2020-2021南京市南京市第一中学 高一数学上期末试题附答案
江苏省南京市 学年高一上学期期末考试数学试题 含答案
是半径为
1,圆心角为
π 3
的扇形,点
A
在弧
⌒ PQ
上(异于点
P,Q),过点 A
作 AB⊥OP,AC⊥OQ,垂足分别为 B,C.记∠AOB=θ,四边形 ACOB 的周长为 l.
(1)求 l 关于 θ 的函数关系式; (2)当 θ 为何值时,l 有最大值,并求出 l 的最大值.
Q C
A
θ O
BP
(第 18 题图)
y 2
O
-1π2
π 6
x
(第 16 题图)
2 南京清江花苑严老师
17.(本小题满分 14 分)
已知 sinα=-47 3,α∈(-π2,0). (1)求 cos(π4+α)的值; (2)若 sin(α+β)=-3143,β∈(0,π2),求 β 的值.
18.(本小题满分 16 分)
如图,已知 OPQ
解得
cosβ=12,sinβ=
3或 2
cosβ=2938,sinβ=-5958
3(舍去).„„„„„„ 12 分
因为 β∈(0,π2),所以 β=π3.
„„„„„„ 14 分
注:第(1)问 6 分,求出 cosα 的值得 2 分(公式 1 分,结果 1 分),求 cos(π4+α)共 4 分,(公式 2 分,
4.已知 tanα=2,则 tan(α+π4) 的值是 ▲ .
5.若函数 f(x)=cosx+|2x-a| 为偶函数,则实数 a 的值是 ▲ .
6.已知向量 a=(1,2),b=(-2,1).若向量 a-b 与向量 ka+b 共线,则实数 k 的值是 ▲ .
7.已知角 α 的终边经过点 P(12,5),则 sin(π+α)+cos(-α) 的值是 ▲ .
2020-2021南京市南京市第一中学 高一数学下期末试题附答案
2020-2021南京市南京市第一中学 高一数学下期末试题附答案一、选择题1.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =A .5B .7C .9D .112.已知{}n a 是公差为d 的等差数列,前n 项和是n S ,若9810S S S <<,则( ) A .0d >,170S > B .0d <,170S < C .0d >,180S <D .0d >,180S >3.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B =( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,54.已知数列{}n a 的前n 项和22n S n n =+,那么它的通项公式是( )A .21n a n =-B .21n a n =+C .41n a n =-D .41n a n =+5.在ABC V 中,已知,2,60a x b B ===o,如果ABC V 有两组解,则x 的取值范围是( )A .4323⎛⎫ ⎪ ⎪⎝⎭,B .4323⎡⎤⎢⎥⎣⎦,C .4323⎡⎫⎪⎢⎪⎣⎭, D .432,3⎛⎤⎥ ⎝⎦6.已知01a b <<<,则下列不等式不成立...的是 A .11()()22ab>B .ln ln a b >C .11a b> D .11ln ln a b> 7.设函数,则()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则( ) A .()y f x =在0,2π⎛⎫ ⎪⎝⎭单调递增,其图象关于直线4x π=对称 B .()y f x =在0,2π⎛⎫⎪⎝⎭单调递增,其图象关于直线2x π=对称 C .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线4x π=对称 D .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线2x π=对称8.函数()lg ||f x x x =的图象可能是( )A .B .C .D .9.函数()(1)lg(1)35f x x x x =-+--的零点个数为( ) A .3B .2C .1D .010.如图,已知三棱柱111ABC A B C -的各条棱长都相等,且1CC ⊥底面ABC ,M 是侧棱1CC 的中点,则异面直线1AB 和BM 所成的角为( )A .2π B .C .D .3π 11.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( ) A .7B .6C .5D .412.如图,在△ABC 中, 13AN NC =u u u v u u u v ,P 是BN 上的一点,若29AP m AB AC −−→−−→−−→=+,则实数m 的值为( )A .B .C .19D .二、填空题13.在区间[]0,1上随机选取两个数x 和y ,则满足20-<x y 的概率为________. 14.抛物线214y x =-上的动点M 到两定点(0,1)(1,3)--、的距离之和的最小值为__________.15.函数()2sin sin 3f x x x =+-的最小值为________.16.已知圆的方程为x 2+y 2﹣6x ﹣8y =0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD ,则四边形ABCD 的面积为 17.函数()12x f x =-的定义域是__________.18.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高 为19.如图,棱长均为2的正四棱锥的体积为_______.20.已知函数2()1f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m的取值范围为 .三、解答题21.已知满足(1)求的取值范围; (2)求函数的值域.22.记n S 为公差不为零的等差数列{}n a 的前n 项和,已知2219a a =,618S =.(1)求{}n a 的通项公式; (2)求n S 的最大值及对应n 的大小.23.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;24.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式,并写出()f x 的最小正周期;(2)令()1π212g x f x ⎛⎫=-⎪⎝⎭,若在[]0,x π∈内,方程()()212320a g x ag x ⎡⎤-+-=⎣⎦有且仅有两解,求a 的取值范围.25.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.26.以原点为圆心,半径为r 的圆O 222:()0O x y r r +=>与直线380x y --=相切. (1)直线l 过点(2,6)-且l 截圆O 所得弦长为43求直线l l 的方程;(2)设圆O 与x 轴的正半轴的交点为M ,过点M 作两条斜率分别为12,k k 12,k k 的直线交圆O 于,A B 两点,且123k k ⋅=-,证明:直线AB 恒过一个定点,并求出该定点坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】1353333,1a a a a a ++===,5153355()25522S a a a a =+=⨯==,选A. 2.D解析:D 【解析】 【分析】利用等差数列的通项公式求和公式可判断出数列{}n a 的单调性,并结合等差数列的求和公式可得出结论. 【详解】9810S S S <<Q ,90a ∴<,9100a a +>,100a ∴>,0d >. 179017S a =<∴,()1891090S a a =+>.故选:D. 【点睛】本题考查利用等差数列的前n 项和判断数列的单调性以及不等式,考查推理能力与计算能力,属于中等题.3.C解析:C 【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B ⋂= ∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C4.C解析:C 【解析】分类讨论:当1n =时,11213a S ==+=,当2n ≥时,221(2)2(1)141n n n a S S n n n n n -⎡⎤=-=+--+-=-⎣⎦, 且当1n =时:1414113n a -=⨯-== 据此可得,数列的通项公式为:41n a n =-. 本题选择C 选项.5.A解析:A 【解析】 【分析】已知,,a b B ,若ABC V 有两组解,则sin a B b a <<,可解得x 的取值范围.【详解】由已知可得sin a B b a <<,则sin602x x ︒<<,解得2x <<故选A. 【点睛】本题考查已知两边及其中一边的对角,用正弦定理解三角形时解的个数的判断. 若ABC V 中,已知,,a b B 且B 为锐角,若0sin b a B <<,则无解;若sin b a B =或b a ≥,则有一解;若sin a B b a <<,则有两解. 6.B 解析:B 【解析】 【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式不成立的选项. 【详解】依题意01a b <<<,由于12xy ⎛⎫= ⎪⎝⎭为定义域上的减函数,故11()()22a b >,故A 选项不等式成立.由于ln y x =为定义域上的增函数,故ln ln 0a b <<,则11ln ln a b>,所以B 选项不等式不成立,D 选项不等式成立.由于01a b <<<,故11a b>,所以C 选项不等式成立.综上所述,本小题选B. 【点睛】本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.7.D解析:D 【解析】()sin(2)cos(2))2442f x x x x x πππ=+++=+=,由02,x π<<得02x π<<,再由2,x k k Z ππ=+∈,所以,22k x k Z ππ=+∈. 所以y=f(x)在()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称,故选D.8.D解析:D 【解析】 【分析】分析函数()y f x =的定义域、奇偶性及其在()0,1上的函数值符号,可得出结论. 【详解】函数()lg f x x x =的定义域为{}0x x ≠,定义域关于原点对称,()()lg lg f x x x x x f x -=--=-=-,函数()y f x =为奇函数,排除A 、C 选项;当01x <<时,lg 0x <,此时()lg 0f x x x =<,排除B 选项. 故选:D. 【点睛】本题考查由函数的解析式选择函数图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查推理能力,属于中等题.9.B解析:B 【解析】 【分析】可采用构造函数形式,令()()()35lg 1,1x h x x g x x +=+=-,采用数形结合法即可求解 【详解】由题可知,1x >-,当1x =时,()80f x =-≠, 令358()(1)lg(1)350lg(1)311x f x x x x x x x +=-+--=⇒+==+--, 令()()()35lg 1,1x h x x g x x +=+=-,画出函数图像,如图:则两函数图像有两交点,故函数()(1)lg(1)35f x x x x =-+--的零点个数为2个 故选:B 【点睛】本题考查函数零点个数的求解,数形结合思想,属于中档题10.A解析:A 【解析】 【分析】由题意设棱长为a ,补正三棱柱ABC-A 2B 2C 2,构造直角三角形A 2BM ,解直角三角形求出BM ,利用勾股定理求出A 2M ,从而求解. 【详解】设棱长为a ,补正三棱柱ABC-A 2B 2C 2(如图).平移AB 1至A 2B ,连接A 2M ,∠MBA 2即为AB 1与BM 所成的角, 在△A 2BM 中,22252()22a A B a BM a a ==+=,,222313()22a A M a a =+=,222222,2A B BM A M MBA π∴+=∴∠=, . 故选A . 【点睛】本题主要考查了异面直线及其所成的角和勾股定理的应用,计算比较复杂,要仔细的做.11.B解析:B 【解析】由题意知,点P 在以原点(0,0)为圆心,以m 为半径的圆上,又因为点P 在已知圆上,所以只要两圆有交点即可,所以15m -=,故选B.考点:本小题主要考查两圆的位置关系,考查数形结合思想,考查分析问题与解决问题的能力.12.C解析:C 【解析】 【分析】先根据共线关系用基底AB AC→→,表示AP→,再根据平面向量基本定理得方程组解得实数m的值. 【详解】如下图,∵,,B P N 三点共线,∴,∴,即,∴①,又∵13AN NC =u u u v u u u v,∴,∴28=99AP m AB AC m AB AC →→→→→=++②,对比①,②,由平面向量基本定理可得:.【点睛】本题考查向量表示以及平面向量基本定理,考查基本分析求解能力.二、填空题13.【解析】概率为几何概型如图满足的概率为解析:1 4【解析】概率为几何概型,如图,满足20x y-<的概率为2111122=14OABSS∆⨯⨯=正方形14.4【解析】【分析】【详解】由题意得交点设作与准线垂直垂足为作与准线垂直垂足为则解析:4【解析】【分析】【详解】由题意得交点(0,1)F-,设(1,3)A-,作AN与准线垂直,垂足为N,作MH与准线垂直,垂足为H,则314MA MF MA MH AN+=+≥=+=15.【解析】【分析】利用换元法令然后利用配方法求其最小值【详解】令则当时函数有最小值故答案为【点睛】求与三角函数有关的最值常用方法有以下几种:①化成的形式利用配方法求最值;②形如的可化为的形式性求最值; 解析:134-【解析】 【分析】利用换元法,令sin x t =,[]1,1t ∈-,然后利用配方法求其最小值. 【详解】令sin x t =,[]1,1t ∈-,则2113324y t t t ⎛⎫=+-=+- ⎪⎝⎭, 当12t =-时,函数有最小值134-,故答案为134-.【点睛】求与三角函数有关的最值常用方法有以下几种:①化成2sin sin y a x b x c =++的形式利用配方法求最值;②形如sin sin a x by c x d+=+的可化为sin ()x y φ=的形式性求最值;③sin cos y a x b x =+型,可化为)y x φ=+求最值;④形如()sin cos sin cos y a x x b x x c =±++可设sin cos ,x t ±=换元后利用配方法求最值. 16.20【解析】【分析】根据题意可知过(35)的最长弦为直径最短弦为过(35)且垂直于该直径的弦分别求出两个量然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可【详解】解:圆的标准方程为(x ﹣解析: 【解析】 【分析】根据题意可知,过(3,5)的最长弦为直径,最短弦为过(3,5)且垂直于该直径的弦,分别求出两个量,然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可. 【详解】解:圆的标准方程为(x ﹣3)2+(y ﹣4)2=52, 由题意得最长的弦|AC |=2×5=10,根据勾股定理得最短的弦|BD |==,且AC ⊥BD ,四边形ABCD 的面积S =|12AC |•|BD |12=⨯10×=.故答案为. 【点评】考查学生灵活运用垂径定理解决数学问题的能力,掌握对角线垂直的四边形的面积计算方法为对角线乘积的一半.17.【解析】由得所以所以原函数定义域为故答案为 解析:(],0-∞【解析】由120x -≥,得21x ≤,所以0x ≤,所以原函数定义域为(],0-∞,故答案为(],0-∞.18.【解析】【分析】【详解】试题分析:根据题意设塔高为x 则可知a 表示的为塔与山之间的距离可以解得塔高为考点:解三角形的运用点评:主要是考查了解三角形中的余弦定理和正弦定理的运用属于中档题 解析:【解析】 【分析】 【详解】试题分析:根据题意,设塔高为x ,则可知00tan 60=,t 2an 30=00200a ax-,a 表示的为塔与山之间的距离,可以解得塔高为.考点:解三角形的运用点评:主要是考查了解三角形中的余弦定理和正弦定理的运用,属于中档题.19.【解析】在正四棱锥中顶点S 在底面上的投影为中心O 即底面ABCD 在底面正方形ABCD 中边长为2所以OA=在直角三角形SOA 中所以故答案为 解析:423【解析】在正四棱锥中,顶点S 在底面上的投影为中心O ,即SO ⊥底面ABCD ,在底面正方形ABCD 中,边长为2,所以2,在直角三角形SOA 中()2222222SO SA OA =-=-=所以1122233V sh ==⨯⨯=23 故答案为42320.【解析】【分析】【详解】因为函数的图象开口向上的抛物线所以要使对于任意的都有成立解得所以实数的取值范围为【考点】二次函数的性质解析:22⎛⎫- ⎪ ⎪⎝⎭【分析】 【详解】因为函数2()1f x x mx =+-的图象开口向上的抛物线, 所以要使对于任意的[],1x m m ∈+都有()0f x <成立,()222()10(1)1(1)10f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩,解得20m -<<, 所以实数m 的取值范围为2,02⎛⎫- ⎪ ⎪⎝⎭.【考点】 二次函数的性质.三、解答题21.(1)(2)【解析】试题分析(1)先将不等式化成底相同的指数,再根据指数函数单调性解不等式(2)令,则函数转化为关于 的二次函数,再根据对称轴与定义区间位置关系确定最值,得到值域. 试题解析: 解:(1) 因为由于指数函数在上单调递增(2) 由(1)得令,则,其中因为函数开口向上,且对称轴为函数在上单调递增的最大值为,最小值为函数的值域为. 22.(1)*(2)10n a n n ∈=-N (2)当4n =或5n =时,n S 有最大值为20.【解析】(1)将已知条件转化为1,a d 的形式列方程,由此解得1,a d ,进而求得{}n a 的通项公式. (2)根据等差数列前n 项和公式求得n S ,利用配方法,结合二次函数的性质求得n S 的最大值及对应n 的大小. 【详解】(1)设{}n a 的公差为d ,且0d ≠.由2219a a =,得140a d +=,由618S =,得1532a d +=, 于是18a =,2d =-.所以{}n a 的通项公式为*(2)10n a n n ∈=-N .(2)由(1)得(1)8(2)2n n n S n -=+⨯- 29n n =-+2981()24n =--+因为*n ∈N , 所以当4n =或5n =时,n S 有最大值为20.【点睛】本小题主要考查等差数列通项公式和前n 项和公式基本量的计算,考查等差数列前n 项和的最值的求法,属于基础题.23.(1)0.9(2)0.085,0.125a b == 【解析】试题分析:(Ⅰ)先频数分布表求出课外阅读时间不少于12小时的人数,再由对立事件的频率公式求出一名学生该周课外阅读时间少于12小时的频率;(Ⅱ)结合频数分布表、直方图确定课外阅读时间落在[4,6)、[8,10)的人数为17,求出对应的频率,分别由频率/组距求出a 、b 的值试题解析:(1)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有 6+2+2=10名,所以样本中的学生课外阅读时间少于12小时的频率是1010.9100-=. 从该校随机选取一名学生,估计这名学生该周课外阅读时间少于12小时的概率为0.9 (2)课外阅读时间落在组[4,6)的有17人,频率为0.17,所以0.170.0852a ===频率组距, 课外阅读时间落在组[8,10)的有25人,频率为0.25,所以0.250.1252b ===频率组距 考点:频率分布直方图24.(1) ()sin 26f x x π⎛⎫+ ⎝=⎪⎭,最小正周期T π=;(2) 161217a a a ⎧⎫<≤=⎨⎬⎩⎭或 【解析】【试题分析】(1)借助题设提供的图形信息与数据信息可求出周期T π=,再借助T πω=,求出2ω=,再借助点,16π⎛⎫⎪⎝⎭在()f x 图象上求出 6πϕ=;(2)先将原方程可化为()213sin 2sin 2a x x +-=,分离参数2221732sin 3sin 12sin 84x x x a ⎛⎫=-++=-- ⎪⎝⎭,再换元sin t x =,将其转化为函数()2173284f t t ⎛⎫=-- ⎪⎝⎭及2y a =图问题来处理:解:(1)由图象可知:22362T πππ=-=,∴T π=,又T πω=,∴2ω=. 又∵点,16π⎛⎫⎪⎝⎭在()f x 图象上,∴sin 216πϕ⎛⎫⨯+= ⎪⎝⎭,∴232k ππϕπ+=+,∴26k πϕπ=+,k Z ∈,又∵2πϕ<,∴6πϕ=.∴()sin 26f x x π⎛⎫=+ ⎪⎝⎭,最小正周期T π=. (2)∵()1sin 212g x f x x π⎛⎫=-=⎪⎝⎭, ∴原方程可化为()213sin 2sin 2a x x +-=,则0a ≠. ∵[]0,x π∈,[]sin 0,1x ∈,∴213sin 2sin 0x x +->,∴2221732sin 3sin 12sin 84x x x a ⎛⎫=-++=-- ⎪⎝⎭,令sin t x =,则[]0,1t ∈,作出()2173284f t t ⎛⎫=-- ⎪⎝⎭及2y a =图象, 当21a ≤2<或2178a =时,两图象在[]0,1内有且仅有一解, 即方程221732sin 84x a ⎛⎫=-- ⎪⎝⎭在[]0,π内有且仅有两解, 此时a 的取值范围为161217a a a ⎧⎫<≤=⎨⎬⎩⎭或.点睛:求出函数的解析式后,求解第二问时先将原方程可化为()213sin 2sin 2a x x +-=,则0a ≠,然后借助[]0,x π∈,[]sin 0,1x ∈,得到213sin 2sin 0x x +->,进而分离参数2221732sin 3sin 12sin 84x x x a ⎛⎫=-++=-- ⎪⎝⎭,再换元sin t x =,则[]0,1t ∈,从而将问题化为函数()2173284f t t ⎛⎫=-- ⎪⎝⎭及2y a =图象的交点的个数问题,然后结合图像求出参数的取值范围。
2020-2021南京市南京市第一中学 高三数学上期中试题附答案
2020-2021南京市南京市第一中学 高三数学上期中试题附答案一、选择题1.已知等差数列{}n a 中,10103a =,20172017S =,则2018S =( ) A .2018B .2018-C .4036-D .40362.数列{}n a 的前n 项和为21n S n n =++,()()1N*nn n b a n =-∈,则数列{}n b 的前50项和为( ) A .49B .50C .99D .1003.若不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩…„…„表示的平面区域是一个三角形,则实数a 的取值范围是( )A .4,3⎡⎫+∞⎪⎢⎣⎭B .(]0,1C .41,3⎡⎤⎢⎥⎣⎦D .(]40,1,3⎡⎫+∞⎪⎢⎣⎭U4.设等差数列{}n a 的前n 项和为n S ,且()*11n n nS S n N n +>∈+.若870a a +<,则( ) A .n S 的最大值是8S B .n S 的最小值是8S C .n S 的最大值是7SD .n S 的最小值是7S5.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或76.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,则cos C = ( )A .18B .34C .23 D .167.等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,则使前n 项和0n S >成立的最大正整数n 是( ) A .2018B .2019C .4036D .40378.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC V 的面积,若cos cos sin ,c B b C a A +=()2224S b a c =+-,则B ∠=A .90︒B .60︒C .45︒D .30︒9.在等比数列{}n a 中,21a a 2-=,且22a 为13a 和3a 的等差中项,则4a 为( )A .9B .27C .54D .8110.数列{}n a 中,()1121nn n a a n ++-=-,则数列{}n a 的前8项和等于( ) A .32B .36C .38D .4011.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<12.两个等差数列{}n a 和{}n b ,其前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b +=+( )A .49B .378C .7914D .14924二、填空题13.已知数列{}n a 中,11a =,且1113()n nn N a a *+=+∈,则10a =__________.(用数字作答)14.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .15.设不等式组30,{230,1x y x y x +-<--≤≥表示的平面区域为1Ω,平面区域2Ω与1Ω关于直线20x y +=对称,对于任意的12,C D ∈Ω∈Ω,则CD 的最小值为__________.16.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________17.已知无穷等比数列{}n a 的各项和为4,则首项1a 的取值范围是__________.18.(理)设函数2()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,2()4()(1)4()xf m f x f x f m m-≤-+恒成立,则实数m 的取值范围是______. 19.若等比数列{}n a 的各项均为正数,且510119122a a a a e +=,则1220ln ln ln a a a +++L 等于__________.20.在△ABC 中,已知sinA:sinB:sinC=3:5:7,则此三角形最大内角的大小..