比较分析。
实验结果表明,不同材料对于磁场强度的响应程度是不同的,这也为磁场探测提供了一定的参考依据。
磁场测量实验报告
磁场测量实验报告引言:磁场是一种力场,它对电荷、电流或磁矩有作用力。
磁场的测量对于理解和应用磁学理论具有重要意义。
本次实验旨在使用霍尔效应测量磁场的强度,并探究不同位置和方向对磁场测量结果的影响。
实验装置和原理:1. 实验装置:本实验使用的装置主要包括:霍尔效应传感器、电流源、数字万用表、直流电源以及导线等。
2. 原理:霍尔效应是指当一个载有电荷的导体带有电流通过时,该导体两侧的磁场与电荷的运动状态之间存在一种相互作用,从而引起横向电位差的现象。
通过测量产生霍尔电压与磁场强度之间的关系,可以得到磁场的强度大小。
实验步骤:1. 准备工作:根据所使用实验装置的要求,连接霍尔效应传感器、电流源、数字万用表和直流电源。
2. 调试装置:先将电流源的输出电流调整到合适数值范围,然后接通电源,并确保霍尔效应传感器处于不受任何磁场作用的状态。
最后,使用数字万用表准确测量霍尔电压。
3. 测量磁场强度:将霍尔效应传感器放置在待测磁场中,测量产生的霍尔电压。
此时,可以改变磁场的位置和方向,记录相应的霍尔电压读数。
4. 数据处理:根据测得的霍尔电压值,使用所给的标定曲线或者知名磁场标准值进行转换,得到实际的磁场强度数值。
实验结果:根据实验数据和数据处理,得到了各个位置和方向下的磁场强度。
在此列举部分测量结果如下:位置 A:(x,y,z)=(2 cm,0 cm,0 cm),磁场强度 B = 0.5 T 位置 B:(x,y,z)=(0 cm,2 cm,0 cm),磁场强度 B = 0.8 T 位置 C:(x,y,z)=(0 cm,0 cm,2 cm),磁场强度 B = 1.2 T 通过实验结果可以看出,不同位置和方向对磁场强度的测量结果有一定影响。
在实验过程中,对于特定的磁场测量目的,我们要仔细选择合适的位置和方向,以保证测量结果的准确性和可靠性。
讨论与分析:1. 实验误差:在实验过程中,可能存在一些误差因素导致测量结果的偏差。
霍尔效应法测磁场
霍尔效应法测磁场
嘿,朋友们!今天咱来聊聊霍尔效应法测磁场这档子事儿。
你说磁场这玩意儿,看不见摸不着的,咋知道它啥样呢?这就好比那神秘的小精灵,在暗处偷偷捣鼓着啥,咱得想个办法把它给揪出来呀!霍尔效应法就是咱的秘密武器啦!
想象一下,有个小薄片,就像个勇敢的小战士,被放在磁场里。
当有电流通过它的时候,嘿,神奇的事情发生了!这个小战士就会感受到磁场的力量,然后产生一个小电压。
这就好像小战士给咱发出了信号,告诉咱磁场在这儿呢!
要做这个实验,咱可得准备些东西。
那测量的仪器就像是咱的宝贝工具,得精挑细选。
还有那连线啥的,可不能马虎,得像给小娃娃扎辫子一样仔细。
然后呢,通上电流,看着仪表上的数据跳动,就好像在听磁场给咱讲故事。
有时候数据不太稳定,别急呀,就像咱走路有时候也会绊一下,调整调整就好啦。
你说这霍尔效应法测磁场是不是很有趣?就像在和磁场玩捉迷藏,咱得通过各种线索找到它。
这过程中可能会遇到一些小麻烦,比如仪器不太听话啦,或者环境有点干扰啦,但这也是探索的乐趣所在呀!
咱就这么一点点地探索,一点点地了解磁场的秘密。
就好像拼图一样,一块一块地把磁场的模样给拼出来。
每次得到一个准确的数据,那感觉,就像找到了宝藏的一角,心里那个美呀!
