函数的奇偶性说课稿

合集下载

《函数的奇偶性》说课稿——获奖说课稿

《函数的奇偶性》说课稿——获奖说课稿

函数的奇偶性前言函数的奇偶性是高中数学中的一个重要概念,也是数学中的常见性质之一。

片面地来讲,它们是课程表中的某一个知识点,但是如果它被用来将不同的数学概念联系起来,比如对称、周期性、等等,则可以把它作为基础知识点,引导学生探求数学中的奇美妙世界。

本文将围绕着函数的奇偶性来进行讲解。

正文什么是函数的奇偶性一个给定的函数,如果对于任意的x,都有f(−x)=−f(x),则称该函数为一个奇函数,如果对于任意的x,都有f(−x)=f(x),则称该函数为一个偶函数。

奇偶性的性质1.若f(x)是一个奇函数,则其图像关于原点对称。

若f(x)是一个偶函数,则其图像关于y轴对称。

2.对于任意的奇函数f(x),f(0)=0。

对于任意的偶函数f(x),f(0)是正的。

3.奇函数与奇函数相加,得到一个奇函数;奇函数与偶函数相加,得到一个奇函数;偶函数与偶函数相加,得到一个偶函数。

4.奇函数与奇函数相乘,得到一个偶函数;奇函数与偶函数相乘,得到一个奇函数;偶函数与偶函数相乘,得到一个偶函数。

5.如果f(x)是一个定义域为$[0,\\infty)$上的偶函,那么f(x)可以表示为一个关于x=0的偶函数的傅里叶级数。

奇偶性的应用对称性奇函数是关于原点对称的,而偶函数则是关于y轴对称的。

根据这一性质,我们可以很容易地画出函数的图像。

例如,对于函数f(x)=x3,其中f(x)是一个奇函数,我们可以得到关于原点的对称图像:奇函数对称性1同样地,对于函数g(x)=x2,其中g(x)是一个偶函数,我们可以得到关于y轴的对称图像:偶函数对称性1这种对称性不仅存在于函数的图像中,还可以应用于方程的解决。

例如,对于二次方程ax2+bx+c=0,如果b=0,那么该方程是一个偶函数。

如果我们知道一个根x0,那么−x0也是一个根。

这种对称性使得解方程变得更加简单。

周期性对于任意函数f(x),如果存在一个正数T,使得f(x+T)=f(x)对任意的x都成立,那么我们称f(x)是有周期的,T是这个周期。

《函数的奇偶性》说课稿

《函数的奇偶性》说课稿

《函数的奇偶性》说课稿【教材地位与作用】《函数的奇偶性》是高中人教版必修一第一章第三节的内容,教材从学生熟悉的两个特殊函数入手,从特殊到一般,从具体到抽象,从感性到理性比较系统地介绍了函数的奇偶性。

【学情分析】1.高一学生在初中已经学过轴对称及中心对称图形,但主要处在感性认知阶段,理性思维片面,缺乏深刻性。

2.从学生的思维特点看,学生很难从前面所学的函数的单调性联系到图形的对称性所反映的函数的奇偶性,这对学生的思维是一个突破,所以让学生利用对图像的直观感受,在学生的主动参与中引导学生多思、多说、多练,使得对问题的认知得到深化。

3.让学生经历函数奇偶性概念建立的全过程,体验数学概念学习的方法,积累数学学习的经验,所以让学生独立去观察、动手计算、归纳猜想,使学生自主参与知识的发生、发展及形成过程。

【教学目标】1.从数与形两个角度引导学生理解奇函数、偶函数的概念。

2.学会利用定义判断奇偶性。

3.渗透数形结合和从特殊到一般的数学思想,培养学生观察、归纳、抽象的能力。

【教学重点】函数奇偶性概念的建立过程,即通过几何直观地把函数图像的对称性用代数形式来描述。

重点确定的理由:学生通过观察函数图像的对称性,产生定量刻画描述的倾向,即通过图像抽象出用解析式描述函数的奇偶性,解决重点的关键是数形结合、归纳抽象。

【教学难点】函数奇偶性概念的形成及奇偶函数定义域的对称性。

难点确定的理由:奇偶性概念中蕴含着“具有奇偶性的函数其定义域关于原点对称”,学生理解的难点是定义域关于原点对称,所以问题主要集中在:如何帮助学生理解定义域的对称性。

【教学过程】一、提出问题,启发思考问题一:在所学过的函数图像中,哪些是轴对称图形、哪些是中心对称图形?预设:二次函数的图像是轴对称图形,反比例函数的图像是中心对称图形,学生到黑板上画出函数的图像并写出解析式。

