七年级数学下册幂的运算
幂的运算(核心考点讲与练)-2021-2022学年七年级数学下学期考试满分全攻略(苏科版)
第06讲幂的运算(核心考点讲与练)一.同底数幂的乘法(1)同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.a m•a n=a m+n(m,n是正整数)(2)推广:a m•a n•a p=a m+n+p(m,n,p都是正整数)在应用同底数幂的乘法法则时,应注意:①底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x﹣y)2与(x﹣y)3等;②a可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.(3)概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.二.幂的乘方与积的乘方(1)幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.(2)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab)n=a n b n(n是正整数)注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.三.科学记数法—表示较大的数(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】(2)规律方法总结:①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.四.科学记数法—表示较小的数用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.【规律方法】用科学记数法表示有理数x的规律x的取值范围表示方法a的取值n的取值|x|≥10a×10n1≤|a|<10整数的位数﹣1|x|<1a×10﹣n第一位非零数字前所有0的个数(含小数点前的0)五.科学记数法—原数(1)科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.(2)把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.六.同底数幂的除法同底数幂的除法法则:底数不变,指数相减.a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n)①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.七.零指数幂零指数幂:a0=1(a≠0)由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0)注意:00≠1.八.负整数指数幂负整数指数幂:a﹣p=1ap(a≠0,p为正整数)注意:①a≠0;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.④在混合运算中,始终要注意运算的顺序.一.同底数幂的乘法(共6小题)1.(2021•清江浦区一模)a2•a3=()A.a2+a3B.a6C.a5D.6a 2.(2021•沙坪坝区校级二模)计算x8•x2的结果是()A.x4B.x6C.x10D.x163.(2021春•江阴市校级月考)已知:2m=1,2n=3,则2m+n=()A.2B.3C.4D.64.(2021春•镇江期中)规定a*b=2a×2b,例如:1*2=21×22=23=8,若2*(x+1)=32,则x的值为()A.29B.4C.3D.25.(2021春•常熟市期中)计算a2•a2的结果是()A.a4B.a3C.a2D.a6.(2021春•江都区月考)填空:a•a2=.二.幂的乘方与积的乘方(共6小题)7.(2021•武进区模拟)下列计算正确的是()A.a2+a3=a5B.(a2)3=a6C.a2•a3=a6D.(ab)2=ab2 8.(2021春•睢宁县月考)计算(0.25)2019×(﹣4)2020等于()A.﹣1B.+1C.+4D.﹣4 9.(2021•高邮市二模)下列运算正确的是()A.(﹣a3)2=a5B.5a2b﹣3a2b=2C.a4•a2=a6D.(3ab2)3=9a3b610.(2021秋•江油市期末)已知2m=a,32n=b,m,n为正整数,则24m+10n=.11.(2021春•宜兴市月考)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(﹣2,4)=,(,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n,∴3x=4,即(3,4)=x.∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30).(3)拓展应用:计算(3,9)×(3,20)﹣(3,5).12.(2021春•宜兴市月考)(1)若x2n=2.求(﹣3x3n)2﹣4(﹣x2)2n的值;(2)规定a⊗b=2a÷2b.①求2⊗(﹣3)的值;②若2⊗(x﹣1)=16,求x的值.三.科学记数法—表示较小的数(共2小题)13.(2021春•睢宁县月考)2019年末,引发疫情的冠状病毒,被命名为COVID﹣19新型冠状病毒,冠状病毒的平均直径约是新冠病毒的直径为0.00000012m,该数值用科学记数法表示为()A.1.2×10﹣8m B.1.2×10﹣7m C.12×10﹣7m D.1.2×107m 14.(2021秋•海门市期末)将数0.0002022用科学记数法表示为.四.科学记数法—原数(共2小题)15.(2021•射阳县二模)已知一种细胞的直径约为2.13×10﹣4cm,请问2.13×10﹣4这个数原来的数是()A.21300B.2130000C.0.0213D.0.000213 16.(2021春•灌云县期末)一个整数8150…0用科学记数法表示为8.15×109,则原数中“0”的个数为个.五.同底数幂的除法(共4小题)17.(2021秋•南通期中)下列计算正确的是()A.(﹣2)2=﹣4B.a2+a3=a5C.(3a2)2=6a4D.x6÷x2=x4 18.(2021春•金坛区期末)若2x÷4y=8,则2x﹣4y+2=.19.(2021春•仪征市期中)(1)已知10m=5,10n=2,求103m+2n的值;(2)已知8m÷4n=16,求(﹣3)2n﹣3m的值.20.(2021春•睢宁县月考)计算(1)已知a m=2,a n=3,求:①a m+n的值;②a2m﹣n的值;(2)已知2×8x×16=223,求x的值.六.零指数幂(共3小题)21.(2021•泰州)(﹣3)0等于()A.0B.1C.3D.﹣322.(2021春•沭阳县期末)已知(a+1)0=1,则a的取值范围是.23.(2013春•吉州区期末)若(a﹣2)a+1=1,则a=.七.负整数指数幂(共6小题)24.(2021春•宜兴市月考)已知a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A.a n与b n B.a n与b﹣nC.a2n与(﹣b)2n D.a2n+1与b2n+125.(2021秋•港南区期中)若a=0.52,b=﹣5﹣2,c=(﹣5)0,那么a、b、c三数的大小为()A.a>c>b B.c>a>b C.a>b>c D.c>b>a 26.(2020春•会宁县期末)下列运算正确的是()A.a5+a5=a10B.a6×a4=a24C.a0÷a﹣1=a D.a4﹣a4=a0 27.(2021春•射阳县校级期末)若实数m,n满足|m﹣|+(n﹣2021)2=0,则m﹣2+n0=.28.(2021春•盐都区月考)定义一种新运算nx n﹣1dx=a n﹣b n,例如2xdx=k2﹣m2,若﹣x﹣2dx=﹣1,则k=.29.(2021春•盐都区月考)(1)已知a=2﹣44444,b=3﹣33333,c=5﹣22222,请用“<”把它们按从小到大的顺序连接起来,说明理由.(2)请探索使得等式(2x+3)x+2020=1成立的x的值.分层提分题组A 基础过关练一.选择题(共5小题)1.(2021春•江都区校级月考)下列运算正确的是()A.a2•a3=a6B.a5+a3=a8C.(a3)2=a5D.a5÷a5=1(a≠0)2.(2021春•江都区校级期中)计算0.256×(﹣32)2等于()A.﹣B.C.1D.﹣13.(2021秋•晋州市期末)下列各式中,计算结果为m8的是()A.m2•m4B.m4+m4C.m16÷m2D.(m2)4 4.(2021春•亭湖区期末)计算的结果是()A.22021B.C.2D.5.(2021•徐州)下列计算正确的是()A.(a3)3=a9B.a3•a4=a12C.a2+a3=a5D.a6÷a2=a3二.填空题(共15小题)6.(2021秋•海安市期中)已知3x+1=27,则x=.7.(2021秋•南通期中)已知x,y为正整数且y=5x,则9x+y÷27y﹣x=.8.(2021春•广陵区校级期中)若3•9n•27n=321,则n=.9.(2021春•江都区校级期中)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.则:(2,)=.10.(2021春•海陵区校级期末)若3x+2y﹣3=0,则8x•4y等于.11.(2021春•射阳县校级期末)若实数m,n满足|m﹣|+(n﹣2021)2=0,则m﹣2+n0=.12.(2021春•镇江期末)若(2m)2•2n=44,其中m,n都是正整数,则符合条件的m,n的值有组.13.(2021春•镇江期末)已知一个正方体棱长是4×103米,则它的体积是立方米.14.(2021春•东海县期末)已知2x+5y=3,则4x•25y的值是.15.(2021春•靖江市期末)若m,n均为正整数,且2m﹣1×4n=32,则m+n的所有可能值为.16.(2021春•姜堰区期末)若a x=4,a y=2,则a x﹣2y的值为.17.(2021春•高邮市期末)若a m=3,a n=,则a m﹣n=.18.(2021春•仪征市期末)已知a m=10,b m=2,则(ab)m=.19.(2021春•常州期末)已知a+3b﹣2=0,则4a×82b=.20.(2021春•常州期末)我们知道,同底数幂的除法法则为:a m÷a n=a m﹣n(其中a≠0,m、n为整数),类似地,现规定关于任意正整数m,n的一种新运算:h(m﹣n)=h(m)÷h(n).若h(1)=2,则h(2021)÷h(2013)=.三.解答题(共6小题)21.(2021春•江都区校级期中)(1)已知2x+4y﹣3=0,求4x×16y的值.(2)已知x2m=2,求(2x3m)2﹣(3x m)2的值.22.(2021春•仪征市期中)(1)已知10m=5,10n=2,求103m+2n的值;(2)已知8m÷4n=16,求(﹣3)2n﹣3m的值.23.(2021春•江都区校级期中)计算:(1);(2)(﹣2x2)3+x2•x4+(﹣3x3)2.24.(2021春•广陵区校级期中)(1)若x m=2,x n=3.求x m+2n的值.(2)若2×8x×16x=222,求x的值.25.(2021春•江都区期中)已知2m=3,2n=5.(1)求23m+2n的值;(2)求22m﹣23n的值.26.(2021春•江都区校级期中)计算:(1)已知|x|=x+2,求20x20+5x+2的值.(2)已知:9n+1﹣32n=72,求n的值.题组B 能力提升练一.选择题(共2小题)1.(2021春•盐城期末)计算22021×()1010的值为()A.22021B.C.2D.()20212.(2019春•芮城县期末)“已知:a m=2,a n=3,求a m+n的值”,解决这个问题需要逆用幂的运算性质中的哪一个?()A.同底数幂的乘法B.积的乘方C.幂的乘方D.同底数幂的除法二.填空题(共2小题)3.(2021春•玄武区校级期中)若(2x﹣3)x+3﹣1=0,则x=.4.(2019春•溧水区期中)计算:22018•(﹣)2019=.三.解答题(共16小题)5.(2021春•邗江区月考)规定两数a,b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:①(5,125)=,(﹣2,﹣32)=;②若,则x=.