刚体动力学课件
刚体动力学
![刚体动力学](https://img.taocdn.com/s3/m/0b0584bf960590c69ec3762f.png)
●
刚体基本动力学量
现在取 Axyz 坐标系为一个平动参考系 , 则刚体上的 R 点相对速度为 v r R =× R
dV
【定理】刚体相对动量为 p r =× mt R C
证明:pr =∫ v r R dV =∫ × R R dV
=×∫ R R dV =×m t RC(证毕)
⇒ L'A =∫ R2 I − R R ⋅ R dV =[∫ R2 I − R R R dV ]⋅
= J A⋅
(证毕)
1 1 ' 【定理】刚体相对动能为 T r = ⋅L A= ⋅J A⋅ 2 2
证明: T r=
1 1 2 v r R dV = ∫ v r⋅v r R dV ∫ 2 2 1 1 × R ⋅ v R dV = R × v r ⋅ R dV ∫ ∫ r 2 2
【推论】匀质刚体如果有一过 A 的镜像对称面,则过 A 且 与该镜像面垂直的轴是主轴;如果过 A 有两个正交的 镜像面,则两镜像面过 A 点的法线以及镜像面的交线 构成主轴系;匀质旋转体的旋转轴和任意与之正交的 两正交轴构成主轴系 . (请自己根据定义证明) 【定理】假定角速度在主轴坐标系下表示为
d d' J A⋅ 是矢量, J A⋅ = J A⋅× J A⋅ dt dt
⇒⋯⇒ J A⋅ = J XZ X J YZ Y J ZZ Z = ˙ Z ˙
d e ⋅M A ⇒ Z⋅ J A⋅= J ZZ = ≡M Z ¨ Z dt
2
J lk = J kl
(证毕)
因为:
lk =kl , Rl R k = Rk Rl
注:一般把 Jlk 称为惯量系数,由于对称性,只有 6 个是独立的 注:如果 AXYZ 不是固连在刚体上的坐标系,则 R 相对 AXYZ 有 转动,那么在 AXYZ 上看到的质量分布一般会随时间改变, 故在这个坐标系中惯量系数依赖于时间 . 注:如果 AXYZ 不是固连在刚体上的坐标系,在少数有良好对称性 的情况下 AXYZ 上看到的质量分布可能不随时间改变,此时在 这个坐标系中惯量系数是常数 .
第7.5节刚体平面运动的动力学
![第7.5节刚体平面运动的动力学](https://img.taocdn.com/s3/m/16efc84f48d7c1c708a145b1.png)
第7.5节 刚体平面运动的动力学7.5.1 10m 搞得烟筒因底部损坏而倒下来,求其上端到达地面时的线速度。
设倾倒时底部未移动。
可近似认为烟筒为均质杆。
解:烟筒的长度l =10m 。
设烟筒上端到达地面的瞬间,烟筒绕其底部的转动角速度为ω。
在倾倒过程中,只受重力作用,做的功为:mg ⋅½l 。
由刚体定轴转动的动能定理:lgmlI I l mg 323122121=∴==⋅ωω烟筒上端到达地面时的线速度为:s m gl l v /2.17108.933≈⨯⨯===ω7.5.2 用四根质量各为m 长度各为l 的均质细杆制成正方形框架,可围绕其中一边的中点在竖直平面内转动,支点O 是光滑的.最初,框架处于静止且AB 边沿竖直方向,释放后向下摆动,求当AB 边达到水平时,框架质心的线速度C v。
以及框架作用于支点的压力N .解:先求正方形框架对通过其质心且与其垂直的转轴(质心轴)的转动惯量:框架的质心位于框架的中心,即两条对角线的交点上。
每根细杆对其本身的质心轴的转动惯量:21210ml I =,细杆的质心与框架的质心的距离为l 21,由平行轴定理:2342210])([4ml l m I I c =⋅+⋅=再由平行轴定理,得框架对通过0点的转轴的转动惯量:237221)(4ml l m I I c =⋅+=(1)求框架质心的线速度v c框架在下摆过程中,只有重力做功,机械能守恒。
选取杆AB 达到水平时框架质心位置位势能零点,得:gll v l h m M I Mgh c lgc c 7321712212214===∴===ωωω(2)求框架对支点的压力N以框架为研究对象,它受到重力M g 和支点的支撑力N 的作用,由质心运动定理:c a M g M N =+取自然坐标系,τ沿水平方向,n 铅直向上,得投影方程:βτττc n c c n n Mh Ma N mgmg mg N mg l gl m h v M Ma Mg N n===+=⇒=⋅===-7372472421732744:ˆ:ˆ在铅直位置时,外力矩为0,故角加速度β=0,==〉N τ = 07.5.3 由长为l ,质量各为m 的均质细杆组成正方形框架,其中一角连于光滑水平转轴O ,转轴与框架所在平面垂直.最初,对角线OP 处于水平,然后从静止开始向下自由摆动.求OP 对角线与水平成450时P 点的速度,并求此时框架对支点的作用力.解:先求正方形框架对通过其质心且与其垂直的转轴(质心轴)的转动惯量:框架的质心位于框架的中心,即两条对角线的交点上。
《刚体动力学 》课件
![《刚体动力学 》课件](https://img.taocdn.com/s3/m/99016a91ac51f01dc281e53a580216fc700a53fe.png)
牛顿第二定律
物体的加速度与作用在物 体上的力成正比,与物体 的质量成反比。
牛顿第三定律
对于任何两个相互作用的 物体,作用力和反作用力 总是大小相等,方向相反 ,作用在同一条直线上。
刚体的平动
刚体的平动是指刚体在空间中 的位置随时间的变化而变化, 而刚体的形状和大小保持不变
的运动。
刚体的平动具有三个自由度 ,即三个方向的平动。
05
刚体的动力学方程
刚体的动力学方程
牛顿第二定律
刚体的加速度与作用力成正比,与刚体质量 成反比。
刚体的转动定律
刚体的角加速度与作用力矩成正比,与刚体 对转动轴的转动惯量成反比。
刚体的动量方程
刚体的动量变化率等于作用力对时间的积分 。
刚体的自由度与约束
