基于OFDMA细胞结构双层梁和继电器共享(IJCNIS-V3-N5-5)

合集下载

OFDMA中继网络使用动态部分频率复用实现联合资源分配

OFDMA中继网络使用动态部分频率复用实现联合资源分配

OFDMA中继网络使用动态部分频率复用实现联合资源分配齐一飞;宋思达
【期刊名称】《山东通信技术》
【年(卷),期】2015(035)003
【摘要】本文提出了一种运用动态部分频率复用的小区架构,并研究了OFDMA中继网络中的联合资源分配问题.该架构将所有的子载波分为两组,对应两种不同的地理小区区域,划分的地理区域与相邻的地理扇区形成联合虚拟小区.进而提出了一种分层解决方案以实现之前提出的小区架构,该方案由两个主要的联合资源分配算法组成.数据显示,小区架构和算法能够达到更优的信干噪比性能和更高的吞吐量.【总页数】4页(P30-33)
【作者】齐一飞;宋思达
【作者单位】烟台供电公司,烟台264000;北京邮电大学,北京100876
【正文语种】中文
【相关文献】
1.基于两跳匹配的OFDMA中继网络联合资源分配算法 [J], 文凯;喻昉炜;周斌;张赛龙
2.基于保密度的OFDMA中继网络资源分配研究 [J], 赵君;郑伟;温向明;张海君;路兆铭;景文鹏
3.OFDMA中继网络中联合队列和信道信息的资源分配策略 [J], 刘畅;秦晓卫;张四海;周武旸
4.机会中继OFDMA下行网络的高能效资源分配 [J], 马超;王涛;金志文;孙彦赞
5.OFDMA中继网络动态节能子载波、比特和功率联合分配策略(英文) [J], 黄博;方旭明;赵越;陈煌;何蓉
因版权原因,仅展示原文概要,查看原文内容请购买。

5G Massive MIMO寻优验证与应用

5G Massive MIMO寻优验证与应用

研究Technology StudyI G I T C W 技术12DIGITCW2021.040 引言5G Massive MIMO 的多天线阵列系统增加了垂直维的自由度,可灵活调整水平维和垂直维的波束形状。

5G 支持基于Beam Sweeping 的广播信道波束赋型,由多个窄波瓣波束轮发,形成宽波束覆盖效果,进一步提升了立体覆盖能力。

在不同的覆盖场景下,通过多种广播波束权值配置,生成不同组合的赋型波束,不同组合具有不同的倾角、方位角、水平波宽、垂直波宽,能够满足不同场景的覆盖要求,为网络覆盖优化提供了新的思路和手段。

目前普遍采用厂家默认的Pattern ,仅在单站和簇优化过程中根据测试情况进行Pattern 的局部优化。

为探索不同场景Pattern 最优配置,指导和支撑5G 规划与优化,本项目在不同场景下开展Pattern 权值寻优,并验证输出不同场景下的5G 天线权值推荐值。

1 广播波束Pattern 介绍1.1 波束管理介绍波束管理主要分为小区级广播信道波束管理以及用户级波束管理。

对于小区级波束管理,5G NR 的广播波束为N 个方向固定的窄波束,相较于LTE TDD 用一个宽广播波束覆盖整个小区,NR 能够通过在不同时刻发送不同方向的窄波束完成小区的广播波束覆盖。

UE 扫描每个窄波束来获得最优波束,完成同步和系统消息解调。

如图1所示。

图1 NR TDD 广播波束扫描范围1.2 立体覆盖波束5G MassiveMIMO 天线的一个显著特征是可以调整天线权值与波束赋形技术来调整广播波束的水平波宽、垂直波宽、方位角和下倾角,以此来得到特定的覆盖效果。

目前,各厂家设备均支持一种默认配置的广播波束覆盖和多种典型的广播波束覆盖场景。

在不同的覆盖场景下,广播波束有不同的倾角、方位角、水平波宽、垂直波宽。

通过灵活配置不同的广播波束覆盖场景,能够解决不同场景下小区覆盖受限以及邻区干扰等问题。

图2是三种不同波束宽度组合天线波形示意图:第一种水平波宽较大垂直波宽小,对平面有较广的覆盖;5G Massive MIMO 寻优验证与应用王闽申(中国电信股份有限公司福建省分公司,福建 福州 350001)摘要:5G Massive MIMO 的多天线阵列系统增加了垂直维的自由度,可灵活调整水平维和垂直维的波束形状,并引出了立体覆盖波束Pattern 这一概念。

OFDMA中继系统的优化编码技术

OFDMA中继系统的优化编码技术

OFDMA中继系统的优化编码技术
戚成浩;曲鸣飞
【期刊名称】《世界有色金属》
【年(卷),期】2016(0)1
【摘要】OFDMA中继通信系统优化量子编码设计,提高中继通信的安全性。

提出一种基于通信链路纠缠交换码间干扰抑制的OFDMA中继系统的优化编码技术。

构建OFDMA远程量子中继通信系统模型,进行通信算术编码算法设计,采用码间干扰抑制,提高通信编码的可靠性。

实验结果表明,该编码算法的通信的失真较小,抗干扰性能优越。

【总页数】2页(P71-72)
【关键词】OFDMA中继通信;编码;干扰抑制
【作者】戚成浩;曲鸣飞
【作者单位】北京市实美职业学校机电教研组;北京电子科技职业学院自动化工程学院电气技术系
【正文语种】中文
【中图分类】TN918;O413
【相关文献】
1.网络编码协作中继系统的功率优化分配研究 [J], 杜帅兵;苑津莎;陈智雄
2.多用户预编码技术在中继系统中的应用 [J], 王方向;郑侃;龙航;王文博
3.非正交自适应多址中继系统复数域网络编码方案性能分析与优化功率分配 [J],
蔡曦;陈庆春;范平志;颜矛
4.非正交多址中继系统复数域网络编码优化设计 [J], 蔡曦;范平志;陈庆春
5.基于中继的OFDMA网络中可扩展编码视频流传输的权衡优化(英文) [J], 由磊;Wei XIANG;侯春萍;雷建军;侯永宏
因版权原因,仅展示原文概要,查看原文内容请购买。

4G5G 移动通信技术-MIMO多天线技术

4G5G 移动通信技术-MIMO多天线技术

C log2(1 | h |2) b / s / Hz
M
C log2 (1 | hi |2 ) b / s / Hz
i 1
C
log2 (1
N
N
| hi |2 )
i 1
b / s / Hz
CEP
log2[det( I M
N
HH * )]
m
log2 பைடு நூலகம்1
i 1
N
i )
MIMO系统中,系统容量随着天线数目的增加成线性增加。
常用 MIMO 方案名称 接收分集 多用户虚拟 MIMO 开环发射分集 闭环发射分集 开环空间复用 闭环空间复用
第3章 MIMO多天线技术
3.3 MIMO工作模式
MIMO系统数据流并行传输
MIMO系统就是多个信号流在空中的并行传输。在发射端输入的数据流变成几路并行的 符号流,分别从Pt个天线同时发射出去;接收端从Pr个接收天线将信号接收下来,恢复 原始信号。
传统的多址技术可以分为频分多址(FDMA)、时分多址(TDMA)、码分多址(CDMA) 和空分多址(SDMA),4种方式都以频分多路复用(Frequency-division multiplexing,FDM) 技术为基础,蜂窝移动通信系统中一般采用这4种方式之一或混合方式。
✓ LTE上行方向采用基于循环前缀的SC-FDMA(Single Carrier - Frequency Division Multiplexing Access)单载波频分多址技术。
1. 分集技术
1)接收分集 所谓接收分集,就是接收机利用多条不相干传播路径,同时接收这些路径上的信号,并加 以合成的技术。 2)发射分集 所谓发射分集,就是发射机创造多条不相干传播路径,同时在这些路径上发射信号,为接 收机多路接收提供可能。