(2)若(4,5)=a,(4,6)=b,(4,30)=c,试说明下列等式成立的理由:a+b=c.6.(2021春•毕节市期中)(1)已知3×9m×27m=311,求m的值.(2)已知2a=3,4b=5,8c=5,求8a+c﹣2b的值.7.(2021春•福田区校级期中)若x=2m+2,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=3,求此时y的值.8.(2021春•商河县校级月考)已知a x•a y=a4,a x÷a y=a(1)求x+y与x﹣y的值.(2)求x2+y2的值.9.(2020秋•路北区期中)比较3555,4444,5333的大小.10.(2019秋•杭州期中)已知三个互不相等的有理数,既可以表示为1,a,a+b的形式,又可以表示0,,b的形式,试求a2n﹣1•a2n(n≥1的整数)的值.11.(2019春•泉山区校级期中)基本事实:若a m=a n(a>0,且a≠1,m、n都是正整数),则m=n.试利用上述基本事实解决下面的两个问题吗?试试看,相信你一定行!①如果2×8x×16x=222,求x的值;②如果2x+2+2x+1=24,求x的值.12.(2018秋•武冈市期末)阅读材料:(1)1的任何次幂都为1;(2)﹣1的奇数次幂为﹣1;(3)﹣1的偶数次幂为1;(4)任何不等于零的数的零次幂为1.请问当x为何值时,代数式(2x+3)x+2016的值为1.13.(2018春•东海县期末)规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(5,25)=,(5,1)=,(3,)=.(2)小明在研究这种运算时发现一个特征:(3n,4n)=(3,4),(3)小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).试解决下列问题:①计算(8,1000)﹣(32,100000)②请你尝试运用这种方法证明下面这个等式:(3,20)﹣(3,4)=(3,5)14.(2018春•蚌埠期末)已知(a m)n=a6,(a m)2÷a n=a3(1)求mn和2m﹣n的值;(2)求4m2+n2的值.15.(2018春•新区期中)已知常数a、b满足3a×32b=27,且(5a)2×(52b)2÷(53a)b=1,求a2+4b2的值.16.(2018春•兴化市期中)尝试解决下列有关幂的问题:(1)若9×27x=317,求x的值;(2)已知a x=﹣2,a y=3,求a3x﹣2y的值;(3)若x=×25m+×5m+,y=×25m+5m+1,请比较x与y的大小.17.阅读材料:n个相同的因数a相乘,可记为a n,如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a 为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).根据以上材料,解决下列问题:(1)计算以下各对数的值:log24=,log216=,log264=;(2)根据(1)中的计算结果,写出log24,log216,log264满足的关系式;(3)根据(2)中的关系式及4,16,64满足的关系式猜想一般性结论:log a M+log a N=(a>0且a≠1,M>0,N>0);(4)根据幂的运算法则说明(3)中一般性结论的正确性.18.(2017秋•虎林市期末)已知3m=2,3n=5.(1)求3m+n的值;(2)32m﹣n的值.19.(2017春•鼓楼区校级期中)若a m=a n(a>0且a≠1,m、n是正整数),则m=n.利用上面结论解决下面的问题:(1)若3x×9x×27x=312,求x的值.(2)若x=5m﹣3,y=4﹣25m,用含x的代数式表示y.20.(2021春•岳麓区月考)定义:如果2m=n(m,n为正数),那么我们把m叫做n的D数,记作m=D(n).(1)根据D数的定义,填空:D(2)=,D(16)=.(2)D数有如下运算性质:D(s•t)=D(s)+D(t),D()=D(q)﹣D(p),其中q>p.根据运算性质,计算:①若D(a)=1,求D(a3);②若已知D(3)=2a﹣b,D(5)=a+c,试求D(15),D(),D(108),D()的值(用a、b、c表示).。
幂的运算【十大题型】—2023-2024学年七年级数学下册举一反三系列(沪科版)(解析版)
幂的运算【十大题型】【题型1 利用幂的运算法则进行简便运算】 (1)【题型2 利用幂的运算法则求式子的值】 (3)【题型3 利用幂的运算法则比较大小】 (5)【题型4 利用幂的运算法则整体代入求值】 (8)【题型5 利用幂的运算法则求字母的值】 (9)【题型6 利用幂的运算法则表示代数式】 (11)【题型7 幂的混合运算】 (13)【题型8 新定义下的幂的运算】 (15)【题型9 负整数指数幂】 (19)【题型10 利用科学记数法表示小数】 (21)【知识点1 幂的运算】①同底数幂的乘法:a m ·a n =a m+n 。
同底数幂相乘,底数不变,指数相加。
②幂的乘方:(a m )n =a mn 。
幂的乘方,底数不变,指数相乘。
③积的乘方:(ab)n =a n b n 。
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
④同底数幂的除法:a m ÷a n =a m -n 。
同底数幂相除,底数不变,指数相减。
【题型1 利用幂的运算法则进行简便运算】【例1】(2023春·河北保定·七年级校联考期末)用简便方法计算:(1)(45)2019×(−1.25)2020;(2)(−9)3×(−23)3×(13)3.【答案】(1)54(2)8【分析】(1)先将小数化为分数,再根据同底数幂的运算法则进行计算即可;(3)根据乘法结合律和积的乘方逆运算,先计算后两项乘积,再求解即可.【详解】(1)解:原式=(45)2019×(54)2020=(45)2019×(54)2019×54=(45×54)2019×54=1×54=54; (2)解:原式=(−9)3×[(−23)×13]3=(−9)3×(−29)3=[(−9)×(−29)]3=23=8.【点睛】本题主要考查了有理数混合运算的简便运算,解题的关键是掌握有理数范围内依旧适用各个运算律,以及熟练运用同底数幂的运算法则.【变式1-1】(2023春·山东烟台·七年级统考期中)计算(−54)2023×(−0.8)2022的结果是( ) A .1B .−1C .54D .−54 【答案】D【详解】解:(−54)2023×(−0.8)2022=(−54)×(−54)2022×(−45)2022 =(−54)×[(−54)×(−45)]2022=−54,故选:D . 【点睛】本题考查了积的乘方,同底数幂的乘法,解题的关键是积的乘方运算的逆运用进行化简.【变式1-2】(2023春·上海杨浦·七年级统考期中)用简便方法计算:−35×(−23)5×(−5)6【答案】500000【分析】根据积的乘方即可求出答案.【详解】原式=35×(23)5×56=(3×23)5×56=25×55×5=(2×5)5×5=5×105=500000【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.【变式1-3】(2023春·上海·七年级上海市西延安中学校考期中)简便方法计算:(1)325×202.3+87%×2023−21×20.23;(2)(−1.5)2024×(23)2023 【答案】(1)2023(2)1.5【分析】(1)先变形,再利用乘法分配律合并计算;(2)先逆用同底数幂的乘法变形,再逆用积的乘方二次变形,再计算即可.【详解】(1)解:325×202.3+87%×2023−21×20.23=175×10×20.23+87×20.23−21×20.23 =34×20.23+87×20.23−21×20.23=(34+87−21)×20.23=100×20.23=2023;(2)(−1.5)2024×(23)2023 =(−1.5)2023×(23)2023×(−1.5) =(−32×23)2023×(−1.5) =(−1)2023×(−1.5)=1.5【点睛】本题考查了乘法分配律,积的乘方和同底数幂的乘法,解题的关键是灵活运用公式.【题型2 利用幂的运算法则求式子的值】【例2】(2023春·江苏宿迁·七年级校考期中)若x m =2,x n =5,则x 3m−2n = .【答案】825【分析】逆用同底数幂的除法公式及幂的乘法公式,化成已知条件的形式,再计算即可求解..【详解】解:x3m−2n=x3m÷x2n=(x m)3÷(x n)2=23÷52=825.故答案为:825【点睛】本题考查同底数幂的除法及幂的乘法公式的逆运算,熟练掌握公式后再灵活变通是解题关键.【变式2-1】(2023春·四川自贡·七年级四川省荣县中学校校考阶段练习)已知2a=18,2b=3,则2a−2b+1的值为.【答案】4【分析】直接利用同底数幂的乘除运算法则将原式变形进而得出答案.【详解】:∵2a=18,2b=3,∴2a-2b+1=2a÷(2b)2×2=18÷32×2=4.故答案为:4.【点睛】此题主要考查了同底数幂的乘除运算,解题关键是将原式进行正确变形.【变式2-2】(2023春·广东深圳·七年级深圳外国语学校校考期中)已知x3m=2,y2m=3,求(x2m)3+ (y m)6−(x2y)3m⋅y m的值.【答案】-5【详解】∵x3m=2,y2m=3,(x2m)3+(y m)6−(x2y)3m⋅y m=(x3m)2+(y2m)3−(x6m y3m⋅y m)=(x3m)2+(y2m)3−(x3m y2m)2=22+33−(2×3)2=−5.【点睛】考查单项式乘单项式,幂的乘方与积的乘方,掌握运算法则是解题的关键.【变式2-3】(2023春·浙江温州·七年级温州市第二十三中学校考期中)已知整数a、b、c、d满足a<b<c<d 且2a3b4c5d=10000,则4a+3b+2c+d的值为.【答案】2【分析】根据3不是10000的公约数,可得b=0,由10000=24×54=42×54=20×42×54=2−2×43×54=24×40×54和a <b <c <d 即可得到a ,b ,c ,d 的值,故可求解.【详解】∵10000=24×54=42×54=20×42×54=2−2×43×54=24×40×54,3不是10000的公约数,∴3b =1则b =0∴2a ×4c ×5d =10000∵整数a 、b 、c 、d 满足a <b <c <d∴10000=2−2×43×54符合题意∴a =-2,b =0,c =3,d =4∴4a +3b +2c +d =-8+0+6+4=2故答案为:2.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算法则及特点.【题型3 利用幂的运算法则比较大小】【例3】(2023春·浙江杭州·七年级期中)如A =999999,B =119990,是比较A ,B 大小( ) A .A >BB .A <BC .A =BD .A 、B 大小不能正确 【答案】CA 和B 进行转化变成同底数幂的形式,再进行比较即可.【详解】解:∵A =999999=(99911)9=(11910)9,B =119990=(11910)9, ∴A =B ;故选:C .【点睛】本题主要考查了幂的大小比较的方法,一般说来,比较几个幂的大小,或者把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.【变式3-1】(2023春·山西晋中·七年级统考期中)阅读探究题:【阅读材料】比较两个底数大于1的正数幂的大小,可以在底数(或指数)相同的情况下,比较指数(或底数)的大小, 如:25>23,55>45.在底数(或指数)不相同的情况下,可以化相同,进行比较,如:2710与325,解:2710=(33)10=330,∵30>25,∴330>325.∴2710>325.(1)上述求解过程中,运用了哪一条幂的运算性质(______ )A.同底数幂的乘法B.同底数幂的除法C.幂的乘方D.积的乘方(2)类比解答:比较254,1253的大小.(3)拓展提高:比较3555,4444,5333的大小.【答案】(1)C(2)254<1253(3)5333<3555<4444【分析】(1)根据幂的乘方运算法则判断即可;(2)根据幂的乘方运算法则解答即可;(3)根据幂的乘方运算法则解答即可.