自由度
描述刚体运动的独立变量,如平动自由度和转动 自由度。
约束
限制刚体运动的条件,如固定约束、滑动约束等 。
约束方程
描述刚体运动受约束的数学表达式。
刚体的动力学方程的求解方法
解析法
通过代数运算求解动力学方程,适用于简单问 题。
数值法
通过迭代逼近求解动力学方程,适用于复杂问 题。
近似法
通过近似模型求解动力学方程,适用于实际问题。
06
刚体动力学中的问题与实例 分析
人工智能和机器学习的发展将为刚体 动力学的研究提供新的思路和方法, 有助于解决复杂动力学问题。
感谢您的观看
THANKS
船舶工程
在船舶工程中,刚体动力学 用于研究船舶的航行稳定性 、推进效率以及船舶结构的 安全性等。
兵器科学与技术
在兵器科学与技术领域,刚 体动力学用于研究弹药的发 射动力学、火炮的射击精度 和稳定性等。
刚体与流体
![刚体与流体](https://img.taocdn.com/s3/m/d0382f96dd88d0d233d46ad0.png)
第三章 刚体和流体P.1§3-1刚体及其运动规律刚体:物体上任意两点 之间的距离保持不变 在力的作用下不发生形 变的物体。
P.23-1-1 刚体的运动平动: 刚体在运动过程 中,其上任意两点的 连线始终保持平行。
注:可以用质点动力学的方法来处理刚体的平 动问题。
P.3转动:刚体上所有质点都绕同一直线作圆周运动。
这种运动称为刚体的转动。
这条直线称为转轴。
定轴转动: 转轴固定不动的转动。
定点转动: 转轴上一点相对于参考系 静止,转轴方向随时间不 断变化。
例如陀螺和雷达天线。
P.4P.53-1-2刚体对定轴的角动量zv viv质元:组成物体的微颗粒元质元对O点的角动量为ωv v v Li = Ri × (mi vi )Li = mi Ri v iv Li 沿转轴Oz的投影为Liz = Li cos(v Lixv riγOmiv Riyπ2− γ ) = mi Ri vi sin γ = mi ri vi = mi ri 2ωP.6刚体对Oz轴的角动量为Lz = ∑ Liz = ∑ mi ri 2ω = (∑ mi ri 2 )ωi i i令J z = ∑mi rii2kg⋅ m2J z 为刚体对 Oz 轴的转动惯量比较:Lz = J z ωp = mvP.7转动惯量的定义式:J = ∑ mi rii2连续体的转动惯量:J = ∫ r dm2 V转动惯量的物理意义:反映刚体转动惯性的量度 转动惯量仅取决于刚体本身的性质,即与刚体 的质量、质量分布以及转轴的位置有关。
P.8转动惯量的计算J = ∑ m i ri 2i若质量连续分布 J = r 2 dm∫在(SI)中,J 的单位:kgm2dm为质量元,简称质元。
其计算方法如下:质量为线分布 质量为面分布 质量为体分布dm = λ dlλ为质量的线密度。
σ为质量的面密度。
ρ为质量的体密度。
dm = σ dsdm = ρ dV面分布线分布体分布P.9对于质量连续分布的刚体:J = ∫ r dm = ∫ r ρdV2 2 V V(体质量分布) (面质量分布) (线质量分布)J = ∫ r dm = ∫ r σdS2 2 S SJ = ∫ r dm = ∫ r λdl2 2 L LP.10例的细棒绕一端的转动惯量。
刚体动力学
![刚体动力学](https://img.taocdn.com/s3/m/392370e98762caaedc33d41e.png)
n i 1
1 2
Δmi
vi2
o ri vi
mi
1 2
n i 1
Δmi ri 2
2
1
式中
n
mi
ri2
称为刚体对转轴的转动惯量
。
i 1
用J 表示:
n
J mi ri2
i 1
代入动能公式中, 得到刚体转动动能的一般表达式
Ek
1 2
J2
Ek
1 2
mv2
刚体转动动能与质点运动动能在表达形式上是相
3
若刚体的质量连续分布 , 转动惯量中的求和号 用积分号代替
J r 2dm r 2 dV
单位:kg.m2
讨论:1.质量越大,转动惯量越大。 2.在总质量一定的条件下,刚体的质元分布 离轴越远,转动惯量越大。和质量分布有关。 3.转轴位置不一样,转动惯量不同。
与转动惯量有关的因素:
0
R 2πr 3 d r
0
2π R r3 d r 1 mR2
0
2
9
三、力矩作的功
力 矩 (moment of force)
力矩
M
r
F
大小 M= F r sinθ= F d
方向 右手定则
力臂:从转轴Z与截面
的交点O到力F的作用
线的垂直距离d称为力
对转轴的力臂
M
i 1
矩的代数和, 也就是作用于刚体的外力对转轴的合外
力矩Mz 。14来自如果刚体在力矩Mz 的作用下绕固定轴从位置1转 到2 , 在此过程中力矩所作的功为
《刚体动力学 》课件
![《刚体动力学 》课件](https://img.taocdn.com/s3/m/a5bb24a8afaad1f34693daef5ef7ba0d4a736dff.png)
常用方法:拉格朗日方程、 哈密顿原理等
注意事项:需要熟练掌握 数学基础
数值法
定义:数值法 是一种通过数 值计算求解刚 体动力学问题
的方法
特点:精度高、 计算速度快、 适用于复杂问
题
常用算法:有 限元法、有限 差分法、有限
体积法等
应用领域:航 空航天、机械 制造、土木工
程等领域
近似法
近似法的定义和特点
刚体转动实例
风力发电机:利用风力驱动风车叶片旋转,通过变速器和齿轮装置将动力传递至发电机,最终 转化为电能。
搅拌机:利用电动机驱动搅拌器旋转,对物料进行搅拌、混合和输送等操作。
洗衣机:利用电动机驱动洗衣机的滚筒旋转,通过水和洗涤剂的作用将衣物清洗干净。
旋转木马:利用电动机驱动旋转木马旋转,使人们能够欣赏到各种美丽的景观和音乐。
物理教师
需要了解刚体 动力学知识的
相关人员
Part Three
刚体动力学概述
刚体定义
