新课标-最新人教版八年级数学上学期《分式》综合测试卷及答案-精品试题

合集下载

人教版八年级上册数学 分式解答题综合测试卷(word含答案)

人教版八年级上册数学 分式解答题综合测试卷(word含答案)
(2)由
∵x>0,

当 时,最小值为11;
(3)设S△BOC=x,已知S△AOB=4,S△COD=9
则由等高三角形可知:S△BOC:S△COD=S△AOB:S△AOD
∴x:9=4:S△AOD
∴:S△AOD=
∴四边形ABCD面积=4+9+x+
当且仅当x=6时取等号,即四边形ABCD面积的最小值为25.
把一个分式写成两个 分式的和叫做把这个分式表示成部分分式.如何将 表示成部分分式?
设分式 = ,将等式的右边通分得: = ,由 = 得: ,解得: ,所以 = .
(1)把分式 表示成部分分式,即 = ,则m=,n=;
(2)请用上述方法将分式 表示成部分分式.
【答案】(1) , ;(2) .
【解析】
【分析】
根据题意得:
解得;y= ,
经检验:y= 是原方程的解,
则现在小麦的平均每公顷产量是:
故答案为: , ;
(3)根据题意得:
答:两组一起收割完这块麦田需要 小时.
【点睛】
本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.
3.已知 , , .
(1)当 , , 时,求 的值;
【答案】(1)2,-2;(2)11;(3)25
【解析】
【分析】
(1)当x>0时,按照公式a+b≥2 (当且仅当a=b时取等号)来计算即可;x<0时,由于-x>0,- >0,则也可以按照公式a+b≥2 (当且仅当a=b时取等号)来计算;
(2)将 的分子分别除以分母,展开,将含x的项用题中所给公式求得最小值,再加上常数即可;
(3)设S△BOC=x,已知S△AOB=4,S△COD=9,则由等高三角形可知:S△BOC:S△COD=S△AOB:S△AOD,用含x的式子表示出S△AOD,四边形ABCD的面积用含x的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.

最新2019-2020年度人教版八年级数学上册《分式方程应用题》综合测试卷及解析-精品试题

最新2019-2020年度人教版八年级数学上册《分式方程应用题》综合测试卷及解析-精品试题

15.3 分式方程一、解答题1.某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产多少个零件?2.列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?3.某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?4.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?5.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?6.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.7.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?8.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?9.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?10.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?11.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?12.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?13.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?14.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B 两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?15.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.16.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.17.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.18.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?19.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?20.某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?21.某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?22.杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)23.某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?24.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?25.甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?26.2014年12月26日,西南真正意义上的第一条高铁﹣贵阳至广州高速铁路将开始试运行,从贵阳到广州,乘特快列车的行程约为1800km,高铁开通后,高铁列车的行程约为860km,运行时间比特快列车所用的时间减少了16h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.27.为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?28.国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?29.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.30.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.15.3 分式方程参考答案一、解答题1.某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产多少个零件?【解答】解:设一个工人每小时生产零件x个,则机器一个小时生产零件12x个,由题意得,﹣=2,解得:x=1.25,经检验:x=1.25是原分式方程的解,且符合题意,则12x=12×1.25=15.即这台机器每小时生产15个零件.故答案为:15.2.列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?【解答】解:设七年级学生每小时植x棵,则八年级每小时植(x+10)棵,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+10=50+10=60,答:七年级学生每小时植50棵,则八年级每小时植60棵.3.某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?【解答】解:(1)设第一批葡萄进价每千克x元,则第二批葡萄的进价为(x+2)元,依题意得,,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批葡萄进价每千克8元.(2)由题意,得第一批的数量为:,50×2×11﹣(400+500)=200答:可盈利200元.4.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?【解答】解:设甲队每天完成x米2,乙队每天完成1.5 x米2,根据题意得.﹣=15,解得x=160,经检验,x=160,是所列方程的解.答:甲队每天完成160米2.5.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.6.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.【解答】解:设文具厂原计划每天加工x套这种画图工具.根据题意,得﹣=4.解得x=125.经检验,x=125是原方程的解,且符合题意.答:文具厂原计划每天加工125套这种画图工具.7.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【解答】解:(1)设乙工程队单独完成这项工作需要a天,由题意得+36()=1,解之得a=80,经检验a=80是原方程的解.答:乙工程队单独做需要80天完成;(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,∴=1即y=80﹣x,又∵x<46,y<52,∴,解得42<x<46,∵x、y均为正整数,∴x=45,y=50,答:甲队做了45天,乙队做了50天.8.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.9.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得25a+5(2a+8﹣a)≤670解得a≤21∴荣庆公司最多可购买21个该品牌的台灯.10.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.11.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?【解答】解:(1)设乙种图书的单价为x元,则甲种图书的单价为1.5x元,由题意得﹣=10解得:x=20则1.5x=30,经检验得出:x=20是原方程的根,答:甲种图书的单价为30元,乙种图书的单价为20元;(2)设购进甲种图书a本,则购进乙种图书(40﹣a)本,根据题意得解得:20≤a≤25,所以a=20、21、22、23、24、25,则40﹣a=20、19、18、17、16、15∴共有6种方案.12.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.13.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【解答】解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.14.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B 两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得:=,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.15.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.【解答】解:设票价为x元,由题意得,=+2,解得:x=60,经检验,x=60是原分式方程的解.则小伙伴的人数为:=8.答:小伙伴们的人数为8人.16.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【解答】解:(1)根据题意得:400×1.3=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:﹣=3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.17.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.【解答】解:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依题意得=+10,解得x=80.经检验,x=80是原方程的根.答:马小虎的速度是80米/分.18.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?【解答】解:设第一批进货的单价为x元,则第二批进货的单价为(x+8)元,由题意得,×2=,解得:x=80,经检验;x=80是原分式方程的解,且符合题意,则第一次进货100件,第二次进货的单价为88元,第二次进货200件,总盈利为:(100﹣80)×100+(100﹣88)×(200﹣10)+10×(100×0.8﹣88)=4200(元).答:在这两笔生意中,商家共盈利4200元.19.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?【解答】解:设乙种粽子的单价是x元,则甲种粽子的单价为(1+20%)x元,由题意得,+=260,解得:x=2.5,经检验:x=2.5是原分式方程的解,(1+20%)x=3,则买甲粽子为:=100个,乙粽子为:=160个.答:乙种粽子的单价是2.5元,甲、乙两种粽子各购买100个、160个.20.(2014•永州)某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?【解答】解:(1)设单独由乙队摘果,需要x天才能完成,根据题意得:2(+)=1,解得:x=3,经检验x=3是分式方程的解,且符合题意,则单独由乙队完成需要3天才能完成;。

人教版数学八年级上册《分式》单元综合测试题附答案

人教版数学八年级上册《分式》单元综合测试题附答案

人教版数学八年级上学期《分式》单元测试(考试时间:90分钟 试卷满分:120分)第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.21352πx y x a +-,,,,属于分式的有A .1个B .2个C .3个D .4个2.若分式12x x +-有意义,则x 的取值范围是 A .2x ≠ B .2x = C .1x =- D .0x =3.计算1a a a÷⨯的结果是 A .aB .2aC .1aD .3a4.下列化简过程正确的是A .22b b a a =B .222()a b a b a b a b -+=++ C .22y yx y x y=++D .0.20.3230.4410x y x yx y x y++=--5.如果把分式52xx y-中的x y 、都扩大3倍,那么分式的值一定A .扩大3倍B .扩大5倍C .扩大15倍D .不变6.下列各式是最简分式的是A .48aB .2a b aC .22a b a b++D .22b ab a-- 7.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为 A .8.23×10-6 B .8.23×10-7 C .8.23×106D .8.23×1078.若分式29(3)(1)x x x ---的值为零,则x 的值为A .0B .-3C .3D .3或-39.若关于x 的方程2134416m m x x x ++=-+-无解,则m 的值为 A .-1或5B .-1或5或-13C .5或-13D .-1310.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 A .4848944x x +=+- B .4848944x x +=+- C .48x+4=9 D .9696944x x +=+- 第Ⅱ卷二、填空题(本题共8小题,每小题3分,共24分) 11.化简3213(2)()a bc ---=__________.12.分式2111245x y xy-,,的最简公分母是__________. 13.计算22111m m m ---的结果是__________.14.方程3x x -–2=43x -的解为__________. 15.计算:221642·44244a a a a a a a --+÷++++=__________. 16.当a =__________时,方程2111ax a x -=--的解与方程43x x-=的解相同. 17.甲、乙二人加工某种零件,若单独工作,则乙比甲多用12天才能完成,若两人合作,则8天可以完成,设甲单独工作x 天完成,列方程得__________.18.用四则运算的加法与除法定义一种新运算记为☆.若对于任意有理数a ,b ,a ☆b =a ba b+-,则方程1☆x =5的解是__________.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分6分)已知分式x nx m-+,当x =-3时,该分式没有意义;当x =-4时,该分式的值为0.试求(m +n )2019的值.20.(本小题满分6分)计算:(1)2222510369x y yy x x⋅÷;(2)2492332x x x +--; (3)24()22a a a a a a--⋅-+. 21.(本小题满分8分)解分式方程:(1)23x x x ++=1; (2)22411x x =--. 22.(本小题满分8分)先化简:22121()11a a a a a a ++-÷-++,再从–1,0,1中选取一个数并代入求值. 23.(本小题满分9分)某服装制造厂要在开学前赶制2400套校服,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的校服比原来多了20%,结果提前4天完成任务.问原计划每天能完成多少套校服?24.(本小题满分9分)若关于x 的分式方程2111x mx x +---=1的解是负数,求m 的取值范围. 25.(本小题满分10分)有一道题“先化简,再求值:22241244x x x x x -+÷+--()+x 2–3,其中x =”小玲做题时把“x =x =事?26.(本小题满分10分)商场经营的某品牌童装,4月的销售额为20000元,为扩大销量,5月份商场对这种童装打9折销售,结果销量增加了50件,销售额增加了7000元.(1)求该童装4月份的销售单价;(2)若4月份销售这种童装获利8000元,6月全月商场进行“六一”儿童节促销活动.童装在4月售价的基础上一律打8折销售,若该童装的成本不变,则销量至少为多少件,才能保证6月的利润比4月的利润至少增长25%?参考答案11.12.2013.14.x =215.–216.17.18.x =19.【解析】∵x +m =0时,分式无意义,∴x ≠–m , ∴m =3,(3分)又因为x –n =0,分式的值为0,∴x =n ,即n =–4,则(m +n )2019=[3+(-4)]2019=(–1)2019=-1.(6分)20.【解析】(1).(2分) (2).(4分)(3).(6分) 21.【解析】(1)=1,两边都乘以x (x +3),得2(x +3)+x 2=x (x +3), 解得x=6,(2分)经检验x=6是原方程的解.(4分) (2), 两边都乘以(x +1)(x –1),得2(x +1)=4, 解得x =1,(6分)检验:当x =1时,(x +1)(x –1)=0,∴x =1是分式方程的增根,原方程无解.(8分) 22.【解析】原式==,(4分) 其中a ≠1且a ≠–1, ∴a 只能取0.(6分)当a =0时,原式=1.(8分)23.【解析】设原计划每天能完成x 套校服,则实际每天能完成(1+20%)x 套校服,根据题意得:, 解得:x =100,经检验,x =100是原方程的解且符合题意. 答:原计划每天能完成100套校服. 24.【解析】由=1,得(x+1)2–m=x 2–1,解得x =–1+.(4分) 由已知可得–1+<0,–1+≠1且–1+≠–1,(7分)解得m<2且m ≠0.(9分)25.【解析】+–3 =(–4)+–3 =+4+–3 =2+1.(6分)因为化简原式的结果是2+1,不论xxx 2的值均为3,原式的计算结果都是7,所以把“xx 10分) 26.【解析】(1)设4月份的销售单价为x 元.由题意得-=50,(2分) 解得x =200.经检验,x =200是原方程的解,且符合题意. 所以4月份的销售单价为200元.(5分)(2)4月份的销量为20000÷200=100(件),则每件衣服的成本为(20000-8000)÷100=120(元). 6月份的售价为200×0.8=160(元),(7分) 设销量为y 件,由题意得160y -120y ≥8000×(1+25%), 解得y ≥250,所以销量至少为250件,才能保证6月的利润比4月的利润至少增长25%.(10分)6334a b c2xy 11m -1788112x x +=+232232225936102x y x x y x y y⋅⋅=249(23)(23)23232323x x x x x x x +--==+---(2)(2)()2(2)422a a a a a a a a a+--⋅=+--=-+23xx x ++22411x x =--2222121(1)1·111(1)a a a a a a a a a a a +---+--+÷=+++-11a --24002400 4(120%)x x-=+2111x m x x +---2m2m 2m 2m22241244x x x x x -+÷+--()2x 224444x x xx -++⋅-2x 2x 2x 2x 2x 2x 2000070000.9x +20000x。