3DMIMO-OFDMA系统中基于垂直波束成形的能效优化算法

3DMIMO-OFDMA系统中基于垂直波束成形的能效优化算法

3 D Ml MO . OF D MA 系统 中基 于 垂直 波 束 成 形 的能 效 优 化 算 法
李 汀 ,仇林 杰 ,季薇
( 南京邮电大学通信与信息工程 学院,江苏 南京 2 1 0 0 0 3 )
摘 要 :针对三维 多输入 多输 出 ( 3 D MI MO)正交频 分多址 ( O F DMA)系统,提出 了一种能效优化算法 。
Ke y wo r d s : 3 D MI M O, v e r t i c a l b e a mf o r mi n g , e n e r y g e ic f i e n c y , ra f c t i o al n o p t i mi z a t i o n t h e o r y
该算法在 垂直波束成形技术下 ,以能量效率最大化为 目标 ,通过调整 资源分配 、功率分配 、天 线的波束 下倾 角来提 高系统 能量 效率。根据分数优化理论 ,将复杂 的分数优化 问题转化 为较 易求解 的整 式优化 问题 ,然后
引入 拉格 朗 日乘子通过不断迭代得到能量效率 的最优值 。仿真 结果表 明,所提算 法在较 少迭代 次数 下可 以获
En e r g y - e ic f i e n t o p t i mi z a t i o n a l g o r i t h m b a s e d o n v e r t i c a l
b e a mf o r mi n g f o r 3 D MI M O- - OFDM A s y s t e m
得更 高的能量效率 。
关键词 :三维 多输入多输 出;垂直波束成形 ;能量效率 ;分数优化理论
中图分类号:T N9 2 9
d o i : 1 0 . 1 1 9 5 9 / j . i s s n . 1 0 0 0 — 0 8 0 1 . 2 0 1 7 2 6 6

解码转发中继网络基于OFDMA的低复杂度资源分配

解码转发中继网络基于OFDMA的低复杂度资源分配
C o g ig4 0 6 ,C ia h n qn 0 0 5 hn A b ta t Thsp p ra d ess on u c rirp i n , y a cs b are l c t na dp w ralcto s r c : i a e d rse its b a r ar g d n mi u c riral ai n o e l ain j e i o o o
摘 要 : 该 文研究 满足用 户速率 需求 的子载波 配对 、动态 子载波 分配和 功率分配 的联合优 化,建 立 了使传 输速 率与用户 期望速 率之 差最 小化 的优 化数学模 型.首 先提 出平 均功 率分配下基 于用 户期望速 率的子载 波配对 和动
态子 载波 分配算 法(y a c u c r rao ai ae nep c drt, R S ) 为 了保证 用户 的公平 性, d nmi sb a i l ct nbsdo x et ae E D A . r e l o e
中图分类号 : P 9. T 33 4 0
文章编号 : 2589 ( 1)5 4 1 6 0 5—272 10— 4. 0 0 0
Lo Co pl xiy R e o r e A lo a i n i FD M A — s d w m e t s u c l c t o n O Ba e D e ode a c - nd- o w a d R e a ng N e wo k F r r l yi t r s
D 0 99Jsn0 5—2 7 0 1 50 1 Oh 1. 6/.s. 589 . 1 . . 3 i 2 2 0 0
解 码转 发 中继 网络基 于0F DM A的低 复杂度 资源分 配
唐 伦 , 蒋广健, 陈前斌

一款双频双宽带双圆极化Fabry

一款双频双宽带双圆极化Fabry

现代电子技术Modern Electronics Technique2023年11月1日第46卷第21期Nov. 2023Vol. 46 No. 210 引 言随着信息技术的迅猛发展,空天地海一体化通信系统已经成为未来通信网络的发展趋势,卫星通信具有覆盖范围广、不受地理条件限制等优点,其作为天基通信的重要组成部分和未来6G 网络技术发展的重要方向,已经成为学术界研究的热点[1]。

天线作为卫星通信系统的关键组成部件之一,要求具有宽带宽、高增益、圆极化和结构简单、易于集成等特性。

由于法布里⁃珀罗(Fabry Perot, FP )谐振腔天线具有增益高、馈电简单的特性,自从其诞生以来便受到了学术界的广泛关注[2]。

FP 天线具有馈电结构简单、增益高的优点,近年来学术界对于FP 天线的双频段工作、宽带性能以及如何实现圆极化辐射做了大量研究工作,其在卫星通信系统中有良好的应用潜力。

对于FP 天线的双频工作特性[3⁃5],可采用频率选择表面(Frequency Selective一款双频双宽带双圆极化Fabry⁃Perot 谐振腔天线吕 军1, 钟选明2(1.国能包神铁路有限责任公司, 内蒙古 鄂尔多斯 017000;2.成都交大运达电气有限公司, 四川 成都 610000)摘 要: 文中设计了一款双频双宽带双圆极化的法布里⁃珀罗(FP )谐振腔天线。

传统的FP 天线具有高增益特性但是难以实现宽带及双频带工作,为了改善其性能,提出一种具有双频正相位梯度的部分反射表面,利用其正相位梯度特性弥补电磁波频率升高带来的空间相位变化,从而在较宽的带宽内满足FP 天线的谐振条件以实现宽带辐射。

通过加载寄生贴片以及缝隙耦合馈电的方式设计宽带圆极化馈源,并且采用人工磁导体结构替代传统的金属地板,在同一谐振腔高度下满足两个频段的谐振条件,简化了双频FP 天线的结构。

全波仿真结果表明,所提出的FP 天线3 dB 轴比带宽分别为10.1%和13.8%,峰值增益达到12.45 dBi 和11.9 dBi ,3 dB 增益带宽分别为11.5%和14.8%。

OFDMA中继系统中基于QoS保证的资源分配算法

OFDMA中继系统中基于QoS保证的资源分配算法
降低 算法 复 杂度 ,然后 通 过拉 格 朗 日松 弛优 化 方 法推 导 出 了子 载 波分 配和 中继 选择 最优 解 ,并 在 此基 础 上 引入 用 户速 率权 衡 因子,根 据速 率权衡 因子越 大的 用 户,越 具有 选择 子 载 波和 中继 的优 先权 这 一准 则进 行 子载 波 分 配和 中继选择 . 真 结 果表 明 :新 算法 能 够获得 较 高的 系统容 仿
蜂窝系统 中引入 中继 , 使得无线资源分配 变得更 加复杂. O D 在 F MA中继系统中, 合理的资源分配
收稿 日期:2 1~7 3. 0 2 0— 0 宁波大学学报 ( 理工版 )网址:t :3 b b . uc ht / x u d . p/ n e n 基 金项 目:国 家 自然 科学 基 金 ( 0 7 1660 11 ); 江 省 自然 科学 基金 ( 0 15 ;浙江 省科 技厅 科研 项 目 ( 0 9 3 0 1 6 72 2, 17 19 浙 Y19 15) 2 0C 40 ) 第一作者:赵翠茹 ( 99一),女,山东菏泽人,在读硕士研究生,主要研究方向: 18 宽带资源分配. - i pnp ny at 2 . m Ema :eg egug@16c l o + 通讯 作者 :李有 明 ( 9 3 ), , 西扶风 人 , 导/ 授,主要研 究 方向 : 带 接入技 术 . - i l o mig b . uc 16 一 男 陕 博 教 宽 Ema :i u n @nue . ly d n
的子载波数 目来实现用户间的公平性需求, 并按 照等效信道增益来完成子载波的分配和中继选择. 然而, 在无线通信系统 中, 不同用户对速率的需求 往往 是不 同的, 么所要求分配到的子载波数 目 那 也是不 同的,因此, 文献 [ 中的资源分配算法限 8 ]