为________.三、解答题21.为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD .其中AB =3百米,AD =5百米,且△BCD 是以D 为直角顶点的等腰直角三角形.拟修建两条小路AC ,BD (路的宽度忽略不计),设∠BAD=θ,θ∈(2π,π).(1)当cos θ=5AC 的长度; (2)当草坪ABCD 的面积最大时,求此时小路BD 的长度. 22.数列{}n a 中,11a =,121n n a a n +=++. (1)求{}n a 的通项公式; (2)设141n n b a =-,求出数列{}n b 的前n 项和.23.已知数列{}n a 的前n 项和()2*,,n S pn qn p q n =+∈∈R N ,且143,24.a S ==(1)求数列{}n a 的通项公式;(2)设2n an b =,求数列{}n b 的前n 项和n T .24.已知向量()1sin 2A =,m 与()3sin 3A A =,n 共线,其中A 是△ABC 的内角. (1)求角A 的大小;(2)若BC=2,求△ABC 面积S 的最大值,并判断S 取得最大值时△ABC 的形状.25.已知数列{}n a 满足111,221n n n a a a a +==+. (1)证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a 的通项公式; (2)若数列{}n b 满足12n n nb a =g ,求数列{}n b 的前n 项和n S . 26.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为21200800002y x x =-+,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】分析:由题意首先求得10091a =,然后结合等差数列前n 项和公式求解前n 项和即可求得最终结果.详解:由等差数列前n 项和公式结合等差数列的性质可得:120171009201710092201720172017201722a a aS a +=⨯=⨯==, 则10091a =,据此可得:()12018201710091010201810091009440362a a S a a +=⨯=+=⨯=. 本题选择D 选项. 点睛:本题主要考查等差数列的性质,等差数列的前n 项和公式等知识,意在考查学生的转化能力和计算求解能力.2.A解析:A 【解析】试题分析:当1n =时,113a S ==;当2n ≥时,()()()22111112n n n a S S n n n n n -⎡⎤=-=++--+-+=⎣⎦,把1n =代入上式可得123a =≠.综上可得3,1{2,2n n a n n ==≥.所以3,1{2,12,n n b n n n n n -==-≠为奇数且为偶数.数列{}n b 的前50项和为()()503235749224650S =--+++++++++L L ()()24349252503224922++=--⋅+⋅=.故A 正确.考点:1求数列的通项公式;2数列求和问题.3.D解析:D 【解析】 【分析】要确定不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩…„…„表示的平面区域是否一个三角形,我们可以先画出0220y x y x y ⎧⎪+⎨⎪-⎩…„…,再对a 值进行分类讨论,找出满足条件的实数a 的取值范围. 【详解】不等式组0220y x y x y ⎧⎪+⎨⎪-⎩…„…表示的平面区域如图中阴影部分所示.由22x y x y =⎧⎨+=⎩得22,33A ⎛⎫⎪⎝⎭,由022y x y =⎧⎨+=⎩得()10B ,. 若原不等式组0220y x y x y x y a⎧⎪+⎪⎨-⎪⎪+⎩…„…„表示的平面区域是一个三角形,则直线x y a +=中a 的取值范围是(]40,1,3a ⎡⎫∈+∞⎪⎢⎣⎭U故选:D 【点睛】平面区域的形状问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合分类讨论的思想,针对图象分析满足条件的参数的取值范围.4.D解析:D 【解析】 【分析】将所给条件式变形,结合等差数列前n 项和公式即可证明数列的单调性,从而由870a a +<可得7a 和8a 的符号,即可判断n S 的最小值.【详解】由已知,得()11n n n S nS ++<, 所以11n n S S n n +<+, 所以()()()()1111221n n n a a n a a n n ++++<+, 所以1n n a a +<,所以等差数列{}n a 为递增数列.又870a a +<,即871a a <-, 所以80a >,70a <,即数列{}n a 前7项均小于0,第8项大于零, 所以n S 的最小值为7S , 故选D. 【点睛】本题考查了等差数列前n 项和公式的简单应用,等差数列单调性的证明和应用,前n 项和最值的判断,属于中档题.5.B解析:B 【解析】试题分析:由等差数列的性质,可得,又,所以,所以数列的通项公式为,令,解得,所以数列的前六项为负数,从第七项开始为正数,所以使得取最小值时的为,故选B .考点:等差数列的性质.6.A解析:A 【解析】 【分析】利用正弦定理角化边可构造方程2cos cos bC C a=,由cos 0C ≠可得2a b =;利用ABC ACD BCD S S S ∆∆∆=+可构造方程求得3cos 24C =,利用二倍角公式求得结果.【详解】由正弦定理得:22224cos a b c b C +-=则22224cos 2cos cos 22a b c b C bC C ab ab a+-===ABC ∆Q 为斜三角形 cos 0C ∴≠ 2a b ∴=ABC ACD BCD S S S ∆∆∆=+Q 1112sin sin 2sin 22222C Cb b C b b b b ∴⋅=⋅+⋅即:2sin 4sin cos 3sin 222C C CC ==()0,C π∈Q 0,22C π⎛⎫∴∈ ⎪⎝⎭ sin 02C ∴≠ 3cos 24C ∴= 291cos 2cos 1212168C C ∴=-=⨯-= 本题正确选项:A 【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用、二倍角公式求三角函数值等知识;关键是能够通过面积桥的方式构造方程解出半角的三角函数值.7.C解析:C 【解析】 【分析】根据等差数列前n 项和公式,结合已知条件列不等式组,进而求得使前n 项和0n S >成立的最大正整数n . 【详解】由于等差数列{}n a 满足120182019201820190,0,0a a a a a >+>⋅<,所以0d <,且2018201900a a >⎧⎨<⎩,所以()1403640362018201914037201940374036201802240374037022a a S a a a a a S +⎧=⨯=+⨯>⎪⎪⎨+⎪=⨯=⨯<⎪⎩,所以使前n 项和0n S >成立的最大正整数n 是4036.故选:C 【点睛】本小题主要考查等差数列前n 项和公式,考查等差数列的性质,属于基础题.8.D解析:D 【解析】 【分析】由正弦定理,两角和的正弦函数公式化简已知等式可得sin A =1,即A =900,由余弦定理、三角形面积公式可求角C ,从而得到B 的值. 【详解】由正弦定理及cos cos sin ,c B b C a A +=得2sin cos sin cos sin ,C B B C A +=()2sin sin sin 1C B A A ⇒+=⇒=,因为000180A <<,所以090A =;由余弦定理、三角形面积公式及)2224S b a c =+-,得1sin 2cos 24ab C ab C =,整理得tan C =,又00090C <<,所以060C =,故030B =. 故选D 【点睛】本题考查正、余弦定理、两角和的正弦公式、三角形面积公式在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.9.B解析:B 【解析】 【分析】根据题意,设等比数列{}n a 的公比为q ,由22a 为13a 和3a 的等差中项,可得21322a 3a a ⨯=+,利用等比数列的通项公式代入化简为2q 4q 30-+=,解得q ,又21a a 2-=,即()1a q 12-=,q 1≠,分析可得1a 、q 的值,可得数列{}n a 的通项公式,将n 4=代入计算可得答案. 【详解】解:根据题意,设等比数列{}n a 的公比为q ,若22a 为13a 和3a 的等差中项,则有21322a 3a a ⨯=+,变形可得21114a q 3a a q =+,即2q 4q 30-+=,解得q 1=或3;又21a a 2-=,即()1a q 12-=,则q 3=,1a 1=,则n 1n a 3-=,则有34a 327==;故选:B . 【点睛】本题考查等比数列的性质以及通项公式,关键是掌握等比数列通项公式的形式,属于基础题.10.B解析:B 【解析】 【分析】根据所给数列表达式,递推后可得()121121n n n a a n ++++-=+.并将原式两边同时乘以()1n-后与变形后的式子相加,即可求得2n n a a ++,即隔项和的形式.进而取n 的值,代入即可求解. 【详解】由已知()1121nn n a a n ++-=-,① 得()121121n n n a a n ++++-=+,②由()1n ⨯-+①②得()()()212121nn n a a n n ++=-⋅-++,取1,5,9n =及2,6,10n =,易得13572a a a a +=+=,248a a +=,6824a a +=, 故81234836S a a a a a =++++⋅⋅⋅+=. 故选:B. 【点睛】本题考查了数列递推公式的应用,对数列表达式进行合理变形的解决此题的关键,属于中档题.11.A解析:A 【解析】 【分析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.12.D解析:D 【解析】 【分析】根据等差数列的性质前n 项和的性质进行求解即可. 【详解】因为等差数列{}n a 和{}n b ,所以2201111715111122a a a a b b b b +==+,又211121S a =,211121T b =,故令21n =有2121721214921324S T ⨯+==+,即1111211492124a b =,所以111114924a b = 故选:D. 【点睛】本题主要考查等差数列的等和性质:若{}n a 是等差数列,且(,,,*)m n p q m n p q N +=+∈,则m n p q a a a a +=+ 与等差数列{}n a 前n 项和n S 的性质*21(21),()n n S n a n N -=-∈二、填空题13.【解析】【分析】由得为等差数列求得通项公式则可求【详解】则为以首项为1公差为3的等差数列则故答案为:【点睛】本题考查等差数列的定义及通项公式意在考查计算能力是基础题 解析:128【解析】 【分析】由1113()n nn N a a *+=+∈得1n a ⎧⎫⎪⎨⎬⎪⎭⎩为等差数列,求得1n a ⎧⎫⎪⎨⎬⎪⎭⎩通项公式,则10a 可求 【详解】1113()n nn N a a *+=+∈则1n a ⎧⎫⎪⎨⎬⎪⎭⎩为以首项为1,公差为3的等差数列,则 ()10111313228n n n a a =+-=-∴= 故答案为:128【点睛】本题考查等差数列的定义及通项公式,意在考查计算能力,是基础题14.【解析】【分析】【详解】由题意解得或者而数列是递增的等比数列所以即所以因而数列的前项和故答案为考点:1等比数列的性质;2等比数列的前项和公式 解析:21n -【解析】 【分析】 【详解】 由题意,14231498a a a a a a +=⎧⎨⋅=⋅=⎩,解得141,8a a ==或者148,1a a ==,而数列{}n a 是递增的等比数列,所以141,8a a ==,即3418a q a ==,所以2q =, 因而数列{}n a 的前n 项和1(1)1221112n nn n a q S q --===---,故答案为21n -. 考点:1.等比数列的性质;2.等比数列的前n 项和公式.15.【解析】作出不等式组所表示的可行域如图阴影部分由三角形ABC 构成其中作出直线显然点A 到直线的距离最近由其几何意义知区域内的点最短距离为点A 到直线的距离的2倍由点到直线的距离公式有:所以区域内的点与区【解析】作出不等式组所表示的可行域1Ω ,如图阴影部分,由三角形ABC 构成,其中(11),(30),(12)A B C -,,, ,作出直线20x y += ,显然点A 到直线20x y +=的距离最近,由其几何意义知,区域12,ΩΩ 内的点最短距离为点A 到直线20x y +=的距离的2倍,由点到直线的距离公式有:d ==,所以区域1Ω 内的点与区域2Ω 内的点之,即CD =点睛:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题. 巧妙识别目标函数的几何意义是解答本题的关键.16.【解析】【分析】先根据解析式以及偶函数性质确定函数单调性再化简不等式分类讨论分离不等式最后根据函数最值求m 取值范围即得结果【详解】因为当时为单调递减函数又所以函数为偶函数因此不等式恒成立等价于不等式解析:13- 【解析】 【分析】先根据解析式以及偶函数性质确定函数单调性,再化简不等式()()1f x f x m -≤+,分类讨论分离不等式,最后根据函数最值求m 取值范围,即得结果. 【详解】因为当0x ≥时 ()21,01,22,1,xx x f x x ⎧-+≤<=⎨-≥⎩为单调递减函数,又()()f x f x -=,所以函数()f x 为偶函数,因此不等式()()1f x f x m -≤+恒成立,等价于不等式()()1f x f x m -≤+恒成立,即1x x m -≥+,平方化简得()2211m x m +≤-,当10m +=时,x R ∈; 当10m +>时,12mx -≤对[],1x m m ∈+恒成立,11111233m m m m -+≤∴≤-∴-<≤-; 当10m +<时,12m x -≥对[],1x m m ∈+恒成立,1123m m m -≥∴≥(舍); 综上113m -≤≤-,因此实数m 的最大值是13-. 【点睛】解函数不等式:首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.17.【解析】【分析】由无穷等比数列的各项和为4得且从而可得的范围【详解】由题意可得且且 故答案为【点睛】本题主要考查了等比数列的前n 项和而无穷等比数列的各项和是指当且时前n 项和的极限属于基础题 解析:(0,4)(4,8)⋃【解析】 【分析】由无穷等比数列{}n a 的各项和为4得,141a q=-,,||1q <且0q ≠,从而可得1a 的范围. 【详解】由题意可得,14,||11a q q=<- , 且0q ≠14(1)a q =- 108a ∴<<且14a ≠故答案为(0,4)(4,8)⋃ 【点睛】本题主要考查了等比数列的前n 项和,而无穷等比数列的各项和是指当,||1q <且0q ≠时前 n 项和的极限,属于基础题.18.或【解析】【分析】先化简不等式再变量分离转化为对应函数最值问题最后根据二次函数最值以及解不等式得结果【详解】即即因为当时所以或故答案为:或【点睛】本题考查不等式恒成立问题以及二次函数最值考查综合分析解析:m ≤或m ≥ 【解析】 【分析】先化简不等式,再变量分离转化为对应函数最值问题,最后根据二次函数最值以及解不等式得结果. 【详解】2()4()(1)4()xf m f x f x f m m -≤-+Q22222()14(1)(1)14(1)xm x x m m∴---≤--+-即2221(41)230m x x m +---≥ 即222123341,()2m x m x x +-≥+≥ 因为当32x ≥时22323839324x x +≤+=所以2221834134m m m +-≥∴≥∴2m ≤-或2m ≥故答案为:2m ≤-或2m ≥ 【点睛】本题考查不等式恒成立问题以及二次函数最值,考查综合分析求解能力,属中档题.19.50【解析】由题意可得=填50解析:50 【解析】由题意可得51011912a a a a e ==,1220ln ln ln a a a ++⋅⋅⋅+=1050121920110ln()ln()ln 50a a a a a a e ===L ,填50.20.【解析】由正弦定理得由余弦定理得故也就是最大内角为 解析:23π 【解析】由正弦定理得::3:5:7a b c =,由余弦定理得2223571cos 2352C +-==-⨯⨯,故2π3C =,也就是最大内角为2π3. 三、解答题21.(1)AC =2)BD =【解析】 【分析】(1)在△ABD 中,由余弦定理可求BD 的值,利用同角三角函数基本关系式可求sinθ,根据正弦定理可求sin∠ADB 35=,进而可求cos∠ADC 的值,在△ACD 中,利用余弦定理可求AC 的值.(2)由(1)得:BD 2=14﹣可求.S ABCD =7152+sin (θ﹣φ),结合题意当θ﹣φ2π=时,四边形ABCD 的面积最大,即θ=φ2π+,此时cosφ=,sinφ=,从而可求BD 的值.【详解】(1)在ABD ∆中,由2222cos BD AB AD AB AD θ=+-⋅,得214BD θ=-,又cos 5θ=-,∴BD =∵,2πθπ⎛⎫∈ ⎪⎝⎭ ∴sin θ===由sin sin BD AB BAD ADB =∠∠得:32sinADB=∠,解得:3sin 5ADB ∠=,∵BCD ∆是以D 为直角顶点的等腰直角三角形 ∴2CDB π∠=且CD BD ==∴3cos cos sin 25ADC ADB ADB π⎛⎫∠=∠+=-∠=- ⎪⎝⎭ 在ACD ∆中,2222cos AC AD DC AD DC ADC =+-⋅∠(2232375⎛⎫=+--= ⎪⎝⎭,解得:AC =(2)由(1)得:214BD θ=-,2113sin 22ABCD ABD BCD S S S BD θ∆∆=+=⨯+⨯ 7sin θθ=-)()157sin 2cos 7sin2θθθφ=+-=+-,此时sin φ=cos φ=,且0,2πφ⎛⎫∈ ⎪⎝⎭当2πθφ-=时,四边形ABCD 的面积最大,即2πθφ=+,此时sin θ=,cosθ=∴2141426BD θ⎛=-=-= ⎝,即BD =答:当cos θ=AC 百米;草坪ABCD 的面积最大时,小路BD【点睛】本题主要考查了余弦定理,同角三角函数基本关系式,正弦定理,三角形面积公式,三角函数恒等变换的应用以及正弦函数的图象和性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.22.(1)2n a n =;(2)21nn +. 【解析】 【分析】(1)直接根据累加法即可求得数列{}n a 的通项公式; (2)利用裂项相加即可得出数列{}n b 的前n 项和。
2020-2021南京市高一数学上期末试题附答案
2020-2021南京市高一数学上期末试题附答案一、选择题1.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( ) A .1,110⎛⎫⎪⎝⎭B .10,10,10C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞2.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称3.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12BC .2D .24.在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦5.定义在R 上的偶函数()f x 满足:对任意的1x ,212[0,)()x x x ∈+∞≠,有2121()()0f x f x x x -<-,则( ).A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-6.已知131log 4a =,154b=,136c =,则( ) A .a b c >> B .a c b >>C .c a b >>D .b c a >>7.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a <<B .b a c <<C .a c b <<D .c a b <<8.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( )A .[]3,5B .()3,5C .[]4,6D .()4,69.若0.33a =,log 3b π=,0.3log c e =,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>10.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos 12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( ) A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭11.下列函数中,既是偶函数又存在零点的是( ) A .B .C .D .12.对任意实数x ,规定()f x 取4x -,1x +,()152x -三个值中的最小值,则()f x ( )A .无最大值,无最小值B .有最大值2,最小值1C .有最大值1,无最小值D .有最大值2,无最小值二、填空题13.定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f (4)=0,则不等式f (x )≥0的解集是___.14.已知函数()22f x mx x m =-+的值域为[0,)+∞,则实数m 的值为__________15.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________.16.已知f (x )是定义域在R 上的偶函数,且f (x )在[0,+∞)上是减函数,如果f (m ﹣2)>f (2m ﹣3),那么实数m 的取值范围是_____. 17.若函数cos ()2||x f x x x =++,则11(lg 2)lg (lg 5)lg 25f f f f ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭______. 18.如图,矩形ABCD 的三个顶点,,A B C 分别在函数22logy x=,12y x =,22xy ⎛⎫= ⎪ ⎪⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为______.19.0.11.1a =,12log 2b =,ln 2c =,则a ,b ,c 从小到大的关系是________. 20.已知正实数a 满足8(9)a aa a =,则log (3)a a 的值为_____________.三、解答题21.已知函数2()log (421)x xf x a a =+⋅++,x ∈R .(Ⅰ)若1a =,求方程()3f x =的解集;(Ⅱ)若方程()f x x =有两个不同的实数根,求实数a 的取值范围. 22.求下列各式的值. (1)121log 23324()(0)a a a a -÷>;(2)221g 21g4lg5lg 25+⋅+.23.某上市公司股票在30天内每股的交易价格P (元)关于时间t (天)的函数关系为12,020,518,2030,10t t t P t t t ⎧+≤≤∈⎪⎪=⎨⎪-+<≤∈⎪⎩N N ,该股票在30天内的日交易量Q (万股)关于时间t(天)的函数为一次函数,其图象过点(4,36)和点(10,30). (1)求出日交易量Q (万股)与时间t (天)的一次函数关系式;(2)用y (万元)表示该股票日交易额,写出y 关于t 的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少?24.已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数.(1)求a ,b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1,32x ⎡⎤∈⎢⎥⎣⎦时,()2(21)0f kx f x +->恒成立,求实数k 的取值范围.25.某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58.为了预测以后各月的患病人数,甲选择了模型2y ax bx c =++,乙选择了模型•xy p q r =+,其中y 为患病人数,x 为月份数,a b c p q r ,,,,,都是常数.结果4月,5月,6月份的患病人数分别为66,82,115,你认为谁选择的模型较好?26.已知函数()()()9log 91xkx R x k f =++∈是偶函数.(1)求k 的值;(2)若不等式()102x a f x --≥对(],0x ∈-∞恒成立,求实数a 的取值范围. (注:如果求解过程中涉及复合函数单调性,可直接用结论,不需证明)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果. 【详解】由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <, 又函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.2.C解析:C 【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,故C 正确,D 错误;又()ln[(2)]f x x x =-(02x <<),由复合函数的单调性可知()f x 在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C .【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 3.A解析:A 【解析】 【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值.