新人教版初中数学八年级数学上册第五单元《分式》检测卷(包含答案解析)(1)

新人教版初中数学八年级数学上册第五单元《分式》检测卷(包含答案解析)(1)

一、选择题1.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ay y y++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4 B .5 C .6 D .32.计算:2x y x y x y xy-⋅-=( ) A .x B .y xC .yD .1x 3.下列运算正确的是( ) A .236a a a ⋅=B .22a a -=-C .572a a a ÷=D .0(2)1(0)a a =≠ 4.计算233222()m n m n -⋅-的结果等于( ) A .2m n B .2n m C .2mn D .72mn 5.已知2340x x --=,则代数式24x x x --的值是( ) A .3 B .2 C .13D .12 6.下列变形不正确的是( ) A .1122x x x x +-=--- B .b a a bc c --+=- C .a b a b m m -+-=- D .22112323x x x x--=--- 7.为推进垃圾分类,推动绿色发展,宜宾天原化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台,两种型号机器人的单价和为140万元.若设乙型机器人每台x 万元,根据题意,所列方程正确的是( )A .4605801x 140x -=- B .4605801140x x =-- C .4605801x 140x =+- D .4605801140x x -=- 8.下列说法正确的是( ) A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y -中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式 9.化简2111313x x x x +⎫⎛-÷ ⎪---⎝⎭的结果是( ) A .2 B .23x - C .41x x -- D .21x - 10.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1- B .1 C .3D .3-11.下列各式计算正确的是( ) A .33x x y y = B .632m m m = C .22a b a b a b +=++ D .32()()a b a b b a -=-- 12.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8- B .7- C .15 D .15-二、填空题13.计算:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=_____.14.甲、乙两同学的家与学校的距离均为3000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校,已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校结果甲同学比乙同学早到2分钟,若甲同学到达学校时,乙同学离学校还有m 米,则m =________.15.席卷全世界的新型冠状病毒是个肉眼看不见的小个子,它的身高(直径)约为0.0000012米,将数0.0000012用科学记数法表示为_________.16.已知215a a+=,那么2421a a a =++________. 17.分式2(1)(3)32m m m m ---+的值为0,则m =______________. 18.约分:22618m n mn=-________________ 19.计算:11|1|3-⎛⎫-= ⎪⎝⎭______. 20.计算:051)-+=__.三、解答题21.列分式方程解应用题:刘峰和李明相约周末去野生动物园游玩,根据他们的谈话内容,求李明乘公交车、刘峰骑自行车每小时各行多少千米?刘峰:我查好地图,你看看李明:好的,我家门口的公交车站,正好又一趟到野生动物园那站的车,我坐明天8:30的车刘峰:从地图上看,我家到野生动物园的距离比你家近10千米,我就骑自行车去了 李明:行,根据我的经验,公交车的速度一般是你骑自行车速度的3倍,那你明天早上8:00从家出发,如果顺利,咱俩同时到达22.(1)先化简,再求值:22228424m m m m m m +-⎛⎫+÷ ⎪--⎝⎭,其中m 满足2430m m ++=.(2)如图,在等边ABC 中,D .E 分别在边BC 、AC 上,且//DE AB ,过点E 作EF DE ⊥交BC 的延长线于点F .若3cm CD =,求DF 的长.23.先化简,再求值:2222224414y x x xy y x x x y ⎛⎫+-++-÷ ⎪-⎝⎭,其中x ,y 满足()2230x y ++-=.24.先化简,再求值:22131x x x x x ---+-,其中2x =. 25.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中5x =. 26.先化简,再求值:2222631121x x x x x x x ++-÷+--+,其中2x =-.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可.【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩, ∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解, ∴2015a +<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a =, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3∴所有满足条件的整数a 的值之和是4,故选A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.2.A解析:A【分析】根据分式乘法计算法则解答.【详解】 解:2x y x y x y xy-⋅-=x , 故选:A .【点睛】此题考查分式的乘法计算法则,熟记计算法则是解题的关键.3.D解析:D【分析】运用同底数幂乘法、负整数次幂、同底数幂除法以及零次幂的知识逐项排查即可.【详解】解:A. 235a a a ⋅=,故A 选项不符合题意; B. 221a a-=,故B 选项不符合题意; C. 572a a a -÷=,故C 选项不符合题意;D. 0(2)1(0)a a =≠,故D 选项符合题意.故填:D .【点睛】本题主要考查了同底数幂乘法、负整数次幂、同底数幂除法、零次幂等的知识点,灵活运用相关运算法则是解答本题的关键.4.A解析:A【分析】根据整数指数幂的运算法则进行运算即可.【详解】解:原式=43431222m m m n n m nn---=⋅=⋅= 故选:A .【点睛】本题考查了整数指数幂的运算,掌握运算法则是解题的关键 5.D解析:D【分析】利用等式的性质对2340x x --=变形可得43x x-=,利用分式的性质对24x x x --变形可得141x x--,从而代入求值即可. 【详解】由条件2340x x --=可知,0x ≠, ∴430x x --=,即:43x x-=, 根据分式的性质得:21144411x x x x x x x==------,将43x x-=代入上式得:原式11312==-, 故选:D .【点睛】 本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键.6.A解析:A【分析】答题首先清楚分式的基本性质,然后对各选项进行判断.【详解】解:A 、1122x x x x +--=---,故A 不正确; B 、b a a bc c --+=-,故B 正确; C 、a b a b m m-+-=-,故C 正确; D 、22112323x x x x--=---,故D 正确. 故答案为:A .【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.7.B解析:B【分析】设乙型机器人每台x 万元,由两种型号机器人的单价和为140万元得甲型机器人每台()140x -万元,根据用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台列得方程.【详解】解:设乙型机器人每台x 万元,则甲型机器人每台()140x -万元,根据题意,可得4605801140x x=--. 故选:B.【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键.8.D解析:D直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误; B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】 此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.9.D解析:D【分析】利用乘法分配律计算即可【详解】解:原式=11(3)(3)3(1)(1)x x x x x x +⋅--⋅--+-=1-31x x --=21x -, 故选D .【点睛】本题主要考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则. 10.D解析:D【分析】先将分式方程化为整式方程,再将1x =代入求解即可.【详解】解:原式化简为81233ax a x +=-,将1x =代入得81233a a +=-解得-3a =.当a =-3时a -x=-3-1=-4≠0∴a =-3故选则:D .本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.11.D解析:D【分析】根据分式的基本性质进行判断即可得到结论.【详解】解:A 、33x y 是最简分式,所以33x x y y≠,故选项A 不符合题意; B 、624m m m=,故选项B 不符合题意; C 、22a b a b++是最简分式,所以22a b a b a b +≠++,故选项C 不符合题意; D 、3322()()()()a b a b a b b a a b --==---,正确, 故选:D .【点睛】此题考查了分式的约分,以及最简分式的判断,分式的约分关键是找公因式,约分时,分式分子分母出现多项式,应先将多项式分解因式后再约分,最简分式即为分式的分子分母没有公因式.12.B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-;解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤, 分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.二、填空题13.2a4b5【分析】直接利用积的乘方运算法则化简再利用整式的除法运算法则计算得出答案【详解】解:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=4a ﹣4b2÷2a ﹣8b ﹣3=2a-4-(-8)b2-(-3)=2a解析:2a 4b 5.【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.【详解】解:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=4a ﹣4b 2÷2a ﹣8b ﹣3=2a -4-(-8)b 2-(-3),=2a 4b 5.故答案为:2a 4b 5.【点睛】本题考查了整数指数幂的运算,熟练应用法则是解题关键.14.600【分析】设乙骑自行车的速度为x 米/分钟则甲步行速度是x 米/分钟公交车的速度是2x 米/分钟根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟列方程即可得到乙的速度甲同学到达学校时乙解析:600【分析】设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟,列方程即可得到乙的速度,甲同学到达学校时,乙同学离学校还有2x 米,即可得到结论;【详解】解:设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意得 600300060030002122x x x -+=- , 解得:x=300米/分钟,经检验x=300是方程的根,则乙骑自行车的速度为300米/分钟.那么甲同学到达学校时,乙同学离学校还=2×300=600米.故答案为:600.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 15.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指整数数幂指数n 由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:000解析:61.210-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指整数数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000012=1.2×10-6.故答案为:1.2×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a +=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a , ∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】 此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 17.3【分析】要使分式的值为0必须分式分子的值为0并且分母的值不为0【详解】解:要使分式由分子解得:或3;而时分母;当时分母分式没有意义所以的值为3故答案为:3【点睛】本题主要考查了分式的值为零的条件要 解析:3【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【详解】解:要使分式由分子(1)(3)0m m --=.解得:1m =或3;而3m =时,分母23220m m -+=≠;当1m =时分母2321320m m -+=-+=,分式没有意义.所以m 的值为3.故答案为:3.【点睛】本题主要考查了分式的值为零的条件,要注意分母的值一定不能为0,分母的值是0时分式没有意义.18.【分析】根据分式的基本性质:分子和分母同时除以6mn 化简【详解】故答案为:【点睛】此题考查分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不等于零的整式分式的值不变 解析:3m n-【分析】根据分式的基本性质:分子和分母同时除以6mn 化简.【详解】 22618m n mn=-3m n -,故答案为:3m n-. 【点睛】 此题考查分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不等于零的整式,分式的值不变.19.【分析】根据实数的性质即可化简求解【详解】解:故答案为:【点睛】本题主要考查了实数的运算解题的关键是掌握负指数幂的运算解析:4【分析】根据实数的性质即可化简求解.【详解】解:1|131(14)3--==-故答案为:4【点睛】本题主要考查了实数的运算,解题的关键是掌握负指数幂的运算. 20.【分析】分别计算绝对值和0次幂再计算和即可【详解】解:原式=5+1=6故答案为:6【点睛】此题主要考查了实数运算解题的关键是熟练掌握绝对值及零次幂的性质解析:【分析】分别计算绝对值和0次幂,再计算和即可.【详解】解:原式=5+1=6.故答案为:6.【点睛】此题主要考查了实数运算,解题的关键是熟练掌握绝对值及零次幂的性质.三、解答题21.刘峰骑自行车每小时行20千米,李明乘公交车每小时行60千米【分析】设刘峰骑自行车每小时行x 千米,则李明乘公交车每小时行3x 千米,根据他们的行驶时间相差30分钟列出分式方程并解答,注意分式方程的结果要检验.【详解】解:设刘峰骑自行车每小时行x 千米,则李明乘公交车每小时行3x 千米,根据题意列方程得:203030360x x =+ 即201012x x =+解这个方程得20x检验:当20x 时,20x ≠所以,20x 是原分式方程的解,当20x 时,332060x =⨯=答:刘峰骑自行车每小时行20千米,则李明乘公交车每小时行60千米【点睛】本题考查分式方程的应用,利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.22.(1)()212m +,1;(2)6cm 【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将已知方程变形后代入计算即可求出值(2) 先求得CD =DE ,然后由Rt △DEF 中30°所对的边等于斜边的一半进行求解即可.【详解】(1)解:原式()2(2)28(2)(2)(2)m m m m m m m m +-⎛⎫+=+÷⎪--+⎝⎭ ()()()()()()()()()()()2222822222222212m m m m m m m m m m m m m m m m +-=⨯-++--=⨯+-+-=+2430m m ++=∴22(2)44341m m m +=++=-+=∴原式1=;(2)∵ABC 是等边三角形,∴60B A ︒∠=∠=,∵//DE AB ,∴60EDC B ︒∠=∠=,60DEC A ︒∠=∠=,∴EDC △是等边三角形.∵EF DE ⊥,∴90DEF ︒∠=,∴9030F EDC ︒︒∠=-∠=;∴26cm DF DE ==.【点睛】本题有两个问题第(1)题考查了分式的化简求值,以及分式的乘除法,熟练掌握运算法则是解本题的关键. 第(2)题主要考查的是等边三角形的性质和30°所对的边等于斜边的一半,熟练掌握相关知识是解题的关键.23.2x y x+,-2 【分析】 先算括号里的加减法运算,再把除法化为乘法,约分化简,最后代入求值,即可求解.【详解】原式=2222(2)(2)(2)x x y x x y x x y x y +---÷-+ =222x y x y x x y --÷+ =222x y x y x x y -+⋅- =2x y x+, ∵()2230x y ++-=,∴()22030x y +=-=,, ∴x=-2,y=3,∴原式=2x y x +=22322-+⨯-=-. 【点睛】 本题主要考查分式的化简求值,掌握分式的混合运算法则,通分和约分,是解题的关键.24.()11x x -,12【分析】 此题需先根据分式的混合运算顺序和法则把22131x x x x x ---+-进行化简,然后把x 代入即可.【详解】解:原式=()13(1)(1)1x x x x x x ---++- =()(1)(1)(3)(1)(1)(1)1x x x x x x x x x x ----+-+- =22(1)(11)23x x x x x x x -+--++ ()11x x =-当2x =时,原式12=【点睛】 此题考查了分式的化简求值,分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.25.21(2)x -,19【分析】先计算括号内的运算,然后进行化简,得到最简分式,再把5x =代入计算,即可得到答案.【详解】 解:22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭ =221[](2)(2)4x x x x x x x +--⨯--- =22224[](2)(2)4x x x x x x x x x ---⨯--- =24(2)4x x x x x -⨯-- =21(2)x -; 当5x =时,原式=211(52)9=-. 【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则,正确的进行化简.26.21x +,-2 【分析】 先将分式的分子分母因式分解,同时将除法转化为乘法,再计算分式的乘法,最后计算分式的减法即可.【详解】 解:2222631121x x x x x x x ++-÷+--+ 222(3)(1)1(1)(1)3x x x x x x x +-=-⋅++-+ 22(1)11x x x x -=-++21x =+, 当2x =-时,原式222211===--+-. 【点睛】 本题主要考查分式的化简求值,熟练掌握分式混合运算顺序和运算法则是解题的关键.。