问题二:华罗庚说过:“数无形时少直觉,形少数时难入微。

”“形”上的对称在“数”上表现出了怎样的规律?要寻找规律一般怎样做?预设:从特殊到抽象,从具体到一般,先猜想再证明。

《函数的奇偶性》说课稿——获奖说课稿

《函数的奇偶性》说课稿——获奖说课稿

函数的奇偶性一、引入在初中数学的学习中,我们学习了许多关于函数的知识,比如函数的定义、图像、性质等。

在这些知识中,函数的奇偶性则是我们需要重点掌握和理解的知识点之一。

那么函数的奇偶性具体是什么呢?为什么要学习它呢?今天我们就来深入探讨一下这个知识点。

二、概念解释1. 奇函数和偶函数先来看一下什么是奇函数和偶函数。

定义:如果对于任意的x均有f(−x)=−f(x),则称函数f(x)为奇函数。

比如y=x3。

如果对于任意的x均有f(−x)=f(x),则称函数f(x)为偶函数。

比如y=x2。

那么,如何来判断一个函数是奇函数还是偶函数呢?可以使用函数的图像来判断。

如下图所示,左边的函数图像为奇函数,右边的函数图像为偶函数。

奇偶性图像奇偶性图像可以看出,奇函数和偶函数的函数图像都具有一定的对称性。

2. 奇偶函数的性质接下来,我们来看一下奇偶函数的性质。

性质1:奇函数的对称中心为原点(0,0)。

偶函数的对称中心为y轴。

性质2:奇函数乘偶函数为奇函数。

奇函数加偶函数为奇函数。

偶函数乘奇函数为奇函数。

偶函数加奇函数为奇函数。

性质3:奇函数的积分区间为[−a,a],积分结果为0,其中a>0。

偶函数的积分区间为[−a,a],积分结果为$2\\int_{0}^{a}f(x)\\mathrm{d}x$,其中a>0。

三、例题演练1. 判断函数的奇偶性例题1:判断函数f(x)=x3−2x的奇偶性。

解析:对于任意的x,都有 $f(-x)=(-x)^3-2\\times(-x)=-x^3+2x=-f(x)$,因此f(x)是奇函数。

2. 奇偶函数性质的应用例题2:已知函数f(x)是偶函数,且在区间[0,3]上的积分为6。

求函数g(x)=f(x+2)−2在区间[−1,2]上的积分。

解析:首先,f(x)是偶函数,即对于任意的x,有f(−x)=f(x)。

因此,g(x)=f(x+2)−2=f(−(x−2))−2=f(2−x)−2。

函数的奇偶性说课稿

函数的奇偶性说课稿

函数的奇偶性说课稿
函数的奇偶性说课稿(精选9篇)
作为一名教师,通常会被要求编写说课稿,是说课取得成功的前提。

那么问题来了,说课稿应该怎么写?下面是小编为大家收集的函数的奇偶性说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

函数的奇偶性说课稿篇1
一、教材分析
1.教材所处的地位和作用
"奇偶性"是人教A版第一章"集合与函数概念"的第3节"函数的基本性质"的第2小节。

奇偶性是函数的一条重要性质,教材从学生熟悉的及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。

从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。

因此,本节课起着承上启下的重要作用。

2.学情分析
从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。

同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题。

3.教学目标
基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:。

函数的奇偶性说课讲稿

函数的奇偶性说课讲稿

数学与信息科学学院说课稿课题函数的奇偶性专业数学与应用数学指导教师王亚雄班级2008级3班姓名曾霞学号200802410272011年4月15日尊敬的各位领导,老师,大家好!我说课的题目是《函数的奇偶性》.选自人民教育出版社《普通高中课程标准实验教科书数学必修1 A版》第一章第三节第二课时,下面我从教材分析、教学方法设计、教学过程设计、板书设计和教学评价五个方面进行阐述.一、教材分析1.课题的地位与作用函数是中学数学的重点和难点,函数的思想贯穿于整个高中数学之中.函数的奇偶性不仅与现实生活中的对称性密切相关,而且是后面学习幂、指、对数函数性质的基础.因此,本节课的内容是至关重要的,它对知识起到了承上启下的作用.2.教学目标根据课程标准、教学大纲的要求和学生的实际水平,我确定了本节课的三维教学目标:a.知识目标使学生理解奇偶性的概念及其图象特征,会利用定义判断函数的奇偶性.b.能力目标培养学生的观察、归纳、类比推理的能力和数形结合的思想.c.情感目标培养学生乐于求索的精神和积极思考,合作交流的学习方式。

3.教学重点、难点为了实现以上三个目标,我确定本节课的重点和难点如下:教学重点:本节课主要是介绍函数的奇偶性,故我将奇、偶函数的概念的理解制定为教学重点。

教学难点:由于学生对抽象事物是陌生的,所以我将由特殊推导到一般归纳出奇、偶函数的概念的过程设定为教学难点。

二、教学方法设计1.学情分析由于学生的于年龄的特征,思维尽管活跃,敏捷,却缺乏冷静,深刻,因此片面,不严谨.从学生的思维特点看,学生很难从前面所学的函数的单调性联系到函数图形的对称性所反映的函数的奇偶性。

2.教法分析根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅.教学过程中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力.3.学法分析为了充分体现新课标理念,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验,这节课主要采用自主探索、观察发现、合作交流的学习方法。

《函数的奇偶性》说课稿——获奖说课稿

《函数的奇偶性》说课稿——获奖说课稿

《函数的奇偶性》说课稿——获奖说课稿引言:函数是数学中非常重要的概念之一,我们在数学学习的过程中会经常遇到各种类型的函数。

不同种类的函数都有不同的性质,今天我将要给大家讲述的是函数的奇偶性。

一、教学目标1. 知识目标:掌握奇函数和偶函数的基本概念、性质及图像。

2. 技能目标:能通过函数的变化确定其奇偶性,并求出奇偶扩展函数。

3. 情感目标:培养学生的求知欲和思考能力,养成勇于解决问题的良好习惯。

二、教学内容1. 函数的基本概念。

2. 奇函数和偶函数的定义与性质。

3. 常见的奇偶函数及其图像。

三、教学过程1. 导入新课,激发学生的学习兴趣。

先让学生思考以下问题:如果用一种颜色区分正数和负数情况下,函数图象会有什么变化? 如图所示,请看以下函数:f(x) = x^2, g(x) = x^3, h(x) = x^4-4x^2。