这就是霍尔效应法测磁场,它让我们能深入到那个神秘的磁场世界里,去发现那些我们平时看不到的奇妙之处。
它就像一把钥匙,打开了我们了解磁场的大门。
难道你不想去试试,亲自感受一下和磁场捉迷藏的乐趣吗?别犹豫啦,赶紧行动起来吧!。
霍尔效应测磁场实验步骤
霍尔效应测磁场实验步骤霍尔效应是一种基于洛伦兹力的物理现象,利用该现象可以测量磁场的强度。
下面将介绍一种利用霍尔效应测磁场的实验步骤。
实验步骤如下:1. 准备实验装置:首先需要准备一个霍尔元件、一个恒定电流源、一个恒定磁场源和一个电压测量仪器。
霍尔元件是实验中必需的关键元件,它具有精确的尺寸和材料特性,能够产生稳定的霍尔电压。
2. 将霍尔元件固定在实验台上,并连接电路:将霍尔元件固定在实验台上,然后将电路连接起来。
首先将恒定电流源的正极和负极分别连接到霍尔元件的两个接线端,并确保电流的方向与霍尔元件的方向垂直。
接下来,将电压测量仪器的两个探头分别连接到霍尔元件的两个接线端,以测量霍尔电压。
3. 施加恒定磁场:利用磁场源产生一个恒定的磁场,并将其垂直于霍尔元件和电流方向。
可以通过调节磁场源的位置和强度来实现磁场的控制和调节。
4. 测量霍尔电压:在施加恒定磁场的同时,使用电压测量仪器测量霍尔电压。
霍尔电压的大小和方向与磁场的强度和方向有关。
霍尔电压的测量可以通过调节电压测量仪器的量程和灵敏度来实现。
5. 分析实验数据:根据测得的霍尔电压值,可以利用霍尔效应的数学表达式计算出磁场的强度。
霍尔效应的数学表达式与霍尔元件的几何形状和材料特性有关,可以在实验前进行理论计算和准备。
需要注意的是,在进行实验前应该先校准实验装置,确保各个元件的性能和参数都正常。
此外,实验过程中应尽量避免干扰源的存在,以确保测量结果的准确性。
总结:通过以上步骤,我们可以利用霍尔效应来测量磁场的强度。
霍尔效应测磁场的实验步骤包括准备实验装置、连接电路、施加恒定磁场、测量霍尔电压和分析实验数据。
通过实验测量和数据分析,我们可以得到磁场的强度值。
霍尔效应测磁场的实验方法简单易行,广泛应用于科研实验和工程技术领域。
利用霍尔效应测磁场霍尔利用效应霍尔效应测量磁场
利用霍尔效应测磁场霍尔利用效应霍尔效应测量磁场
霍尔效应是指在一定条件下,在导体中沿流动方向施加交变电场时,会在导体内产生电压,这种电压称为霍尔电压。
霍尔效应可以用来测量磁场强度,也可以用于磁场方向的检测和测量。
霍尔效应的原理是:当一个导体带电子流时,由于磁场的作用,电子将发生偏转,使得带有电荷的侧面与另一侧相比有电荷分布的不均匀性。
这样,电流就会在电荷不平衡区域内施加一个电场,这个电场与磁场相垂直,因此就会产生一种称为霍尔电位差的电势差。
霍尔电势差具有如下的特点:
1. 与导体中的电流强度和方向、磁场的强度和方向有关。
2. 与导体的材质和尺寸有关。
3. 在一定温度下保持不变。
利用霍尔效应测磁场的方法一般是:在一个带有导电层的锡烯片上,布置一个恒定的电流,使电流垂直于锡烯片的面板。
当这个锡烯片处于磁场中时,由于磁场的作用,电子流将发生侧向偏转,形成了电荷不平衡的区域,从而会产生一个电压,这个电压就是霍尔电势差。
这个电压的大小正比于锡烯片的电流强度和磁场的强度,与电流方向和磁场方向成正比例和反比例关系。
因此,可以测量霍尔电势差,然后根据其大小来推导出磁场的强度和方向。
霍尔效应在电子技术中有广泛的应用,例如:在集成电路中,可以利用霍尔效应来检测物体的位置、速度和方向;在机器人技术中,也可以利用霍尔效应来测量机器人的位置和朝向等。
此外,霍尔效应还可以用于制备陀螺仪、磁场传感器、匀速电机等。
总之,霍尔效应是电子技术中一项重要的研究内容,具有广泛的应用价值。
利用霍尔效应测量磁场的原理
利用霍尔效应测量磁场的原理一、引言霍尔效应是一种用于测量磁场的重要原理,它利用了材料中的载流子在磁场中受到洛伦兹力的作用而产生的电势差来进行测量。
本文将详细介绍利用霍尔效应测量磁场的原理。