人教版数学八年级上册 分式解答题综合测试卷(word含答案)

人教版数学八年级上册 分式解答题综合测试卷(word含答案)

一、八年级数学分式解答题压轴题(难)1.已知分式 A =2344(1)11a a a a a -++-÷--(1)化简这个分式;(2)当 a >2 时,把分式 A 化简结果的分子与分母同时加上 4 后得到分式 B ,问:分式 B 的值较原来分式 A 的值是变大了还是变小了?试说明理由;(3)若 A 的值是整数,且 a 也为整数,求出符合条件的所有 a 值的和. 【答案】(1)22a a +-;(2)原分式值变小了,见解析;(3)11 【解析】 【分析】(1)根据分式混合运算顺序和运算法则化简即可得; (2)根据题意列出算式2622a a A B a a ++-=--+,化简可得16(2)(2)A B a a -=-+,结合a的范围判断结果与0的大小即可得; (3)由24122a A a a +==+--可知,2a -=±1、±2、±4,结合a 的取值范围可得. 【详解】解:(1)A=2344(1)11a a a a a -++-÷-- =221311(2)a a a a ---⨯-- =2(2)(2)11(2)a a a a a +--⨯--=22a a +-; (2)变小了,理由如下:∵22a A a +=-, ∴62a B a +=+,∴261622(2)(2)a a A B a a a a ++-=-=-+-+;∵2a >,∴20a ->,24a +>, ∴0A B ->, ∴分式的值变小了;(3)∵A 是整数,a 是整数,则24122a A a a +==+--, ∴21a -=±、2±、4±,∵1a ≠,∴a 的值可能为:3、0、4、6、-2; ∴3046(2)11++++-=; ∴符合条件的所有a 值的和为11. 【点睛】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.2.阅读下面材料并解答问题材料:将分式322231x x x x --++-+拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为21x -+,可设()322231()x x x x x a b --++=-+++, 则323223x x x x ax x a b --++=--+++ ∵对任意x 上述等式均成立, ∴2a =且3a b +=,∴2a =,1b =∴()2322221(2)12312111x x x x x x x x x -+++--++==++-+-+-+ 这样,分式322231x x x x --++-+被拆分成了一个整式2x +与一个分式211x -+的和 解答:(1)将分式371x x +-拆分成一个整式与一个分式(分子为整数)的和的形式 (2)求出422681x x x --+-+的最小值.【答案】(1)3+101x -;(2)8 【解析】 【分析】(1)直接把分子变形为3(x-1)+10解答即可;(2)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a)+b ,按照题意,求出a 和b 的值,即可把分式422681x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式. 【详解】解:(1)371x x +-=33101x x -+-=()31101x x -+-=3+101x -; (2)由分母为21x -+,可设4268x x --+()()221x x a b =-+++, 则4268x x --+()()221x x a b =-+++ 422x ax x a b =--+++42(1)()x a x a b =---++.∵对于任意的x ,上述等式均成立, ∴168a a b -=⎧⎨+=⎩解得71a b =⎧⎨=⎩∴422681x x x --+-+()()2221711x x x -+++=-+()()222217111x x x x -++=+-+-+22171x x =++-+.∴当x=0时,22171x x ++-+取得最小值8,即 422681x x x --+-+的最小值是8. 【点睛】本题主要考查分式的混合运算,解答本题的关键是理解阅读材料中的方法,并能加以正确应用.3.符号a b c d称为二阶行列式,规定它的运算法则为:a b ad bc c d=-,请根据这一法则解答下列问题:(1)计算:211111xx x +-;(2)若2121122x xx -=--,求x 的值. 【答案】(1)()()111x x +- (2)5【解析】 【分析】(1)根据新定义列出代数式,再进行减法计算;(2)根据定义列式后得到关于x 的分式方程,正确求解即可. 【详解】 (1)原式2111x x x =--+ ()()()()11111x x x x x x -=-+-+-()()111x x =+-;(2)根据题意得:21222x x x--=-- 解之得:5x =经检验:5x =是原分式方程的解 所以x 的值为5. 【点睛】此题考察分式的计算,分式方程的求解,依据题意正确列式是解此题的关键.4.有甲、乙两名采购员去同一家公司分别购买两次饲料,两次购买的饲料价格分别为m 元/千克和n 元/千克,且m≠n ,两名采购员的采购方式也不同,其中甲每次购买800千克,乙每次用去800元,而不管购买多少千克的饲料。

人教版数学八年级上册《分式》单元综合测试题(附答案)

人教版数学八年级上册《分式》单元综合测试题(附答案)
试题解析:原式= =x+2当x=4时,原式=x+2=6.
考点:分式的化简求值
19.先化简,再求值: ,其中 .
【答案】 , .
【解析】
试题分析:括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.
试题解析:原式= = = ,
当 时,原式= = .
【详解】解:原式= .
故答案为A
【点睛】此题考查分式的加减法,解题关键在于掌握运算法则.
4.当 时,下列关于幂的运算正确的是().
A. B. C. D.
【答案】A
【解析】
试题分析:选项B应为: ;选项C应为: ;选项D应为: .
考点:幂的基本运算.
5.若关于 的分式方程 有增根,则 的值是().
A. B.
21.某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.
问:今年第一季度生产总量是多少台机器?m 值是多少?
根据分式的分母不为零分式有意义,可得答案.
【详解】解:由题意,得:x-5≠0,
解得:x≠5.
故答案为x≠5.
【点睛】本题考查了分式有意义的条件.
三、解答题(共5题;共25分)
18.先化简,再求值: ,其中
【答案】6
【解析】
试题分析:首先将括号里面的分式进行通分,然后将各分式的分子和分母进行因式分解,最后进行约分化简,最后将x的值代入化简后的式子进行计算.

【最新】人教版八年级人教版数学上册分式单元检测试题(含解析答案).doc

【最新】人教版八年级人教版数学上册分式单元检测试题(含解析答案).doc

的值为 0,则 x 的值是(

B. x=0
10.(2013?威海)下列各式化简结果为无理数的是(
A.
B.
C. x= ﹣3
) C.
1
D. x= ﹣2 D. x>﹣ 3
D. x D. =±3
D. x= ﹣3
D. 0
D.
(﹣
2a)
﹣2
=
[来源 学_ 科_网 Z_X_X_K ]
D. x= ﹣4 D.
二.填空题(共 10 小题)
( 1)分式无意义 ? 分母为零; ( 2)分式有意义 ? 分母不为零; ( 3)分式值为零 ? 分子为零且分母不为零.
4.计算 A.0
的结果是(

B.1
C.﹣1
D. x
考点: 分式的加减法.
专题: 计算题.
分析: 原式利用同分母分式的减法法则计算,变形后约分即可得到结果.
解答: 解:原式 =
=﹣
=﹣ 1.
x﹣ 1)
5
∵原方程有增根,
∴最简公分母 x﹣ 1=0,
解得 x=1,
当 x=1 时, m=7,这是可能的,符合题意.
故选 A .
点评: 本题考查了分式方程的增根,关于增根问题可按如下步骤进行:
①让最简公分母为 0 确定增根; ②化分式方程为整式方程;
③把增根代入整式方程,检验是否符合题意

7.方程 A.3
的解是(

B.2
C. 1
D.0
考点: 解分式方程.
专题: 计算题;压轴题.
分析: 分式方程去分母转化为整式方程,求出整式方程的解得到
x 的值,经检验即可得到分式方程的解.
解答: 解:去分母得: 2x=3x ﹣ 3,

人教版数学八年级上册《分式》单元综合检测卷附答案

人教版数学八年级上册《分式》单元综合检测卷附答案
A. B. C. D.
10.若关于x的方程 =3的解为正数,则m的取值范围是()
A m< B.m< 且m≠
C.m>﹣ D.m>﹣ 且m≠﹣
二、填空题(每小题3分,共24分)
11.当x________时,分式 有意义.
12.方程 解是_____.
13 若3x-1= ,则x=_______.
14.计算 的结果是.
根据分式的运算法则逐一作出判断
【详解】A、 ,故本选项错误;
B、 ,故本选项正确;
C、 ,故本选项正确;
D、 ,故本选项正确.
故选A.
4.人体中红细胞的直径约为0.000 007 7m,将数0.000 007 7用科学记数法表示为( )
A.7.7× B. C. D.
【答案】C
【解析】
试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000077=7.7×10﹣6,故答案选C.
21.(1)先化简,再求值: ,其中x=1;
(2)先化简,再求值: ,从不大于4的正整数中,选择一个合适的值代入x求值.
【答案】(1) ,2(2)取x=4,原式=
【解析】
试题分析:(1)通分,化简,代入求值.
(2)通分,化简,代入求值.
试题解析:
(1)原式= ,
当x=1时,原式=2.
(2)原式=( ·(x-3)= ·(x-3)= ,
考点:科学记数法表.
5.化简 的结果是
A. +1B. C. D.
【答案】D
【解析】
试题分析: .故选D.
6.如果把分式 中的m和n都扩大2倍,那么分式的值()