当x取正数、负数时,f(x)、g(x)、h(x)的值呈现什么规律?2. 引入函数的奇偶性概念引导学生来解答思考的问题,由此,我们很自然地引出了什么是偶函数什么是奇函数。

学生能够理解并总结什么是奇函数,什么是偶函数等相关概念。

3. 探究正、负数时函数的变化规律将函数f(x)、g(x)、h(x)的x值依次取-2、-1、0、1、2,通过对比负数和正数时函数的值得出以下规律:当x取正数时,f(x)、g(x)、h(x)的值相等,即f(x) = g(x) = h(x);当x取负数时,f(x)、g(x)的值相等,而h(x)的值与两个函数值不等;即我们可以说,函数f(x) 和g(x)关于y轴对称,而h(x)没有任何对称轴,只有原点的对称性。

通过以上探究学生能够感受到奇偶性函数的性质,掌握函数的奇偶性。

4. 探究奇函数和偶函数的性质及图像接下来,我们将通过一些例子来探究奇函数和偶函数性质及图像。

首先将以下函数的图像画出:f(x) = x^3, g(x) = x^4从图像中发现,函数f(x)的图像表现了奇函数的性质,它对称于原点,当x取正数时,f(x)、g(x)的值相等,而x取负数时,f(x)、g(x)的值相等;而函数g(x)的图像表现了偶函数的性质,它对称于y轴,函数的图像无论用哪种方法旋转,都能使其与原图像一致,即不会改变原函数的形状。

函数的奇偶性的说课稿

函数的奇偶性的说课稿

函数的奇偶性的说课稿一、说教材本文是高中数学课程中关于函数性质的一个重要部分,主要探讨函数的奇偶性。

函数的奇偶性是研究函数对称性质的基础,是数学中一种基本的函数分类方式。

它不仅在数学理论中占有重要地位,而且在实际应用中也有广泛的影响。

(1)作用与地位:函数的奇偶性是函数概念的重要组成部分,对于深化学生对函数性质的理解,培养学生的抽象思维能力具有重要意义。

此外,它也是后续学习积分、微分等高级数学知识的基础。

(2)主要内容:本文主要介绍了函数的奇偶性的定义、判定方法以及奇偶函数的性质。

具体包括:奇函数的定义、偶函数的定义、奇偶函数的性质和判定方法。

二、说教学目标学习本课,学生需要达到以下教学目标:(1)理解函数奇偶性的定义,掌握判定函数奇偶性的方法;(2)能够判断给定函数的奇偶性,并运用奇偶函数的性质解决相关问题;(3)通过奇偶函数的学习,培养学生的抽象思维能力,提高学生的数学素养。

三、说教学重难点(1)教学重点:1. 函数奇偶性的定义;2. 判定函数奇偶性的方法;3. 奇偶函数的性质。

(2)教学难点:1. 理解奇偶函数的定义,尤其是抽象函数的奇偶性判定;2. 运用奇偶函数性质解决实际问题。

四、说教法为了让学生更好地理解和掌握函数的奇偶性,我设计了一系列的教学方法,旨在激发学生的兴趣,引导他们主动探究,以下是我计划采用的教学方法及亮点:1. 启发法:- 在引入函数奇偶性概念时,我会通过具体的图形示例,如正弦和余弦函数的图像,来启发学生观察和思考这些函数的对称特点。

- 通过提问“为什么这些函数图像会有这样的对称性?”来激发学生的好奇心,引导他们主动探索背后的数学原理。

2. 问答法:- 在讲解奇偶性的定义时,我会采用问答法,让学生回答“什么是奇函数?什么是偶函数?”等问题,通过学生的回答来澄清概念,并纠正理解上的误区。

- 通过对比不同学生的回答,突出正确理解和表达的重要性,同时也能够及时发现并解决学生的疑惑。

关于《函数的奇偶性》说课稿

关于《函数的奇偶性》说课稿

《函数的奇偶性》说课稿关于《函数的奇偶性》说课稿作为一名专为他人授业解惑的人民教师,可能需要进行说课稿编写工作,认真拟定说课稿,怎么样才能写出优秀的说课稿呢?下面是小编为大家整理的关于《函数的奇偶性》说课稿,仅供参考,欢迎大家阅读。

《函数的奇偶性》说课稿1一、教材分析(一)教材特点、教材的地位与作用本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。

函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。

因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。

(二)重点、难点1、本课时的教学重点是:函数的奇偶性及其几何意义。

2、本课时的教学难点是:判断函数的奇偶性的方法与格式。

(三)教学目标1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法;2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。

3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教法、学法分析1.教学方法:启发引导式结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用"引导发现法"进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构。

使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性。

2.学法指导:引导学生采用自主探索与互相协作相结合的学习方式。

让每一位学生都能参与研究,并最终学会学习。

三、教辅手段以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方式进行教学四、教学过程为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:设疑导入,观图激趣。

《函数的奇偶性》说课稿(附教学设计)

《函数的奇偶性》说课稿(附教学设计)