二、霍尔效应基础知识1. 霍尔效应定义霍尔效应是指当把一个导体置于外加磁场中时,在导体内部会形成一定大小和方向的电势差,这种现象称为霍尔效应。
2. 霍尔电压公式在一个宽度为w、长度为l、厚度为t的导体内,当通过该导体沿着x 轴方向有电流I流过时,如果该导体放置在磁感强度B垂直于x轴方向的外加磁场中,则在y轴方向会出现一个电势差VH。
其中,VH与I、B以及l、w和t之间存在如下关系:VH = RHB * I * B其中RHB称为霍尔系数或霍尔常数,它与材料有关。
3. 霍尔系数公式对于n型半导体材料而言,其霍尔系数RHB可表示为:RHB = 1/ne其中,n为半导体中的载流子浓度,e为电子电荷。
4. 霍尔效应的应用霍尔效应广泛应用于磁场测量、传感器、电子元件等领域。
其中,利用霍尔效应进行磁场测量是其最重要的应用之一。
三、利用霍尔效应测量磁场的原理1. 测量原理利用霍尔效应进行磁场测量的原理基于以下两个方面:(1)材料中载流子在磁场中受到洛伦兹力的作用而产生电势差;(2)在材料内部形成沿着磁场方向的电势差,在外部形成垂直于磁场方向的电势差。
根据这两个方面,可以通过将一个材料放置在外加磁场中,并通过测量该材料内部沿着磁场方向和垂直于磁场方向的电势差来确定外加磁场强度大小和方向。
2. 测量步骤利用霍尔效应进行磁场测量需要按以下步骤进行:(1)选择合适的半导体材料:选择具有良好霍尔效应的半导体材料,如InSb、InAs等。
(2)制备霍尔元件:将半导体材料制成一定尺寸的薄片,然后在薄片上制作电极。
(3)放置在磁场中:将霍尔元件放置在外加磁场中,并通过电流源给霍尔元件提供一定大小的电流。
(4)测量电势差:通过两个电极间的电势差来测量沿着磁场方向和垂直于磁场方向的电势差,从而确定外加磁场强度大小和方向。
霍尔效应法测磁场的实验报告
霍尔效应法测磁场的实验报告一、实验目的本实验旨在通过霍尔效应法测量磁场强度,并掌握霍尔效应的基本原理和测量方法。
二、实验原理1. 霍尔效应霍尔效应是指在一个导体中,当有电流通过时,在该导体中产生横向磁场时,将会出现一种电势差,这种现象就称为霍尔效应。
该电势差与磁场强度、电流大小以及材料特性有关。
2. 霍尔元件霍尔元件是利用霍尔效应制造的元器件,它可以将磁场转化为电信号输出。
通常采用n型半导体材料制成,具有高灵敏度和线性度好等特点。
3. 测量方法利用霍尔元件可以测量磁场强度。
首先将待测磁场垂直于霍尔元件所在平面,然后通过调整外加直流电压的大小和方向,使得霍尔元件输出的电势差为零。
此时所加直流电压即为待测磁场强度。
三、实验器材1. 霍尔元件2. 直流稳压电源3. 万用表4. 磁铁5. 铜线四、实验步骤1. 将霍尔元件固定在试验台上,并将其与直流稳压电源和万用表连接好。
2. 将磁铁放置在霍尔元件旁边,调整其位置和方向,使得磁场垂直于霍尔元件所在平面。
3. 通过调整直流稳压电源的输出电压大小和方向,使得万用表读数为零。
此时所加直流电压即为待测磁场强度。
4. 更换不同大小的磁铁,重复以上步骤,记录不同磁场下的电势差和电流值。
五、实验结果分析1. 数据处理根据实验数据计算出不同磁场下的电势差和电流值,并绘制出它们之间的关系图。
通过拟合曲线可以得到待测磁场强度与输出电势差之间的函数关系式。
2. 实验误差分析在实际操作中,由于仪器精度、环境温度等因素的影响,可能会产生一定误差。
此时需要对数据进行处理,并考虑误差来源及其影响程度。
六、实验结论通过本次实验可以得出以下结论:1. 霍尔效应是一种将磁场转化为电信号输出的现象,其电势差与磁场强度、电流大小以及材料特性有关。
2. 利用霍尔元件可以测量磁场强度,通过调整外加直流电压的大小和方向,使得霍尔元件输出的电势差为零,此时所加直流电压即为待测磁场强度。
3. 在实际操作中,需要考虑仪器精度、环境温度等因素对实验结果的影响,并进行误差分析和数据处理。
霍尔效应测磁场.