【详解】(1)上述求解过程中,运用了幂的乘方的运算性质,故答案为:C;(2)∵254=(52)4=58,1253=3)3=59,58<59,∴254<1253;(3)∵3555=(35)111=243111,4444=(44)111=256111,5333=(53)111=125111,125111<243111<256111,∴5333<3555<4444.【点睛】本题考查幂的乘方与积的乘方、有理数大小比较,解答本题的关键是明确有理数大小的比较方法.【变式3-2】(2023春·江苏·七年级期末)若a3=2,b5=3,比较a,b大小关系的方法:因为a15=(a3)5= 25=32,b15=(b5)3=33=27,32>27,所以a15>b15,所以a>b.已知x5=2,y7=3,则x,y的大小关系是x y(填“<”或“>”).【答案】<【详解】解:参照题目中比较大小的方法可知,∵x35=(x5)7=27=128,y35=(y7)5=35=243,243>128,∴x35<y35,∴x<y,故答案为:<.【点睛】本题考查利用幂的乘方比较未知量的大小,熟练掌握幂的乘方的运算法则(底数不变,指数相乘)是解题的关键.【变式3-3】(2023春·河北张家口·七年级统考阶段练习)阅读:已知正整数a,b,c,对于同底数,不同指数的两个幂a b和a c(a≠1),若b>c,则a b>a c;对于同指数,不同底数的两个幂a b和c b,若a>c,则a b>c b.根据上述材料,回答下列问题.(1)比较大小:2882(填“>”“<”或“=”);(2)比较233与322的大小(写出具体过程);(3)比较9913×10210与9910×10213的大小(写出具体过程).【答案】(1)>(2)233<322,过程见解析(3)9913×10210<9910×10213,过程见解析【分析】(1)根据材料提示,正整数a,b,c,对于同底数,不同指数的两个幂a b和a c(a≠1),指数越大,值a b和c b,底数越大,值越大,由此即可求解;(2)根据幂的运算将233与322转换成同指数,不懂底数的两个幂,进行比较即可;(3)将9913×10210与9910×10213转换为同底数不同指数,同指数不同底数的形式,结合材料提示即可求解.【详解】(1)解:∵28=(24)2=162,16>8,∴162>82,故答案为:>.(2)解:∵233=(23)11=811,322=(32)11=911,8<9,∴811<911,∴233<322.(3)解:∵9913×10210=9910×993×10210=(99×102)10×993,9910×10213=9910×10210×1023= (99×102)10×1023,993<1023,∴(99×102)10×993<(99×102)10×1023,∴9913×10210<9910×10213.【点睛】本题主要考查幂的知识,幂的乘方,积的乘方等运算的综合,掌握以上知识及运算是解题的关键.【题型4 利用幂的运算法则整体代入求值】【例4】(2023春·江苏盐城·七年级统考期中)若a+b+c=1,则(−2)a−1×(−2)3b+2×(−2)2a+3c的值为 .【答案】16【分析】根据同底数幂的乘法可进行求解.【详解】解:∵a+b+c=1,∴(−2)a−1×(−2)3b+2×(−2)2a+3c=(−2)a−1+3b+2+2a+3c=(−2)3(a+b+c)+1=16;故答案为16.【点睛】本题主要考查同底数幂的乘法,熟练掌握同底数幂的乘法是解题的关键.【变式4-1】(2023春·江苏苏州·七年级统考期末)已知2x+y=1,则4x·2y的值为.【答案】2【分析】根据幂的乘方,同底数幂的乘法法则,进行计算即可解答.【详解】解:∵2x+y=1,∴4x·2y=(22)x·2y=22x·2y=22x+y=21=2,故答案为:2.【点睛】本题考查了幂的乘方与积的乘方,同底数幂的乘法,熟练掌握它们的运算法则是解题的关键.【变式4-2】(2023春·四川成都·七年级成都嘉祥外国语学校校考期中)已知2x+4y−3=0,则4x⋅16y−8的值为()A.3B.8C.0D.4【答案】C【分析】根据幂的乘方与同底数幂的乘法将原式化为22x+4y−8,再整体代入计算即可.【详解】解:∵2x+4y−3=0,即2x+4y=3,∴原式=22x⋅24y−8=22x+4y−8=23−8=8−8=0,故选:C.【点睛】本题考查幂的乘方与同底数幂的乘法,掌握幂的乘方与同底数幂的乘法的计算方法是正确解答的前提,将原式化为22x+4y−8是正确解答的关键.【变式4-3】(2023春·广西崇左·七年级统考期中)若2a+3b−4c−2=0,则9a×27b÷81c的值为.【答案】9【分析】由幂的乘方进行化简,然后把2a+3b−4c=2代入计算,即可得到答案.【详解】解:∵2a+3b−4c−2=0,∴2a+3b−4c=2,∴9a×27b÷81c=32a×33b÷34c=32a+3b−4c=32=9;故答案为:9.【点睛】本题考查了幂的乘方的运算法则,求代数式的值,解题的关键是熟练掌握运算法则,正确的进行化简.【题型5 利用幂的运算法则求字母的值】【例5】(2023春·上海浦东新·七年级统考期中)已知42x⋅52x+1−42x+1⋅52x=203x−4,求x的值;【答案】x=4【分析】根据积的乘方的逆运算即可解得.【详解】解:42x⋅52x+1−42x+1⋅52x=203x−442x⋅52x⋅5−4⋅42x⋅52x=203x−4202x⋅5−4⋅202x=203x−4202x=203x−42x=3x−4x=4【点睛】此题考查了积的乘方的逆运算,题解的关键是转化成同底数.【变式5-1】(2023春·河北邯郸·七年级校考期中)计算:(1)已知2⋅8n⋅32n=225,求n 的值;(2)已知n 是正整数,且x3n=2,求(3x3n)2+(−2x2n)3的值.【答案】(1)3;(2)4.【分析】(1)由2⋅8n⋅32n=2⋅(23)n⋅(25)n=2⋅23n⋅25n=28n+1=225,得到一元一次方程8n+1=25,即可求解;(2)把(3x3n)2+(−2x2n)3变形为(3x3n)2−8(x3n)2,再把x3n=2代入计算即可.【详解】(1)解:∵2⋅8n⋅32n=2⋅(23)n⋅(25)n=2⋅23n⋅25n=28n+1=225,∴8n+1=25,解得n=3.(2)解:∵(3x3n)2+(−2x2n)3=(3x3n)2−8(x3n)2,当x3n=2时,原式=(3×2)2−8×22=36−32=4.【变式5-2】(2023春·浙江绍兴·七年级统考期末)若2a=3,2b=7,2c=m,且a+b=c,则此时m值为.【答案】21【分析】根据同底数幂的乘法运算法则求解即可.【详解】解:∵2a=3,2b=7,∴2a⋅2b=2a+b=21,∵a+b=c,∴2c=21,又2c=m,∴m=21,故答案为:21.【点睛】本题考查同底数幂的乘法,解答的关键是熟练掌握运算法则:a m⋅a n=a m+n.【变式5-3】(2023春·山东淄博·七年级统考期中)若52×5m=510,9n÷3n=3,则m+n=.【答案】9【分析】根据幂的运算即可得出:{2+m=10n=1,求出m、n的值,即可得出答案.【详解】解:∵52×5m=510,9n÷3n=3,∴52+m=510,32n÷3n=3n=3,∴{2+m=10n=1,解得{m=8n=1,∴m+n=9.故答案为:9.【点睛】此题考查了同底数幂相乘和同底数幂相除的运算,利用幂的运算得出方程组解出字母的值是解题的关键.【题型6 利用幂的运算法则表示代数式】【例6】(2023春·江苏泰州·七年级校考期中)若x=2m+1,y=4m−1.(1)当m=2时,分别求x,y的值.(2)用只含x的代数式表示y.【答案】(1)x=5;y=15(2)y=x2−2x【分析】(1)将m=2代入x=2m+1,y=4m−1中计算即可;(2)由x=2m+1可得2m=x−1,再根据幂的乘方运算解答即可.【详解】(1)解:将m=2分别代入x=2m+1,y=4m−1中∴x=22+1=5,y=42−1=15;(2)解:∵x=2m+1,∴2m=x−1,∴y=4m−1=(2m)2−1=(x−1)2−1=x2−2x.【点睛】本题主要考查了代数式求值以及幂的乘方的逆运算,解题的关键是熟练利用幂的乘方的逆运算对式子进行变形.【变式6-1】(2023春·福建漳州·七年级漳州三中校考期中)已知2x−4=m,用含m的代数式表示2x正确的是()A.16m B.8m C.m+4D.m4【答案】A【分析】利用幂的除法的逆运算即可求解.【详解】解:∵2x−4=m,=m,∴2x24∴2x=16m,故选:A.【点睛】本题考查了幂的除法的逆运算,解题的关键是掌握相应的运算法则.【变式6-2】(2023春·江苏扬州·七年级统考期中)若43x=2021,47y=2021,则代数式xy与x+y之间关系是.【答案】xy=x+y【分析】由条件可得(43x)y=2021y,(47y)x=2021x,可得43xy⋅47xy=(43x)y×(47y)x=2021y×2021x=2021x+y,而43xy×47xy=(43×47)xy=2021xy,从而可得答案.【详解】解:∵43x=2021,47y=2021,∴(43x)y=2021y,(47y)x=2021x,∴43xy⋅47xy=(43x)y×(47y)x=2021y×2021x=2021x+y,而43xy×47xy=(43×47)xy=2021xy,∴2021xy=2021x+y,∴xy=x+y.故答案为:xy=x+y.【点睛】本题考查的是同底数幂的乘法运算,积的乘方的逆运算,掌握“利用幂的运算与逆运算进行变形”是解本题的关键.【变式6-3】(2023春·江西南昌·七年级南昌市第十九中学校考期末)若a m=a n(a>0且a≠l,m、n是正整数),则m=n.利用上面结论解决下面的问题:(1)如果8x=25,求x的值;(2)如果2x+2+2x+1=24,求x的值;(3)若x=5m−3,y=4−25m,用含x的代数式表示y.【答案】(1)x=53(2)x=2(3)y=−x2−6x−5【分析】(1)根据幂的乘方运算法则把8x化为底数为2的幂,解答即可;(2)根据同底数幂的乘法法则把2x+2+2x+1=24变形为2x(22+2)=24即可解答;(3)由x=5m−3可得5m=x+3,再根据幂的乘方运算法则解答即可.【详解】(1)解:8x=(23)x=23x=25,∴3x=5,解得x=5;3(2)解:∵2x+2+2x+1=24,∴2x×22+2x×2=24∴6×2x=24,∴2x=4,∴x=2;(3)解:∵x=5m−3,∴5m=x+3,∵y=4−25m=4−(52)m=4−(5m)2=4−(x+3)2,∴y=−x2−6x−5.【点睛】本题考查了同底数幂的乘法以及幂的乘方,掌握利用同底数幂的乘法、幂的乘方及其逆运算对式子进行变形是关键.【题型7 幂的混合运算】【例7】(2023春·山东枣庄·七年级统考期中)计算:(1)a4+(−2a2)3−a8÷a4;(2)2a2b⋅5ab2−3ab⋅(ab)2.【答案】(1)−8a6(2)7a3b3【分析】(1)运用积的乘方、同底数幂相除及合并同类项进行求解;(2)运用积的乘方、单项式乘以单项式进行运算.【详解】(1)解:a4+(−2a2)3−a8÷a4=a4−8a6−a4=−8a6;(2)解:2a2b⋅5ab2−3ab⋅(ab)2=10a3b3−3ab⋅a2b2=10a3b3−3a3b3=7a3b3.【点睛】此题考查了积的乘方、同底数幂相除、单项式乘以单项式及合并同类项的运算能力,关键是能准确理解并运用以上知识进行计算.【变式7-1】(2023春·浙江金华·七年级校考期中)计算:(1)2x3y2⋅(−2xy2z)2;(2)(−2x2)3+x2⋅x4−(−3x3)2.【答案】(1)8x5y6z2;(2)−16x6.【分析】(1)直接利用积的乘方运算法则化简,再利用单项式乘单项式运算法则计算得出答案;(2【详解】(1)解:2x3y2⋅(−2xy2z)2=2x3y2⋅4x2y4z2=8x5y6z2;(2)解:(−2x2)3+x2⋅x4−(−3x3)2=−8x6+x6−9x6=−16x6.【点睛】此题主要考查了单项式乘单项式以及积的乘方运算法则,正确掌握相关运算法则是解题关键.【变式7-2】(2023春·上海青浦·七年级校考期中)计算:(−12xy2)2⋅8x4y2−(2x2y2)3.【答案】−6x6y6【分析】分别按照幂的乘方,积的乘方,单项式乘单项式的运算法则进行计算,最后合并同类项即可.