刚体:在运动过程中,其内部任意两点间的距离始终保持不变的物体 刚体运动:刚体的运动是相对于其他物体的位置和姿态的变化
刚体动力学:研究刚体运动过程中所受到的力、力矩以及运动状态变化规律的科学
刚体动力学的研究对象:各种工程实际中的刚体,如机械零件、构件、机构等
动能定理
定义:动能定理是描述物体动能变化的定理 表达式:动能定理的表达式为ΔE=W 应用范围:动能定理适用于一切具有动能变化的物理系统 注意事项:在使用动能定理时需要注意初始和终了状态的动能
Part Five
刚体动力学应用实 例
刚体平动实例
刚体平动定义 刚体平动应用实例1 刚体平动应用实例2 刚体平动应用实例3
刚体动力学在各领 域的应用
《刚体动力学》课件
![《刚体动力学》课件](https://img.taocdn.com/s3/m/5f07ff16ac02de80d4d8d15abe23482fb4da02c2.png)
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:碰撞、打击、爆炸等 角动量定理 角动量定理
定义:角动量是物体转动惯量和角速度的乘积 单击此处输入你的项正文,文字是您思想的提炼。
角动量定理公式:L=Iω
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:行星运动、陀螺仪等
刚体的滚动和滑动摩擦
刚体滚动:刚体在平面内绕固定点转动,滚动摩擦力产生的原因和影响
刚体滑动摩擦:刚体在平面内滑动时产生的摩擦力,滑动摩擦系数与接触面材料和粗糙度等因素 的关系
刚体滚动和滑动摩擦的应用实例:例如,汽车轮胎与地面之间的滚动摩擦力,以及机械零件之间 的滑动摩擦力等
刚体滚动和滑动摩擦的实验研究:通过实验研究刚体滚动和滑动摩擦力的影响因素和规律,为实 际应用提供理论支持
04
刚体动力学基本原理
牛顿第二定律
定义:物体加速度的大小跟作用 力成正比,跟物体的质量成反比
应用:解释物体运动状态变化的 原因
添加标题
添加标题
公式:F=ma
添加标题
添加标题
注意事项:只适用于宏观低速运 动的物体
动量定理和角动量定理
定义:动量是物体质量与速度的乘积
单击此处输入你的项正文,文字是您思想的提炼。
刚体动力学研究内容
刚体的定义和性质 刚体运动的基本形式 刚体动力学的基本方程 刚体动力学的研究方法
刚体动力学发展历程
早期发展:古代力学对刚体的研究 经典力学时期:牛顿、伽利略等经典力学大师对刚体动力学的研究 弹性力学时期:弹性力学的发展对刚体动力学的影响 现代发展:计算机技术和数值模拟方法在刚体动力学中的应用
课程内容:刚体 的平动、转动、 碰撞等动力、力学等相关专 业的本科生和研 究生
高等教育:刚体19952
![高等教育:刚体19952](https://img.taocdn.com/s3/m/818314ae5022aaea998f0fa0.png)
注意:对同轴的转动惯量 才具有可加减性。
J
R
dJ
0
2mr 4dr R3
2 5
mR2
30
一些均匀刚体的转动惯量表
31
四:平行轴定理
J D JC md 2
d
m
D
C
32
练习 求长 L、质量 m 的均匀杆对 z 轴的转动惯量
z
A
mB
L4 o C
L
Jz
l 2dm 3L 4 m l 2dl 7 mL2
L 4 L
48
解二:
Jz
J oA
J oB
1 3
m 4
L 4
2
1 3
3m 4
3L 4
2
7 48
mL2
解三:
Jz
JC
m
L 4
2
1 12
mL2
m
L 4
2
7 48
mL2
33
§4-3 角动量 角动量守恒定律
一、质点的角动量定理和角动量守恒定律
数为 ,求 m1 下落的加速度和两段绳中的张力。
m2
ro m
m1
解:在地面参考系中,选取 m1 、m2 和滑轮为研究对
象,分别运用牛顿定律和刚体定轴转动定律得:
19
T1
m1
a
m1g
a
N
m2 g m2
T2
m2 g
T2
向里+
Ny
o
Nx
T1
列方程如下: 可求解
第1章-刚体转动动力学基础
![第1章-刚体转动动力学基础](https://img.taocdn.com/s3/m/7fdf20d080eb6294dd886cd5.png)
cos cos n Cb sin sin cos cos sin -cos sin cos sin sin
cos sin sin sin sin cos cos cos sin sin sin cos
-sin cos cos cos
2013-7-17 10
§1.1 刚体的角位置与角速度描述方法
四 定点转动刚体角位置的欧拉角描述 选用三个独立的角度来表示定点转动刚体的方位。 依次的三次转动,转动轴的选取产生两类欧拉角。
两类欧拉角的差别在于:在第三次转动时,是用第 一次转动用过的轴还是用前两次都未用过的轴。
2013-7-17 11
cos( zb , xn ) c32 cos( zb , yn ) c33 cos( zb , zn )
yb c21 cos( yb , xn ) c22 cos( yb , yn ) c23 cos( yb , zn )
zb c
2013-7-17
31
确定刚体坐标系三根轴的九个方向余弦(一个3×3 的矩阵),可以确定刚体的角位置。
20
§1.2 常用参考坐标系
三 地理坐标系 1. 地固地理坐标系
坐标系的原点选在地球上任一点,三根轴与地球固 结,东北天指向。
(ie ) xn 0 n n ωin ωie (ie ) yn ie cos (ie ) zn ie sin
2013-7-17
V ωe cos sin K Re ωe cos cos K V sin K ωe sin tg K Re
x 2 0 0 0 C 2 C1 0 C 2 0 1 n 1 y2 z 2 0
第六章刚体动力学_大学物理
![第六章刚体动力学_大学物理](https://img.taocdn.com/s3/m/5cdd4848a1c7aa00b42acb2c.png)