图14—1 半导体中的霍尔效应(a )N 型半导体 (b )P 型半导体实验十四 用霍尔效应法测磁场分布测量磁场有许多方法,如霍尔效应法、感应法、冲击法和核磁共振法等。
选用什么方法取决于被测磁场的类型和强弱。
本实验主要介绍霍尔效应法。
它具有测量原理和方法简单、探头体积小、测量敏捷,并能直接连续读数等优点。
利用霍尔效应还可制成测量磁场的特斯拉计(又称高斯计),可测量半导体材料参数等。
[实验目的]1. 了解利用霍尔效应法测量磁场的原理以及有关霍尔器件对材料要求的知识。
2. 学习用“对称测量法”消除副效应的影响,测试霍尔器件的S H I V -和M H I V -曲线。
3. 测试螺线管内部的B —X (水平磁场分布)曲线。
[实验原理]1.霍尔效应将通有电流的半导体薄片置于匀强磁场中,如图14—1所示。
如果电流I 沿X 方向,磁场B 沿Z 方向,则在y 方向上的两截面(M ,N )间就会有电位差出现,这种现象是霍尔在1879年发现的,故称霍尔效应。
横向电位差V H 称为霍尔电压。
该半导体薄片称为霍尔元件。
霍尔效应是运动载流子(电子或空穴)在磁场中受到洛仑兹力的作用而产生的。
2.霍尔电压V H 与外磁场B 的关系(特斯拉计原理)若霍尔元件为宽l ,厚h 的N 型半导体,如图14—1(a )所示。
设电子的电荷为e ,速度为v ,它在磁场中受到的洛仑兹力F m = – e v ×B ,并指向M 面,造成电子流发生偏转,而有部分电子聚积于M 面上,使M ,N 之间建立了电场E ,该电场又对电子具有反方向的静电力F e =e E ,随着电子向M 侧继续积累,该电场也逐渐增强。
直到F e = – F m ,达到平衡,在M ,N 间形成稳定的霍尔电场E H 。
于是在霍尔片M ,N 间产生一稳定的电位差V H ,此即为霍尔电压。
这时:– e E H = F e = – F m = e v ×B E H = –v ×B当三者互相垂直时,霍尔电场为 E H = v B 并指向y 轴负向。
实验二十二霍尔效应测量磁场
实验二十二霍尔效应测量磁场
霍尔效应是指当导体(通常是金属或半导体)中有电流流过时,如果将一个垂直于电流方向的外加磁场加入,则在导体两侧会产生一定的电势差(称为霍尔电势),这种现象就是霍尔效应。
利用霍尔效应可以测量磁场强度。
下面是关于霍尔效应测量磁场实验的分析与总结:
实验原理:
当一块导体(霍尔元件)被垂直于磁场放置时,磁场会对电子的运动轨迹产生影响,导致电子在导体中积累,并产生电势差。
这个电势差称为霍尔电势(VH),霍尔电势与磁场强度(B)、电流强度(I)、导体材料和几何尺寸有关。
霍尔电势的大小可以通过测量导体两端的电压差来确定。
实验步骤:
1.将霍尔元件放置在磁场中心。
2.将电流通过霍尔元件。
3.测量霍尔电势,可以通过连接外部电压表来测量电势差。
4.改变磁场强度或电流强度并重新测量霍尔电势。
5.记录数据并进行数据处理。
实验总结:
1.霍尔效应可以用来测量磁场强度,它是一种简便、快速、精度高的磁场测量方法。
2.实验中需要注意的是,霍尔元件必须垂直于磁场,否则测量
结果会产生误差。
3.实验中需要选择合适的电流强度和测量范围,以保证测量结果的准确性和稳定性。
4.实验过程中需要进行数据处理和分析,以获得更加准确的测量结果。
5.霍尔效应不仅可以用于磁场测量,还可以用于其他领域的研究,如半导体物理、热电测量等。
霍尔元件测量磁场的原理
霍尔元件测量磁场的原理
霍尔效应法是一种测量磁场的方法,它利用了霍尔效应的原理。
所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。
霍尔电位差UH的基本关系为UH=RHIB/dRH=1/ng(金属)式中RH一霍尔系数:n一单位体积内载流子或自由电子的个数q——一电子电量:一通过的电流:B一垂直于的磁感应强度:d一导体的厚度。
霍尔效应法是一种测量磁场的方法它利用了霍尔效应的原理。
霍尔效应是指当一个电流通过一个导体时如果该导体处于磁场中那么在该导体的两侧会产生一定的电势差这种现象就是霍尔效应。
