江苏省高中数学第二章平面向量第5课时2.3.1平面向量基本定理教案苏教版必修46
平面向量基本定理(教案)
平面向量基本定理(教案)教案章节一:向量的概念回顾1.1 向量的定义向量是有大小和方向的量,通常用箭头表示。
向量可以用坐标形式表示,例如在二维空间中,向量可以表示为(a, b)。
1.2 向量的加法向量的加法是指在同一平面内,将两个向量首尾相接,形成的第三个向量。
向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
教案章节二:平面向量的基本定理2.1 定理的定义平面向量的基本定理是指在平面内,任何两个不共线的向量可以作为平面的基底。
基底是线性无关的向量组,可以通过线性组合表示平面内的任意向量。
2.2 基底的性质基底是线性无关的,即不存在非零的线性组合使得向量组的和为零。
基底可以任意选择,但选择不同的基底会导致向量的坐标不同。
教案章节三:向量的线性组合3.1 线性组合的定义向量的线性组合是指将向量与实数相乘后相加的结果。
例如,a u + b v 表示将向量u 乘以实数a,向量v 乘以实数b,将两个结果相加。
3.2 线性组合的性质线性组合满足分配律,即(a u + b v) + c w = a (u + c w) + b v。
线性组合的系数可以是任意实数,包括正数、负数和零。
教案章节四:向量的坐标表示4.1 坐标系的建立坐标系是由两个或多个轴组成的,用于表示向量的位置和方向。
在二维空间中,通常使用x 轴和y 轴作为坐标轴。
4.2 向量的坐标表示向量可以用坐标形式表示,即(x, y),其中x 表示向量在x 轴上的投影,y 表示向量在y 轴上的投影。
向量的长度可以用勾股定理计算,即|u| = √(x^2 + y^2)。
教案章节五:向量的线性相关性5.1 线性相关的定义向量组线性相关是指存在一组不全为零的实数,使得向量组的和为零。
例如,向量组(u, v, w) 线性相关,当存在不全为零的实数a, b, c,使得a u +b v +c w = 0。
5.2 线性相关性的性质如果向量组线性相关,其中任意一个向量都可以表示为其他向量的线性组合。
第二章 2.3.1 平面向量基本定理
§2.3 平面向量的基本定理及坐标表示2.3.1 平面向量基本定理学习目标 1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.知识点一 平面向量基本定理1.平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.2.基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二 两向量的夹角与垂直1.夹角:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角(如图所示).当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向.2.垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a ⊥b . 思考 如何正确理解两向量夹角概念答案 (1)由于零向量的方向是任意的,因此,零向量可以与任一向量平行,零向量也可以与任一向量垂直.(2)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与向量AB →的夹角,∠BAD 才是向量CA →与向量AB →的夹角.1.平面内任意两个向量都可以作为平面内所有向量的一组基底.( × ) 提示 只有不共线的两个向量才可以作为基底. 2.零向量可以作为基向量.( × )提示 由于0和任意向量共线,故不可作为基向量. 3.平面向量基本定理中基底的选取是唯一的.( × )提示 基底的选取不是唯一的,不共线的两个向量都可作为基底.4.若e 1,e 2是同一平面内两个不共线向量,则λ1e 1+λ2e 2(λ1,λ2为实数)可以表示该平面内所有向量.( √ )题型一 对基底概念的理解例1 设e 1,e 2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是( ) A .e 1+e 2和e 1-e 2 B .3e 1-4e 2和6e 1-8e 2 C .e 1+2e 2和2e 1+e 2 D .e 1和e 1+e 2考点 平面向量基本定理 题点 基底的判定 答案 B解析 选项B 中,6e 1-8e 2=2(3e 1-4e 2),∴6e 1-8e 2与3e 1-4e 2共线,∴不能作为基底,选项A ,C ,D 中两向量均不共线,可以作为基底.故选B.反思感悟 考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来. 跟踪训练1 若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( )A .e 1-e 2,e 2-e 1B .2e 1-e 2,e 1-12e 2C .2e 2-3e 1,6e 1-4e 2D .e 1+e 2,e 1+3e 2 考点 平面向量基本定理 题点 基底的判定 答案 D解析 选项A 中,两个向量为相反向量,即e 1-e 2=-(e 2-e 1),则e 1-e 2,e 2-e 1为共线向量;选项B 中,2e 1-e 2=2⎝⎛⎭⎫e 1-12e 2,也为共线向量;选项C 中,6e 1-4e 2=-2(2e 2-3e 1),为共线向量.根据不共线的向量可以作为基底,只有选项D 符合. 题型二 用基底表示向量例2 如图所示,在▱ABCD 中,E ,F 分别是BC ,DC 边上的中点,若AB →=a ,AD →=b ,试以a ,b 为基底表示DE →,BF →.考点 平面向量基本定理 题点 用基底表示向量解 ∵四边形ABCD 是平行四边形,E ,F 分别是BC ,DC 边上的中点, ∴AD →=BC →=2BE →,BA →=CD →=2CF →, ∴BE →=12AD →=12b ,CF →=12BA →=-12AB →=-12a .∴DE →=DA →+AB →+BE →=-AD →+AB →+BE →=-b +a +12b =a -12b ,BF →=BC →+CF →=AD →+CF →=b -12a .引申探究若本例中其他条件不变,设DE →=a ,BF →=b ,试以a ,b 为基底表示AB →,AD →. 解 取CF 的中点G ,连接EG .∵E ,G 分别为BC ,CF 的中点, ∴EG →=12BF →=12b ,∴DG →=DE →+EG →=a +12b .又∵DG →=34DC →=34AB →,∴AB →=43DG →=43⎝⎛⎭⎫a +12b =43a +23b .又∵AD →=BC →=BF →+FC →=BF →+12DC →=BF →+12AB →,∴AD →=BC →=b +12⎝⎛⎭⎫43a +23b =23a +43b . 反思感悟 将不共线的向量作为基底表示其他向量的方法有两种:一种是利用向量的线性运算及法则对所求向量不断转化,直至能用基底表示为止;另一种是列向量方程组,利用基底表示向量的唯一性求解.跟踪训练2 如图,在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数 答案 43解析 设AB →=a ,AD →=b , 则AE →=12a +b ,AF →=a +12b ,又∵AC →=a +b ,∴AC →=23(AE →+AF →),即λ=μ=23,∴λ+μ=43.题型三 向量的夹角例3 已知|a |=|b |=2,且a 与b 的夹角为60°,设a +b 与a 的夹角为α,a -b 与a 的夹角是β,求α+β.考点 向量夹角的定义及夹角的范围 题点 求向量的夹角解 如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA ,OB 为邻边作▱OACB ,则OC →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a . 因为|a |=|b |=2,所以△OAB 为正三角形, 所以∠OAB =60°=∠ABC ,即a -b 与a 的夹角β=60°.因为|a |=|b |,所以平行四边形OACB 为菱形, 所以OC ⊥AB ,所以∠COA =90°-60°=30°, 即a +b 与a 的夹角α=30°, 所以α+β=90°.反思感悟 (1)求两个向量夹角的关键是利用平移的方法使两个向量起点重合,作两个向量的夹角,按照“一作二证三算”的步骤求出.(2)特别地,a 与b 的夹角为θ,λ1a 与λ2b (λ1,λ2是非零常数)的夹角为θ0,当λ1λ2<0时,θ0=180°-θ;当λ1λ2>0时,θ0=θ.跟踪训练3 在△ABC 中,∠C =90°,BC =12AB ,则AB →与BC →的夹角是( )A .30°B .60°C .120°D .150° 考点 向量夹角的定义及夹角的范围 题点 求向量的夹角 答案 C 解析 如图,作向量AD →=BC →,则∠BAD 是AB →与BC →的夹角,在△ABC 中,因为∠C =90°,BC =12AB ,所以∠ABC =60°,所以∠BAD =120°.平面向量基本定理的应用典例 如图,点A ,B ,C 是圆O 上三点,线段OC 与线段AB 交于圆内一点P .若OC →=mOA →+2mOB →,AP →=λAB →,则λ=________.答案 23解析 ∵OP →与OC →共线,∴存在实数μ,使OP →=μOC →=mμOA →+2mμOB →.∵AP →=OP →-OA →,∴AP →=mμOA →+2mμOB →-OA →=(mμ-1)OA →+2mμOB →=λAB →=λ(OB →-OA →)=-λOA →+λOB →. ∵OA →与OB →不共线,∴⎩⎪⎨⎪⎧mμ-1=-λ,2mμ=λ,解得λ=23.[素养评析] 1.利用平面向量基本定理解决问题时,要抓住用基底表示向量时系数λ1,λ2的唯一性.2.本题主要考查利用平面向量基本定理,建立方程运算求出未知向量,体现了数学运算的核心素养.1.给出下列三种说法:①一个平面内只有一组不共线的向量可作为表示该平面内所有向量的基底;②一个平面内有无数组不共线向量可作为表示该平面内所有向量的基底;③零向量不可作为基底中的向量. 其中,说法正确的为( )A .①②B .②③C .①③D .①②③ 考点 平面向量基本定理 题点 基底的含义与性质 答案 B2.