【详解】解:(−12xy2)2⋅8x4y2−(2x2y2)3=14x2y4⋅8x4y2−8x6y6=2x6y6−8x6y6=−6x6y6【点睛】本题考查了整式的乘法运算.用到的知识点有幂的乘方,积的乘方,单项式乘单项式.幂的乘方法则:幂的乘方,底数不变,指数相乘;积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的因式相乘;单项式乘单项式,把他们的系数、相同字母的幂分别相乘,其余字母和字母指数不变,作为积的因式.【变式7-3】(2023春·湖南邵阳·七年级统考期中)计算:a n−5(a n+1b3m−2)2+(a n−1b m−2)3(−b3m+2).【答案】0【分析】根据积的乘方,单项式乘以单项式的计算法则求解即可.【详解】解:原式=a n−5(a2n+2b6m−4)+(a3n−3b3m−6)(−b3m+2)=a3n−3b6m−4+(−a3n−3b6m−4)=a3n−3b6m−4−a3n−3b6m−4=0.【点睛】本题主要考查了单项式乘以单项式,积的乘方,熟知相关计算法则是解题的关键.【题型8 新定义下的幂的运算】【例8】(2023春·上海徐汇·七年级上海市第四中学校考期中)阅读下列材料:一般地,n个相同的因数a相乘a⋅a…,记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n.如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=_____,log216=_____,log264=_____.(2)写出(1)log24、log216、log264之间满足的关系式______.(3)由(2)的结果,请你能归纳出一个一般性的结论:log a M+log a N=_____(a>0且a≠1,M>0,N>0).(4)设a n=N,a m=M,请根据幂的运算法则以及对数的定义说明上述结论的正确性.【答案】(1)2,4,6(2)log24+log216=log264(3)log a(MN)(4)证明见解析【分析】(1)根据对数的定义求解;(2)认真观察,即可找到规律:4×16=64,log24+log216=log264;(3)由特殊到一般,得出结论:log a M+log a N=log a(MN).(4)设log a M=b1,log a N=b2,根据同底数幂的运算法则:a m⋅a n=a m+n和给出的材料证明结论.【详解】(1)∵22=4,24=16,26=64∴log24=2,log216=4,log264=6,故答案为:2,4,6;(2)∵4×16=64,log24=2,log216=4,log264=6,∴log24+log216=log264,故答案为:log24+log216=log264;(3)由(2)的结果可得log a M+log a N=log a(MN),故答案为:log a(MN).(4)设log a M=b1,log a N=b2,则a b1=M,a b2=N∴MN=a b1a b2=a b1+b2,∴b1+b2=loga(MN),∴log a M+log a N=log a(MN).【点睛】本题是开放性的题目,难度较大.借考查同底数幂的乘法,对数,实际考查学生对指数的理解、掌握的程度;解题的关键是要求学生不但能灵活、准确的应用其运算法则,还要会类比、归纳,推测出对数应有的性质.(2023春·广东揭阳·七年级校考期中)若定义表示3xyz,表示−2a b c d,【变式8-1】则运算的结果为()A.−12m3n4B.−6m2n5C.12m4n3D.12m3n4【答案】A【分析】根据新定义列出算式进行计算,即可得出答案.【详解】解:根据定义得:=3×m×n×2×(-2)×m2×n3=-12m3n4,故选:A.【点睛】本题考查了整式的混合运算,根据新定义列出算式是解决问题的关键.【变式8-2】(2023春·江苏淮安·七年级期中)定义一种幂的新运算:x a⊕x b=x ab+x a+b,请利用这种运算规则解决下列问题:(1)22⊕23的值为;(2)若2p=3,2q=5,3q=7,求2p⊕2q的值;【答案】(1)96(2)22【分析】(1)根据新运算规则计算,即可求解;(22+2p+q,再由幂的乘方和同底数幂的逆运算计算,即可求解.【详解】(1)解:根据题意得:22⊕23=22×3+22+3=26+25=96;故答案为:96(2)解:∵2p=3,2q=5,3q=7,2p⊕2q=2pq+2p+q=(2p)q+2p×2q=3q+2p×2q=7+3×5=22【点睛】本题主要考查了幂的乘方和同底数幂的逆运算,利用新运算规则是解题的关键.【变式8-3】(2023春·江苏·七年级期中)规定两数a,b之间的一种运算,记作(a,b),如果a c=b.我们叫(a,b)为“雅对”.例如:因为23=8,所以(2,8)=3.我们还可以利用“雅对”定义说明等式(3,3)+(3,5)=(3,15)成立.证明如下:设(3,3)=m,(3,5)=n,则3m=3,3n=5,故3m⋅3n=3m+n=3×5=15,则(3,15)=m+n,即(3,3)+(3,5)=(3,15).(1)根据上述规定,填空:(2,4)=_________;(5,1)=_________;(3,27)=_________.(2)计算(5,2)+(5,7)=___________,并说明理由.(3)利用“雅对”定义证明:(2n,3n)=(2,3),对于任意自然数n都成立.【答案】(1)2;0;3(2)(5,2)+(5,7)=(5,14),理由见解析(3)见解析【分析】(1)由于22=4,50=1,33=27根据“雅对”的定义可得;(2)设(5,2)=m,(5,7)=n,利用新定义得到5m=2,5n=7,根据同底数幂的乘法得到5m•5n= 5m+n=14,然后根据“雅对”的定义得到(5,14)=m+n,从而得到(5,2)+(5,7)=(5,14);(3)设:(2n,3n)=a,(2,3)=b,利用新定义得到(2n)a=3n,2b=3,根据幂的乘方得到(2n)a=(2b)n,从而得到a=b,所以(2n,3n)=(2,3),对于任意自然数n都成立.【详解】(1)∵22=4,∴(2,4)=2;∵50=1,∴(5,1)=0;∵33=27,∴(3,27)=3故答案为:2;0;3;(2)(5,2)+(5,7)=(5,14);理由如下:设(5,2)=m,(5,7)=n,则5m=2,5n=7,∴5m•5n=5m+n=2×7=14,∵(5,14)=m+n,∴(5,2)+(5,7)=(5,14);故答案为:(5,14);(3)设(2n,3n)=a,(2,3)=b,∴(2n)a=3n,2b=3,∴(2n)a=(2b)n,即2an=2bn,∴an=bn,∴a=b,即(2n,3n)=(2,3),对于任意自然数n都成立.【点睛】本题考查了幂的乘方与积的乘方:幂的乘方法则:底数不变,指数相乘,即(a m)n=a mn(m,n是正整数).【题型9 负整数指数幂】【例9】(2023下·浙江宁波·七年级校考期末)已知x=1+7n,y=1+7−n,则用x表示y的结果正确的是()A.x+1x−1B.x+1x+1C.xx−1D.7−x【答案】C【分析】将y变形为y=1+17n,再将x=1+7n变形为7n=x−1,代入即可.【详解】解:y=1+7−n=1+17n,∵x=1+7n,∴7n=x−1,∴y=1+17n =1+1x−1=xx−1,故选:C.【点睛】本题考查了负整数指数幂,以及分式的化简,熟练掌握负整数指数幂的运算是解题的关键.【变式9-1】(2023下·辽宁阜新·七年级阜新实验中学校考期中)若a=(0.3)2,b=−3−2,c=(−13)−2,则a,b,c的大小关系为(用“<”连接).【答案】b<a<c【分析】根据a=(0.3)2=0.09,b=−3−2=−132=−19,c=(−13)−2=1(−13)2=9,比较即可.【详解】∵a=(0.3)2=0.09,b=−3−2=−132=−19,c=(−13)−2=1(−13)2=9,∴−19<0.09<9,故b<a<c,故答案为:b<a<c.【点睛】本题考查了幂的计算,负整数指数幂,实数大小比较,熟练掌握公式和大小比较的原则是解题的关键.【变式9-2】(2023上·陕西·七年级校考阶段练习)已知x=3−q,y−1=21−p,z=4p27−q,用x,y表示z的代数式为.【答案】4x3y2.【分析】由于z=4p•27-q=(22)p•(33)-q=(2p)2•(3-q)3,题目要求用x,y表示z,又x=3-q,那么关键是用y的代数式表示2p.由y-1=21-p,根据负整指数幂的意义,可知2p=2y.【详解】由y-1=21-p,得y=2p−1=2p2,所以2p=2y.z=4p•27-q=(22)p•(33)-q=(2p)2•(3-q)3=(2y)2•x3=4x3y2.【点睛】本题综合考查了幂的运算性质、负整指数幂的意义及代数式的恒等变形.本题能够由已知条件y-1=21-p,得出2p=2y是解题的关键.【变式9-3】(2023上·浙江宁波·七年级统考期末)若x2−12x+1=0,则x4+1x4的个位数字是.【答案】2【分析】根据已知可得x+x−1=12,进而根据完全平方公式的得出x2+x−2,x4+x−4,即可求解.【详解】解:由题设知x≠0,于是有x+x−1=12.于是x2+x−2=(x+x−1)2−2=122−2=142,x4+x−4=(x2+x−2)2−2=1422−2.故x4+x−4的个位数字为2.【点睛】本题考查了负整数指数幂,完全平方公式,将已知等式变形是解题的关键.【题型10 利用科学记数法表示小数】【例10】(2023·河北邯郸·校考一模)把0.00258写成a×10n(1≤a<10,n为整数)的形式,则a+n为()A.2.58B.5.58C.−0.58D.−0.42【答案】D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.00258用科学记数法表示为:2.58×10-3.故a=2.58,n=-3,则a+n=-0.42.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【变式10-1】(2023下·江苏苏州·七年级苏州市立达中学校校考期末)某种细胞的直径是5×10-4毫米,这个数是()A.0.05毫米B.0.005C.0.0005毫米D.0.00005毫米【答案】C【详解】科学记数法a×10n,n=-4,所以小数点向前移动4位.5×10-4=0.0005,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.【变式10-2】(2023上·重庆渝中·七年级统考期末)人类进入5G时代,科技竞争日趋激烈.据报道,我国某种芯片的制作工艺已达到28纳米,居世界前列.已知1纳米=1×10﹣9米,则28纳米等于多少米?将其结果用科学记数法表示为.【答案】2.8×10-8米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将28纳米用科学记数法表示为2.8×10-8米,故答案为:2.8×10-8米.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【变式10-3】(2023下·江苏镇江·七年级校考期末)去年11月,在巴黎举行的第27届国际计量大会中宣布引进4个新单位词头,新增的4个词头分别是ronna,quetta,ronto和quecto,其中1ronto−10−27,此前,国际单位制最小单位词头为“幺”(yocto).1幺−10−24.一个光子的质量约为1.1×10−23幺克.换算后约为ronto克.【答案】1.1×10−20【分析】运用科学记数法的运算法则解答即可.=1.1×10−20ronto克【详解】一个光子的质量约为1.1×10−23幺克.换算后约为1.1×10−2310−2710−24故答案为1.1×10−20.【点睛】本题考查了用科学记数法表示的数的除法运算,解题的关键是掌握用科学计数法表示数的运算方法.。
沪科版数学七年级下册8.1幂的运算3.同底数幂的除法第2课时零指数幂和负整数指数幂
8.1 幂的运算
重难互动探究
探究问题 会进行零指数幂和负整数指数幂的综合计算
例 计算: [解析] 因为
((--22))2-2=|-2,1பைடு நூலகம்|-+1(|2=0116,-(π20)10-6-12π-1).0=1,12
-1
=2.