第七章机械振动刚体转动的角坐标、角位移、角速度和角加速度的概念以及它们和有关线量的关系刚体定轴转动的动力学方程,熟练使用刚体定轴转动定律刚体对固定轴的角动量的计算,正确应用角动量定理及角动量守恒定理掌握刚体的概念和刚体的基本运动理解转动惯量的意义及计算方法,会利用平行轴定理和垂直轴定理求刚体的转动惯量掌握力矩的功,刚体的转动动能,刚体的重力势能等的计算方法了解进动现象和基本描述§6.1 刚体和自由度的概念一. 力矩力是引起质点或平动物体运动状态(用动量描述)发生变化的原因.力矩则是引起转动物体运动状态(用动量聚描述)发生变化的原因.将分解为垂直于z 轴和平行于z 轴的两个力及,如右图.由于不能改变物体绕z 轴的转动状态,因此定义对转轴z 的力矩为零.这样,任意力对z 轴的力矩就等于力对z 轴的力矩,即力矩取决于力的大小、方向和作用点.在刚体的定轴转动中,力矩只有两个指向,因此一般可视为代数量.根据力对轴的力矩定义,显然,当力平行于轴或通过轴时,力对该轴的力矩皆为零.讨论:(1)力对点的力矩.(2) 力对定轴力矩的矢量形式力矩的方向由右螺旋法则确定.(3) 力对任意点的力矩,在通过该点的任一轴上的投影,等于该力对该轴的力矩.例: 已知棒长L,质量M,在摩擦系数为μ 的桌面转动(如图)求摩擦力对y 轴的力矩.解: 以杆的端点O 为坐标原点,取Oxy坐标系,如图在坐标为x 处取线元dx,根据题意,这一线元的质量和摩擦力分别为则该线元的摩擦力对y轴的力矩为积分得摩擦力对y轴的力矩为注: 在定轴转动中,力矩可用代数值进行计算,例如二. 刚体对定轴的转动定律实验证明: 当力矩M为零时,则刚体保持静止或匀速转动,当存在M时,角加速度β与M成正比,而与转动惯量J 成反比,即.也可写成国际单位中k=1.若设作用在刚体上的外力对z轴的力矩总和为合外力矩,刚体对z 轴的转动惯量为J, 则有上式表明,刚体绕定轴转动时,刚体对该轴的转动惯量与角加速度的乘积,等于作用在刚体上所有外力对该轴的力矩的代数和.该式称为刚体绕定轴转动微分方程,也称转动定律.讨论:(1) M 正比于β ,力矩越大,刚体的β越大(2) 力矩相同,若转动惯量不同,产生的角加速度不同(3) 与牛顿定律比较,转动定律的理论证明:如右图,在刚体上任取一质量元,作用在质量元上的力可以分为两类:表示来自刚体意外一切力的合力(称外力),表示来自刚体内各质点对该质量元作用力的合理(称内力).刚体绕定轴Z 转动过程中,质量元以为半径作圆周运动,按牛顿第二定律,有将此矢量方程两边都投影到质量元的圆轨迹切线方向上,则有再将此式两边乘以,则得对固定轴的力矩对所有质量元求和,则得等式右边第一项为合外力矩;第二项为所有内力对z 轴的力矩总和,由于内力总是成对出现,而且每对内力大小相等、方向相反,且在一条作用线上,因此内力对z 轴的力矩的和恒等于零.又.则有即证.三. 转动惯量刚体对某Z 轴的转动惯量,等于刚体上各质点的质量与该质点到转轴垂直距离平方的乘积之和,即事实上刚体的质量是连续分布的,故上式中的求和可写为定积分,即刚体对轴转动惯量的大小决定于三个因素,即刚体的质量、质量对轴的分布情况和转轴的位置.(1) J 与刚体的总质量有关例 1 两根等长的细木棒和细铁棒绕端点轴转动惯量解:在如图的棒上取一线元dx,则积分得其转动惯量为显然,本题中,则(2) J 与质量分布有关例2 圆环绕中心轴旋转的转动惯量解: 在如图的圆环上取一线元dl,则积分得其转动惯量为例3 圆盘绕中心轴旋转的转动惯量解: 在如图的圆盘上取一宽为dr的圆环带,令,则质量元则积分得圆盘的转动惯量为(3) J 与转轴的位置有关例 4 均匀细棒绕端点轴转动惯量解: 在如图棒上取一线元dx,积分得棒的转动惯量为例 5 均匀细棒对通过中心并与棒垂直得轴的转动惯量解: 如图,以杆的中心O为坐标原点,取Oxz坐标系.积分得棒对z轴的转动惯量为四. 平行轴定理及垂直轴定理1. 平行轴定理设刚体得质量为M,质心为C,刚体对通过质心某轴z(称为质心轴)得转动惯量为.如有另一与z 轴平行的任意轴,且z和两轴间的垂直距离L.刚体对轴的转动惯量设为,则可以证明:.即刚体对任意轴(轴)的转动惯量等于刚体对通过质心并与该轴平行的轴(z轴)的转动惯量加上刚体的质量与两轴间垂直距离L平方的乘积.这个结论称为平行轴定理.例1 : 求均匀细棒的转动惯量.解: 如图,已知均质杆对质心轴z 的转动惯量为,为通过杆的一端、且与z 轴平行的轴的转动惯量,按平行轴定理有2.垂直轴定理如右图所示, x、y轴在刚体内, z轴垂直于刚体.则刚体对z 轴的转动惯量等于其对x、y轴的转动惯量之和此即为垂直轴定理.例求对圆盘的一条直径的转动惯量解:以圆盘圆心C为坐标圆点,建立xyz 坐标系如右图.易求得圆盘对z 轴的转动惯量为根据垂直轴定理,有又则五. 转动定律的应用举例例1 一轻绳绕在半径r =20 cm 的飞轮边缘,在绳端施以F =98 N 的拉力,飞轮的转动惯量J =0.5 kg·m 2,飞轮与转轴间的摩擦不计,(如图)求: (1) 飞轮的角加速度(2) 如以重量P =98 N 的物体挂在绳端,试计算飞轮的角加速度解: (1) 根据转动定律,有(2) 分别对物体和飞轮进行受力分析,如图所示,根据牛顿运动定律和转动定律,有,因为,所以有例2一根长为l , 质量为m 的均匀细直棒,可绕轴O 在竖直平面内转动,初始时它在水平位置求它由此下摆角时的解: 在直棒上取如图的质量元dm ,则积分得整个直棒重力对轴O的力矩为又故由上式可以看出,重力对整个棒的合力矩等于重力全部集中于质心所产生的力矩.则角加速度为:又, 则杆下摆至角速度为例3圆盘以在桌面上转动,受摩擦力而静止求到圆盘静止所需时间解:在圆盘内取一半径为r 的,厚度为dr 的环带, 其质量为该环带的摩擦力对质心轴的力矩为积分得圆盘的摩擦力力矩为由转动定律得所以,得则例4如图一个刚体系统,已知转动惯量,现有一水平作用力作用于距轴为处求轴对棒的作用力(也称轴反力)解: 设轴对棒的作用力为N,分解为.