如图所示,设O 是平行四边形ABCD 的两条对角线的交点,给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →. 其中可作为该平面内所有向量的基底的是( ) A .①② B .①③ C .②④ D .③④ 考点 平面向量基本定理 题点 基底的判定 答案 B解析 ②中DA →与BC →共线,④中OD →与OB →共线,①③中两向量不共线,故选B.3.已知向量e 1,e 2不共线,实数x ,y 满足(2x -3y )e 1+(3x -4y )e 2=6e 1+3e 2,则x =________,y =________.考点 平面向量基本定理的应用题点 利用平面向量基本定理求参数 答案 -15 -12解析 ∵向量e 1,e 2不共线,∴⎩⎪⎨⎪⎧ 2x -3y =6,3x -4y =3,解得⎩⎪⎨⎪⎧x =-15,y =-12.4.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________. 考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数 答案 12解析 DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →) =-16AB →+23AC →,又∵AB →与AC →不共线,∴λ1=-16,λ2=23,λ1+λ2=-16+23=12.5.在△ABC 中,点D ,E ,F 依次是边AB 的四等分点,试以CB →=e 1,CA →=e 2为基底表示CF →.考点 平面向量基本定理 题点 用基底表示向量 解 AB →=CB →-CA →=e 1-e 2,因为D ,E ,F 依次是边AB 的四等分点, 所以AF →=34AB →=34(e 1-e 2),所以CF →=CA →+AF →=e 2+34(e 1-e 2)=34e 1+14e 2.1.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量.②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件. (2)零向量与任意向量共线,故不能作为基底. 2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.一、选择题1.如图所示,矩形ABCD 中,BC →=5e 1,DC →=3e 2,则OC →等于( )A.12(5e 1+3e 2) B.12(5e 1-3e 2) C.12(3e 2-5e 1) D.12(5e 2-3e 1) 考点 平面向量基本定理 题点 用基底表示向量 答案 A解析 OC →=12AC →=12(BC →-BA →)=12(BC →+DC →)=12(5e 1+3e 2). 2.如图所示,用向量e 1,e 2表示向量a -b 为( )A .-4e 1-2e 2B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2考点 平面向量基本定理 题点 用基底表示向量 答案 C3.若|a |=|b |=|a -b |=r (r >0),则a 与b 的夹角为( ) A .30° B .45° C .60° D .90° 考点 向量夹角的定义及夹角的范围 题点 求向量的夹角 答案 C4.已知A ,B ,D 三点共线,且对任一点C ,有CD →=43CA →+λCB →,则λ等于( )A.23B.13 C .-13 D .-23 答案 C解析 因为A ,B ,D 三点共线,所以存在实数t ,使AD →=tAB →,则CD →-CA →=t (CB →-CA →). 所以CD →=CA →+t (CB →-CA →)=(1-t )CA →+tCB →. 所以⎩⎪⎨⎪⎧1-t =43,t =λ,解得λ=-13.5.设点D 为△ABC 中边BC 上的中点,O 为AD 上靠近点A 的三等分点,则( ) A.BO →=-16AB →+12AC →B.BO →=16AB →-12AC →C.BO →=56AB →-16AC →D.BO →=-56AB →+16AC →考点 平面向量基本定理 题点 用基底表示向量 答案 D解析 依题意,得BO →=AO →-AB →=13AD →-AB →=13×12(AB →+AC →)-AB →=-56AB →+16AC →,故选D. 6.若OP →1=a ,OP →2=b ,P 1P →=λPP →2(λ≠-1),则OP →等于( )A .a +λbB .λa +(1-λ)bC .λa +bD.11+λa +λ1+λb 考点 平面向量基本定理 题点 用基底表示向量 答案 D解析 ∵P 1P —→=λPP 2—→,∴OP →-OP →1=λ(OP →2-OP →),∴(1+λ)OP →=OP →1+λOP →2, ∴OP →=11+λOP →1+λ1+λOP →2=11+λa +λ1+λb .7.设a ,b 为基底向量,已知向量AB →=a -k b ,CB →=2a +b ,CD →=3a -b ,若A ,B ,D 三点共线,则实数k 的值等于( ) A .2 B .-2 C .10D .-10考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数 答案 A解析 AD →=AB →+BC →+CD →=(a -k b )+(-2a -b )+(3a -b )=2a -(k +2)b ,∵A ,B ,D 三点共线,∴AB →=λAD →,即a -k b =λ[2a -(k +2)b ]=2λa -λ(k +2)b ,∵a ,b 为基底向量,∴⎩⎪⎨⎪⎧2λ=1,k =λ(k +2),解得λ=12,k =2.8.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足O P →=13⎝⎛⎭⎫12OA →+12OB →+2OC →,则点P 一定为( )A .AB 边中线的中点B .AB 边中线的三等分点(非重心)C .△ABC 的重心D .AB 边的中点 答案 B解析 ∵O 是△ABC 的重心,∴OA →+OB →+OC →=0,∴OP →=13⎝⎛⎭⎫-12OC →+2OC →=12OC →,∴点P 是线段OC 的中点,即AB 边中线的三等分点(非重心).故选B.9.已知a =e 1+e 2,b =2e 1-e 2,c =-2e 1+4e 2(e 1,e 2是同一平面内的两个不共线向量),则c =________.(用a ,b 表示) 考点 平面向量基本定理 题点 用基底表示向量 答案 2a -2b 解析 设c =λa +μb ,则-2e 1+4e 2=λ(e 1+e 2)+μ(2e 1-e 2) =(λ+2μ)e 1+(λ-μ)e 2, 因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧ -2=λ+2μ,4=λ-μ,解得⎩⎪⎨⎪⎧λ=2,μ=-2,故c =2a -2b .10.如图,在△MAB 中,C 是边AB 上的一点,且AC =5CB ,设MA →=a ,MB →=b ,则MC →=________.(用a ,b 表示)考点 平面向量基本定理 题点 用基底表示向量 答案 16a +56b解析 MC →=MA →+AC →=MA →+56AB →=MA →+56(MB →-MA →)=16MA →+56MB →=16a +56b .11.已知e 1,e 2不共线,a =e 1+2e 2,b =2e 1+λe 2,要使a ,b 能作为平面内的一组基底,则实数λ的取值范围为______________. 考点 平面向量基本定理 题点 基底的含义与性质 答案 (-∞,4)∪(4,+∞)解析 若能作为平面内的一组基底,则a 与b 不共线.a =e 1+2e 2,b =2e 1+λe 2,由a ≠k b ,即得λ≠4.12.已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为________.考点 向量夹角的定义及夹角的范围 题点 求向量的夹角解析 由题意可画出图形,在△OAB 中,因为∠OAB =60°,|b |=2|a |, 所以∠ABO =30°,OA ⊥OB , 即向量a 与c 的夹角为90°. 三、解答题13.在梯形ABCD 中,AB →∥CD →,M ,N 分别是DA ,BC 的中点,且DC AB =k .设AD →=e 1,AB →=e 2,以e 1,e 2为基底表示向量DC →,BC →,MN →. 考点 平面向量基本定理 题点 用基底表示向量 解 方法一 如图所示,∵AB →=e 2,且DC AB =k ,∴DC →=kAB →=k e 2.又∵AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-DA →=-AB →+DC →+AD → =e 1+(k -1)e 2.又∵MN →+NB →+BA →+AM →=0, 且NB →=-12BC →,AM →=12AD →,∴MN →=-AM →-BA →-NB →=-12AD →+AB →+12BC →=k +12e 2.方法二 如图所示,过C 作CE ∥DA ,交AB 于点E ,交MN 于点F .同方法一可得DC →=k e 2.则BC →=BE →+EC →=-(AB →-DC →)+AD →=e 1+(k -1)e 2, MN →=MF →+FN →=DC →+12EB →=DC →+12(AB →-DC →)=k +12e 2. 方法三 如图所示,连接MB ,MC .同方法一可得DC →=k e 2, BC →=e 1+(k -1)e 2. 由MN →=12(MB →+MC →),得MN →=12(MA →+AB →+MD →+DC →)=12(AB →+DC →)=k +12e 2. 14.如图所示,已知△AOB 中,点C 是以A 为对称中心的点B 的对称点,OD →=2DB →,DC 与OA 交于E ,设OA →=a ,OB →=b .(1)用a 和b 表示向量OC →,DC →; (2)若OE →=λOA →,求实数λ的值. 考点 平面向量基本定理 题点 用基底表示向量解 (1)由题意知A 是BC 的中点,且OD →=23OB →=23b .由平行四边形法则知OB →+OC →=2OA →,∴OC →=2OA →-OB →=2a -b ,DC →=OC →-OD →=(2a -b )-23b =2a -53b .(2)EC →∥DC →,又∵EC →=OC →-OE →=(2a -b )-λa =(2-λ)a -b ,DC →=2a -53b ,∴2-λ2=153,∴λ=45.15.如图,平面内有三个向量OA →,OB →,OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),求λ+μ的值.考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数解 如图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,则OC →=OD →+OE →.在Rt △OCD 中,∵|OC →|=23, ∠COD =30°,∠OCD =90°, ∴|OD →|=4,|CD →|=2, 故OD →=4OA →,OE →=2OB →, 即λ=4,μ=2,∴λ+μ=6.。