【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数, 但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a , 故选A .本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.4.C解析:C 【解析】当21x -≤≤时,()1224f x x x =⋅-⨯=-; 当12x <≤时,()23224f x x x x =⋅-⨯=-;所以()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩, 易知,()4f x x =-在[]2,1-单调递增,()34f x x =-在(]1,2单调递增, 且21x -≤≤时,()max 3f x =-,12x <≤时,()min 3f x =-,则()f x 在[]22-,上单调递增, 所以()()13f m f m +≤得:21223213m m m m-≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得1223m ≤≤,故选C .点睛:新定义的题关键是读懂题意,根据条件,得到()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,通过单调性分析,得到()f x 在[]22-,上单调递增,解不等式()()13f m f m +≤,要符合定义域和单调性的双重要求,则21223213m m m m -≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得答案.5.A解析:A 【解析】由对任意x 1,x 2 ∈ [0,+∞)(x 1≠x 2),有()()1212f x f x x x -- <0,得f (x )在[0,+∞)上单独递减,所以(3)(2)(2)(1)f f f f <=-<,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行6.C解析:C 【解析】 【分析】首先将b 表示为对数的形式,判断出0b <,然后利用中间值以及对数、指数函数的单调性比较32与,a c 的大小,即可得到,,a b c 的大小关系. 【详解】因为154b=,所以551log log 104b =<=,又因为(133331log log 4log 3,log 4a ==∈,所以31,2a ⎛⎫∈ ⎪⎝⎭, 又因为131133336,82c ⎛⎫⎛⎫⎛⎫ ⎪=∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭,所以3,22c ⎛⎫∈ ⎪⎝⎭, 所以c a b >>. 故选:C. 【点睛】本题考查利用指、对数函数的单调性比较大小,难度一般.利用指、对数函数的单调性比较大小时,注意数值的正负,对于同为正或者负的情况可利用中间值进行比较.7.D解析:D 【解析】 【分析】可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c,()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】 考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.8.D解析:D 【解析】由()()0f x f x --=,知()f x 是偶函数,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,且()f x 是R 上的周期为2的函数,作出函数()y f x =和()y log 1a x =+的函数图象,关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,即为函数()y f x =和()y log 1a x =+的图象有5个交点,所以()()1log 311log 511a aa >⎧⎪+<⎨⎪+>⎩,解得46a <<.故选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.9.A解析:A 【解析】因为00.31,1e <,所以0.3log 0c e =<,由于0.30.3031,130log 31a b ππ>⇒=><<⇒<=<,所以a b c >>,应选答案A .10.D解析:D 【解析】试题分析:由()()2f x f x =-,可知函数()f x 图像关于1x =对称,又因为()f x 为偶函数,所以函数()f x 图像关于y 轴对称.所以函数()f x 的周期为2,要使函数()()log a g x f x x =-有且仅有三个零点,即函数()y f x =和函数log a y x =图形有且只有3个交点.由数形结合分析可知,0111{log 31,53log 51a a a a <<>-⇒<<<-,故D 正确. 考点:函数零点【思路点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.11.A解析:A 【解析】 由选项可知,项均不是偶函数,故排除,项是偶函数,但项与轴没有交点,即项的函数不存在零点,故选A. 考点:1.函数的奇偶性;2.函数零点的概念.12.D解析:D 【解析】 【分析】由题意画出函数图像,利用图像性质求解 【详解】画出()f x 的图像,如图(实线部分),由()1152y x y x =+⎧⎪⎨=-⎪⎩得()1,2A . 故()f x 有最大值2,无最小值 故选:D【点睛】本题主要考查分段函数的图像及性质,考查对最值的理解,属中档题.二、填空题13.-40∪4+∞)【解析】【分析】由奇函数的性质可得f (0)=0由函数单调性可得在(04)上f (x )<0在(4+∞)上f (x )>0结合函数的奇偶性可得在(-40)上的函数值的情况从而可得答案【详解】根解析: [-4,0]∪[4,+∞) 【解析】 【分析】由奇函数的性质可得f (0)=0,由函数单调性可得在(0,4)上,f (x )<0,在(4,+∞)上,f (x )>0,结合函数的奇偶性可得在(-4,0)上的函数值的情况,从而可得答案. 【详解】根据题意,函数f (x )是定义在R 上的奇函数,则f (0)=0,又由f (x )在区间(0,+∞)上单调递增,且f (4)=0,则在(0,4)上,f (x )<0,在(4,+∞)上,f (x )>0,又由函数f (x )为奇函数,则在(-4,0)上,f (x )>0,在(-∞,-4)上,f (x )<0, 若f (x )≥0,则有-4≤x≤0或x≥4, 则不等式f (x )≥0的解集是[-4,0]∪[4,+∞); 故答案为:[-4,0]∪[4,+∞). 【点睛】本题考查函数的单调性和奇偶性的综合应用,属于基础题.14.1【解析】【分析】根据二次函数的值域为结合二次函数的性质列出不等式组即可求解【详解】由题意函数的值域为所以满足解得即实数的值为1故答案为:1【点睛】本题主要考查了二次函数的图象与性质的应用其中解答中解析:1 【解析】 【分析】根据二次函数的值域为[0,)+∞,结合二次函数的性质,列出不等式组,即可求解. 【详解】由题意,函数()22f x mx x m =-+的值域为[0,)+∞,所以满足2440m m ⎧∆=-=⎨>⎩,解得1m =.即实数m 的值为1. 故答案为:1. 【点睛】本题主要考查了二次函数的图象与性质的应用,其中解答中熟记二次函数的图象与性质是解答的关键,着重考查了推理与计算能力,属于基础题.15.【解析】【分析】首先根据题意得到再设代入解析式即可【详解】因为是上的奇函数且满足所以即设所以所以故答案为:【点睛】本题主要考查函数的奇偶性和对称性的综合题同时考查了学生的转化能力属于中档题 解析:()6lg(6)f x x x =---+【解析】 【分析】首先根据题意得到(6)()f x f x +=-,再设(6,3)x ∈--,代入解析式即可. 【详解】因为()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,所以[3(3)][3(3)]f x f x ++=-+,即(6)()()f x f x f x +=-=-. 设(6,3)x ∈--,所以6(0,3)x +∈.(6)6lg(6)()f x x x f x +=+++=-,所以()6lg(6)f x x x =---+. 故答案为:()6lg(6)f x x x =---+ 【点睛】本题主要考查函数的奇偶性和对称性的综合题,同时考查了学生的转化能力,属于中档题.16.(﹣∞1)(+∞)【解析】【分析】因为先根据f (x )是定义域在R 上的偶函数将f (m ﹣2)>f (2m ﹣3)转化为再利用f (x )在区间0+∞)上是减函数求解【详解】因为f (x )是定义域在R 上的偶函数且f解析:(﹣∞,1)(53,+∞) 【解析】 【分析】因为先根据f (x )是定义域在R 上的偶函数,将 f (m ﹣2)>f (2m ﹣3),转化为()()223f m f m ->-,再利用f (x )在区间[0,+∞)上是减函数求解.【详解】因为f (x )是定义域在R 上的偶函数,且 f (m ﹣2)>f (2m ﹣3), 所以()()223fm f m ->- ,又因为f (x )在区间[0,+∞)上是减函数,所以|m ﹣2|<|2m ﹣3|, 所以3m 2﹣8m +5>0, 所以(m ﹣1)(3m ﹣5)>0, 解得m <1或m 53>, 故答案为:(﹣∞,1)(53,+∞). 【点睛】本题主要考查了函数的单调性与奇偶性的综合应用,还考查了转化化归的思想和运算求解的能力,属于中档题.17.10【解析】【分析】由得由此即可得到本题答案【详解】由得所以则所以故答案为:10【点睛】本题主要考查利用函数的奇偶性化简求值解析:10 【解析】 【分析】 由cos ()2||xf x x x=++,得()()42||f x f x x +-=+,由此即可得到本题答案. 【详解】 由cos ()2||xf x x x =++,得cos()cos ()2||2||x x f x x x x x--=+-+=+--,所以()()42||f x f x x +-=+,则(lg 2)(lg 2)42|lg 2|42lg 2f f +-=+=+,(lg5)(lg5)42|lg5|42lg5f f +-=+=+,所以,11(lg 2)lg (lg 5)lg 42lg 242lg 51025f f f f ⎛⎫⎛⎫+++=+++= ⎪ ⎪⎝⎭⎝⎭. 故答案为:10 【点睛】本题主要考查利用函数的奇偶性化简求值.18.【解析】【分析】先利用已知求出的值再求点D 的坐标【详解】由图像可知点在函数的图像上所以即因为点在函数的图像上所以因为点在函数的图像上所以又因为所以点的坐标为故答案为【点睛】本题主要考查指数对数和幂函解析:11,24⎛⎫⎪⎝⎭【解析】 【分析】先利用已知求出,A B C x x y ,的值,再求点D 的坐标. 【详解】由图像可知,点(),2A A x在函数y x=的图像上,所以2Ax =,即212A x ==⎝⎭.因为点(),2B B x 在函数12y x =的图像上,所以122Bx =,4B x =.因为点()4,C C y在函数2x y ⎛= ⎝⎭的图像上,所以4124C y ⎛== ⎝⎭. 又因为12D A x x ==,14D C y y ==, 所以点D 的坐标为11,24⎛⎫⎪⎝⎭. 故答案为11,24⎛⎫⎪⎝⎭【点睛】本题主要考查指数、对数和幂函数的图像和性质,意在考查学生对这些知识的理解掌握水平.19.【解析】【分析】根据指数函数和对数函数的图象与性质分别求得实数的取值范围即可求解得到答案【详解】由题意根据指数函数的性质可得由对数函数的运算公式及性质可得且所以abc 从小到大的关系是故答案为:【点睛 解析:b c a <<【解析】 【分析】根据指数函数和对数函数的图象与性质,分别求得实数,,a b c 的取值范围,即可求解,得到答案. 【详解】由题意,根据指数函数的性质,可得0.101.111.1a >==,由对数函数的运算公式及性质,可得12112211log log ()222b ===,1ln 2ln 2c =>=,且ln 2ln 1c e =<=, 所以a ,b ,c 从小到大的关系是b c a <<. 故答案为:b c a <<. 【点睛】 本题主要考查了指数函数与对数函数的图象与性质的应用,其中解答中熟记指数函数与对数函数的图象与性质,求得实数,,a b c 的取值范围是解答的关键,着重考查了推理与运算能力,属于基础题.20.【解析】【分析】将已知等式两边同取以为底的对数求出利用换底公式即可求解【详解】故答案为:【点睛】本题考查指对数之间的关系考查对数的运算以及应用换底公式求值属于中档题 解析:916【解析】 【分析】将已知等式8(9)aaa a =,两边同取以e 为底的对数,求出ln a ,利用换底公式,即可求解. 【详解】8(9)a a a a =,8ln ,l )l n 8(ln 9(9ln n )a a a a a a a a +==,160,7ln 16ln 3,ln ln 37a a a >∴=-=-, ln 3ln 39log (3)116ln 16ln 37a a a a ∴==+=-.故答案为:916. 【点睛】本题考查指对数之间的关系,考查对数的运算以及应用换底公式求值,属于中档题.三、解答题21.(Ⅰ){}1(Ⅱ)13a -<<-【解析】 【分析】(Ⅰ)将1a =代入直接求解即可;(Ⅱ)设2x t =,得到()()2110t a t a +-++=在()0,+∞有两个不同的解,利用二次函数的性质列不等式组求解即可. 【详解】(Ⅰ)当1a =时,()()2log 4223xxf x =++=,所以34222x x ++=, 所以4260x x +-=,因此()()23220xx+-=,得22x = 解得1x =, 所以解集为{}1.(Ⅱ)因为方程()2log 421x xa a x +⋅++=有两个不同的实数根, 即4212x x x a a +⋅++=,设2x t =,()()2110t a t a +-++=在()0,+∞有两个不同的解,令()()()211f t t a t a =+-++,由已知可得()()()2001021410f a a a ⎧>⎪-⎪->⎨⎪⎪=--+>⎩解得13a -<<- 【点睛】本题主要考查了对数函数与指数函数的复合函数的处理方式,考查了函数与方程的思想,属于中档题. 22.(1)0;(2)2 【解析】 【分析】直接利用指数和对数的运算法则化简求值即得解. 【详解】(1)2212521loglog 33332420a a a a a a a a ⎛⎫-÷=-÷=-= ⎪⎝⎭(2)22lg 2lg 4lg5lg 252lg 2(lg 2lg5)2lg52(lg 2lg5)2+⋅+=++=+=【点睛】本题主要考查指数和对数的运算法则,意在考查学生对这些知识的理解掌握水平. 23.(1)40Q t =-+,030t <≤,t ∈N (2)在30天中的第15天,日交易额最大为125万元. 【解析】 【分析】(1)设出一次函数解析式,利用待定系数法求得一次函数解析式. (2)求得日交易额的分段函数解析式,结合二次函数的性质,求得最大值. 【详解】(1)设Q ct d =+,把所给两组数据()()4,36,10,30代入可求得1c =-,40d =. ∴40Q t =-+,030t <≤,t N ∈(3)首先日交易额y (万元)=日交易量Q (万股)⨯每股交易价格P (元)()()1240,020,51840,2030,10t t t t N y t t t t N ⎧⎛⎫+-+≤≤∈ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-+<≤∈ ⎪⎪⎝⎭⎩,∴()()22115125,020,516040,2030,10t t t N y t t t N ⎧--+≤≤∈⎪⎪=⎨⎪--<≤∈⎪⎩ 当020t ≤≤时,当15t =时,max 125y =万元 当20t 30<≤时,y 随x 的增大而减小故在30天中的第15天,日交易额最大为125万元. 【点睛】本小题主要考查待定系数法求函数解析式,考查分段函数的最值,考查二次函数的性质,属于中档题.24.(1)2a =,1b =;(2)单调递减,见解析;(3)(,1)-∞- 【解析】 【分析】(1)根据(0)0f =得到1b =,根据(1)(1)f f -=-计算得到2a =,得到答案. (2)化简得到11()221x f x =++,12x x <,计算()()210f x f x -<,得到是减函数. (3)化简得到212kx x <-,参数分离212x k x -<,求函数212()xg x x -=的最小值得到答案. 【详解】(1)因为()f x 在定义域R 上是奇函数.所以(0)0f =,即102b a-+=+,所以1b =.又由(1)(1)f f -=-,即111214a a-+-=++, 所以2a =,检验知,当2a =,1b =时,原函数是奇函数.(2)()f x 在R 上单调递减.证明:由(1)知11211()22221xx xf x +-==+++, 任取12,x x R ∈,设12x x <,则()()()()12211221112221212121x x x x x x f x f x --=-=++++, 因为函数2xy =在R 上是增函数,且12x x <,所以12220x x -<,又()()1221210x x ++>,所以()()210f x f x -<,即()()21f x f x <, 所以函数()f x 在R 上单调递减.(3)因为()f x 是奇函数,从而不等式()2(21)0f kx f x +->等价于()2(21)(12)f kx f x f x >--=-,因为()f x 在R 上是减函数,由上式推得212kx x <-,即对一切1,32x ⎡⎤∈⎢⎥⎣⎦有212x k x-<恒成立,设221211()2()x g x x x x -==-⋅, 令1t x =,1,23t ⎡∈⎤⎢⎥⎣⎦则有2()2h t t t =-,1,23t ⎡∈⎤⎢⎥⎣⎦,所以min min ()()(1)1g x h t h ===-,所以1k <-,即k 的取值范围为(,1)-∞-. 【点睛】本题考查了函数解析式,单调性,恒成立问题,将恒成立问题通过参数分离转化为最值问题是解题的关键. 25.乙选择的模型较好. 【解析】 【分析】由二次函数为2y ax bx c =++,利用待定系数法求出解析式,计算456x =、、时的函数值;再求出函数•xy p q r =+的解析式,计算456x =、、时的函数值,最后与真实值进行比较,可决定选择哪一个函数式好. 【详解】依题意,得222•1?152•2?254•3?358a b c a b c a b c ⎧++=⎪++=⎨⎪++=⎩,即5242549358a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得1152a b c =⎧⎪=-⎨⎪=⎩∴甲:2152y x x =-+,又123•52•54•58p q r p q r p q r ⎧+=⎪+=⎨⎪+=⎩①②③, 2132••2••4p q p q p q p q --=--=①②,④②③,⑤, 2q ÷=⑤④,,将2q =代入④式,得1p =将21q p ==,代入①式,得50r =, ∴乙:2250xy =+计算当4x =时,126466y y ==,; 当5x =时,127282y y ==,; 当6x =时,1282114y y ==,.可见,乙选择的模型与实际数据接近,乙选择的模型较好. 【点睛】本题考查了根据实际问题选择函数类型的应用问题,也考查了用待定系数法求函数解析式的应用问题,意在考查灵活运用所学知识解决实际问题的能力,是中档题 26.(1)12k =-(2)(]9,log 2-∞ 【解析】 【分析】(1)由偶函数定义()()f x f x -=,代入解析式求解即可;(2)题设条件可等价转化为()9log 91xa x ≤+-对(],0x ∈-∞恒成立,因此设()()9log 91x g x x =+-,求出其在(],0x ∈-∞上的最小值即可得出结论.【详解】(1)∵函数()()()9log 91xkx R x k f =++∈ 是偶函数.∴()()f x f x -=, ∴()()99log 91log 91xx kx kx -+-=++,∴()()999912log 91log 91log 91x xxx kx x --+-=+-+==+,∴12k =-. (2)由(1)知,()()91log 912xf x x =+-, 不等式1()02f x x a --≥即为()9log 91x a x ≤+-, 令()()9log 91xg x x =+-,(],0x ∈-∞,则()()()99991log 91log log 199x xx xx g x -+=+-==+, 又函数()g x 在(],0-∞上单调递减,所以()()9min 0log 2g x g ==, ∴a 的取值范围是(]9,log 2-∞. 【点睛】本题考查函数奇偶性的定义运用以及不等式恒成立问题,属于中档题.解决不等式恒成立问题时,一般首选参变分离法,将恒成立问题转化为最值问题求解.。
【数学】南京一中 2020-2021学年度第一学期10月月考 试题+解析
A. P Q
B. P Q
C. P Q
6. 若 x1, x2 是一元二次方程 2x2 6x 3 0 的两个根,则 x1 x2 的值为(
D. P Q ).
A. 3 3
B. 3
C. 3
D. 15
7.
若不等的解集是
x
|
1
x
1
,则
a
b
的值为(
).
2
3
A. 10
B. 14
C. 10
南京一中 2020-2021 学年度第一学期月考试卷
高一数学
本卷考试时间:100 分钟 总分:150 分
一、单项选择题:本大题共 10 小题,每小题 5 分,共 50 分,请把答案直接填写在答题卡相应位置上
1. 设全集U 1, 2,3, 4 ,集合 S 1,3 , T 4 ,则 U S T 等于( ).【支点培优】
A. 4
B. 2
C. 2
4. 对于任意实数 a,b,c, d ,以下四个命题中的真命题是( ).【支点培优】
D. 4
A. 若 a b,c 0 则 ac bc
B. 若 a b 0,c d 则 ac bd
C. 若 a b ,则 1 1 ab
D. 若 ac2 bc2 ,则 a b
5. 已知集合 P x | y x 1 ,集合 Q y | y x 1 ,则 P 与 Q 的关系是( ).
为
.
18. 已知函数 y x2 ax ba,b R 的最小值为 0 ,若关于 x 的不等式 x2 ax b c 的解集为 m, m 6 ,
则实数 c 的值为
.
三、解答题:本大题共 5 小题,共 60 分,请把答案填写在答题卡相应位置上
最新江苏省南京市2022-2022年高一上期末数学试卷含答案解析