八年级数学分式综合检测(人教版)(含答案)

八年级数学分式综合检测(人教版)(含答案)

分式综合检测(人教版)一、单选题(共10道,每道10分)1.下列运算正确的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:分式的基本性质2.当m等于( )时,分式的值为零.A.1B.3C.1或3D.1或2答案:B解题思路:试题难度:三颗星知识点:分式值为03.若a=-3,b=2,则代数式的值是( )A.1B.-1C. D.答案:C解题思路:试题难度:三颗星知识点:分式化简求值4.若,则的值为( )A.25B.24C. D.答案:B解题思路:试题难度:三颗星知识点:条件求值5.若,则的值是( )A.1B.-1C.3D.-3答案:A解题思路:试题难度:三颗星知识点:条件求值6.若关于x的方程的解是非负数,则m的取值范围是( )A.m>-6B.m>-6且m≠-4C.m≥-6D.m≥-6且m≠-4答案:D解题思路:试题难度:三颗星知识点:分式方程的解7.若关于x的方程的解是正数,则a的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:分式方程的解8.若分式方程有增根,则m的值是( )A.-1或-2B.-1或2C.1或2D.1或-2答案:D解题思路:试题难度:三颗星知识点:分式方程增根无解问题9.当a为( )时,关于x的方程无解.A.-4B.6C.-4或6D.-4或6或1答案:D解题思路:试题难度:三颗星知识点:分式方程增根无解问题10.化简分式,并在-1≤x≤1中选一个你认为合适的整数x代入,结果可能是( )A.0B.-1C.-3D.1答案:D解题思路:试题难度:三颗星知识点:分式化简求值。

最新人教版八年级数学上册《分式》达标测试题及答案.docx

最新人教版八年级数学上册《分式》达标测试题及答案.docx

第十五章 分式测试题(时间: 满分:120分)(班级: 姓名: 得分: )一、选择题(每小题3分,共24分)1. 若分式21a +有意义,则a 的取值范围是( ) A .0a = B .1a = C .1a ≠-D .0a ≠2. 下列运算错误的是( )A .()()221a b b a -=- B .1a b a b --=-+ C .0.55100.20.323a b a b a b a b ++=-- D .a b b a a b b a --=++ 3. 分式方程﹣=0的解是( ) A .x=﹣2 B . x =﹣1 C .x=2 D .x=14. 化简123()x x -的结果是( )A .5xB .4xC .xD .1x 5. 化简2244xy y x x --+的结果是( ) A .2x x + B .2x x - C .2y x + D .2y x - 6. 化简aa b a b -÷⎪⎭⎫ ⎝⎛-2的结果是( ) A .1--a B .1+-a C .1+-ab D .b ab +-7. 若x 等于它的倒数,则分式1332622+-+÷--+x x x x x x 的值为 ( ) A. -1 B. 5 C. -1或5 D. -41或4 8. 某人生产一种零件,计划在30天内完成,若每天多生产6个,则25天完成且还多生产10个,问原计划每天生产多少个零件?设原计划每天生产x 个零件,根据题意列方程为( )A.3010256x x -=+B.3010256x x +=+C.3025106x x =++D.301025106x x +=-+二、填空题(每小题4分,共32分)9.当x= 时,分式242--x x 的值为零. 10. 利用分式的基本性质填空:(1)()() 30510a a xy axy=≠ ;(2)() 1422=-+a a . 11. 若分式231-+x x 的值为负数,则x 的取值范围是__________. 12.化简1342+⋅⎪⎭⎫ ⎝⎛+-x x x 的结果是________. 13. 某红外线遥控器发出的红外线波长为0.000 000 94 m ,用科学记数法表示这个数是 m.14. 已知1x =是分式方程131k x x =+的解,则实数k 的值为___________. 15. 方程423532=-+-xx x 的解是 . 16. 某市今年计划修建一段全长1500米的景观路,为了尽量减少施工对城市交通的影响,实际工作效率比原计划提高了20%,结果提前2天完成任务.若设原计划每天修路x 米,则根据题意可列方程 .三、解答题(共64分)17. (每小题5分,共10分) 计算:(1)22a a b b a b a -⋅--;(2)12x -1x y +222x y x y x +⎛⎫⋅-+ ⎪⎝⎭. 18. (每小题6分,共12分)解方程:(1)2112x x =--;(2)13x x +-=1x x +. 19.(8分)先化简,再求值:213124a a a -⎛⎫-÷ ⎪--⎝⎭,其中3a =-.20. (10分)八年级学生到距离学校15千米的农科所参观,一部分学生骑自行车先走,过了40分钟后,其余同学乘汽车出发,结果所有学生同时到达.若汽车的速度是骑自行车同学速度的3倍,求骑自行车同学的速度.21.(12分)先化简,再求值:2214244x x x xx x x +--⎛⎫-÷⎪--+⎝⎭,其中x 是不等式3x+7>1的负整数解.22.(12分)一项工程,甲、乙两公司合作,12天可以完成,共需付施工费102 000元.如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲、乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?参考答案一、1. C 2. D 3. A 4. C 5. D 6. B 7. C 8. B二、9. -2 10.(1)26a (2)2a - 11. -1<x <23 12. 32+x x 13. 9.4×10-7 14. 1615. x=1 16. 150015002(120)x x -=+% 三、17. 解:(1)原式=()()a b a b a b a b b a a b a +-⋅-=+-=-; (2)原式=12x -1x y ⋅+(x+y)(x -y)-1x y ⋅+2x y x +=12x -(x -y)-12x=-(x -y)=y -x. 18. 解:(1)去分母,得2(2)1x x -=-,解得 3.x =检验,3x =是原方程的解.(2)去分母,得x (x+1)=(x+1)(x-3),解得x=-1.检验,x=-1是原方程的解.19. 解:21321(2)(2)124223a a a a a a a a a --+-⎛⎫⎛⎫-÷=-⋅ ⎪ ⎪-----⎝⎭⎝⎭ =3(2)(2)223a a a a a a -+-⋅=+--. 当3a =-时,原式=2321a +=-+=-.20. 解:设骑自行车同学的速度为x 千米/时.由题意,得151540360x x -=,解得15=x . 检验,15=x 是原分式方程的解.答:骑自行车同学的速度为15千米/时. 21. 解:原式=()()()()()()22212224x x x x x x x x x x ⎡⎤+----⋅⎢⎥---⎣⎦=()()2222424x x x x x x x ---+⋅--= ()()22424x x x x x --⋅--=2x x-. 解不等式3x+7>1,得x >﹣2.因为x 是不等式3x+7>1的负整数解,所以x=﹣1.当x=-1时,原式=121---=3. 22. 解:(1)设甲公司单独完成此项工程需x 天,则乙公司单独完成此项工程需1.5x 天. 根据题意,得1111.512x x +=,解得20x =. 检验,20x =是原分式方程的解且符合题意.1.530x =.答:甲、乙两公司单独完成此项工程,各需要20天,30天.(2)设甲公司每天的施工费为y 元,则乙公司每天的施工费为()1500y -元.根据题意,得12(y+y-1500)=102 000. 解得y=5000.甲公司单独完成此项工程需施工费:20×5000=100 000(元);乙公司单独完成此项工程需施工费:30×(5000-1500)=105 000(元).故甲公司的施工费较少.。