解:原式=2-1+1-2=0.
[点评] 实数运算,熟知算术平方根、有理数的乘方、负整
时,无意义.
8.1 幂的运算
学习目标2 会根据负整数指数幂的意义解题 3.计算:(1)3-3;(2)-12-2; (3)18-2015÷82015. 解:(1)3-3=313=217.(2)-12-2=-1212=4. (3)18-2015÷82015=82015÷82015=1.
初中数学课件
金戈铁骑整理制作
8.1 幂的运算
3 同底数幂的除法
第2课时 零指数幂和负整数指数幂
8.1 幂的运算
基础自主学习
学习目标1 会根据零指数幂的意义解题 1.计算:(1)201150=___1___; (2)(π -3.14)0=___1___.
2.当 x___≠__2___时,(x-2)0=1. [归纳] 任何一个不等于零的数的零次幂都等于 1,即__a_0=__1___ (a≠0). [注意] a0 能否等于 1,由底数 a 决定,当 a≠0 时,a0=1;当 a=0
8.1 幂的运算
[归纳]任何一个不等于零的数的-p (p是正整数)次幂,等
于这个数的p次幂的倒数.即_a_-_p=__a1_p_(a≠0,p是正整数). [说明] (1)学习了零指数幂与负整数指数幂后,再计算 am÷an 时,就不必限制 m>n 了. (2)a0 不能理解为 0 个 a 相乘,a-p 不能理解为-p 个 a 相乘.
七年级下数学幂的运算)
第一周周末学案幂的运算【知识要点】1•同底数幕的乘法法则:同底数幕相乘,底数__________ ,指数________ 。
用公式表 __________________ 。
2. ___________________________________ 幕的乘方法则:幕的乘方,底数,指数___________________________________ 。
用公式表示为 _______________________ 。
3. ________________________________________________ 积的乘方法则:积的乘方,把积的每一个因式________________________________ ,再把所得的积__________ 。
用公式表示为_______________________ 。
4•同底数幕的除法法则:同底数幕相除,底数__________ ,指数________ o用公式表示为___________________ o5.我们规定:a0= -n,a = o【基础演练】1、计算:-(-3)2二p2•( -p)-(-p) 5= (-2x 3y4) 3=(x 4)3= (a n)2= m12=( ) 2=() 3=( ) 4o2、(1)若a m- a m=a8,则m= ⑵若a5- (a n) 3二a11,则n=3、用科学记数法表示:(1)0.00000730= ⑵-0.00001023=4、一种细菌的半径为3.9 x 105m,用小数表示应是m.氢原子中电子和原子核之间的距离为0.00000000529厘米。
用科学记数法表示这个距离为_5、已知a m=3, a n=9, 则a3m-2n= &用小数或分数表示下列各数.5(1) 2-(2-41.03 x 10 ⑶(号)-42⑷(-3)7、下列计算正确的是()2A. x x = 2xB. x 3 2 5x x C.(x2)3二x5 D. (2x)2=2x28、下列各运算中,正确的是( )A.3a 2a=5a2B.(-3a3)2= 9a6C.a6“a2二a3D.(a 2)2二a24f 5、一9、如果a =(-99 0, b =(-0.1 )丄,c= —;,那么a,b,c 三数的大小为3丿A. a b cB. cabC. a c bD. c b a10、已知(a x • a y )5=a 20 (a > 0,且 a ^ 1),那么 x 、y 应满足( )A x+y=15B x+y=4C xy=4D y= 11、填空(1) ________________ . 10 4x 107= _____________ , ( — 5)7 x ( — 5)3= , b 2m • b 4n-2m = ___________ 。
七年级下册数学内容
七年级下册数学内容
七年级下册数学内容主要包括以下部分:
1. 整式的加减:包括单项式、多项式、整式等概念,以及整式的加减运算。
2. 幂的运算:包括同底数幂的乘法、幂的乘方、积的乘方等运算。
3. 平行线的性质和判定:包括平行线的性质和判定方法,以及平行线的传递性。
4. 二元一次方程组:包括二元一次方程组的解法、代入消元法、加减消元法等。
5. 数据的收集与整理:包括数据的收集、整理、描述和分析,以及统计图表的应用。
6. 概率初步知识:包括概率的基本概念、概率的简单计算和概率问题解决等。
以上是七年级下册数学的主要内容,具体的教学内容可能会因教材版本和地区而有所不同。
苏科版数学七年级下册第八章《幂的运算》小结与思考 课件(共28张PPT)
6、如图,将正方形的对边中点连接起来, 可以将正方形分成4个形状和面积相同的小 正方形,再将其右下角的小正方形对边中点 连接起来,又可将这个小正方形分割成4个 形状和面积相同的小正方形……如果大正方 形边长为1,那么经过10次这样的分割后所 得右下角正方形面积
是( C )
A. 1 B.(1)100C.(1)10 D. 1 10 2 4 40
a2 a3 a5
a5 a3 a2
a3 3 a9
x y5 y x4 ( x y )9
1
2008
(
2
)2009 2
2
典型例题: 例1:计算:
1 2x3 3 2x3 2x3 2 2x3 5 x2 3
8、已知a=8131,b=2741,c=961,则a、b、c的
大小关系是( A )
A、a>b>c B、a>c>b
C、a<b<c
D、b>c>a
用科学记数法表示下列各数.
(1)360000000=____________; (2)-2730000=_____________; (3)0.00000012=____________; (4)0.0001=________________; (5)-0.00000000901=_________; (6)0.00007008=_____________.
写出下列各数的原数.
(1)102=______________; (2)10-3=______________; (3)1.2×105=____________; (4)2.05×10-5=_____________; (5)1.001×10-6=_____________; (6)-3÷10-9=____________________.
沪科版(2012)初中数学七年级下册 8.1.1 幂 的 运 算 教案
8.1 幂的运算(第1课时)-教案一、教学背景(一)教材分析本章所处的地位是整式加减的后续学习,同时也是初中代数关于式的学习的重要内容,可见本章既是对前面知识的运用和开拓,又是后续知识的基础,如一元二次方程的解法。
而本节幂的运算是本章的重点,是学习整式乘除的基础。
本章首先从幂的运算性质入手,掌握第一课时同底数幂的乘法有利于理解幂的其它运算性质。
(二)学情分析学生在七年级上学期学习了幂的概念,为推导和掌握同底数幂的乘法运算性质奠定了基础。
学生在经历乘方意义的数学活动经验基础上,初步为学习同底数幂乘法性质提供了思维方式.有利于分析和解决同底数幂的乘法运算。
七年级下学生的认知发展已具备了观察、猜想、计算、推理的能力,富有积极思考、主动探索、合作交流情感基础,为推导同底数幂的乘法运算性质提供了保证。
二、教学目标1. 经历探索同底数幂乘法运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。
2. 了解同底数幂乘法运算的性质,运用性质熟练进行计算,并能解决一些实际问题。
3. 通过参与数学学习活动,培养学生独立思考及与他人交流合作的学习习惯。
三、重点、难点重点:理解并正确运用同底数幂的乘法法则。
难点:同底数幂的乘法法则的探究过程。
四、教学方法分析及学习方法指导教学方法:教学时,创设教学情境,经历探索同底数幂的乘法的性质的发生形成过程,与同学们一道探究是怎样由特殊到一般,有具体到抽象概括得到性质的,在探究过程中,要给学生留出探索和交流空间,使学生在思考实践过程中概括出同底数幂的乘法运算性质。
学法指导:学习中,复习乘方的意义,引导学生通过具体数字的同底数幂的乘法的运算,经过观察、概括、猜想推理.让学生充分合作交流,确认同底数幂乘法的性质.通过例题与练习,使学生能够运用同底数幂的乘法的性质进行简单的运算。
五、教学过程(一)情景导入(视频播放)光在真空中的速度大约是3×510千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年。
第1讲 幂的运算-七年级下册数学同步精品讲义
第1讲 幂的运算1. 掌握正整数幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.知识点01同底数幂的乘法+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式. (2)三个或三个以上同底数幂相乘时,也具有这一性质, 即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m nm n a a a +=⋅(,m n 都是正整数).【知识拓展1】计算:(1)234444⨯⨯; (2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【即学即练1】计算:(1)5323(3)(3)⋅-⋅-; (2)221()()ppp x x x +⋅-⋅-(p 为正整数);知识精讲目标导航(3)232(2)(2)n⨯-⋅-(n 为正整数).【即学即练2】计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .【知识拓展2】已知2220x +=,求2x 的值.知识点02幂的乘方()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a (0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n a aa ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.【知识拓展1】计算:(1)2()m a ; (2)34[()]m -; (3)32()m a-.【即学即练1】计算:(1)23[()]a b --; (2)32235()()2y y y y +-;(3)22412()()m m x x -+⋅; (4)3234()()x x ⋅.【知识拓展2】已知25mx =,求6155m x -的值.【即学即练1】已知2a x =,3b x =.求32a bx +的值.【即学即练2】已知84=m ,85=n ,求328+m n的值.【即学即练3】已知435,25ab m n ==,请用含m 、n 的代数式表示43625a b +.【即学即练4】已知2139324n n ++=,求n 的值;【即学即练5】已知322,3m m a b ==,则()()()36322mm m ma b a b b +-⋅= .知识点03积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()nn na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【知识拓展1】指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-.【即学即练1】计算:(1)24(2)xy - (2)24333[()]a a b -⋅-【即学即练2】下列等式正确的个数是( ). ①()3236926x yx y -=- ②()326m m a a -= ③()36933a a =④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个【知识拓展2】计算:1718191(3)(2)6⎛⎫-⨯-⨯- ⎪⎝⎭.知识点04 同底数幂的除法同底数幂的除法法则同底数幂相除,底数不变,指数相减,即mnm na a a-÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.【知识拓展1】计算:(1)83x x ÷; (2)3()a a -÷; (3)52(2)(2)xy xy ÷; (4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【即学即练1】计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷-(3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-【知识拓展2】已知32m =,34n =,求129m n+-的值.