由转动定律得由质心运动定理得解得打击中心则思考题1. 刚体可有不止一个转动惯量吗? 除了刚体的形状和质量以外,要求它的转动惯量,还要已知什么信息?2.能否找到这样一个轴,刚体绕该轴的转动惯量比绕平行于该轴并通过质心的轴的转动惯量小?3.刚体在力矩作用下绕定轴转动,当力矩增大或减小时,其角速度和角加速度将如何变化?4.猫有一条长长的尾巴,它习惯于在阳台上睡觉,因而从阳台上掉下来的事情时有发生.长期的观察表明猫从高层的楼房的阳台掉到楼外的人行道上时,受伤的程度将随高度的增加而减少,据报道有只猫从32层楼掉下来,也仅仅只有胸腔和一颗牙齿有轻微的损伤.为什么会这样呢?(点击图片播放动画)§ 6.2 绕定轴转动刚体的动能动能定理一. 转动动能刚体I 绕定轴z 转动,转动惯量,某时刻t ,角速度ω ,角加速度为β,设想刚体是由大量质点组成,现研究质量为的质点i,如图.显然,质点i 的速度为,由质点动能的定义知,质量i 的动能为由于动能为标量且永为正,故整个刚体的动能E等于组成刚体所有质点动能的算数和,即即绕定轴转动刚体的动能,等于刚体对转动的转动惯量于其角速度平方乘积的一半. 将刚体绕定轴转动的动能与质点的动能加以比较,再一次看出转动惯量对应于质点的质量,即转动惯量是刚体绕轴转动惯性大小的量度.二.力矩的功力的累积过程——力矩的空间累积效应功的定义如图,设绕定轴z 转动刚体上P 点作用有一力,现研究刚体转动时力在其作用点P 的元路程ds 上的功.由图易得即作用在定轴转动刚体上的力的元功,等于该力对转轴的力矩于刚体的元角位移的乘积.这也称为力矩的元功.力矩作功的微分形式对一有限过程刚体从角坐标到的过程中,力矩对刚体所作的功为若力矩M为常数,则上式可以进一步写成既作用在定轴转动刚体上的常力矩在某一转动过程中对刚体所作的功,等于该力矩与刚体角位移的乘积.讨论:(1) 合力矩的功(2) 力矩的功就是力的功(3) 内力矩作功之和为零三. 转动动能定理——力矩功的效果力矩的元功此式表示绕定轴转动刚体动能的微分,等于作用在刚体上所有外力元功的代数和.这就是绕定轴转动刚体的动能定理的微分形式. 若定轴转动的刚体在外力作用下,角速度从变到,则由微分式,可得到式中A 表示刚体角速度从变到这一过程中,作用于刚体上的所有外力所作功的代数和. 上式表明,绕定轴转动刚体在任一过程中动能的增量,等于在该过程中作用在刚体上所有外力所作功的总和.这就是绕定轴转动刚体的动能定理的积分形式.刚体的机械能等于刚体的动能、重力势能之和.其中的重力势能为故刚体的机械能又可表示为刚体的机械能守恒,则有对于包括刚体的系统,功能原理和机械能守恒定律仍成立.例1一根长为l , 质量为m 的均匀细直棒,可绕轴O 在竖直平面内转动,初始时它在水平位置求它由此下摆角时的解: 易得杆摆至角时对O 轴的力矩为由动能定理,重力矩作的功得又,由此得即例2图示装置可用来测量物体的转动惯量.待测物体A 装在转动架上,转轴Z 上装一半径为r的轻鼓轮,绳的一端缠绕在鼓轮上,另一端绕过定滑轮悬挂一质量为m 的重物.重物下落时,由绳带动被测物体A绕Z 轴转动.今测得重物由静止下落一段距离h .所用时间为t .求物体 A 对Z 轴的转动惯量.设绳子不可伸缩,绳子、各轮质量及轮轴处的摩擦力矩忽略不计.待测物 A 的机械能:重物m 的机械能:由机械能守恒得:又则可得故,物体 A 对Z 轴的转动惯量为思考题1.两个重量相同的球分别用密度为的金属制成,今分别以角速度绕通过球心的轴转动,试问这两个球的能量之比多大?§ 6.3 动量矩和动量矩守恒定律一. 质点动量矩( 角动量) 定理和动量矩守恒定律1.质点的动量矩设一质点在平面S ,如图所示.在时刻t,质点的动量为,对某固定点O质点的位矢为,则质点对O点的动量矩(或质点对O点的角动量)定义为: 位矢和动量的矢积,即根据矢积定义,质点对O点动量的大小为:指向由右螺旋法则确定.(可以证明,质点对某点的动量矩,在通过该点的任意轴上的投影就等于质点对该轴的动量矩)特例:质点作圆周运动时,说明: (1) 质点的动量矩与质点的动量及位矢(取决于固定点的选择)有关(2) 当质点作平面运动时,质点对运动平面内某参考点O 的动量矩也称为质点对过O 垂直于运动平面的轴的动量矩例一质点m ,速度为v ,如图所示A、B、C 分别为三个参考点,此时m 相对三个点的距离分别为.求此时刻质点对三个参考点的动量矩解: 质点对某点的动量矩, 在通过该点的任意轴上的投影就等于质点对该轴的动量矩2. 质点的动量矩定理质点为m 的质点,在力的作用下运动,某一时刻t ,质点相对固定点O 的位矢为,速度为,按上述质点动量矩的定义,有两边对时间求导,得由于,故上式右边第二项为零,而第一项中,因此,上式右边第二项是作用在质点上所有力的合力对O 点的力矩,即此式表明,在惯性系中,质点对任意固定点O的动量矩对时间的导数,等于作用在质点上所有力的合力对同一点O 的力矩.这就是质点动量矩定理.质点动量矩定理的微分形式:质点动量矩定理的积分形式:质点所受合力矩的冲量矩等于质点的动量矩的增量说明:(1) 冲量矩是质点动量矩变化的原因(2) 质点动量矩的变化是力矩对时间的积累结果质点动量矩定理也可直接用来求解质点动力学问题,特别是质点在运动过程中始终和一个点或一根轴相关联的问题,例如单摆运动,行星运动等问题.3. 质点动量矩守恒定律在质点动量矩定理可以看出,当作用在质点上的合力对固定点的力矩恒为零时,质点对该点的动量矩为常矢量,即若时,=常矢量这就是质点动量守恒定律.讨论:(1) 动量矩守恒定律是物理学的基本定律之一,它不仅适用于宏观体系,也适用于微观体系, 且在高速低速范围均适用(2) 通常对有心力:过O 点,M= 0, 动量矩守恒.