2018-2019届最新人教版八年级数学上册《分式》测试题及答案-精品试卷

2018-2019届最新人教版八年级数学上册《分式》测试题及答案-精品试卷

分式测试题(时间:90分钟总分:100分)一、选择题(本大题共10小题,共30.0分)1.下列各式:,,,,中,是分式的共有A. 1个B. 2个C. 3个D. 4个2.若,则的值是A. B. C. D.3.在中,分式有A. 1个B. 2个C. 3个D. 4个4.式子,,,,中是分式的有A. 1个B. 2个C. 3个D. 4个5.下列各式中是分式的是A. B. C. D.6.若要使分式的值为整数,则整数x可取的个数为A. 5个B. 2个C. 3个D. 4个7.在,,,,,,,中,属于分式的个数为A. 3B. 4C. 5D. 68.在、、、、、中,分式的个数有A. 2个B. 3个C. 4个D. 5个9.若,则的值是A. B. C. 1 D.10.在,,,,,,中分式的个数有A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共10小题,共30.0分)11.已知x为正整数,当时______时,分式的值为负整数.12.已知x为整数,且分式的值为整数,则______ .13.给定下面一列分式:,,,,根据这列分式的规律,请写出第7个分式______,第n个分式______.14.已知,则分式的值是______ .15.若,则x的取值范围是______ .16.如果,那么的值为______ .17.一组按规律排列的式子:,,,,,,其中第7个式子是______,第n个式子是______用含的n式子表示,n为正整数.18.当x______时,分式的值为正数.19.已知的值为正整数,则整数m的值为______ .20.已知x,y,z满足,则的值是______ .三、计算题(本大题共4小题,共24.0分)21.已知,,求的值.22.已知实数a,b,c满足.分别求a,b,c的值;若实数x,y,z满足,,,求的值.23.已知,求的值.24.若,且求的值.四、解答题(本大题共2小题,共16.0分)25.阅读下面的解题过程:已知:,求的值.解:由知,所以,即.所以.故的值为.该题的解法叫做“倒数法”,请你利用“倒数法”解决下面的题目:已知:,求的值.26.如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.下列分式:①;②;③;④其中是“和谐分式”是_____填写序号即可;若a为正整数,且为“和谐分式”,请写出a的值在化简时,小东和小强分别进行了如下三步变形:小东:原式小强:原式显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:________________________________________________________,请你接着小强的方法完成化简.答案和解析【答案】1. C2. C3. B4. B5. C6. D7. C8. A9. B10. C11. 3,4,5,812. 0或2或313. ;14. 215.16.17. ;18.19. 0,3,4,520.21. 解:由原方程组得①②,①②,得:,,将代入①,得:,解得,将、代入得:原式.22. 解:已知等式整理得:,,,,解得:,;把,代入已知等式得:,即;,即;,即,,则原式.23. 解:将两边同时乘以x,得,.24. 解:,,,又,.故答案为.25. 解:,且,,,,,26. ②;解:为“和谐分式”,因式分解即可得到或5.小强通分时,利用和谐分式找到了最简公分母.【解析】1. 解:下列各式:,,,,中,分式为,,.故选C.根据分式的定义进行判断.本题考查了分式的定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.2. 解:设,,,原式,故选C.设,,,然后分别代入原式即可求出答案.本题考查分式的求值问题,属于基础题型3. 解:在中分式有两个,故选B判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数,特别注意不是字母.4. 解:,是分式,故选:B.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.本题主要考查分式的定义,含有字母则是分式,如果不含有字母则不是分式,注意不是字母,是常数.5. 解:、、的分母中均不含有字母,是整式,而不是分式.分母中含有字母,因此是分式.故选:C.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.6. 解:原式,由结果为整数,得到、,所以整数x为0,,1,共4个,故选D原式约分化简后,根据值为整数确定出整数x的取值个数即可.此题考查了分式的值,认真审题,抓住关键的字眼,是正确解题的出路如本题“整数x”中的“整数”,“的值为整数”中的“整数”.7. 解:,,,,的分母中含有字母,因此是分式.,,,分母中均不含有字母,因此它们是整式,而不是分式.故选:C.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.本题主要考查分式的定义,注意不是字母,是常数,所以不是分式,是整式.8. 解:、是分式,故选:A.根据分母中含有字母的式子是分式,可得答案.本题考查了分式的定义,分母中含有字母的式子是分式,否则是整式,注意是常数,是整式.9. 解:,,.故选:B.利用已知得出x与y的关系,进而代入原式求出答案.此题主要考查了分式的值,正确得出x与y之间的关系是解题关键.10. 解:,,的分母中均不含有字母,因此它们是整式,而不是分式.,,,分母中含有字母,因此是分式.故选:C.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.本题主要考查分式的定义,注意不是字母,是常数,所以不是分式,是整式.11. 解:由题意得:,解得,又因为x为正整数,讨论如下:当时,,符合题意;当时,,符合题意;当时,,符合题意;当时,,不符合题意,舍去;当时,,不符合题意,舍去;当时,,符合题意;当时,,不符合题意故x的值为3,4,5,8.故答案为3、4、5、8.由分式的值为负整数,可得,解得,又因为x为正整数,代入特殊值验证,易得x的值为3,4,5,8.本题综合性较强,既考查了分式的符号,又考查了分类讨论思想,注意在讨论过程中要做到不重不漏.12. 解:,根据题意,得或,则或0或3或.又,则或2或3.首先化简分式,得要使它的值为整数,则应是2的约数,即或,同时注意原分式有意义的条件:.此类题首先要正确化简分式,然后要保证分式的值为整数,则根据分母应是分子的约数,进行分析.注意:字母的值必须保证使原分式有意义.13. 解:这列分式中的第7个分式为,第n个分式为.故答案为:,.分子中x的次数是分式的序次的2倍,分母中y的次数是x的次数减1,分式的序次为奇数时,分式的符合为正,分式的序次为偶数时,分式的符合为负,于是这列分式中的第7个分式为,第n个分式为.本题考查了分式的定义:叫分式,其中A、B都是整式,并且B中含有字母也考查了从特殊到一般的规律的探究.14. 解:由,得到,则原式,故答案为:2已知等式整理后,代入原式计算即可得到结果.此题考查了分式的值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.15. 解:由题意得且即,且所以.故答案为.由绝对值的定义和分式有意义的条件入手求解.本题主要考查了分式的值和绝对值的定义,解决本题的关键是注意分式的分母不能为即的条件.16. 解:,,,即,当时,原式.故答案为.利用完全公式得到,则有,然后把代入分式约分即可.本题考查了分式的值:把满足条件的字母的值代入分式,计算得到对应的值称为分式的值;也可以通过整体代入约分得到分式的值.17. 解:,,,第7个式子是,第n个式子为:.故答案是:,.观察分母的变化为a的1次幂、2次幂、3次幂次幂;分子的变化为:2、5、10、;分式符号的变化为:、、、.本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.18. 解:由题意可知:,故答案为:根据题意列出不等式即可取出答案.本题考查分式的值,解题的关键是根据题意列出不等式,本题属于基础题型.19. 解:的值为正整数,,,或.解得:或或或.故答案为:0,3,4,5.先将6分解因数,然后可得到m的值.本题主要考查的是分式的值,求得6的所有符合条件的因数是解题的关键.20. 解:根据题意得:①②,①②得:,即,把代入①得:,则原式,故答案为:把z看做已知数表示出x与y,代入原式计算即可得到结果.此题考查了分式的值,用z表示出x与y是解本题的关键.21. 将方程组中的z看做常数,解之可得、,将其代入分式计算可得.本题主要考查分式的值,解题的关键是熟练掌握二元一次方程组及分式混合运算顺序和运算法则.22. 已知等式利用完全平方公式配方后,利用非负数的性质求出a,b,c的值即可;把a,b,c的值代入已知等式求出的值,原式变形后代入计算即可求出值.此题考查了配方法的应用,非负数的性质,以及分式的值,熟练掌握完全平方公式是解本题的关键.23. 我们可将前面式子变式为,再将后面式子的分母变式为的形式从而求出值.本题考查的是分式的值,解题关键是用到了整体代入的思想.24. 首先由,,运用完全平方公式得出,再结合已知条件,即可求出的值.本题主要考查了分式的值这一知识点,熟练运用完全平方公式:.25. 根据题意给出的解题思路即可求出答案.本题考查分式的运算,解题的关键正确理解题目给出的解答思路,本题属于基础题型.26. 【分析】本题考查的是分式的定义,分式的混合运算有关知识.首先根据“和谐分式”的定义进行解答即可;根据所给的分式是“和谐分式”,则对进行因式分解即可解答;根据“和谐分式”的定义化简即可解答.【解答】解:由题意可得:②属于和谐分式.故答案为②.见答案;解:小强通分时,利用和谐分式找到了最简公分母.原式.故答案为小强通分时,利用和谐分式找到了最简公分母.。

人教版数学八年级上册《分式》单元综合检测卷(含答案)

人教版数学八年级上册《分式》单元综合检测卷(含答案)
【详解】∵102y=25,∴(10y)2=25,
∴10y=5或10y=-5(舍),
∴10-y= = .
故选A.
【点睛】本题考查幂的乘方运算的逆运算和负指数幂的运算法则.
幂的乘方运算法则:(am)n=amn(m,n都是正整数).
负指数幂的运算法则:a-m= (a≠0,m为正整数)
5.已知 ,则 的值为( )
7.科学家发现一种病毒的直径为0.00000104米,用科学记数法表示为_____米.
【答案】1.04×10-6.
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
(2)解方程:解这个整式方程;
(3)验根:把整式方程 根代入最简公分母,若结果为零,则舍去;若结果不为零,则是原方程的根;
(4)得到分式方程的解.
14.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:
x-6,x-1,x,x+1,x+6,x+7,x+8.所以这个9个数的和为9x,y为x+8.
故答案为(1)9x,(2)y=x+8.
【点睛】本题是关于日历中数字之间关系的题,需掌握日历的相关知识:日历中每一行只有7个数.
三.解答题(共4小题,满分50分)
11.化简:
【答案】
【解析】
【分析】
括号内通分后进行减法运算,然后再进行分式除法运算即可.
10.已知,如图为一日历的一部分,粗线所在的框刚好框住了9个数,设中间的一个数为x,那么这9个数的Байду номын сангаас为_____,右下角的数y用含x的代数式表示为_____.

人教版八年级上册数学《分式》单元综合检测卷(含答案)

人教版八年级上册数学《分式》单元综合检测卷(含答案)
【详解】∵ •|m|= ,
∴|m|=1或 ∴m= 1,m=4
∵ ∴m -1,
∴m=1或4
故答案为1或4
【点睛】此题考查了分式的值不为0的条件,以及绝对值等知识,熟练掌握相关知识是解题关键.
15.已知关于x的方程 =3的解是非负数,则m的取值范围是________.
【答案】m≥﹣9且m≠﹣6
【解析】
【分析】
12.当x_____时,分式 有意义.
【答案】≠﹣4.
【解析】
分析】
直接利用分式有意义的条件,即分母不为零,进而得出答案.
【详解】解:分式 有意义,则4+x≠0,
解得:x≠-4.
故答案为≠-4.
【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.
13.若 =3,则 的值为_____.
A.x>2B.x<2C.x≠﹣1D.x<2且x≠﹣1
【答案】B
【解析】
分析:
根据使分式值为负数的条件进行分析解答即可.
详解:
∵无论 取何值,代数式 的值都大于0,
∴要使代数式 的值为负数,需满足: ,
解得: .
故选B.
点睛:本题解题需注意两点:(1)代数式 的值恒为正数;(2)要使分式的值为负数,需满足分子和分母的值一个为正数,另一个为负数.
故答案为D
【点睛】本题考查的知识点是分式的性质,解题关键是熟记分式的性质:分式的分子分母都乘或除以同一个不为0的整式,分式的值不变.
6.化简 的结果为()
A. ﹣ B. ﹣yC. D.
【答案】D
【解析】
【分析】
先因式分解,再约分即可得.
【详解】
故选D.
【点睛】本题主要考查约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.

最新人教版八年级初二数学上册《分式》同步测试含答案

最新人教版八年级初二数学上册《分式》同步测试含答案

15.1 分式一、选择题1.如果分式有意义,则x的取值范围是()A.全体实数 B.x=1 C.x≠1 D.x=02.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠13.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣14.使分式有意义,则x的取值范围是()A.x≠1 B.x=1 C.x≤1 D.x≥15.要使分式有意义,则x的取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣16.若分式有意义,则x的取值范围是()A.x≠3 B.x≠﹣3 C.x>3 D.x>﹣37.要使分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x<1 D.x≠﹣18.下列说法正确的是()A.﹣3的倒数是B.﹣2的绝对值是﹣2C.﹣(﹣5)的相反数是﹣5 D.x取任意实数时,都有意义9.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数10.要使分式有意义,则x的取值范围是()A.x>2 B.x<2 C.x≠﹣2 D.x≠211.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣212.分式有意义的条件是()A.x=﹣4 B.x≠﹣4 C.x=4 D.x≠413.若分式的值为0,则x的值为()A.2或﹣1 B.0 C.2 D.﹣1二、填空题14.若分式有意义,则x的取值范围是______.15.要使分式有意义,则字母x的取值范围是______.16.如果分式有意义,那么x的取值范围是______.17.代数式在实数范围内有意义,则x的取值范围是______.18.若分式有意义,则x应满足______.19.使式子1+有意义的x的取值范围是______.20.当x=______时,分式无意义.21.若分式有意义,则x≠______.22.当x=______时,分式的值为0.23.若代数式的值等于0,则x=______.24.使代数式有意义的x的取值范围是______.25.当分式有意义时,x的取值范围是______.26.若分式有意义,则实数x的取值范围是______.27.分式在实数范围内有意义,则x的取值范围是______.28.代数式有意义时,x应满足的条件为______.29.要使分式有意义,则x的取值范围是______.30.要使分式有意义,则x的取值范围是______.15.1 分式参考答案一、选择题1.C;2.D;3.A;4.A;5.A;6.A;7.A;8.C;9.B;10.D;11.D;12.D;13.C;二、填空题14.x≠1;15.x≠1;16.x≠-3;17.x≠3;18.x≠5;19.x≠1;20.2;21.2;22.-1;23.2;24.x≠;25.x≠2;26.x≠5;27.x≠1;28.x≠±1;29.x≠2;30.x≠10;学生每日提醒~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~励志名言:1、泰山不是垒的,学问不是吹的。

八年级上册数学《分式》单元综合测试带答案

八年级上册数学《分式》单元综合测试带答案
请你解决如下问题:求分式 的取值范围.
[答案]
[解析]
试题分析:利用配方法可得x2-4x+5≥1,则可得0< ≤1,把所求范围的分式适当变形即可求出它的范围.
试题解析:x2-4x+5=x2-4x+4+1=(x-2)2+1,(x-2)2≥0,
∴x2-4x+5≥1,
∴0< ≤1,
∴1<1+ ≤2,
∵ = =1+ ,
在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?
22.扬州建城2500年之际,为了继续美化城市,计划在路旁栽树1200棵,由于志愿者的参加,实际每天栽树的棵树比原计划多20%,结果提前4天完成,求实际每天栽树多少棵?
23.某工程队由甲乙两队组成,承包我市河东东街改造工程,规定若干天完成,已知甲单独完成这项工程所需时间比规定时间多32天,乙队单独完成这项工程所需时间比规定时间多12天,如果甲乙两队先合作20天,剩下的甲单独做,则延误两天完成,那么规定时间是多少天?
八年级上册数学《分式》单元测试卷
(时间:120分钟 满分:150分)
一、单选题(共10题;共30分)
1.化简分式 结果为()
A. B. C. D.
2.若分式 值为0,则x的值为()
A.0B.1C.﹣1D.±1
3.如果分式 的值为0,则x的值是
A 1B. 0C. -1D. ±1
4.若x=-1,y=2,则 的值等于
A. x≠1B. x≠﹣2C. x>1D. x>﹣2
[答案]A
[解析]
由题意得:x﹣1≠0,解得:x≠1,
故选A.
9.使分式 有意义,x应满足的条件是()
A. x≠1B. x≠2C. x≠1或x≠2D. x≠1且x≠2