【国家自然科学基金】_ofdma系统_基金支持热词逐年推荐_【万方软件创新助手】_20140803

【国家自然科学基金】_ofdma系统_基金支持热词逐年推荐_【万方软件创新助手】_20140803
2008年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
1 1 1 1 1 1 1 1 1 1 1 1 1
53 54 55 56 57 58 50 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
多小区 吞吐量 变长可配置 博弈论 区分业务 动态资源分配 功率协调分配 功率分配 分部分配 准入控制 公平性原则 估计精度 中继非合作功率分配博弈 上行接入同步 ofdm mimo ieee802.16e ieee 802.20 ieee fft/ifft 802.16e
2009年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
科研热词 正交频分多址 正交频分多址接入 正交频分多址(ofdma) 子载波分配 资源分配 调度 小区间干扰 ofdma 频率复用 非合作博弈论 阻塞率 阻塞概率 运营收益 载波间干扰 软频率复用 跨层 资源管理 负载平衡 认知用户 认知ofdma 蜂窝中继网络 节能 自适应调制编码(amc) 第4代(4g)移动通信 离散余弦变换 混合自动请求重传(harq) 混合业务 比特分配 比例公平调度边缘用户 正交频分多址接入(ofdma) 正交频分复用多址接入 正交频分复用多址 正交频分复用(ofdm) 机会波束成形 服务质量(qos) 服务质量 无线通信 接纳控制 接入控制 掉话率 授权用户 小区边缘用户性能 多输入多输出 多跳中继 多目标 多用户干扰 多用户分集 多小区ofdma系统 呼叫接纳控制 吞吐量 反馈压缩 动态资源分配

MIMO-OFDM技术在无线通信系统中的应用研究

MIMO-OFDM技术在无线通信系统中的应用研究

MIMO-OFDM技术在无线通信系统中的应用研究邹杨;崔金斗;鱼佳欣;王卫平【摘要】MIMO技术即在发射端和接收端分别使用多个发射天线和接收天线,能在不增加带宽的情况下成倍地提高通信系统的容量和信道利用率.OFDM技术即在可用频段内,将信道"划分",进行"串并转换",使得子信道上的符号周期增加,降低甚至避免了每个子信道上的ISI,从而有效地对抗信道衰落.通过对MIMO-OFDM原理的阐述,以及对信道容量公式进行推理,得到了信道容量的近似公式,之后结合两者的优点来构建一个MIMO-OFDM无线局域网系统,并应用MATLAB工具对MIMO技术和OFDM技术是否结合、调制方式、发收数目等进行仿真对比分析,定性地得到了影响系统误码率的影响因子.%MIMO technology, using multiple transmitting and receiving antennas at the transmitting end and the receiving end, could exponentially improve the capacity and channel utilization of the communication systems without incraesing the bandwidth. OFDM technology, which divids the channel and executes serial-parallel conversion in available spectrum, could make the symbol period of the sub channel increase, then reduce or even avoid ISI in each sub channel to withstand channel fading. By describing the priciple of MIMO-OFDM and deducing the channel capacity expression, the approximate formula of channel capacity is obtained. Later, combining the advantages of both, a MIMO-OFDM wireless communication system is constructed, then using MATLAB to simulate the combination of MIMO and OFDM, modulation mode, numbers of transmitting and receiving, then the influence factors of the system error rate can be obtained qualitatively.【期刊名称】《微处理机》【年(卷),期】2017(038)004【总页数】6页(P30-34,50)【关键词】MIMO-OFDM技术;信道容量;WLAN技术;空时编码;无线通信;误码率;QPSK调制【作者】邹杨;崔金斗;鱼佳欣;王卫平【作者单位】中国洛阳电子装备试验中心,河南济源,459000;中国洛阳电子装备试验中心,河南济源,459000;中国洛阳电子装备试验中心,河南济源,459000;中国洛阳电子装备试验中心,河南济源,459000【正文语种】中文【中图分类】TP311MIMO(Multiple-Input Multiple-Output多输入多输出)技术是无线通信领域智能天线技术的重大突破。

OFDMA中继系统无线资源管理问...

OFDMA中继系统无线资源管理问...

中国科学技术大学博士学位论文OFDMA中继系统的无线资源管理策略研究姓名:刘畅申请学位级别:博士专业:通信与信息系统指导教师:周武旸2011-04-19摘要摘要未来无线通信系统存在两对主要矛盾:增长的业务需求与紧张的无线资源间的矛盾以及无处不在的覆盖需求与复杂的无线环境间的矛盾。

由于OFDMA 技术具有高频谱效率并能抗多径干扰,中继技术能够扩大覆盖范围并提高链路可靠性,是缓解上述矛盾的有效手段。

因此,OFDMA和中继技术已经作为下一代无线通信网络的核心技术,被写入了IEEE 802.16j和3GPP LTE-Advanced 等标准化协议中。

本文针对OFDMA中继系统关键问题之一的无线资源管理问题开展研究。

首先对无线资源管理对于未来OFDMA中继系统的重要性进行了论述,之后分析了OFDMA中继网络相对于传统无中继网络在资源管理方面的差异性,以此作为论文研究的出发点。

通过对问题的分析及对已有工作的总结,本文凝练出OFDMA中继系统无线资源管理方面目前仍待解决的四个方面问题,针对上述问题提供创新性的解决方案构成了本文的主体内容。

针对对用户公平性考虑较少且不够完备的问题,本文提出了保证用户比例公平性的资源管理策略。

通过对问题进行建模,将比例公平目标下的中继选择、子载波分配以及功率分配问题在数学上抽象为联合优化问题。

为进行有效求解,先对整数待优化变量进行连续性放松,并证明了放松后问题的对偶差额为零。

之后采用对偶分解的方法,将优化问题分解为主问题和子问题分别求解,针对子问题采用KKT条件求解,对主问题采用次梯度方法进行迭代求解。

最终可以得到原问题的近似最优解,并由此得到保证比例公平性的资源管理策略。

针对保障多业务的用户满意度问题,本文提出了区分业务的资源管理策略。

用户对不同类业务具有不同的满意度特性,采用效用函数来刻画用户满意度,并考察实际系统中具有代表性的两类业务:会话类业务和背景类业务。

资源管理的目标为保证会话类业务用户效用函数值为1时最大化背景类业务用户的总效用。

采用FRFT-OFDM的雷达通信功能共享方法

采用FRFT-OFDM的雷达通信功能共享方法

采用FRFT-OFDM的雷达通信功能共享方法
谷亚彬;张林让;周宇
【期刊名称】《西安电子科技大学学报(自然科学版)》
【年(卷),期】2017(044)006
【摘要】针对雷达通信功能共享的波形设计问题,设计一种基于分数阶傅里叶变换的正交频分复用共享信号,并提出一种基于极大似然估计的多散射点雷达信号处理方法.采用脉冲发射方式,脉内调制通信信息,实现数据传输;在雷达一个相干处理周期内,首先对雷达回波序列进行建模,然后利用最大似然估计获得高分辨一维距离像,最后将各脉冲数据按照距离门重排,沿脉冲维进行快速傅里叶变换完成速度估计.仿真结果表明,文中方法能在改善通信误码率性能的情况下,实现多目标的距离速度估计.【总页数】6页(P48-52,84)
【作者】谷亚彬;张林让;周宇
【作者单位】西安电子科技大学雷达信号处理国家重点实验室,陕西西安 710071;西安电子科技大学雷达信号处理国家重点实验室,陕西西安 710071;西安电子科技大学雷达信号处理国家重点实验室,陕西西安 710071
【正文语种】中文
【中图分类】TN957
【相关文献】
1.采用相关函数的OFDM雷达通信共享信号处理算法 [J], 谷亚彬;张林让;周宇;赵永红
2.采用矩阵填充的稀疏阵列MIMO雷达成像方法 [J], 赵小茹;童宁宁;丁姗姗;朱烨
3.采用DIRECT算法的外辐射源雷达高效直接定位方法 [J], 宋科康; 冯文涛
4.一种采用雷达测速仪的公路限速实验方法 [J], 沈超;周君
5.采用CNN-SSD的雷达HRRP小样本目标识别方法 [J], 郭泽坤;田隆;韩宁;王鹏辉;刘宏伟;陈渤
因版权原因,仅展示原文概要,查看原文内容请购买。