例如由动量矩守恒定律可导出行星运动的开普勒第二定律行星对太阳的位矢在相等的时间内扫过相等的面积例发射一宇宙飞船去考察一质量为M 、半径为R 的行星, 当飞船静止于空间距行星中心4R 时,以速度发射一质量为m 的仪器.要使该仪器恰好掠过行星表面求θ 角及着陆滑行的初速度多大解:由引力场(有心力)系统的机械能守恒得由质点的动量矩守恒得则所以有二. 刚体定轴转动的动量矩定理和动量矩守恒定律1. 刚体定轴转动的动量矩刚体以角速度ω 绕定轴z转动时,刚体上任意一点均在各自所在的垂至于z轴的平面那作圆周运动,如图.由于刚体上任一质点对z轴的动量矩都具有相同的方向(或者说都具有相同的正负号),因此整个刚体对z轴的动量矩应为各质点对z轴的动量矩之和,即上式表明,绕定轴转动刚体对z 轴的动量矩,等于刚体对该轴的转动惯量与角速度的乘积.2. 刚体定轴转动的动量矩定理将动量矩表达式对时间求导,得由于刚体对给定轴的转动惯量是一常量,因此利用前面讲过的转动定律,可以将上式进一步写成上式表明,绕定轴转动刚体对z轴的动量矩对时间的导数,等于作用在刚体上所有外力对z轴的力矩的代数和.这就是刚体绕定轴转动情况下的动量矩定理.动量矩定理微分形式:将上式两边乘以dt并积分,得动量矩定理积分形式:,分别表示在时刻转动刚体对z轴得动量矩,成为在时间内对z 轴得冲量矩.冲量矩表示了力矩在一段时间间隔内的积累效应.上式表明,定轴转动刚体的动量矩在某一时间间隔内的增量,等于同一时间间隔内作用在刚体上的冲量矩.3. 刚体绕定轴转动的动量矩守恒定律当作用在定轴转动刚体上的所有外力对转轴的力矩代数和为零时,根据动量矩定理式,刚体在运动过程中动量矩保持不变(守恒),即=0时,=常量.以上的讨论是对绕定轴转动的刚体进行的.对绕定轴转动的可变形物体来说,如果物体上各点绕定轴转动的角速度相同,即可用同一角速度来描述整个物体的转动状态,则某一时刻t , 物体对转动轴的动量矩也可表示为该物体在时刻t 对同一轴的转动惯量与角速度的乘积.只是由于物体上各点相对于轴的位置是可变的,所以对轴的转动惯量不再是一个常量,可表示为可以证明,这是可变形物体对转轴的动量矩对时间的导数仍然等于作用于该可变形物体的所有外力对同一轴的力矩的代数和,即仍成立. 这时如果作用在可变形物体上所有外力对该轴的力矩的代数和恒为零,则在运动过程中,可变形物体对转轴的动量矩保持不变(守恒).更一般地说,如果作用在质点系上所有外力对某一固定轴的力矩之和为零,则质点系对该轴的动量矩保持不变,这是动量矩守恒定律的更为一般的表述形式.动量矩守恒定律在实际生活中及工程中有着广泛的应用.例如花样滑冰的表演者可以容过伸展或收回手脚(改变对轴的转动惯量)的动作来调节旋转的角速度.例一长为l 的匀质细杆,可绕通过中心的固定水平轴在铅垂面内自由转动,开始时杆静止于水平位置.一质量与杆相同的昆虫以速度垂直落到距O点l /4 处的杆上,昆虫落下后立即向杆的端点爬行,如图所示.若要使杆以匀角速度转动.求昆虫沿杆爬行的速度解:设杆和昆虫的质量均为m ,昆虫与杆碰后以共同的角速度转动.昆虫落到杆上的过程为完全非弹性碰撞,对于昆虫和杆构成的系统,和外力矩为零,动量矩守恒,故有化简此式可得杆的转动角速度,即由题可知,此后杆以此角速度作匀速转动.设碰后t 时刻,杆转过角,昆虫爬到距O 点为r的位置处, 此时,昆虫和杆系统所受合外力矩为根据动量定理,有由题设不变,所以其中的值为带入上式有因此,为了使保持不变,昆虫的爬行速率应为说明:此题使一个系统绕定轴转动问题.在解此题的过程中应用了动量矩定理,该定理与刚体绕定轴转动定律的区别.三. 进动如图为一玩具陀螺,我们发现如果陀螺不绕自身对称轴旋转,则它将在起重力对质点O的力矩作用下翻到.但是当陀螺以很高的转速绕自身对称轴(称作自转或自旋)时,尽管陀螺仍然受重力矩作用,陀螺却不会翻到.陀螺的重力对O点的力矩作用结果将使陀螺的自转轴沿虚线所示的路径画出一个圆锥面来.我们称陀螺高速旋转时,其轴绕铅直轴的转动为进动.陀螺绕其对称轴以角速度高速旋转,如下图.对固定点O,它的动量矩L 可近似(未计进动部分的动量矩)表示为作用在陀螺上的力对O 点的力矩只有重力的力矩.显然, 垂至于动量矩矢量,按动量矩定理→可见在极短的时间内,动量矩的增量与d与平行, 也垂直于.这表明,在dt 时间内,陀螺在重力矩作用下,其动量矩的大小未变,但方向却改变了(方向绕铅直轴z 转过了dθ角)事实上,由于,带入动量矩定理式中.得所以,若陀螺自转角速度保持不变,则进动角速度也应保持不变.实际上由于各种摩擦阻力矩的作用,将使不断减小,与此同时,进动角速度Ω 将逐渐增大,进动将变得不稳定.以上的分析是近似的,只适用于自转角速度比进动角速度Ω 大得多得情况.因为有进动的存在,陀螺的总动量矩除了上面考虑到的因自转运动产生的一部分外,尚有进动产生的部分.只有在时,才能不计及因进动而产生的动量矩.思考题1. 如果一个质点在作直线运动,那么质点相对于那些点动量矩守恒?2. 如果作用在质点上的总力矩垂直于质点的动量矩,那么质点动量矩的大小和方向会发生变化吗?3. 当刚体转动的角速度很大时,作用在上面的力及力矩是否一定很大?4. 一个人随着转台转动,两手各拿一只重量相等的哑铃,当他将两臂伸平,他和转台的转动角速度是否改变?5. 试说明: 两极冰山的融化是地球自转速度变化的原因之一.。
刚体动力学.ppt
![刚体动力学.ppt](https://img.taocdn.com/s3/m/a5cd24c36edb6f1afe001fd5.png)
如果刚体内任何两点的连线在运动中始终保持平 行,这样的运动就称为平动。
平动刚体内各质点的运动状态完全相同。
平动刚体可视为质点。质心是平动刚体的代表。
2
如果刚体内的每个质点都绕同一直线(转 轴)作圆周运动,这种运动便称为转动。
转轴固定不动定轴转动。 刚体一般运动可看作是平
动和转动的结合。
3
I 1 mR 2 2
水平桌面
o
dr r
M 4g
I
3R
19
M 4g
I
3R
求圆盘经多少时间、转几圈将停下来?