高一(上)期末(qī mò)数学试卷一、选择题(本大题为单项选择题,共10小题(xiǎo tí),每小题5分)1.满足(mǎnzú){1,3}∪A={1,3,5}的所有(suǒyǒu)集合A的个数()A.1个B.2个C.3个D.4个2.直线(zhíxiàn)=1的斜率是()A.B.﹣C.D.﹣3.一水平放置的平面图形的直观图如图所示,则此平面图形的形状是()A.B.C.D.4.空间直角坐标系中点P(1,3,5)关于原点对称的点P′的坐标是()A.(﹣1,﹣3,﹣5)B.(﹣1,﹣3,5)C.(1,﹣3,5)D.(﹣1,3,5)5.函数f(x)=log2x﹣的一个零点落在下列哪个区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)6.如图,在正方体ABCD﹣A1B1C1D1中,E为A1C1的中点,则异面直线CE与BD所成的角为()A.30° B.45°C.60°D.90°7.今有一组数据(shùjù)如下:t 1.99 3.0 4.0 5.1 6.12v 1.5 4.04 7.5 12 18.01在以下四个模拟(mónǐ)函数中,最合适这组数据的函数是()A.v=log2t B.C.D.v=2t﹣28.已知lga+lgb=0(a>0,b>0且a≠1,b≠1),则函数(hánshù)f(x)=a x与函数(hánshù)g(x)=﹣log b x的图象(tú xiànɡ)可能是()A.B.C.D.9.点P(2,﹣1)为圆(x﹣1)2+y2=25的弦AB的中点,则直线AB的方程为()A.x+y﹣1=0 B.2x+y﹣3=0 C.x﹣y﹣3=0 D.2x﹣y﹣5=010.把正方形ABCD沿对角线AC折起,当以A、B、C、D四点为顶点的三棱锥体积(tǐjī)最大时,直线BD和平面ABC所成的角的大小为()A.90° B.60°C.45°D.30°二、填空题(本大题共5小题(xiǎo tí),每小题5分,共25分)11.幂函数的图象(tú xiànɡ)经过点(4,2),那么的值是.12.经过(jīngguò)(3,4),且与圆x2+y2=25相切的直线(zhíxiàn)的方程为.13.某几何体的三视图如图,其中正视图与侧视图上半部分为半圆,则该几何体的表面积为.14.若奇函数y=f(x)的定义域为[﹣4,4],其部分图象如图所示,则不等式f(x)ln(2x﹣1)<0的解集是.15.已知直线a、b、c以及平面α、β,给出下列(xiàliè)命题:①若a∥α且b∥α,则a∥b;②若α∥β,c⊥α,则c⊥β;③若a⊥b,a⊥α,则b∥α;④若α⊥β,a∥α,则a⊥β⑤若a⊥c,b⊥c,则a∥b或a、b异面或a、b相交(xiāngjiāo)其中(qízhōng)正确命题的序号是(把所有正确(zhèngquè)命题的序号都填上).三、解答题(本大题共6小题(xiǎo tí),总分75分,请把解答写在指定方框内,否则不记分)16.分别求满足下列条件的直线方程.(Ⅰ)过点(0,1),且平行于l1:4x+2y﹣1=0的直线;(Ⅱ)与l2:x+y+1=0垂直,且过点P(﹣1,0)的直线.17.已知:函数f(x)=+lg(3x﹣9)的定义域为A,集合B={x|x﹣a<0,a∈R}.(1)求:集合A;(2)求:A∩B.18.某校办工厂生产学生校服的固定成本为20000元,每生产一件需要(xūyào)增加投入100元,已知总收益R(x)满足函数R(x)=,其中(qízhōng)x是校服的月产量,问:(1)将利润表示为关于月产量(chǎnliàng)x的函数f(x);(2)当月产量为何(wèihé)值时,工厂所获利润最大?最大利润为多少元?(总收益=总成本+利润(lìrùn)).19.长方体ABCD﹣A1B1C1D1中,,AB=BC=2,O是底面对角线的交点.(Ⅰ)求证:B1D1∥平面BC1D;(Ⅱ)求证:A1O⊥平面BC1D;(Ⅲ)求三棱锥A1﹣DBC1的体积.20.已知圆C1的方程为x2+y2﹣4x+2my+2m2﹣2m+1=0.(1)求当圆的面积最大时圆C1的标准方程;(2)求(1)中求得的圆C1关于直线l:x﹣y+1=0对称的圆C2的方程.21.已知函数f(x)满足f(log a x)=(x﹣x﹣1),其中a>0,a≠1,(1)讨论(tǎolùn)f(x)的奇偶性和单调性;(2)对于(duìyú)函数f(x),当x∈(﹣1,1)时,f(1﹣m)+f(﹣2m)<0,求实数(shìshù)m取值的集合;(3)是否存在实数(shìshù)a,使得当x∈(﹣∞,2)时f(x)的值恒为负数(fùshù)?,若存在,求a的取值范围,若不存在,说明理由.2021-2021学年(xuénián)湖南省衡阳市常宁市高一(上)期末数学试卷参考答案与试题(shìtí)解析一、选择题(本大题为单项选择题,共10小题(xiǎo tí),每小题5分)1.满足(mǎnzú){1,3}∪A={1,3,5}的所有(suǒyǒu)集合A的个数()A.1个B.2个C.3个D.4个【考点】并集及其运算.【分析】由题意得1,3和5可能是集合B的元素,把集合B所有的情况写出来.【解答】解:∵{1,3}∪A={1,3,5},∴1和2和3可能是集合B的元素,则集合B可能是:{5},{1,5},{3,5},{1,5,3}共4个.故选D.2.直线=1的斜率是()A.B.﹣C.D.﹣【考点】直线的斜率.【分析(fēnxī)】把直线(zhíxiàn)的方程化为斜截式,从而求得它的斜率.【解答(jiědá)】解:直线(zhíxiàn)=1 即 y=x﹣2,故直线(zhíxiàn)的斜率等于,故选 A.3.一水平放置的平面图形的直观图如图所示,则此平面图形的形状是()A.B.C.D.【考点】平面图形的直观图.【分析】本选择题,可以用选择题的特殊方法来解,观察直观图右边的边与纵轴平行,与x轴垂直,这样只有C符合题意,从而得出正确答案.【解答】解:根据平面图形水平放置的直观图可知,右边的边与纵轴平行,与x轴垂直,这样此平面图形中有一个内角是直角,只有C符合题意,故选C.4.空间直角坐标系中点P(1,3,5)关于原点对称的点P′的坐标是()A.(﹣1,﹣3,﹣5)B.(﹣1,﹣3,5)C.(1,﹣3,5)D.(﹣1,3,5)【考点(kǎo diǎn)】空间(kōngjiān)中的点的坐标.【分析(fēnxī)】根据空间坐标关于点的对称的结论(jiélùn)进行求解即可.【解答(jiědá)】解:空间直角坐标系中点P(1,3,5)关于原点对称的点的坐标都有相应的相反数,即(﹣1,﹣3,﹣5),故选:A5.函数f(x)=log2x﹣的一个零点落在下列哪个区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【考点】函数零点的判定定理.【分析】根据函数的实根存在定理,要验证函数的零点的位置,只要求出函数在区间的两个端点上的函数值,即可得到结论.【解答】解:∵f(1)=﹣1<0.f(2)=1﹣=∴f(1)•f(2)<0.根据函数的实根存在定理得到函数的一个零点落在(1,2)上故选B.6.如图,在正方体ABCD﹣A1B1C1D1中,E为A1C1的中点(zhōnɡ diǎn),则异面直线CE 与BD所成的角为()A.30° B.45°C.60°D.90°【考点(kǎo diǎn)】异面直线及其所成的角;直线与平面(píngmiàn)垂直的判定.【分析(fēnxī)】连接(liánjiē)AC,BD,则AC⊥BD,证明AC⊥平面BDD1,可得AC⊥BD1,利用EF∥AC,即可得出结论.【解答】解:连接AC,底面是正方形,则AC⊥BD,几何体是正方体,可知∴BD⊥AA1,AC∩AA1=A,∴BD⊥平面CC1AA1,∵CE⊂平面CC1AA1,∴BD⊥CE,∴异面直线BD、CE所成角是90°.故选:D.7.今有一组数据(shùjù)如下:t 1.99 3.0 4.0 5.1 6.12v 1.5 4.04 7.5 12 18.01在以下(yǐxià)四个模拟函数中,最合适这组数据的函数是()A.v=log2t B.C.D.v=2t﹣2【考点(kǎo diǎn)】变量间的相关(xiāngguān)关系.【分析(fēnxī)】观察表中的数据发现随着t的增加,数据v的递增速度越来越快,可以从此变化趋势上选择恰当的函数关系.【解答】解:把t看作自变量,v看作其函数值,从表中数据的变化趋势看,函数递增的速度不断加快对照四个选项,A选项是对数型函数,其递增速度不断变慢B选项随着t的增大v变小,故不能选D选项以一个恒定的幅度变化,其图象是直线型的,符合本题的变化规律C选项是二次型,对比数据知,其最接近实验数据的变化趋势故应选(yīnɡ xuǎn)C.8.已知lga+lgb=0(a>0,b>0且a≠1,b≠1),则函数(hánshù)f(x)=a x与函数(hánshù)g(x)=﹣log b x的图象(tú xiànɡ)可能是()A.B.C.D.【考点(kǎo diǎn)】对数函数的图象与性质;指数函数的图象与性质.【分析】由lga+lgb=0(a>0,b>0且a≠1,b≠1),得ab=1,从而得到g(x)=log a x,与f(x)=a x互为反函数,从而得到答案.【解答】解:∵lga+lgb=0(a>0,b>0且a≠1,b≠1),∴ab=1,∴b=,∴g(x)=﹣log b x的=﹣=log a x,函数f(x)=a x与函数g(x)=﹣log b x互为反函数,∴二者的图象关于直线y=x对称,故选B.9.点P(2,﹣1)为圆(x﹣1)2+y2=25的弦AB的中点(zhōnɡ diǎn),则直线AB的方程为()A.x+y﹣1=0 B.2x+y﹣3=0 C.x﹣y﹣3=0 D.2x﹣y﹣5=0【考点(kǎo diǎn)】直线与圆相交(xiāngjiāo)的性质.【分析(fēnxī)】由垂径定理,得AB中点与圆心C的连线与AB互相(hù xiāng)垂直,由此算出AB的斜率k=1,结合直线方程的点斜式列式,即可得到直线AB的方程.【解答】解:∵AB是圆(x﹣1)2+y2=25的弦,圆心为C(1,0)∴设AB的中点是P(2,﹣1)满足AB⊥CP因此,PQ的斜率k===1可得直线PQ的方程是y+1=x﹣2,化简得x﹣y﹣3=0故选:C10.把正方形ABCD沿对角线AC折起,当以A、B、C、D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为()A.90° B.60°C.45°D.30°【考点】空间中直线与平面之间的位置关系.【分析(fēnxī)】欲使得(shǐ de)三棱锥体积最大,因为三棱锥底面积一定,只须三棱锥的高最大即可,即当平面BAC⊥平面DAC时,三棱锥体积最大,计算(jì suàn)可得答案.【解答(jiědá)】解:如图,当平面(píngmiàn)BAC⊥平面DAC时,三棱锥体积最大取AC的中点E,则BE⊥平面DAC,故直线BD和平面ABC所成的角为∠DBEcos∠DBE=,∴∠DBE=45°.故选C.二、填空题(本大题共5小题,每小题5分,共25分)11.幂函数的图象经过点(4,2),那么的值是.【考点】幂函数的概念、解析式、定义域、值域.【分析】先设出幂函数解析式来,再通过经过点(4,2),解得参数,从而求得其解析式,再代入求值.【解答】解:设幂函数为:y=xα∵幂函数的图象(tú xiànɡ)经过点(4,2),∴2=4α∴α=∴∴=故答案(dáàn)为:12.经过(jīngguò)(3,4),且与圆x2+y2=25相切的直线(zhíxiàn)的方程为3x+4y﹣25=0.【考点(kǎo diǎn)】直线与圆的位置关系.【分析】由点在圆上,设过该点与圆相切的直线方程的斜率为k,利用点到直线的距离公式,由直线与圆相切时,圆心到直线的距离等于圆的半径列出关于k的方程,求出方程的解得到k的值,由k的值写出切线方程即可.【解答】解:因为点(3,4)在圆x2+y2=25上,设切线方程的斜率为k,则切线方程为y﹣4=k(x﹣3),即kx﹣y﹣3k+4=0,则圆心(0,0)到切线的距离为d==5,解得k=﹣,则切线方程为﹣x﹣y++4=0,即3x+4y﹣25=0.故答案为:3x+4y﹣25=0.13.某几何体的三视图如图,其中(qízhōng)正视图与侧视图上半部分为半圆,则该几何体的表面积为7π.【考点(kǎo diǎn)】由三视图求面积(miàn jī)、体积.【分析(fēnxī)】由三视图知几何体上部是半球,下部是圆柱(yuánzhù),且圆柱的底面圆的直径为2,圆柱的高为2,半球的半径为1,把数据代入面积公式计算可得答案.【解答】解:由三视图知几何体上部是半球,下部是圆柱,且圆柱的底面圆的直径为2,圆柱的高为2;半球的半径为1,∴几何体的表面积S=π×12+2π×1×2+2π×12=π+4π+2π=7π.故答案是7π.14.若奇函数y=f(x)的定义域为[﹣4,4],其部分图象如图所示,则不等式f(x)ln(2x﹣1)<0的解集是(1,2).【考点(kǎo diǎn)】其他不等式的解法;奇偶(qíǒu)函数图象的对称性.【分析(fēnxī)】结合图象利用奇函数的图象关于(guānyú)原点对称可得f(x)>0的解集、f(x)<0的解集,再求出ln(2x﹣1)>0的解集以及(yǐjí) ln(2x﹣1)<0的解集,不等式即或,由此求得原不等式的解集.【解答】解:由图象并利用奇函数的图象关于原点对称的性质可得,f(x)>0的解集为(﹣2,0)∪(2,4),f(x)<0的解集为(﹣4,﹣2)∪(0,2).由于不等式ln(2x﹣1)>0的解集为(1,+∞),不等式ln(2x﹣1)<0的解集为(0,1).由f(x)ln(2x﹣1)<0可得或.解得 x∈∅,或 1<x<2,故不等式f(x)ln(2x﹣1)<0的解集是(1,2),故答案为(1,2).15.已知直线a、b、c以及平面α、β,给出下列命题:①若a∥α且b∥α,则a∥b;②若α∥β,c⊥α,则c⊥β;③若a⊥b,a⊥α,则b∥α;④若α⊥β,a∥α,则a⊥β⑤若a⊥c,b⊥c,则a∥b或a、b异面或a、b相交(xiāngjiāo)其中正确(zhèngquè)命题的序号是②⑤(把所有(suǒyǒu)正确命题的序号都填上).【考点(kǎo diǎn)】命题的真假判断与应用;空间中直线(zhíxiàn)与直线之间的位置关系;空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】根据线面平行的几何特征及线线位置关系的定义,可判断①,根据一条直线垂直于两个平行平面中的一个,也垂直于另一个,可判断②;根据a⊥b,a⊥α时,可能b⊂α,可判断③;根据面面垂直及线面平行的几何特征及线面垂直的判定方法,可判断④;根据线线垂直的几何特征,及空间中直线与直线位置关系的定义,可判断⑤.【解答】解:若a∥α且b∥α,则a与b可能平行,可能相交,也可能异面,故①错误;若α∥β,c⊥α,因为一条直线垂直于两个平行平面中的一个,也垂直于另一个,则c⊥β,故②正确;若a⊥b,a⊥α,则b∥α或b⊂α,故③错误;若α⊥β,a∥α,则a与β可能平行,可能相交(包括垂直),也可能线在面内,故④错误;若a⊥c,b⊥c,则a∥b或a、b异面或a、b相交(xiāngjiāo),故⑤正确;故答案(dáàn)为:②⑤三、解答(jiědá)题(本大题共6小题,总分75分,请把解答写在指定方框内,否则不记分)16.分别求满足(mǎnzú)下列条件的直线方程.(Ⅰ)过点(0,1),且平行(píngxíng)于l1:4x+2y﹣1=0的直线;(Ⅱ)与l2:x+y+1=0垂直,且过点P(﹣1,0)的直线.【考点】直线的一般式方程与直线的垂直关系;直线的一般式方程与直线的平行关系.【分析】(Ⅰ)根据直线的平行关系代入点斜式方程即可;(Ⅱ)根据直线的垂直关系设出直线方程,求出即可.【解答】解:(Ⅰ)所求直线行于l1,∴所求直线的斜率为﹣2,又过点为(0,﹣1),∴由点斜式可得直线方程为y+1=﹣2(x﹣0),即2x+y+1=0;(Ⅱ)所求直线直线与l2垂直,可设直线方程为x﹣y+m=0,过点P(﹣1,0),则m=1,故所求直线方程为x﹣y+1=0.17.已知:函数(hánshù)f(x)=+lg(3x﹣9)的定义域为A,集合(jíhé)B={x|x﹣a <0,a∈R}.(1)求:集合(jíhé)A;(2)求:A∩B.【考点(kǎo diǎn)】交集及其运算(yùn suàn);函数的定义域及其求法.【分析】(1)根据负数没有算术平方根,对数函数性质求出f(x)定义域A即可;(2)表示出B中不等式的解集确定出B,根据a的范围分类讨论求出A∩B即可.【解答】解:(1)由题意得:,即,解得:2<x≤4,则A=(2,4];(2)由B中不等式解得:x<a,a∈R,即B=(﹣∞,a),①当a≤2时,A∩B=∅;②当2<a≤4时,A∩B=(2,a);③当a>4时,A∩B=(2,4].18.某校办工厂生产学生(xué sheng)校服的固定成本为20000元,每生产一件需要增加投入100元,已知总收益R(x)满足函数R(x)=,其中x是校服(xiào fú)的月产量,问:(1)将利润表示(biǎoshì)为关于月产量x的函数f(x);(2)当月产量(chǎnliàng)为何值时,工厂所获利润最大?最大利润为多少元?(总收益=总成本+利润(lìrùn)).【考点】函数模型的选择与应用.【分析】(1)由题意,由总收益=总成本+利润可知,分0≤x≤400及x>400求利润,利用分段函数表示;(2)在0≤x≤400及x>400分别求函数的最大值或取值范围,从而确定函数的最大值.从而得到最大利润.【解答】解:(1)由题意,当0≤x≤400时,f(x)=400x﹣0.5x2﹣20000﹣100x=300x﹣0.5x2﹣20000;当x>400时,f(x)=80000﹣100x﹣20000=60000﹣100x;故f(x)=;(2)当0≤x≤400时,f(x)=300x﹣0.5x2﹣20000;当x==300时,f(x)max=25000;当x>400时,f(x)=60000﹣100x<60000﹣40000=20000;故当月产量为300件时,工厂(gōngchǎng)所获利润最大,最大利润为25000元.19.长方体ABCD﹣A1B1C1D1中,,AB=BC=2,O是底面对角线的交点(jiāodiǎn).(Ⅰ)求证(qiúzhèng):B1D1∥平面(píngmiàn)BC1D;(Ⅱ)求证(qiúzhèng):A1O⊥平面BC1D;(Ⅲ)求三棱锥A1﹣DBC1的体积.【考点】直线与平面平行的判定;棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【分析】(Ⅰ)直接根据B1D1∥BD,以及B1D1在平面BC1D外,即可得到结论;(Ⅱ)先根据(gēnjù)条件得到BD⊥平面(píngmiàn)ACC1A1⇒A1O⊥BD;再通过求先线段(xiànduàn)的长度推出A1O⊥OC1,即可证明(zhèngmíng)A1O⊥平面(píngmiàn)BC1D;(Ⅲ)结合上面的结论,直接代入体积计算公式即可.【解答】解:(Ⅰ)证明:依题意:B1D1∥BD,且B1D1在平面BC1D外.∴B1D1∥平面BC1D(Ⅱ)证明:连接OC1∵BD⊥AC,AA1⊥BD∴BD⊥平面ACC1A1又∵O在AC上,∴A1O在平面ACC1A1上∴A1O⊥BD∵AB=BC=2∴∴∴Rt△AA1O中,同理:OC1=2∵△A1OC1中,A1O2+OC12=A1C12∴A1O⊥OC1∴A1O⊥平面BC1D(Ⅲ)解:∵A1O⊥平面BC1D∴所求体积(tǐjī)=20.已知圆C1的方程(fāngchéng)为x2+y2﹣4x+2my+2m2﹣2m+1=0.(1)求当圆的面积(miàn jī)最大时圆C1的标准(biāozhǔn)方程;(2)求(1)中求得的圆C1关于(guānyú)直线l:x﹣y+1=0对称的圆C2的方程.【考点】直线与圆的位置关系;圆的标准方程.【分析】(1)根据圆的面积最大时半径最大,写出圆C1半径r的解析式,求出半径最大值以及对应的圆C1的方程,再化为标准方程;(2)求出圆C1的圆心坐标关于直线l的对称点,即可写出对称圆圆C2的方程.【解答】解:(1)圆C1的面积最大,即圆的半径最大,则圆C1的半径为,即,因此当m=1时圆C1的半径最大,最大值为2,…此时圆C1的方程为x2+y2﹣4x+2y+1=0,化为标准(biāozhǔn)方程是(x﹣2)2+(y+1)2=4;…(2)由(1)知圆C1的圆心坐标(zuòbiāo)是(2,﹣1),半径为2,设圆C2的圆心(yuánxīn)为(a,b),则C1C2的中点(zhōnɡ diǎn)坐标为,直线(zhíxiàn)C1C2的斜率为,…..由题意,直线l垂直平分线段C1C2,∴,解得;…所以,所求圆C2的方程为(x+2)2+(y﹣3)2=4.…21.已知函数f(x)满足f(log a x)=(x﹣x﹣1),其中a>0,a≠1,(1)讨论f(x)的奇偶性和单调性;(2)对于函数f(x),当x∈(﹣1,1)时,f(1﹣m)+f(﹣2m)<0,求实数m取值的集合;(3)是否存在实数a,使得当x∈(﹣∞,2)时f(x)的值恒为负数?,若存在,求a的取值范围,若不存在,说明理由.【考点】函数奇偶性的判断;函数单调性的判断与证明;函数恒成立问题.【分析】(1)利用换元法,求出函数的解析式,再讨论f(x)的奇偶性和单调性;(2)由f(x)是R上的奇函数,增函数,f(1﹣m)+f(﹣2m)<0有﹣1<1﹣m<2m<1,即可求实数(shìshù)m取值的集合;(3)由x<2,得f(x)<f(2),要使f(x)的值恒为负数(fùshù),则f(2)≤0,求出a的范围(fànwéi),可得结论.【解答(jiědá)】解:(1)令log a x=t,则x=a t,∴f(t)=(a t﹣a﹣t),∴f(x)=(a x﹣a﹣x),…因为(yīn wèi)f(﹣x)=(a﹣x﹣a x)=﹣f(x),所以f(x)是R上的奇函数;…当a>1时,>0,a x是增函数,﹣a﹣x是增函数所以f(x)是R上的增函数;当0<a<1时,<0,a x是减函数,﹣a﹣x是减函数,所以f(x)是R上的增函数;综上所述,a>0,a≠1,f(x)是R上的增函数…(2)由f(x)是R上的奇函数,增函数,f(1﹣m)+f(﹣2m)<0有﹣1<1﹣m<2m<1,解得<m<…(3)因为f(x)是R上的增函数,由x<2,得f(x)<f(2),要使f(x)的值恒为负数(fùshù),则f(2)≤0,即f(2)=(a2﹣a﹣2)≤0解得 a<0,与a>0,a≠1矛盾(máodùn),所以满足条件的实数(shìshù)a不存在.…内容总结(1)(Ⅱ)先根据条件得到BD⊥平面ACC1A1⇒A1O⊥BD。
2020-2021学年南京金陵中学高一上数学10月第一次考试卷+答案(解析版)
注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共 3 页,包含单项选择题(第 1 题~第 8 题)、多项选择题(第 9 题~第 11 题) 填空题(第 12 题~第 16 题)、解答题(第 17 题~第 22 题)四部分。
本试卷满分 150分,考试时间为 120 分钟。
考试结束后,请将答题卡上交。
2. 考生在作答时必须使用 0.5 毫米的黑色墨水签字笔写在答题卡上的指定位置,在其它位置作答一律无效。
2020 级高一年级第一学期阶段性测试数学命题人 高一数学备课组一、选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集 U ={0,1,2,3,4},M ={0,1,2},N ={2,3},则(∁U M )∩N 等于( ▲ ).A .{2,3,4}B .{3}C .{2}D .{0,1,2,3,4}答案 B2.设 P (x ,y ),则“x =2 且 y =-1”是“点 P 在一次函数 y =-x +1 的图象上”的( ▲ ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A3.设 a >b ,c >d ,则下列不等式中一定成立的是( ▲ ). A .a -c >b -d B .ac >bd C .a +c >b +dD .a +d >b +c答案C4.已知集合 A = x -40,x ∈Z },B ={m ,2,8},若 A ∪B =B ,则 m =( ▲ ). x -1 A .1B .2C .3D .5答案 C5.若不等式 x 2+ax +4<0 的解集为空集,则 a 的取值范围是( ▲ ) A .[-4,4]B .(-4,4)C .(-∞,-4]∪[4,+∞)D .(-∞,-4)∪(4,+∞)答案 A6.已知 x >2,则函数 y = 4+4x 的最小值是( ▲ ).x -2A .6B .8C .12D .16答案 D{x |<[ , 7.设全集U =R ,M ={x |x <-2 或x >2},N ={x |1≤x ≤3}.如图所示,则阴影部分所表示的集合为( ▲ ).A .{x |-2≤x <1}B .{x |-2≤x ≤3}C .{x |x ≤2 或 x >3}D .{x |-2≤x ≤2}答案 A8. 定义一个集合 A 的所有子集组成的集合叫做集合 A 的幂集,记为 P (A ),用 n (A )表示有限集 A 的元素个数,给出下列命题:①对于任意集合 A ,都有 A ⊆P (A );②存在集合 A ,使得 n [P (A )]=3;③若 A ∩B = ∅,则 P (A )∩P (B )=∅;④若 A ⊆B ,则 P (A )⊆P (B );⑤若 n (A )-n (B )=1,则 n [P (A )]=2×n [P (B )].其中正确的命题个数为( ▲ ). A .5 B .4 C .3 D .2答案 D二、选择题:本题共 3 小题,每小题 5 分,共 15 分.在每小题给出的四个选项中,有多项符合题目要求.全 部选对得 5 分,有选错的得 0 分,部分选对的得 3 分.9. 下列命题中是真命题的是( ▲ ).A .∀x ∈R ,2x 2-3x +4>0B .∀x ∈{1,-1,0},2x +1>0C .∃x ∈N ,使 x ≤xD .∃x ∈N *,使 x 为 29 的约数答案 ACD10. 已知 p :x 2+x -6=0;q :ax +1=0.若 p 是 q 的必要不充分条件,则实数 a 的值可以是( ▲ ).A .-2B 1C 1D 1答案 BC.-2.3 .-311. 已知函数 y =x 2+ax +b (a >0)有且只有一个零点,则( ▲ ).A .a 2-b 2≤4B. a 2 1 4+b ≥C. 若不等式 x 2+ax -b <0 的解集为(x 1,x 2),则 x 1x 2>0D. 若不等式 x 2+ax +b <c 的解集为(x 1,x 2),且|x 1-x 2|=4,则 c =4答案 ABD三、填空题:本题共 5 小题,每小题 5 分,共 25 分.12.集合 A ={x |x 2-8x +15=0},B ={x|x 2-ax +b =0},若 A ∪B ={2,3,5},A ∩B ={3},则 ab = ▲.答案30.13.若关于 x 的不等式 ax +b >0 的解集为(1,+∞),则 a 11 的最小值为 ▲ .答案 3 14x -m +1 -b +1 1.若不等式 <0 成立的一个充分不必要条件是 <x < ,则实数 m 的取值范围是 ▲ .x -2m3 2 答案: 1 44 3⎧a 2=ma -1,15. 若存在两个互不相等的实数 a ,b ,使得⎨ 2 成立,则实数 m 的取值范围是 ▲.⎩b =mb -1.答案:(-∞,-2)∪(2,+∞).16. 已知正实数 x ,y 满足 5x 2+4xy -y 2=1,则 12x 2+8xy -y 2 的最小值为 ▲.答案 73].2 1 2 1 2 1 1 2 2 <2四、解答题:本题共 6 小题,共 70 分. 17.(本小题 10 分)44 1(1) 计算+ 0.062 5+⎛ ⎫-2;(2)解不等式 6-2x ≤x 2-3x <18.⎝25⎭ 25 27 1625 1 4 15 3 1 5 解 (1)原式=( )2-( )3+( )4+⎛ ⎫-2=- + +=4 .................................................... 4 分 4 8 10000 ⎝25⎭2 2 2 2⎧⎪6-2x ≤x 2-3x , (2) 原不等式等价于⎨ ⎪⎩x 2-3x <18, ⎧⎪x ≤-2或x ≥3,⎧⎪x 2-x -6≥0,即⎨ ⎪⎩x 2-3x -18<0, ⎧⎪(x -3)(x +2)≥0,因式分解,得⎨⎪⎩(x -6)(x +3)<0, 所以⎨ ⎪⎩-3<x <6,…………………………8 分所以-3<x ≤-2 或 3≤x <6.所以原不等式的解集为{x |-3<x ≤-2 或 3≤x <6}. ................... 10 分 评分说明:两个不等式如果只解对一个得两分18.(本小题 10 分)若 x 1 和 x 2 分别是函数 y =2x 2+4x -3 的两个零点.(1)求|x 1-x 2|的值;(2)求 x 3+x 3的值.12解:由题知 x 1,x 2 即为方程 2x 2+4x -3=0 的两根x 1+x 2=-2,x 1x 2=-3. ................................................ 2 分(1)|x 1-x 2|= (x 1+x 2)2-4x 1x 2 = 10. ..................................... 5 分(2)x 3+x 3=(x +x )(x 2-x x +x 2) ................................................................................ 7 分=(x 1+x 2)[(x 1+x 2)2-3x 1x 2]=-17. .................................. 10 分评分说明:如果学生直接求出 x 1、x 2,再代入求值,按相应小问给分. 19.(本小题 12 分)设集合 A ={x |-1≤x ≤2},非.空.集合 B ={x |2m <x <1}. (1) 若“x ∈A ”是“x ∈B ”成立的必要条件,求实数 m 的取值范围; (2) 若 B ∩(∁R A )的元素中只有两个整数,求实数 m 的取值范围.解 (1)∵B ≠∅∴2m <1,解得 m 1………………………………………2 分若“x ∈A ”是“x ∈B ”成立的必要条件,则 B ⊆A , .......................... 4 分∵A ={x |-1≤x ≤2},∴2m ≥-1 1 m 1 ,解得-2≤ <2,⎡ 1 1⎫综上所述,实数 m 的取值范围是⎣-2,2⎭. ............................. 