第二章 2.3 2.3.1 平面向量基本定理
2.3.1平面向量基本定理1.平面向量基本定理条件e1,e2是同一平面内的两个不共线向量结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底[点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是唯一的;③基底不唯一,只要是同一平面内的两个不共线向量都可作为基底.2.向量的夹角条件两个非零向量a和b产生过程作向量OA=a,OB=b,则∠AOB叫做向量a与b的夹角范围0°≤θ≤180°特殊情况θ=0°a与b同向θ=90°a与b垂直,记作a⊥bθ=180°a与b反向[点睛]当a与b共线同向时,夹角θ为0°,共线反向时,夹角θ为180°,所以两个向量的夹角的范围是0°≤θ≤180°.用基底表示向量[典例]如图,在平行四边形ABCD中,设对角线AC=a,BD=b,试用基底a,b表示AB,BC.[活学活用]如图,已知梯形ABCD中,AD∥BC,E,F分别是AD,BC边上的中点,且BC=3AD,BA=a,BC=b.试以a,b为基底表示EF,DF,CD.向量夹角的简单求解[典例]已知|a|=|b|=2,且a与b的夹角为60°,则a+b与a的夹角是多少?a-b 与a的夹角又是多少?[活学活用]如图,已知△ABC是等边三角形.(1)求向量AB与向量BC的夹角;(2)若E为BC的中点,求向量AE与EC的夹角.平面向量基本定理的应用[典例]NC,AM与BN相交于点P,求AP∶PM与BP∶PN.[一题多变]1.[变设问]在本例条件下,若CM=a,CN=b,试用a,b表示CP,2.[变条件]若本例中的点N 为AC 的中点,其它条件不变,求AP ∶PM 与BP ∶PN .层级一 学业水平达标1.已知平行四边形ABCD 中∠DAB =30°,则AD 与CD 的夹角为( ) A .30° B .60° C .120°D .150°2.设点O 是平行四边形ABCD 两对角线的交点,下列的向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是( )①AD 与AB ;②DA 与BC ;③CA 与DC ;④OD 与OB . A .①② B .①③ C .①④D .③④3.若AD 是△ABC 的中线,已知AB =a ,AC =b ,则以a ,b 为基底表示AD =( ) A .12(a -b )B .12(a +b )C .12(b -a )D .12b +a4.在矩形ABCD 中,O 是对角线的交点,若BC =e 1,DC =e 2,则OC =( ) A .12(e 1+e 2)B .12(e 1-e 2)C .12(2e 2-e 1)D .12(e 2-e 1)5.设D 为△ABC 所在平面内一点,BC =3CD ,则( ) A .AD =-13AB +43AC B .AD =13AB -43ACC .AD =43AB +13AC D .AD =43AB -13AC6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为______.7.已知e 1,e 2是两个不共线向量,a =k 2e 1+⎝⎛⎭⎫1-5k2e 2与b =2e 1+3e 2共线,则实数k =______.8.如下图,在正方形ABCD 中,设AB =a ,AD =b ,BD =c ,则在以a ,b 为基底时,AC 可表示为______,在以a ,c 为基底时,AC 可表示为______.9.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM =13BC ,CN =13CA ,AP =13AB ,若AB =a ,AC =b ,试用a ,b 将MN ,NP ,PM 表示出来.10.证明:三角形的三条中线共点.层级二 应试能力达标1.在△ABC 中,点D 在BC 边上,且BD =2DC ,设AB =a ,AC =b ,则AD 可用基底a ,b 表示为( )A .12(a +b )B .23a +13bC .13a +23bD .13(a +b )2.AD 与BE 分别为△ABC 的边BC ,AC 上的中线,且AD =a ,BE =b ,则BC =( ) A .43a +23bB .23a +43bC .23a -23bD .-23a +23b3.如果e 1,e 2是平面α内所有向量的一组基底,那么,下列命题中正确的是( ) A .若存在实数λ1,λ2,使得λ1e 1+λ2e 1=0,则λ1=λ2=0B .平面α内任一向量a 都可以表示为a =λ1e 1+λ2e 2,其中λ1,λ2∈RC .λ1e 1+λ2e 2不一定在平面α内,λ1,λ2∈RD .对于平面α内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对4.已知非零向量OA ,OB 不共线,且2OP =x OA +y OB ,若PA =λAB (λ∈R),则x ,y 满足的关系是( )A .x +y -2=0B .2x +y -1=0C.x+2y-2=0 D.2x+y-2=05.设e1,e2是平面内的一组基底,且a=e1+2e2,b=-e1+e2,则e1+e2=________a +________b.6.已知非零向量a,b,c满足a+b+c=0,向量a,b的夹角为120°,且|b|=2|a|,则向量a与c的夹角为________.7.设e1,e2是不共线的非零向量,且a=e1-2e2,b=e1+3e2.(1)证明:a,b可以作为一组基底;(2)以a,b为基底,求向量c=3e1-e2的分解式;(3)若4e1-3e2=λa+μb,求λ,μ的值.8.若点M是△ABC所在平面内一点,且满足:AM=34AB+14AC.(1)求△ABM与△ABC的面积之比.(2)若N为AB中点,AM与CN交于点O,设BO=x BM+y BN,求x,y的值.。
第二章 平面向量(第5课时)
(2)平面内不共线的向量e1 , e2叫做表示这一平面内所有 向量的一组基底。
新余市第六中学 高中数学 必修④
平面向量基本定理的应用
在 ABCD中,E为AD的中点,BE与AC交于点F, 1 求证: AF AC 3
新余市第六中学 高中数学 必修④
布置作业
• 课时跟踪训练(十七) 平面向量基本定理(第97 页)(明天早上交)
新余市第六中学 高中数学 必修④
新余市第六中学 高中数学 必修④
平面向量基本定理的应用
同步训练
在△ABC中,已知D是AB边上一点,若 AD 2 DB, 1 CD CA CB,则 =( 3 2 1 1 A. B. C. 修④
平面向量基本定理的应用
同步训练
例题讲解
例1 如图,质量为10kg的物体A沿倾斜角 =30的斜面匀速 下滑,求物体受到的滑动摩擦力和支持力。(g=10 m s 2 ) N
f
F1
F2
G mg
新余市第六中学 高中数学 必修④
平面向量基本定理的应用
例题讲解
例2 如图,在 ABCD中,E, F分别是BC , DC的中点, AB a, AD=b, 用a, b表示BF和DE。
2 如图,在△ABC中,D, F 分别是BC , AC的中点, AE = AD, 3 AB a, AC b.(1)用a, b表示 AE , AF , BE , BF ;(2)求证:B, E , F 三点共线。
a
E A
b F
B
D
C
数学苏教版必修4学案:第2章 2.3 2.3.1 平面向量基本定理
向量的坐标表示2.3.1平面向量基本定理[对应学生用书P42]预习课本P74~76,思考并完成下列问题1.平面向量基本定理的内容是什么?2.平面向量基本定理与向量共线定理,在内容和表述形式上有什么区别和联系?3.如何定义平面向量的基底?[新知初探]1.平面向量基本定理如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.2.基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.[点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是惟一的;③基底不惟一,只要是同一平面内的两个不共线向量都可作为基底.3.正交分解一个平面向量用一组基底e1,e2表示成a=λ1e1+λ2e2的形式,我们称它为向量的分解.当e1,e2所在直线互相垂直时,这种分解也称为向量a的正交分解.[小试身手]1.在矩形ABCD 中,O 是对角线的交点,若BC =e 1,DC =e 2,则OC =________. ★答案★:12(e 1+e 2)2.已知ABCDEF 是正六边形,且AB =a ,AE =b ,则BC =________. 解析:AD =AE +ED =AE +AB =b +a , 又AD =2BC ,∴BC =12(a +b ).★答案★:12(a +b )3.若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是________. ①e 1-e 2,e 2-e 1;②2e 1+e 2,e 1+2e 2;③2e 2-3e 1,6e 1-4e 2;④e 1+e 2,e 1-e 2. ★答案★:②④4.设e 1,e 2是两个不共线的向量,若向量a =2e 1-e 2与向量b =e 1+λe 2(λ∈R)共线,则λ=________.★答案★:-12对基底概念的理解[典例] 如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是________.①a =λe 1+μe 2(λ,μ∈R)可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则λ1μ2=λ2μ1; ④若实数λ,μ使得λe 1+μe 2=0,则λ=μ=0.