《函数的奇偶性》说课稿一.教材分析“函数奇偶性”是选自人教版高中数学必修第四章第三节的教学内容。

函数奇偶性是函数重要性质之一,函数奇偶性既是函数概念的延续和拓展,也是今后研究各种基本初等函数的基础。

这一节利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学的教学与学习当中。

从方法论的角度来看,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法。

同时在生活及生产实际中有着广泛的应用,所以函数的奇偶性应重点研究。

二、学情分析:思维方面:高一学生已具有一定的形象思维能力,已能从直观的角度来认识一些简单的图形,但分析、归纳、抽象的思维能力还是比较薄弱,通过恰当的培养和引导能够使得学生的分析归纳能力得到提高。

知识方面:通过初中所学的对称图形以及对称的概念的学习,对函数定义域、值域的理解和学习,学生也基本掌握了从哪些方面来认识和学习函数,但是学生的分析归纳能力以及对事物本质的认识能力还比较弱,所以我们必须引导学生从“数”与“形”两个方面来加深对函数奇偶性本质的认识。

三.教学目标分析1.知识目标:了解奇函数与偶函数的概念。

2.能力目标:(1)能从数和形两个角度认识函数奇偶性。

(2)能运用定义判断函数的奇偶性。

3.情感目标:(1)通过函数奇偶性概念的形成过程,培养学生的观察、归纳、抽象的能力,同时渗透数形结合、从特殊到一般的数学思想。

(2)通过对函数奇偶性的研究,培养学生对数学美的体验、乐于求索的精神,形成科学、严谨的研究态度。

四、教法分析和学法分析1.教法分析《新课标》指出:“学生在整个教学活动中,始终是认识与发展的主体。

”遵循“教必须以学为基础”的原则,结合学生在形象思维能力及概括、理解能力上的差异,我选择的是“教师引导下的合作探究”的教学方法。

2.学法分析立足于学生已有的知识经验和认知发展的水平,在教师引导下积极参与充满合作、探索的学习过程,亲身经历概念的形成过程,充分发挥学生的动手参与实践的能力,使学生的学习过程成为在教师指导下的知识“再创造”过程。