利用这种效应我们可以测量磁场的强度。
在实验中,我们需要准备一个霍尔元件,它是一种半导体材料,具有一定的电阻率和载流子浓度。
将霍尔元件放置在磁场中,然后通过霍尔元件中的电流测量其两侧的电势差。
根据灌尔效应的公式我们可以计算出磁场的强度。
1/ 1。
大学物理实验实验15 霍尔效应测磁场
霍尔效应仪
实验原理
霍尔效应
evB eE e UH U H vBl l IS B 1 IS B U g R KH IS B H H en d d IS v neld
UH B IS KH
KH:霍尔元件灵敏度 RH:霍尔系数
霍尔元件中的附加效应:
实验背景冯克利青获1985年的诺贝尔物理学奖量子霍尔效应霍斯特施特默罗伯特劳克林崔琦共同获得1998年的诺贝尔物理学奖分数霍尔效应?了解霍尔效应法测量磁场的原理和方法?学习用异号法消除附加效应产生的系统误差?掌握uj31型低电势电位差计的使用实验目的霍尔效应仪检流计电位差计电源毫安表滑动变阻器uj31型低电势电位差计电源饱和电池实验仪器霍尔效应1hhsshhhssuevbeeeuvbllibiburkibenddivneld???????????????ghshubik?kh
注意事项
注意3组电源及标准电池的极性,不可接错; 调整工作电流时先把滑线变阻器置于阻值最大处;
每次测量完毕应及时断开换向开关。
思考题
本实验中为什么要用换向开关?
UJ31型低电势电位差计在本实验中的作用是什么?
它与一般的电压测量仪器有何不同? 你认为本实验中最困难的是哪一步?
U0:不等位电势 UE:爱廷豪森效应
UN:能斯脱效应
US: 纪-勒杜克效应 产生机理详见教材P128
误差消除:
+IS +B U1
-IS
-IS +IS
+B
-B -B
U2
U3 U4
U1 U 2 U 3 U 4 UH 4
用异号法消除系统误差
实验内容与步骤
测量磁铁产生匀强磁场的B的大小 学习正确使用低电势电位差计
用霍尔效应测量磁场强度的实验教程
用霍尔效应测量磁场强度的实验教程1. 引言磁场是物理学中的重要概念,测量磁场强度是研究电磁现象的基础。
霍尔效应是一种常用的测量磁场强度的方法,它通过电势差的变化来间接测量磁场的大小。
本实验教程将介绍如何使用霍尔效应来测量磁场强度。
2. 实验原理霍尔效应是指当电流通过一块导体时,放置在导体中的一横向磁场会引起导体两侧产生横向电势差的现象。
该电势差称为霍尔电压,与磁场强度成正比。
霍尔效应的基本原理如图所示:[图示霍尔效应原理]在实际测量中,一般使用霍尔元件作为电流传感器,它能够检测电流通过时的霍尔电压。
通过测量霍尔电压的大小,我们可以计算出磁场的强度。
3. 实验步骤3.1 准备实验器材首先,我们需要准备以下实验器材:- 霍尔元件- 磁铁- 直流电源- 毫伏表- 导线等3.2 搭建实验电路将霍尔元件连接到直流电源和毫伏表上,保证连接的牢固可靠。
将磁铁放置在霍尔元件附近,确保霍尔元件受到磁场的影响。
3.3 测量霍尔电压通过调节直流电源的电压和方向,使得电流通过霍尔元件,并且磁场垂直于电流方向。
使用毫伏表测量霍尔电压的大小,并记录下来。
3.4 改变磁场强度移动磁铁的位置,改变磁场的强度,再次测量霍尔电压的大小。
重复这一步骤,改变磁场的强度,测量相应的霍尔电压。
4. 数据处理与分析测量得到的霍尔电压与磁场的强度成正比。
根据实验数据绘制电压-磁场强度曲线,并使用线性回归等方法求出二者之间的数学关系。
通过计算得到的关系式,我们可以根据霍尔电压的测量值,准确地计算出磁场的强度。
5. 实验注意事项- 实验过程中,需要保证电路的正常连接,确保信号的稳定性。
- 实验开始前,需进行仔细的安全检查,确保实验环境安全。
- 在测量时,需要减小外界干扰,保持实验环境的稳定性。
6. 结论通过以上实验步骤,我们成功地使用霍尔效应测量了磁场的强度。
实验结果表明,霍尔电压与磁场的强度成正比,且测量结果准确可靠。
霍尔效应的应用广泛,不仅可用于实验室中的物理实验,还可应用于工程领域中的磁场测量、传感器等方面。
霍尔效应法测量磁场
5.将将Is和Im调到最小,断开三个闸刀开关,关闭电源拆线收拾仪器。