[解析] 由平面向量基本定理可知,①③④是正确的.对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是惟一的.[★答案★] ②基底具备两个主要特征: (1)基底是两个不共线向量;(2)基底的选择是不惟一的.e 1,e 2是表示平面内所有向量的一组基底,则下列各组向量中,不能作为一组基底的序号是________.①e 1+e 2,e 1-e 2;②3e 1-2e 2,4e 2-6e 1;③e 1+2e 2,e 2+2e 1;④e 2,e 1+e 2;⑤2e 1-15e 2,e 1-110e 2.解析:由题意,知e 1,e 2不共线,易知②中,4e 2-6e 1=-2(3e 1-2e 2),即3e 1-2e 2与4e 2-6e 1共线,∴②不能作基底.⑤中,2e 1-15e 2=2⎝⎛⎭⎫e 1-110e 2, ∴2e 1-15e 2与e 1-110e 2共线不能作基底.★答案★:②⑤向量的分解[典例] 如图,已知▱ABCD 的对角线AC ,BD 交于O 点,设AB =l 1,AD =l 2,OA =l 3,OB =l 4.(1)试以l 1,l 2为基底表示AC ,BD ,DC ,BC ; (2)试以l 1,l 3为基底表示BC ,DA ; (3)试以l 3,l 4为基底表示AB ,BC .[解] (1)AC =l 1+l 2,BD =l 2-l 1,DC =l 1,BC =l 2. (2)BC =AC -AB =-2OA -AB =-l 1-2l 3,DA =CB =-BC =l 1+2l 3.(3)AB =l 4-l 3,BC =OC -OB =-OA -OB =-l 3-l 4.向量分解的方法(1)将两个不共线的向量作为基底,运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止;(2)通过列向量方程或方程组的形式,利用基底表示向量的惟一性求解. 如图,在▱ABCD 中,AB =a ,AD =b ,E ,F 分别是AB ,BC 的中点,G 点使DG =13DC ,试以a ,b 为基底表示向量AF 与EG .解:AF =AB +BF =AB +12BC=AB +12AD =a +12b .EG =EA +AD +DG =-12AB +AD +13DC=-12a +b +13a =-16a +b .平面向量基本定理的应用[若AB =λAM +μAN ,则λ+μ=________.[解析] [法一 基向量法] 由AB =λAM +μAN ,得AB =λ·12(AD +AC )+μ·12(AC +AB ),则⎝⎛⎭⎫μ2-1AB +λ2AD +⎝⎛⎭⎫λ2+μ2AC =0, 得⎝⎛⎭⎫μ2-1AB +λ2AD +⎝⎛⎭⎫λ2+μ2⎝⎛⎭⎫AD +12 AB =0, 得⎝⎛⎭⎫14λ+34μ-1AB +⎝⎛⎭⎫λ+μ2AD =0. 又因为AB ,AD 不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.[法二 待定系数法]连接MN 并延长交AB 的延长线于点T ,由已知易得AB =45AT ,所以,45AT =AB =λAM +μAN ,即AT =54λAM +54μAN ,因为T ,M ,N 三点共线. 所以54λ+54μ=1.所以λ+μ=45.[★答案★] 45当直接利用基底表示向量比较困难时,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量(一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.已知向量e 1,e 2是平面α内所有向量的一组基底,且a =e 1+e 2,b =3e 1-2e 2,c =2e 1+3e 2,若c =λa +μb (λ,μ∈R),试求λ,μ的值.解:将a =e 1+e 2与b =3e 1-2e 2代入c =λa +μb 得 c =λ(e 1+e 2)+μ(3e 1-2e 2)=(λ+3μ)e 1+(λ-2μ)e 2.因为c =2e 1+3e 2,且向量e 1,e 2是平面α内所有向量的一组基底,根据平面向量基本定理中的惟一性可得方程组⎩⎪⎨⎪⎧λ+3μ=2,λ-2μ=3,解得⎩⎨⎧λ=135,μ=-15.层级一 学业水平达标1.设e 1,e 2是平面的一组基底,且a =e 1+2e 2,b =-e 1+e 2,则e 1+e 2=________a +________b .解析:由方程组:⎩⎪⎨⎪⎧a =e 1+2e 2,b =-e 1+e 2,解得⎩⎨⎧e 1=13a -23b ,e 2=13a +13b ,所以e 1+e 2=⎝⎛⎭⎫13a -23b +⎝⎛⎭⎫13a +13b =23a +⎝⎛⎭⎫-13b . ★答案★:23 -132.设点O 是▱ABCD 两对角线的交点,下列的向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是________.①AD 与AB ;②DA 与BC ;③CA 与DC ;④OD 与OB .解析:寻找不共线的向量组即可,在▱ABCD 中,AD 与AB 不共线,CA 与DC 不共线;而DA ∥BC ,OD ∥OB ,故①③可作为基底.★答案★:①③3.AD 与BE 分别为△ABC 的边BC ,AC 上的中线,且AD =a ,BE =b ,则BC =________.解析:设AD 与BE 交点为F ,则FD =13a ,BF =23b .所以BD =BF +FD =23b +13a ,所以BC =2BD =23a +43b .★答案★:23a +43b4.在▱ABCD 中,AB =a ,AD =b ,AM =4MC ,P 为AD 的中点,则MP =______. 解析:如图,MP =AP -AM =12AD -45AC =12AD -45(AB +BC )=12b -45(a +b )=-45a -310b . ★答案★:-45a -310b5.在平面直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC =23OA +13OB ,则|AC ||AB |=________. 解析:因为OC =23OA +13OB ,所以OC -OA =-13OA +13OB =13(OB -OA ),所以AC =13AB ,所以|AC ||AB |=13.★答案★:136.如图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =m AB +211AC ,则实数m 的值为________.解析:因为AP =AB +BP =AB +k BN =AB +k (AN -AB )=AB +k ⎝⎛⎭⎫14 AC -AB =(1-k )AB +k 4AC ,且AP =m AB +211AC ,所以1-k =m ,k 4=211,解得k =811,m =311.★答案★:3117.下面三种说法中,正确的是________.①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底; ②一个平面内有无数多对不共线向量可作为该平面所有向量的基底; ③零向量不可作为基底中的向量.解析:同一平面内两个不共线的向量都可以作为基底. ★答案★:②③8.已知△ABC 中,点D 在BC 边上,且CD =2DB ,CD =r AB +s AC ,则r +s =________.解析:如图,因为CD =AD -AC ,DB =AB -AD .所以CD =AB -DB -AC =AB -12CD -AC .所以32CD =AB -AC ,所以CD =23AB -23AC .又CD =r AB +s AC ,所以r =23,s =-23,所以r +s =0.★答案★:09.已知▱ABCD 的两条对角线相交于点M ,设AB =a ,AD =b ,以a ,b 为基底表示MA ,MB ,MC 和MD .解:AC =AB +AD =a +b ,DB =AB -AD =a -b ,MA =-12AC =-12(a +b )=-12a -12b , MB =12DB =12(a -b )=12a -12b . MC =12AC =12a +12b ,MD =-12DB =-12a +12b .10.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2. (1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式; (3)若4e 1-3e 2=λa +μb ,求λ,μ的值.解:(1)证明:若a ,b 共线,则存在λ∈R ,使a =λb , 则e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线,得⎩⎪⎨⎪⎧λ=1,3λ=-2⇒⎩⎪⎨⎪⎧λ=1,λ=-23.所以λ不存在,故a 与b 不共线,可以作为一组基底. (2)设c =ma +nb (m ,n ∈R),则3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2)=(m +n )e 1+(-2m +3n )e 2.所以⎩⎪⎨⎪⎧ m +n =3,-2m +3n =-1⇒⎩⎪⎨⎪⎧m =2,n =1.所以c =2a +b .(3)由4e 1-3e 2=λa +μb ,得4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2)=(λ+μ)e 1+(-2λ+3μ)e 2.所以⎩⎪⎨⎪⎧λ+μ=4,-2λ+3μ=-3⇒⎩⎪⎨⎪⎧λ=3,μ=1.故所求λ,μ的值分别为3和1.层级二 应试能力达标1.设e 1与e 2是两个不共线向量,a =3e 1+4e 2,b =-2e 1+5e 2,若实数λ,μ满足λa +μb =5e 1-e 2,则λ,μ的值分别为_________________.解析:由题设λa +μb =(3λe 1+4λe 2)+(-2μe 1+5μe 2)=(3λ-2μ)e 1+(4λ+5μ)e 2.又λa +μb=5e 1-e 2.由平面向量基本定理,知⎩⎪⎨⎪⎧3λ-2μ=5,4λ+5μ=-1.解之,得λ=1,μ=-1.★答案★:1,-12.在△ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =13CA +λCB ,则λ=________.解析:∵AD =2DB ,∴CD =CA +AD =CA +23AB =CA +23(CB -CA )=13CA +23CB .