《函数的奇偶性》说课稿——获奖说课稿

《函数的奇偶性》说课稿——获奖说课稿

《函数的奇偶性》说课稿之杨若古兰创作尊崇的各位评委、老师们:大家好!今天我说的课是人教A版必修1第一章第3节第2课时“函数的奇偶性”.我将从教材分析、教法和学法的分析、教学过程三个方面来论述我对本节课的理解与设计.首先,来看一下教材分析:一、教材分析1.教材所处的地位和感化“奇偶性”是人教A版第一章“集合与函数概念”的第3节“函数的基赋性质”的第2大节.奇偶性是函数的一条次要性质,教材从先生熟悉的入手,从特殊到普通,从具体到抽象,重视信息技术的利用,比较零碎地介绍了函数的奇偶性.从常识结构看,它既是函数概念的拓展和深化,又是后续研讨指数函数、对数函数、幂函数、三角函数的基础.是以,本节课起着承上启下的次要感化.2.学情分析从先生的认知基础看,先生在初中曾经进修了轴对称图形和中间对称图形,而且有了必定数量的简单函数的储备.同时,刚刚进修了函数单调性,曾经积累了研讨函数的基本方法与初步经验.从先生的思维发展看,高一先生思维能力正在由抽象经验型向抽象理论型改变,能够用假设、推理来思考和解决成绩.3.教学目标基于以上对教材和先生的分析,和新课标理念,我设计了如许的教学目标:【常识与技能】1.能判断一些简单函数的奇偶性.2.能应用函数奇偶性的代数特征和几何意义解决一些简单的成绩.【过程与方法】经历奇偶性概念的构成过程,提高观察抽象能力和从特殊到普通的归纳概括能力.【情感、态度与价值观】通过自立探索,体会数形结合的思想,感受数学的对称美.4、教学重点和难点重点:函数奇偶性的概念和几何意义.虽然“函数奇偶性”这一节常识点其实不是很难理解,但常识点把握不全面的先生容易出现上面的错误.他们常常流于概况方忽视了考虑函数定义域的成绩.是以,在介绍奇、偶函数的定义时,必定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和内涵.是以,我把“函数的奇偶性概念”设计为本节课的重点.在这个成绩上我除了留意概念的讲解,还特意安插了一道例题,来加强本节课重点成绩的讲解.难点:奇偶性概念的数学化提炼过程.因为,先生看待成绩还是静止的、片面的,抽象概括能力比较单薄,这对建构奇偶性的概念形成了必定的困难.是以我把“奇偶性概念的数学化提炼过程”设计为本节课的难点.二、教法与学法分析1、教法根据本节教材内容和编排特点,为了更无效地突出重点,突破难点,按照先生的认知规律,遵守教师为主导,先生为主体,练习为主线的指点思想,采取以引诱发现法为主,直观演示法、类比法为辅.教学中,精心设计一个又一个带有启发性和思考性的成绩,创设成绩情景,引诱先生思考,使先生始终处于自动探索成绩的积极形态,从而培养思维能力.2、学法让先生在“观察一归纳一检验一利用”的进修过程中,自立介入常识的发生、发展、构成的过程,从而使先生把握常识.三、教学过程具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指点观察、构成概念;先生探索、领会定义;常识利用,巩固提高;总结反馈;分层功课,学乃至用.上面我对这六个环节进行说明.(一)设疑导入、观图激趣因为本节内容绝对独立,专题性较强,所以我采取了“开门见山”导入方式,直接点明要学的内容,使先生的思维敏捷定向,达到开始就明确目标突出重点的后果.用多媒体展现一组图片,使先生感受到生活中的对称美.再让先生观察几个特殊函数图象.通过让先生观察图片导入新课,既激发了先生浓厚的进修爱好,又为进修新常识作好铺垫.(二)指点观察、构成概念在这一环节中共设计了2个探究活动.探究1 、2 数学中对称的方式也很多,这节课我们就以函数2)(x x f =和()f x =2-︱x ︱和x x f =)(和x x f 1)(=为例睁开探究.这个探究主如果通过先生的自立探究来实现的,因为有图片的铺垫,绝大多数先生很快就说出函数图象关于Y 轴(原点)对称.接着先生填表,从数值角度研讨图象的这类特征,体此刻自变量与函数值之间有何规律? 引诱先生先把它们具体化,再用数学符号暗示.借助课件演示(令比较 得出等式 , 再令 ,得到 ) 让先生发现两个函数的对称性反应到函数值上具有的特性,)()(x f x f =- ()()(x f x f -=-)然后通过解析式给出严酷证实,进一步说明这个特性对定义域内任意一个 都成立. 最初给出偶函数(奇函数)定义(板书).在这个过程中,先生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出普通的过程体验.(三) 先生探索、领会定义探究3 以下函数图象具有奇偶性吗?设计意图:深化对奇偶性概念的理解.强调:函数具有奇偶性的前提条件是——定义域关于原点对称.(突破了本节课的难点)(四)常识利用,巩固提高在这一环节我设计了4道题例1判断以下函数的奇偶性选例1的第(1)及(3)小题板书来示范解题步调,其他小题让先生在上面完成. 例1设计意图是归纳出判断奇偶性的步调:(1) 先求定义域,看是否关于原点对称;(2) 再判断f(-x)=-f(x) 还是 f(-x)=f(x).例2 判断以下函数的奇偶性:例3 判断以下函数的奇偶性:例2、3设计意图是探究一个函数奇偶性的可能情况有几品种型?例4(1.(2)如果给出函数图象的一部分,你能根据函数的奇偶性画出它在y 轴右边的图象吗?例4设计意图加强函数奇偶性的几何意义的利用.在这个过程中,我重点关注了先生的推理过程的表述.通过这些成绩的解决,先生对函数的奇偶性认识、理解和利用都能提升452(1)()(2)()11(3)()(4)()f x x f x x f x x f x x x ===+=很大一个高度,达到当堂消化接收的后果.(五)总结反馈在以上课堂实录中充分展现了教法、学法中的互动模式,“成绩”贯穿于探究过程的始终,切实体现了启发式、成绩式教学法的特色.在本节课的最初对常识点进行了简单回顾,并引诱先生总结出本节课应积累的解题经验.常识在于积累,而进修数学更在于常识的利用经验的积累.所以提高常识的利用能力、加强错误的预感能力是提高数学综合能力的很次要的计谋.(六)分层功课,学乃至用必做题:课本第36页练习第1-2题.选做题:课本第39页习题1.3A组第6题.思考题:课本第39页习题1.3B组第3题.设计意图:面向全体先生,重视个人差别,加强功课的针对性,对先生进行分层功课,既使先生把握基础常识,又使学不足力的先生有所提高,进一步达到分歧的人在数学上得到分歧的发展.以上是我对教学设计的六个环节的简要说明.上面是我的板书设计:为了简洁明了的给出本节课的常识点及讲解,我将黑板版面分为四部分,其中第一部分是本节课的次要常识点:函数的奇偶性定义;第二部分用来练习训练例题;第三部分用来先生黑板练习训练习题;第四部分用来进行课堂总结及安插功课.想要成为一位优良的教师,任重而道远,在此援用一句古人的诗句自勉:“路漫漫其修远兮,吾将上下而求索”.以上就是我说课的全部内容,感谢各位评委老师!说课终了.。

函数奇偶性说课稿

函数奇偶性说课稿

函数的奇偶性说课稿龙湖中学柯旭娜一、教材分析1、说课内容:函数的奇偶性2、教材的编写意图:教材从具体到抽象,从感性到理性,从实践到理论,层次分明,循序渐进地引导学生回顾自然界和日常生活中具有对称美的事物,进入数学领域观察、归纳,同时渗透数形结合,从特殊到一般的数学思想,形成函数奇偶性概念。

3、教学目标(1)、从形和数两个方面进行引导,使学生理解奇偶性的概念,回会利用定义判断简单函数的奇偶性.(2)、在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的数学思想方法.(3)、在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神.4、教学重点函数奇偶性概念的形成与函数奇偶性的判断5、教学难点对函数奇偶性的概念的理解二、教法选择根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、设疑诱导法为辅。

教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

三、学法指导根据学法指导自主性和差异性原则,让学生在“观察一归纳一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。

四、教学过程的设计:课堂教学是学生数学知识的获得、技能技巧的形成、智力、能力的发展以及思想品德的养成的主要途径。

为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了四个主要的教学程序是:(一)创设情境,引入课题。

(二)归纳探索,形成概念。

(三)掌握方法,适当延展。

(四)归纳小结,提高认识。

五、说课过程:(一)、创设情境,引入课题。

1、让学生感受生活中的美:对称美学生举例,出示一组图片:喜字、蝴蝶、建筑物、麦当劳的标志)(通过让学生观察教学楼导入新课,既激发了学生浓厚的学习兴趣,又为新知作好铺垫。