6 分 (2)∵A ={x |-1≤x ≤2},∴∁R A ={x |x <-1 或 x >2}, ........................................ 8 分 B ={x |2m <x <1},若(∁R A )∩B 中只有两个整数,则必为-2,-3,所以-4≤2m <-3, ............................................. 10 分得-2≤m 3<-2;⎡-23⎫ 综上,实数 m 的取值范围是⎣ ,-2⎭. ............................ 12 分2 2 2 2 20.(本小题 12 分)精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对某乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品x +3销售量 w 万件(生产量与销售量相等)与推广促销费 x 万元之间的函数关系为 w = 2 (其中推广促销费不能超过 5 万元).已知加工此农产品还要投入成本 3⎛w +3⎫万元(不包括推广促销费用),若加工后的每件成品⎛4 30⎫⎝ w ⎭ 的销售价格定为⎝ + w ⎭元/件.(1) 试将该批产品的利润 y 万元表示为推广促销费 x 万元的函数;(利润=销售额-成本-推广促销费)(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?⎛4 30⎫⎛ 3⎫ 解 (1)由题意知 y =⎝ + w ⎭w -3⎝w +w ⎭-x=w +30 9x-w -63 x 18 = 2 -2- ,........................................... 4 分 x +3∴y 63 x 18 = - - x +3 (0≤x ≤5)......................................... 6 分 (2)∵y 63 x18 ,= - - x +3 ∴y 63 1⎛x36 ⎫ = 2 -2⎝ x +3⎭=331⎡(x +3) 36 ⎤ 8 分 -2⎣ x +3⎦……………………………………… ≤33 1 -2=27.当且仅当 x =3 时,上式取“=”.∴当 x =3 时,y max =27. ............... 11 分 答:当推广促销费投入 3 万元时,此批产品的利润最大为 27 万元. ............ 12 分 评分说明:自变量的取值范围不写扣两分,若写成 0<x ≤5 不扣分;没有答扣 1 分.+ +⎨ ≥321.(本小题 12 分) 已知 y =-3x 2+a (6-a )x +12.(1) 若不等式 y >b 的解集为(0,3),求实数 a ,b 的值;(2) 若 a =3 时,对于任意的实数 x ,都有 y ≤3x +9m 2-6m ,求 m 的取值范围. 解 (1)∵y >b 的解集为(0,3),∴方程-3x 2+a (6-a )x +12-b =0 的两根为 0,3,⎧3=a (6-a ),⎪ 3∴ 12-b………………………………………2 分 ⎪⎩0=-3 ,⎧⎪a =3, 解得⎨⎪⎩b =12,………………………………………4 分∴经检验:a ,b 的值分别为 3,12 时不等式 y >b 的解集为(0,3). ......... 5 分(2) 法一:当 a =3 时,y =-3x 2+9x +12,由 y ≤3x +9m 2-6m 恒成立得 -3x 2+6x +12≤9m 2-6m即 x 2-2x -4+3m 2-2m ≥0 恒成立...................................... 7 分 又二次不等式对应的函数 y =x 2-2x -4+3m 2-2m 开口向上所以 △=4-4(-4+3m 2-2m )≤0 ...................................................................... 10 分 化简得:3m 2-2m -5≥0解得:m ≤-1 或 m 5≥3综上,m 的取值范围为(-∞,-1]∪ 5) .......................................................... 12 分 法二:[3,+∞ 当 a =3 时,y =-3x 2+9x +12,由 y ≤3x +9m 2-6m 恒成立得 9m 2-6m ≥-3x 2+6x +12即 3m 2-2m ≥-x 2+2x +4 恒成立 ......................................... 7 分 又-x 2+2x +4=-(x -1)2+5,即 3m 2-2m ≥5, ....................................................... 10 分 解得 m ≤-1 或 m 5综上,m 的取值范围为(-∞,-1]∪ 5) .......................................................... 12 分 [3,+∞2 22.(本小题 14 分)设函数 y =ax 2+x -b (a ∈R ,b ∈R ). (1) 若 b =a 5 {x |y =0}中有且只有一个元素,求实数 a 的取值集合;-4,且集合(2) 求不等式 y <(2a +2)x -b -2 的解集;(3) 当 a >0,b >1 时,记不等式 y >0 的解集为 P ,集合 Q ={x |-2-t <x <-2+t }.若对于任意正数 t ,P∩Q ≠∅ 1 1,求a -b 的最大值. 解 (1) 当 b =a 5 y =ax 2+x -a 5-4时, +4因为集合{x |y =0}中有且只有一个元素, ①当 a =0 时,x 5 0,得 x 5+4= =-4,此时满足题意;②当 a ≠0 时,令 y =0,得 ax 2+x -a 5 0,Δ=1+4a (a 5 =0,解得 a =1 1+4= -4) 或4综上:a 的取值集合为{0 11} .............................................................................. 3分,4,(2) 由 y <(2a +2)x -b -2 得 ax 2-(2a +1)x +2<0,即(ax -1)(x -2)<0. ⎛x 1⎫(Ⅰ)当 a >0 时,不等式可以化为⎝ -a ⎭(x -2)<0.1 1 ⎛2 1⎫①若 0<a <2,则a >2,此时不等式的解集为⎝ ,a ⎭;②若 a 1(x -2)2<0,不等式的解集为∅;=2,则不等式为 1 1 ⎛1 ⎫③若 a >2,则a <2,此时不等式的解集为⎝a ,2⎭. ........................... 6分(Ⅱ)当 a =0 时,不等式即-x +2<0,此时不等式的解集为(2,+∞). ......... 7分 ⎛x 1⎫ ⎛ 1⎫(Ⅲ)当 a <0 时,不等式可以化为⎝ -a ⎭(x -2)>0,解集为⎝-∞,a ⎭∪(2,+∞).8分 综上所述, ⎛ 1⎫当 a <0 时,不等式的解集为⎝-∞,a ⎭∪(2,+∞);当 a =0 时,不等式的解集为(2,+∞);1 ⎛2 1⎫当 0<a <2时,不等式的解集为⎝ ,a ⎭;当 a =1时,不等式的解集为∅;1 ⎛1 ⎫ 当 a >2时,不等式的解集为⎝a ,2⎭. ...................................... 9 分 (3) 集合 Q ={x |-2-t <x <-2+t },对于任意正数 t ,-2∈Q ,又 P ∩Q ≠∅,所以满足当 x =-2 时,函数 y ≥0,即 4a -2-b ≥0,所以 4a ≥b +2>3, ................................ 11 分 1 1 4 1 3b -2 t +2 a -b ≤ -b = ,记 t =3b -2>1,此时 b = 3 ,b +2 b (b +2) 1 1 4 1 3b -2 9t 9 1 则a -b ≤ -b = = = 16 ≤2,b +2 b (b +2) (t +2)(t +8)t + t +10⎧a =1, 1 1 1当且仅当 t =4,即⎨ 时,a -b 有最大值2. ....................... 14 分⎩b =2. 评分说明:第二小问综上不写扣 1 分.。
2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷及答案
2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分,请把答案直接填写在答题卡相应位置上.1.(5分)已知集合A={1,2,3},B={x|x﹣2≥0,x∈R},则A∩B=()A.{3}B.{2,3}C.{2}D.{1,2,3} 2.(5分)命题“∃x0∈R,x02﹣1≥0”的否定是()A.∃x0∈R,x02﹣1<0B.∃x0∈R,x02﹣1≤0C.∀x∈R,x2﹣1≤0D.∀x∈R,x2﹣1<03.(5分)函数y=+的定义域为()A.[﹣1,]B.(﹣∞,]C.(﹣∞,﹣1]D.(﹣∞,﹣1]∪(﹣1,]4.(5分)函数f(x)=的最小值为()A.3B.2C.2D.15.(5分)函数y=的图象大致为()A.B.C.D.6.(5分)若函数f(x)=在R上是增函数,则实数a的取值范围是()A.[﹣4,﹣]B.[,4]C.[﹣3,4]D.[3,]7.(5分)若关于x的不等式ax2+2x+1<0有实数解,则a的取值范围是()A.(0,1]B.[0,1]C.(﹣∞,1]D.(﹣∞,1)8.(5分)若非空数集G满足“对于∀a,b∈G,都有a+b,a﹣b,ab∈G,且当b≠0时,∈G”,则称G是一个“理想数集”,给出下列四个命题:①0是任何“理想数集”的元素;②若“理想数集”M有非零元素,则N*⊆M③集合P={x|x=2k,k∈Z}是一个“理想数集”;④集合T={x|x=a+b,a,b∈Z}是“理想数集”.其中真命题的个数是()A.1B.2C.3D.4二、多项选择题:(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的得0分)9.(5分)以下说法中正确的有()A.“f(x)是定义在R上的偶函数”的含义是“存在x∈R,使得f(﹣x)=f(x)”B.“f(x)是定义在R上的增函数”的含义是“∀x1,x2∈R,当x1<x2时,有f(x1)<f (x2)”C.设M,P是两个非空集合,则M⊆P的含义是“对于∀x∈M,x∈P”D.设f(x)是定义在R上的函数,则“f(0)=0”是“f(x)是奇函数”的必要条件10.(5分)已知a,b,c,d∈R,则下列结论中正确的有()A.若ac2>bc2,则a>bB.若,则a>bC.若a>b>0,ac>bd>0,则c>dD.若,则a<b11.(5分)下列说法中不正确的有()A.设A,B是两个集合,若A∪B=A∩B,则A=BB.函数y=与y=为同一个函数C.函数y=+的最小值为2D.设y=f(x)是定义在R上的函数,则函数y=xf(|x|)是奇函数12.(5分)若函数f(x)同时满足:①对于定义域内的∀x,都有f(x)+f(﹣x)=0;②对于定义域内的∀x1,x2当x1≠x2时,都有<0则称函数f(x)为“颜值函数”.下列函数中,是“颜值函数”的有()A.f(x)=B.f(x)=x2C.f(x)=D.f(x)=﹣2x三、填空题:本大题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上.13.(5分)设x∈R,则“0<x<5”是“|x﹣1|<1”的条件(填“充分且不必要”“必要且不充分”“充要”“既不充分也不必要”).14.(5分)已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x2+x+2,则f(1)+g(1)=.15.(5分)在平面直角坐标系xOy中,若直线y=a与函数y=|x﹣a|+2﹣a的图象有且只有一个公共点,则实数a的值为.16.(5分)已知x>0,y>0,x+2y=2,则的最小值为.三、解答题:本大题共6小题,共70分,请把答案填写在答题卡相应位置上17.(10分)计算:(1)lg52+lg8+lg5•lg20+(lg2)2;(2)π0﹣(8)﹣2+×(4)﹣1.18.(12分)设全集U=R,已知集合A={x|x2﹣x﹣6≥0},B={x|<0},C={x|m﹣1≤x≤2m}.(1)求A∩B和(∁U A)∪B;(2)若B∩C=C,求实数m的取值范围.19.(12分)设函数f(x)=x2+bx+c(b,c∈R),已知f(x)<0的解集为区间(﹣1,3).(1)求b,c的值;(2)若函数g(x)=f(x)﹣ax在区间[0,2]上的最小值为﹣4,求实数a的值.20.(12分)根据试验检测,一辆P型运输汽车在高速公路上匀速行驶时,耗油率(L/h)近似与车速(km/h)的平方成正比,且当车速是100km/h时,耗油率为L/h.已知A,B两地间有一条长130km的高速公路,最低限速60km/h,最高限速120km/h.若某环保公司用一辆该型号运输车将垃圾从A地转运至B地,已知过路费为40元,支付给雇用司机的工资平均每小时80元.假设汽油的价格是8元/L,汽车匀速行驶(起步、必要的减速或提速等忽略不计),问:当行车速度为多少时,转运一次的总费用最低?最低为多少元?21.(12分)已知函数f(x)=为奇函数.(1)求实数a的值;(2)求证:f(x)在区间[2,+∞)上是增函数;(3)若对任意的x1,x2∈[2,4],都有f(x1)﹣f(x2)≤m2﹣2m﹣2,求实数m的取值范围.22.(12分)设f(x)是R上的减函数,且对任意实数x,y,都有f(x+y)=f(x)+f(y);函数g(x)=x2+ax+b(a,b∈R).(1)判断函数f(x)的奇偶性,并证明你的结论;(2)若a=﹣1,b=5,且______.(①存在t∈[﹣3,2];②对任意t∈[﹣3,2]),不等式f(g(t)﹣1)+f(3t+m)>0成立,求实数m的取值范围;请从以上两个条件中选择一个填在横线处,并完成求解.(3)当a>0时,若关于x的不等式g(x)≤0与g(g(x))≤3的解集相等且非空,求a的取值范围.2020-2021学年江苏省南京市金陵中学、一中高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分,请把答案直接填写在答题卡相应位置上.1.(5分)已知集合A={1,2,3},B={x|x﹣2≥0,x∈R},则A∩B=()A.{3}B.{2,3}C.{2}D.{1,2,3}【分析】可以求出集合B,然后进行交集的运算即可.【解答】解:∵A={1,2,3},B={x|x≥2},∴A∩B={2,3}.故选:B.【点评】本题考查了列举法、描述法的定义,交集的定义及运算,考查了计算能力,属于基础题.2.(5分)命题“∃x0∈R,x02﹣1≥0”的否定是()A.∃x0∈R,x02﹣1<0B.∃x0∈R,x02﹣1≤0C.∀x∈R,x2﹣1≤0D.∀x∈R,x2﹣1<0【分析】根据特称命题的否定形式进行判断【解答】解:命题“∃x0∈R,x02﹣1≥0”的否定是∀x∈R,x2﹣1<0,故选:D.【点评】本题考查了命题的否定,属于基础题.3.(5分)函数y=+的定义域为()A.[﹣1,]B.(﹣∞,]C.(﹣∞,﹣1]D.(﹣∞,﹣1]∪(﹣1,]【分析】可看出,要使得原函数有意义,需满足,然后解出x的范围即可.【解答】解:要使原函数有意义,则,解得且x≠﹣1,∴原函数的定义域为:.故选:D.【点评】本题考查了函数定义域的定义及求法,区间的定义,考查了计算能力,属于基础题.4.(5分)函数f(x)=的最小值为()A.3B.2C.2D.1【分析】先研究函数在每一段的单调性,分别求出它们的最值,然后求解函数的最值,就是大中取大,小中取小.【解答】解:对于函数函数f(x)=,当x≤1时,f(x)=x2﹣2x+3.在(﹣∞,1]上递减;所以此时y min=f(1)=2,当x>1时,f(x)=x+≥2=2,当且仅当x=,取等号,综上可知原函数的最小值为:2.故选:C.【点评】本题考查分段函数的性质,一般来讲分段函数的处理原则:分段函数,分段处理.如本题求最值,应先在每一段上求它们的最大(小)值,最后大中取大.小中取小.5.(5分)函数y=的图象大致为()A.B.C.D.【分析】根据函数的奇偶性和函数值的正负即可判断.【解答】解:函数y=的定义域为实数集R,关于原点对称,函数y=f(x)=,则f(﹣x)=﹣=﹣f(x),则函数y=f(x)为奇函数,故排除A,C,当x>0时,y=f(x)>0,故排除D,故选:B.【点评】本题考查了函数图象的识别,属于基础题.6.(5分)若函数f(x)=在R上是增函数,则实数a的取值范围是()A.[﹣4,﹣]B.[,4]C.[﹣3,4]D.[3,]【分析】根据分段函数的单调性的判断方法建立不等式组,即可求解.【解答】解:要满足已知题意,只需,解得,故选:B.【点评】本题考查了分段函数的单调性,考查了学生解不等式的能力,属于基础题.7.(5分)若关于x的不等式ax2+2x+1<0有实数解,则a的取值范围是()A.(0,1]B.[0,1]C.(﹣∞,1]D.(﹣∞,1)【分析】讨论a=0、a<0和a>0时,求出不等式有解时a的取值范围.【解答】解:a=0时,不等式为2x+1<0,有实数解,满足题意;a<0时,一元二次不等式为ax2+2x+1<0,不等式对应的二次函数开口向下,所以有实数解;a>0时,一元二次不等式为ax2+2x+1<0,应满足△=4﹣4a>0,解得a<1;综上知,a的取值范围是(﹣∞,1).故选:D.【点评】本题考查了不等式有解的应用问题,也考查了分类讨论思想,是基础题.8.(5分)若非空数集G满足“对于∀a,b∈G,都有a+b,a﹣b,ab∈G,且当b≠0时,∈G”,则称G是一个“理想数集”,给出下列四个命题:①0是任何“理想数集”的元素;②若“理想数集”M有非零元素,则N*⊆M③集合P={x|x=2k,k∈Z}是一个“理想数集”;④集合T={x|x=a+b,a,b∈Z}是“理想数集”.其中真命题的个数是()A.1B.2C.3D.4【分析】利用已知条件中理想数集的定义判断命题的真假,题目中给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证.【解答】解:对于①,设a=b∈G,显然有a﹣a∈G,即0∈G,故0是任何“理想数集”的元素,故①正确;对于②:当a=b时,显然有,则1+1,2+1,…,N+1∈M,所以N*∈M,故②正确;对于③:易知2∈P,而,故③错误;对于④:a,b∈Z,故1+2∈T,而,故④错误.故选:B.【点评】本题考查学生对于新定义题型的理解和把握能力,理解“理想数集”的定义是解决该题的关键,题目着重考察学生的构造性思维,属于难题.二、多项选择题:(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的得0分)9.(5分)以下说法中正确的有()A.“f(x)是定义在R上的偶函数”的含义是“存在x∈R,使得f(﹣x)=f(x)”B.“f(x)是定义在R上的增函数”的含义是“∀x1,x2∈R,当x1<x2时,有f(x1)<f (x2)”C.设M,P是两个非空集合,则M⊆P的含义是“对于∀x∈M,x∈P”D.设f(x)是定义在R上的函数,则“f(0)=0”是“f(x)是奇函数”的必要条件【分析】根据偶函数的定义即可判断A;由增函数的定义即可判断B;由子集的定义即可判断C;由充分必要条件的定义即可判断D.【解答】解:对于A,“f(x)是定义在R上的偶函数”的含义是“对任意的x∈R,都有f(﹣x)=f(x)”,故A错误;对于B,“f(x)是定义在R上的增函数”的含义是“∀x1,x2∈R,当x1<x2时,有f(x1)<f(x2)”,故B正确;对于C,由子集的定义可知C正确;对于D,若f(x)是定义在R上的奇函数,则f(0)=0,若f(x)是定义在R上的函数,且f(0)=0,不能得出f(x)为奇函数,例如f(x)=x2,故“f(0)=0”是“f(x)是奇函数”的必要条件,故D正确.故选:BCD.【点评】本题主要考查函数奇偶性单调性的定义,考查子集的定义,充要条件的定义,属于中档题.10.(5分)已知a,b,c,d∈R,则下列结论中正确的有()A.若ac2>bc2,则a>bB.若,则a>bC.若a>b>0,ac>bd>0,则c>dD.若,则a<b【分析】由不等式的基本性质逐一判断即可.【解答】解:对于A,若ac2>bc2,则a>b,故A正确;对于B,若<0<,则a<0<b,故B错误;对于C,取a=9,b=1,c=2,d=3,满足a>b>0,ac>bd>0,但c<d,故C错误;对于D,若,则﹣=>0,则b>a,故D正确.故选:AD.【点评】本题主要考查不等式的基本性质,属于基础题.11.(5分)下列说法中不正确的有()A.设A,B是两个集合,若A∪B=A∩B,则A=BB.函数y=与y=为同一个函数C.函数y=+的最小值为2D.设y=f(x)是定义在R上的函数,则函数y=xf(|x|)是奇函数【分析】由集合的基本运算即可判断A;判断定义域与解析式是否相同即可判断B;利用换元及对勾函数的性质即可判断选项C;由函数的奇偶性的定义即可判断D.【解答】解:对于A,设A,B是两个集合,若A∪B=A∩B,则A=B,故A正确;对于B,函数y==|x|,函数y==x,两函数定义域相同,解析式不同,故不是同一函数,故B错误;对于C,令t=≥,则y=+t在[,+∞)上单调递增,所以当t=时,取得最小值为,所以函数y=+的最小值为,故C错误;对于D,函数y=g(x)=xf(|x|),g(﹣x)=﹣xf(|﹣x|)=﹣xf(|x|)=﹣g(x),所以函数y=xf(|x|)是奇函数,故D正确.故选:BC.【点评】本题主要考查即可得基本运算,同一函数的判断,函数最值的求法,以及函数奇偶性的判断,属于中档题.12.(5分)若函数f(x)同时满足:①对于定义域内的∀x,都有f(x)+f(﹣x)=0;②对于定义域内的∀x1,x2当x1≠x2时,都有<0则称函数f(x)为“颜值函数”.下列函数中,是“颜值函数”的有()A.f(x)=B.f(x)=x2C.f(x)=D.f(x)=﹣2x【分析】先理解已知两条性质反映的函数性质,①f(x)为奇函数,②f(x)为定义域上的减函数,由此判断各选项是否同时具备两个性质即可.【解答】解:依题意,性质①反映函数f(x)为定义域上的奇函数,性质②反映函数f (x)为定义域上的减函数,对于A,f(x)=为定义域上的奇函数,但不是定义域上的减函数,其单调区间为(﹣∞,0),(0,+∞),故A不是“颜值函数”;对于B,f(x)=x2为定义域上的偶函数,故B不是“颜值函数”;对于C,函数f(x)=的图象如图所示,显然此函数为奇函数,且在定义域上为减函数,故C是“颜值函数”.对于D,f(x)=﹣2x为定义域上的奇函数,且是定义域上的减函数,故D是“颜值函数”.故选:CD.【点评】本题主要考查了抽象表达式反映的函数性质,对新定义函数的理解能力,奇函数的定义,函数单调性的定义,基本初等函数的单调性和奇偶性及其判断方法,复合函数及分段函数的单调性和奇偶性的判断方法,属于中档题.三、填空题:本大题共4小题,每小题5分,共20分,请把答案直接填写在答题卡相应位置上.13.(5分)设x∈R,则“0<x<5”是“|x﹣1|<1”的必要且不充分条件(填“充分且不必要”“必要且不充分”“充要”“既不充分也不必要”).【分析】解出关于x的不等式,结合充分必要条件的定义,从而求出答案.【解答】解:∵|x﹣1|<1,∴0<x<2,∵0<x<5推不出0<x<2,0<x<2⇒0<x<5,∴0<x<5是0<x<2的必要且不充分条件,即0<x<5是|x﹣1|<1的必要且不充分条件故答案为:必要且不充分.【点评】本题考查了充分必要条件,考查解不等式问题,是一道基础题.14.(5分)已知函数f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x2+x+2,则f(1)+g(1)=2.【分析】根据题意,由函数的解析式可得f(﹣1)﹣g(﹣1)=(﹣1)2﹣1+2=2,结合函数的奇偶性可得f(﹣1)﹣g(﹣1)=f(1)+g(1),即可得答案.【解答】解:根据题意,f(x)﹣g(x)=x2+x+2,则f(﹣1)﹣g(﹣1)=(﹣1)2﹣1+2=2,又由函数f(x),g(x)分别是定义在R上的偶函数和奇函数,则f(﹣1)﹣g(﹣1)=f(1)+g(1)=2.故答案为:2.【点评】本题考查函数的奇偶性的性质以及应用,关键是掌握函数奇偶性的定义,属于基础题.15.(5分)在平面直角坐标系xOy中,若直线y=a与函数y=|x﹣a|+2﹣a的图象有且只有一个公共点,则实数a的值为1.【分析】由已知可转化为函数y=2a﹣2与函数y=|x﹣a|的图象只有一个交点,利用函数的图象性质即可求解.【解答】解:由已知可令a=|x﹣a|+2﹣a,可得:2a﹣2=|x﹣a|,可看成函数y=2a﹣2与函数y=|x﹣a|图象只有一个公共点,而函数y=|x﹣a|是以x=a为对称轴,最小值为0的函数,所以要满足题意只需令2a﹣2=0,即a=1,故答案为:1【点评】本题考查了函数的零点与方程根的关系,属于基础题.16.(5分)已知x>0,y>0,x+2y=2,则的最小值为16.【分析】由=+++=++(+)(x+2y),利用基本不等式即可求得最小值.【解答】解:∵x>0,y>0,x+2y=2,∴=+++=++(+)(x+2y)=++4≥4+2=16,当且仅当=时,取得最小值16.故答案为:16.【点评】本题考查了利用基本不等式性质求最值问题,属于基础题.三、解答题:本大题共6小题,共70分,请把答案填写在答题卡相应位置上17.(10分)计算:(1)lg52+lg8+lg5•lg20+(lg2)2;(2)π0﹣(8)﹣2+×(4)﹣1.【分析】(1)利用对数的运算性质求解.(2)利用有理数指数幂的运算性质求解.【解答】解:(1)原式=2lg5+2lg2+lg5•lg20+(lg2)2=2+lg5•(2lg2+lg5)+(lg2)2=2+(lg5)2+2lg5•lg2+(lg2)2=2+(lg5+lg2)2=2+1=3.(2)原式=1﹣+×=1﹣16+2=﹣13.【点评】本题主要考查了对数的运算性质和有理数指数幂的运算性质,是基础题.18.(12分)设全集U=R,已知集合A={x|x2﹣x﹣6≥0},B={x|<0},C={x|m﹣1≤x≤2m}.(1)求A∩B和(∁U A)∪B;(2)若B∩C=C,求实数m的取值范围.【分析】(1)可以求出集合A={x|x≤﹣2或x≥3},B={x|1<x<5},然后进行交集、并集和补集的运算即可;(2)根据B∩C=C可得出C⊆B,然后讨论C是否为空集:C=∅时,m﹣1>2m;C≠∅时,,然后解出m的范围即可.