又∵CD =13CA +λCB ,∴λ=23.★答案★:233.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为______.解析:∵a ,b 是一组基底,∴a 与b 不共线, ∵(3x -4y )a +(2x -3y )b =6a +3b ,∴⎩⎪⎨⎪⎧ 3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,∴x -y =3. ★答案★:34.已知非零向量OA ,OB 不共线,且2OP =x OA +y OB ,若PA =λAB (λ∈R),则x ,y 满足的关系是________.解析:由PA =λAB ,得OA -OP =λ(OB -OA ), 即OP =(1+λ)OA -λOB .又2OP =x OA +y OB ,∴⎩⎪⎨⎪⎧x =2+2λ,y =-2λ,消去λ得x +y =2. ★答案★:x +y -2=05.如图,在正方形ABCD 中,设AB =a ,AD =b ,BD =c ,则在以a ,b 为基底时,AC 可表示为______,在以a ,c 为基底时,AC 可表示为______.解析:以a ,c 为基底时,将BD 平移,使B 与A 重合,再由三角形法则或平行四边形法则即得.★答案★:a +b 2a +c6.如图,平面内有三个向量OA ,OB ,OC ,其中OA 与OB 的夹角为120°,OA 与OC 的夹角为30°,且|OA |=|OB |=1,|OC |=2 3.若OC =λOA +μOB (λ,μ∈R),则λ+μ的值为________.解析:以OC 为对角线,OA ,OB 方向为边作平行四边形ODCE ,由已知∠COD =30°,∠COE =∠OCD =90°.在Rt △OCD 中,因为|OC |=23,所以|OD |=|OC |cos 30°=4,在Rt △OCE 中,|OE |=|OC |·tan 30°=2,所以OD =4OA ,OE =2OB ,又OC =OD +OE=4OA +2OB ,故λ=4,μ=2,所以λ+μ=6.★答案★:67. 如图所示,在△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,求证:AP ∶PM =4∶1.证明:设AB =b ,AC =c , 则AM =12b +12c ,AN =23AC ,BN =BA +AN =23c -b .因为AP ∥AM ,BP ∥BN ,所以存在λ,μ∈R ,使得AP =λAM ,BP =μBN , 又因为AP +PB =AB ,所以λAM -μBN =AB , 所以由λ⎝⎛⎭⎫12b +12c -μ⎝⎛⎭⎫23c -b =b 得⎝⎛⎭⎫12λ+μb +⎝⎛⎭⎫12λ-23μc =b . 又因为b 与c 不共线.所以⎩⎨⎧12λ+μ=1,12λ-23μ=0.解得⎩⎨⎧λ=45,μ=35.故AP =45AM ,即AP ∶PM =4∶1.8.在△OAB 中,OC =14OA ,OD =12OB ,AD 与BC 交于点M ,设OA =a ,OB =b ,以a ,b 为基底表示OM .解:设OM =ma +nb (m ,n ∈R), 则AM =OM -OA =(m -1)a +nb ,AD =OD -OA =12b -a .因为A ,M ,D 三点共线,所以m -1-1=n12,即m +2n =1. 又CM =OM -OC =⎝⎛⎭⎫m -14a +nb ,CB =OB -OC =-14a +b ,因为C ,M ,B 三点共线,所以m -14-14=n 1, 即4m +n =1,由⎩⎪⎨⎪⎧ m +2n =1,4m +n =1,解得⎩⎨⎧ m =17,n =37,所以OM =17a +37b .。
新教材苏教版必修第二册931平面向量基本定理课件_1
对于等和线,有如下结论: (1)当等和线恰为直线 AB 时,k=1; (2)当等和线在点 O 和直线 AB 之间时,k∈(0,1); (3)当直线 AB 在点 O 与等和线之间时,k∈(1,+∞);
[解] 设―BM→=e1,―CN→=e2,
则―AM→=―AC→+―CM→=-3e2-e1,―BN→=―BC→+―CN→=2e1+e2.
∵A,P,M 和 B,P,N 分别共线,
∴存在实数 λ,μ使得―A→P =λ―AM→=-λe1-3λe2,―B→P =μ―BN→=2μe1+μe2.
故―B→ A =―B→P +―PA→=―B→P -―A→P =(λ+2μ)e1+(3λ+μ)e2.
而
―B→ A
=
―BC→
+
―CA→
=
2e1
+
3e2
,
由
平
面
向
量
基
本
定
理
,
得
λ+2μ=2, 3λ+μ=3,
解
得
λ=45, μ=35.
∴―A→P =45―AM→,―B→P =35―BN→,
∴AP∶PM=4,BP∶PN=32.
[母题探究] (变设问)在本例条件下,若―CM→=a ,―CN→=b ,试用 a ,b 表示―C→P . 解:由本例解可知PBNP=32,则―N→P =25―N→B ,―C→P =―CN→+―N→P =―CN→+25―N→B =b +25 (―CB→-―CN→)=b +45a -25b =35b +45a .
由1p+1q=1,可令1λ-=λ=1q,1p,显然满足(1-λ)+λ=1p+1q=1,即O―C→′
高中数学2.3.1平面向量基本定理教案苏教版必修4
2.3.1 平面向量基本定理教学目标:1.了解平面向量的基本定理及其意义;2.通过定理用两个不共线向量来表示另一向量或将一个向量分解为两个向量; 3.能运用平面向量基本定理处理简单的几何问题.教学重点平面向量基本定理的应用;平面内任一向量都可以用两个不共线非零向量表示. 教学难点:平面向量基本定理的理解.教学方法:引导发现、合作探究.教学过程:一、创设情境,揭示课题问题1 研究火箭升空的某一时刻的速度. 问题2 物理中的力的分解. 二、学生活动1.火箭升空的某一时刻的速度可分解为在竖直向上和水平向前的分速度.2.l 1→,l 2→是两个不共线的向量,a 是平面内的任一向量,如何将a 分解到l 1→,l 2→方向上去?三、构建数学 平面向量基本定理:探索 (1)是不是每一个向量都可以分解成两个不共线向量?且分解是惟一的? (2)对于平面上两个不共线向量1e r ,2e r ,是不是平面上的所有向量都可以用它们来表示? 教师引导学生分析设1e r ,2e r是不共线向量,a 是平面内任一向量.−→−OA =1e r −→−OM =1λ1e r −→−OC =a r =−→−OM +−→−ON =1λ1e r +2λ2e r−→−OB =2e r −→−ON =2λ2e r平面向量基本定理:如果1e r ,2e r是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a r ,有且只有一对实数1λ,2λ,使a r 1λ=1e r +2λ2e r .我们把不共线向量1e r 、2e r叫做表示这一平面内所有向量的一组基底;这个定理也叫共面..向量定理. 注意:(1)1e r ,2e r均是非零向量,必须不共线...,则它是这一平面内所有向量的一组基底. (2)基底不唯一,当基底给定时,分解形式唯一;1λ,2λ是被a r ,1e r ,2e r唯一确定的实数.(3)由定理可将任一向量a r 在给出基底1e r 、2e r的条件下进行分解;同一平面内任一向量....都可以表示为两个不共线向量的线性组合.(4)20λ=时,a r 与1e r 共线;10λ=时,a r 与2e r 共线;120λλ==时,0a =r r . 基底:我们把不共线的向量1e r ,2e r叫做表示这一平面内所有向量的一组基底.正交分解:一个平面向量用一组基底1e r ,2e r 表示成a r 1λ=1e r +2λ2e r的形式,我们称它为向量a r 的分解,当1e r ,2e r 所在直线互相垂直时,这种分解也称为向量a r的正交分解.思考 平面向量基本定理与前面所学的向量共线定理,在内容和表述形式上有什么区别和联系?四、数学运用 1. 例题.例 1 平行四边形ABCD 的对角线AC 和BD 交于点M ,=−→−AB a r ,=−→−AD b r ,试用向量a r ,b r 表示−→−MA ,−→−MB ,−→−MC ,−→−MD .1e r2e ra COBAP例2 如图2-3-4,质量为m 的物体静止地放在斜面上,斜面与水平面的夹角为θ,求斜面对物体的磨擦力→f .例3 已知向量12,e e r r,求作向量-2.51e r +32e r作法:(1)取点O ,作−→−OA =-251e r −→−OB =32e r ;(2)作OACB ,−→−OC 即为所求-251e r +32e r.例4 设1e r ,2e r 是平面内的一组基底,如果−→−AB =31e r -22e r ,−→−BC =41e r +2e r ,−→−CD =81e r -92e r.求证:A ,B ,D 三点共线.变式 设12,e e r r 是两个不共线的向量,已知−→−AB =21e r +k 2e r ,−→−CB =1e r +32e r ,−→−CD =21e r -2e r,若A ,B ,D 三点共线,求k 的值.解 −→−BD =−→−CD -=−→−CB (21e r -2e r )-(1e r +32e r )=1e r -42e r ,∵A ,B ,D三点共线,∴−→−AB 与−→−BD 共线,即存在实数λ,使得−→−AB =λ−→−BD , 即是12122(4)e ke e e λ+=-r r r r.由向量相等的条件,得24k λλ=⎧⎨=-⎩,∴8k =-.例5 如图,−→−OA 、−→−OB 不共线,t AP =−→−−→−AB )(R t ∈, 用−→−OA 、−→−OB 表示−→−OP .变式1 如图,−→−OA ,−→−OB 不共线,P 点在AB 上,求证:存在实数1.=+μλμλ且 使−→−−→−−→−+=OB OA OP μλ.变式2 设−→−OA ,−→−OB 不共线,点P 在O 、A 、B 所在的平面内,且−→−−→−−→−+-=OB t OA t OP )1()(R t ∈.求证:A 、B 、P 三点共线.2.巩固:教材P71练习. 五、小结f-fWθθ P1.熟练掌握平面向量基本定理,平面向量基本定理的理解及注意的问题;2.会应用平面向量基本定理.充分利用向量的加法、减法及实数与向量的积的几何表示.。
高中数学必修四《平面向量的基本定理》PPT
第二章 平面向量
想一想 1.判断两个向量能否作为基底的关键是什么? 提示:判断两个向量能否作为基底的关键是看它们是否共 线,若共线,则不能作为基底,否则可以作为基底.