AF中继下多用户OFDM系统能效优化算法

AF中继下多用户OFDM系统能效优化算法

AF中继下多用户OFDM系统能效优化算法
张倩;朱琦
【期刊名称】《南京邮电大学学报(自然科学版)》
【年(卷),期】2015(035)004
【摘要】为解决多用户OFDM(正交频分复用)系统的资源分配问题,文中以能量效率最大化为优化目标,提出一种能效优化算法.首先引入分数规划Dinkelbach算法,将分式目标函数转换成整式凸规划函数,降低运算复杂度,其次利用对偶方法进一步推导出基站端与中继端功率独立受限情况下各子载波的功率分配.仿真结果表明,该算法在保证一定码元速率的前提下,能够获取更好的能效,提升了整个系统性能.【总页数】6页(P55-60)
【作者】张倩;朱琦
【作者单位】南京邮电大学教育部宽带无线通信与传感网技术重点实验室,江苏南京210003;南京邮电大学江苏省无线通信重点实验室,江苏南京210003
【正文语种】中文
【中图分类】TN911.7;TN929.5
【相关文献】
1.一种改进的多用户OFDM系统跨层分配优化算法 [J], 潘亚芹;张丽;张士兵
2.中继直达联合影响下多用户AF协作网络的安全通信 [J], 夏隽娟;林晓升;张杰
3.基于蜜蜂交配优化算法的MIMO-OFDM系统上行多用户检测 [J], 高维;王明月;景小荣
4.多用户大规模MIMO系统能效资源优化算法 [J], 李国民;郭甜;李新民;刘洋
5.多用户大规模MIMO系统能效资源优化算法 [J], 李国民;郭甜;李新民;刘洋因版权原因,仅展示原文概要,查看原文内容请购买。

基于循环平稳特性的OFDM盲同步算法

基于循环平稳特性的OFDM盲同步算法

基于循环平稳特性的OFDM盲同步算法
胡梅霞;张海林
【期刊名称】《西安电子科技大学学报(自然科学版)》
【年(卷),期】2005(032)002
【摘要】正交步分复用系统对同步误差非常敏感.文中提出一种盲同步估计方法,仅利用接收信号具有的二阶循环平稳特性来估计同步信息,不需要导频,具有较高的频谱利用率.通过仿真可以看出这种盲估计算法对信道具有适应性,在多种信道条件下均具有良好的估计性能.
【总页数】4页(P264-267)
【作者】胡梅霞;张海林
【作者单位】西安电子科技大学,综合业务网国家重点实验室,陕西,西安,710071;西安电子科技大学,综合业务网国家重点实验室,陕西,西安,710071
【正文语种】中文
【中图分类】TN914
【相关文献】
1.基于累积量和循环平稳参量的OFDM信号盲检测 [J], 郭黎利;吴丹;孙志国
2.电力线信道中基于LS的OFDM盲同步算法 [J], 王季立;郭道省
3.一种改进的基于LS的OFDM盲同步算法 [J], 王季立;郭道省
4.基于特殊导频码的OFDM系统盲帧同步算法 [J], 张以刚;牟海鹏;白彧;申金媛
5.基于循环平稳特性的OFDM盲信道估计算法 [J], 朱文升;李有明;俞建定;陈征
因版权原因,仅展示原文概要,查看原文内容请购买。

低压电力线OFDM载波通信系统定时同步新方法

低压电力线OFDM载波通信系统定时同步新方法

低压电力线OFDM载波通信系统定时同步新方法
孙丽君;郭禧斌
【摘要】在低压电力线OFDM载波通信系统中,符号定时偏差和载波频率偏差会产生符号间干扰(ISI)和信道间干扰(ICI),降低OFDM系统性能,所以同步技术至关重要.提出了一种新的定时同步方法,来实现准确的定时同步.分析了传统算法Schmidl&Cox算法、Minn算法的优缺点,在此基础上,提出基于Minn算法的改进算法.并对比分析了Schmidl&Cox算法、Minn算法和改进新算法在PLC通信系统的定时同步特性.仿真结果表明采用新算法准确度高,稳定性强,是一种有效的基于OFDM的PLC通信系统定时同步方法.
【期刊名称】《科学技术与工程》
【年(卷),期】2014(014)007
【总页数】5页(P186-190)
【关键词】低压电力线载波通信;正交频分复用;定时同步;Minn算法
【作者】孙丽君;郭禧斌
【作者单位】河南工业大学电气工程学院,郑州450001;河南工业大学电气工程学院,郑州450001
【正文语种】中文
【中图分类】TM919。

“双码”架构下的云存储多节点修复协作编码

“双码”架构下的云存储多节点修复协作编码

“双码”架构下的云存储多节点修复协作编码
谢显中;黄倩;王柳苏
【期刊名称】《通信学报》
【年(卷),期】2015(036)0Z1
【摘要】针对云存储中现有多节点失效修复模型的不足,给出了一种可以对多个系统节点或冗余节点同时修复的多节点协作的精确修复码,证明了其存在性,并且将此修复码与具有健康节点协作的MDS双码架构模型相结合,以达到对多节点修复的同时,降低修复带宽、修复链路数和单个中间节点需要处理的数据量.通过数值仿真结果表明,本模型与修复方案在以上3个方面具有较大改进,尤其削弱了修复时中间节点的负荷,且随着云存储中节点数量的增多,本方案的优势更加明显.
【总页数】8页(P1-8)
【作者】谢显中;黄倩;王柳苏
【作者单位】重庆邮电大学宽带接入网络研究所,重庆400065;重庆邮电大学宽带接入网络研究所,重庆400065;重庆邮电大学移通学院计算机科学系,重庆401520;重庆邮电大学宽带接入网络研究所,重庆400065
【正文语种】中文
【中图分类】TP302
【相关文献】
1.一种云存储中基于干扰对齐的多节点精确修复方法 [J], 谢显中;黄倩;王柳苏;马彬
2.新多节点修复模型下的再生码 [J], 王丽莎;唐小虎
3.X再生码:一类适用于云存储的准确修复编码 [J], 李小兵;许胤龙;林一施;项利萍
4.多节点修复的代数几何码 [J], 胡万宝;胡帅;陈雯雯;崔良武
5.可同时使用128种单码文种和双码文种全文种字处理系统的编码和输入 [J], 刘娅芳;郭思平;杨秀国;林毓材
因版权原因,仅展示原文概要,查看原文内容请购买。