【解答】解:(1)A={x|x≤﹣2或x≥3},B={x|1<x<5},U=R,∴A∩B={x|3≤x<5},∁U A={x|﹣2<x<3},(∁U A)∪B={x|﹣2<x<5};(2)∵B∩C=C,∴C⊆B,①C=∅时,m﹣1>2m,解得m<﹣1;②C≠∅时,,解得;综上得实数m的取值范围为.【点评】本题考查了描述法的定义,交集、并集和补集的定义及运算,全集的定义,子集的定义,考查了计算能力,属于基础题.19.(12分)设函数f(x)=x2+bx+c(b,c∈R),已知f(x)<0的解集为区间(﹣1,3).(1)求b,c的值;(2)若函数g(x)=f(x)﹣ax在区间[0,2]上的最小值为﹣4,求实数a的值.【分析】(1)由f(x)<0的解集为区间(﹣1,3)可知x=﹣1,x=3是x2+bx+c=0的解,然后结合方程的根与系数关系可求;(2)g(x)=f(x)﹣ax=x2﹣(a+2)x﹣3开口向上,对称轴x=,然后结合对称轴与已知区间的位置关系进行分类讨论可求.【解答】解:(1)由f(x)<0的解集为区间(﹣1,3)可知x=﹣1,x=3是x2+bx+c =0的解,故,解得,b=﹣2,c=﹣3,(2)g(x)=f(x)﹣ax=x2﹣(a+2)x﹣3开口向上,对称轴x=,(i)即a≥2时,函数g(x)在[0,2]上单调递减,g(x)min=g(2)=﹣2a ﹣3=﹣4,解得,a=(舍),(ii)即a≤﹣2时,函数g(x)在[0,2]上单调递增,g(x)min=g(0)=﹣3≠﹣4,(舍),(iii)当0即﹣2<a<2时,函数g(x)在[0,2]上先减后增,g(x)min=g ()=﹣3﹣=﹣4,解得,a=4(舍)或a=0,综上,a=0.【点评】本题主要考查了二次函数与二次不等式的相互转化关系的应用及二次函数闭区间上最值的求解,体现了转化思想及分类讨论思想的应用.20.(12分)根据试验检测,一辆P型运输汽车在高速公路上匀速行驶时,耗油率(L/h)近似与车速(km/h)的平方成正比,且当车速是100km/h时,耗油率为L/h.已知A,B两地间有一条长130km的高速公路,最低限速60km/h,最高限速120km/h.若某环保公司用一辆该型号运输车将垃圾从A地转运至B地,已知过路费为40元,支付给雇用司机的工资平均每小时80元.假设汽油的价格是8元/L,汽车匀速行驶(起步、必要的减速或提速等忽略不计),问:当行车速度为多少时,转运一次的总费用最低?最低为多少元?【分析】设车速为xkm/h,用x表示出油耗和行车时间,得出总费用关于x的函数,根据基本不等式求出费用最小值.【解答】解:设车速为xkm/h,耗油率m(x)=kx2,则由题意可得m(100)=10000k =,∴k==.∴从A地到B地消耗汽油的价钱为,司机的工资为=,故从A地到B地的总费用f(x)=≥2=300元.当且仅当,即x=80∈[60,120]时取等号.∴从A地到B地的车速是80km/h时,转运一次的总费用最低为300元.【点评】本题考查函数模型的选择及应用,考查函数解析式求解,函数最值的计算,属于中档题.21.(12分)已知函数f(x)=为奇函数.(1)求实数a的值;(2)求证:f(x)在区间[2,+∞)上是增函数;(3)若对任意的x1,x2∈[2,4],都有f(x1)﹣f(x2)≤m2﹣2m﹣2,求实数m的取值范围.【分析】(1)由f(x)为奇函数,结合奇函数的定义代入可求;(2)结合单调性定义,设2≤x1<x2,然后利用作差法比较f(x1)与f(x2)的大小即可判断;(3)结合(2)中单调性即可求解函数最值.【解答】解:(1)因为f(x)=为奇函数,x≠0,所以f(﹣x)=﹣f(x),所以,整理可得,ax=0,所以a=0,(2)证明:由(1)可得f(x)==x+,设2≤x1<x2,则f(x1)﹣f(x2)=x1﹣x2+,=x1﹣x2+=(x1﹣x2)(1﹣)<0,所以f(x1)<f(x2),所以f(x)在区间[2,+∞)上是增函数;(3)由(2)可得f(x)=x在[2,4]上单调递增,故f(x)max=f(4)=5,f(x)min=f(2)=4,若对任意的x1,x2∈[2,4],都有f(x1)﹣f(x2)≤m2﹣2m﹣2,所以1≤m2﹣2m﹣2,解得m≥3或m≤﹣1.【点评】本题主要考查了函数奇偶性及单调性的应用及判断,还考查了函数单调性在求解最值中的应用.22.(12分)设f(x)是R上的减函数,且对任意实数x,y,都有f(x+y)=f(x)+f(y);函数g(x)=x2+ax+b(a,b∈R).(1)判断函数f(x)的奇偶性,并证明你的结论;(2)若a=﹣1,b=5,且______.(①存在t∈[﹣3,2];②对任意t∈[﹣3,2]),不等式f(g(t)﹣1)+f(3t+m)>0成立,求实数m的取值范围;请从以上两个条件中选择一个填在横线处,并完成求解.(3)当a>0时,若关于x的不等式g(x)≤0与g(g(x))≤3的解集相等且非空,求a的取值范围.【分析】(1)令x=y=0,可得f(0),再令y=﹣x,结合奇偶性的定义,即可得到结论;(2)分别选①②,将原不等式转化为﹣m>t2+2t+4对t∈[﹣3,2]成立或恒成立,结合参数分离和二次函数的最值求法,可得所求范围;(3)考虑g(x)=0与g(g(x))=3的解集相等,求得b=3,再由g(x)≤0的解集,结合判别式的符号和因式分解,可得所求范围.【解答】解:(1)令x=y=0,则f(0)=f(0)+f(0),即f(0)=0,再令y=﹣x,则f(0)=f(x)+f(﹣x),即f(﹣x)=﹣f(x),所以f(x)为R上的奇函数;(2)①存在t∈[﹣3,2].f(g(t)﹣1)+f(3t+m)=f[(g(t)﹣1)+(3t+m)]>0=f(0),由f(x)是R上的减函数可得g(t)﹣1+(3t+m)<0,即t2﹣t+4+3t+m<0,也即t2+2t+4+m<0,可得﹣m>t2+2t+4对t∈[﹣3,2]成立,y=t2+2t+4=(t+1)2+3在t=﹣1时取得最小值4,则﹣m>3,即m<﹣3;选②任意t∈[﹣3,2],f(g(t)﹣1)+f(3t+m)=f[(g(t)﹣1)+(3t+m)]>0=f(0),由f(x)是R上的减函数可得g(t)﹣1+(3t+m)<0,即t2﹣t+4+3t+m<0,也即t2+2t+4+m<0,可得﹣m>t2+2t+4在任意t∈[﹣3,2]恒成立,y=t2+2t+4=(t+1)2+3在t=2时取得最大值12,则﹣m>12,即m<﹣12;(3)当a>0时,若关于x的不等式g(x)≤0与g(g(x))≤3的解集相等且非空,可得g(x)=0与g(g(x))=3的解集相等,可得g(0)=3,即b=3,g(x)=x2+ax+3≤0,可得△=a2﹣12≥0,即a≥2(a≤﹣2舍去),又g(g(x)﹣3=(x2+ax+3)2+a(x2+ax+3)+3﹣3=(x2+ax+3)(x2+ax+3+a),由题意可得x2+ax+3+a≥0恒成立,可得△=a2﹣4(a+3)≤0,解得﹣2≤a≤6,又a>0,可得0<a≤6,综上可得2≤a≤6.【点评】本题考查抽象函数的奇偶性和单调性的判断和运用,以及不等式恒成立和成立问题解法,考查转化思想和运算能力、推理能力,属于中档题.。
江苏省南京市第一中学2021-2022学年高一上学期期末数学模块检测卷(二)
2021-2022学年度第一学期高一期末模拟检测卷(二)数 学(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项符合题目要求)1.已知集合A ={x |1<x <4},B ={x |x ≤2},则A ∩B 等于( ) A.(0,1) B.(0,2] C. (1,2] D. (1,2)2.“k <4”是“0<k <4”的( ) A.充分不必要条件 B. 既不充分又不必要条件 C.充要条件D. 必要不充分条件3.函数f (x )=x +3+1x +1的定义域为( )A.{x |x ≥-3且x ≠-1}B.{x |x >-3且x ≠-1}C.{x |x ≥-1}D.{x |x ≥-3}4.把函数y =sin ⎝ ⎛⎭⎪⎫5x -π2的图象向右平移π4个单位,再把所得函数图象上各点的横坐标缩短为原来的12,所得的函数解析式为( )A.y =sin ⎝ ⎛⎭⎪⎫10x -3π4B.y =sin ⎝ ⎛⎭⎪⎫10x -7π2C.y =sin ⎝ ⎛⎭⎪⎫10x -3π2D.y =sin ⎝ ⎛⎭⎪⎫10x -7π45.已知奇函数y =f (x )在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为1,则f (-3)+2f (6)的值为( ) A.10 B. 20 C. 15 D.146.若实数a ,b ,c 是图象连续不断的函数y =f (x )定义域中的三个数,且满足a <b <c ,f (a )·f (b )<0,f (c )·f (b )<0,则函数y =f (x )在区间(a ,c )上的零点个数为( )A.2B.奇数C.偶数D.至少2个7.定义在R 上的奇函数f (x ),满足f ⎝ ⎛⎭⎪⎫12=0,且在(0,+∞)上单调递减,则xf (x )>0的解集为( )A.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞B.⎝ ⎛⎭⎪⎫-12,0∪⎝ ⎛⎭⎪⎫0,12 C.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫0,12 D.⎝ ⎛⎭⎪⎫-12,0∪⎝ ⎛⎭⎪⎫12,+∞ 8.函数y =A sin(ωx +φ)在一个周期内的图象如图,则此函数的解析式为( )A.y =2sin ⎝ ⎛⎭⎪⎫2x +2π3B.y =2sin ⎝ ⎛⎭⎪⎫2x +π3C.y =2sin ⎝ ⎛⎭⎪⎫x 2-π3D.y =2sin ⎝ ⎛⎭⎪⎫2x -π3二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的不得分)9.下列命题中是全称量词命题并且是真命题的是( ) A.∀x ∈R ,x 2+2x +1≥0 B.∃x ∈N ,2x 为偶数 C. π是无理数 D. 所有菱形的四条边都相等 10.当x ∈(2,4)时,下列关系不正确的是( )A.x 2<2xB. 2x <log 2xC.log 2x <1x D. log 2x <x 211.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)表示,下列表示错误的是( )A. y =⎣⎢⎡⎦⎥⎤x +310 B. y =⎣⎢⎡⎦⎥⎤x 10 C.y =⎣⎢⎡⎦⎥⎤x +410 D.y =⎣⎢⎡⎦⎥⎤x +510 12.已知f (x )=(x -a )(x -b )-3,且α,β是函数y =f (x )的两个零点,则实数a ,b ,α,β的大小关系不可能是( ) A.a <α<b <β B.a <α<β<b C.α<a <b <βD.α<a <β<b三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.log 24+log 42=________,e ln 2+813+lg 20-lg 2=________(本题第一空2分,第二空3分).14.函数f (x )=A sin(ωx +φ)(A >0,ω>0,0≤φ≤2π)的部分图象如图所示,则下列说法正确的是________. ①ω=π6;②ω=π3;③φ=π6; ④A =5.15.已知λ∈R ,函数f (x )=⎩⎨⎧x -4,x ≥λ,x 2-4x +3,x <λ.若函数f (x )恰有2个零点,则实数λ的取值范围是________.16.函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3的图象为C ,如下结论正确的是________.①f (x )的最小正周期为π;②对任意的x ∈R ,都有f ⎝ ⎛⎭⎪⎫x +π6+f ⎝ ⎛⎭⎪⎫π6-x =0;③f (x )在⎝ ⎛⎭⎪⎫-π12,5π12上是增函数;④由y =2sin 2x 的图象向右平移π3个单位长度可以得到图象C .四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=2x -x , (1)判断f (x )的奇偶性;(2)用定义证明f (x )在(0,+∞)上为减函数.18、(本小题满分12分)(1)已知3sin(3)2sin 2ππαα⎛⎫+=+ ⎪⎝⎭,求sin 4cos 5sin 2cos αααα-+的值;(2)已知sin()cos()a παπ--+=2παπ<<),求sin cos αα-的值.19.(本小题满分12分)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6+12,x ∈R .(1)求函数f (x )的最小正周期与对称中心; (2)求函数f (x )的单调递增区间.20.(本小题满分12分)(1)设0<x <2,求函数y =3x (8-3x )的最大值; (2)已知a >1,b >1,且ab +2=2(a +b ),求ab 的最小值.21.(本小题满分12分)据市场分析,烟台某海鲜加工公司,当月产量在10吨至25吨时,月生产总成本y (万元)可以看成月产量x (吨)的二次函数;当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元,为二次函数的顶点.(1)写出月总成本y (万元)关于月产量x (吨)的函数关系式;(2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润?22.(本小题满分12分)已知函数y =2sin(x 2+π6). (1)试用“五点法”画出它的图象; (2)求它的振幅、周期和初相; (3)根据图象写出它的单调递减区间.参考答案01-05 CAADC 06-08 DBA 09 AD 10 ABC 11BCD 12 ABD 13 52 5 14 ①③④15 (1,3]∪(4,+∞) 16 ①②③17、(1)解 函数f (x )=2x -x 的定义域为(-∞,0)∪(0,+∞),关于原点对称, 又f (-x )=2-x+x =-⎝ ⎛⎭⎪⎫2x -x =-f (x ),∴f (x )是奇函数.(2)证明 设x 1,x 2是(0,+∞)上的任意两数, 且x 1<x 2,则f (x 1)-f (x 2)=2x 1-x 1-2x 2+x 2=2(x 2-x 1)x 1x 2+(x 2-x 1)=(x 2-x 1)⎝ ⎛⎭⎪⎫1+2x 1x 2.∵x 1>0,x 2>0,且x 1<x 2, ∴(x 2-x 1)⎝ ⎛⎭⎪⎫1+2x 1x 2>0,即f (x 1)>f (x 2).∴f (x )在(0,+∞)上为减函数.18、(1)由3sin(3)2sin 2ππαα⎛⎫+=+ ⎪⎝⎭得sin 2cos sin 2cos αααα-=-⇒=,所以,sin 4cos 5sin 2cos αααα-+2cos 4cos 152cos 2cos 6αααα-==-⨯+.(2)由sin()cos()παπα--+sin cos 3αα+=①, 将①两边平方得212sin cos 9αα+=,故72sin cos 9αα=-,所以2716(sin cos )12sin cos 199αααα⎛⎫-=-=--= ⎪⎝⎭.又2παπ<<,所以sin 0α>,cos 0α<,sin cos 0αα->,则4sin cos 3αα-=.19、解 (1)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6+12,所以函数的最小正周期为2π2=π,令2x -π6=k π(k ∈Z ),解得x =k π2+π12(k ∈Z ),所以函数的对称中心为⎝ ⎛⎭⎪⎫k π2+π12,12(k ∈Z ).(2)由于f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6+12,令-π2+2k π≤2x -π6≤π2+2k π(k ∈Z ),解得-π6+k π≤x ≤π3+k π(k ∈Z ), 所以函数f (x )的单调递增区间为 ⎣⎢⎡⎦⎥⎤-π6+k π,π3+k π(k ∈Z ).20、解 (1)∵0<x <2,∴0<3x <6,8-3x >2>0, ∴y =3x (8-3x )≤3x +(8-3x )2=82=4,当且仅当3x =8-3x ,即x =43时,取等号.∴当x =43时,y =3x (8-3x )有最大值4.(2)由a >1,b >1知ab +2=2(a +b )≥4ab ,当且仅当a =b 时取等号,所以(ab -2)2≥2.因为a >1,b >1,所以ab ≥2+2,ab ≥6+4 2. 即ab 的最小值为6+4 2.21、解 (1)设y =a (x -15)2+17.5(a ≠0),将x =10,y =20代入上式,得20=25a +17.5,解得a =110.所以y =110(x -15)2+17.5(10≤x ≤25). (2)设利润为Q (x ),则Q (x )=1.6x -y =1.6x -⎣⎢⎡⎦⎥⎤110(x -15)2+17.5=-110(x -23)2+12.9(10≤x ≤25).所以月产量为23吨时,可获最大利润12.9万元.22、解 (1)令t =x 2+π6,列表如下:描点连线并向左右两边分别扩展,得到如图所示的函数图象:(2)振幅A =2,周期T =4π,初相为π6.(3)由图象得单调递减区间为[2π3+4k π,8π3+4k π](k ∈Z ).22.(本小题满分12分)函数f (x )=x 2+ax +3.(1)当x ∈R ,求使f (x )≥a 恒成立时a 的取值范围; (2)当x ∈[-2,2],求使f (x )≥a 恒成立时a 的取值范围. 解 (1)法一 f (x )≥a 恒成立,即x 2+ax +3-a ≥0恒成立, 设g (x )=x 2+ax +3-a ,可知Δ=a 2-4(3-a )≤0, 解得-6≤a ≤2.故a 的取值范围为[-6,2].法二 x 2+ax +3-a ≥0恒成立,只需g (x )=x 2+ax +3-a 的最小值g (x )min ≥0.又g (x )=x 2+ax +3-a =⎝ ⎛⎭⎪⎫x +a 22+3-a -a 24,∴g (x )min =3-a -a 24≥0,解得-6≤a ≤2.故a 的取值范围为[-6,2].(2)原不等式可化为x 2+ax +3-a ≥0,x ∈[-2,2],设g (x )=x 2+ax +3-a ,则只需g (x )在x ∈[-2,2]上的最小值大于等于0. ①若-a2≥2,即a ≤-4, 则g (x )min =g (2)=7+a ≥0, ∴a ≥-7,∴-7≤a ≤-4. ②若-2<-a2<2,即-4<a <4,则g (x )min =g ⎝ ⎛⎭⎪⎫-a 2=3-a -a 24≥0,∴-6≤a ≤2,∴-4<a ≤2.③若-a2≤-2,即a≥4,则g(x)min=g(-2)=7-3a≥0,∴a≤73,∴a∈∅.综上,得-7≤a≤2.即a的取值范围为[-7,2].。
南京市2020-2021版高一上学期期末化学试卷
南京市2020-2021版高一上学期期末化学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共26分)1. (2分) (2016高三上·大连期中) 下列叙述正确的是()A . 漂白粉、水玻璃、冰醋酸、聚乙烯都是混合物B . 金属氧化物一定是碱性氧化物C . 胶体区别于其他分散系的本质特征是胶体粒子直径介于1~100nm之间D . 淀粉、油脂和蛋白质都属于天然高分子化合物2. (2分) (2016高一上·绵阳期中) 下列变化,需加入还原剂才能实现的是()A . H2SO4→SO2B . H2S→SO2C . S→SO2D . SO32﹣→SO23. (2分)下列各组物质,按化合物、单质、混合物顺序排列的是()A . 生石灰、白磷、熟石灰B . 烧碱、液态氧、碘酒C . 干冰、铁、硫酸D . 盐酸、氮气、胆矾4. (2分) (2018高一下·江苏期末) 下列陈述Ⅰ、Ⅱ正确并且有因果关系的是()C蛋白质和淀粉都是高分子化合物蛋白质和淀粉水解最终产物均是葡萄糖D汽油和植物油都属于烃汽油和植物油都可以燃烧A . AB . BC . CD . D5. (2分)化学方程式可简明地体现元素及其化合物的性质.已知:氧化还原反应:2FeCl3+2HI═2FeCl2+I2+2HCl;2Co(OH)3+6HCl═2CoCl2+Cl2↑+6H2O2Fe(OH)2+I2+2KOH═2Fe(OH)3+2KI;3I2+6KOH═5KI+KIO3+3H2O复分解反应:2HSCN+K2CO3═2KSCN+CO2↑+H2O;KCN+CO2+H2O═HCN+KHCO3热分解反应:4NaClO 3NaCl+NaClO4;NaClO4 NaCl+2O2↑下列说法不正确是()A . 酸性(水溶液):HSCN>H2CO3>HCNB . 还原性(碱性溶液):Fe(OH)2>I2>KIO3C . 热稳定性:NaCl>NaClO4>NaClOD . 氧化性(酸性溶液):FeCl3>Co(OH)3>I26. (2分)下列仪器中,不属于定量仪器的是()A . 容量瓶B . 温度计C . 烧杯D . 秒表7. (2分) (2016高一上·澄城期中) 在强酸性溶液中可以大量共存的是()A . Na+、Ba2+、Cl﹣、SOB . Mg2+、H+、OH﹣、NOC . Mg2+、HSO 、Na+、Cl﹣D . NH4+、NO 、K+、SO8. (2分) (2018高一上·辽源期中) 下列离子方程式正确的是()A . 用大理石跟稀盐酸制二氧化碳:CO32-+2H+=H2O+CO2↑B . 向氢氧化钡溶液中加硫酸溶液:SO42-+Ba2+= BaSO4↓C . 硫酸溶液中加入Mg (OH)2:2H++ Mg(OH)2=Mg2+ +2H2OD . 铁与稀盐酸反应:Fe +6H+ =2Fe3+ +3H2↑9. (3分) (2016高二上·邯郸开学考) 类比推理是化学中常用的思维方法.下列推理正确的是()A . CO2是直线型分子,推测CS2也是直线型分子B . SiH4的沸点高于CH4 ,推测H2Se的沸点高于H2SC . Fe与Cl2反应生成FeCl3 ,推测Fe与I2反应生成FeI3D . NaCl与浓H2SO4加热可制HCl,推测NaBr与浓H2SO4加热可制HBr10. (2分) (2015高三上·莘县期中) 下列氧化物中,能与水反应生成酸的是()A . SiO2B . NOC . Al2O3D . SO311. (3分) (2020高一上·如东月考) 亚氯酸钠(NaClO2)是一种高效的漂白剂和氧化剂,可用于各种纤维和某些食品的漂白。
2020-2021南京市高中必修一数学上期末第一次模拟试卷含答案