《函数的奇偶性》说课稿

《函数的奇偶性》说课稿

《函数的奇偶性》说课稿一、教材分析我选用的教材是中职《数学》第一册。

本册教材共有五章,奇偶性处于第三章第四节。

奇偶性是学生学习函数概念后研究的函数重要性质,是学生进入职校后较早接触的用符号语言来刻画的概念。

它既是函数概念的延续和拓展,又是后续学习幂函数、指数函数、对数函数、三角函数等性质的基础,起到了承前启后的作用。

为了提升课堂教学的效果,根据教学内容和后续内容的联系,结合学生情况,我设计3课时的方案,并对教学内容作了增和变的处理:增:一是增加了生活中的一些情境,以激发学生学习兴趣。

二是增加了“利用函数的奇偶性求解析式”,以呼应函数的表示法等相关内容.变:变换例题形式,以促成学生思维能力的提升。

二、学情分析本课的学习者是一年级旅游管理中专班的学生,基本情况如下:此前他们已经初步学习了函数的概念、表示法、一次函数、二次函数和反比例函数的图象和简单性质;同时,在初中已经学习过图形的轴对称与中心对称,对图象的特殊对称性也有了一定的感性认识。

学生好奇心重,思维活跃,求知欲强;但注意力集中时间短,需要多加刺激。

同时,由于基础相对薄弱,缺乏自信及成功的体验,所以需要加强信心的培养,多给予其体验成功的机会。

从学生的认知基础和思维发展看,他们已经有了一定数量的函数知识储备,能够用归纳、推理等方法来思考和解决问题。

但是,学生看待问题相对还是静止的、片面的,逻辑推理和抽象概括能力比较薄弱。

因此,在使用符号化语言刻画奇、偶函数的定义方面会存在一定的难度。

综上情况,通过本课学习,大多数学生能掌握函数奇偶性的概念;能利用图象和定义判断函数的奇偶性;同时,在探究的过程中,能体会数形结合、从特殊到一般的思想,体验数学的符号功能。

三、教学目标依据课程标准、教材、学情,我从三个维度设置目标如下,包括知识与技能目标、过程与方法目标、情感态度与价值观目标。

奇偶性是函数的一条重要性质,只有理解了函数奇偶性的概念才能正确地判断和证明函数的奇偶性,而奇偶性的证明是学习函数内容的过程中较早接触的代数论证问题,它可以训练学生严谨的数学解题过程,提高推理论证的思维能力。

函数的奇偶性说课稿

函数的奇偶性说课稿

函数的奇偶性说课稿函数的奇偶性说课稿1尊敬的各位老师:大家好,我是1号考生。

我说课的题目是《函数的奇偶性》(板书课题),根据新课标的理念,以教什么,怎么教,为什么这样教为思路,我从6个方面进行说课。

一、说设计理念根据新课程教学理念,在教学中,我以领悟为目的,练习为主线,引导学生自主学习,合作探究,在教学中,注重培养学生逻辑思维能力、创新能力、合作能力、归纳能力、及数学联系生活的能力。

即实现数学教学的知识目标,又实现育人的情感目标。

二、说教材《函数的奇偶性》是人教版第一章集合与函数概念单元的重要知识点。

全面介绍了偶函数的定义及判定,奇函数的定义及判定等两部分知识。

为后面学习指数函数、对数函数、三角函数等知识奠定了基础。

(一)教学目标:依据本节课的知识特点及新课标要求,本课的三维教学目标是:1.知识与技能目标是:理解函数的奇偶性及其几何意义,掌握判断函数奇偶性的方法。

2.过程与方法目标是:通过学生自主探索,合作学习,培养学生的观察、分析和归纳等数学能力,渗透数形结合的数学思想。

3.情感态度与价值观目标是:让学生了解数学在生活中运用的广泛性和实用性,引发学生学习数学知识的兴趣。

(二)重点、难点:重点是:函数的奇偶性及其几何意义。

难点是:判断函数的奇偶性的方法。

(三)学情分析本课的授课对象是高一年级的学生,他们思维活跃,求知欲强,他们已经初步认识了函数的概念,高一年级的学生有自主学习、合作探究的能力,但仍需要教师的指导。

三、教法学法教法:本节课采用自主探究法、启发式教学法、讨论交流法等。

学法:引导学生探究合作,归纳总结,注重对学生自主探究问题能力的培养,发挥学习小组的合作作用。

四、教学准备教师制作多媒体课件,编印导学案;学生预习课文,观察生活中具有对称美的物体或图像。

五、教学过程本节课我从导、研、练、拓、升五个环节进行说课。

环节一:创设情境,导入新课。

(导3)、该环节,用多媒体向学生展示现实生活中蝴蝶、太阳、湖面倒影等具有对称性的图像,再让学生举例函数图像是否有类似的属性?通过评价学生回答,引出本节课的标题:函数的奇偶性。