联合OFDM技术的协作复数域网络编码算法

联合OFDM技术的协作复数域网络编码算法

联合OFDM技术的协作复数域网络编码算法
张祖凡;吴爱爱;杨静;景小荣
【期刊名称】《系统工程与电子技术》
【年(卷),期】2013(35)10
【摘要】提出了一种正交频分复用(orthogonal frequency division multiplex,OFDM)技术与协作复数域网络编码有机结合的OFDM-协作复数域网络编码(OFDM-cooperative complex field network coding,OFDM-CCFNC)算法.理论分析了该算法的系统误帧率和频谱利用率,仿真结果表明,该算法能够克服无线信道的频率选择性衰落影响,提高系统频谱利用率.另外,基于最小化系统误帧率给出了该算法下的一种最优系统功率分配策略.
【总页数】6页(P2198-2203)
【作者】张祖凡;吴爱爱;杨静;景小荣
【作者单位】重庆邮电大学移动通信技术重庆市重点实验室,重庆400065;重庆邮电大学通信与信息工程学院,重庆400065;重庆邮电大学通信与信息工程学院,重庆400065;重庆邮电大学通信与信息工程学院,重庆400065;重庆邮电大学移动通信技术重庆市重点实验室,重庆400065;重庆邮电大学通信与信息工程学院,重庆400065
【正文语种】中文
【中图分类】TN911.2
【相关文献】
1.基于非正交发送的复数域网络编码协作技术研究 [J], 冯强;于宏毅
2.提高卫星通信系统吞吐量的复数域网络编码算法 [J], 王庚润;李炯;罗建;刘爱军;郭道省
3.复数域网络编码并行中继优化算法 [J], 付金平;杜现;梁超
4.复数域网络编码算法研究 [J], 蒋媛媛
5.复数域网络编码并行中继优化算法 [J], 付金平;杜现;梁超;
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