2020-2021南京市高中必修一数学上期末第一次模拟试卷含答案一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12B .2C .2 D .23.函数y =a |x |(a >1)的图像是( ) A .B .C .D .4.定义在R 上的偶函数()f x 满足:对任意的1x ,212[0,)()x x x ∈+∞≠,有2121()()0f x f x x x -<-,则( ).A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-5.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞)D .(-∞,-2]6.函数()()212log 2f x x x =-的单调递增区间为( ) A .(),1-∞ B .()2,+∞ C .(),0-∞D .()1,+∞7.把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( ) A .()3log 2,1B .[)3log 2,1C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦8.[]x 表示不超过实数x 的最大整数,0x 是方程ln 3100x x +-=的根,则0[]x =( ) A .1 B .2C .3D .49.函数21y x x =-+的定义域是( )A .(-1,2]B .[-1,2]C .(-1 ,2)D .[-1,2)10.函数()()212ln 12f x x x =-+的图象大致是( ) A .B .C .D .11.对数函数且与二次函数在同一坐标系内的图象可能是( )A .B .C .D .12.已知()f x =22x x -+,若()3f a =,则()2f a 等于 A .5B .7C .9D .11二、填空题13.已知函数241,(4)()log ,(04)x f x xx x ⎧+≥⎪=⎨⎪<<⎩.若关于x 的方程,()f x k =有两个不同的实根,则实数k 的取值范围是____________.14.已知函数2,1,(){1,1,x ax x f x ax x -+≤=->若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,则实数a 的取值范围是 .15.设定义在[]22-,上的偶函数()f x 在区间[]0,2上单调递减,若()()1f m f m -<,则实数m 的取值范围是________.16.已知偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,则不等式()0xf x >的解集为______.17.若函数()()()()22,0,0x x x f x g x x ⎧+≥⎪=⎨<⎪⎩为奇函数,则()()1f g -=________.18.已知函数()()g x f x x =-是偶函数,若(2)2f -=,则(2)f =________19.已知sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <>则1111()()66f f -+为_____20.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[3,4]4-=-,[2,7]2=.已知函数21()15x xe f x e =-+,则函数[()]y f x =的值域是_________. 三、解答题21.设()()12log 10f x ax =-,a 为常数.若()32f =-.(1)求a 的值;(2)若对于区间[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围 .22.已知二次函数()f x 满足()02f =,()()12f x f x x +-=. (1)求函数()f x 的解析式;(2)若关于x 的不等式()0f x mx -≥在[]1,2上有解,求实数m 的取值范围; (3)若方程()2f x tx t =+在区间()1,2-内恰有一解,求实数t 的取值范围.23.为保障城市蔬菜供应,某蔬菜种植基地每年投入20万元搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入2万元,其中甲大棚种西红柿,乙大棚种黄瓜.根据以往的经验,发现种西红柿的年收入()f x 、种黄瓜的年收入()g x 与大棚投入x分别满足()8f x =+1()124g x x =+.设甲大棚的投入为a ,每年两个大棚的总收入为()F a .(投入与收入的单位均为万元)(Ⅰ)求(8)F 的值.(Ⅱ)试问:如何安排甲、乙两个大棚的投入,才能使年总收人()F a 最大?并求最大年总收入.24.已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1,32x ⎡⎤∈⎢⎥⎣⎦时,()2(21)0f kx f x +->恒成立,求实数k 的取值范围.25.某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入.政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益M 、养鸡的收益N 与投入a(单位:万元)满足25,1536,49,3657,a M a ⎧⎪=⎨<⎪⎩剟…1202N a =+.设甲合作社的投入为x (单位:万元),两个合作社的总收益为()f x (单位:万元). (1)若两个合作社的投入相等,求总收益;(2)试问如何安排甲、乙两个合作社的投入,才能使总收益最大? 26.已知函数()()()9log 91xkx R x k f =++∈是偶函数.(1)求k 的值;(2)若不等式()102x a f x --≥对(],0x ∈-∞恒成立,求实数a 的取值范围. (注:如果求解过程中涉及复合函数单调性,可直接用结论,不需证明)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2xy =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.2.A解析:A 【解析】 【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值.【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数, 但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a , 故选A .本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.3.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .4.A解析:A 【解析】由对任意x 1,x 2 ∈ [0,+∞)(x 1≠x 2),有()()1212f x f x x x -- <0,得f (x )在[0,+∞)上单独递减,所以(3)(2)(2)(1)f f f f <=-<,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行5.B解析:B 【解析】 由f(1)=得a 2=, ∴a=或a=-(舍), 即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.6.C解析:C 【解析】 【分析】求出函数()()212log 2f x x x =-的定义域,然后利用复合函数法可求出函数()y f x =的单调递增区间. 【详解】解不等式220x x ->,解得0x <或2x >,函数()y f x =的定义域为()(),02,-∞+∞U . 内层函数22u x x =-在区间(),0-∞上为减函数,在区间()2,+∞上为增函数, 外层函数12log y u =在()0,∞+上为减函数,由复合函数同增异减法可知,函数()()212log 2f x x x =-的单调递增区间为(),0-∞.故选:C. 【点睛】本题考查对数型复合函数单调区间的求解,解题时应先求出函数的定义域,考查计算能力,属于中等题.7.C解析:C 【解析】分析:由题意分别确定函数f (x )的图象性质和函数h (x )图象的性质,然后数形结合得到关于k 的不等式组,求解不等式组即可求得最终结果.详解:曲线()()2log 1f x x =+右移一个单位,得()21log y f x x =-=, 所以g (x )=2x ,h (x -1)=h (-x -1)=h (x +1),则函数h (x )的周期为2. 当x ∈[0,1]时,()21xh x =-,y =kf (x )-h (x )有五个零点,等价于函数y =kf (x )与函数y =h (x )的图象有五个公共点. 绘制函数图像如图所示,由图像知kf (3)<1且kf (5)>1,即:22log 41log 61k k <⎧⎨>⎩,求解不等式组可得:61log 22k <<.即k 的取值范围是612,2log ⎛⎫ ⎪⎝⎭. 本题选择C 选项.点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题等知识,意在考查学生的转化能力和计算求解能力.8.B解析:B 【解析】 【分析】先求出函数()ln 310f x x x =+-的零点的范围,进而判断0x 的范围,即可求出[]0x . 【详解】由题意可知0x 是()ln 310f x x x =+-的零点, 易知函数()f x 是(0,∞+)上的单调递增函数,而()2ln2610ln240f =+-=-<,()3ln3910ln310f =+-=->, 即()()230f f <n 所以023x <<,结合[]x 的性质,可知[]02x =. 故选B. 【点睛】本题考查了函数的零点问题,属于基础题.9.A解析:A 【解析】 【分析】根据二次根式的性质求出函数的定义域即可. 【详解】由题意得:2010x x -≥⎧⎨+>⎩解得:﹣1<x≤2,故函数的定义域是(﹣1,2], 故选A . 【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.10.A解析:A 【解析】函数有意义,则:10,1x x +>∴>-, 由函数的解析式可得:()()21002ln 0102f =⨯-+=,则选项BD 错误; 且211111112ln 1ln ln 402222848f ⎛⎫⎛⎫⎛⎫-=⨯--⨯-+=-=+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则选项C 错误; 本题选择A 选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.11.A解析:A 【解析】 【分析】根据对数函数的单调性,分类讨论,结合二次函数的图象与性质,利用排除法,即可求解,得到答案. 【详解】 由题意,若,则在上单调递减,又由函数开口向下,其图象的对称轴在轴左侧,排除C ,D.若,则在上是增函数,函数图象开口向上,且对称轴在轴右侧,因此B 项不正确,只有选项A 满足. 【点睛】本题主要考查了对数函数与二次参数的图象与性质,其中解答中熟记二次函数和对数的函数的图象与性质,合理进行排除判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.12.B解析:B 【解析】因为()f x =22x x -+,所以()f a =223a a -+=,则()2f a =2222a a -+=2(22)2a a -+-=7.选B.二、填空题13.【解析】作出函数的图象如图所示当时单调递减且当时单调递增且所以函数的图象与直线有两个交点时有 解析:(1,2)【解析】作出函数()f x 的图象,如图所示,当4x ≥时,4()1f x x =+单调递减,且4112x<+≤,当04x <<时,2()log f x x =单调递增,且2()log 2f x x =<,所以函数()f x 的图象与直线y k =有两个交点时,有12k <<.14.【解析】【分析】【详解】故答案为 解析:【解析】 【分析】 【详解】故答案为.15.【解析】【分析】由题意知函数在上是减函数在上是增函数其规律是自变量的绝对值越小其函数值越大由此可直接将转化成一般不等式再结合其定义域可以解出的取值范围【详解】解:函数是偶函数定义在上的偶函数在区间上解析:11,2⎡⎫-⎪⎢⎣⎭【解析】 【分析】由题意知函数在[]0,2上是减函数,在[]2,0-上是增函数,其规律是自变量的绝对值越小,其函数值越大,由此可直接将(1)()f m f m -<转化成一般不等式,再结合其定义域可以解出m 的取值范围 【详解】解:Q 函数是偶函数, (1)(|1|)f m f m ∴-=-,()(||)f m f m =, Q 定义在[]22-,上的偶函数()f x 在区间[]0,2上单调递减,(1)()f m f m -<,0|||1|2m m ∴<-剟,得112m -<….故答案为:11,2⎡⎫-⎪⎢⎣⎭. 【点睛】 本题考点是奇偶性与单调性的综合,考查利用抽象函数的单调性解抽象不等式,解决此类题的关键是将函数的性质进行正确的转化,将抽象不等式转化为一般不等式求解.本题在求解中有一点易疏漏,即忘记根据定义域为[]22-,来限制参数的范围.做题一定要严谨,转化要注意验证是否等价.16.【解析】【分析】根据函数奇偶性和单调性的性质作出的图象利用数形结合进行求解即可【详解】偶函数的图象过点且在区间上单调递减函数的图象过点且在区间上单调递增作出函数的图象大致如图:则不等式等价为或即或即 解析:()(),20,2-∞-⋃【解析】【分析】根据函数奇偶性和单调性的性质作出()f x 的图象,利用数形结合进行求解即可.【详解】Q 偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,∴函数()f x 的图象过点()2,0-,且在区间(),0-∞上单调递增,作出函数()f x 的图象大致如图:则不等式()0xf x >等价为()00x f x >⎧>⎨⎩或()00x f x <⎧<⎨⎩, 即02x <<或2x <-,即不等式的解集为()(),20,2-∞-⋃,故答案为()(),20,2-∞-⋃【点睛】本题主要考查不等式的解集的计算,根据函数奇偶性和单调性的性质作出()f x 的图象是解决本题的关键.17.【解析】根据题意当时为奇函数则故答案为解析:15-【解析】根据题意,当0x <时,()()(),f x g x f x =为奇函数,()()()()()()()()()211113(323)15f g f f f f f f f -=-=-=-=-=-+⨯=-,则 故答案为15-.18.6【解析】【分析】根据偶函数的关系有代入即可求解【详解】由题:函数是偶函数所以解得:故答案为:6【点睛】此题考查根据函数的奇偶性求函数值难度较小关键在于根据函数奇偶性准确辨析函数值的关系解析:6【解析】【分析】根据偶函数的关系有()(2)2g g =-,代入即可求解.【详解】由题:函数()()g x f x x =-是偶函数,(2)(2)24g f -=-+=,所以(2)(2)24g f =-=,解得:(2)6f =.故答案为:6【点睛】此题考查根据函数的奇偶性求函数值,难度较小,关键在于根据函数奇偶性准确辨析函数值的关系.19.0【解析】【分析】根据分段函数的解析式代入求值即可求解【详解】因为则所以【点睛】本题主要考查了分段函数求值属于中档题解析:0【解析】【分析】根据分段函数的解析式,代入求值即可求解.【详解】因为sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <> 则11111()sin()sin 6662f ππ-=-==, 11511()()()sin()66662f f f π==-=-=-, 所以1111()()066f f -+=. 【点睛】本题主要考查了分段函数求值,属于中档题.20.【解析】【分析】求出函数的值域由高斯函数的定义即可得解【详解】所以故答案为:【点睛】本题主要考查了函数值域的求法属于中档题解析:{}1,0,1-【解析】【分析】求出函数()f x 的值域,由高斯函数的定义即可得解.【详解】2(1)212192()2151551x x x x e f x e e e+-=-=--=-+++Q , 11x e +>Q ,1011x e∴<<+, 2201x e ∴-<-<+, 19195515x e ∴-<-<+, 所以19(),55f x ⎛⎫∈- ⎪⎝⎭, {}[()]1,0,1f x ∴∈-,故答案为:{}1,0,1-【点睛】本题主要考查了函数值域的求法,属于中档题.三、解答题21.(1)2a =(2)17,8⎛⎫-∞-⎪⎝⎭ 【解析】【分析】(1)依题意代数求值即可;(2)设()()121log 1022x g x x ⎛⎫=-- ⎪⎝⎭,题设条件可转化为()g x m >在[]3,4x ∈上恒成立,因此,求出()g x 的最小值即可得出结论.【详解】(1)()32f =-Q ,()12log 1032a ∴-=-, 即211032a -⎛⎫-= ⎪⎝⎭,解得2a =; (2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭, 题设不等式可转化为()g x m >在[]3,4x ∈上恒成立, ()g x Q 在[]3,4上为增函数,()31min2117(3)log (106)28g x g ⎛⎫∴==--=- ⎪⎝⎭, 178m ∴<-, m ∴的取值范围为17,8⎛⎫-∞- ⎪⎝⎭. 【点睛】本题考查函数性质的综合应用,属于中档题.在解决不等式恒成立问题时,常分离参数,将其转化为最值问题解决.22.(1)2()2f x x x =-+;(2)2m ≤;(3)5t =或14t ≤<【解析】【分析】(1)由待定系数法求二次函数的解析式;(2)分离变量求最值,(3)分离变量,根据函数的单调性求实数t 的取值范围即可.【详解】解:(1)因为()f x 为二次函数,所以设2()f x ax bx c =++, 因为(0)2f =,所以2c =,因为(1)()2f x f x x +-=,所以22ax a b x ++=,解得1,1a b ==-,所以2()2f x x x =-+;(2)因为()0f x mx -≥在[]1,2上有解,所以22mx x x ≤-+,又因为[1,2]x ∈,所以max 21m x x ⎛⎫≤+- ⎪⎝⎭, 因为2212212x x +-≤+-=, 2m ∴≤;(3)因为方程()2f x tx t =+在区间()1,2-内恰有一解,所以22(2)x x t x -+=+,因为(1,2)x ∈-,令2(1,4),m x =+∈则()()2222tm m m ---+=,即258tm m m =-+ 85t m m∴=+-, 又8()5g m m m=+-在单调递减,在4)单调递增, (1)1854g =+-=,8(4)4541g =+-=,55g ==,所以5t =或14t ≤<.【点睛】本题主要考查二次函数的图象及性质,关键是参变分离将有解问题或有一个解的问题转化为最值问题,属于中档题.23.(Ⅰ)39万元(Ⅱ)甲大棚投入18万元,乙大棚投入2万元时,最大年总收入为44.5万元.【解析】【分析】(I )根据题意求得()F a 的表达式,由此求得()8F 的值.(II )求得()F a 的定义域,利用换元法,结合二次函数的性质,求得()F a 的最大值,以及甲、乙两个大棚的投入.【详解】(Ⅰ)由题意知11()8(20)122544F a a a =+-+=-+,所以1(8)825394F =-⨯+=(万元). (Ⅱ)依题意得2,218202a a a ⎧⇒⎨-⎩…剟….故1()25(218)4F a a a =-+剟.令t =t ∈,2211()25(5744G t t t =-++=--+,显然在上()G t 单调递增,所以当t =18a =时,()F a 取得最大值,max ()44.5F a =.所以当甲大棚投入18万元,乙大棚投入2万元时,年总收入最大,且最大年总收入为44.5万元.【点睛】本小题主要考查函数在实际生活中的应用,考查含有根式的函数的最值的求法,属于中档题.24.(1)2a =,1b =;(2)单调递减,见解析;(3)(,1)-∞-【解析】【分析】(1)根据(0)0f =得到1b =,根据(1)(1)f f -=-计算得到2a =,得到答案. (2)化简得到11()221x f x =++,12x x <,计算()()210f x f x -<,得到是减函数. (3)化简得到212kx x <-,参数分离212x k x-<,求函数212()x g x x -=的最小值得到答案.【详解】 (1)因为()f x 在定义域R 上是奇函数.所以(0)0f =, 即102b a -+=+,所以1b =.又由(1)(1)f f -=-,即111214a a-+-=++, 所以2a =,检验知,当2a =,1b =时,原函数是奇函数.(2)()f x 在R 上单调递减.证明:由(1)知11211()22221x x x f x +-==+++, 任取12,x x R ∈,设12x x <,则()()()()12211221112221212121x x x x x x f x f x --=-=++++, 因为函数2xy =在R 上是增函数,且12x x <,所以12220x x -<,又()()1221210x x ++>,所以()()210f x f x -<,即()()21f x f x <,所以函数()f x 在R 上单调递减.(3)因为()f x 是奇函数,从而不等式()2(21)0f kx f x +->等价于()2(21)(12)f kx f x f x >--=-,因为()f x 在R 上是减函数,由上式推得212kx x <-, 即对一切1,32x ⎡⎤∈⎢⎥⎣⎦有212x k x -<恒成立,设221211()2()x g x x x x -==-⋅, 令1t x =,1,23t ⎡∈⎤⎢⎥⎣⎦则有2()2h t t t =-,1,23t ⎡∈⎤⎢⎥⎣⎦,所以min min ()()(1)1g x h t h ===-, 所以1k <-,即k 的取值范围为(,1)-∞-.【点睛】本题考查了函数解析式,单调性,恒成立问题,将恒成立问题通过参数分离转化为最值问题是解题的关键.25.(1)87万元;(2)甲合作社投入16万元,乙合作社投入56万元【解析】【分析】(1)先求出36x =,再求总收益;(2)(2)设甲合作社投入x 万元(1557)x ≤≤,乙合作社投入72x -万元,再对x 分类讨论利用函数求出如何安排甲、乙两个合作社的投入,才能使总收益最大.【详解】(1)两个合作社的投入相等,则36x =,1(36)253620872f =++⨯+=(万元) (2)设甲合作社投入x 万元(1557)x ≤≤,乙合作社投入72x -万元.当1536x ≤≤时,11()25(72)208122f x x x =+-+=-+,令t =6t ≤≤,则总收益2211()481(4)8922g t t t t =-++=--+, 当4t =即16x =时,总收益取最大值为89;当3657x <≤时,11()49(72)2010522f x x x =+-+=-+, ()f x 在(36,57]上单调递减,所以()(36)87f x f <=.因为8987>,所以在甲合作社投入16万元,乙合作社投入56万元时,总收益最大,最大总收益为89万元.【点睛】本题主要考查函数的应用和最值的求法,意在考查学生对这些知识的理解掌握水平和应用能力.26.(1)12k =-(2)(]9,log 2-∞ 【解析】【分析】(1)由偶函数定义()()f x f x -=,代入解析式求解即可;(2)题设条件可等价转化为()9log 91x a x ≤+-对(],0x ∈-∞恒成立,因此设()()9log 91x g x x =+-,求出其在(],0x ∈-∞上的最小值即可得出结论.【详解】(1)∵函数()()()9log 91x kx R x k f =++∈ 是偶函数. ∴()()f x f x -=,∴()()99log 91log 91x x kx kx -+-=++,∴()()999912log 91log 91log 91x x xx kx x --+-=+-+==+, ∴12k =-. (2)由(1)知,()()91log 912x f x x =+-, 不等式1()02f x x a --≥即为()9log 91x a x ≤+-, 令()()9log 91x g x x =+-,(],0x ∈-∞, 则()()()99991log 91log log 199x xx x x g x -+=+-==+, 又函数()g x 在(],0-∞上单调递减,所以()()9min 0log 2g x g ==,∴a 的取值范围是(]9,log 2-∞.【点睛】本题考查函数奇偶性的定义运用以及不等式恒成立问题,属于中档题.解决不等式恒成立问题时,一般首选参变分离法,将恒成立问题转化为最值问题求解.。
南京市2020-2021学年度第一学期期末调研测试高一数学答案(终稿)
南京市2020-2021学年度第一学期期末学情调研 高一数学参考答案 2021.01一、单项选择题1.C 2.B 3.A 4.D 5.B 6.C 7.D 8.A二、多项选择题9.AB 10.BD 11.ACD 12.AB三、填空题13.1214.4 15.119 16.32 四、解答题17.(本小题满分10分)解:(1)由 2x +1x -1<1,得 x +2x -1<0,所以A ={x |-2<x <1}. B ={x |2x 2+(m -2)x -m <0}={x |(x -1)(2x +m )<0}.当m =1时,B ={x |-12<x <1}. ·························································· 3分 所以A ∪B ={x |-2<x <1}. ······························································· 4分(2)因为“x ∈A ”是“x ∈B ”的必要条件,所以B -⊂A . ······························· 6分若-m 2>1,不符合题意; ···································································· 7分 若-m 2=1即m =-2时,B =∅,符合题意; ··········································· 8分 若-m 2<1,则B ={x |-m 2<x <1}, 所以-2≤-m 2<1,解得-2<m ≤4.····················································· 9分 综上,m ∈[-2,4]. ········································································· 10分18.(本小题满分12分)解:(1)因为sin (π+α)cos (π-α)=sin αcos α,且sin (π+α)cos (π-α)=18, 所以sin αcos α=18. ············································································· 2分 故 (cos α-sin α)2=cos 2α-2sin αcos α+sin 2α=1-2sin αcos α=1-2×18=34. ········································ 4分 又因为0<α<π4,所以cos α>sin α,即cos α-sin α>0, 所以cos α-sin α=32. 所以cos α+cos(π2+α)=cos α-sin α=32. ················································ 6分(2)法一:由(1)知sin αcos α=18,又因为sin 2α+cos 2α=1, 所以 sin αcos αsin 2α+cos 2α=18. 因为0<α<π4,cos α≠0, 所以tan α tan 2α+1=18,即tan 2α-8tan α+1=0, ············································ 9分 解得tan α=4-15或tan α=4+15. ··················································· 10分因为0<α<π4,所以0<tan α<1, 所以tan α=4-15. ········································································· 12分法二: 由(1)知⎩⎨⎧cos α-sin α=32,sin αcos α=18. 因为0<α<π4,所以cos α>sin α>0, 故⎩⎪⎨⎪⎧ cos α=3+5 4,sin α=-3+54, ······························································ 10分所以tan α=sin αcos α=4-15. ································································· 12分 19.