栏目 导引
第二章 平面向量
2.两向量的夹角与垂直
(1)夹角:已知两个__非__零__向__量___a 和 b,作O→A=a,O→B =b,则∠__A_O__B__=θ 叫做向量 a 与 b 的夹角.
【答案】 30° 60°
栏目 导引
第二章 平面向量
【名师点评】 两向量夹角的实质和求解 (1)明确两向量夹角的定义,实质是从同一起点出发的两 个非零向量构成的不大于平角的角,结合平面几何知识 加以解决. (2)求两个向量的夹角关键是利用平移的方法使两个向量 起点重合,作出两个向量的夹角,按照“一作二证三 算”的步骤求出.
栏目 导引
第二章 平面向量
跟踪训练
2.如图所示,已知等边三角形 ABC. (1)求向量A→B与向量B→C的夹角; (2)若 E 为 BC 的中点,求向量A→E与E→C的夹角.
栏目 导引
第二章 平面向量
解:(1)∵△ABC 为正三角形, ∴∠ABC=60°.延长 AB 至点 D,使|A→B|=|B→D|, ∴A→B=B→D, ∴∠DBC 为向量A→B与B→C的夹角,且∠DBC=120°. (2)∵E 为 BC 的中点,∴AE⊥BC, ∴A→E与E→C的夹角为 90°.
已知向量 a 与 b 的夹角为 60°,则向量-3a 和-12b 的夹 角为________.
答案:60°
栏目 导引
第二章 平面向量
典题例证技法归纳
题型探究
题型一 对基底概念的理解 例1 设e1,e2是不共线的两个向量,给出下列四组向量:
高中数学第二章平面向量2.3.1平面向量基本定理学案(含解析)新人教A版必修4
2.3.1 平面向量基本定理考试标准学法指导1.平面向量基本定理既是本节的重点,也是本节的难点.2.为了更好地理解平面向量基本定理,可以通过改变向量的方向及模的大小作图观察λ1,λ2取不同值时的图形特征,得到平面上任一向量都可以由这个平面内两个不共线的向量e 1,e 2表示出来.3.在△ABC 中,明确AC →与AB →的夹角与CA →与AB →的夹角互补.1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底.状元随笔 平面向量基本定理的理解(1)e →1,e →2是同一平面内的两个不共线的向量,e →1,e →2的选取不唯一,即一个平面可以有多组的基底.(2)平面内的任一向量a →都可以沿基底进行分解. (3)基底e →1,e →2确定后,实数λ1、λ2是唯一确定的. 2.关于两向量的夹角(1)两向量夹角的概念:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ,叫作向量a 与b 的夹角.①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向.(2)垂直:如果a 与b 的夹角是90°,我们说a 与b 垂直,记作a ⊥b . 状元随笔 两向量夹角概念的正确理解(1)由于零向量的方向是任意的,因此,零向量可以与任一向量平行,零向量也可以与任一向量垂直.(2)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与向量AB →的夹角,∠BAD 才是向量CA →与向量AB →的夹角.[小试身手]1.判断下列命题是否正确. (正确的打“√”,错误的打“×”)(1)一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底.( ) (2)若e 1,e 2是同一平面内两个不共线向量,则λ1e 1+λ2e 2(λ1,λ2为实数)可以表示该平面内所有向量.( )(3) 若a e 1+b e 2=c e 1+d e 2(a ,b ,c ,d ∈R ),则a =c ,b =d .( ) 答案:(1)× (2)√ (3)×2.设O 是平行四边形ABCD 两对角线的交点,给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →,其中可作为这个平行四边形所在平面的一组基底的是( )A .①②B .①③C .①④ D.③④解析:①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA →与DC →不共线;④OD →=-OB →,则OD →与OB →共线.由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.答案:B3.在△ABC 中,向量AB →,BC →的夹角是指( )A .∠CAB B .∠ABC C .∠BCAD .以上都不是解析:由两向量夹角的定义知,AB →与BC →的夹角应是∠ABC 的补角,故选D. 答案:D4.如图所示,向量OA →可用向量e 1,e 2表示为________.解析:由图可知,OA →=4e 1+3e 2. 答案:OA →=4e 1+3e 2类型一 平面向量基本定理的理解例1 设e 1,e 2是不共线的两个向量,给出下列四组向量: ①e 1与e 1+e 2; ②e 1-2e 2与e 2-2e 1; ③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧λ=1,1=0,无解,∴e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎪⎨⎪⎧1+2λ=0,2+λ=0,无解,∴e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底. ③∵e 1-2e 2=-12(4e 2-2e 1),∴e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎪⎨⎪⎧1-λ=0,1+λ=0,无解,∴e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③由基底的定义知,平面α内两个不共线的向量e →1、e →2叫做表示这一平面内所有向量的一组基底,要判断所给的两个向量能否构成基底,只要看这两个向量是否共线即可.方法归纳对基底的理解(1)两个向量能否作为一组基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以由这组基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则{ x 1=x 2,y 1=y 2.提醒:一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样.跟踪训练1 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底; ②一个平面内有无数多对不共线向量可作为该平面所有向量的基底; ③零向量不可以作为基底中的向量.其中正确的说法是( )A.①② B .②③ C .①③ D .①②③解析:平面内向量的基底是不唯一的,在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;零向量可看成与任何向量平行,故零向量不可以作为基底中的向量,故B 项正确.答案:B平面内任意一对不共线的向量都可以作为该平面内所有向量的基底,一定要注意“不共线”这一条件,在做题时容易忽略此条件而导致错误,同时还要注意零向量不能作基底.类型二 用基底表示平面向量例2 如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE 与BF 交于点G ,若AB →=a ,AD →=b ,试用a ,b 表示向量DE →,BF →.【解析】 DE →=DA →+AB →+BE →=-AD →+AB →+12BC →=-AD →+AB →+12AD →=a -12b .BF →=BA →+AD →+DF →=-AB →+AD →+12AB →=b -12a .解决此类问题的关键在于以一组不共线的向量为基底,通过向量的加、减、数乘以及向量共线的结论,把其他相关的向量用这一组基底表示出来.方法归纳用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解.跟踪训练2 (1)本例条件不变,试用基底a ,b 表示AG →;(2)若本例中的基向量“AB →,AD →”换为“CE →,CF →”即若CE →=a ,CF →=b ,试用a ,b 表示向量DE →,BF →.解析:(1)由平面几何知识知BG =23BF ,故AG →=AB →+BG →=AB →+23BF →=a +23⎝ ⎛⎭⎪⎫b -12a =a +23b-13a =23a +23b . (2)DE →=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF →=BC →+CF →=2EC →+CF →=-2CE →+CF →=-2a +b .用基底表示平面向量,要充分利用向量加法、减法的三角形法则或平行四边形法则. 类型三 向量的夹角例3 已知|a |=|b |,且a 与b 的夹角为120°,求a +b 与a 的夹角及a -b 与a 的夹角.【解析】 如图,作OA →=a ,OB →=b ,∠AOB =120°,以OA →,OB →为邻边作平行四边形OACB ,则OC →=a +b ,BA →=a -b .因为|a |=|b |,所以平行四边形OACB 为菱形. 所以OC →与OA →的夹角∠AOC =60°,BA →与OA →的夹角即为BA →与BC →的夹角∠ABC =30°.所以a +b 与a 的夹角为60°,a -b 与a 的夹角为30°.作图,由图中找到a →-b →与a →的夹角,利用三角形、四边形的知识求角. 方法归纳两个向量夹角的实质及求解的关键(1)实质:两个向量的夹角,实质上是从同一起点出发的两个非零向量构成的角. (2)关键:求两个向量的夹角,关键是利用平移的方法使两个向量的起点重合,然后按照“一作二证三算”的步骤,并结合平面几何知识求出两个向量的夹角.跟踪训练3 已知|a |=|b |=2,且a 与b 的夹角为60°,求a +b 与a 的夹角,a -b 与a 的夹角.解析:如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA ,OB 为邻边作▱OACB , 则OC →=OA →+OB →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a . 