puter Network and Information Security , 2011, 5, 37-45Published Online August 2011 in MECS (/)Bilayer Beams and Relay Sharing based OFDMACellular ArchitectureYanxiong Pan 1,21University of Science & Technology of China/Dept. of Electronic Engineering & Information Science, Hefei, China2Xichang Satellite Launch Center/Yibin Tracking Telemetry Station, Yibin, ChinaEmail: yxpan8@Hui Han 3, Sihai Zhang 1 and Wuyang Zhou 13Chongqing Communication Institute of P.L.A/Dept. of Information Engineering, Chongqing, ChinaEmail: haipiao@; {shzhang, wyzhou}@Abstract —Over the past decade, researchers have been putting a lot of energy on co-channel interference suppres-sion in the forthcoming fourth generation (4G) wireless networks. Existing approaches to interference suppression are mainly based on signal processing, cooperative commu-nication or coordination techniques. Though good perfor-mance has been attained already, a more complex receiver isneeded, and there is still room for improvement through other ways.Considering spatial frequency reuse, which provides an easier way to cope with the co-channel interference, this paper proposed a bilayer beams and relay sharing based (BBRS) OFDMA cellular architecture and corresponding frequency planning scheme. The main features of the novel architecture are as follows. Firstly, the base station (BS) usestwo beams, one composed of six wide beams providing cov-erage to mobile stations (MSs) that access to the BS, and theother composed of six narrow beams communicating with fixed relay stations (FRSs). Secondly, in the corresponding frequency planning scheme, soft frequency reuse is consi-dered on all FRSs further. System-level simulation results demonstrate that better coverage performance is obtained and the mean data rate of MSs near the cell edge is improved significantly. The BBRS cellular architecture provides a practical method to interference suppression in 4G networkssince a better tradeoff between performance and complexityis achieved.Index Terms —interference, relay, OFDMA, cellular system,frequency planningI. I NTRODUCTION Orthogonal frequency division multiplexing (OFDM)technique has high spectral efficiency and inheritimmunity to frequency selective fading, therefore thecorresponding multiplexing technique orthogonal frequency division multiple access (OFDMA) has alreadybecome one of the key techniques of the candidates for the next generation (4G) mobile communication standards, such as 3GPP LTE-Advanced [1] and IEEE 802.16j [2]. In OFDM technique, the total system bandwidth is divided into several sub-carriers, and the spectra of two adjacentsub-carriers have 50% overlap with each other, resulting in higher spectral efficiency compared with traditional frequency division multiplexing. When the bandwidth of each sub-carrier is smaller than the coherence bandwidth of the channel, the frequency selective fading channel can be converted into flat fading channel. Under the protection of the cyclic prefix, the inter symbol interference (ISI) resulted from multipath propagation is reduced significantly, thus better communication quality is achieved.One of the basic features of 4G wireless network is broadband. According to the definition of the InternationalTelecommunication Union (ITU), 4G network must achieve a data rate higher than 100Mbps in the downlink, which urges to increase the utilization efficiency of the limited spectrum resource as much as possible. The extreme way called unitary frequency reuse, in which each cell uses the whole system bandwidth, can make better use of the spectrum resource, but may cause severe co-channel interference to cell edge users. If unitary frequency reuse cannot meet the system capacity requirement,sectorization technique, in which the omnidirectionalantenna at the base station (BS) is replaced by severalsector antennas, is usually used. However, if aggressivefrequency reuse with each sector uses the whole systembandwidth is adopted, and no effective interferencesuppression measures are used, the interference will be even more unbearable. It is a very important way to enhance network performance by using special fixed relay stations (FRSs) to forward data to and thus boosting the performance of cell edge users [3]. However, the introduction of FRSs brings new challenges to frequency planning, thus more effort on interference suppression is needed.A.Traditional Approaches to Interference Suppression Interference suppression in OFDMA networks has been a hot topic in recent years, with lots of effective methods being proposed, but most of them need a high complex receiver. Three ways to interference suppression are considered in 3GPP LTE system, i.e., interference randomization, interference cancellation and interference coordination/mitigation [1, 4]. Cell specific scramble codes, interleaving and frequency hopping techniques are used in interference randomization, but the interference power is only randomized over the whole system bandwidth and not actually decreased. Interference cancellation is based on interference detection and subtraction, and high complexity makes it usually been implemented at the base stations (BSs). However, in interference coordination/mitigation, restrictions on resource allocation between cells are considered. Though better Carrier to Interference plus Noise Ratio (CINR) is attained, it causes higher signaling overhead.B.Frequency Planning TechiniqueCareful frequency planning can suppress interference efficiently. A factor R I, which describes the ratio of interference from all BSs to that from all FRSs in downlink access zone (AZ), is introduced to model the interference status of each mobile station (MS) in [5]. According to different R I, the total system bandwidth is divided into three subsets, the first two of which can be used only by BS and FRS, respectively, and the other is used by BS and FRS simultaneously. It is a dynamic frequency planning scheme, in which better performance is achieved. But each BS sector uses the whole system bandwidth with no interference suppression strategies in downlink relay zone (RZ), leading to severe co-channel interference. Two adaptive frequency planning schemes are proposed in [6]. A better compromise between spectral efficiency and interference is achieved through frequency reuse factor (FRF) adaptation in different time zones. However, each BS sector can only use one third of the total system bandwidth in downlink AZ, resulting in lower system capacity.C.Sectorization TechiniqueThe sectorization technique, in which each cell is covered by several sector antennas, is not only an approach to higher system capacity, but also a good method for interference suppression. Sector antenna only transmits radio signal to the directions concerned, thus the interference to other directions is reduced. However, in most previous works [5-6], relay stations are equipped with omnidirectional antennas, causing interference to stations transmitting on the same channel in all directions around. Furthermore, relay stations are usually placed in each BS sector, leading to higher costs when the network is larger.A sector relay based cell architecture is proposed in [7]. Being able to communicate with the three nearest BSs simultaneously, FRSs equipped with three sector antennas are located on common vertices of hexagonal cells, thus the number of FRSs needed is dropped. But in each cell, the total system bandwidth is partitioned into seven parts, only one of which can be used by the BS and each FRS, respectively. Similarly, Lee et al proposed a shared relay segmentation (SRS) cell architecture [8]. Each BS and FRS has three sector antennas, using the whole and one third of the total system bandwidth, respectively. FRSs only located on those common vertices that BS antennas pointed to. Though cooperative communication between BS and FRS is adopted and no interference needs to be considered in the same BS sector, the interference between adjacent BS sectors in the same cell is still severe. An ideal sector antenna model, the border of which is a straight line, is used in [9], resulting in zero signal strength in some directions. In practice, a sector antenna radiates signal to all directions around it with different gains. Therefore, when the number of interfering stations is big, large errors will appear in the performance analysis.In this paper, a bilayer beams and relay sharing based (BBRS) OFDMA cellular architecture and corresponding frequency planning scheme are proposed. Our contribution is threefold. Firstly, a novel architecture is designed. The two beam layers generated by sector antennas on each BS can be viewed as one type of space division multiplexing (SDM), which brings down the co-channel interference of aggressive frequency reuse and increases the mean data rate of cell edge users with that of cell central users guaranteed. Secondly, a static frequency planning scheme that compatible with the characteristics of the BBRS architecture is proposed. Each BS sector can use one half of the total system bandwidth. Furthermore, the soft frequency reuse on FRSs increases the mean data rate of cell edge users and system throughput, so the spectral efficiency is raised. Thirdly, an in-depth analysis of system performance and numerous simulations are carried out, which provides a reference for actual system design. Simulation results illustrate that BBRS architecture achieves a better compromise between performance and complexity.The rest of the article is organized as follows. The BBRS architecture and corresponding frequency planning scheme are introduced in section II. The CINR performance is analyzed in section III. Rate mapping strategy, path selection and scheduling algorithm are elaborated in section IV. Simulation results are presented in section V. At last, we conclude this article in section VI.II.BBRS A RCHITECTUREA.System Model and the BBRS ArchitectureThe performance of the central cell, i.e., Cell1, is evaluated in a 19-cell OFDMA network, cells marked as (2) to (19) are interfering cells, as shown in Fig. 1. Each cell is divided into S T sectors with M MSs uniformly distributing in each sector, only the handoff in each BS sector is considered throughout this paper. The frame structure for non-transparent relay stations in IEEE 802.16j [2] is adopted, as shown in Fig. 2. We only consider the downlink performance, with AZ and RZ representing the access zone and relay zone in downlink sub-frame. Unitary frequency reuse is employed, and each BS has the same frequency planning. The system works3Figure 3. SRS cell architecture and frequency planning.F r 6r Figure 4. Main lobe pattern of antennas in BBRS system.1Cell (2)(5)(8)(11)(14)(17)(3)(6)(9)(12)(15)(18)(4)(7)(10)(13)(16)(19)Figure 1. 