函数的奇偶性的说课稿

函数的奇偶性的说课稿

函数的奇偶性的说课稿一、教学目标1、知识与技能目标:理解函数奇偶性的概念。

掌握判断函数奇偶性的方法。

能利用函数奇偶性的性质解决相关问题。

2、过程与方法目标:通过观察函数图象,引导学生发现函数奇偶性的特征,培养学生的观察能力和归纳能力。

通过对函数奇偶性的定义的探究,培养学生的逻辑推理能力和抽象概括能力。

通过函数奇偶性的应用,提高学生的分析问题和解决问题的能力。

3、情感态度与价值观目标:让学生感受数学的对称美,激发学生学习数学的兴趣。

通过探究函数奇偶性的过程,培养学生勇于探索、创新的精神。

二、教学重难点1、教学重点:函数奇偶性的判断方法。

2、教学难点:函数奇偶性概念的形成过程。

利用函数奇偶性的性质解决较复杂的问题。

三、教学方法1、讲授法:讲解函数奇偶性的概念、性质和判断方法。

2、探究法:引导学生通过观察函数图象、分析函数表达式,探究函数奇偶性的特征。

3、练习法:通过课堂练习和课后作业,巩固学生对函数奇偶性的理解和应用。

四、教学过程1、导入新课展示一些函数的图象,如 y = x²,y =|x|,y = sin x 等,让学生观察这些图象的特点。

提问:这些图象有什么共同的特征?引导学生发现图象关于 y 轴对称或关于原点对称。

2、讲授新课给出函数奇偶性的定义:设函数 f(x) 的定义域为 D,如果对于定义域 D 内的任意一个 x,都有 x ∈ D,且 f(x) = f(x),则称函数 f(x) 为偶函数;如果对于定义域 D 内的任意一个 x,都有 x ∈ D,且 f(x) = f(x),则称函数 f(x) 为奇函数。

强调定义中的关键条件,如定义域的对称性、f(x) 与 f(x) 的关系等。

判断函数的奇偶性举例说明如何判断函数的奇偶性,如判断函数f(x) =x²的奇偶性。

总结判断函数奇偶性的步骤:①确定函数的定义域;②计算f(x);③比较 f(x) 与 f(x) 的关系。

函数奇偶性的性质讲解函数奇偶性的性质,如偶函数的图象关于 y 轴对称,奇函数的图象关于原点对称;偶函数在对称区间上的单调性相反,奇函数在对称区间上的单调性相同等。

函数的奇偶性说课稿-(精选五篇)

函数的奇偶性说课稿-(精选五篇)

函数的奇偶性说课稿-(精选五篇)第一篇:函数的奇偶性说课稿 -函数的奇偶性说课稿各位评委老师好:我今天说课的题目是《函数的奇偶性》接下来我从以下几个环节进行说课。

教材分析、学情分析、目标分析、教学目标、教学方法、教学设计、板书设计。

一.教材分析《函数奇偶性》是选自人教版中等职业教育课程改革国家规划新教材,数学基础模块上册第三章第四节的内容。

它的主要内容是函数奇偶性的概念,判断函数奇偶性的方法与步骤。

在此之前,学生已经学习了函数的概念、函数的表示方法、函数的单调性,为这一节的学习起到了铺垫作用,同时又是后面学习具体函数的基础。

《函数的奇偶性》是高中数学的一个重要内容,它不仅与现实生活中对称性密切相关联,而且是历年高考的热点,重点和必考点,它是函数概念的深化,学习函数奇偶性,能使学生再次体会数型结合思想,初步学会用数学的眼光去看待事物,感受数学的对称美。

二.学情分析认知水平与能力:高一学生具备了一定的观察、类比、分析、归纳能力,已初步具有数形结合思维能力,能在教师的引导下解决问题。

任教班级特点:这个班是医护班,学生数学基础较薄弱,上课注意力不够集中,理解能力不够强,可利用数形结合解决简单问题,但归纳转化的能力与观察讨论能力有待加强。

改进与提高:让学生利用图形直观感受;让学生“归纳、总结、运用”,重视学生的主动参与,注重信息反馈,通过引导学生多思多说多练,使认识得到深化。

三、教学目标根据对教学大纲、教材内容的分析,结合学生已有的认识能力,心理特征及知识水平,我制定教学目标如下。

知识和技能:使学生从形与数两方面理解函数奇偶性的定义,初步掌握利用函数图象和奇偶性定义判断函数奇偶性的方法。

过程与方法:通过对函数奇偶性定义的探究,渗透数形结合思想方法,培养学生的直观想象素养与数学抽象素养;提高学生的逻辑推理素养与运算素养。

情感、态度、价值观:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯;让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.重点与难点重点:函数奇偶性的概念及判断。

《函数的奇偶性》说课稿-获奖说课稿

《函数的奇偶性》说课稿-获奖说课稿

函数的奇偶性尊敬的评委、各位老师、亲爱的同学们:大家好!今天我要说课的内容是《函数的奇偶性》。

在这堂课中,我们将一起探讨函数的奇偶性这一重要概念。

一、教学目标1.理解奇函数和偶函数的概念,掌握判断函数奇偶性的方法;2.会根据函数的奇偶性对函数进行分类;3.培养学生观察、分析、归纳和解决问题的能力。

二、教学内容与过程1.导入新课我们通过观察一些生活中的实例,如车轮、时钟等,可以发现这些物体的形状具有对称性。

那么,这种对称性在数学中是否也有对应的概念呢?答案是肯定的。

今天我们将一起探讨函数的奇偶性这一数学概念。

2.概念引入首先,我们来看一下函数的概念。

函数是一种关系,它将一个数集中的每一个元素映射到另一个数集中唯一确定的值。

为了更好地理解函数的概念,我们可以从以下几个方面进行探讨:(1)函数的定义域和值域定义域是指输入的数的范围,而值域是指输出的数的范围。

在函数的定义域中,每一个数都唯一对应着值域中的一个数。

(2)函数的对应关系函数的对应关系是函数的核心。

它描述了如何将输入转化为输出。

在定义域中,每一个数都对应着值域中唯一确定的一个数。

现在,我们来看一个函数的基本性质:奇偶性。

如果一个函数f(x)对于定义域内的任意x,都有f(-x)=f(x),那么这个函数就是偶函数;如果对于定义域内的任意x,都有f(-x)=-f(x),那么这个函数就是奇函数。