因为|a |=|b |=2,所以△OAB 为正三角形. 所以∠OAB =60°=∠ABC . 即a -b 与a 的夹角为60°. 因为|a |=|b |,所以▱OACB 为菱形.所以OC ⊥AB ,所以∠COA =90°-60°=30°. 即a +b 与a 的夹角为30°.作出向量a →,b →,a →+b →,a →-b →,利用平面几何知识求解. 2.3.1[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( )A .不共线B .共线C .相等D .不确定 解析:∵a +b =3e 1-e 2,∴c =2(a +b ).∴a +b 与c 共线. 答案:B2.当向量a 与b 共线时,则这两个向量的夹角θ为( ) A .0° B.90°C .180°D .0°或180°解析:当向量a 与b 共线,即两向量同向时夹角θ=0°,反向时夹角θ=180°. 答案:D3.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a解析:如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD →-AB →=2b -a .答案:B4.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 解析:如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 答案:D5.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( )55C.85D.45解析:∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.答案:C二、填空题(每小题5分,共15分)6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.解析:因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.答案:37.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.解析:AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b .答案:2a -b8.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.解析:BE →=BC →+CE →=AD →-12AB →=b -12a .2三、解答题(每小题10分,共20分)9.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .解析:因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .10.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB→=a ,AC →=b ,试用a ,b 将MN →、NP →、PM →表示出来.解析:NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).[能力提升](20分钟,40分)11.设非零向量a ,b ,c 满足|a |=|b |=|c |,a +b =c ,则向量a ,b 的夹角为( ) A .150° B.120° C .60° D.30°解析:设向量a ,b 的夹角为θ,作BC →=a ,CA →=b ,则c =a +b =BA →(图略),a ,b 的夹角为180°-∠C .∵|a |=|b |=|c |,∴∠C =60°,∴θ=120°.答案:B 12.如图,在△ABC 中,已知AB =2,BC =3,∠ABC =60°,AH ⊥BC 于H ,M 为AH 的中点,若AM →=λAB →+μBC →,则λ+μ=________.解析:因为AB =2,∠ABC =60°,AH ⊥BC ,所以BH =1,又M 为AH 的中点,BC =3,所以AM →=12AH →=12(AB →+BH →)=12(AB →+13BC →)=12AB →+16BC →,所以λ+μ=23. 答案:2313.如图,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b ,试以a ,b 为基底表示OM →.解析:根据平面向量基本定理可设OM →=m a +n b (m ,n ∈R ),则AM →=OM →-OA →=(m -1)a +n b ,AD →=OD →-OA →=12b -a =-a +12b , ∵A 、M 、D 三点共线,∴AM →=λAD →(λ为实数),∴AM →=-λa +λ2b , ∴⎩⎪⎨⎪⎧ m -1=-λ,n =12λ,消去λ得m +2n =1.而CM →=OM →-OC →=⎝ ⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b , ∵C 、M 、B 三点共线,∴CM →=μCB →(μ为实数),∴CM →=-μ4a +μb ,∴⎩⎪⎨⎪⎧ m -14=-14μ,n =μ,消去μ得4m +n =1.由⎩⎪⎨⎪⎧ m +2n =1,4m +n =1解得⎩⎪⎨⎪⎧ m =17,n =37,∴OM →=17a +37b . 14.在△ABC 中,AB =3,BC =1,AC =2,D 是AC 的中点.求:(1)AD →与BD →夹角的大小;(2)DC →与BD →夹角的大小.解析:(1)如图所示,在△ABC 中,AB =3,BC =1,AC =2,所以AB 2+BC 2=(3)2+1=22=AC 2,所以△ABC 为直角三角形.因为tan A =BC AB =13=33, 所以A =30°.又因为D 为AC 的中点,所以∠ABD =∠A =30°,AD →=DC →.在△ABD 中,∠BDA =180°-∠A -∠ABD =180°-30°-30°=120°,所以AD →与BD →的夹角为120°.(2)因为AD →=DC →,所以DC →与BD →的夹角也为120°.。
高中数学第二章平面向量2.3.2平面向量的坐标运算(1)课件苏教版必修4
知识点三 思考 1
平面向量的坐标运算
设i、j 是与x轴、y轴同向的两个单位向量,若设a =(x1 ,y1) ,b
=(x2,y2),则a=x1i+y1j,b=x2i+y2j,根据向量的线性运算性质,向 量a+b,a-b,λa(λ∈R)如何分别用基底i、j表示?
答 a+b=(x1+x2)i+(y1+y2)j,
第2章 §2.3 向量的坐标表示
2.3.2 平面向量的坐标运算(一)
学习目标
1.了解平面向量的正交分解,掌握向量的坐标表示. 2.掌握两个向量和、差及数乘向量的坐标运算法则. 3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来.
问题导学
题型探究
达标检测
问题导学
知识点一 平面向量的正交分解
则(-1,2)=λ1(1,2)+λ2(-2,3)=(λ1-2λ2,2λ1+3λ2),
λ =1, 1 7 -1=λ1-2λ2, ∴ 解得 4 2=2λ1+3λ2, λ= . 2 7
1 4 ∴a=7e1+7e2.
解析答案
1
2
3
4
5
→ 1→ 4.已知两点 M(3,2),N(-5,-5),MP=2MN,则点 P
返回
题型探究
类型一 求向量的坐标
例1 如图,在直角坐标系xOy中,OA
重点难点 个个击破
= 4 , AB = 3 , ∠AOx = 45°, ∠OAB → → =105°, OA =a, AB =b.四边形 OABC为平行四边形. (1)求向量a,b的坐标;
解析答案
→ (2)求向量BA的坐标;
解
解析 因为点 P 在 MN 的延长线上,|MP|=2|PN|,
→ → 又MN=(0,5)-(2,-1)=(-2,6),所以MP=(-4,12),
高中数学第二章平面向量教案完整版
例 4 如图, 设 O 是正六边形 ABCDEF 的中心, 分别写出图中与向量 OA 、 OB 、 OC 相
等的向量 .
变式一:与向量长度相等的向量有多少个?(
11 个)
变式二:是否存在与向量长度相等、方向相反的向量?(存在)
变式三:与向量共线的向量有哪些?( CB, DO, FE )
课堂练习 : 1.判断下列命题是否正确,若不正确,请简述理由
说明:( 1)平行向量可以在同一直线上,要区别于两平行线的位置关系;
可以相互平行,要区别于在同一直线上的线段的位置关系
.
(与.有.向.线.段.的. ( 2)共线向量
(四)理解和巩固:
例 1 书本 86 页例 1. 例 2 判断:
( 1)平行向量是否一定方向相同?(不一定)
( 2)不相等的向量是否一定不平行?(不一定)
学习必备
欢迎下载
说明:零向量、单位向量的定义都只是限制了大小
.
5、平行向量定义: ①方向相同或相反的非零向量叫平行向量;②我们规定
0 与任一向量平行 .
说明:( 1)综合①、②才是平行向量的完整定义; ( 2)向量 a、b、c平行,记作 a ∥ b∥ c.
6、相等向量定义: 长度相等且方向相同的向量叫相等向量 .
A
B
C
则两次的位移和: AB BC AC
(2)若上题改为从 A 到 B,再从 B 按反方向到 C,
CA
B
则两次的位移和: AB BC AC
(3)某车从 A 到 B ,再从 B 改变方向到 C,
C
则两次的位移和: AB BC AC
A
B
C
(4)船速为 AB ,水速为 BC ,则两速度和: AB BC AC
2019_2020学年高中数学第2章平面向量2.3.1平面向量基本定理课件新人教A版必修4
a与b 7 __同__向______ a与b 8 __垂__直______,记作 9 _a_⊥__b______
a与b 10 ___反__向_____
‖小试身手‖
3.若向量a,b的夹角为30°,则向量-a,-b的夹角为
() A.60°
B.30°
C.120°
D.150°
答案:B 4.在等腰
Rt△ABC
题型二 向量的夹角
【例 2】 已知|a|=|b|=2,且 a 与 b 的夹角为 60°,设 a+b 与 a 的夹角为 α,a-b 与 a 的夹角是 β,求 α+β.
[解] 如图,作O→A=a,O→B=b,且∠AOB=60°,
以O→A,O→B为邻边作▱OACB, 则O→C=a+b,B→A=O→A-O→B=a-b, B→C=O→A=a.