(本小题满分12分)解:(1)原式=5+[(2)-3]-23+log 3( 3)4=5+4+4=13. ··············································································· 4分 (2)法一:因为y =log 0.4x 在(0,+∞)上递减,y =log 4x 在(0,+∞)上递增,所以a =log 0.43<log 0.41=0,b =log 43>log 41=0,故ab <0. ························································································ 6分因为1a +1b=log 30.4+log 34=log 3(0.4×4)=log 31.6, 且y =log 3x 在(0,+∞)递增,所以0=log 31<log 31.6<log 33=1,即0<1a +1b<1. ································· 10分 所以0>ab (1a +1b)>ab ,即ab <a +b <0. ·············································· 12分 法二:因为a =log 0.43,b =log 43,所以a +b =log 0.43+log 43=lg3lg0.4+lg3lg4=lg3×lg4+lg0.4lg0.4·lg4=lg3×lg1.6lg0.4·lg4, 因为lg3>0,lg4>0,lg1.6>0,lg0.4<0,所以a +b <0. ·················································································· 6分(a +b )-ab =lg3×lg1.6lg0.4·lg4-lg3lg0.4×lg3lg4=lg3×lg1.6-lg3lg0.4·lg4 =lg3×lg 1.63lg0.4·lg4=lg3×lg 815lg0.4·lg4. ········································ 10分 因为lg3>0,lg4>0,lg 815<0,lg0.4<0, 所以(a +b )-ab >0,即a +b >ab ,综上,ab <a +b <0. ········································································ 12分解:(1)因为函数f (x )=x |x -a |为R 上的奇函数,所以f (-x )=-f (x ) 对任意x ∈R 成立,即(-x )·|-x -a |=-x ·|x -a |对任意x ∈R 成立, ···································· 2分 所以|-x -a |=|x -a |,所以a =0. ····················································· 4分(2)由f (sin 2x )+f (t -2cos x )≥0得f (sin 2x )≥-f (t -2cos x ),因为函数f (x )为R 上的奇函数, 所以f (sin 2x )≥f (2cos x -t ). ························ 6分由(1)得,f (x )=x |x |=⎩⎨⎧x 2,x ≥0,-x 2,x <0,是R 上的单调增函数, 故sin 2x ≥2cos x -t 对任意x ∈[π3,7π6]恒成立. ·········································· 8分 所以t ≥2cos x -sin 2x 对任意x ∈[π3,7π6]恒成立. 因为2cos x -sin 2x =cos 2x +2cos x -1=(cos x +1)2-2,令m =cos x ,由x ∈[π3,7π6],得cos x ∈[-1,12],即m ∈[-1,12]. ·············· 10分 所以y =(m +1)2-2的最大值为14,故t ≥14, 即t 的最小值为14. ············································································ 12分 21.(本小题满分12分)解:(1)因为小球振动过程中最高点与最低点的距离为10 cm ,所以A =102=5. ·· 2分 因为在一次振动中,小球从最高点运动至最低点所用时间为1 s ,所以周期为2,即T =2=2πω,所以ω=π. ··································································· 4分 所以h =5sin(πt +π4),t ≥0. ································································· 5分 (2)由题意,当t =14时,小球第一次到达最高点, 以后每隔一个周期都出现一次最高点, ··················································· 7分 因为小球在t 0 s 内经过最高点的次数恰为50次,所以14+49T ≤t 0<14+50T . ··································································· 9分 因为T =2,所以9814≤t <10014, 所以t 0的取值范围为[9814,10014). ······················································· 12分 (注:t 0的取值范围不考虑开闭)解:(1)当a =-2时,f (x )=-2x 2+1.方程f (x )=x 可化为2x 2+x -1=0,解得x =-1或x =12, 所以f (x )的不动点为-1和 12. ······························································ 2分 (2)①因为函数f (x )有两个不动点x 1,x 2,所以方程f (x )=x ,即ax 2-x +1=0的两个实数根为x 1,x 2,记p (x )=ax 2-x +1,则p (x )的零点为x 1和x 2,因为x 1<2<x 2,所以a ·p (2)<0,即a (4a -1)<0,解得0<a <14. 所以实数a 的取值范围为(0,14). ·························································· 6分 ②因为g (x )=log a [f (x )-x ]=log a (ax 2-x +1).方程g (x )=x 可化为log a (ax 2-x +1)=x ,即⎩⎨⎧a x =ax 2-x +1,ax 2-x +1>0.因为0<a <14,△=1-4a >0,所以p (x )=0有两个不相等的实数根. 设p (x )=ax 2-x +1=0的两个实数根为m ,n ,不妨设m <n .因为函数p (x )=ax 2-x +1图象的对称轴为直线x =12a ,p (1)=a >0,12a >1,p (1a)=1>0, 所以1<m <12a <n <1a. 记h (x )=a x -(ax 2-x +1),因为h (1)=0,且p (1)=a >0,所以x =1是方程g (x )=x 的实数根,所以1是g (x )的一个不动点. ······························································· 8分 h (n )=a n -(an 2-n +1)=a n >0,因为0<a <14,所以1a >4,h (1a)=a 1a -1<a 4-1<0, 且h (x )的图象在[n ,1a]上的图象是不间断曲线, 所以∃x 0∈(n ,1a),使得h (x 0)=0, ························································· 10分 又因为p (x )在(n ,1a)上单调递增,所以p (x 0)>p (n )=0, 所以x 0是g (x )的一个不动点,综上,g (x )在(a ,+∞)上至少有两个不动点. ········································· 12分。
江苏省南京市扬子第一中学2020-2021学年高一数学理期末试题含解析
江苏省南京市扬子第一中学2020-2021学年高一数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知角α的终边上一点P的坐标为(sin,cos),若则α的值为()A. B. C. D.参考答案:B【分析】根据特殊三角函数可以算出,根据任意三角函数值即可得出【详解】由题意可得,因此在第四象限,所以排除ACD,选择B【点睛】本题考查特殊三角函数值,任意三角函数值的计算,属于基础题。
2. 已知函数是定义在上的奇函数,当时,的图象如图所示,则不等式的解集是()A.B.C.D.参考答案:C3. 已知、为两条不同的直线,、为两个不同的平面,且,,①若,则②若,则③若,相交,则,也相交④若,相交,则,也相交则其中正确的结论是()A.①②④ B.①②③ C.①③④ D.②③④参考答案:A略4. 判断下列各命题的真假:(1)向量的长度与向量的长度相等;(2)向量与向量平行,则与的方向相同或相反;(3)两个有共同起点的而且相等的向量,其终点必相同;(4)两个有共同终点的向量,一定是共线向量;(5)向量和向量是共线向量,则点A、B、C、D必在同一条直线上;(6)有向线段就是向量,向量就是有向线段.其中假命题的个数为()A、2个B、3个C、4个D、5个参考答案:C5. 已知定义在上的函数的图象是连续不断的,且有如下对应值表:那么函数一定存在零点的区间是()A. (-∞,1)B. (1,2)C. (2,3)D. (3,+∞)参考答案:B6. 函数的图象是1 2 34.5 -2.9 -3A. B. C.D.参考答案:A略7. 若,则()A.B. C.D.参考答案:A略8. 设是函数的零点,且,则k的值为()A.0 B.1 C.2 D.3参考答案:B因为函数是单调递增函数,,故,所以,故选B.9. 已知,都是锐角,若,则下列结论正确的是()A. B.C. D. 与大小关系不确定参考答案:A【分析】根据,都是锐角,得到,,再由,利用在上的单调性求解.【详解】因为,都是锐角,所以,所以,因为,在上递增,所以,即.故选:A【点睛】本题主要考查三角函数的单调性,还考查了运算求解的能力,属于中档题.10. 下列函数为偶函数的是()A. B.C. D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 函数的值域是参考答案:略12. 从1至169的自然数中任意取出3个数构成以整数为公比的递增等比数列的取法有_ 种.参考答案:解析:若取出的3个数构成递增等比数列,则有。
2021年江苏省南京市第一中学高一数学理联考试卷含解析
2021年江苏省南京市第一中学高一数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 以下结论正确的是()A.若a<b且c<d,则ac<bdB.若ac2>bc2,则a>bC.若a>b,c<d,则a﹣c<b﹣dD.若0<a<b,集合A={x|x=},B={x|x=},则A?B参考答案:B【考点】命题的真假判断与应用;不等式的基本性质.【分析】根据不等式的基本性质,及集合包含有关系的定义,逐一分析给定四个答案的真假,可得结论.【解答】解:若a=﹣1,b=0,c=﹣1,d=0,则a<b且c<d,但ac>bd,故A错误;若ac2>bc2,则c2>0,则a>b,故B正确;若a>b,c<d,则a﹣c>b﹣d,故C错误;若0<a<b,集合A={x|x=},B={x|x=},则A与B不存在包含关系,故D错误;故选:B.2. 在下面给出的四个函数中,既是区间上的增函数,又是以为周期的偶函数的是A. B. C. D.参考答案:D3. 在股票买卖过程中,经常用到两种曲线:一种是即时价格曲线y=f(x),另一种是平均价格曲线y=g(x).例如,f(2)=3是指开始买卖2小时的即时价格为3元;g(2)=3是指开始买卖2小时内的平均价格为3元.下图给出的四个图象中,实线表示y=f(x),虚线表示y=g(x),其中可能正确的是() 参考答案:C4. 若正实数a,b满足a+b=1,则()A.有最大值4 B.ab有最小值C.有最大值D.a2+b2有最小值参考答案:C略5. 已知等边△ABC边长为4,O为其内一点,且,则△AOB的面积为()A. B. C. D.参考答案:B∵,∴.如图所示,延长到点,使得,分别以为邻边作平行四边形,则,又,可得,∴,∴,∴,故选B.点睛:本题考查了平面向量的应用问题,解题的关键是作出辅助线,根据向量的知识得出各小三角形与原三角形面积之间的关系,是中档题;根据题意,作出图形,利用向量的关系,求出与的面积关系,即可得出.6. 已知那么的值是()A. B. C. D.参考答案:C7. 要得到的图象,只需将的图象().A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位参考答案:C略8. 函数的值域为()A、 B、 C、 D、参考答案:C略9. 已知定义在R上的奇函数f(x),当x>0时,f(x)=x2+|x|-1,那么x<0时,f(x)的解析式为f(x)=()A.x2-|x|+1 B.-x2+|x|+1C.-x2-|x|-1 D.-x2-|x|+1 参考答案:D10. 在△ABC中,为BC的三等分点,则( )A. B. C. D.参考答案:B试题分析:因为,所以,以点为坐标原点,分别为轴建立直角坐标系,设,又为的三等分点所以,,所以,故选B.考点:平面向量的数量积.【一题多解】若,则,即有,为边的三等分点,则,故选B.二、填空题:本大题共7小题,每小题4分,共28分11.=.参考答案:12. 函数的定义域是.参考答案:[2,+∞)13. 设函数为奇函数,则实数a= 。
江苏省南京市金陵中学、一中联考 2020-2021学年度第一学期高一期中数学试题 解析PDF 版
一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分,请把答案直接填写在答题卡相应位置上
1. 已知集合 A 1, 2,3 , B x x 2 0, x R,则 A B ( ).
A. 3
B. 2,3
C. 2
D. 1, 2,3
4.
函数
f
x
x 2,x 1 x
的最小值为(
D. , 1
1,
3 4
).
A. 3
B. 2 2
5. 函数 y 4x 的图象大致为( ). x2 1
C. 2
D. 1
y
y
A.
O
B.
x
O
x
y
y
C.
O
D.
x
O
x
6.
若函数
f
x
x2
a2 3
x8
, x 1在 R 上是增函数,则实数 a 的取值范围是(
“理想数集”,给出下列四个命题: ① 0 是任何“理想数集”的元素; ②若“理想数集” M 有非零元素,则 N* M ;
③集合 P x x 2k ,k Z 是一个“理想数集”;
④集合T x x a 2b,a,b Z 是“理想数集”.
其中真命题的个数是( ).
A. 1
B. 2
C. 3
2. 命题“ x R, x2 1 0 ”的否定是( )
A. x R, x2 1 0 C. x R, x2 1 0 3. 函数 y 1 3 4x 的定义域为(
x 1
B. x R, x2 1 0 D. x R, x2 1 0 ).
A.
1,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021南京市南京市第一中学 高一数学上期末试题附答案一、选择题1.已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则A B =( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,22.在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦3.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车,酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg /mL .如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶汽车?( )(参考数据:lg 0.2≈﹣0.7,1g 0.3≈﹣0.5,1g 0.7≈﹣0.15,1g 0.8≈﹣0.1) A .1B .3C .5D .74.若函数*12*log (1),()3,x x x N f x x N⎧+∈⎪=⎨⎪∉⎩,则((0))f f =( ) A .0B .-1C .13D .15.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a << B .b a c <<C .a c b <<D .c a b <<6.函数ln x y x=的图象大致是( )A .B .C .D .7.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) A .1033B .1053C .1073D .10938.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2} B .{1,4} C .{1,2,3,4}D .{1,4,16,64}9.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =xB .y =lg xC .y =2xD .y x10.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .511.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos 12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( ) A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫⎪⎝⎭12.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)二、填空题13.已知()|1||1|f x x x =+--,()ag x x x=+,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则实数a 的取值范围是____________.14.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________. 15.已知常数a R ∈,函数()21x af x x +=+.若()f x 的最大值与最小值之差为2,则a =__________.16.函数()()4log 521x f x x =-+-________.17.已知()f x 、()g x 分别是定义在R 上的偶函数和奇函数,且()()2xf xg x x -=-,则(1)(1)f g +=__________.18.若点(4,2)在幂函数()f x 的图像上,则函数()f x 的反函数1()f x -=________. 19.函数2sin 21=+++xy x x 的最大值和最小值之和为______20.已知35m n k ==,且112m n+=,则k =__________ 三、解答题21.已知二次函数()f x 满足:()()22f x f x +=-,()f x 的最小值为1,且在y 轴上的截距为4.(1)求此二次函数()f x 的解析式;(2)若存在区间[](),0a b a >,使得函数()f x 的定义域和值域都是区间[],a b ,则称区间[],a b 为函数()f x 的“不变区间”.试求函数()f x 的不变区间;(3)若对于任意的[]10,3x ∈,总存在[]210,100x ∈,使得()1222lg 1lg mf x x x <+-,求m 的取值范围.22.已知函数2,,()lg 1,,x x m f x x x m ⎧⎪=⎨+>⎪⎩其中01m <.(Ⅰ)当0m =时,求函数()2y f x =-的零点个数;(Ⅱ)当函数2()3()y f x f x =-的零点恰有3个时,求实数m 的取值范围.23.已知函数()22x xf x k -=+⋅,()()log ()2xa g x f x =-(0a >且1a ≠),且(0)4f =.(1)求k 的值;(2)求关于x 的不等式()0>g x 的解集; (3)若()82xtf x ≥+对x ∈R 恒成立,求t 的取值范围. 24.某上市公司股票在30天内每股的交易价格P (元)关于时间t (天)的函数关系为12,020,518,2030,10t t t P t t t ⎧+≤≤∈⎪⎪=⎨⎪-+<≤∈⎪⎩N N ,该股票在30天内的日交易量Q (万股)关于时间t(天)的函数为一次函数,其图象过点(4,36)和点(10,30). (1)求出日交易量Q (万股)与时间t (天)的一次函数关系式;(2)用y (万元)表示该股票日交易额,写出y 关于t 的函数关系式,并求在这30天内第几天日交易额最大,最大值为多少? 25.已知幂函数()()223mm f x x m --=∈Z 为偶函数,且在区间()0,∞+上单调递减.(1)求函数()f x 的解析式; (2)讨论()()bF x xf x =的奇偶性.(),a b R ∈(直接给出结论,不需证明)26.某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入.政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益M 、养鸡的收益N 与投入a(单位:万元)满足25,1536,49,3657,a M a ⎧⎪=⎨<⎪⎩1202N a =+.设甲合作社的投入为x (单位:万元),两个合作社的总收益为()f x (单位:万元). (1)若两个合作社的投入相等,求总收益;(2)试问如何安排甲、乙两个合作社的投入,才能使总收益最大?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】由已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .2.C解析:C 【解析】当21x -≤≤时,()1224f x x x =⋅-⨯=-; 当12x <≤时,()23224f x x x x =⋅-⨯=-;所以()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩, 易知,()4f x x =-在[]2,1-单调递增,()34f x x =-在(]1,2单调递增, 且21x -≤≤时,()max 3f x =-,12x <≤时,()min 3f x =-,则()f x 在[]22-,上单调递增, 所以()()13f m f m +≤得:21223213m m m m-≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得1223m ≤≤,故选C .点睛:新定义的题关键是读懂题意,根据条件,得到()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,通过单调性分析,得到()f x 在[]22-,上单调递增,解不等式()()13f m f m +≤,要符合定义域和单调性的双重要求,则21223213m m m m -≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得答案.3.C解析:C 【解析】 【分析】根据题意先探究出酒精含量的递减规律,再根据能驾车的要求,列出模型0.70.2x ≤ 求解. 【详解】因为1小时后血液中酒精含量为(1-30%)mg /mL , x 小时后血液中酒精含量为(1-30%)x mg /mL 的,由题意知100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车, 所以()3002%1.x-<,0.70.2x <,两边取对数得,lg 0.7lg 0.2x < ,lg 0.214lg 0.73x >= ,所以至少经过5个小时才能驾驶汽车. 故选:C 【点睛】本题主要考查了指数不等式与对数不等式的解法,还考查了转化化归的思想及运算求解的能力,属于基础题.4.B解析:B 【解析】 【分析】根据分段函数的解析式代入自变量即可求出函数值. 【详解】因为0N *∉,所以0(0)3=1f =,((0))(1)f f f =,因为1N *∈,所以(1)=1f -,故((0))1f f =-,故选B. 【点睛】本题主要考查了分段函数,属于中档题.5.D解析:D 【解析】 【分析】可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.6.C解析:C 【解析】 分析:讨论函数ln x y x=性质,即可得到正确答案.详解:函数ln x y x=的定义域为{|0}x x ≠ ,ln ln x x f x f x xxx--==-=-()(), ∴排除B , 当0x >时,2ln ln 1-ln ,,x x xy y xx x===' 函数在()0,e 上单调递增,在(),e +∞上单调递减, 故排除A,D , 故选C .点睛:本题考查了数形结合的思想应用及排除法的应用.7.D解析:D 【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N 最接近9310,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log n a a M n M =.8.D解析:D 【解析】 【分析】方程()()20mf x nf x p ++=不同的解的个数可为0,1,2,3,4.若有4个不同解,则可根据二次函数的图像的对称性知道4个不同的解中,有两个的解的和与余下两个解的和相等,故可得正确的选项. 【详解】设关于()f x 的方程()()20mfx nf x p ++=有两根,即()1f x t =或()2f x t =.而()2f x ax bx c =++的图象关于2bx a=-对称,因而()1f x t =或()2f x t =的两根也关于2b x a =-对称.而选项D 中41616422++≠.故选D .【点睛】对于形如()0f g x =⎡⎤⎣⎦的方程(常称为复合方程),通过的解法是令()t x g =,从而得到方程组()()0f tg x t ⎧=⎪⎨=⎪⎩,考虑这个方程组的解即可得到原方程的解,注意原方程的解的特征取决于两个函数的图像特征.9.D解析:D 【解析】试题分析:因函数lg 10xy =的定义域和值域分别为,故应选D .考点:对数函数幂函数的定义域和值域等知识的综合运用.10.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn n e e ==,由此解得5m =,应选答案D 。