由= o+ t = 0得
t o 3RO 4g
又由2-o2=2, 水平桌面
停下来前转过的圈数为
o
dr r
N o2 3o2 R 2 2 16 g
o
力矩的大小: 方向:
M =F rsin
rF
=Fd
d
r
F
注意: 对定轴转动, (1)只有 在垂直于转轴平面内的力才会
Mz
F
产生力矩; 平行于转轴的力是
不会产生力矩的。
(2)力矩的方向沿转轴。
5
2.刚体定轴转动定理
mi: 切向方程:
Fi sini fij sini miai miri
Firi sini fijri sini miri2
撤去外力矩时,
-Mr=I2 , 2=- /t2
(2)
代入t1=10s , t2=100s , =(100×2)/60=10.5rad/s,
得
I=17.3kg.m2 。
15
例题1.4 匀质柱体(M、R) 边缘用细绳 挂一质量为m的物体。求柱体的角加速度 及绳中的张力。
《刚体的定轴转动》课件
![《刚体的定轴转动》课件](https://img.taocdn.com/s3/m/677d8fb1aff8941ea76e58fafab069dc50224792.png)
实例二
陀螺在受到外力矩作用后发生定轴转动。分析过程中应用了转动定 律,解释了陀螺的进动现象。
实例三
电风扇在启动时,叶片的角速度从零逐渐增大到稳定值。分析过程中 应用了转动定律,解释了电风扇叶片角速度的变化规律。
CHAPTER
03
刚体的定轴转动的动能与势能
动能与势能的定义
动能定义
物体由于运动而具有的能量,用 符号E表示,单位是焦耳(J)。
势能定义
物体由于相对位置或压缩状态而 具有的能量,常用符号PE表示, 单位是焦耳(J)。
刚体的定轴转动动能与势能的计算
转动动能计算
刚体的转动动能等于刚体绕定轴转动的动能,等于刚体质量与角速度平方乘积的一半, 即E=1/2Iω^2。
势能计算
刚体的势能等于刚体各质点的势能之和,等于各质点的位置坐标与相应的势能函数的乘 积之和。
01
数学表达式:Iα=M
02
转动惯量的计算:根据刚体的质量和形状,可以计算出其转动
惯量。
角加速度的计算:根据作用在刚体上的外力矩和刚体的转动惯
03
量,可以计算出其角加速度。
转动定律的实例分析
实例一
匀速转动的飞轮在受到阻力矩作用后,角速度逐渐减小,直至停止 转动。分析过程中应用了转动定律,解释了飞轮减速直至停止的原 因。
CHAPTER
02
刚体的定轴转动定律
转动定律的内容
刚体定轴转动定律
对于刚体绕固定轴的转动,其转动惯量与角加速度乘积等于作用 在刚体上的外力矩之和。
转动定律的物理意义
描述了刚体在力矩作用下绕固定轴转动的运动规律。
转动定律的适用范围
适用于刚体在力矩作用下的定轴转动,不适用于质点和弹性体的转 动。
《刚体运动学》课件
![《刚体运动学》课件](https://img.taocdn.com/s3/m/b4a521b0951ea76e58fafab069dc5022aaea46f5.png)
理解定轴转动的定义和性质是掌握刚体运动学的基础。
详细描述
定轴转动是指刚体绕某一固定轴线旋转的刚体运动,具有角速度和角加速度两个重要的物理量。刚体在定轴转动 时,其上任意一点都以相同的角速度和角加速度绕轴线旋转。
定轴转动的合成与分解
总结词
掌握定轴转动的合成与分解是解决刚体动力学问题的关键。
详细描述
合成与分解的方法
通过选择合适的参考系和坐标系,利用矢量合成 和分解的方法进行计算。
刚体的定点平面运动
定义:刚体绕某一固定点在平 面内作圆周运动或椭圆运动。
描述参数:刚体的位置、速度 和加速度可以用定点、角位移 、角速度和角加速度等参数描
述。
动力学方程:根据牛顿第二定 律和刚体的转动定理,建立定 点平面运动的动力学方程。
在物理学中的应用
01
力学
刚体运动学是力学的一个重要分支,用于研究刚体的运动规律和力学性
质。通过刚体运动学分析,可以了解物体在不同力场作用下的运动状态
和变化规律。
02
天体物理学
在天体物理学中,刚体运动学用于研究天体的运动和演化。通过对天体
的刚体运动进行分析,可以了解天体的轨道、速度和加速度等运动参数
要点二
分解
空间运动的分解是指将一个复杂的运动分解为若干个简单 的运动。
刚体的定点空间运动
定义
刚体的定点空间运动是指刚体绕一个固定点在空间中的 旋转运动。
性质
定点空间运动具有旋转轴、旋转角速度和旋转中心等物 理量,其运动状态可以通过这些物理量来描述。
06
刚体运动学的应用
在工程中的应用
机械工程
刚体运动学在机械工程中广泛应用于机构分析和设计,如连杆机构、凸轮机构和齿轮机构等。通过刚体运动学分析, 可以确定机构的运动轨迹、速度和加速度,优化机构设计。
第八章刚体定点运动的动力学ppt课件
![第八章刚体定点运动的动力学ppt课件](https://img.taocdn.com/s3/m/31f27310e418964bcf84b9d528ea81c758f52e3c.png)
2 2
(ri (r
cos
i
l )2]
)2
]
mi[xi2 yi2 zi2
(xi yi zi )2]
考虑到 2 2 2 1,则上式化为
Il
I xx 2
I yy 2
I zz
2
2I xy
2I yz
2Izx
Il l I l
----------------------如已知固定点的惯量张量, 则可得过此点的任何轴的转动惯量.
沿过椭球面角速度矢量 与惯量椭球相交点P点的法线
方向上.(证明见书P303)
例题1: 一匀质薄圆盘能绕其中心O点做定点转动,其质
量面为成m,半角30径的 为轴R以,已角知速英度雄模转范动瞬,试时求圆此盘时绕圆壶盘中对心中与心盘的
角动量和圆盘的动能,以及圆盘对此轴的转动惯量.
解: 建立过O点的主轴坐标系,依题意有:
本节介绍刚体作定点运动时具有的动量、角动量、动能 的计算。
P mvc
n
及: I yz I zy mi yi zi i 1
n
I zx I xz mi zi xi
i 1
n
I xy I yx mi xi yi
i 1
惯 惯量积与转动惯量 量 合在一起统称为惯 积 性系数
则: Lx I xxx I xy y I xzz
确定z轴的位置: 和 Oxy面与O面的交线
为ON ,即节线.
, ,称为欧拉角,0 , 0 2 ,0 2
L
k0
l
k
(节线)
: :
章进动动角角,,章进动动角角速速度度为为k;0
;
:自转角,自转角速度为k.