19-cell BBRS cellular network.under Time Division Duplexing (TDD) with perfect time synchronization.In the BBRS architecture, each cell is partitioned into six sectors. BS is located in cell center while FRSs, the total number of which in the 19-cell network is 54, are placed on common vertices of the hexagonal cells. Each FRS works under decode-and-forward (DF) mode, and can communicate with three adjacent BSs simultaneously, since equipped with three sector antennas. The total system bandwidth, i.e., BW , is divided into N sub-channels, each of which consists of c adjacent subcarriers. N sub-channels are further divided into 6 orthogonal subsets in the same size, i.e. {6,1,2,...,6}==i i r r N i .The SRS architecture and corresponding frequency planning scheme [8] is shown as Fig. 3. There are only three FRSs in each cell, so the total number of FRSs in the 19-cell network will be 27.B. Frequency Planning Scheme in BBRS ArchitetureIn the BBRS system, the main lobe pattern of the antennas and the frequency planning scheme are depicted as Fig. 4 and Fig. 5, respectively. Each BS sector has two beams, one of which is wider and used for providing coverage to cell center MSs, the other is narrower and used for communicating with the nearest FRS. 1) Frequency Planning at Base StationsConsider the base station in the central cell, i.e., BS 1. InAZ, only wide beams are active. Odd sectors, i.e., 13and s 5, reuse sub-channel set b 1={r 1, r 2, r 3}, and even sectors, i.e., s 2, s 4 and s 6 reuse b 2={r 4, r 5, r 6}, as shown in Fig. 4(a). In RZ, both wide and narrow beams are turned on. The frequency planning of wide beams is unchanged, and that of narrow beams is as follows. Odd sectors s 1, s 3 and s 5 reuse b 2={r 4, r 5, r 6}, and even sectors s 2, s 4 and s 6 reuse b 1={r 1, r 2, r 3}, as shown in Fig. 4(b). 2) Frequency Planning at Relay StationsAll FRSs can be classified into two categories, i.e., odd relays and even relays , shared by odd sectors and even sectors of BSs, with F 1 and F 2 as the representatives, respectively, as illustrated in Fig. 4. FRSs of the same category have the same frequency planning.Relay stations do not transmit in RZ, so only the frequency planning in AZ needs to be considered. As shown in Fig. 4(a), each FRS uses sub-channels that orthogonal with adjacent BS sectors, thus F 1 uses b 2 and F 2 uses b 1. In order to reduce the interference to cell edge users, available sub-channels on each FRS is divided into three parts in the same size, i.e., N /6 sub-channels, and assigned to each sector.Soft Frequency Reuse (SFR) employs zone-based reuse factors in the cell center and the cell edge areas [10]. Center areas of all cells use the same band with lower transmit power, achieving an efficient use of spectrum resource. Near the cell edge, the sub-channels allocated to adjacent cells are orthogonal and have higher transmit power, so as to control the co-channel interference and guarantee the coverage performance. Inspired by this idea, in order to provide more available sub-channels to relay users, we apply SFR on all FRSs as follows. On the basis of existing frequency planning, each FRS further reusesFigure 5. Frequency planning scheme in BBRS system.1122Therefore, the number of available sub-channels on eachFRS sector reaches N /3, and higher cell edge throughputcan be expected.Finally, the frequency planning at FRSs can be described as follows: three sectors of F 1 use {r 3,r 4}, {r 1,r 5} and {r 2,r 6}, and F 2 allocates {r 5,r 1}, {r 6,r 2} and {r 4,r 3} toeach sector. In each sub-channel set, the transmit power ofthe two elements are P low and P h , respectively,with ≤low h P P and the power ratio ρ=P low /P h .III. CINR P ERFORMANCE A NALYSIS Assuming all the buffers of MSs are full, all available sub-channels on BSs and FRSs are used up. Interference is in its worst case, and the system performance reaches the lower bound. Equal power allocation strategy is employed, in which the total sector power of BS and FRS is allocatedequally to each sub-carrier. The CINR of the BBRS system will be analyzed first. Only the handoff in each BS sectors is considered, so the analysis of one sector of Cell 1 is enough. In this section, all analyses are based on sector s 1 in Cell 1, which is the area with bold border in Fig. 4(b). According to certain pathselection strategy, MSs access to either BS 1 or F 1, withcorresponding user sets are D ={d m ,m =1,2,…,M 1} andQ ={q n ,n =1,2,…,M 2}, where M 1+M 2=M .A. Interference Analysis in AZIn AZ, user d m in set D suffers interference from all BSs and FRSs. In the BBRS system, N sub-channels are reusedthree times and once on BS and FRS, respectively. Average power values of useful signal and the interference from BSs and from FRSs on sub-channel k of d m are:(1,1,,)(1,1,)=⋅⋅r B m T m P P G d k A d , (1)[]19{1,3,5}1(,,,)(,,)∈==⋅⋅−∑∑IBS Bm T m r s b P PG b s d k A b s d P , (2)[]1(,,)(,)==⋅⋅∑r N IFRS F m T m f P P G f d k A f d , (3) where N r , P B and P F are the total number of FRSs in the system, the transmit power on each subcarrier of BS and FRS, respectively. G (b ,s ,d m ,k ) and G (f ,d m ,k ) are the channel gains from sector s of BS b and FRS f to d m , withA T (b ,s ,d m ) and A T (f ,d m ) being the antenna gains.User q n in set Q suffers co-channel interference from all BSs and all FRSs except F 1. Mean power values of useful signal and the interference from BSs and FRSs on sub-channel k of q n are: (1,,)(1,)=⋅⋅r F n T n P P G q k A q , (4)[]19{1,3,5}1{2,4,6}(,,,)(,,)∈==⋅⋅∑∑IBS Bn T n s b or P PG b s q k A b s q , (5)[]2(,,)(,)==⋅⋅∑rN IFRS F n T n f P P G f q k A f q . (6) The variable s that stands for co-channel sectors in each cell in (5) will be chosen from {1,3,5} if 1∈k b , otherwise it will be chosen from {2,4,6}.B. Interference Analysis in RZIn RZ, only relay station F 1 and users in D are receiving from BS 1.The useful signal of F 1 comes from the narrow beam of s 1, and the interference comes from all BSs. Meanpower of useful signal on sub-channel k of F 1 is:111(1,1,,)(1,1,)(1,1,)=⋅⋅⋅r B n Tn R P P G F k A F A F . (7) The average power of interference from wide and narrow beams of all BSs to F 1 is: []19{2,4,6}1∈==⋅⋅⋅∑∑IBSwide B T R s b P P G A A , (8) []19{1,3,5}1∈==⋅⋅⋅−∑∑IBSnarrow B n Tn R r s b P P G A A P , (9)where G =G (b ,s ,F 1,k ) and G n =G n (b ,s ,F 1,k ) are the channelgains from wide and narrow beam of sector s of BS b to F 1,with A T =A T (b ,s ,F 1) and A Tn =A Tn (b ,s ,F 1) being the antenna gains, respectively. A R =A R (b ,s ,F 1) is the receiving gain of FRS antenna.User d m in set D is interfered by all BSs. The mean power of useful signal and interference from wide beams of BSs, i.e., P r and P IBSwide , on sub-channel k of user d m , arethe same as (1) and (2), respectively. The mean power of interference from the narrow beams of BSs is:[]19{2,4,6}1∈==⋅⋅∑∑IBSnarrow Bn Tn s b P PG A , (10)where G n =G n (b ,s ,d m ,k ) and A Tn =A Tn (b ,s ,d m ) are the channelgain and antenna gain from the narrow beam of sector s ofBS b to d m , respectively.In the SRS system, the number of relay stations is 27 inthe 19-cell network, and each BS sector uses Nsub-channels. When variable s in (2) and (5) is chosen from {1,2,3}, and N r in (3) and (6) is 27, (1) to (8) are just the corresponding formulations of the SRS system.At last, the average CINR on sub-channel k of user u can be expressed as,TABLE I.R ELATIONSHIP BETWEEN CINR AND MCS MCS CINR (dB) MCS CINR (dB)QPSK (1/12) -3.14 16QAM(1/2) 9.94QPSK (1/6) -0.73 16QAM(2/3) 13.45 QPSK (1/3) 2.09 64QAM(2/3) 18.6QPSK (1/2) 4.75 64QAM(5/6) 24.58QPSK (2/3)7.86,,ΓΓΓBF min(,)(Γ⋅Γ⋅>+BF RZ FM AZ AZ RZ P P P P Figure 6. Path selection strategy.0(,)=+⋅ΔrI P CINR u k P N fwhere P r and P I are the mean power of useful signal and the total interference, N 0 and f Δare the AWGN power spectral density and subcarrier spacing, respectively. IV. R ATE M APPING , P ATH SELECTION AND S CHEDULING A. Rate MappingIn multi-user OFDMA systems, the channel states of different users are fading independently, hence a channel that is in deep fading for user A may be a good channel for user B. When adaptive modulation and coding (AMC) is adopted, better channel state yields higher data rate. If sub-channels are allocated to users with better channel states, then the greater the number of the users is, the higher the throughput is, known as multi-user diversity [10]. When the coding scheme is Convolutional Turbo Code (CTC) and the frame error rate is lower than 10%, the relationship between CINR and the modulation and coding scheme (MCS) is listed in Table I [6].If M-ary (M=2p ) modulation and the coding with rate a is used in an MCS, then the bits that one subcarrier in an OFDM symbol can carry is ⋅p a . Assume the channel is stable during a frame, when the mean CINR of a sub-channel is Γ, the corresponding achievable data rate is:1()Γ=⋅⋅⋅⋅s Frate p a c N T , (12)where T F is the frame length, c and N s are the number ofsub-carriers in a sub-channel and the number of OFDM symbol in each frame, respectively.B. Path Selection StrategyIn single hop cellular systems, MSs can only access to BSs, thus there is no need for path selection. However, in two hop networks, MSs can access to BSs or FRSs, thus path selection based on channel state is needed. In order to reduce the signaling overhead, the path selection can be carried out by MSs [11]. In the BBRS system, FRSs broadcast the mean CINR of each sub-channel on