最新人教版八年级数学上册《分式》综合测试卷

最新人教版八年级数学上册《分式》综合测试卷

一、选择题(每题3分,共30分)1.在下列分式中,是最简分式的是()A .x +1x2-1B .x +2x2+1C .y 2y2D .63y +32.分式x -y x2+y2有意义的条件是() A .x ≠0 B .y ≠0 C .x ≠0或y ≠0 D .x ≠0且y ≠03.当式子|x|-5x2-4x -5的值为零时,x 的值是() A .5 B .-5 C .1或5 D .-5或54.下列计算错误的是()A .0.2a +b 0.7a -b =2a +b 7a -bB .x3y2x2y3=x yC .a -b b -a =-1D .1c +2c =3c5.方程m m -1 =3(1+m )4+3m的解为() A .23 B .-34 C .34D .1 6.分式x2+x x2-1 ÷x2x2-2x +1的值可能为() A .2 B .1 C .0 D .-17.若分式x2x -1 x x -1的运算结果为x ,则在“ ”中添加的运算符号为(D)A .÷B .-C .÷或+D .÷或-8.化简a +1a2-2a +1 ÷(1+2a -1 )的结果是() A .1a2-1 B .1a +1 C .1a -1 D .1a2+19.已知a ,b 为实数,且ab =1,设M =a a +1 +b b +1,N =1a +1 +1b +1,则M 与N 的大小关系为() A .M >N B .M <N C .M =N D .无法确定10.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x 吨/小时,依题意列方程正确的是()A .25x =35x -20B .25x =35x +20C .25x -20 =35xD .25x +20=35x二、填空题(每题3分,共24分)11.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只有0.0000007(单位:mm2),这个数字可用科学记数法表示为__________.12.计算:3-8 +⎝ ⎛⎭⎪⎫13 -2 +(π-3.14)0=__________. 13.方程6(x +1)(x -1) -3x -1=1的解为__________. 14.当a =__________时,分式a2-1a2+a -2的值为0. 15.若代数式1x -2 和32x +1的值相等,则x =__________. 16.已知a2-6a +9与(b -1)2互为相反数,则式子(a b -b a)÷(a +b)的值是__________.17.某市在旧城改造过程中,需要整修一段全长2400 m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路的长度.若设原计划每小时修路x m ,依题意可列方程__________.18.若关于x 的分式方程m -1x -1=2的解为非负数,则m 的取值范围是__________.三、解答题(共66分) 19.(12分)计算与化简:(1)4a2b÷(b2a )-2·ab2;(2)(x+1x2-x -xx2-2x+1)÷1x-1;(3)(1-1x-1)÷x2-4x+4x2-1.20.(8分)解方程:(1)3xx+2+2x-2=3;(2)4x2-1+x+21-x=-1.21.(8分)有甲、乙两筐水果,甲筐水果重(x-1)2千克,乙筐水果重(x2-1)千克(其中x >1),售完后,两筐水果都卖了50元.(1)哪筐水果的单价低?(2)高的单价是低的单价的多少倍?22.(8分)先化简,再求值:11-x ÷x2+2x x2-2x +1 +1x +2,请从不等式组⎩⎨⎧5-2x ≥1,x +3>0 的整数解中选择一个你喜欢的求值.23.(8分)阅读理解题.读下列材料:方程1x +1 -1x =1x -2 -1x -3的解为x =1. 方程1x -1x -1 =1x -3 -1x -4的解为x =2. 方程1x -1 -1x -2 =1x -4 -1x -5的解为x =3. ……(1)请你观察上述方程与解的特征,写出能反映上述方程一般规律的方程,并猜想这个方程的解.(2)利用(1)中所得的结论,写出一个解为x =2021的分式方程.24.(10分)某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.25.(12分)为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.参考答案得分:____________一、选择题(每题3分,共30分)1.在下列分式中,是最简分式的是(B)A.x+1x2-1B.x+2x2+1C.y2y2D.63y+32.分式x-yx2+y2有意义的条件是(D)A.x≠0 B.y≠0 C.x≠0或y≠0 D.x≠0且y≠03.当式子|x|-5x2-4x-5的值为零时,x的值是(B) A.5 B.-5 C.1或5 D.-5或5 4.下列计算错误的是(A)A .0.2a +b 0.7a -b =2a +b 7a -bB .x3y2x2y3=x yC .a -b b -a =-1D .1c +2c =3c5.方程m m -1 =3(1+m )4+3m的解为(B) A .23 B .-34 C .34D .1 6.分式x2+x x2-1 ÷x2x2-2x +1的值可能为(D) A .2 B .1 C .0 D .-17.若分式x2x -1 x x -1的运算结果为x ,则在“ ”中添加的运算符号为(D)A .÷B .-C .÷或+D .÷或-8.化简a +1a2-2a +1 ÷(1+2a -1 )的结果是(C) A .1a2-1 B .1a +1 C .1a -1 D .1a2+19.已知a ,b 为实数,且ab =1,设M =a a +1 +bb +1 ,N =1a +1 +1b +1,则M 与N 的大小关系为(C) A .M >N B .M <N C .M =N D .无法确定 10.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x 吨/小时,依题意列方程正确的是(B)A .25x =35x -20B .25x =35x +20C .25x -20 =35xD .25x +20 =35x二、填空题(每题3分,共24分)11.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只有0.0000007(单位:mm2),这个数字可用科学记数法表示为__7×10-7__.12.计算:3-8 +⎝ ⎛⎭⎪⎫13 -2+(π-3.14)0=__8__.13.方程6(x +1)(x -1) -3x -1 =1的解为__x =-4__.14.当a =__-1__时,分式a2-1a2+a -2的值为0.15.若代数式1x -2 和32x +1 的值相等,则x =__7__.16.已知a2-6a +9与(b -1)2互为相反数,则式子(ab -ba )÷(a +b)的值是__23__.17.某市在旧城改造过程中,需要整修一段全长2400 m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路的长度.若设原计划每小时修路x m ,依题意可列方程__2400x -2400(1+20%)x=8__.18.若关于x 的分式方程m -1x -1 =2的解为非负数,则m 的取值范围是__m ≥-1且m ≠1__.三、解答题(共66分) 19.(12分)计算与化简: (1)4a2b ÷(b 2a )-2·ab2;解:原式=4a2b ÷4a2b2·ab2=4a2b ·b24a2·ab2=ab ;(2)(x +1x2-x -xx2-2x +1 )÷1x -1 ;解:原式=[x +1x (x -1)-x(x -1)2]·(x -1)=x2-1-x2x (x -1)2·(x -1)=-1x (x -1)=-1x2-x;(3)(1-1x -1 )÷x2-4x +4x2-1.解:原式=x -1-1x -1÷(x -2)2(x +1)(x -1)=x -2x -1·(x +1)(x -1)(x -2)2 =x +1x -2.20.(8分)解方程: (1)3xx +2 +2x -2 =3; 解:方程两边同乘(x +2)(x -2), 得3x(x -2)+2(x +2)=3(x +2)(x -2), 化简得-4x =-16, 解得x =4.经检验,x =4是原方程的解. ∴原方程的解是x =4;(2)4x2-1 +x +21-x =-1.解:方程两边同乘以(x +1)(x -1), 得4-(x +1)(x +2)=-(x +1)(x -1). 解得x =13.经检验,x =13是原方程的解.∴原方程的解是x =13.21.(8分)有甲、乙两筐水果,甲筐水果重(x -1)2千克,乙筐水果重(x2-1)千克(其中x >1),售完后,两筐水果都卖了50元.(1)哪筐水果的单价低?(2)高的单价是低的单价的多少倍?解:(1)甲筐水果的单价为50(x -1)2,乙筐水果的单价为50x2-1,∵0<(x -1)2<x2-1,∴50x2-1<50(x -1)2. 答:乙筐水果的单价低;(2)50(x -1)2÷50x2-1=50(x -1)2·(x +1)(x -1)50=x +1x -1. 答:高的单价是低的单价的x +1x -1倍.22.(8分)先化简,再求值:11-x ÷x2+2xx2-2x +1 +1x +2,请从不等式组⎩⎨⎧5-2x ≥1,x +3>0的整数解中选择一个你喜欢的求值.解:原式=11-x ·(x -1)2x (x +2)+1x +2=1-x x (x +2)+1x +2=1-x +xx (x +2)=1x2+2x.解不等式5-2x ≥1,得x ≤2,解不等式x +3>0,得x >-3,∴不等式组的解集为-3<x ≤2,∴不等式组的整数解为-2,-1,0,1,2,由题可得⎩⎨⎧x2+2x ≠0,1-x ≠0,解得x ≠0且x ≠-2且x ≠1,∴x =-1或2,若取x =2,则原式=122+2×2=18.(答案不唯一)23.(8分)阅读理解题. 读下列材料:方程1x +1 -1x =1x -2 -1x -3 的解为x =1.方程1x -1x -1 =1x -3 -1x -4 的解为x =2.方程1x -1 -1x -2 =1x -4 -1x -5 的解为x =3. ……(1)请你观察上述方程与解的特征,写出能反映上述方程一般规律的方程,并猜想这个方程的解.(2)利用(1)中所得的结论,写出一个解为x =2021的分式方程.解:(1)1x -n-1x -(n +1)=1x -(n +3)-1x -(n +4),其解为x =n +2;(2)∵n +2=2021,∴n =2019,其对应方程为:1x -2019-1x -2022=1x -2022-1x -2023.24.(10分)某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.解:设该文具厂原计划每天加工x 套这种画图工具.根据题意,得3000x -30001.2x =4.解得 x =125.经检验,x =125是原方程的解,且符合题意.答:文具厂原计划每天加工125套这种画图工具.25.(12分)为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.解:(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天,根据题意得1x +12x =110,解得:x =15.经检验,x=15是原分式方程的解且符合题意.2x =30.答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天;(2)方案一:由甲工程队单独完成,需要4.5×15=67.5(万元);方案二:由乙工程队单独完成,需要2.5×30=75(万元);方案三:由甲、乙两个工程队合作完成,需要4.5×10+2.5×10=70(万元).因为67.5<70<75,所以选择甲工程队,既能按时完工,又能使工程费用最少.。

新人教版初中数学八年级数学上册第五单元《分式》检测卷(答案解析)

新人教版初中数学八年级数学上册第五单元《分式》检测卷(答案解析)