数据处理及误差计算(报告):8.007.006.005.004.003.002.001.000.001.002.003.004.005.006.007.001.81.61.41.210.80.60.40.20.1000.2000.3000.4000.5000.600原始实验数据粘贴处实验结果分析:1、当霍尔电压保持恒定,改变励磁电流时,测量得到的霍尔电压随励磁电流的增加而增加,通过作图发现二者之间也满足线性关系。
2、2、当励磁电流保持恒定,改变霍尔电流时,测量得到的霍尔电压随霍尔电流的增加而增加,通过作图发现二者之间满足线性关系。
问题讨论:1、霍耳元件为什么要用半导体材料,而且要求做得很薄?霍尔电压是如何产生的?答:半导体材料的迁移率高,电阻率适中,是制造霍耳器件较理想的材料。
2、工作电流和磁场为什么要换向?实际操作时如何实现?答:为了把产生霍耳效应的时候所伴随的副效应的影响从测量的结果中消除。
实际操作时通过切换实验仪三组双刀开关改变电流和磁场的方向。
3、回答SI、MI、HU、U分别表示什么含义?SI、MI的作用分别是什么?答:SI表示样品工作电流;MI表示励磁电流;HU表示存在磁场时的霍耳电压;U表示在零磁场下的霍耳电压。
SI的作用是改变电流大小和方向,MI的作用是改变磁场的大小及方向。
4、霍耳效应有哪些应用?答:在现代汽车上广泛应用的霍尔器件有:在分电器上作信号传感器、ABS系统中的速度传感器、汽车速度表和里程表、液体物理量检测器、各种用电负载的电流检测及工作状态诊断、发动机转速及曲轴角度传感器。
5、如何精确测量霍耳电压?本实验采用什么方法消除各种附加电压?答:设法消除产生霍尔效应时伴随的多种副效应。
本实验采用电流和磁场换向的所谓对称测量法。
6、磁场不恰好与霍耳片的法线一致,对测量结果有何影响?答:磁场不与霍尔片垂直,只有其法向分量能起作用,即霍尔片产生的霍尔电压会减小。
用霍尔效应测量磁场
用霍尔效应测量磁场一、实验内容:1.了解霍尔电压产生的机制;2.学会用霍尔元件测量磁场的基本方法二、实验仪器:螺线管磁场测试仪、长直螺线管磁场装置、双刀换向开关1.霍尔效应图1 霍耳效应如图(1)所示,霍尔元件是均匀的N型半导体材料制成的矩形薄片,长为L,宽为b,厚为d。
当在1、2两端加上电压,同时有一个磁场B垂直穿过元件的宽面时,在3、4两端产生电位差(V),这种现象为霍尔效应。
H霍尔片内定向运动的载流子所受洛仑兹力B f和静电作用力E f相等时,3、4两面将建立起一稳定的电位差,即霍耳电压HV:KV HBI(1)HHK是霍尔元件的灵敏度。
H2.附加电压1)不等位电势差0V:与磁场B换向无关,随电流H I换向而换向;2)厄廷好森(Etinghausen )效应温差电势差0V :随磁场B 和电流H I 换向而换向; 3)能斯脱(Nernst )效应热流电势差p V :随磁场B 换向而换向,与电流H I 换向无关; 4)里纪-勒杜克(Righi-leduc )效应附加温差电势差s V :随磁场B 换向而换向,与电流H I 换向无关;3. 附加电压的消除根据附加电压随磁场B 和电流H I 换向而各自呈现的特点加以消除。
(+H I ,+B ) s p t H V V V V V V +++++=01 (-H I ,+B ) s p t H V V V V V V ++---=02 (-H I ,-B ) s p t H V V V V V V --+-+=03 (+H I ,-B ) s p t H V V V V V V ---+-=04 测量表达式:(2)四、实验步骤:1. 仪器连接将螺线管磁场装置与螺线管磁场测试仪电路连接好:2. 调节螺线管的励磁电流M I (或H I )、调节霍耳元件的工作电流I S (或H I )测试仪在通电前,应将“I S (或 H I )调节”和“M I 调节”两个旋钮置于零位(即逆时针旋到底)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UH
1 4
(U 1
U
2
U3
U4 )
大致有20组 UH数据!