现在我们知道了如何判断一个函数的奇偶性,接下来我们来探讨奇偶性在数学中的应用。

3.奇偶性的应用(1)简化计算利用函数的奇偶性,我们可以简化一些复杂的计算。

例如,对于一个偶函数,它的图像是关于y轴对称的,因此我们只需要计算一半区域内的值就可以得到整个区域的值。

(2)对称性的应用函数的奇偶性反映了函数的对称性。

例如,我们可以利用函数的奇偶性来判断一个函数的图像是否具有对称性。

对于一个奇函数,它的图像是关于原点对称的;对于一个偶函数,它的图像是关于y轴对称的。

(3)化归思想的应用化归思想是一种非常重要的数学思想方法,它将复杂的问题转化为简单的问题进行处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各位老师,大家好!
今天我说课的课题是高中数学人教A版必修一第一章第三节”函数的基本性质”中的“函数的奇偶性”,下面我将从教材分析,教法、学法分析,教学过程,教辅手段,板书设计等方面对本课时的教学设计进行说明。

一、教材分析
(一)教材特点、教材的地位与作用
本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。

函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。

因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。

(二)重点、难点
1、本课时的教学重点是:函数的奇偶性及其几何意义。

2、本课时的教学难点是:判断函数的奇偶性的方法与格式。

(三)教学目标
1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法;
2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。

3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教法、学法分析
1.教学方法:启发引导式
结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用"引导发现法"进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构.使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性.
2.学法指导:引导学生采用自主探索与互相协作相结合的学习方式。

让每一位学生都能参与研究,并最终学会学习.
三、教辅手段
以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方式进行教学
四、教学过程
为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:设疑导入,观图激趣。

指导观察,形成概念。

学生探索、发展思维。

知识应用,巩固提高。

归纳小结,布置作业。

(一)设疑导入,观图激趣
让学生感受生活中的美:展示图片蝴蝶,雪花
学生举例生活中的对称现象
折纸:取一张纸,在其上画出直角坐标系,并在第一象限任画一函数的图象,以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形。

问题:将第一象限和第二象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点
以y轴为折痕将纸对折,然后以x 轴为折痕将纸对折,在纸的背面(即第三象限)画出第二象限内图象的痕迹,然后将纸展开.观察坐标喜之中的图形:
问题:将第一象限和第三象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点
(二)指导观察,形成概念
这节课我们首先从两类对称:轴对称和中心对称展开研究.
思考:请同学们作出函数y=x2的图象,并观察这两个函数图象的对称性如何
给出图象,然后问学生初中是怎样判断图象关于轴对称呢此时提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律
借助课件演示,学生会回答自变量互为相反数,函数值相等.接着再让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示.
思考:由于对任一x,必须有一-x与之对应,因此函数的定义域有什么特征
引导学生发现函数的定义域一定关于原点对称.根据以上特点,请学生用完整的语言叙述定义,同时给出板书: (1)函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数
提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢(同时打出y=1/x的图象让学生观察研究)
学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义:
(2)函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x), 则称f(x)为奇函数
强调注意点:"定义域关于原点对称"的条件必不可少.
接着再探究函数奇偶性的判断方法,根据前面所授知识,归纳步骤:
(1)求出函数的定义域,并判断是否关于原点对称
(2)验证f(-x)=f(x)或f(-x)=-f(x) 3)得出结论
给出例题,加深理解:
例1,利用定义,判断下列函数的奇偶性:
(1)f(x)= x2+1
(2)f(x)=x3-x
(3)f(x)=x4-3x2-1
(4)f(x)=1/x3+1
提出新问题:在例1中的函数中有奇函数,也有偶函数,但象(4)这样的是什么函数呢?
得到注意点:既不是奇函数也不是偶函数的称为非奇非偶函数
接着进行课堂巩固,强调非奇非偶函数的原因有两种,一是定义域不关于原点对称,二是定义域虽关于原点对称,但不满足f(-x)=f(x)或f(-x)=-f(x)
然后根据前面引入知识中,继续探究函数奇偶性的第二种判断方法:图象法:
函数f(x)是奇函数=图象关于原点对称
函数f(x)是偶函数=图象关于y轴对称
给出例2:书P63例3,再进行当堂巩固,
1,书P65ex2
2,说出下列函数的奇偶性:
Y=x4 ; Y=x-1 ;Y=x ;Y=x-2 ;Y=x5 ;Y=x-3
归纳:对形如:y=x n的函数,若n为偶数则它为偶函数,若n为奇数,则它为奇函数(三)学生探索,发展思维.
思考:1,函数y=2是什么函数
2,函数y=0有是什么函数
(四)布置作业: 课本P39习题1.3(A组)第6题,B组第3
五、板书设计。

相关文档
最新文档