L
k0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
2 1
M z d
力矩的瞬时功率可以表示为
P
dA dt
Mz
d
dt
Mz
式中是刚体绕转轴的角速度。
20
四、动能定理 (theorem of kinetic energy )
根据功能原理, 外力和非保守内力对系统作的总功 等于系统机械能的增量。对于刚体一切内力所作的功 都为零。对定轴转动的刚体 , 外力所作的功即为外力 矩所作的功; 系统的机械能为刚体的转动动能。
Mzi 是外力Fi 对转轴Oz的力矩。
18
在整个刚体转过d角的过程中,n个外力所作的总功为
n
n
dA dAi ( M zi )d Mzd
i 1
i 1
n
式中 M zi 是作用于刚体的所有外力对Oz轴的力
i 1
矩的代数和, 也就是作用于刚体的外力对转轴的合外
力矩Mz 。
19
如果刚体在力矩Mz 的作用下绕固定轴从位置1转 到2 , 在此过程中力矩所作的功为
dA dEk
将转动动能的具体形式代入上式并积分, 得
A
1 2
J
2 2
1 2
J
2 1
定轴转动的刚体,外力矩作的功等于刚体转动动能
的增量,即作定轴转动刚体的动能定理。
21
或者利用
A 2 Md 1J d d 2 Jd
1
1 dt
1
A
2 1
Md
n i 1
1 2
Δmi
vi2
O ri vi
mi
1 2
n i1
Δmi ri 2
2
1
式中
n
mi
ri2
称为刚体对转轴的转动惯量
i 1
n
J mi ri2
i 1
若刚体的质量连续分布 , 形式变为
J r 2dm r 2 dV
SI制中,J的单位为kg·m2
则刚体转动动能的一般表达式
Ek
1 2
解: 方法一,盘的质量分布均匀, 盘的质量面密度为
m
R2
取半径为r、宽为 dr的圆环 如图所示,其质量为
y
R
dr
·r
O
x
dm 2 rdr
12
圆盘对Oz轴(过O点垂直于纸面)的转动惯量为
J z
R
0
r
2
d
m
R
0
2πr
3
d
r
2π
R
0
r3
dr
1 2
mR 2
根据垂直轴定理 J z J x J y
1 2
J 2
1 0.083 632 J 2
1.7 102J
7
方法二:
y
dx
O
x
x
J
0l ( x
l )2( m 2l
dx)
1 12
ml
2
8.3 102kg
m2
8
例 棒绕通过其左端点并与棒相垂直的转轴旋转, 求转动惯量。
y
dx
O
x
x
J左
0l
x2(m l
dx)
1 3
ml 2
9
两个定理:
1. 平行轴定理 J JC md 2
由于对称性, J J , 所以
x
y
Jz
2J x
1 2
mR 2
解得
Jx
1 mR 2 4
13
解: 方法二,
y
R
dr d
r
·
O
x
Jz
r 2 d m 2 0
R r 2(σrdrd ) 1 m R2
0
2
14
解: 方法三,
y
R
dr d
r
·
O
x
J x
y2dm 2 0
R
(rsin
)2 (σrdrd
§3-2,3 刚体动力学
一、刚体的转动动能 (Rotational kinetic energy )
设刚体绕固定轴Oz以角速度 转动,各体元的质量
分别为m1 , m2 , … , mn ,各体元到转轴Oz的距离
依次是r1 , r2 , … , rn。 n 个体元绕Oz轴作圆周运动的
x
动能的总和为
Ek
点,建立坐标系Oxy,取y
Ox
l x
2
轴为转轴,如图所示。在距离转轴为x 处取棒元dx,
其质量为
m
dm dx
l
6
根据式 J r 2dm , 应有
J
x l/ 2 2
l/ 2
m dx
l
1 3
m l
3
x
l/ 2 l/ 2
1 ml 2 8.3 102 kg m 2 12
棒的转动动能为
Ek
式中JC 为刚体对通过质心的轴的转动惯量, m是刚 体的质量,d是两平行轴之间的距离 。
2. 垂直轴定理
若z 轴垂直于厚度为无限小的刚体薄板板面, xy 平 面与板面重合, 则此刚体薄板对三个坐标轴的转动惯
量有如下关系 J z J x J y
注意:对于厚度不是无限小的刚体板, 垂直轴定理不适用。
3
几 种 常 见 形 状 的 刚 体 的 转 动 惯 量
4
5
例1 一根质量为m=1.0kg、长为l=1.0m 的均匀细棒,
绕通过棒的中心并与棒相垂直的转轴以角速度=63
rads-1 旋转,求转动动能。 方法一:
解: 先求细棒对转轴的 转动惯量J,然后求转动动
y
dx
能Ek。
将棒的中点取为坐标原 l 2
10
例2 在上一例题中, 对于均匀细棒, 我们已求得对通 过棒心并与棒垂直的轴的转动惯量为
J 1 ml 2 12
求对通过棒端并与棒垂直的轴的J。
解:
两平行轴的距离
d
1 l
,
代入平行轴定理,
得
2
J J C md 2
1 ml 2 m( l )2 1 ml 2
12
23
11
例 3 求质量为m、半径为R 的均质薄圆盘对通过盘心 并处于盘面内的轴的转动惯量。
J2
2
二、刚体的转动惯量 (Moment of inertia )
转动惯量与质点的运动速度无关,影响的因素 有:刚体的质量、刚体的形状(质量分布)、转轴的 位置。
只有形状比较简单而密度又有规则地分布的物体 才能用数学方法求出它的转动惯量。对形状复杂而 密度又不均匀的物体,求转动惯量的最好办法是用 实验方法测定。
)
1
m R2
0
4
Jz
Jx
Jy
2J x
1 4
m R2
15
三、力矩作的功
力不在转动平面内时,
M rF
r (F1 F2 )
r F1 r F2
r F1
只能引起轴的变
形, 对定轴转动无贡献。
rr F1 F
r
转动
平面
r
F2
16
对定轴转动的刚体起作用的只是力矩沿转轴的分量 ,即若取转轴为z轴,则起作用的只是MZ。而提供MZ 的只是外力在转动平面内的投影,与外力沿转轴方向 的分量无关。所以,在讨论刚体定轴转动时,只需考 虑外力在转动平面内的分力即可。 约定:在定轴动问题中,如不加说明,所指的力矩均 指力在转动平面内的分力对转轴的力矩。
17
是假F设1 ,作F2用,于, 以Fnz。轴为转轴的刚体上的多个外力分别
在刚体转动中,外力 Fi 所作的元功为
d
Ai
Fi
d
ri
F d r cos
ii
i
d
Fi
O
r i
ds i
i
Pi
F d s cos
i
i
i
因为dsi = ri d,并且cosi = sini,所以
dAi Firi sini d Mzid