【即学即练1】已知2552m m⨯=⨯,求m 的值.1.已知(-x )a +2⋅ x 2a ⋅ (-x )3= x 32 , a 是正整数,求a 的值.2.已知n 为正整数,化简: (-x 2 )n+ (-x n )2.3.已知: 3x +1 ⋅ 2x - 3x ⋅ 2x +1 = 216 ,试求 x 的值.能力拓展4.已知35m =,45381m n -=,求201620151n n ⎛⎫-⋅ ⎪⎝⎭的值.5.如果整数x y z 、、满足151627168910xy z⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求2x y z y +-的值.6.已知()231x x +-=,求整数x .题组A 基础过关练一、单选题1.(2022·全国·七年级)化简1x y +-()的结果是( )A .11x y --+B .1xy C .11x y+D .1x y+ 2.(2022·全国·七年级)计算52x x ÷结果正确的是( ). A .3B .3xC .10xD .25x3.(2021·甘肃白银·七年级期末)花粉的质量很小,一粒某种植物花粉的质量约为0.000036mg ,那么0.000036mg 用科学记数法表示为( ) A .53.610mg -⨯ B .63.610mg -⨯C .73.610mg -⨯D .83.610mg -⨯二、填空题4.(2022·黑龙江杜尔伯特·七年级期末)若am =10,an =6,则am +n =_____.分层提分5.(2022·全国·七年级)计算34x x x ⋅+的结果等于________. 6.(2022·黑龙江杜尔伯特·七年级期末)22013•(12)2012=_____. 7.(2021·上海虹口·七年级期末)计算:23(3)a =_______.8.(2022·全国·七年级)若0(3)1x -=,则x 的取值范围是________. 9.(2022·全国·七年级)计算:0113()22-⨯+-=______.三、解答题10.(2022·全国·七年级)计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .11.(2018·全国·七年级课时练习)1千克镭完全蜕变后,放出的热量相当于3.75×105千克煤放出的热量,据估计地壳里含1×1010千克镭,试问这些镭完全蜕变后放出的热量相当于多少千克煤放出的热量?12.(2020·浙江杭州·模拟预测)计算题(结果用幂的形式表示):(1)2322⨯ (2)()32x (3)()()322533-⋅13.(2021·上海普陀·七年级期末)计算:2110213(2020)34π---⎛⎫⎛⎫⨯+-÷ ⎪ ⎪⎝⎭⎝⎭.题组B 能力提升练1.(2022·全国·七年级)计算:(1)234444⨯⨯; (2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()n n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.2.(2021·上海市民办新竹园中学七年级期中)计算:121432413()()()922x z y z y x------÷-⋅-3.(2022·全国·七年级)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作23,读作“2的3次商”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)4,读作“﹣3的4次商”,一般地,把n aa a a a÷÷÷÷个(a ≠0)记作an ,读作“a 的n 次商”.【初步探究】(1)直接写出计算结果:23= ,(﹣3)4= ; (2)关于除方,下列说法错误的是 ;A .任何非零数的2次商都等于1;B .对于任何正整数n ,(﹣1)n =﹣1;C .34=43;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:2411112222222222⎛⎫=÷÷÷=⨯⨯⨯= ⎪⎝⎭.(3)试一试:仿照上面的算式,将下列运算结果直接写成乘方(幂)的形式.(﹣3)4= ;517⎛⎫⎪⎝⎭= .(4)想一想:将一个非零有理数a 的n 次方商an 写成幂的形式等于 . (5)算一算:2453111152344⎛⎫⎛⎫⎛⎫÷-⨯-+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= .4.(2021·江苏·苏州市工业园区第一中学七年级阶段练习)已知10×102=1000=103, 102×102=10000=104, 102×103=100000=105.(1)猜想106×104= ,10m ×10n = .(m ,n 均为正整数) (2)运用上述猜想计算下列式子:①(1.5×104)×(1.2×105); ②(﹣6.4×103)×(2×106).5.(2022·全国·七年级)阅读,学习和解题. (1)阅读和学习下面的材料:学习以上解题思路和方法,然后完成下题: 比较34040,43030,52020的大小. (2)阅读和学习下面的材料:学习以上解题思路和方法,然后完成下题:已知am =2,an =3,求a 2m +3n 的值.(3)计算:(-16)505×(-0.5)2021.题组C 培优拔尖练一、单选题1.(2021·江苏·宜兴市实验中学七年级期中)计算100501111122222⋅⋅⋅-⋅⋅⋅个个其结果用幂的形式可表示为( ) A .25033333⋅⋅⋅个 B .26033333⋅⋅⋅个 C .27033333⋅⋅⋅个 D .28033333⋅⋅⋅个2.(2022·全国·七年级)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S ,用含S 的式子表示这组数据的和是( ) A .2S 2﹣SB .2S 2+SC .2S 2﹣2SD .2S 2﹣2S ﹣2二、填空题3.(2019·浙江·温州市第二十三中学七年级期中)已知整数a b c d 、、、满足a b c d <<<且234510000a b c d =,则432a b c d +++的值为_____.4.(2021·北京八十中七年级期中)已知一列数:-2,4,-8,16,-32,64,-128,……,将这列数按如右图所示的规律排成一个数阵,其中,4在第一个拐弯处,-8在第二个拐弯处,-32在第三个拐弯处,-128在第四个拐弯处,……,则第六个拐弯处的数是________,第一百个拐弯处的数是___________.三、解答题5.(2019·甘肃·甘州中学七年级阶段练习)已知(﹣13xyz )2M =13x 2n+2y n+3z 4÷5x 2n ﹣1y n+1z ,自然数x ,z 满足123x z -⋅=72,且x =z ,求M 的值.6.(2021·全国·七年级专题练习)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Napier ,1550年-1617年),纳皮尔发明对数是在指数概念建立之前,直到18世纪瑞士数学家欧拉(Euler ,1707年-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若(0,1)x a N a a =≠>,则x 叫做以a 为底N 的对数,记作log a x N =.比如指数式4216=可以转化为24log 16=,对数式52log 25=可以转化为2525=.我们根据对数的定义可得到对数的一个性质:a log(?)log M N M =+log (0,a 1,0,N 0)a N a M ≠>>>.理由如下:设a log M m =,a log N n =,所以m M a =,n N a =,所以m n m n MN a a a +==,由对数的定义得a log ()m n M N +=+,又因为a log log a m n M N +=+,所以log ()log log a a a MN M N =+.解决以下问题: (1)将指数35125=转化为对数式: .(2)仿照上面的材料,试证明:log log -log (0,1,0,0)a a a M M N a a M N N=≠>>> (3)拓展运用:计算333log 2log 18-log 4+= .7.(2019·江苏·汇文实验初中七年级阶段练习)(1)填空:21﹣20=______=2(_____)22﹣21=_____=2(______)23﹣22=______=2(______)…(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+ (22019)8.(2021·全国·七年级专题练习)观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;②22x ,33x -,45x ,59x -,617x ,733x -,⋯;③根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第②行的第9个单项式为_______;第③行的第10个单项式为_______; (3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.9.(2021·全国·七年级课时练习)探究:22﹣21=2×21﹣1×21=2( )23﹣22= =2( ),24﹣23= =2( ),……(1)请仔细观察,写出第4个等式;(2)请你找规律,写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.10.(2021·江苏连云港·七年级期中)阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=①则22021202222222S =++⋅⋅⋅++②②-①得,2022221S S S -==-.请仿照小明的方法解决以下问题:(1)220222++⋅⋅⋅+=______;(2)求2501111222+++⋅⋅⋅++=______; (3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)。
第八章 幂的运算(小结思考)(课件)七年级数学下册(苏科版)
①③④ (填序号).
11.若a=1.01×10-6,b=1.01×10-5,c=9.99×10-4,则a,b,c按从
解:∵a=1.01×10-6=0.00000101,
a<b<c
小到大的顺序排列为________________.
12.如果等式(2a-1)a+2=1,则a的值为
-2或1或0
____________.
A. x2m
B. x2m+1
C. x2m+2
D. xm+2
3.等式− = (−) ( ≠ )成立的条件是( A )
A. n是奇数 B. n是偶数
C.n是正整数
D. n是整数
课堂检测
4.生物学家发现一种病毒,用1015个这样的病毒首尾连接起来,
可以绕长约为4万km的赤道1周,一个这样的病毒的长度为( B )
加、减法
合并同类项(见七上第三章)
n个 am
乘
法
同底数幂的乘法运算性质:
am·an=am+n (m、n是正整数)
除
法
同底数幂的除法运算性质:
am÷an=am-n (m、n是整数,a≠0)
乘
方
am … am= amn
(am)n = am·
幂的乘方运算性质:
(am)n=amn (m、n是正整数)
积的乘方运算性质:
课堂检测
(2) 1+3+32+33+34+…+3n-1+3n(其中n为正整数).
解:(2) 设S=1+3+32+33+34+…+3n-1+3n①.
将等式两边同时乘3,
得3S=3+32+33+34+35+…+3n+3n+1②.
②-①,得3S-S=3n+1-1.
苏科版七年级下册数学《幂的运算》课件
你还记得吗?
4.同底数幂的除法法则
文字叙述: 同底数幂相除,底数不变,指数相减
字母表示: am÷an=am-n (a≠0 m,n是正整数 m>n)
扩大:
am÷an÷ap=am-n-p (a≠0 m,n,p是整数)
考考你
a8 ÷a3 =a8-3=a5
(½)5÷(½)3 =(1/2)5-3=(1/2)2=1/4 (-s)7÷(-s)2 =(-s)7-2=(-s)5=-s5
=4b4
(5) a8÷a4=a2 ×
=a4
(6) (-z)6÷(-z)2=-z4 ×
=z4
幂的运算中的方法与技能
类型一:熟练使用公式,正确进行各种计算
(1)m19÷m14·m3÷m2
=m5·m3÷m2 =m8÷m2
或=m19-14+3-2 =m6
=m6
(2)(x-y)8÷(x-y)4÷(y-x)3
am-n=am÷an amn= (an)m anbn= (ab)n
幂的运算中的方法与技能
类型二:逆用公式进行计算
例1.已知am=4,an=2.