BS-FRS link, i.e., ΓBF . According to the preamble of BS and FRS, MSs calculate the mean CINR of each sub-channel on BS-MS links and FRS-MS links, i.e., ΓBM and ΓFM .Based on CINR values obtained and take the bottleneck effect of two hop communications into consideration [6], the pseudocode of the path select strategy can be described in Fig. 6, where P AZ and P RZ are the proportions of AZ and RZ to the frame length.C. Proportional Fair SchedulingTo maintain low complexity, relay stations usually do not have the ability of scheduling, and all the scheduling is performed by base stations. Assume the access points of users do not change during a frame. Due to different interference states, users may have distinct achievable rates in AZ and RZ. In order to evaluate the system performance more precisely, let BSs allocate resource once in AZ and RZ, respectively. Consider the signaling overhead, BSs may execute scheduling once in a frame in practice. Proportional fair scheduling is considered in this paper, BSs assign a sub-channel to users with the highestpriority at the beginning of each time zone. At time t , thepriority of user u on sub-channel k is:(,,)(,,)(,1)ϕ=−r u k t u k t R u t , (13)where r (u,k,t ) is the instantaneous achievable data rate of user u on sub-channel k , (,)R u t is the average obtained data rate in the latest time window with length N W , up to time t , u ∈ {1:M }. Assume the obtained data rate of user u at time t is R (u ,t ), then (,)R u t is updated according to:11,)(1)(,1)(,)=−⋅−+⋅W WR u t R u t R u t N N . (14) At time t , BS assigns sub-channel k to user:[]*arg max (,,)ϕ=uu u k t . (15)1) Scheduling in BBRS SystemIn the BBRS system, a BS sector uses two beams, with the same number of sub-channels, i.e., N /2, to send data todirect users (users that access to BS) and FRS, thus certain fairness between direct users and relay users (users thataccess to FRS) is achieved already, and the side effect onthe resource assignment to relay users is eliminated tosome extent. Therefore, it is suitable to schedule direct users and relay users separately.2) Scheduling in SRS SystemTABLE II.S IMULATION P ARAMETERSParameters value Cell radius 1kmCentral carrier freq./Bandwidth 2GHz /5MHzc /N 10/30Subcarrier spacing f Δ 10.94 kHz Sector powerBBRS: BS/FRS high/low10/3.3/3.3ρ W SRS: BS/FRS20/6.6 WG m : BS(wide/narrow)/FRS 17/21/14 dBi A m : BS(wide/narrow)/FRS23/27/20 dBi3dB θ: BS(wide/narrow)/FRS35/15/70 deg. Number of OFDM symbols in a frame 47 Length of DL sub-frame/UL sub-frame 5/3 Length of DL AZ/ DL RZ 1/1 Pathloss index (LOS/NLOS)2.35/3.76 Std. deviation of shadowing (LOS/NLOS)3/8 dB User velocity3km/hIn the SRS system, a BS sector only has one beam layer, so direct users and the FRS need to share N sub-channels. The amount of sub-channels that FRS attained in the 1st hop has an important influence on the performance of direct users and relay users, and an appropriate priority value for the FRS is needed.Consider sector s 1 of BS 1, which is the area with bold border in Fig. 3. Users that access to BS 1 and F 1 are D ={d m ,m =1,2,…,M 1} and Q ={q n ,n =1,2,…,M 2}, respectively, with M 1+M 2=M . Assume the achievable data rates of users in D and Q are r (d m ,k ), m ∈ {1:M 1} and r (q n ,k ), n ∈ {1:M 2}. The average data rate of relay station F 1 can be represented by:2111(,),)||==∑M n n R F t R q t Q . (16) F 1 use sub-channel set r 3 to serve relay users, which areusers in Q . Sub-channel k is allocated to the user:[]2{1:}ˆ()arg max (,)ϕ∈=n n M nk q k . (17) In order to fully exploit the spectrum resource in the 2nd hop, the channel states of all the relay users must be taken into consideration [12]. Introduce a match factor,3ˆ()11(,)(,)β∈=⋅∑n k k r r q k R F t , (18)where R (F 1,t ) is the obtained data rate of F 1 at time t , and the 2nd item on the right-hand side is the sum throughput of all relay users. β is updated if F 1 get a sub-channel, and F 1 quits the competition when 1β≤.If the achievable data rate of F 1 on sub-channel k is r (F 1,k ,t ), then the priority of F 1 is,111(,,)(,,)(,1)ϕβ=⋅−r F k t F k t R F t . (19) 3) Throughput Direct users can get services in the whole downlink sub-frame, while relay users can only be served in the downlink AZ. Thus the downlink throughput of Cell 1 can be expressed as,[]12()1()11(,)(,)(,)T M s AZAZ m RZ RZ m S m DL M s s AZ AZ n n P R s d P R s d T P R s q ===⎧⎫⋅+⋅+⎪⎪⎪⎪=⎨⎬⎪⎪⋅⎪⎪⎩⎭∑∑∑,(20) where S T, P AZ and P RZ are the number of sectors of Cell 1, the proportions of AZ and RZ to the frame length, respectively. M 1(s ) and M 2(s ) are the number of directusers and relay users in sector s of Cell 1, R AZ (s,u ) and R RZ (s ,u ) are the throughputs of user u in AZ and RZ, respectively. V. N UMERICAL R ESULTS AND D ISCUSSIONIn This section, the performance of the BBRS and SRSsystem is compared, and main simulation parameters arelisted in table II. Monte Carlo simulation is performed, andall the results are averaged across 1000 drops. Since the number of sectors of each cell of two systems are 6 and 3,respectively, so the number of users in each BS sector in SRS system is set to two times of that in BBRS system tokeep the same load. A. Channel ModelDistance based pathloss, lognormal shadowing and small scale fading are taken into consideration.When carrier frequency is 2GHz, the pathloss is [13]:128.110lg()()α=+⋅⋅PL R dB , (21)where R (in km ) is the distance between source and destination, and α is the pathloss index.The shadowing effect can be modeled as a variable with normal distribution, S =N (0,σ) (dB ).The channels between BS and FRSs in the same cell areconsidered as in line of sight (LOS) environment, while all the other channels in the system are considered as in non-line of sight (NLOS) environment. The fading under LOS and NLOS can be modeled as Rician and Rayleighfading, respectively. Based on the SUI-1 [14] and ITU-Pedestrian A channel model [15], employ thesum-of-sinusoids simulation model proposed in [16], the two types of fading can be expressed as follows, 1()exp[(cos )]ωαφ==+p N d n n n Y t j t , (22) 001()(cos )]exp[(cos )]ωθφωαφ==+++pd N d n n n Z t j t j t , (23) where N p , ωd , and K are the number of propagation paths, the maximum radian Doppler frequency and Rician factor, respectively. (2),1,2,...,απθ=+=n n p p n N n N and φnFigure 7. CINR distribution in central cell of BBRS (a) and SRS (b).are the angle of arrival and initial phase of the n th propagation path, 0θ and 0φ are the angle of arrival and the initial phase of the specular component, respectively. φn , θn and 0φ are random variables uniformly distributed over [,)ππ−.Assume the small scale fading is ()ζdB , and the channel gain is defined by:0.1()10ζ−++=PL S G . (24)All MSs use omnidirectional antennas with 0dB gain. BSs and FRSs are equipped with sector antennas with the directional gain model as follows [14],230.1min 12,()10θθ⎧⎫⎡⎤⎛⎞⎪⎪⎢⎥−⋅⎜⎟⎨⎬⎜⎟⎢⎥⎝⎠⎪⎪⎣⎦⎩⎭=m m dB G A A , (25) where G m and A m are the maximum gain and the maximum attenuation (also known as the front-to-back ratio), 3dB θis the 3dB beam width, and θis the angle between the maximum gain direction of the antenna and the target, respectively.Assume the transmit power of subcarrier is P , and the power of received signal will be,()()θθ=⋅⋅⋅r T T R R P P G A A , (26) where A T (θT ) and A R (θR ) are the transmit and receive antenna gains with θT /θR being the angle between the maximum gain direction of the transmitter/receiver antenna and the receiver/transmitter, respectively. B. CINR DistributionThe numbers of users in each BS sector, i.e., M , in theSRS and BBRS systems, are set to 600 and 300,respectively. Only the pathloss is considered. The MCSscorresponding to the mean CINR across all available sub-channels of all users in the central cell in AZ are recorded. Seven MCSs considered are outage(CINR<-3.14dB ), QPSK(1/12) to QPSK(1/2), QPSK(2/3), 16QAM(1/2), 16QAM(2/3), 64QAM(2/3) and 64QAM(5/6), numbered from 1 to 7, respectively.Fig. 7 illustrates that, compared with the SRS system,the outage area is decreased sharply, and better coverageperformance is achieved in the BBRS system. Co-channelinterference is suppressed by the dedicated cellarchitecture and frequency planning, thus higher MCSscan be used by direct users.C. Multi-user PerformanceA multi-user performance metric of relay cellular system, i.e., the combined coverage and capacity index (cc ), is defined by IEEE 802.16j working group [14]:min 1==∑kj jkcc R r , (27) where r j is the obtained data rate of user j , and R min is the minimum data rate requirement.If the total number of users is large, then cc approaches the expected value of the number of users that can besupported by the system. The cc curve under power ratio ρ=0.5 and 80% coverage requirement is shown as Fig. 8. We can see that the performance of the BBRS system isbetter than the SRS system, when R min changing from 10kbits/s to 200kbits/s.D. Influence of Non-ideal Characteristics of AntennasThe non-ideal characteristics of the sector antennas have significant influence on system throughput. Raise themaximum attenuation, i.e., A m , of the two systems in step of 3dB for 4 times, the same analysis is conducted for themaximum gain G m as well. The throughput performance isshown as Fig. 9. With the increasing of A m , the interfe-rence to other directions is reduced, and the throughputs of two systems both rise. However, the influence of G misquite different from A m . In the SRS system, the raise of G mreduces the proportion of the outage area, achieving ahigher throughput. But in the BBRS system, a higher coverage percentage has already achieved, the raise of G mcauses greater co-channel interference, resulting in lowerthroughput.E. Influence of Frequency Reuse Soft frequency reuse is considered in the proposed BBRS system. The coverage of the FRSs and system throughput will be affected if the power ratio ρ is changed. When the total number of users in Cell 1is set to60, 120, 180, 240 and 300, and the power ratio ρis set to0,0.25 and 1, the throughput performance of Cell 1 isshown as Fig. 10. Due to the multi-user diversity, the。

相关文档
最新文档