一、选择题1.化简221x x x ++÷(1-11x +)的结果是( )A .11x + B .11x - C .x+1 D .x-12.关于x 的一元一次不等式组31,224xm x x x ⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,且关于y 的分式方程13122my yy y--+=--有整数解,则符合条件的所有整数m 的和为( ) A .9B .10C .13D .143.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9- B .8-C .7-D .6-4.若使分式2xx -有意义,则x 的取值范围是( ) A .2x ≠ B .0x =C .1x ≠-D .2x =5.已知分式34x x -+的值为0,则x 的值是( ) A .3B .0C .-3D .-46.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④7.计算()3222()m m m -÷⋅的结果是( )A .2m -B .22mC .28m -D .8m -8.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2±B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xyx y-中的,x y 都扩大3倍,分式的值不变D .分式211x x ++是最简分式 9.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5B .6C .7D .810.若分式()22222x y x y a x a y ax ay+-÷-+的值等于5,则a 的值是( ) A .5B .-5C .15D .15-11.11121n n n x x x x+-+-+等于( ) A .11n x + B .11n x - C .21x D .112.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++ B .222()x y x y +- C .222()x y x y-+ D .222()x y x y ++二、填空题13.当m=______时,解分式方程1m 233(2x 1)2x 1+=--会出现增根. 14.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店抓住商机购进甲、乙、丙三种口罩进行销售.已知销售每件甲种口罩的利润率为30%,每件乙种口罩的利润率为20%,每件丙种口罩的利润率为5%.当售出的甲、乙、丙口罩件数之比为1:3:2时,药店得到的总利润率为20%;当售出的甲、乙、丙口罩件数之比为3:2:2时,药店得到的总利润率为24%.因丙种口罩利润较低,现药店准备只购进甲、乙两种口罩进行销售,若该药店想要获得的总利润率为28%,则该药店应购进甲、乙两种口罩的数量之比是______.15.计算22a b a b a b-=-- _________.16.关于x 的分式方程3122m x x-=--无解,则m 的值为_____. 17.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品? 根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________. (2)乙型机器人每小时搬运产品_______________kg .18.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________. 19.若关于x 的方程2144416m x x x +=-+-无解,则m 的值为__________. 20.对于两个不相等的实数a ,b ,我们规定符号Min{,}a b 表示a ,b 中的较小的值,如Min{3,4}3=,按照这个规定,方程135Min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_____________. 三、解答题21.先化简,再求值:213(1)211x x x x x +--÷-+-,其中4x =-. 22.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等 (1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 23.某小区购买了A 型和B 型两种垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?(要求列分式方程求解)24.某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价6元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1680元所购该书的数量比第一次多50本,当按定价售出300本时,出现滞销,便以定价的4折售完剩余的书. (1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少? 25.观察下列等式:第1个等式:111122=-⨯;第2个等式:111 2323=-⨯;第3个等式:111 3434=-⨯;……(1)写出第5个等式:________________;(2)探究规律:猜想第n个等式,并证明;(3)问题解决:一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的1 5,……,第n次倒出的水量是1n升的11n+,如果不考虑实际操作因素,按照这种倒水的方法,这1升水能倒完吗?为什么?26.新冠肺炎疫情暴发后,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂工作,为了应对疫情,在每个工人每小时完成的工作量不变的前提下,已复工的工人加班生产,每天的工作时间由原来8个小时增加到10个小时.该公司原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求该公司原来生产防护服的工人有多少人?(2)复工10天后,未到的7名工人到岗且同时加入了生产,每天生产时间仍然为10小时.为了支援灾区,公司复工后决定生产15500套防护服,问至少还需要多少天才能完成任务?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式=22211(1)1 (1)1(1)1x x x xx x x x x+-+÷=⋅=++++,故选A.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键.2.A解析:A 【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可. 【详解】解:31224xm x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得 x≤2m+2, 解②得 x≤4,∵不等式组31224xm x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4, ∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得 my-1+y-2=3y , ∴32y m =-, ∵m≥1,分式方程13122my yy y--+=--有整数解, ∴m=1,3,5, ∵y-2≠0, ∴y≠2, ∴322m ≠-, ∴m≠72, ∴m=1,3,5,符合题意, 1+3+5=9. 故选A . 【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键.3.D解析:D 【分析】先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可. 【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解,∴12x m -≤≤-,∴21m -≥-, 得3m ≤, ∴53m -≤≤, ∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3, 其和为:-6, 故选:D . 【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键.4.A解析:A 【分析】根据分式有意义分母不为零即可得答案. 【详解】∵分式2xx -有意义, ∴x-2≠0,解得:x≠2. 故选:A . 【点睛】本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.5.A解析:A 【分析】根据分式的值为0的条件可以求出x 的值;分式为0时,分子为0分母不为0; 【详解】由分式的值为0的条件得x-3=0,x+4≠0, 由x-3=0,得x=3, 由x+4≠0,得x≠-4, 综上,得x=3时,分式34x x -+ 的值为0; 故选:A . 【点睛】本题考查了分式的值为0的情况,若分式的值为0,需要同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可.6.B解析:B 【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择. 【详解】原式221(1)71211543(1)x x x x x x x-++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x -++=-++++ 1111x x x-=-++ 1x x =+ 又因为x 为正整数,所以1121x x ≤<+, 故选B .【点睛】本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.7.C解析:C 【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可. 【详解】 解:()3222()m m m -÷⋅=()468mm -÷ =()468m m -÷=28m -, 故选:C . 【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.8.D解析:D 【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案. 【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误;C 、分式32xyx y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误;D 、分式211x x ++是最简分式,正确; 故选:D . 【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.9.C解析:C 【分析】根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值. 【详解】 解分式方程2311a x x+=--,得53a x -=,∵分式方程2311ax x+=--的解为非负数, ∴503a-≥, 解得a ≤5,∵关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩, ∵不等式组的解集为2y <-, ∴2a ≥-, ∵x-1≠0, ∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个, 故选:C . 【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.10.C解析:C 【分析】先进行分式除法,化简后得到关于a 的式子,列方程即可求解. 【详解】解:()22222x y x y a x a y ax ay+-÷-+ ()22()(()=))(a x y a x x y y y x x y ++-⨯-+, 1=a,根据题意,15a=, 解得,15a =, 经检验,15a =是原方程的解, 故选C 【点睛】本题考查了分式的除法和分式方程的解法,正确化简分式,列出分式方程,是解决问题的关键.11.D解析:D 【分析】根据通分,可化成同分母分式,根据同分母分式的加减,可得答案. 【详解】1131112311n n n n n n n x x x x x x x x +-+++++--++==, 故选:D 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.12.C解析:C 【分析】根据分式的除法法则计算即可. 【详解】2222x y x y x y x y -+÷+-()()22x y x y x y x y x y +--=⨯++222()x y x y -=+ 【点睛】此题考查分式的除法法则:先把除式的分子分母颠倒位置,再化为最简分式即可.二、填空题13.6【分析】分式方程的增根使分式中分母为0所以分式方程会出现增根只能是x=增根不符合原分式方程但是适合分式方程去分母后的整式方程于是将x=代入该分式方程去分母后的整式方程中即可求出m 的值【详解】解:由解析:6 【分析】分式方程的增根使分式中分母为0,所以分式方程1m 233(2x 1)2x 1+=--会出现增根只能是x=12,增根不符合原分式方程,但是适合分式方程去分母后的整式方程,于是将x=12代入该分式方程去分母后的整式方程中即可求出m 的值.【详解】 解:由题意知分式方程()1m 2332x 12x 1+=--会出现增根是x=12, 去分母得7-2x=m将x=12代入得m=6 即当m=6时,原分式方程会出现增根.故答案为6.【点睛】本题考查了分式方程增根的性质,增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.14.【分析】设甲乙丙三种口罩的进价分别为xyz 根据题意可分别求出甲乙丙三种口罩的利润再根据当销售出的甲乙丙口罩件数之比为1:3:2时的总利润为20和当销售出的甲乙丙口罩件数之比为3:2:2时的总利润为2 解析:83【分析】设甲、乙、丙三种口罩的进价分别为x 、y 、z ,根据题意可分别求出甲、乙、丙三种口罩的利润.再根据当销售出的甲、乙、丙口罩件数之比为1:3:2时的总利润为20%和当销售出的甲、乙、丙口罩件数之比为3:2:2时的总利润为24%,列出等式,求出x 、y 、z 之间的关系.最后即可求出只购进甲、乙两种口罩,使总利润为28%时的甲、乙两种口罩的数量比.【详解】设甲、乙、丙三种口罩的进价分别为x 、y 、z ,则销售甲口罩的利润为30%x ,乙口罩的利润为20%y ,丙口罩的利润为5%z .当销售出的甲、乙、丙口罩件数之比为1:3:2时,设甲口罩售出a 件,则乙口罩售出3a 件,丙口罩售出2a 件. 根据题意可列等式:30%320%25%20%32a x a y a z a x a y a z++=++, 整理得:x =3z .当销售出的甲、乙、丙口罩件数之比为3:2:2时,设甲口罩售出3b 件,则乙口罩售出2b 件,丙口罩售出2b 件.根据题意可列等式:330%220%25%24%322b x b y b z b x b y b z++=++, 整理得:9x-4y =19z .∴y =2z .现只购进甲、乙两种口罩,使总利润为28%,设甲口罩售出A 件,乙口罩售出B 件. 则30%20%28%A x B y A x B y +=+,即30%320%228%32A z B z A z B z⨯⨯+⨯⨯=⨯+⨯. ∴83A B =. 故答案为:83. 【点睛】本题考查分式方程的实际应用.根据题意列出每一步的分式方程是解答本题的关键. 15.【分析】根据分式运算的性质结合平方差公式计算即可得到答案【详解】故答案为:【点睛】本题考查了分式平方差公式的知识;解题的关键是熟练掌握分式加减运算平方差公式的性质从而完成求解解析:+a b【分析】根据分式运算的性质,结合平方差公式计算,即可得到答案.【详解】22a b a b a b ---()()22a b a b a b a b a b a b+--===+-- 故答案为:+a b .【点睛】本题考查了分式、平方差公式的知识;解题的关键是熟练掌握分式加减运算、平方差公式的性质,从而完成求解.16.-3【分析】先求解分式方程得到用m 表示的根然后再确定该分式方程的增根最后让分式方程的根等于增根并求出m 的值即可【详解】解:m+3=x-2x=m+5由的增根为x=2令m+5=2解得m=-3故填:-3【解析:-3【分析】先求解分式方程得到用m 表示的根,然后再确定该分式方程的增根,最后让分式方程的根等于增根并求出m 的值即可.【详解】 解:3122m x x-=-- 3122m x x +=-- 312m x +=- m+3=x-2x=m+5由3122m x x-=--的增根为x=2 令m+5=2,解得m=-3.