求①am+n的值.②am-n的值.③ a3m+2n的值.④ a2m-n的值=am·an=m÷an=a3m·a2n
=a2m÷an
=4×2 =4÷2
=(am)3·(an)2
=(-x2n-2 ) ·(-x5) ÷x2n+1 =x2n+3÷x2n+1 =x2 (4)4-(-1/2)-2-32÷(-3)0 =4-4-9÷1 =4-4-9 =-9
注意:运算时第一确定
所含运算类型,理清运 算顺序,用准运算法则
幂的运算中的方法与技能
类型二:逆用公式进行计算
七年级下册数学第8章《幂的运算》考点+易错讲义
第8章《幂的运算》考点+易错知识梳理重难点分类解析考点1 运用幂的基本性质进行运算【考点解读】掌握幂的基本性质是解决问题的关键,要根据算式的特点确定运算的顺序,并选择幂的基本性质进行正确计算,不要混淆同底数幂的乘法、积的乘方以及幂的乘方. 例1 (2017·江西)下列运算正确的是( )A. 5210()a a -=B. 22236a a a =gC. 23a a a -+=-D. 623623a a a -÷=-分析: 5210()a a -=,故选项A 正确;23236a a a =g,故选项B 错误;2a a a -+=-,故选项C 错误;624623a a a -÷=-,故选项D 错误.答案:A【规律·技法】根据合并同类项、幂的乘方及同底数幂的乘法的定义解答. 【反馈练习】1.下列计算正确的是( )A. 224x x x +=B. 3332x x x -=C. 236x x x =g D. 236()x x =点拨:正确应用各类计算法则计算. 2.计算:201320111(3)()3-⨯-= .点拨:应用积的乘方的逆运算,把2013(3)-折分成20112(3)(3)-⨯-.考点2 运用零指数、负整数指数幂的意义进行运算【考点解读】明确零指数、负整数指数幂的规定,同时区分一些形式上相似而实质上不一样的算式,如03与03-,12-与12--等. 例2 计算0112()2-+的结果是 . 分析:0112()1232-+=+=.答案:3 【规律·技法】本题考查了0次幂和负整数指数幂的意义,解答本题的关键是熟记相关法则. 【反馈练习】3.计算018()2---的结果是( )A. 7-B. 7C. 172D. 9 点拨:018()8172---=-=. 4.计算2133-⨯的结果是( )A. 3B. 3-C. 2D. 2- 点拨: 1133-=. 考点3 用科学记数法表示数【考点解读】要善于总结用科学记数法表示数的一般性规律,如:40.000110-=,50.0000110-=,60.00000110-=,70.000000110-=等.例3 (2017·济宁)某桑蚕丝的直径为0.000 016 m ,将0.000 016用科学记数法表示是() A. 41.610-⨯ B. 51.610-⨯ C. 61.610-⨯ D. 61610-⨯ 分析:绝时值小于1的正数也可以利用科学记数法表示,一般形式为10na -⨯,与较大数的科学记数法不同的是其所使用的是负整数幂,指数由原数左边起第一个不为零的数字前面0的个数所决定,则50.000016 1.610-=⨯.答案:B【规律·技法】用科学记数法表示较小的数,一般形式为10na -⨯,其中110a ≤<,n 由原数左边起第一个非零数字前面0的个数所决定. 【反馈练习】5.生物学家发现了一种病毒,其长度为0.000 000 32 mm ,数据0.000 000 32用科学记数法表示正确的是( )A. 73.210⨯ B. 53.210-⨯ C. 73.210-⨯ D. 83.210-⨯ 点拨:确定科学记数法表示较小的数的一般形式10na -⨯中a 和n 的值.6.蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000 073 m ,将0.000 073用科学记数法表示为 .点拨:确定科学记数法表示较小的数的一般形式10na -⨯中a 和n 的值.考点4 幂的相关运算【考点解读】熟练掌握有关幂的运算法则. 例4 下列运算正确的是( )A. 320a a -=B. 23a a a =gC. 432a a a ÷= D. 325()a a =分析:32a a a -=,故选项A 不正确;23a a a =g ,故选项B 正确;43a a a ÷=,故选项C 不正确;326()a a =,故选项D 不正确.答案:B【规律·技法】本题考查了同底数幂的除法、合并同类项、同底数幂的乘法、幂的乘方,这些运算很容易混淆,一定要记准不同的运算法则. 【反馈练习】7.下列计算结果正确的是( )A. 842a a a ÷=B. 236a a a =g C. 248()a a = D. 236(2)8a a -= 点拨mnm na a a-÷=;m n m na a a+⨯= ;()m n mna a=(m ,n 是整数).8.下列运算正确的是( )A. 5210()a a = B. 1644x x x ÷=C. 224235a a a +=D. 3332b b b =g点拨m n m na a a-÷=;m n m na a a+⨯= ;()m n mna a=(m ,n 是整数).易错题辨析易错点 1 运用同底数幂的乘法法则计算时,漏掉了指数是“1”的因式例1计算: 32m m m ∙g . 错误解答: 32325m m m mm +∙==g s.错因分析:本题错在忽视最后一个因式m 的指数是1,误认为它的指数是0. 正确解答:323216m m m mm ++∙==g .易错辨析:单个字母的指数是1而不是0,只不过指数为1时可以省略不写,但不能认为指数是0.易错点2 运算法则使用不当例2计算:(1) 43(3)xy -; (2) 22(3)a b . 错误解答:(1) 4312(3)3xy xy -=-. (2) 2242(3)6a b a b =.错因分析:积的乘方是将积中的每一个因式分别乘方,而(1)中只将最后一个因式乘方,忽略了3-,x 两个因式的乘方,而(2)中错误地将乘方的次数乘以系数了. 正确解答:(1) 43312(3)27xy x y -=-. (2) 2242(3)9a b a b =.易错辨析:运用积的乘方法则时,要注意不能遗漏因式.易错点3 错用合并同类项法则例3计算: 3223()()x x +.错误解答: 32236612()()x x x x x +=+=.错因分析:本题错在将合并同类项法则与同底数幂乘法法则相混淆,错解中既运用了合并同类项法则,又运用了同底数幂相乘的法则.本题实际上是合并同类项,利用合并同类项法则将系数相加作为和的系数,字母和字母指数不变. 正确解答:3223666()()2x x x x x +=+=. 易错辨析:正确区分合并同类项与同底数幕乘法.易错点4 错用同底数幂除法法则例4计算:62x x ÷. 错误解答: 62623x x xx ÷÷==.错因分析:上面的解法用错了法则,同底数幂相除,底数不变,指数相减,而不是相除. 正确解答: 62624x x xx -÷==.易错辨析:同底数幕除法法则为mnm na a a -÷= (其中m ,n 是整数),注意m n -不能写成m n ÷.易错点5 运算中符号出错例5 计算:62()()y y -÷-. 错误解答:626244()()()()y y y y y --÷-=-=-=-.错因分析: 44444()(1)(1)y y y y -=-=-=g g . 正确解答:626244()()()()y y y y y --÷-=-=-=.易错辨析:当n 为奇数时,()nna a -=-;当n 为偶数时,()nna a -=.反馈练习1.给出下列算式:①43272()()a a c a c --=-g ;②326()a a -=-;③3342()a a a -÷=;④633()()a a a -÷-=-.其中正确的有( )A. 4个B. 3个C. 2个D. 1个 点拨:注意运算的顺序,正确运用法则运算.2.若20.3a =-,23b -=-,21()3c -=-,01()3d =-,则( )A. a b c d <<<B. b a d c <<<C. a d c b <<<D. c a d b <<<点拨:分别计算出,,,a b c d 的值,比较即可.3.给出下列各式:①523[()]a a --g;②43()a a -g ;③2332()()a a -g ;④43[()]a --.其中计算结果为12a -的有( )A.①和③B.①和②C.②和③D.③和④点拨:注意“偶次方”和“奇次方”的符号处理. 4.计算: 23()()p p --=g ;231()2a b -= . 点拨:正确运用法则计算,最后结果化为最简形式.5.计算: 2018201952()()25-⨯-= . 点拨:把20192()5-分解为201822()()55--g 即可。
北师大版数学七年级下册1.1《同底数幂的乘法》教学设计
北师大版数学七年级下册1.1《同底数幂的乘法》教学设计一. 教材分析《同底数幂的乘法》是北师大版数学七年级下册第一章“幂的运算”中的第一节内容。
本节内容是在学生已经掌握了有理数的乘法、幂的定义和幂的运算性质等知识的基础上进行学习的,是幂的运算的基础知识,对于学生以后学习幂的其它运算和函数等内容有着重要的影响。
本节课主要让学生掌握同底数幂的乘法法则,并能够运用这些法则进行计算和解决实际问题。
二. 学情分析学生在进入七年级下册之前,已经学习过了有理数的乘法、幂的定义和幂的运算性质等知识,对于这些知识的理解和运用已经有一定的基础。
但是,同底数幂的乘法是一个比较抽象的概念,学生可能对于如何理解和运用这些法则存在一定的困难。
因此,在教学过程中,需要教师通过生动的例子和实际问题,帮助学生理解和掌握同底数幂的乘法法则。
三. 教学目标1.知识与技能目标:让学生掌握同底数幂的乘法法则,能够正确进行计算。
2.过程与方法目标:通过教师的讲解和学生的实践,让学生能够理解和运用同底数幂的乘法法则。
3.情感态度与价值观目标:培养学生对数学的兴趣和热情,让学生感受到数学的美妙和实际应用的价值。
四. 教学重难点1.重点:同底数幂的乘法法则的掌握和运用。
2.难点:对于同底数幂的乘法法则的理解和运用。
五. 教学方法采用讲解法、实践法、问题驱动法等教学方法。
通过教师的讲解,让学生掌握同底数幂的乘法法则;通过学生的实践,让学生理解和运用这些法则;通过问题的提出和解决,激发学生的思考和兴趣。
六. 教学准备1.准备PPT,包括同底数幂的乘法法则的讲解和实际问题的展示。
2.准备一些实际的例子和问题,用于帮助学生理解和掌握同底数幂的乘法法则。
七. 教学过程1.导入(5分钟)通过一个实际问题,如“一个长方体的长、宽、高分别是23、22、2^1,求这个长方体的体积”,引入同底数幂的乘法法则。
2.呈现(15分钟)教师通过PPT讲解同底数幂的乘法法则,包括定义和运算规则。
沪科版七年级数学下册第8章.1同底数幂的乘法课件
c ·c3 = c4
m + m3 = m + m3
思考题
1.计算:
(1) x n · xn+1
解: x n · xn+1 = #43;y)3·(x+y)4
am
· an = am+n
公式中的a可 代表一个数、 字母、式子等.
解: (x+y)3 · (x+y)4 = (x+y)3+4 =(x+y)7
2.填空: (1) 8 = 2x,则 x = 3 ;
23 (2) 8× 4 = 2x,则 x = 5 ;
23× 22= 25 (3) 3×27×9 = 3x,则 x = 6 .
3×33 × 32 = 36
课堂小结
am ·an = am+n (当m、n都是正整数)
同底数幂相乘: 底数 不变,指数 相加 .
5个a
a
思考: 请同学们视察下面各题左右两边,底数、指数有 什么关系?
103 ×104 = 10( 7 ) = 10( 3+4 );
22 ×23 = 2( 5 ) = 2( 3+2 ); a2× a3 = a( 5 ) = a( 3+2) .
猜想: am ·an= ? (当m、n都是正整数) 分组讨论,并尝试证明你的猜想是否正确.
同底数幂相乘: 底数不变 ,指数相加 .
运算情势 (同底、乘法)
运算方法(底不变、指加法)
幂的底数必须相同, 相乘时指数才能相加.
如 43×45=43+5 =48
想一想:当三个或三个以上同底数幂相乘时,是否 也具有这一性质呢? 怎样用公式表示?