解:解法一:∵A→B=e2,DABC=k, ∴D→C=kA→B=ke2. ∵A→B+B→C+C→D+D→A=0, ∴B→C=-A→B-C→D-D→A =-A→B+D→C+A→D=e1+(k-1)e2. 又M→N+N→B+B→A+A→M=0,
且N→B=-12B→C,A→M=12A→D, ∴M→N=-A→M-B→A-N→B =-12A→D+A→B+12B→C=k+2 1e2. 解法二:同解法一得,D→C=ke2, B→C=e1+(k-1)e2.连接MB,MC, 由M→N=12(M→B+M→C)得,M→N=12(M→A+A→B+M→D+D→C)=12(A→B +D→C)=k+2 1e2.
A.a-12b
B.12a-b
C.a+12b
D.12a+b
解析:选 D 连接 CD,OD,如图所示.∵ 点 C,D 是半圆弧 AB 上的两个三等分点,∴ AC=CD,∠CAD=∠DAO=30°.∵OA=OD, ∴∠ADO=∠DAO=30°,∴∠CAD=∠ADO, ∴AC∥DO.由 AC=CD,得∠CDA=∠CAD=30°,∴∠CDA=∠ DAO,∴CD∥AO,∴四边形 ACDO 为平行四边形, ∴A→D=A→O +A→C=12A→B+A→C=12a+b.故选 D.
高中数学探究导学课型第二章平面向量2.3.1平面向量基本定理课件新人教版必修4
1 AB 2 AC.
所以6λ1+λ32= 1 .
答案: 1
2
2
第十四页,共46页。
【备选训练】已知G为△ABC的重心(zhòngAxīBn),a,设AC b. 试用基底a,b表示向量 AG(仿. 照教材P94例1的解析过程)
第十五页,共46页。
【解析】连接(liánjiē)AG并延长,交BC于点D,则D为BC的
的夹角为
答案:120°
第十二页,共46页。
4.设D,E分别(fēnbié)是△ABC的边AB,BC上AD的点1 A,B,
2
BE 2 BC,若
3
DE 1AB 2 AC (λ1,λ2为实数),则
λ1+λ2的值为________.
第十三页,共46页。
【解析( jiě xī)】D易E知 1 AB 2 BC 1 AB 2 AC AB 23 23
3
故AG AB BG AB 2 BF a 2 (b 1 a)
3
32
a 2 b 1 a 2 a 2 b. 3333
第三十二页,共46页。
2.若本例中的基向量 “AB, AD”换为“CE,C即F”若 CE a,CF b试, 用(shìyòng)a,b表示D向E,量BF. 【解析】
第十七页,共46页。
2.对于同一向量a,若基底不同,则表示这一向量a的实数 λ1,λ2的值是否相同? 提示(tíshì):不相同,根据平面向量基本定理 a=λ1e1+λ2e2,向量e1,e2改变时,λ1,λ2的值也变化.
第十八页,共46页。
【拓展延伸】平面向量基本定理的实质 这个(zhè ge)定理告诉我们,平面内任意向量都可以沿 两个不共线的方向分解为两个向量的和,并且这种分解 是唯一的.λ1e1+λ2e2叫做e1,e2的一个线性组合.由平 面向量基本定理可知,如果e1,e2不共线,那么由e1,e2的 所有线性组合构成的集合{λ1e1+λ2e2}(λ1,λ2∈R) 就是平面内的全体向量.
2.3.1《平面向量的基本定理》 (1)
例2.用基底 i , j 分别表示向量a,b,c,d,并求出它们的坐标. y
b 2i 3 j
b
(2, 3)
-4 -3 -2
c 2i 3 j c
(2, 3)
5
4
3 2
1
j
-1 O -1
i1
-2
B AB 2i 3 j
a
(2,3)
A
2 34
x
d
d 2i 3 j
(2, 3)
练习:在同一直角坐标系内画出下列向量.
3.正交分解
把一个向量分解为两个互相垂直的向量,叫 λ2 a2
a
做把向量正交分解.
F1
F2
λ1a1
G
重力G的分解就是正交分解
在平面上,如果选取互相垂直的向量作为基底时,会为我们研究 问题带来方便。
如图,在平面直角坐标系中,分别取与x轴、y轴方向相 同的两个单位向量i、j作为基底.对于平面内的一个向量a, 由平面向量基本定理可知,有且只有一对实数x、y,使得
ห้องสมุดไป่ตู้
1 2
AC
1 2
(a
b)
1 2
a
1b 2
MB 1 DB 1 (a b) 1 a 1 b
22
22
MC 1 AC 1 a 1 b
(2) 4e1 e2;
(3)
2e1
1 2
e2.
e1
1
e2
O 2 e2
C
2e1
OB
2e1
1 2
e2 ;
A
B
2.3.2平面向量正交分解及 坐标表示
F1
F2
G
G与F1,F2有什么关系? G=F1+F2
2.3.1平面向量基本定理(必修四 数学 优秀课件)
即(2 - )a +(k - 4 )b = 0
k – 4 = 0 8.
2 - = 0
k =
e2是同一平面内的两个不 如果 e1 、 共线向量,那么对于这一平面内的任 一向量 a 有且只有一对实数1、 2 使 a = 1 e1 + 2e2 e2叫做表 我们把不共线的向量e1 、 示这一平面内所有向量的一组基底。
思考 (1)一组平面向量的基底有多少对? (有无数对) C F M M C A O a N B O a N E
AB与BD共线,则存在实数
λ使得AB = λBD.
由于BD = CD – CB
k =
=(2a – b) –(a +3b) = a – 4b 则需 2a + kb = (a – 4b ) 2 = 由向量相等的条件得 k = 4
8.
此处可另解:
则需 2a + kb = (a – 4b )
e2
B
A
e1 2.5e
1
3e2
· O
向量的夹角
思考1:不共线的向量有不同的方向,对 于两个非零向量a和b,作 OA a,OB b, 如图.为了反映这两个向量的位置关系, 称∠AOB为向量a与b的夹角.你认为向量 的夹角的取值范围应如何约定为宜?
B a b b
[0°,180°]
1 a 2
总结: 1、平面向量基本定理内容 2、对基本定理的理解 (1)实数对λ1、 λ2的存在性和唯一性 (2)基底的不唯一性 (3)定理的拓展性 3、平面向量基本定理的应用 求作向量、解(证)向量问题、解(证) 平面几何问题
思考
设 a、b是两个不共线的向量, 已知AB = 2a + kb, CB = a + 3b, CD = 2a – b,若A、B、D三点共线, 求k的值。 解: A、B、D三点共线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5课时 §2.3.1 平面向量基本定理
【教学目标】 一、知识与技能
1.理解向量的坐标表示法,掌握平面向量与一对有序实数一一对应关系;
2.正确地用坐标表示向量,对起点不在原点的平面向量能利用向量相等的关系来用坐标表示;
3.掌握两向量的和、差,实数与向量积的坐标表示法。
二、过程与方法
在实际问题中经历和感受平面内任何一个向量都可以由不共线的另外两向量来表示。
三、情感、态度与价值观
通过平面向量基本定理内容的推导让学生不断了解数学,走进数学,增强学生的数学素养。
【教学重点难点】基本定理的得出与证明、基本定理的简单应用、 一、创设情景:
问题1、 ABCD 的对角线AC 和BD 交于点M ,b a
==,,
试用向量a ,b
表示MD MB MA MC ,,,。
结论:由作图可得2211e e a
λλ+=
问题2、对于向量a
,21,λλ是否是惟一的一组?
二、讲解新课:
平面向量基本定理:如果21,e e 是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数21,λλ,使2211e e a
λλ+=
注: ①1e ,2e 均非零向量;
②1e ,2e 不唯一(事先给定); ③1λ,2λ唯一;
④20λ=时,a 与1e 共线;10λ=时,a 与2e 共线;120λλ==时,0a =
基底:
D
b
C B
a
A
M
正交分解: 三、例题分析:
例1、 已知向量1e ,2e (如图),求作向量2135
2e e
+-.
例2、 如图,OA 、OB 不共线, ()AP t AB t R =∈,用OA 、OB 表示OP .
例3、已知梯形ABCD 中,||2||AB DC =,M ,N 分别是
AB 1e =,2AD e =,用1e ,2e 表示DC 、BC 、MN .
例4、 已知在四边形ABCD 中,2AB a b =+,4BC a b =--,53CD a b =--, 求证:ABCD 是梯形。
例5、设,a b 是两个不共线的非零向量,记,()OA a OB tb t R ==∈,1
()3
OC a b =+,那么当实数t 为何值时,A ,B ,C 三点共线
五、课时小结:
1.熟练掌握平面向量基本定理;
2.会应用平面向量基本定理.充分利用向量的加法、减法及实数与向量的积的几何表示。
1e
2e。