故填:-3.【点睛】 本题主要考查了解分式方程以及分式方程的增根,理解增根的定义是解答本题的关键. 17.【分析】(1)设乙型机器人每小时搬运产品根据甲型机器人搬运所用时间与乙型机器人搬运所用时间相等列方程;设甲型机器人搬运所用时间为小时根据甲型机器人比乙型机器人每小时多搬运列方程;(2)设乙型机器人每 解析:80060010x x =+80060010yy =+ 【分析】(1)设乙型机器人每小时搬运xkg 产品,根据甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等列方程;设甲型机器人搬运800kg 所用时间为y 小时,根据甲型机器人比乙型机器人每小时多搬运10kg 列方程;(2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得80060010x x=+,解方程即可. 【详解】(1)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 设甲型机器人搬运800kg 所用时间为y 小时,由题意得80060010y y=+, 故答案为:80060010x x=+,80060010y y =+; (2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 解得x=30,经检验,x=30是方程的解,答:乙型机器人每小时搬运产品30kg .故答案为:30.【点睛】此题考查分式方程的实际应用,正确理解题意,利用直接设未知数的方法和间接设未知数的方法列方程解决问题,注意:解分式方程需检验.18.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 19.-1或-【分析】直接解分式方程再利用一元一次方程无解和分式方程无解分别分析得出答案【详解】解:去分母得:(x+4)+m(x-4)=4可得:(m+1)x=4m 当m+1=0时分式方程无解此时m=-1当m解析:-1或-12【分析】直接解分式方程,再利用一元一次方程无解和分式方程无解分别分析得出答案.【详解】 解:2144416m x x x +=-+-, 去分母得:(x+4)+m(x-4)=4,可得:(m+1)x=4m ,当m+1=0时,分式方程无解,此时m=-1, 当m+1≠0时,则x=41m m +=±4, 当41m m +=4时,此时方程无解; 当41m m +=-4时,解得:m=-12, 经检验,m=-12是方程41m m +=-4的解, 综上所述:m=-1或-12.故答案为:-1或-12. 【点睛】 此题主要考查了分式方程的解,正确分类讨论是解题关键.20.【分析】根据题中的新定义化简求出分式方程的解检验即可【详解】当<时>2方程变形得:=−2去分母得:1=解得:(不符合题意舍去);当>即<2方程变形得:=−2去分母得:3=解得:经检验是分式方程的解综解析:4x =-【分析】根据题中的新定义化简,求出分式方程的解,检验即可.【详解】 当12x -<32x -时,x >2,方程变形得:12x -=52x x --−2, 去分母得:1=()522x x ---,解得:=2x -(不符合题意,舍去); 当12x ->32x -,即x <2,方程变形得:32x -=52x x --−2, 去分母得:3=()522x x ---,解得:4x =-,经检验4x =-是分式方程的解,综上,所求方程的解为4x =-.故填:4x =-.【点睛】此题考查了解分式方程,以及实数的运算,弄清题中的新定义是解本题的关键.三、解答题21.1x x -;45【分析】 分式的混合运算,注意先算乘除,然后算加减,有小括号先算小括号里的,然后代入求值即可.【详解】 解:213(1)211x x x x x +--÷-+- =2221(1)1(1)3x x x x x x -+-+-⨯--=222111(1)3x x x x x x -+---⨯-- 2231(1)3x x x x x --=⨯-- 2(3)1(1)3x x x x x --=⨯-- 1x x =- 当4x =-时,原式441415x x -===---. 【点睛】 本题考查分式的混合运算,分式的化简求值,掌握运算顺序和计算法则正确计算是解题关键.22.(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =, 经检验, = 5x 是原方程的解,且符合题意,1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.23.购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元【分析】设购买一个A 型垃圾桶需x 元,购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元,一个B 型垃圾桶需()30x +元,根据购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,构造分式方程25002000230x x =⨯+,解方程并检验即可. 【详解】解:设购买一个A 型垃圾桶需x 元,则一个B 型垃圾桶需()30x +元, 由题意得:25002000230x x =⨯+, 解得50x =,经检验,50x =是原方程的解,且符合题意,30503080x +=+=,答:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元.【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法,抓住购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元设未知数,购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍构造方程,注意分式方程要验根.24.(1)第一次购书的进价是4元;(2)该老板两次售书总体上是赚钱了,共赚了840元【分析】(1)设第一次购书的进价为x 元,列分式方程1200168050(120%)x x+=+解答; (2)根据利润=销售数量乘以每本书的利润分别求出两次购书所赚钱数,相加确定赔赚即可.【详解】解:(1)设第一次购书的进价为x 元,根据题意得:1200168050(120%)x x+=+ 解得: 4x =.经检验,4x =原方程的解,答:第一次购书的进价是4元;(2)第一次购书为12004300÷= (本),第二次购书300+50=350(本).第一次嫌钱()30064600⨯-= (元),第二次嫌钱()()30064 1.25060.44 1.2240⨯-⨯+⨯⨯-⨯= (元)所以两次共赚钱600+240=840(元),答:该老板两次售书总体上是赚钱了,共赚了840元.【点睛】此题考查分式方程的实际应用,有理数的混合运算,正确理解题意是解题的关键.25.(1)1115656=-⨯ (2)()11111n n n n =-++;证明见解析 (3)不能;见解析 【分析】(1)观察各等式,找出分子分母中的数与序号的关系即可写出第五个等式;(2)根据题目中的式子,可以写出生意人猜想,并验证猜想是否正确;(3)根据题意求出前n 次倒水量之和,再与1进行比较即可.【详解】解:(1)第5个等式:1115656=-⨯; 故答案为:1115656=-⨯; (2)猜想:()11111n n n n =-++,证明: 等式右边()()()11111111n n n n n n n n n n +=-=-==++++等式左边, ∴猜想成立;(3)由题意可得:第n 次倒出水量:()11L n n +, ∴前n 次总共倒出水量:()11111223341n n ++++⨯⨯⨯+ 1111112231n n =-+-++-+ 111n =-+ 1n n =+, ∵11n n <+, ∴这1L 水不能倒完.【点睛】本题主要考查了数字变化规律的问题,通过观察、分析、归纳并发现其中的规律,并应用发现的规律解决问题,解题的关键是发现分子分母中的数与序号的关系.26.(1)原来生产防护服的工人有20人;(2)至少还需要生产9天才能完成任务.【分析】(1)设原来生产防护服的工人有x人,根据每人每小时完成的工作量不变列出关于x的方程,求解即可;(2)设还需要生产y天才能完成任务.根据前面10天完成的工作量+后面y天完成的工作量≥15500列出关于y的不等式,求解即可.【详解】解:(1)设原来生产防护服的工人有x人,由题意得,800650810(7)x x=-,解得:x=20.经检验,x=20是原方程的解.答:原来生产防护服的工人有20人;(2)设还需要生产y天才能完成任务.每人每小时生产防护服的数量为:8005 820=⨯套,106502051015500y⨯+⨯⨯≥,解得x≥9,答:至少还需要生产9天才能完成任务.【点睛】本题考查分式方程的应用,一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学人教版八年级上第十五章 分式单元检测一、选择题(本大题共8小题,每小题4分,共32分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.在2a b -,(3)x x x +,5πx +,a b a b+-中,是分式的有( ). A .1个B .2个C .3个D .4个 2.如果把分式2x x y+中的x 和y 都扩大2倍,那么分式的值( ). A .不变B .扩大2倍C .扩大4倍D .缩小2倍 3.分式22x y x y -+有意义的条件是( ). A .x ≠0B .y ≠0C .x ≠0或y ≠0D .x ≠0且y ≠0 4.下列分式中,计算正确的是( ).A .2()23()3b c a b c a +=+++ B .222a b a b a b +=++ C .22()1()a b a b -=-+ D .2212x y xy x y y x -=--- 5.化简211a a a a --÷的结果是( ). A .1a B .a C .a -1 D .11a - 6.化简21131x x x +⎛⎫- ⎪--⎝⎭·(x -3)的结果是( ). A .2B .21x -C .23x -D .41x x -- 7.化简1111x x -+-,可得( ). A .221x - B .221x -- C .221x x - D .221x x --8.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x棵,则根据题意列出的方程是( ).A.80705x x=-B.80705x x=+C.80705x x=+D.80705x x=-二、填空题(本大题共8小题,每小题4分,共32分.把答案填在题中横线上)9.当x=__________时,分式13x-无意义.10.化简:22x yx y x y---=__________.11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 mm2,这个数用科学记数法表示为__________ mm2.12.已知x=2 012,y=2 013,则(x+y)·2244x yx y+-=__________.13.观察下列各等式:1111212=-⨯,1112323=-⨯,1113434=-⨯,…,根据你发现的规律计算:2222122334(1)n n+++⋅⋅⋅+⨯⨯⨯+=__________(n为正整数).14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务,设甲计划完成此项工作的天数是x,则x的值是__________.15.含有同种果蔬但浓度不同的A,B两种饮料,A种饮料重40千克,B种饮料重60千克,现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是__________千克.16.某市为治理污水,需要铺设一段全长为300 m的污水排放管道.铺设120 m后,为了尽量减少施工对城市交通所造成的影响,后来每天铺设管道的长度比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可得方程__________.三、解答题(本大题共5小题,共36分)17.(本题满分6分)化简:32322222b b ab b a b a a b ab b a ++÷--+-. 18.(本题满分6分)已知x -3y =0,求2222x y x xy y +-+·(x -y)的值. 19.(本题满分10分,每小题5分)解方程: (1)271326x x x +=++; (2)11222x x x -=---. 20.(本题满分7分)已知y =222693393x x x x x x x+++÷-+--.试说明不论x 为任何有意义的值,y 的值均不变.21.(本题满分7分)为抗旱救灾,某部队计划为驻地村民新修水渠3 600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?参考答案1.B 点拨:(3)x x x +和a b a b +-是分式,故选B. 2.A3.C 点拨:若分式22x y x y-+有意义,则x 2+y 2≠0,所以x ≠0或y ≠0.故选C. 4.D 点拨:2222212(2)()x y x y x y xy x y x xy y x y y x---===----+---,故选D. 5.B 点拨:221111a a a a a a a a ---÷=⨯-=a.故选B. 6.B 点拨:21131x x x +⎛⎫- ⎪--⎝⎭·(x -3)=1-211x x +-·(x -3)=1-22223222111x x x x x x --+==---.故选B. 7.B 点拨:原式=2211112(1)(1)(1)(1)11x x x x x x x x x x -+----==-+-+---.故选B. 8.D9.3 点拨:当x =3时,分式的分母为0,分式无意义. 10.x +y 点拨:2222()()x y x y x y x y x y x y x y x y-+--==----=x +y. 11.7×10-712.-1 点拨:(x +y)·2244x y x y +-=(x +y)·222222()()x y x y x y ++-=(x +y)·221x y -=(x +y)·11()()x y x y x y=+--, 当x =2 012,y =2 013时, 原式=1120122013x y =--=-1. 13.21nn + 点拨:222122334++⨯⨯⨯+…+211112(1)122334(1)n n n n ⎡⎤=+++⋅⋅⋅+⎢⎥+⨯⨯⨯+⎣⎦=1111111121223341n n⎛⎫-+-+-+⋅⋅⋅+-⎪+⎝⎭=122111nn n⎛⎫-=⎪++⎝⎭.14.6 点拨:由题意得24x xx x--+=1,解得x=6,检验知x=6是原分式方程的根且符合题意.15.24 点拨:设A种饮料浓度为a,B种饮料浓度为b,倒出的重量为x千克,由题意得(40)(60)4060bx a x ax b x+-+-=,解得x=24.16.12030012030(120%)x x-+=+(或1201801.2x x+=30)点拨:根据题意可得题中的相等关系为前后两次铺设共用的时间等于30天,铺设120 m后每天的工效为1.2x m,铺设120 m所用时间为120x天,后来所用时间为3001201.2x-天,因此可列方程1206001201.2x x-+=30.17.解:原式=322()(2)()()b b b a ba b a a ab b a b a b++÷--+-+-=32()()()()b b b a ba b a a b a b a b++÷---+-=32()()()()b b a b a ba b a a b b a b-+-+⋅--+=22()()()b b ab ba b a a b a a b a a b-=-----=2()ab b ba ab a-=-.18.解:2222x yx xy y+-+·(x-y)=22()x yx y+-·(x-y)=2x yx y+-. 当x-3y=0时,x=3y.原式=677322y y yy y y+==-.19.解:(1)去分母,得2x×2+2(x+3)=7,解得,x=16,经检验,x=16是原方程的解.(2)方程两边同乘(x-2)得,1-x=-1-2(x-2),解得,x=2.检验,当x=2时,x-2=0,所以x=2不是原方程的根,所以原分式方程无解.20.解:2269(3)393x x x xy xx x++-=÷-+-+=2(3)(3)3 (3)(3)3x x xxx x x+-⨯-+ +-+=x-x+3=3.所以不论x为任何有意义的值,y的值均不变,其值为3. 21.解:设原计划每天修水渠x米.根据题意得360036001.8x x-=20,解得x=80,经检验:x=80是原分式方程的解.答:原计划每天修水渠80米.。

相关文档
最新文档