如 am·an·ap = am+n+p(m、n、p都是正整数)
初中数学初一数学下册《幂的运算》教案、教学设计
针对以上学情,教师在教学过程中应关注以下几点:1.通过生动有趣的实例引入幂的运算,激发学生的学习兴趣;2.注重启发式教学,引导学生自主探究、合作交流,提高学生对幂的运算规律的认知;3.设计有针对性的练习题,帮助学生巩固幂的运算法则,提高解题能力;4.关注学生的情感态度,鼓励学生积极参与课堂,培养良好的学习习惯。通过以上措施,使学生在掌握幂的运算知识的同时,提高数学素养,为后续学习奠定坚实基础。
初中数学初一数学下册《幂的运算》教案、教学设计
一、教学目标
(一)知识与技能
1.理解幂的概念,掌握幂的运算法则,包括同底数幂的乘法、除法、幂的乘方、积的乘方等基本运算法则。
2.能够运用幂的运算性质进行简便计算,解决实际问题,提高运算速度和准确率。
3.能够运用幂的运算规律进行数学推理,培养学生的逻辑思维能力。
三、教学重难点和教学设想
(一)教学重难点
1.重点:幂的概念、运算法则,以及在实际问题中的应用。
2.难点:同底数幂的乘除法则、幂的乘方、积的乘方的灵活运用。
(二)教学设想
1.教学方法:
(1)采用启发式教学,引导学生通过自主探究、合作交流,发现幂的运算规律。
(2)利用多媒体辅助教学,以生动形象的方式展示幂的运算过程,帮助学生理解幂的运算性质。
(4)拓展提高:结合实际问题,引导学生运用幂的运算规律解决问题,培养学生的数学应用意识。
(5)课堂小结:让学生总结幂的运算知识,形成知识体系,提高学生的概括能力。
3.教学评价:
(1)关注学生的学习过程,通过课堂表现、练习情况等多方面评价学生的学习效果。
七年级数学下册第一章知识点总结
第一章 整式的乘除水塘中学 李学英知识小结一、幂的运算性质1、同底数幂相乘:底数不变,指数相加。
mn m n a a a +=• 2、幂的乘方:底数不变,指数相乘。
nm m n a a =)(3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘。
nn n b a ab =)( 4、零指数幂:任何一个不等于0的数的0次幂等于1。
10=a (0≠a ) 注意00没有意义。
5、负整数指数幂:pp a a 1=- (p 正整数,0≠a )6、同底数幂相除:底数不变,指数相减。
mn m n a a a -=÷注意:以上公式的正反两方面的应用。
常见的错误:632a a a =•,532)(a a =,33)(ab ab =,326a a a =÷,4222a a a =+ 二、单项式乘以单项式:系数相乘,相同的字母相乘,只在一个因式中出现的字母则连同它的指数作为积的一个因式。
三、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项。
四、多项式乘以多项式:连同各项的符号把其中一个多项式的各项乘以另一个多项式的每一项。
()()bn bm an am n m b a +++=++五、平方差公式两数的和乘以这两数的差,等于这两数的平方差。
即:一项符号相同,另一项符号相反,等于符号相同的平方减去符号相反的平方。
()()22b a b a b a -=-+六、完全平方公式两数的和(或差)的平方,等于这两数的平方和再加上(或减去)两数积的2倍。
()ab b a b a 2222++=+ ()ab b a b a 2222-+=-常见错误:()222b a b a +=+ ()222b a b a -=-七、单项除以单项式:把单项式的系数相除,相同的字母相除,只在被除式中出现的字母则连同它的指数作为商的一个因式。
八、多项式除以单项式:连同各项的符号,把多项式的各项都除以单项式。
七年级数学下册课件 幂的运算 人教版7
在人生崎岖坎坷的旅途上,是谁给予你最真诚、最亲切的关爱,是谁对你嘘寒问暖,时刻给予你无私的奉献;是谁不知疲倦地教导着你为人处世的道理;是谁为了你的琐事而烦恼? 对了!是伟大的母亲。母爱是无私的,是永不停息的。没有一位母亲是不爱自己的子女的。不管怎样,母爱终究都是生命中最真挚,最无私的爱。 当我们遇到困难,能倾注所有一切来帮助我们的人,是母亲。 当我们犯错误时,能毫不犹豫地原谅我们的人,是母亲。 当我们取得成功,会衷心为我们庆祝,与我们分享喜悦的,是母亲。 假如我们远在外地,我相信依然牵挂着我们的,一定还是母亲。
典例剖 析
例4、计算:
(1)(105)2;
(2)(x5)6;
(3)(x2)10;
(4)(y2)3·y.
解:(1)(105)2=105×2=1010;
(2)(x5)6=x5×6=x30;
(3)(x2)10=x2×10=x20;
(4)(y2)3·y=y2×3·y=y6+1=y7.
跟踪训 练
计算:
(1) (103)5 ;
当你已经承受不住外界所带来的种种压力时,母亲为你顶起一片天空,抵挡所有风雨;当你心无慰籍时,她开导你、教育你,教导你“退一步海阔天空”的哲理;当你遇到困难与挫折或因情绪不好而对她大发脾气时,她默默承受但仍坚强地开导;当你因学习而疲劳、心烦时,她会送上一杯热茶,不需任何语言,一切感情均化为泪水落于掌心,一切尽在不言中…… 当你遇到危险时,她不顾一切地救助你,即使失去生命也毫无怨言;当你感到伤痛绝望时,她比你更加痛心悲伤,却必须要坚强地劝慰你,让你安心;当你欢心愉悦时,她会陪你一起分享心中的喜悦,但是却绝对不会多霸占一点,让你的心变得空虚无物……
沪科版数学七年级下册幂的运算课件
.
课外作业:练习册
回顾
1.同底数幂相乘的运算性质?
一般情势还 记得吗?
同底数幂相乘,底数不变,指数相加。
一般情势: an am an m
(m,n为正整数)
2.幂的乘方的运算性质?
幂的乘方,底数不变,指数相乘
一般情势:(a m )n a mn
(m,n为正整数)
合作探究
1.思考下面两道题:
(1) (ab)3
这两道题有什么 特点?视察底数
(2) (ab)4
底数为两个因式相乘,积的情势。
我们学过的幂的运算性 质适用吗?
这种情势为 积的乘方
我们只能根据乘方的意义及乘法交换 律、结合律可以进行运算。
(ab)3 (ab) (ab) (ab) (乘方的意义)
(aaa) (bbb)(乘法交换律、结合律)
【例2】计算: ⑴ (105)3; ⑵ (x4)2(m为正整数); ⑶ (-a2)3;
解:⑴(105)3 =105×3 =1015 ;
⑵ (x4)2 = x4×2 = x8 ; ⑶ (-a2)3 =-a2×3 =-a6 ;
【例(补充)】 计算:
⑴x2·x4+(x3)2;⑵(a3)3·(a4)3
解: ⑴原式=x2+4 +x3×2 ---①幂的乘方
即 (ab)n=an bn 。
3.积的乘方公式: (ab)n=an bn 。
每一个因式分别乘方,再把所得的 幂相乘。
拓展:
当三个或三个以上因式的积乘方时, 也具有这 一性质。例如,(abc)n=anbncn。
4.例题学习
例3:计算
(1)(2 x)4 ;
100个104相乘,可以记作什么? (104)100
议一议:(32)4表示什么意义?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)用底数为 2 的幂表示1M 有多少个字节?1G有多少个字节?
(2)设 1K≈1000,1M ≈1000K,1G ≈1000M,用底数为 10 的幂表示 1M 大约有多少个字节?1G 大约有多少个字
节?
(3)硬盘容量为 10G 的计算机,大约能容纳多少亿字节?
重难点透视 幂的乘法的运算性质,幂的乘法计算;逆用公式
考点
幂的乘法运算;逆用公式
知识点剖析
序号
知识点
预估时间 掌握情况
1 同底数幂的乘法
30
2
幂的乘方
30
3
积的乘方
30
4
综合练习
一:同底数幂的乘法
知识点一、 乘
回方顾:的an 表概示 念
这种运算的结果叫
是
。
教学内容
,这种运算叫做
,其中 a 叫做
30
,
,n
问题:一种电子计算机每秒可进行1012 次运算,它工作103 秒可进行多少次运算?
学一学: 22 24
a2 •a4
a2 •am
议一议:通过上面的观察,你发现上述式子的指数和底数是怎样变化的? 【归纳总结】底数不变,指数相加 填一填:
am • an (a a a) • (a a a)
2 x3 x4
互动探究三:计算 1 aa3
2 yn yn1
【当堂检测】: 1.计算
1 32 33 34
2 y y2 y4
(3) a5 • a5 ) 2.已知 2m 5, 3n 4, 则 2m3 3n1 的值
(4) xm1xm1 (m 1)
3. 计算机硬盘的容量的最小单位为字节,1个数字占 1 个字节,1 个英文字母占 1 个字节,1 个汉字占2个字节,1 个 标点符号占 1 个个字节,计算机硬盘容量的常用单位有 K、M、G其中 1K=1024 个字节,1M=1024K,1G=1024 M
A.(x4)4=x8
B.x·(x2)3=x7
D.-a6 C.(x·x2)3=x6
D.(x10)10=x20
3.(102)3=________,-(b2)5=________, [(-n)2]3=________,(x3)4·x2=________.
4.计算:
(1)(102)3;
(2)(an-2)3;
(3)(43)3;
(4)(-x3)5;
(5)[(-x)2]3;
(6)[(x-y)3]4.
究点二 幂的乘方的逆用 例2 已知 ax=2,ay=3(x,y 为正整数),求 a3x+2y 的值.
规律总结:考查幂的乘方公式的逆用的题目有很多种形式,关键是将指数进行合理的拆分,再结合 同底数幂的乘法公式进行计算或化简.
2.幂的乘方 (1)根据幂的意义解答: ①(32)3=____________________(幂的意义)
= _____________________(同底数幂相乘的法则) = 32×3; ②(am)2=________ = ________(根据 an·am=an+m);
③(am)n=
(幂的意义)个
= ______________(同底数幂相乘的法则)
= ________(乘法的意义). (2)总结法则:(am)n=________(m,n 都是正整数).幂的乘方,底数________,指数________.
(1)(m2)m=________;
(2)(a2)3=________.
探究点一 幂的乘方
即为:同底数幂相乘,底数不变,指数相加
(3)分析:底数不变,指数相加。底数不相同时,不能用此法则。
二:幂的乘方
知识回顾 1.32 中,底数是___,指数是___,an 表示___________,那么 29=________,(-2)9=___
_____,52×53=________,32×34=________.
2.下列各式错误的是( )
A.(a3)m=a3+m
B.[(a+bΒιβλιοθήκη 2n]m=(a+b)2mn
(a+b)m+n
D.(a2)3=a6 C.(am)3=a3m D.(a+b)m(a+b)n=
3.a48=( )6=( )3=( )2.
*4.若 xn=3,则 x3n=________.
5.(1)计算:
①(106)2;
aaa
amn
(m、n都是正整数)
知识点二、 同底 数幂的乘法法则 am • an amn ( m、n 都是正整数)
同底数幂相乘,底数不变,指数相加
【课堂展示】 互动探究一:当三个或三个以上的同底数幂相乘时,怎样用公式表示运算的结果呢?
a m a n a s a mns
互动探究二:计算 1 105 103
总结:
(1)特点:这三个式子都是底数相同的幂相乘.相乘结果的底数与原来底数相同,指数是原来两个幂的
指数的和.
(2)一般性结论:
am·an 表示同底数幂的乘法.根据幂的意义可得:
am·an= (a a a) ·(a a a) = a a a =am+n
m个a
n个a
(m+n)个a
am·an=am+n(m、n 都是正整数),
例 1 计算下列各题:
(1)(-a2)3;
(2)(-a3)2;
(3)(-a3)4·a12;
(4)(-a3)2+a6.
规律总结:运用幂的乘方计算时,找准底数和指数很重要,然后底数不变,指数相乘. ●跟踪训练
1.(宿迁中考)计算(-a3)2 的结果是( )
A.-a5
B. a5
C.a6
2.下列运算中正确的是( )
●跟踪训练 5.x12=( )6=( )4=( )3=( )2.
6.填空:
(1)108=( )2;
(2)b27=(b3)( );
7.若 xm·x2m=2,求 x9m的值.
(3)(ym)3=( )m;
(4)p2n+2=(
)2.
1.下列运算正确的是( )
A.a2·a3=a4
B. (-a4)2=a4
C.a2+a3=a5
七年级数学下册幂的运算
———————————————————————————————— 作者: ———————————————————————————————— 日期:
年 级: 七年级
同学个性化教学设计
教 师: 王
科 目: 数学
班 主 任:
日 期:
时 段:
课题 幂的运算
教学目标
1.熟记幂的乘法的运算性质,了解法则的推导过程. 2.能熟练地进行幂的乘法运算. 3.通过法则的习题教学,训练学生的归纳能力,感悟从未知转化成已知的思想. 4.会逆用公式