移出缺口
大约2cm
完成测试
B(mT)
B UH KH IS
x(mm)
结束
谢谢大家!
断开电磁铁励磁开关K1,使霍耳元件处于无磁场状态。
数字电压表用200mV量程档,测出工作电流 IS方向不同时的
不等势电压
U
0和
U
。
0
200mV 量程
3、确定霍耳元件的导电类型
霍耳元件——半导体材料组成,一般分为二类:
①空穴型的(P型——载流子为带正电的空穴)霍耳芯片; ②电子型的(n型——载流子为带负电的自由电子)霍耳芯片。
B UH KH IS
F Байду номын сангаасvB
磁场的作用力 方向向上
UH Bvb KH IS B
m
Fe eEH
Fm Fe
eUH
v
b
B
U
H
b
附加电场的作用力 方向向下
霍耳元件 的灵敏度
在实验仪 器上注明
特别注意:二个 输出电压不能接 错!!!
提供霍耳 芯片工作
电流IS
提供线圈 励磁电流
IM
设定电压 值6.0V
判定方法:右手法则 ① 根据K1、K2、K3的位置,确
定IS、B和UH的方向。
② 通过数字电压表上UH的+/-,
最终确定实验所用霍耳芯片的导
电类型。 VH
P型
VH N型
+
4
2
3
﹢
_
IS
V
﹣
1
4、测磁感应强度
30-40毫米,每隔1mm测一次数据 大约移动到50毫米处,停止移动,测量结束!
测试一组UH值/ 每移动2mm
设定电压 值20.0V
2、系统误差的消除方法
上面讨论的霍耳电压是在理想状态下的情况,而实际测 量的电压还包含了由热电效应和热磁效应所引起的各种附加 电压如下四种。除个别附加效应外,在实验中可采用相应的 实验方法来消除。
(1)不等势效应
(2)爱廷豪森效应
(3)能斯脱效应
(4)里纪—勒杜克效应
在一个测试点,①通过励 磁电流的改变,②通过霍耳 元件上工作电流的改变,测 量四个霍耳电压值,再通过 下式计算,就可得到较为准 确的霍耳电压。
由霍耳元件制成的磁场测量装置,可直接将磁和电联系 起来,并具有测量范围广(107 ~ 10T )、测量精度较高(1% ~0.01%)、适用于多种磁场以及设备简单等优点,还可以 用来测量电流、压力、转速、半导体材料的参数等。在自动 控制和计算技术等方面,霍耳效应的应用也越来越多。
一、 实验原理 1、霍耳效应
UH
1 4 (U1
U2
U3
U4
)
UH
1 4
(U1
U2
U3
U4
)
二、 实验内容 1、接线与调试
注意接线 位置
开路调整电压;
工作电压/电流的调整必须遵循: 闭路调整电流。
如:霍耳元件工作电压 E1=6.0V 励磁电压 E2=20.0V
工作电流 IS 10mA
励磁电流IM 0.4A
调 电 流
2、测量霍耳元件的不等势电压
大学物理实验
霍耳效应法测磁场
编辑:孙立,孔实
前言
霍耳效应是一种磁电效应,它是指置于磁场中的载流体, 如果电流方向与磁场垂直,则在垂直于电流和磁场的方向上 会产生一附加的横向电场的现象。这一现象是1879年由霍普 斯金大学24岁的研究生霍耳(E.C.Hall)在他的导师罗兰指导 下发现的。由于半导体材料较之金属材料具有更强的霍耳效 应,所以霍耳效应随着半导体材料的发现和加工工艺的发展 而在科学实验和工程技术中得到广泛应用。